xref: /freebsd/sys/kern/uipc_socket.c (revision ef9ffb8594eee294334ced627755bf5b46b48f9f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2004 The FreeBSD Foundation
7  * Copyright (c) 2004-2008 Robert N. M. Watson
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn().  Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn().  Socket layer private.
43  *
44  * pru_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation.  This is called
46  * from socreate() and sonewconn().  Socket layer private.
47  *
48  * pru_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pru_attach() has
50  * been successfully called.  If pru_attach() returned an error,
51  * pru_detach() will not be called.  Socket layer private.
52  *
53  * pru_abort() and pru_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection.  Historically, pru_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.
58  *
59  * socreate() creates a socket and attaches protocol state.  This is a public
60  * interface that may be used by socket layer consumers to create new
61  * sockets.
62  *
63  * sonewconn() creates a socket and attaches protocol state.  This is a
64  * public interface  that may be used by protocols to create new sockets when
65  * a new connection is received and will be available for accept() on a
66  * listen socket.
67  *
68  * soclose() destroys a socket after possibly waiting for it to disconnect.
69  * This is a public interface that socket consumers should use to close and
70  * release a socket when done with it.
71  *
72  * soabort() destroys a socket without waiting for it to disconnect (used
73  * only for incoming connections that are already partially or fully
74  * connected).  This is used internally by the socket layer when clearing
75  * listen socket queues (due to overflow or close on the listen socket), but
76  * is also a public interface protocols may use to abort connections in
77  * their incomplete listen queues should they no longer be required.  Sockets
78  * placed in completed connection listen queues should not be aborted for
79  * reasons described in the comment above the soclose() implementation.  This
80  * is not a general purpose close routine, and except in the specific
81  * circumstances described here, should not be used.
82  *
83  * sofree() will free a socket and its protocol state if all references on
84  * the socket have been released, and is the public interface to attempt to
85  * free a socket when a reference is removed.  This is a socket layer private
86  * interface.
87  *
88  * NOTE: In addition to socreate() and soclose(), which provide a single
89  * socket reference to the consumer to be managed as required, there are two
90  * calls to explicitly manage socket references, soref(), and sorele().
91  * Currently, these are generally required only when transitioning a socket
92  * from a listen queue to a file descriptor, in order to prevent garbage
93  * collection of the socket at an untimely moment.  For a number of reasons,
94  * these interfaces are not preferred, and should be avoided.
95  *
96  * NOTE: With regard to VNETs the general rule is that callers do not set
97  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98  * sofree(), sorele(), sonewconn() and sorflush(), which are usually called
99  * from a pre-set VNET context.  sopoll() currently does not need a VNET
100  * context to be set.
101  */
102 
103 #include <sys/cdefs.h>
104 #include "opt_inet.h"
105 #include "opt_inet6.h"
106 #include "opt_kern_tls.h"
107 #include "opt_ktrace.h"
108 #include "opt_sctp.h"
109 
110 #include <sys/param.h>
111 #include <sys/systm.h>
112 #include <sys/capsicum.h>
113 #include <sys/fcntl.h>
114 #include <sys/limits.h>
115 #include <sys/lock.h>
116 #include <sys/mac.h>
117 #include <sys/malloc.h>
118 #include <sys/mbuf.h>
119 #include <sys/mutex.h>
120 #include <sys/domain.h>
121 #include <sys/file.h>			/* for struct knote */
122 #include <sys/hhook.h>
123 #include <sys/kernel.h>
124 #include <sys/khelp.h>
125 #include <sys/kthread.h>
126 #include <sys/ktls.h>
127 #include <sys/event.h>
128 #include <sys/eventhandler.h>
129 #include <sys/poll.h>
130 #include <sys/proc.h>
131 #include <sys/protosw.h>
132 #include <sys/sbuf.h>
133 #include <sys/socket.h>
134 #include <sys/socketvar.h>
135 #include <sys/resourcevar.h>
136 #include <net/route.h>
137 #include <sys/sched.h>
138 #include <sys/signalvar.h>
139 #include <sys/smp.h>
140 #include <sys/stat.h>
141 #include <sys/sx.h>
142 #include <sys/sysctl.h>
143 #include <sys/taskqueue.h>
144 #include <sys/uio.h>
145 #include <sys/un.h>
146 #include <sys/unpcb.h>
147 #include <sys/jail.h>
148 #include <sys/syslog.h>
149 #include <netinet/in.h>
150 #include <netinet/in_pcb.h>
151 #include <netinet/tcp.h>
152 
153 #include <net/vnet.h>
154 
155 #include <security/mac/mac_framework.h>
156 #include <security/mac/mac_internal.h>
157 
158 #include <vm/uma.h>
159 
160 #ifdef COMPAT_FREEBSD32
161 #include <sys/mount.h>
162 #include <sys/sysent.h>
163 #include <compat/freebsd32/freebsd32.h>
164 #endif
165 
166 static int	soreceive_generic_locked(struct socket *so,
167 		    struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
168 		    struct mbuf **controlp, int *flagsp);
169 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
170 		    int flags);
171 static int	soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
172 		    struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
173 		    struct mbuf **controlp, int flags);
174 static int	sosend_generic_locked(struct socket *so, struct sockaddr *addr,
175 		    struct uio *uio, struct mbuf *top, struct mbuf *control,
176 		    int flags, struct thread *td);
177 static void	so_rdknl_lock(void *);
178 static void	so_rdknl_unlock(void *);
179 static void	so_rdknl_assert_lock(void *, int);
180 static void	so_wrknl_lock(void *);
181 static void	so_wrknl_unlock(void *);
182 static void	so_wrknl_assert_lock(void *, int);
183 
184 static void	filt_sordetach(struct knote *kn);
185 static int	filt_soread(struct knote *kn, long hint);
186 static void	filt_sowdetach(struct knote *kn);
187 static int	filt_sowrite(struct knote *kn, long hint);
188 static int	filt_soempty(struct knote *kn, long hint);
189 fo_kqfilter_t	soo_kqfilter;
190 
191 static const struct filterops soread_filtops = {
192 	.f_isfd = 1,
193 	.f_detach = filt_sordetach,
194 	.f_event = filt_soread,
195 };
196 static const struct filterops sowrite_filtops = {
197 	.f_isfd = 1,
198 	.f_detach = filt_sowdetach,
199 	.f_event = filt_sowrite,
200 };
201 static const struct filterops soempty_filtops = {
202 	.f_isfd = 1,
203 	.f_detach = filt_sowdetach,
204 	.f_event = filt_soempty,
205 };
206 
207 so_gen_t	so_gencnt;	/* generation count for sockets */
208 
209 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
210 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
211 
212 #define	VNET_SO_ASSERT(so)						\
213 	VNET_ASSERT(curvnet != NULL,					\
214 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
215 
216 #ifdef SOCKET_HHOOK
217 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
218 #define	V_socket_hhh		VNET(socket_hhh)
219 static inline int hhook_run_socket(struct socket *, void *, int32_t);
220 #endif
221 
222 #ifdef COMPAT_FREEBSD32
223 #ifdef __amd64__
224 /* off_t has 4-byte alignment on i386 but not on other 32-bit platforms. */
225 #define	__splice32_packed	__packed
226 #else
227 #define	__splice32_packed
228 #endif
229 struct splice32 {
230 	int32_t	sp_fd;
231 	int64_t sp_max;
232 	struct timeval32 sp_idle;
233 } __splice32_packed;
234 #undef __splice32_packed
235 #endif
236 
237 /*
238  * Limit on the number of connections in the listen queue waiting
239  * for accept(2).
240  * NB: The original sysctl somaxconn is still available but hidden
241  * to prevent confusion about the actual purpose of this number.
242  */
243 static u_int somaxconn = SOMAXCONN;
244 
245 static int
sysctl_somaxconn(SYSCTL_HANDLER_ARGS)246 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
247 {
248 	int error;
249 	int val;
250 
251 	val = somaxconn;
252 	error = sysctl_handle_int(oidp, &val, 0, req);
253 	if (error || !req->newptr )
254 		return (error);
255 
256 	/*
257 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
258 	 *   3 * so_qlimit / 2
259 	 * below, will not overflow.
260          */
261 
262 	if (val < 1 || val > UINT_MAX / 3)
263 		return (EINVAL);
264 
265 	somaxconn = val;
266 	return (0);
267 }
268 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
269     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int),
270     sysctl_somaxconn, "I",
271     "Maximum listen socket pending connection accept queue size");
272 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
273     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0,
274     sizeof(int), sysctl_somaxconn, "I",
275     "Maximum listen socket pending connection accept queue size (compat)");
276 
277 static int numopensockets;
278 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
279     &numopensockets, 0, "Number of open sockets");
280 
281 /*
282  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
283  * so_gencnt field.
284  */
285 static struct mtx so_global_mtx;
286 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
287 
288 /*
289  * General IPC sysctl name space, used by sockets and a variety of other IPC
290  * types.
291  */
292 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
293     "IPC");
294 
295 /*
296  * Initialize the socket subsystem and set up the socket
297  * memory allocator.
298  */
299 static uma_zone_t socket_zone;
300 int	maxsockets;
301 
302 static void
socket_zone_change(void * tag)303 socket_zone_change(void *tag)
304 {
305 
306 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
307 }
308 
309 static int splice_init_state;
310 static struct sx splice_init_lock;
311 SX_SYSINIT(splice_init_lock, &splice_init_lock, "splice_init");
312 
313 static SYSCTL_NODE(_kern_ipc, OID_AUTO, splice, CTLFLAG_RW, 0,
314     "Settings relating to the SO_SPLICE socket option");
315 
316 static bool splice_receive_stream = true;
317 SYSCTL_BOOL(_kern_ipc_splice, OID_AUTO, receive_stream, CTLFLAG_RWTUN,
318     &splice_receive_stream, 0,
319     "Use soreceive_stream() for stream splices");
320 
321 static uma_zone_t splice_zone;
322 static struct proc *splice_proc;
323 struct splice_wq {
324 	struct mtx	mtx;
325 	STAILQ_HEAD(, so_splice) head;
326 	bool		running;
327 } __aligned(CACHE_LINE_SIZE);
328 static struct splice_wq *splice_wq;
329 static uint32_t splice_index = 0;
330 
331 static void so_splice_timeout(void *arg, int pending);
332 static void so_splice_xfer(struct so_splice *s);
333 static int so_unsplice(struct socket *so, bool timeout);
334 
335 static void
splice_work_thread(void * ctx)336 splice_work_thread(void *ctx)
337 {
338 	struct splice_wq *wq = ctx;
339 	struct so_splice *s, *s_temp;
340 	STAILQ_HEAD(, so_splice) local_head;
341 	int cpu;
342 
343 	cpu = wq - splice_wq;
344 	if (bootverbose)
345 		printf("starting so_splice worker thread for CPU %d\n", cpu);
346 
347 	for (;;) {
348 		mtx_lock(&wq->mtx);
349 		while (STAILQ_EMPTY(&wq->head)) {
350 			wq->running = false;
351 			mtx_sleep(wq, &wq->mtx, 0, "-", 0);
352 			wq->running = true;
353 		}
354 		STAILQ_INIT(&local_head);
355 		STAILQ_CONCAT(&local_head, &wq->head);
356 		STAILQ_INIT(&wq->head);
357 		mtx_unlock(&wq->mtx);
358 		STAILQ_FOREACH_SAFE(s, &local_head, next, s_temp) {
359 			mtx_lock(&s->mtx);
360 			CURVNET_SET(s->src->so_vnet);
361 			so_splice_xfer(s);
362 			CURVNET_RESTORE();
363 		}
364 	}
365 }
366 
367 static void
so_splice_dispatch_async(struct so_splice * sp)368 so_splice_dispatch_async(struct so_splice *sp)
369 {
370 	struct splice_wq *wq;
371 	bool running;
372 
373 	wq = &splice_wq[sp->wq_index];
374 	mtx_lock(&wq->mtx);
375 	STAILQ_INSERT_TAIL(&wq->head, sp, next);
376 	running = wq->running;
377 	mtx_unlock(&wq->mtx);
378 	if (!running)
379 		wakeup(wq);
380 }
381 
382 void
so_splice_dispatch(struct so_splice * sp)383 so_splice_dispatch(struct so_splice *sp)
384 {
385 	mtx_assert(&sp->mtx, MA_OWNED);
386 
387 	if (sp->state != SPLICE_IDLE) {
388 		mtx_unlock(&sp->mtx);
389 	} else {
390 		sp->state = SPLICE_QUEUED;
391 		mtx_unlock(&sp->mtx);
392 		so_splice_dispatch_async(sp);
393 	}
394 }
395 
396 static int
splice_zinit(void * mem,int size __unused,int flags __unused)397 splice_zinit(void *mem, int size __unused, int flags __unused)
398 {
399 	struct so_splice *s;
400 
401 	s = (struct so_splice *)mem;
402 	mtx_init(&s->mtx, "so_splice", NULL, MTX_DEF);
403 	return (0);
404 }
405 
406 static void
splice_zfini(void * mem,int size)407 splice_zfini(void *mem, int size)
408 {
409 	struct so_splice *s;
410 
411 	s = (struct so_splice *)mem;
412 	mtx_destroy(&s->mtx);
413 }
414 
415 static int
splice_init(void)416 splice_init(void)
417 {
418 	struct thread *td;
419 	int error, i, state;
420 
421 	state = atomic_load_acq_int(&splice_init_state);
422 	if (__predict_true(state > 0))
423 		return (0);
424 	if (state < 0)
425 		return (ENXIO);
426 	sx_xlock(&splice_init_lock);
427 	if (splice_init_state != 0) {
428 		sx_xunlock(&splice_init_lock);
429 		return (0);
430 	}
431 
432 	splice_zone = uma_zcreate("splice", sizeof(struct so_splice), NULL,
433 	    NULL, splice_zinit, splice_zfini, UMA_ALIGN_CACHE, 0);
434 
435 	splice_wq = mallocarray(mp_maxid + 1, sizeof(*splice_wq), M_TEMP,
436 	    M_WAITOK | M_ZERO);
437 
438 	/*
439 	 * Initialize the workqueues to run the splice work.  We create a
440 	 * work queue for each CPU.
441 	 */
442 	CPU_FOREACH(i) {
443 		STAILQ_INIT(&splice_wq[i].head);
444 		mtx_init(&splice_wq[i].mtx, "splice work queue", NULL, MTX_DEF);
445 	}
446 
447 	/* Start kthreads for each workqueue. */
448 	error = 0;
449 	CPU_FOREACH(i) {
450 		error = kproc_kthread_add(splice_work_thread, &splice_wq[i],
451 		    &splice_proc, &td, 0, 0, "so_splice", "thr_%d", i);
452 		if (error) {
453 			printf("Can't add so_splice thread %d error %d\n",
454 			    i, error);
455 			break;
456 		}
457 
458 		/*
459 		 * It's possible to create loops with SO_SPLICE; ensure that
460 		 * worker threads aren't able to starve the system too easily.
461 		 */
462 		thread_lock(td);
463 		sched_prio(td, PUSER);
464 		thread_unlock(td);
465 	}
466 
467 	splice_init_state = error != 0 ? -1 : 1;
468 	sx_xunlock(&splice_init_lock);
469 
470 	return (error);
471 }
472 
473 /*
474  * Lock a pair of socket's I/O locks for splicing.  Avoid blocking while holding
475  * one lock in order to avoid potential deadlocks in case there is some other
476  * code path which acquires more than one I/O lock at a time.
477  */
478 static void
splice_lock_pair(struct socket * so_src,struct socket * so_dst)479 splice_lock_pair(struct socket *so_src, struct socket *so_dst)
480 {
481 	int error;
482 
483 	for (;;) {
484 		error = SOCK_IO_SEND_LOCK(so_dst, SBL_WAIT | SBL_NOINTR);
485 		KASSERT(error == 0,
486 		    ("%s: failed to lock send I/O lock: %d", __func__, error));
487 		error = SOCK_IO_RECV_LOCK(so_src, 0);
488 		KASSERT(error == 0 || error == EWOULDBLOCK,
489 		    ("%s: failed to lock recv I/O lock: %d", __func__, error));
490 		if (error == 0)
491 			break;
492 		SOCK_IO_SEND_UNLOCK(so_dst);
493 
494 		error = SOCK_IO_RECV_LOCK(so_src, SBL_WAIT | SBL_NOINTR);
495 		KASSERT(error == 0,
496 		    ("%s: failed to lock recv I/O lock: %d", __func__, error));
497 		error = SOCK_IO_SEND_LOCK(so_dst, 0);
498 		KASSERT(error == 0 || error == EWOULDBLOCK,
499 		    ("%s: failed to lock send I/O lock: %d", __func__, error));
500 		if (error == 0)
501 			break;
502 		SOCK_IO_RECV_UNLOCK(so_src);
503 	}
504 }
505 
506 static void
splice_unlock_pair(struct socket * so_src,struct socket * so_dst)507 splice_unlock_pair(struct socket *so_src, struct socket *so_dst)
508 {
509 	SOCK_IO_RECV_UNLOCK(so_src);
510 	SOCK_IO_SEND_UNLOCK(so_dst);
511 }
512 
513 /*
514  * Move data from the source to the sink.  Assumes that both of the relevant
515  * socket I/O locks are held.
516  */
517 static int
so_splice_xfer_data(struct socket * so_src,struct socket * so_dst,off_t max,ssize_t * lenp)518 so_splice_xfer_data(struct socket *so_src, struct socket *so_dst, off_t max,
519     ssize_t *lenp)
520 {
521 	struct uio uio;
522 	struct mbuf *m;
523 	struct sockbuf *sb_src, *sb_dst;
524 	ssize_t len;
525 	long space;
526 	int error, flags;
527 
528 	SOCK_IO_RECV_ASSERT_LOCKED(so_src);
529 	SOCK_IO_SEND_ASSERT_LOCKED(so_dst);
530 
531 	error = 0;
532 	m = NULL;
533 	memset(&uio, 0, sizeof(uio));
534 
535 	sb_src = &so_src->so_rcv;
536 	sb_dst = &so_dst->so_snd;
537 
538 	space = sbspace(sb_dst);
539 	if (space < 0)
540 		space = 0;
541 	len = MIN(max, MIN(space, sbavail(sb_src)));
542 	if (len == 0) {
543 		SOCK_RECVBUF_LOCK(so_src);
544 		if ((sb_src->sb_state & SBS_CANTRCVMORE) != 0)
545 			error = EPIPE;
546 		SOCK_RECVBUF_UNLOCK(so_src);
547 	} else {
548 		flags = MSG_DONTWAIT;
549 		uio.uio_resid = len;
550 		if (splice_receive_stream && sb_src->sb_tls_info == NULL) {
551 			error = soreceive_stream_locked(so_src, sb_src, NULL,
552 			    &uio, &m, NULL, flags);
553 		} else {
554 			error = soreceive_generic_locked(so_src, NULL,
555 			    &uio, &m, NULL, &flags);
556 		}
557 		if (error != 0 && m != NULL) {
558 			m_freem(m);
559 			m = NULL;
560 		}
561 	}
562 	if (m != NULL) {
563 		len -= uio.uio_resid;
564 		error = sosend_generic_locked(so_dst, NULL, NULL, m, NULL,
565 		    MSG_DONTWAIT, curthread);
566 	} else if (error == 0) {
567 		len = 0;
568 		SOCK_SENDBUF_LOCK(so_dst);
569 		if ((sb_dst->sb_state & SBS_CANTSENDMORE) != 0)
570 			error = EPIPE;
571 		SOCK_SENDBUF_UNLOCK(so_dst);
572 	}
573 	if (error == 0)
574 		*lenp = len;
575 	return (error);
576 }
577 
578 /*
579  * Transfer data from the source to the sink.
580  *
581  * If "direct" is true, the transfer is done in the context of whichever thread
582  * is operating on one of the socket buffers.  We do not know which locks are
583  * held, so we can only trylock the socket buffers; if this fails, we fall back
584  * to the worker thread, which invokes this routine with "direct" set to false.
585  */
586 static void
so_splice_xfer(struct so_splice * sp)587 so_splice_xfer(struct so_splice *sp)
588 {
589 	struct socket *so_src, *so_dst;
590 	off_t max;
591 	ssize_t len;
592 	int error;
593 
594 	mtx_assert(&sp->mtx, MA_OWNED);
595 	KASSERT(sp->state == SPLICE_QUEUED || sp->state == SPLICE_CLOSING,
596 	    ("so_splice_xfer: invalid state %d", sp->state));
597 	KASSERT(sp->max != 0, ("so_splice_xfer: max == 0"));
598 
599 	if (sp->state == SPLICE_CLOSING) {
600 		/* Userspace asked us to close the splice. */
601 		goto closing;
602 	}
603 
604 	sp->state = SPLICE_RUNNING;
605 	so_src = sp->src;
606 	so_dst = sp->dst;
607 	max = sp->max > 0 ? sp->max - so_src->so_splice_sent : OFF_MAX;
608 	if (max < 0)
609 		max = 0;
610 
611 	/*
612 	 * Lock the sockets in order to block userspace from doing anything
613 	 * sneaky.  If an error occurs or one of the sockets can no longer
614 	 * transfer data, we will automatically unsplice.
615 	 */
616 	mtx_unlock(&sp->mtx);
617 	splice_lock_pair(so_src, so_dst);
618 
619 	error = so_splice_xfer_data(so_src, so_dst, max, &len);
620 
621 	mtx_lock(&sp->mtx);
622 
623 	/*
624 	 * Update our stats while still holding the socket locks.  This
625 	 * synchronizes with getsockopt(SO_SPLICE), see the comment there.
626 	 */
627 	if (error == 0) {
628 		KASSERT(len >= 0, ("%s: len %zd < 0", __func__, len));
629 		so_src->so_splice_sent += len;
630 	}
631 	splice_unlock_pair(so_src, so_dst);
632 
633 	switch (sp->state) {
634 	case SPLICE_CLOSING:
635 closing:
636 		sp->state = SPLICE_CLOSED;
637 		wakeup(sp);
638 		mtx_unlock(&sp->mtx);
639 		break;
640 	case SPLICE_RUNNING:
641 		if (error != 0 ||
642 		    (sp->max > 0 && so_src->so_splice_sent >= sp->max)) {
643 			sp->state = SPLICE_EXCEPTION;
644 			soref(so_src);
645 			mtx_unlock(&sp->mtx);
646 			(void)so_unsplice(so_src, false);
647 			sorele(so_src);
648 		} else {
649 			/*
650 			 * Locklessly check for additional bytes in the source's
651 			 * receive buffer and queue more work if possible.  We
652 			 * may end up queuing needless work, but that's ok, and
653 			 * if we race with a thread inserting more data into the
654 			 * buffer and observe sbavail() == 0, the splice mutex
655 			 * ensures that splice_push() will queue more work for
656 			 * us.
657 			 */
658 			if (sbavail(&so_src->so_rcv) > 0 &&
659 			    sbspace(&so_dst->so_snd) > 0) {
660 				sp->state = SPLICE_QUEUED;
661 				mtx_unlock(&sp->mtx);
662 				so_splice_dispatch_async(sp);
663 			} else {
664 				sp->state = SPLICE_IDLE;
665 				mtx_unlock(&sp->mtx);
666 			}
667 		}
668 		break;
669 	default:
670 		__assert_unreachable();
671 	}
672 }
673 
674 static void
socket_init(void * tag)675 socket_init(void *tag)
676 {
677 
678 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
679 	    NULL, NULL, UMA_ALIGN_PTR, 0);
680 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
681 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
682 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
683 	    EVENTHANDLER_PRI_FIRST);
684 }
685 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
686 
687 #ifdef SOCKET_HHOOK
688 static void
socket_hhook_register(int subtype)689 socket_hhook_register(int subtype)
690 {
691 
692 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
693 	    &V_socket_hhh[subtype],
694 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
695 		printf("%s: WARNING: unable to register hook\n", __func__);
696 }
697 
698 static void
socket_hhook_deregister(int subtype)699 socket_hhook_deregister(int subtype)
700 {
701 
702 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
703 		printf("%s: WARNING: unable to deregister hook\n", __func__);
704 }
705 
706 static void
socket_vnet_init(const void * unused __unused)707 socket_vnet_init(const void *unused __unused)
708 {
709 	int i;
710 
711 	/* We expect a contiguous range */
712 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
713 		socket_hhook_register(i);
714 }
715 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
716     socket_vnet_init, NULL);
717 
718 static void
socket_vnet_uninit(const void * unused __unused)719 socket_vnet_uninit(const void *unused __unused)
720 {
721 	int i;
722 
723 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
724 		socket_hhook_deregister(i);
725 }
726 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
727     socket_vnet_uninit, NULL);
728 #endif	/* SOCKET_HHOOK */
729 
730 /*
731  * Initialise maxsockets.  This SYSINIT must be run after
732  * tunable_mbinit().
733  */
734 static void
init_maxsockets(void * ignored)735 init_maxsockets(void *ignored)
736 {
737 
738 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
739 	maxsockets = imax(maxsockets, maxfiles);
740 }
741 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
742 
743 /*
744  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
745  * of the change so that they can update their dependent limits as required.
746  */
747 static int
sysctl_maxsockets(SYSCTL_HANDLER_ARGS)748 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
749 {
750 	int error, newmaxsockets;
751 
752 	newmaxsockets = maxsockets;
753 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
754 	if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
755 		if (newmaxsockets > maxsockets &&
756 		    newmaxsockets <= maxfiles) {
757 			maxsockets = newmaxsockets;
758 			EVENTHANDLER_INVOKE(maxsockets_change);
759 		} else
760 			error = EINVAL;
761 	}
762 	return (error);
763 }
764 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
765     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
766     &maxsockets, 0, sysctl_maxsockets, "IU",
767     "Maximum number of sockets available");
768 
769 /*
770  * Socket operation routines.  These routines are called by the routines in
771  * sys_socket.c or from a system process, and implement the semantics of
772  * socket operations by switching out to the protocol specific routines.
773  */
774 
775 /*
776  * Get a socket structure from our zone, and initialize it.  Note that it
777  * would probably be better to allocate socket and PCB at the same time, but
778  * I'm not convinced that all the protocols can be easily modified to do
779  * this.
780  *
781  * soalloc() returns a socket with a ref count of 0.
782  */
783 static struct socket *
soalloc(struct vnet * vnet)784 soalloc(struct vnet *vnet)
785 {
786 	struct socket *so;
787 
788 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
789 	if (so == NULL)
790 		return (NULL);
791 #ifdef MAC
792 	if (mac_socket_init(so, M_NOWAIT) != 0) {
793 		uma_zfree(socket_zone, so);
794 		return (NULL);
795 	}
796 #endif
797 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
798 		uma_zfree(socket_zone, so);
799 		return (NULL);
800 	}
801 
802 	/*
803 	 * The socket locking protocol allows to lock 2 sockets at a time,
804 	 * however, the first one must be a listening socket.  WITNESS lacks
805 	 * a feature to change class of an existing lock, so we use DUPOK.
806 	 */
807 	mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
808 	mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
809 	mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
810 	so->so_rcv.sb_sel = &so->so_rdsel;
811 	so->so_snd.sb_sel = &so->so_wrsel;
812 	sx_init(&so->so_snd_sx, "so_snd_sx");
813 	sx_init(&so->so_rcv_sx, "so_rcv_sx");
814 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
815 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
816 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
817 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
818 #ifdef VIMAGE
819 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
820 	    __func__, __LINE__, so));
821 	so->so_vnet = vnet;
822 #endif
823 #ifdef SOCKET_HHOOK
824 	/* We shouldn't need the so_global_mtx */
825 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
826 		/* Do we need more comprehensive error returns? */
827 		uma_zfree(socket_zone, so);
828 		return (NULL);
829 	}
830 #endif
831 	mtx_lock(&so_global_mtx);
832 	so->so_gencnt = ++so_gencnt;
833 	++numopensockets;
834 #ifdef VIMAGE
835 	vnet->vnet_sockcnt++;
836 #endif
837 	mtx_unlock(&so_global_mtx);
838 
839 	return (so);
840 }
841 
842 /*
843  * Free the storage associated with a socket at the socket layer, tear down
844  * locks, labels, etc.  All protocol state is assumed already to have been
845  * torn down (and possibly never set up) by the caller.
846  */
847 void
sodealloc(struct socket * so)848 sodealloc(struct socket *so)
849 {
850 
851 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
852 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
853 
854 	mtx_lock(&so_global_mtx);
855 	so->so_gencnt = ++so_gencnt;
856 	--numopensockets;	/* Could be below, but faster here. */
857 #ifdef VIMAGE
858 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
859 	    __func__, __LINE__, so));
860 	so->so_vnet->vnet_sockcnt--;
861 #endif
862 	mtx_unlock(&so_global_mtx);
863 #ifdef MAC
864 	mac_socket_destroy(so);
865 #endif
866 #ifdef SOCKET_HHOOK
867 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
868 #endif
869 
870 	khelp_destroy_osd(&so->osd);
871 	if (SOLISTENING(so)) {
872 		if (so->sol_accept_filter != NULL)
873 			accept_filt_setopt(so, NULL);
874 	} else {
875 		if (so->so_rcv.sb_hiwat)
876 			(void)chgsbsize(so->so_cred->cr_uidinfo,
877 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
878 		if (so->so_snd.sb_hiwat)
879 			(void)chgsbsize(so->so_cred->cr_uidinfo,
880 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
881 		sx_destroy(&so->so_snd_sx);
882 		sx_destroy(&so->so_rcv_sx);
883 		mtx_destroy(&so->so_snd_mtx);
884 		mtx_destroy(&so->so_rcv_mtx);
885 	}
886 	crfree(so->so_cred);
887 	mtx_destroy(&so->so_lock);
888 	uma_zfree(socket_zone, so);
889 }
890 
891 /*
892  * socreate returns a socket with a ref count of 1 and a file descriptor
893  * reference.  The socket should be closed with soclose().
894  */
895 int
socreate(int dom,struct socket ** aso,int type,int proto,struct ucred * cred,struct thread * td)896 socreate(int dom, struct socket **aso, int type, int proto,
897     struct ucred *cred, struct thread *td)
898 {
899 	struct protosw *prp;
900 	struct socket *so;
901 	int error;
902 
903 	/*
904 	 * XXX: divert(4) historically abused PF_INET.  Keep this compatibility
905 	 * shim until all applications have been updated.
906 	 */
907 	if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
908 	    proto == IPPROTO_DIVERT)) {
909 		dom = PF_DIVERT;
910 		printf("%s uses obsolete way to create divert(4) socket\n",
911 		    td->td_proc->p_comm);
912 	}
913 
914 	prp = pffindproto(dom, type, proto);
915 	if (prp == NULL) {
916 		/* No support for domain. */
917 		if (pffinddomain(dom) == NULL)
918 			return (EAFNOSUPPORT);
919 		/* No support for socket type. */
920 		if (proto == 0 && type != 0)
921 			return (EPROTOTYPE);
922 		return (EPROTONOSUPPORT);
923 	}
924 
925 	MPASS(prp->pr_attach);
926 
927 	if ((prp->pr_flags & PR_CAPATTACH) == 0) {
928 		if (CAP_TRACING(td))
929 			ktrcapfail(CAPFAIL_PROTO, &proto);
930 		if (IN_CAPABILITY_MODE(td))
931 			return (ECAPMODE);
932 	}
933 
934 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
935 		return (EPROTONOSUPPORT);
936 
937 	so = soalloc(CRED_TO_VNET(cred));
938 	if (so == NULL)
939 		return (ENOBUFS);
940 
941 	so->so_type = type;
942 	so->so_cred = crhold(cred);
943 	if ((prp->pr_domain->dom_family == PF_INET) ||
944 	    (prp->pr_domain->dom_family == PF_INET6) ||
945 	    (prp->pr_domain->dom_family == PF_ROUTE))
946 		so->so_fibnum = td->td_proc->p_fibnum;
947 	else
948 		so->so_fibnum = 0;
949 	so->so_proto = prp;
950 #ifdef MAC
951 	mac_socket_create(cred, so);
952 #endif
953 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
954 	    so_rdknl_assert_lock);
955 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
956 	    so_wrknl_assert_lock);
957 	if ((prp->pr_flags & PR_SOCKBUF) == 0) {
958 		so->so_snd.sb_mtx = &so->so_snd_mtx;
959 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
960 	}
961 	/*
962 	 * Auto-sizing of socket buffers is managed by the protocols and
963 	 * the appropriate flags must be set in the pru_attach function.
964 	 */
965 	CURVNET_SET(so->so_vnet);
966 	error = prp->pr_attach(so, proto, td);
967 	CURVNET_RESTORE();
968 	if (error) {
969 		sodealloc(so);
970 		return (error);
971 	}
972 	soref(so);
973 	*aso = so;
974 	return (0);
975 }
976 
977 #ifdef REGRESSION
978 static int regression_sonewconn_earlytest = 1;
979 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
980     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
981 #endif
982 
983 static int sooverprio = LOG_DEBUG;
984 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW,
985     &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable");
986 
987 static struct timeval overinterval = { 60, 0 };
988 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
989     &overinterval,
990     "Delay in seconds between warnings for listen socket overflows");
991 
992 /*
993  * When an attempt at a new connection is noted on a socket which supports
994  * accept(2), the protocol has two options:
995  * 1) Call legacy sonewconn() function, which would call protocol attach
996  *    method, same as used for socket(2).
997  * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
998  *    and then call solisten_enqueue().
999  *
1000  * Note: the ref count on the socket is 0 on return.
1001  */
1002 struct socket *
solisten_clone(struct socket * head)1003 solisten_clone(struct socket *head)
1004 {
1005 	struct sbuf descrsb;
1006 	struct socket *so;
1007 	int len, overcount;
1008 	u_int qlen;
1009 	const char localprefix[] = "local:";
1010 	char descrbuf[SUNPATHLEN + sizeof(localprefix)];
1011 #if defined(INET6)
1012 	char addrbuf[INET6_ADDRSTRLEN];
1013 #elif defined(INET)
1014 	char addrbuf[INET_ADDRSTRLEN];
1015 #endif
1016 	bool dolog, over;
1017 
1018 	SOLISTEN_LOCK(head);
1019 	over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
1020 #ifdef REGRESSION
1021 	if (regression_sonewconn_earlytest && over) {
1022 #else
1023 	if (over) {
1024 #endif
1025 		head->sol_overcount++;
1026 		dolog = (sooverprio >= 0) &&
1027 			!!ratecheck(&head->sol_lastover, &overinterval);
1028 
1029 		/*
1030 		 * If we're going to log, copy the overflow count and queue
1031 		 * length from the listen socket before dropping the lock.
1032 		 * Also, reset the overflow count.
1033 		 */
1034 		if (dolog) {
1035 			overcount = head->sol_overcount;
1036 			head->sol_overcount = 0;
1037 			qlen = head->sol_qlen;
1038 		}
1039 		SOLISTEN_UNLOCK(head);
1040 
1041 		if (dolog) {
1042 			/*
1043 			 * Try to print something descriptive about the
1044 			 * socket for the error message.
1045 			 */
1046 			sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
1047 			    SBUF_FIXEDLEN);
1048 			switch (head->so_proto->pr_domain->dom_family) {
1049 #if defined(INET) || defined(INET6)
1050 #ifdef INET
1051 			case AF_INET:
1052 #endif
1053 #ifdef INET6
1054 			case AF_INET6:
1055 				if (head->so_proto->pr_domain->dom_family ==
1056 				    AF_INET6 ||
1057 				    (sotoinpcb(head)->inp_inc.inc_flags &
1058 				    INC_ISIPV6)) {
1059 					ip6_sprintf(addrbuf,
1060 					    &sotoinpcb(head)->inp_inc.inc6_laddr);
1061 					sbuf_printf(&descrsb, "[%s]", addrbuf);
1062 				} else
1063 #endif
1064 				{
1065 #ifdef INET
1066 					inet_ntoa_r(
1067 					    sotoinpcb(head)->inp_inc.inc_laddr,
1068 					    addrbuf);
1069 					sbuf_cat(&descrsb, addrbuf);
1070 #endif
1071 				}
1072 				sbuf_printf(&descrsb, ":%hu (proto %u)",
1073 				    ntohs(sotoinpcb(head)->inp_inc.inc_lport),
1074 				    head->so_proto->pr_protocol);
1075 				break;
1076 #endif /* INET || INET6 */
1077 			case AF_UNIX:
1078 				sbuf_cat(&descrsb, localprefix);
1079 				if (sotounpcb(head)->unp_addr != NULL)
1080 					len =
1081 					    sotounpcb(head)->unp_addr->sun_len -
1082 					    offsetof(struct sockaddr_un,
1083 					    sun_path);
1084 				else
1085 					len = 0;
1086 				if (len > 0)
1087 					sbuf_bcat(&descrsb,
1088 					    sotounpcb(head)->unp_addr->sun_path,
1089 					    len);
1090 				else
1091 					sbuf_cat(&descrsb, "(unknown)");
1092 				break;
1093 			}
1094 
1095 			/*
1096 			 * If we can't print something more specific, at least
1097 			 * print the domain name.
1098 			 */
1099 			if (sbuf_finish(&descrsb) != 0 ||
1100 			    sbuf_len(&descrsb) <= 0) {
1101 				sbuf_clear(&descrsb);
1102 				sbuf_cat(&descrsb,
1103 				    head->so_proto->pr_domain->dom_name ?:
1104 				    "unknown");
1105 				sbuf_finish(&descrsb);
1106 			}
1107 			KASSERT(sbuf_len(&descrsb) > 0,
1108 			    ("%s: sbuf creation failed", __func__));
1109 			/*
1110 			 * Preserve the historic listen queue overflow log
1111 			 * message, that starts with "sonewconn:".  It has
1112 			 * been known to sysadmins for years and also test
1113 			 * sys/kern/sonewconn_overflow checks for it.
1114 			 */
1115 			if (head->so_cred == 0) {
1116 				log(LOG_PRI(sooverprio),
1117 				    "sonewconn: pcb %p (%s): "
1118 				    "Listen queue overflow: %i already in "
1119 				    "queue awaiting acceptance (%d "
1120 				    "occurrences)\n", head->so_pcb,
1121 				    sbuf_data(&descrsb),
1122 			    	qlen, overcount);
1123 			} else {
1124 				log(LOG_PRI(sooverprio),
1125 				    "sonewconn: pcb %p (%s): "
1126 				    "Listen queue overflow: "
1127 				    "%i already in queue awaiting acceptance "
1128 				    "(%d occurrences), euid %d, rgid %d, jail %s\n",
1129 				    head->so_pcb, sbuf_data(&descrsb), qlen,
1130 				    overcount, head->so_cred->cr_uid,
1131 				    head->so_cred->cr_rgid,
1132 				    head->so_cred->cr_prison ?
1133 					head->so_cred->cr_prison->pr_name :
1134 					"not_jailed");
1135 			}
1136 			sbuf_delete(&descrsb);
1137 
1138 			overcount = 0;
1139 		}
1140 
1141 		return (NULL);
1142 	}
1143 	SOLISTEN_UNLOCK(head);
1144 	VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
1145 	    __func__, head));
1146 	so = soalloc(head->so_vnet);
1147 	if (so == NULL) {
1148 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1149 		    "limit reached or out of memory\n",
1150 		    __func__, head->so_pcb);
1151 		return (NULL);
1152 	}
1153 	so->so_listen = head;
1154 	so->so_type = head->so_type;
1155 	/*
1156 	 * POSIX is ambiguous on what options an accept(2)ed socket should
1157 	 * inherit from the listener.  Words "create a new socket" may be
1158 	 * interpreted as not inheriting anything.  Best programming practice
1159 	 * for application developers is to not rely on such inheritance.
1160 	 * FreeBSD had historically inherited all so_options excluding
1161 	 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options,
1162 	 * including those completely irrelevant to a new born socket.  For
1163 	 * compatibility with older versions we will inherit a list of
1164 	 * meaningful options.
1165 	 * The crucial bit to inherit is SO_ACCEPTFILTER.  We need it present
1166 	 * in the child socket for soisconnected() promoting socket from the
1167 	 * incomplete queue to complete.  It will be cleared before the child
1168 	 * gets available to accept(2).
1169 	 */
1170 	so->so_options = head->so_options & (SO_ACCEPTFILTER | SO_KEEPALIVE |
1171 	    SO_DONTROUTE | SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE);
1172 	so->so_linger = head->so_linger;
1173 	so->so_state = head->so_state;
1174 	so->so_fibnum = head->so_fibnum;
1175 	so->so_proto = head->so_proto;
1176 	so->so_cred = crhold(head->so_cred);
1177 #ifdef SOCKET_HHOOK
1178 	if (V_socket_hhh[HHOOK_SOCKET_NEWCONN]->hhh_nhooks > 0) {
1179 		if (hhook_run_socket(so, head, HHOOK_SOCKET_NEWCONN)) {
1180 			sodealloc(so);
1181 			log(LOG_DEBUG, "%s: hhook run failed\n", __func__);
1182 			return (NULL);
1183 		}
1184 	}
1185 #endif
1186 #ifdef MAC
1187 	mac_socket_newconn(head, so);
1188 #endif
1189 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1190 	    so_rdknl_assert_lock);
1191 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1192 	    so_wrknl_assert_lock);
1193 	VNET_SO_ASSERT(head);
1194 	if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
1195 		sodealloc(so);
1196 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1197 		    __func__, head->so_pcb);
1198 		return (NULL);
1199 	}
1200 	so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
1201 	so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
1202 	so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
1203 	so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
1204 	so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
1205 	so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE;
1206 	if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1207 		so->so_snd.sb_mtx = &so->so_snd_mtx;
1208 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1209 	}
1210 
1211 	return (so);
1212 }
1213 
1214 /* Connstatus may be 0 or SS_ISCONNECTED. */
1215 struct socket *
1216 sonewconn(struct socket *head, int connstatus)
1217 {
1218 	struct socket *so;
1219 
1220 	if ((so = solisten_clone(head)) == NULL)
1221 		return (NULL);
1222 
1223 	if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
1224 		sodealloc(so);
1225 		log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1226 		    __func__, head->so_pcb);
1227 		return (NULL);
1228 	}
1229 
1230 	(void)solisten_enqueue(so, connstatus);
1231 
1232 	return (so);
1233 }
1234 
1235 /*
1236  * Enqueue socket cloned by solisten_clone() to the listen queue of the
1237  * listener it has been cloned from.
1238  *
1239  * Return 'true' if socket landed on complete queue, otherwise 'false'.
1240  */
1241 bool
1242 solisten_enqueue(struct socket *so, int connstatus)
1243 {
1244 	struct socket *head = so->so_listen;
1245 
1246 	MPASS(refcount_load(&so->so_count) == 0);
1247 	refcount_init(&so->so_count, 1);
1248 
1249 	SOLISTEN_LOCK(head);
1250 	if (head->sol_accept_filter != NULL)
1251 		connstatus = 0;
1252 	so->so_state |= connstatus;
1253 	soref(head); /* A socket on (in)complete queue refs head. */
1254 	if (connstatus) {
1255 		TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
1256 		so->so_qstate = SQ_COMP;
1257 		head->sol_qlen++;
1258 		solisten_wakeup(head);	/* unlocks */
1259 		return (true);
1260 	} else {
1261 		/*
1262 		 * Keep removing sockets from the head until there's room for
1263 		 * us to insert on the tail.  In pre-locking revisions, this
1264 		 * was a simple if(), but as we could be racing with other
1265 		 * threads and soabort() requires dropping locks, we must
1266 		 * loop waiting for the condition to be true.
1267 		 */
1268 		while (head->sol_incqlen > head->sol_qlimit) {
1269 			struct socket *sp;
1270 
1271 			sp = TAILQ_FIRST(&head->sol_incomp);
1272 			TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
1273 			head->sol_incqlen--;
1274 			SOCK_LOCK(sp);
1275 			sp->so_qstate = SQ_NONE;
1276 			sp->so_listen = NULL;
1277 			SOCK_UNLOCK(sp);
1278 			sorele_locked(head);	/* does SOLISTEN_UNLOCK, head stays */
1279 			soabort(sp);
1280 			SOLISTEN_LOCK(head);
1281 		}
1282 		TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
1283 		so->so_qstate = SQ_INCOMP;
1284 		head->sol_incqlen++;
1285 		SOLISTEN_UNLOCK(head);
1286 		return (false);
1287 	}
1288 }
1289 
1290 #if defined(SCTP) || defined(SCTP_SUPPORT)
1291 /*
1292  * Socket part of sctp_peeloff().  Detach a new socket from an
1293  * association.  The new socket is returned with a reference.
1294  *
1295  * XXXGL: reduce copy-paste with solisten_clone().
1296  */
1297 struct socket *
1298 sopeeloff(struct socket *head)
1299 {
1300 	struct socket *so;
1301 
1302 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
1303 	    __func__, __LINE__, head));
1304 	so = soalloc(head->so_vnet);
1305 	if (so == NULL) {
1306 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1307 		    "limit reached or out of memory\n",
1308 		    __func__, head->so_pcb);
1309 		return (NULL);
1310 	}
1311 	so->so_type = head->so_type;
1312 	so->so_options = head->so_options;
1313 	so->so_linger = head->so_linger;
1314 	so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
1315 	so->so_fibnum = head->so_fibnum;
1316 	so->so_proto = head->so_proto;
1317 	so->so_cred = crhold(head->so_cred);
1318 #ifdef MAC
1319 	mac_socket_newconn(head, so);
1320 #endif
1321 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1322 	    so_rdknl_assert_lock);
1323 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1324 	    so_wrknl_assert_lock);
1325 	VNET_SO_ASSERT(head);
1326 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
1327 		sodealloc(so);
1328 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1329 		    __func__, head->so_pcb);
1330 		return (NULL);
1331 	}
1332 	if ((*so->so_proto->pr_attach)(so, 0, NULL)) {
1333 		sodealloc(so);
1334 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
1335 		    __func__, head->so_pcb);
1336 		return (NULL);
1337 	}
1338 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
1339 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
1340 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
1341 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
1342 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
1343 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
1344 	if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1345 		so->so_snd.sb_mtx = &so->so_snd_mtx;
1346 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1347 	}
1348 
1349 	soref(so);
1350 
1351 	return (so);
1352 }
1353 #endif	/* SCTP */
1354 
1355 int
1356 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
1357 {
1358 	int error;
1359 
1360 	CURVNET_SET(so->so_vnet);
1361 	error = so->so_proto->pr_bind(so, nam, td);
1362 	CURVNET_RESTORE();
1363 	return (error);
1364 }
1365 
1366 int
1367 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1368 {
1369 	int error;
1370 
1371 	CURVNET_SET(so->so_vnet);
1372 	error = so->so_proto->pr_bindat(fd, so, nam, td);
1373 	CURVNET_RESTORE();
1374 	return (error);
1375 }
1376 
1377 /*
1378  * solisten() transitions a socket from a non-listening state to a listening
1379  * state, but can also be used to update the listen queue depth on an
1380  * existing listen socket.  The protocol will call back into the sockets
1381  * layer using solisten_proto_check() and solisten_proto() to check and set
1382  * socket-layer listen state.  Call backs are used so that the protocol can
1383  * acquire both protocol and socket layer locks in whatever order is required
1384  * by the protocol.
1385  *
1386  * Protocol implementors are advised to hold the socket lock across the
1387  * socket-layer test and set to avoid races at the socket layer.
1388  */
1389 int
1390 solisten(struct socket *so, int backlog, struct thread *td)
1391 {
1392 	int error;
1393 
1394 	CURVNET_SET(so->so_vnet);
1395 	error = so->so_proto->pr_listen(so, backlog, td);
1396 	CURVNET_RESTORE();
1397 	return (error);
1398 }
1399 
1400 /*
1401  * Prepare for a call to solisten_proto().  Acquire all socket buffer locks in
1402  * order to interlock with socket I/O.
1403  */
1404 int
1405 solisten_proto_check(struct socket *so)
1406 {
1407 	SOCK_LOCK_ASSERT(so);
1408 
1409 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1410 	    SS_ISDISCONNECTING)) != 0)
1411 		return (EINVAL);
1412 
1413 	/*
1414 	 * Sleeping is not permitted here, so simply fail if userspace is
1415 	 * attempting to transmit or receive on the socket.  This kind of
1416 	 * transient failure is not ideal, but it should occur only if userspace
1417 	 * is misusing the socket interfaces.
1418 	 */
1419 	if (!sx_try_xlock(&so->so_snd_sx))
1420 		return (EAGAIN);
1421 	if (!sx_try_xlock(&so->so_rcv_sx)) {
1422 		sx_xunlock(&so->so_snd_sx);
1423 		return (EAGAIN);
1424 	}
1425 	mtx_lock(&so->so_snd_mtx);
1426 	mtx_lock(&so->so_rcv_mtx);
1427 
1428 	/* Interlock with soo_aio_queue() and KTLS. */
1429 	if (!SOLISTENING(so)) {
1430 		bool ktls;
1431 
1432 #ifdef KERN_TLS
1433 		ktls = so->so_snd.sb_tls_info != NULL ||
1434 		    so->so_rcv.sb_tls_info != NULL;
1435 #else
1436 		ktls = false;
1437 #endif
1438 		if (ktls ||
1439 		    (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
1440 		    (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) {
1441 			solisten_proto_abort(so);
1442 			return (EINVAL);
1443 		}
1444 	}
1445 
1446 	return (0);
1447 }
1448 
1449 /*
1450  * Undo the setup done by solisten_proto_check().
1451  */
1452 void
1453 solisten_proto_abort(struct socket *so)
1454 {
1455 	mtx_unlock(&so->so_snd_mtx);
1456 	mtx_unlock(&so->so_rcv_mtx);
1457 	sx_xunlock(&so->so_snd_sx);
1458 	sx_xunlock(&so->so_rcv_sx);
1459 }
1460 
1461 void
1462 solisten_proto(struct socket *so, int backlog)
1463 {
1464 	int sbrcv_lowat, sbsnd_lowat;
1465 	u_int sbrcv_hiwat, sbsnd_hiwat;
1466 	short sbrcv_flags, sbsnd_flags;
1467 	sbintime_t sbrcv_timeo, sbsnd_timeo;
1468 
1469 	SOCK_LOCK_ASSERT(so);
1470 	KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1471 	    SS_ISDISCONNECTING)) == 0,
1472 	    ("%s: bad socket state %p", __func__, so));
1473 
1474 	if (SOLISTENING(so))
1475 		goto listening;
1476 
1477 	/*
1478 	 * Change this socket to listening state.
1479 	 */
1480 	sbrcv_lowat = so->so_rcv.sb_lowat;
1481 	sbsnd_lowat = so->so_snd.sb_lowat;
1482 	sbrcv_hiwat = so->so_rcv.sb_hiwat;
1483 	sbsnd_hiwat = so->so_snd.sb_hiwat;
1484 	sbrcv_flags = so->so_rcv.sb_flags;
1485 	sbsnd_flags = so->so_snd.sb_flags;
1486 	sbrcv_timeo = so->so_rcv.sb_timeo;
1487 	sbsnd_timeo = so->so_snd.sb_timeo;
1488 
1489 #ifdef MAC
1490 	mac_socketpeer_label_free(so->so_peerlabel);
1491 #endif
1492 
1493 	if (!(so->so_proto->pr_flags & PR_SOCKBUF)) {
1494 		sbdestroy(so, SO_SND);
1495 		sbdestroy(so, SO_RCV);
1496 	}
1497 
1498 #ifdef INVARIANTS
1499 	bzero(&so->so_rcv,
1500 	    sizeof(struct socket) - offsetof(struct socket, so_rcv));
1501 #endif
1502 
1503 	so->sol_sbrcv_lowat = sbrcv_lowat;
1504 	so->sol_sbsnd_lowat = sbsnd_lowat;
1505 	so->sol_sbrcv_hiwat = sbrcv_hiwat;
1506 	so->sol_sbsnd_hiwat = sbsnd_hiwat;
1507 	so->sol_sbrcv_flags = sbrcv_flags;
1508 	so->sol_sbsnd_flags = sbsnd_flags;
1509 	so->sol_sbrcv_timeo = sbrcv_timeo;
1510 	so->sol_sbsnd_timeo = sbsnd_timeo;
1511 
1512 	so->sol_qlen = so->sol_incqlen = 0;
1513 	TAILQ_INIT(&so->sol_incomp);
1514 	TAILQ_INIT(&so->sol_comp);
1515 
1516 	so->sol_accept_filter = NULL;
1517 	so->sol_accept_filter_arg = NULL;
1518 	so->sol_accept_filter_str = NULL;
1519 
1520 	so->sol_upcall = NULL;
1521 	so->sol_upcallarg = NULL;
1522 
1523 	so->so_options |= SO_ACCEPTCONN;
1524 
1525 listening:
1526 	if (backlog < 0 || backlog > somaxconn)
1527 		backlog = somaxconn;
1528 	so->sol_qlimit = backlog;
1529 
1530 	mtx_unlock(&so->so_snd_mtx);
1531 	mtx_unlock(&so->so_rcv_mtx);
1532 	sx_xunlock(&so->so_snd_sx);
1533 	sx_xunlock(&so->so_rcv_sx);
1534 }
1535 
1536 /*
1537  * Wakeup listeners/subsystems once we have a complete connection.
1538  * Enters with lock, returns unlocked.
1539  */
1540 void
1541 solisten_wakeup(struct socket *sol)
1542 {
1543 
1544 	if (sol->sol_upcall != NULL)
1545 		(void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1546 	else {
1547 		selwakeuppri(&sol->so_rdsel, PSOCK);
1548 		KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1549 	}
1550 	SOLISTEN_UNLOCK(sol);
1551 	wakeup_one(&sol->sol_comp);
1552 	if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1553 		pgsigio(&sol->so_sigio, SIGIO, 0);
1554 }
1555 
1556 /*
1557  * Return single connection off a listening socket queue.  Main consumer of
1558  * the function is kern_accept4().  Some modules, that do their own accept
1559  * management also use the function.  The socket reference held by the
1560  * listen queue is handed to the caller.
1561  *
1562  * Listening socket must be locked on entry and is returned unlocked on
1563  * return.
1564  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1565  */
1566 int
1567 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1568 {
1569 	struct socket *so;
1570 	int error;
1571 
1572 	SOLISTEN_LOCK_ASSERT(head);
1573 
1574 	while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1575 	    head->so_error == 0) {
1576 		error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1577 		    "accept", 0);
1578 		if (error != 0) {
1579 			SOLISTEN_UNLOCK(head);
1580 			return (error);
1581 		}
1582 	}
1583 	if (head->so_error) {
1584 		error = head->so_error;
1585 		head->so_error = 0;
1586 	} else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1587 		error = EWOULDBLOCK;
1588 	else
1589 		error = 0;
1590 	if (error) {
1591 		SOLISTEN_UNLOCK(head);
1592 		return (error);
1593 	}
1594 	so = TAILQ_FIRST(&head->sol_comp);
1595 	SOCK_LOCK(so);
1596 	KASSERT(so->so_qstate == SQ_COMP,
1597 	    ("%s: so %p not SQ_COMP", __func__, so));
1598 	head->sol_qlen--;
1599 	so->so_qstate = SQ_NONE;
1600 	so->so_listen = NULL;
1601 	TAILQ_REMOVE(&head->sol_comp, so, so_list);
1602 	if (flags & ACCEPT4_INHERIT)
1603 		so->so_state |= (head->so_state & SS_NBIO);
1604 	else
1605 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1606 	SOCK_UNLOCK(so);
1607 	sorele_locked(head);
1608 
1609 	*ret = so;
1610 	return (0);
1611 }
1612 
1613 static struct so_splice *
1614 so_splice_alloc(off_t max)
1615 {
1616 	struct so_splice *sp;
1617 
1618 	sp = uma_zalloc(splice_zone, M_WAITOK);
1619 	sp->src = NULL;
1620 	sp->dst = NULL;
1621 	sp->max = max > 0 ? max : -1;
1622 	do {
1623 		sp->wq_index = atomic_fetchadd_32(&splice_index, 1) %
1624 		    (mp_maxid + 1);
1625 	} while (CPU_ABSENT(sp->wq_index));
1626 	sp->state = SPLICE_IDLE;
1627 	TIMEOUT_TASK_INIT(taskqueue_thread, &sp->timeout, 0, so_splice_timeout,
1628 	    sp);
1629 	return (sp);
1630 }
1631 
1632 static void
1633 so_splice_free(struct so_splice *sp)
1634 {
1635 	KASSERT(sp->state == SPLICE_CLOSED,
1636 	    ("so_splice_free: sp %p not closed", sp));
1637 	uma_zfree(splice_zone, sp);
1638 }
1639 
1640 static void
1641 so_splice_timeout(void *arg, int pending __unused)
1642 {
1643 	struct so_splice *sp;
1644 
1645 	sp = arg;
1646 	(void)so_unsplice(sp->src, true);
1647 }
1648 
1649 /*
1650  * Splice the output from so to the input of so2.
1651  */
1652 static int
1653 so_splice(struct socket *so, struct socket *so2, struct splice *splice)
1654 {
1655 	struct so_splice *sp;
1656 	int error;
1657 
1658 	if (splice->sp_max < 0)
1659 		return (EINVAL);
1660 	/* Handle only TCP for now; TODO: other streaming protos */
1661 	if (so->so_proto->pr_protocol != IPPROTO_TCP ||
1662 	    so2->so_proto->pr_protocol != IPPROTO_TCP)
1663 		return (EPROTONOSUPPORT);
1664 	if (so->so_vnet != so2->so_vnet)
1665 		return (EINVAL);
1666 
1667 	/* so_splice_xfer() assumes that we're using these implementations. */
1668 	KASSERT(so->so_proto->pr_sosend == sosend_generic,
1669 	    ("so_splice: sosend not sosend_generic"));
1670 	KASSERT(so2->so_proto->pr_soreceive == soreceive_generic ||
1671 	    so2->so_proto->pr_soreceive == soreceive_stream,
1672 	    ("so_splice: soreceive not soreceive_generic/stream"));
1673 
1674 	sp = so_splice_alloc(splice->sp_max);
1675 	so->so_splice_sent = 0;
1676 	sp->src = so;
1677 	sp->dst = so2;
1678 
1679 	error = 0;
1680 	SOCK_LOCK(so);
1681 	if (SOLISTENING(so))
1682 		error = EINVAL;
1683 	else if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1684 		error = ENOTCONN;
1685 	else if (so->so_splice != NULL)
1686 		error = EBUSY;
1687 	if (error != 0) {
1688 		SOCK_UNLOCK(so);
1689 		uma_zfree(splice_zone, sp);
1690 		return (error);
1691 	}
1692 	soref(so);
1693 	so->so_splice = sp;
1694 	SOCK_RECVBUF_LOCK(so);
1695 	so->so_rcv.sb_flags |= SB_SPLICED;
1696 	SOCK_RECVBUF_UNLOCK(so);
1697 	SOCK_UNLOCK(so);
1698 
1699 	error = 0;
1700 	SOCK_LOCK(so2);
1701 	if (SOLISTENING(so2))
1702 		error = EINVAL;
1703 	else if ((so2->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1704 		error = ENOTCONN;
1705 	else if (so2->so_splice_back != NULL)
1706 		error = EBUSY;
1707 	if (error != 0) {
1708 		SOCK_UNLOCK(so2);
1709 		SOCK_LOCK(so);
1710 		so->so_splice = NULL;
1711 		SOCK_RECVBUF_LOCK(so);
1712 		so->so_rcv.sb_flags &= ~SB_SPLICED;
1713 		SOCK_RECVBUF_UNLOCK(so);
1714 		SOCK_UNLOCK(so);
1715 		sorele(so);
1716 		uma_zfree(splice_zone, sp);
1717 		return (error);
1718 	}
1719 	soref(so2);
1720 	so2->so_splice_back = sp;
1721 	SOCK_SENDBUF_LOCK(so2);
1722 	so2->so_snd.sb_flags |= SB_SPLICED;
1723 	mtx_lock(&sp->mtx);
1724 	SOCK_SENDBUF_UNLOCK(so2);
1725 	SOCK_UNLOCK(so2);
1726 
1727 	if (splice->sp_idle.tv_sec != 0 || splice->sp_idle.tv_usec != 0) {
1728 		taskqueue_enqueue_timeout_sbt(taskqueue_thread, &sp->timeout,
1729 		    tvtosbt(splice->sp_idle), 0, C_PREL(4));
1730 	}
1731 
1732 	/*
1733 	 * Transfer any data already present in the socket buffer.
1734 	 */
1735 	sp->state = SPLICE_QUEUED;
1736 	so_splice_xfer(sp);
1737 	return (0);
1738 }
1739 
1740 static int
1741 so_unsplice(struct socket *so, bool timeout)
1742 {
1743 	struct socket *so2;
1744 	struct so_splice *sp;
1745 	bool drain;
1746 
1747 	/*
1748 	 * First unset SB_SPLICED and hide the splice structure so that
1749 	 * wakeup routines will stop enqueuing work.  This also ensures that
1750 	 * a only a single thread will proceed with the unsplice.
1751 	 */
1752 	SOCK_LOCK(so);
1753 	if (SOLISTENING(so)) {
1754 		SOCK_UNLOCK(so);
1755 		return (EINVAL);
1756 	}
1757 	SOCK_RECVBUF_LOCK(so);
1758 	if ((so->so_rcv.sb_flags & SB_SPLICED) == 0) {
1759 		SOCK_RECVBUF_UNLOCK(so);
1760 		SOCK_UNLOCK(so);
1761 		return (ENOTCONN);
1762 	}
1763 	so->so_rcv.sb_flags &= ~SB_SPLICED;
1764 	sp = so->so_splice;
1765 	so->so_splice = NULL;
1766 	SOCK_RECVBUF_UNLOCK(so);
1767 	SOCK_UNLOCK(so);
1768 
1769 	so2 = sp->dst;
1770 	SOCK_LOCK(so2);
1771 	KASSERT(!SOLISTENING(so2), ("%s: so2 is listening", __func__));
1772 	SOCK_SENDBUF_LOCK(so2);
1773 	KASSERT((so2->so_snd.sb_flags & SB_SPLICED) != 0,
1774 	    ("%s: so2 is not spliced", __func__));
1775 	KASSERT(so2->so_splice_back == sp,
1776 	    ("%s: so_splice_back != sp", __func__));
1777 	so2->so_snd.sb_flags &= ~SB_SPLICED;
1778 	so2->so_splice_back = NULL;
1779 	SOCK_SENDBUF_UNLOCK(so2);
1780 	SOCK_UNLOCK(so2);
1781 
1782 	/*
1783 	 * No new work is being enqueued.  The worker thread might be
1784 	 * splicing data right now, in which case we want to wait for it to
1785 	 * finish before proceeding.
1786 	 */
1787 	mtx_lock(&sp->mtx);
1788 	switch (sp->state) {
1789 	case SPLICE_QUEUED:
1790 	case SPLICE_RUNNING:
1791 		sp->state = SPLICE_CLOSING;
1792 		while (sp->state == SPLICE_CLOSING)
1793 			msleep(sp, &sp->mtx, PSOCK, "unsplice", 0);
1794 		break;
1795 	case SPLICE_IDLE:
1796 	case SPLICE_EXCEPTION:
1797 		sp->state = SPLICE_CLOSED;
1798 		break;
1799 	default:
1800 		__assert_unreachable();
1801 	}
1802 	if (!timeout) {
1803 		drain = taskqueue_cancel_timeout(taskqueue_thread, &sp->timeout,
1804 		    NULL) != 0;
1805 	} else {
1806 		drain = false;
1807 	}
1808 	mtx_unlock(&sp->mtx);
1809 	if (drain)
1810 		taskqueue_drain_timeout(taskqueue_thread, &sp->timeout);
1811 
1812 	/*
1813 	 * Now we hold the sole reference to the splice structure.
1814 	 * Clean up: signal userspace and release socket references.
1815 	 */
1816 	sorwakeup(so);
1817 	CURVNET_SET(so->so_vnet);
1818 	sorele(so);
1819 	sowwakeup(so2);
1820 	sorele(so2);
1821 	CURVNET_RESTORE();
1822 	so_splice_free(sp);
1823 	return (0);
1824 }
1825 
1826 /*
1827  * Free socket upon release of the very last reference.
1828  */
1829 static void
1830 sofree(struct socket *so)
1831 {
1832 	struct protosw *pr = so->so_proto;
1833 
1834 	SOCK_LOCK_ASSERT(so);
1835 	KASSERT(refcount_load(&so->so_count) == 0,
1836 	    ("%s: so %p has references", __func__, so));
1837 	KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1838 	    ("%s: so %p is on listen queue", __func__, so));
1839 	KASSERT(SOLISTENING(so) || (so->so_rcv.sb_flags & SB_SPLICED) == 0,
1840 	    ("%s: so %p rcvbuf is spliced", __func__, so));
1841 	KASSERT(SOLISTENING(so) || (so->so_snd.sb_flags & SB_SPLICED) == 0,
1842 	    ("%s: so %p sndbuf is spliced", __func__, so));
1843 	KASSERT(so->so_splice == NULL && so->so_splice_back == NULL,
1844 	    ("%s: so %p has spliced data", __func__, so));
1845 
1846 	SOCK_UNLOCK(so);
1847 
1848 	if (so->so_dtor != NULL)
1849 		so->so_dtor(so);
1850 
1851 	VNET_SO_ASSERT(so);
1852 	if (pr->pr_detach != NULL)
1853 		pr->pr_detach(so);
1854 
1855 	/*
1856 	 * From this point on, we assume that no other references to this
1857 	 * socket exist anywhere else in the stack.  Therefore, no locks need
1858 	 * to be acquired or held.
1859 	 */
1860 	if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1861 		sbdestroy(so, SO_SND);
1862 		sbdestroy(so, SO_RCV);
1863 	}
1864 	seldrain(&so->so_rdsel);
1865 	seldrain(&so->so_wrsel);
1866 	knlist_destroy(&so->so_rdsel.si_note);
1867 	knlist_destroy(&so->so_wrsel.si_note);
1868 	sodealloc(so);
1869 }
1870 
1871 /*
1872  * Release a reference on a socket while holding the socket lock.
1873  * Unlocks the socket lock before returning.
1874  */
1875 void
1876 sorele_locked(struct socket *so)
1877 {
1878 	SOCK_LOCK_ASSERT(so);
1879 	if (refcount_release(&so->so_count))
1880 		sofree(so);
1881 	else
1882 		SOCK_UNLOCK(so);
1883 }
1884 
1885 /*
1886  * Close a socket on last file table reference removal.  Initiate disconnect
1887  * if connected.  Free socket when disconnect complete.
1888  *
1889  * This function will sorele() the socket.  Note that soclose() may be called
1890  * prior to the ref count reaching zero.  The actual socket structure will
1891  * not be freed until the ref count reaches zero.
1892  */
1893 int
1894 soclose(struct socket *so)
1895 {
1896 	struct accept_queue lqueue;
1897 	int error = 0;
1898 	bool listening, last __diagused;
1899 
1900 	CURVNET_SET(so->so_vnet);
1901 	funsetown(&so->so_sigio);
1902 	if (so->so_state & SS_ISCONNECTED) {
1903 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1904 			error = sodisconnect(so);
1905 			if (error) {
1906 				if (error == ENOTCONN)
1907 					error = 0;
1908 				goto drop;
1909 			}
1910 		}
1911 
1912 		if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1913 			if ((so->so_state & SS_ISDISCONNECTING) &&
1914 			    (so->so_state & SS_NBIO))
1915 				goto drop;
1916 			while (so->so_state & SS_ISCONNECTED) {
1917 				error = tsleep(&so->so_timeo,
1918 				    PSOCK | PCATCH, "soclos",
1919 				    so->so_linger * hz);
1920 				if (error)
1921 					break;
1922 			}
1923 		}
1924 	}
1925 
1926 drop:
1927 	if (so->so_proto->pr_close != NULL)
1928 		so->so_proto->pr_close(so);
1929 
1930 	SOCK_LOCK(so);
1931 	if ((listening = SOLISTENING(so))) {
1932 		struct socket *sp;
1933 
1934 		TAILQ_INIT(&lqueue);
1935 		TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1936 		TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1937 
1938 		so->sol_qlen = so->sol_incqlen = 0;
1939 
1940 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1941 			SOCK_LOCK(sp);
1942 			sp->so_qstate = SQ_NONE;
1943 			sp->so_listen = NULL;
1944 			SOCK_UNLOCK(sp);
1945 			last = refcount_release(&so->so_count);
1946 			KASSERT(!last, ("%s: released last reference for %p",
1947 			    __func__, so));
1948 		}
1949 	}
1950 	sorele_locked(so);
1951 	if (listening) {
1952 		struct socket *sp, *tsp;
1953 
1954 		TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
1955 			soabort(sp);
1956 	}
1957 	CURVNET_RESTORE();
1958 	return (error);
1959 }
1960 
1961 /*
1962  * soabort() is used to abruptly tear down a connection, such as when a
1963  * resource limit is reached (listen queue depth exceeded), or if a listen
1964  * socket is closed while there are sockets waiting to be accepted.
1965  *
1966  * This interface is tricky, because it is called on an unreferenced socket,
1967  * and must be called only by a thread that has actually removed the socket
1968  * from the listen queue it was on.  Likely this thread holds the last
1969  * reference on the socket and soabort() will proceed with sofree().  But
1970  * it might be not the last, as the sockets on the listen queues are seen
1971  * from the protocol side.
1972  *
1973  * This interface will call into the protocol code, so must not be called
1974  * with any socket locks held.  Protocols do call it while holding their own
1975  * recursible protocol mutexes, but this is something that should be subject
1976  * to review in the future.
1977  *
1978  * Usually socket should have a single reference left, but this is not a
1979  * requirement.  In the past, when we have had named references for file
1980  * descriptor and protocol, we asserted that none of them are being held.
1981  */
1982 void
1983 soabort(struct socket *so)
1984 {
1985 
1986 	VNET_SO_ASSERT(so);
1987 
1988 	if (so->so_proto->pr_abort != NULL)
1989 		so->so_proto->pr_abort(so);
1990 	SOCK_LOCK(so);
1991 	sorele_locked(so);
1992 }
1993 
1994 int
1995 soaccept(struct socket *so, struct sockaddr *sa)
1996 {
1997 #ifdef INVARIANTS
1998 	u_char len = sa->sa_len;
1999 #endif
2000 	int error;
2001 
2002 	CURVNET_SET(so->so_vnet);
2003 	error = so->so_proto->pr_accept(so, sa);
2004 	KASSERT(sa->sa_len <= len,
2005 	    ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2006 	CURVNET_RESTORE();
2007 	return (error);
2008 }
2009 
2010 int
2011 sopeeraddr(struct socket *so, struct sockaddr *sa)
2012 {
2013 #ifdef INVARIANTS
2014 	u_char len = sa->sa_len;
2015 #endif
2016 	int error;
2017 
2018 	CURVNET_SET(so->so_vnet);
2019 	error = so->so_proto->pr_peeraddr(so, sa);
2020 	KASSERT(sa->sa_len <= len,
2021 	    ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2022 	CURVNET_RESTORE();
2023 
2024 	return (error);
2025 }
2026 
2027 int
2028 sosockaddr(struct socket *so, struct sockaddr *sa)
2029 {
2030 #ifdef INVARIANTS
2031 	u_char len = sa->sa_len;
2032 #endif
2033 	int error;
2034 
2035 	CURVNET_SET(so->so_vnet);
2036 	error = so->so_proto->pr_sockaddr(so, sa);
2037 	KASSERT(sa->sa_len <= len,
2038 	    ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2039 	CURVNET_RESTORE();
2040 
2041 	return (error);
2042 }
2043 
2044 int
2045 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
2046 {
2047 
2048 	return (soconnectat(AT_FDCWD, so, nam, td));
2049 }
2050 
2051 int
2052 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
2053 {
2054 	int error;
2055 
2056 	CURVNET_SET(so->so_vnet);
2057 
2058 	/*
2059 	 * If protocol is connection-based, can only connect once.
2060 	 * Otherwise, if connected, try to disconnect first.  This allows
2061 	 * user to disconnect by connecting to, e.g., a null address.
2062 	 *
2063 	 * Note, this check is racy and may need to be re-evaluated at the
2064 	 * protocol layer.
2065 	 */
2066 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
2067 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
2068 	    (error = sodisconnect(so)))) {
2069 		error = EISCONN;
2070 	} else {
2071 		/*
2072 		 * Prevent accumulated error from previous connection from
2073 		 * biting us.
2074 		 */
2075 		so->so_error = 0;
2076 		if (fd == AT_FDCWD) {
2077 			error = so->so_proto->pr_connect(so, nam, td);
2078 		} else {
2079 			error = so->so_proto->pr_connectat(fd, so, nam, td);
2080 		}
2081 	}
2082 	CURVNET_RESTORE();
2083 
2084 	return (error);
2085 }
2086 
2087 int
2088 soconnect2(struct socket *so1, struct socket *so2)
2089 {
2090 	int error;
2091 
2092 	CURVNET_SET(so1->so_vnet);
2093 	error = so1->so_proto->pr_connect2(so1, so2);
2094 	CURVNET_RESTORE();
2095 	return (error);
2096 }
2097 
2098 int
2099 sodisconnect(struct socket *so)
2100 {
2101 	int error;
2102 
2103 	if ((so->so_state & SS_ISCONNECTED) == 0)
2104 		return (ENOTCONN);
2105 	if (so->so_state & SS_ISDISCONNECTING)
2106 		return (EALREADY);
2107 	VNET_SO_ASSERT(so);
2108 	error = so->so_proto->pr_disconnect(so);
2109 	return (error);
2110 }
2111 
2112 int
2113 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
2114     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2115 {
2116 	long space;
2117 	ssize_t resid;
2118 	int clen = 0, error, dontroute;
2119 
2120 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
2121 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
2122 	    ("sosend_dgram: !PR_ATOMIC"));
2123 
2124 	if (uio != NULL)
2125 		resid = uio->uio_resid;
2126 	else
2127 		resid = top->m_pkthdr.len;
2128 	/*
2129 	 * In theory resid should be unsigned.  However, space must be
2130 	 * signed, as it might be less than 0 if we over-committed, and we
2131 	 * must use a signed comparison of space and resid.  On the other
2132 	 * hand, a negative resid causes us to loop sending 0-length
2133 	 * segments to the protocol.
2134 	 */
2135 	if (resid < 0) {
2136 		error = EINVAL;
2137 		goto out;
2138 	}
2139 
2140 	dontroute =
2141 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
2142 	if (td != NULL)
2143 		td->td_ru.ru_msgsnd++;
2144 	if (control != NULL)
2145 		clen = control->m_len;
2146 
2147 	SOCKBUF_LOCK(&so->so_snd);
2148 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2149 		SOCKBUF_UNLOCK(&so->so_snd);
2150 		error = EPIPE;
2151 		goto out;
2152 	}
2153 	if (so->so_error) {
2154 		error = so->so_error;
2155 		so->so_error = 0;
2156 		SOCKBUF_UNLOCK(&so->so_snd);
2157 		goto out;
2158 	}
2159 	if ((so->so_state & SS_ISCONNECTED) == 0) {
2160 		/*
2161 		 * `sendto' and `sendmsg' is allowed on a connection-based
2162 		 * socket if it supports implied connect.  Return ENOTCONN if
2163 		 * not connected and no address is supplied.
2164 		 */
2165 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2166 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2167 			if (!(resid == 0 && clen != 0)) {
2168 				SOCKBUF_UNLOCK(&so->so_snd);
2169 				error = ENOTCONN;
2170 				goto out;
2171 			}
2172 		} else if (addr == NULL) {
2173 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2174 				error = ENOTCONN;
2175 			else
2176 				error = EDESTADDRREQ;
2177 			SOCKBUF_UNLOCK(&so->so_snd);
2178 			goto out;
2179 		}
2180 	}
2181 
2182 	/*
2183 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
2184 	 * problem and need fixing.
2185 	 */
2186 	space = sbspace(&so->so_snd);
2187 	if (flags & MSG_OOB)
2188 		space += 1024;
2189 	space -= clen;
2190 	SOCKBUF_UNLOCK(&so->so_snd);
2191 	if (resid > space) {
2192 		error = EMSGSIZE;
2193 		goto out;
2194 	}
2195 	if (uio == NULL) {
2196 		resid = 0;
2197 		if (flags & MSG_EOR)
2198 			top->m_flags |= M_EOR;
2199 	} else {
2200 		/*
2201 		 * Copy the data from userland into a mbuf chain.
2202 		 * If no data is to be copied in, a single empty mbuf
2203 		 * is returned.
2204 		 */
2205 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
2206 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
2207 		if (top == NULL) {
2208 			error = EFAULT;	/* only possible error */
2209 			goto out;
2210 		}
2211 		space -= resid - uio->uio_resid;
2212 		resid = uio->uio_resid;
2213 	}
2214 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
2215 	/*
2216 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
2217 	 * than with.
2218 	 */
2219 	if (dontroute) {
2220 		SOCK_LOCK(so);
2221 		so->so_options |= SO_DONTROUTE;
2222 		SOCK_UNLOCK(so);
2223 	}
2224 	/*
2225 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
2226 	 * of date.  We could have received a reset packet in an interrupt or
2227 	 * maybe we slept while doing page faults in uiomove() etc.  We could
2228 	 * probably recheck again inside the locking protection here, but
2229 	 * there are probably other places that this also happens.  We must
2230 	 * rethink this.
2231 	 */
2232 	VNET_SO_ASSERT(so);
2233 	error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
2234 	/*
2235 	 * If the user set MSG_EOF, the protocol understands this flag and
2236 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
2237 	 */
2238 	    ((flags & MSG_EOF) &&
2239 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2240 	     (resid <= 0)) ?
2241 		PRUS_EOF :
2242 		/* If there is more to send set PRUS_MORETOCOME */
2243 		(flags & MSG_MORETOCOME) ||
2244 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
2245 		top, addr, control, td);
2246 	if (dontroute) {
2247 		SOCK_LOCK(so);
2248 		so->so_options &= ~SO_DONTROUTE;
2249 		SOCK_UNLOCK(so);
2250 	}
2251 	clen = 0;
2252 	control = NULL;
2253 	top = NULL;
2254 out:
2255 	if (top != NULL)
2256 		m_freem(top);
2257 	if (control != NULL)
2258 		m_freem(control);
2259 	return (error);
2260 }
2261 
2262 /*
2263  * Send on a socket.  If send must go all at once and message is larger than
2264  * send buffering, then hard error.  Lock against other senders.  If must go
2265  * all at once and not enough room now, then inform user that this would
2266  * block and do nothing.  Otherwise, if nonblocking, send as much as
2267  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
2268  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
2269  * in mbuf chain must be small enough to send all at once.
2270  *
2271  * Returns nonzero on error, timeout or signal; callers must check for short
2272  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
2273  * on return.
2274  */
2275 static int
2276 sosend_generic_locked(struct socket *so, struct sockaddr *addr, struct uio *uio,
2277     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2278 {
2279 	long space;
2280 	ssize_t resid;
2281 	int clen = 0, error, dontroute;
2282 	int atomic = sosendallatonce(so) || top;
2283 	int pr_send_flag;
2284 #ifdef KERN_TLS
2285 	struct ktls_session *tls;
2286 	int tls_enq_cnt, tls_send_flag;
2287 	uint8_t tls_rtype;
2288 
2289 	tls = NULL;
2290 	tls_rtype = TLS_RLTYPE_APP;
2291 #endif
2292 
2293 	SOCK_IO_SEND_ASSERT_LOCKED(so);
2294 
2295 	if (uio != NULL)
2296 		resid = uio->uio_resid;
2297 	else if ((top->m_flags & M_PKTHDR) != 0)
2298 		resid = top->m_pkthdr.len;
2299 	else
2300 		resid = m_length(top, NULL);
2301 	/*
2302 	 * In theory resid should be unsigned.  However, space must be
2303 	 * signed, as it might be less than 0 if we over-committed, and we
2304 	 * must use a signed comparison of space and resid.  On the other
2305 	 * hand, a negative resid causes us to loop sending 0-length
2306 	 * segments to the protocol.
2307 	 *
2308 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
2309 	 * type sockets since that's an error.
2310 	 */
2311 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
2312 		error = EINVAL;
2313 		goto out;
2314 	}
2315 
2316 	dontroute =
2317 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
2318 	    (so->so_proto->pr_flags & PR_ATOMIC);
2319 	if (td != NULL)
2320 		td->td_ru.ru_msgsnd++;
2321 	if (control != NULL)
2322 		clen = control->m_len;
2323 
2324 #ifdef KERN_TLS
2325 	tls_send_flag = 0;
2326 	tls = ktls_hold(so->so_snd.sb_tls_info);
2327 	if (tls != NULL) {
2328 		if (tls->mode == TCP_TLS_MODE_SW)
2329 			tls_send_flag = PRUS_NOTREADY;
2330 
2331 		if (control != NULL) {
2332 			struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2333 
2334 			if (clen >= sizeof(*cm) &&
2335 			    cm->cmsg_type == TLS_SET_RECORD_TYPE) {
2336 				tls_rtype = *((uint8_t *)CMSG_DATA(cm));
2337 				clen = 0;
2338 				m_freem(control);
2339 				control = NULL;
2340 				atomic = 1;
2341 			}
2342 		}
2343 
2344 		if (resid == 0 && !ktls_permit_empty_frames(tls)) {
2345 			error = EINVAL;
2346 			goto out;
2347 		}
2348 	}
2349 #endif
2350 
2351 restart:
2352 	do {
2353 		SOCKBUF_LOCK(&so->so_snd);
2354 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2355 			SOCKBUF_UNLOCK(&so->so_snd);
2356 			error = EPIPE;
2357 			goto out;
2358 		}
2359 		if (so->so_error) {
2360 			error = so->so_error;
2361 			so->so_error = 0;
2362 			SOCKBUF_UNLOCK(&so->so_snd);
2363 			goto out;
2364 		}
2365 		if ((so->so_state & SS_ISCONNECTED) == 0) {
2366 			/*
2367 			 * `sendto' and `sendmsg' is allowed on a connection-
2368 			 * based socket if it supports implied connect.
2369 			 * Return ENOTCONN if not connected and no address is
2370 			 * supplied.
2371 			 */
2372 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2373 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2374 				if (!(resid == 0 && clen != 0)) {
2375 					SOCKBUF_UNLOCK(&so->so_snd);
2376 					error = ENOTCONN;
2377 					goto out;
2378 				}
2379 			} else if (addr == NULL) {
2380 				SOCKBUF_UNLOCK(&so->so_snd);
2381 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2382 					error = ENOTCONN;
2383 				else
2384 					error = EDESTADDRREQ;
2385 				goto out;
2386 			}
2387 		}
2388 		space = sbspace(&so->so_snd);
2389 		if (flags & MSG_OOB)
2390 			space += 1024;
2391 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
2392 		    clen > so->so_snd.sb_hiwat) {
2393 			SOCKBUF_UNLOCK(&so->so_snd);
2394 			error = EMSGSIZE;
2395 			goto out;
2396 		}
2397 		if (space < resid + clen &&
2398 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
2399 			if ((so->so_state & SS_NBIO) ||
2400 			    (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
2401 				SOCKBUF_UNLOCK(&so->so_snd);
2402 				error = EWOULDBLOCK;
2403 				goto out;
2404 			}
2405 			error = sbwait(so, SO_SND);
2406 			SOCKBUF_UNLOCK(&so->so_snd);
2407 			if (error)
2408 				goto out;
2409 			goto restart;
2410 		}
2411 		SOCKBUF_UNLOCK(&so->so_snd);
2412 		space -= clen;
2413 		do {
2414 			if (uio == NULL) {
2415 				resid = 0;
2416 				if (flags & MSG_EOR)
2417 					top->m_flags |= M_EOR;
2418 #ifdef KERN_TLS
2419 				if (tls != NULL) {
2420 					ktls_frame(top, tls, &tls_enq_cnt,
2421 					    tls_rtype);
2422 					tls_rtype = TLS_RLTYPE_APP;
2423 				}
2424 #endif
2425 			} else {
2426 				/*
2427 				 * Copy the data from userland into a mbuf
2428 				 * chain.  If resid is 0, which can happen
2429 				 * only if we have control to send, then
2430 				 * a single empty mbuf is returned.  This
2431 				 * is a workaround to prevent protocol send
2432 				 * methods to panic.
2433 				 */
2434 #ifdef KERN_TLS
2435 				if (tls != NULL) {
2436 					top = m_uiotombuf(uio, M_WAITOK, space,
2437 					    tls->params.max_frame_len,
2438 					    M_EXTPG |
2439 					    ((flags & MSG_EOR) ? M_EOR : 0));
2440 					if (top != NULL) {
2441 						ktls_frame(top, tls,
2442 						    &tls_enq_cnt, tls_rtype);
2443 					}
2444 					tls_rtype = TLS_RLTYPE_APP;
2445 				} else
2446 #endif
2447 					top = m_uiotombuf(uio, M_WAITOK, space,
2448 					    (atomic ? max_hdr : 0),
2449 					    (atomic ? M_PKTHDR : 0) |
2450 					    ((flags & MSG_EOR) ? M_EOR : 0));
2451 				if (top == NULL) {
2452 					error = EFAULT; /* only possible error */
2453 					goto out;
2454 				}
2455 				space -= resid - uio->uio_resid;
2456 				resid = uio->uio_resid;
2457 			}
2458 			if (dontroute) {
2459 				SOCK_LOCK(so);
2460 				so->so_options |= SO_DONTROUTE;
2461 				SOCK_UNLOCK(so);
2462 			}
2463 			/*
2464 			 * XXX all the SBS_CANTSENDMORE checks previously
2465 			 * done could be out of date.  We could have received
2466 			 * a reset packet in an interrupt or maybe we slept
2467 			 * while doing page faults in uiomove() etc.  We
2468 			 * could probably recheck again inside the locking
2469 			 * protection here, but there are probably other
2470 			 * places that this also happens.  We must rethink
2471 			 * this.
2472 			 */
2473 			VNET_SO_ASSERT(so);
2474 
2475 			pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
2476 			/*
2477 			 * If the user set MSG_EOF, the protocol understands
2478 			 * this flag and nothing left to send then use
2479 			 * PRU_SEND_EOF instead of PRU_SEND.
2480 			 */
2481 			    ((flags & MSG_EOF) &&
2482 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2483 			     (resid <= 0)) ?
2484 				PRUS_EOF :
2485 			/* If there is more to send set PRUS_MORETOCOME. */
2486 			    (flags & MSG_MORETOCOME) ||
2487 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
2488 
2489 #ifdef KERN_TLS
2490 			pr_send_flag |= tls_send_flag;
2491 #endif
2492 
2493 			error = so->so_proto->pr_send(so, pr_send_flag, top,
2494 			    addr, control, td);
2495 
2496 			if (dontroute) {
2497 				SOCK_LOCK(so);
2498 				so->so_options &= ~SO_DONTROUTE;
2499 				SOCK_UNLOCK(so);
2500 			}
2501 
2502 #ifdef KERN_TLS
2503 			if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
2504 				if (error != 0) {
2505 					m_freem(top);
2506 					top = NULL;
2507 				} else {
2508 					soref(so);
2509 					ktls_enqueue(top, so, tls_enq_cnt);
2510 				}
2511 			}
2512 #endif
2513 			clen = 0;
2514 			control = NULL;
2515 			top = NULL;
2516 			if (error)
2517 				goto out;
2518 		} while (resid && space > 0);
2519 	} while (resid);
2520 
2521 out:
2522 #ifdef KERN_TLS
2523 	if (tls != NULL)
2524 		ktls_free(tls);
2525 #endif
2526 	if (top != NULL)
2527 		m_freem(top);
2528 	if (control != NULL)
2529 		m_freem(control);
2530 	return (error);
2531 }
2532 
2533 int
2534 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
2535     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2536 {
2537 	int error;
2538 
2539 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
2540 	if (error)
2541 		return (error);
2542 	error = sosend_generic_locked(so, addr, uio, top, control, flags, td);
2543 	SOCK_IO_SEND_UNLOCK(so);
2544 	return (error);
2545 }
2546 
2547 /*
2548  * Send to a socket from a kernel thread.
2549  *
2550  * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
2551  * Exception is nfs/bootp_subr.c.  It is arguable that the VNET context needs
2552  * to be set at all.  This function should just boil down to a static inline
2553  * calling the protocol method.
2554  */
2555 int
2556 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2557     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2558 {
2559 	int error;
2560 
2561 	CURVNET_SET(so->so_vnet);
2562 	error = so->so_proto->pr_sosend(so, addr, uio,
2563 	    top, control, flags, td);
2564 	CURVNET_RESTORE();
2565 	return (error);
2566 }
2567 
2568 /*
2569  * send(2), write(2) or aio_write(2) on a socket.
2570  */
2571 int
2572 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2573     struct mbuf *control, int flags, struct proc *userproc)
2574 {
2575 	struct thread *td;
2576 	ssize_t len;
2577 	int error;
2578 
2579 	td = uio->uio_td;
2580 	len = uio->uio_resid;
2581 	CURVNET_SET(so->so_vnet);
2582 	error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
2583 	    td);
2584 	CURVNET_RESTORE();
2585 	if (error != 0) {
2586 		/*
2587 		 * Clear transient errors for stream protocols if they made
2588 		 * some progress.  Make exclusion for aio(4) that would
2589 		 * schedule a new write in case of EWOULDBLOCK and clear
2590 		 * error itself.  See soaio_process_job().
2591 		 */
2592 		if (uio->uio_resid != len &&
2593 		    (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
2594 		    userproc == NULL &&
2595 		    (error == ERESTART || error == EINTR ||
2596 		    error == EWOULDBLOCK))
2597 			error = 0;
2598 		/* Generation of SIGPIPE can be controlled per socket. */
2599 		if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
2600 		    (flags & MSG_NOSIGNAL) == 0) {
2601 			if (userproc != NULL) {
2602 				/* aio(4) job */
2603 				PROC_LOCK(userproc);
2604 				kern_psignal(userproc, SIGPIPE);
2605 				PROC_UNLOCK(userproc);
2606 			} else {
2607 				PROC_LOCK(td->td_proc);
2608 				tdsignal(td, SIGPIPE);
2609 				PROC_UNLOCK(td->td_proc);
2610 			}
2611 		}
2612 	}
2613 	return (error);
2614 }
2615 
2616 /*
2617  * The part of soreceive() that implements reading non-inline out-of-band
2618  * data from a socket.  For more complete comments, see soreceive(), from
2619  * which this code originated.
2620  *
2621  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
2622  * unable to return an mbuf chain to the caller.
2623  */
2624 static int
2625 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
2626 {
2627 	struct protosw *pr = so->so_proto;
2628 	struct mbuf *m;
2629 	int error;
2630 
2631 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
2632 	VNET_SO_ASSERT(so);
2633 
2634 	m = m_get(M_WAITOK, MT_DATA);
2635 	error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
2636 	if (error)
2637 		goto bad;
2638 	do {
2639 		error = uiomove(mtod(m, void *),
2640 		    (int) min(uio->uio_resid, m->m_len), uio);
2641 		m = m_free(m);
2642 	} while (uio->uio_resid && error == 0 && m);
2643 bad:
2644 	if (m != NULL)
2645 		m_freem(m);
2646 	return (error);
2647 }
2648 
2649 /*
2650  * Following replacement or removal of the first mbuf on the first mbuf chain
2651  * of a socket buffer, push necessary state changes back into the socket
2652  * buffer so that other consumers see the values consistently.  'nextrecord'
2653  * is the callers locally stored value of the original value of
2654  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
2655  * NOTE: 'nextrecord' may be NULL.
2656  */
2657 static __inline void
2658 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
2659 {
2660 
2661 	SOCKBUF_LOCK_ASSERT(sb);
2662 	/*
2663 	 * First, update for the new value of nextrecord.  If necessary, make
2664 	 * it the first record.
2665 	 */
2666 	if (sb->sb_mb != NULL)
2667 		sb->sb_mb->m_nextpkt = nextrecord;
2668 	else
2669 		sb->sb_mb = nextrecord;
2670 
2671 	/*
2672 	 * Now update any dependent socket buffer fields to reflect the new
2673 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
2674 	 * addition of a second clause that takes care of the case where
2675 	 * sb_mb has been updated, but remains the last record.
2676 	 */
2677 	if (sb->sb_mb == NULL) {
2678 		sb->sb_mbtail = NULL;
2679 		sb->sb_lastrecord = NULL;
2680 	} else if (sb->sb_mb->m_nextpkt == NULL)
2681 		sb->sb_lastrecord = sb->sb_mb;
2682 }
2683 
2684 /*
2685  * Implement receive operations on a socket.  We depend on the way that
2686  * records are added to the sockbuf by sbappend.  In particular, each record
2687  * (mbufs linked through m_next) must begin with an address if the protocol
2688  * so specifies, followed by an optional mbuf or mbufs containing ancillary
2689  * data, and then zero or more mbufs of data.  In order to allow parallelism
2690  * between network receive and copying to user space, as well as avoid
2691  * sleeping with a mutex held, we release the socket buffer mutex during the
2692  * user space copy.  Although the sockbuf is locked, new data may still be
2693  * appended, and thus we must maintain consistency of the sockbuf during that
2694  * time.
2695  *
2696  * The caller may receive the data as a single mbuf chain by supplying an
2697  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
2698  * the count in uio_resid.
2699  */
2700 static int
2701 soreceive_generic_locked(struct socket *so, struct sockaddr **psa,
2702     struct uio *uio, struct mbuf **mp, struct mbuf **controlp, int *flagsp)
2703 {
2704 	struct mbuf *m;
2705 	int flags, error, offset;
2706 	ssize_t len;
2707 	struct protosw *pr = so->so_proto;
2708 	struct mbuf *nextrecord;
2709 	int moff, type = 0;
2710 	ssize_t orig_resid = uio->uio_resid;
2711 	bool report_real_len = false;
2712 
2713 	SOCK_IO_RECV_ASSERT_LOCKED(so);
2714 
2715 	error = 0;
2716 	if (flagsp != NULL) {
2717 		report_real_len = *flagsp & MSG_TRUNC;
2718 		*flagsp &= ~MSG_TRUNC;
2719 		flags = *flagsp &~ MSG_EOR;
2720 	} else
2721 		flags = 0;
2722 
2723 restart:
2724 	SOCKBUF_LOCK(&so->so_rcv);
2725 	m = so->so_rcv.sb_mb;
2726 	/*
2727 	 * If we have less data than requested, block awaiting more (subject
2728 	 * to any timeout) if:
2729 	 *   1. the current count is less than the low water mark, or
2730 	 *   2. MSG_DONTWAIT is not set
2731 	 */
2732 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
2733 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
2734 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
2735 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
2736 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
2737 		    ("receive: m == %p sbavail == %u",
2738 		    m, sbavail(&so->so_rcv)));
2739 		if (so->so_error || so->so_rerror) {
2740 			if (m != NULL)
2741 				goto dontblock;
2742 			if (so->so_error)
2743 				error = so->so_error;
2744 			else
2745 				error = so->so_rerror;
2746 			if ((flags & MSG_PEEK) == 0) {
2747 				if (so->so_error)
2748 					so->so_error = 0;
2749 				else
2750 					so->so_rerror = 0;
2751 			}
2752 			SOCKBUF_UNLOCK(&so->so_rcv);
2753 			goto release;
2754 		}
2755 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2756 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2757 			if (m != NULL)
2758 				goto dontblock;
2759 #ifdef KERN_TLS
2760 			else if (so->so_rcv.sb_tlsdcc == 0 &&
2761 			    so->so_rcv.sb_tlscc == 0) {
2762 #else
2763 			else {
2764 #endif
2765 				SOCKBUF_UNLOCK(&so->so_rcv);
2766 				goto release;
2767 			}
2768 		}
2769 		for (; m != NULL; m = m->m_next)
2770 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
2771 				m = so->so_rcv.sb_mb;
2772 				goto dontblock;
2773 			}
2774 		if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2775 		    SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2776 		    (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2777 			SOCKBUF_UNLOCK(&so->so_rcv);
2778 			error = ENOTCONN;
2779 			goto release;
2780 		}
2781 		if (uio->uio_resid == 0 && !report_real_len) {
2782 			SOCKBUF_UNLOCK(&so->so_rcv);
2783 			goto release;
2784 		}
2785 		if ((so->so_state & SS_NBIO) ||
2786 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2787 			SOCKBUF_UNLOCK(&so->so_rcv);
2788 			error = EWOULDBLOCK;
2789 			goto release;
2790 		}
2791 		SBLASTRECORDCHK(&so->so_rcv);
2792 		SBLASTMBUFCHK(&so->so_rcv);
2793 		error = sbwait(so, SO_RCV);
2794 		SOCKBUF_UNLOCK(&so->so_rcv);
2795 		if (error)
2796 			goto release;
2797 		goto restart;
2798 	}
2799 dontblock:
2800 	/*
2801 	 * From this point onward, we maintain 'nextrecord' as a cache of the
2802 	 * pointer to the next record in the socket buffer.  We must keep the
2803 	 * various socket buffer pointers and local stack versions of the
2804 	 * pointers in sync, pushing out modifications before dropping the
2805 	 * socket buffer mutex, and re-reading them when picking it up.
2806 	 *
2807 	 * Otherwise, we will race with the network stack appending new data
2808 	 * or records onto the socket buffer by using inconsistent/stale
2809 	 * versions of the field, possibly resulting in socket buffer
2810 	 * corruption.
2811 	 *
2812 	 * By holding the high-level sblock(), we prevent simultaneous
2813 	 * readers from pulling off the front of the socket buffer.
2814 	 */
2815 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2816 	if (uio->uio_td)
2817 		uio->uio_td->td_ru.ru_msgrcv++;
2818 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2819 	SBLASTRECORDCHK(&so->so_rcv);
2820 	SBLASTMBUFCHK(&so->so_rcv);
2821 	nextrecord = m->m_nextpkt;
2822 	if (pr->pr_flags & PR_ADDR) {
2823 		KASSERT(m->m_type == MT_SONAME,
2824 		    ("m->m_type == %d", m->m_type));
2825 		orig_resid = 0;
2826 		if (psa != NULL)
2827 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2828 			    M_NOWAIT);
2829 		if (flags & MSG_PEEK) {
2830 			m = m->m_next;
2831 		} else {
2832 			sbfree(&so->so_rcv, m);
2833 			so->so_rcv.sb_mb = m_free(m);
2834 			m = so->so_rcv.sb_mb;
2835 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2836 		}
2837 	}
2838 
2839 	/*
2840 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2841 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
2842 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
2843 	 * perform externalization (or freeing if controlp == NULL).
2844 	 */
2845 	if (m != NULL && m->m_type == MT_CONTROL) {
2846 		struct mbuf *cm = NULL, *cmn;
2847 		struct mbuf **cme = &cm;
2848 #ifdef KERN_TLS
2849 		struct cmsghdr *cmsg;
2850 		struct tls_get_record tgr;
2851 
2852 		/*
2853 		 * For MSG_TLSAPPDATA, check for an alert record.
2854 		 * If found, return ENXIO without removing
2855 		 * it from the receive queue.  This allows a subsequent
2856 		 * call without MSG_TLSAPPDATA to receive it.
2857 		 * Note that, for TLS, there should only be a single
2858 		 * control mbuf with the TLS_GET_RECORD message in it.
2859 		 */
2860 		if (flags & MSG_TLSAPPDATA) {
2861 			cmsg = mtod(m, struct cmsghdr *);
2862 			if (cmsg->cmsg_type == TLS_GET_RECORD &&
2863 			    cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2864 				memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2865 				if (__predict_false(tgr.tls_type ==
2866 				    TLS_RLTYPE_ALERT)) {
2867 					SOCKBUF_UNLOCK(&so->so_rcv);
2868 					error = ENXIO;
2869 					goto release;
2870 				}
2871 			}
2872 		}
2873 #endif
2874 
2875 		do {
2876 			if (flags & MSG_PEEK) {
2877 				if (controlp != NULL) {
2878 					*controlp = m_copym(m, 0, m->m_len,
2879 					    M_NOWAIT);
2880 					controlp = &(*controlp)->m_next;
2881 				}
2882 				m = m->m_next;
2883 			} else {
2884 				sbfree(&so->so_rcv, m);
2885 				so->so_rcv.sb_mb = m->m_next;
2886 				m->m_next = NULL;
2887 				*cme = m;
2888 				cme = &(*cme)->m_next;
2889 				m = so->so_rcv.sb_mb;
2890 			}
2891 		} while (m != NULL && m->m_type == MT_CONTROL);
2892 		if ((flags & MSG_PEEK) == 0)
2893 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2894 		while (cm != NULL) {
2895 			cmn = cm->m_next;
2896 			cm->m_next = NULL;
2897 			if (pr->pr_domain->dom_externalize != NULL) {
2898 				SOCKBUF_UNLOCK(&so->so_rcv);
2899 				VNET_SO_ASSERT(so);
2900 				error = (*pr->pr_domain->dom_externalize)
2901 				    (cm, controlp, flags);
2902 				SOCKBUF_LOCK(&so->so_rcv);
2903 			} else if (controlp != NULL)
2904 				*controlp = cm;
2905 			else
2906 				m_freem(cm);
2907 			if (controlp != NULL) {
2908 				while (*controlp != NULL)
2909 					controlp = &(*controlp)->m_next;
2910 			}
2911 			cm = cmn;
2912 		}
2913 		if (m != NULL)
2914 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2915 		else
2916 			nextrecord = so->so_rcv.sb_mb;
2917 		orig_resid = 0;
2918 	}
2919 	if (m != NULL) {
2920 		if ((flags & MSG_PEEK) == 0) {
2921 			KASSERT(m->m_nextpkt == nextrecord,
2922 			    ("soreceive: post-control, nextrecord !sync"));
2923 			if (nextrecord == NULL) {
2924 				KASSERT(so->so_rcv.sb_mb == m,
2925 				    ("soreceive: post-control, sb_mb!=m"));
2926 				KASSERT(so->so_rcv.sb_lastrecord == m,
2927 				    ("soreceive: post-control, lastrecord!=m"));
2928 			}
2929 		}
2930 		type = m->m_type;
2931 		if (type == MT_OOBDATA)
2932 			flags |= MSG_OOB;
2933 	} else {
2934 		if ((flags & MSG_PEEK) == 0) {
2935 			KASSERT(so->so_rcv.sb_mb == nextrecord,
2936 			    ("soreceive: sb_mb != nextrecord"));
2937 			if (so->so_rcv.sb_mb == NULL) {
2938 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
2939 				    ("soreceive: sb_lastercord != NULL"));
2940 			}
2941 		}
2942 	}
2943 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2944 	SBLASTRECORDCHK(&so->so_rcv);
2945 	SBLASTMBUFCHK(&so->so_rcv);
2946 
2947 	/*
2948 	 * Now continue to read any data mbufs off of the head of the socket
2949 	 * buffer until the read request is satisfied.  Note that 'type' is
2950 	 * used to store the type of any mbuf reads that have happened so far
2951 	 * such that soreceive() can stop reading if the type changes, which
2952 	 * causes soreceive() to return only one of regular data and inline
2953 	 * out-of-band data in a single socket receive operation.
2954 	 */
2955 	moff = 0;
2956 	offset = 0;
2957 	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2958 	    && error == 0) {
2959 		/*
2960 		 * If the type of mbuf has changed since the last mbuf
2961 		 * examined ('type'), end the receive operation.
2962 		 */
2963 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2964 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2965 			if (type != m->m_type)
2966 				break;
2967 		} else if (type == MT_OOBDATA)
2968 			break;
2969 		else
2970 		    KASSERT(m->m_type == MT_DATA,
2971 			("m->m_type == %d", m->m_type));
2972 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
2973 		len = uio->uio_resid;
2974 		if (so->so_oobmark && len > so->so_oobmark - offset)
2975 			len = so->so_oobmark - offset;
2976 		if (len > m->m_len - moff)
2977 			len = m->m_len - moff;
2978 		/*
2979 		 * If mp is set, just pass back the mbufs.  Otherwise copy
2980 		 * them out via the uio, then free.  Sockbuf must be
2981 		 * consistent here (points to current mbuf, it points to next
2982 		 * record) when we drop priority; we must note any additions
2983 		 * to the sockbuf when we block interrupts again.
2984 		 */
2985 		if (mp == NULL) {
2986 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2987 			SBLASTRECORDCHK(&so->so_rcv);
2988 			SBLASTMBUFCHK(&so->so_rcv);
2989 			SOCKBUF_UNLOCK(&so->so_rcv);
2990 			if ((m->m_flags & M_EXTPG) != 0)
2991 				error = m_unmapped_uiomove(m, moff, uio,
2992 				    (int)len);
2993 			else
2994 				error = uiomove(mtod(m, char *) + moff,
2995 				    (int)len, uio);
2996 			SOCKBUF_LOCK(&so->so_rcv);
2997 			if (error) {
2998 				/*
2999 				 * The MT_SONAME mbuf has already been removed
3000 				 * from the record, so it is necessary to
3001 				 * remove the data mbufs, if any, to preserve
3002 				 * the invariant in the case of PR_ADDR that
3003 				 * requires MT_SONAME mbufs at the head of
3004 				 * each record.
3005 				 */
3006 				if (pr->pr_flags & PR_ATOMIC &&
3007 				    ((flags & MSG_PEEK) == 0))
3008 					(void)sbdroprecord_locked(&so->so_rcv);
3009 				SOCKBUF_UNLOCK(&so->so_rcv);
3010 				goto release;
3011 			}
3012 		} else
3013 			uio->uio_resid -= len;
3014 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3015 		if (len == m->m_len - moff) {
3016 			if (m->m_flags & M_EOR)
3017 				flags |= MSG_EOR;
3018 			if (flags & MSG_PEEK) {
3019 				m = m->m_next;
3020 				moff = 0;
3021 			} else {
3022 				nextrecord = m->m_nextpkt;
3023 				sbfree(&so->so_rcv, m);
3024 				if (mp != NULL) {
3025 					m->m_nextpkt = NULL;
3026 					*mp = m;
3027 					mp = &m->m_next;
3028 					so->so_rcv.sb_mb = m = m->m_next;
3029 					*mp = NULL;
3030 				} else {
3031 					so->so_rcv.sb_mb = m_free(m);
3032 					m = so->so_rcv.sb_mb;
3033 				}
3034 				sockbuf_pushsync(&so->so_rcv, nextrecord);
3035 				SBLASTRECORDCHK(&so->so_rcv);
3036 				SBLASTMBUFCHK(&so->so_rcv);
3037 			}
3038 		} else {
3039 			if (flags & MSG_PEEK)
3040 				moff += len;
3041 			else {
3042 				if (mp != NULL) {
3043 					if (flags & MSG_DONTWAIT) {
3044 						*mp = m_copym(m, 0, len,
3045 						    M_NOWAIT);
3046 						if (*mp == NULL) {
3047 							/*
3048 							 * m_copym() couldn't
3049 							 * allocate an mbuf.
3050 							 * Adjust uio_resid back
3051 							 * (it was adjusted
3052 							 * down by len bytes,
3053 							 * which we didn't end
3054 							 * up "copying" over).
3055 							 */
3056 							uio->uio_resid += len;
3057 							break;
3058 						}
3059 					} else {
3060 						SOCKBUF_UNLOCK(&so->so_rcv);
3061 						*mp = m_copym(m, 0, len,
3062 						    M_WAITOK);
3063 						SOCKBUF_LOCK(&so->so_rcv);
3064 					}
3065 				}
3066 				sbcut_locked(&so->so_rcv, len);
3067 			}
3068 		}
3069 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3070 		if (so->so_oobmark) {
3071 			if ((flags & MSG_PEEK) == 0) {
3072 				so->so_oobmark -= len;
3073 				if (so->so_oobmark == 0) {
3074 					so->so_rcv.sb_state |= SBS_RCVATMARK;
3075 					break;
3076 				}
3077 			} else {
3078 				offset += len;
3079 				if (offset == so->so_oobmark)
3080 					break;
3081 			}
3082 		}
3083 		if (flags & MSG_EOR)
3084 			break;
3085 		/*
3086 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
3087 		 * must not quit until "uio->uio_resid == 0" or an error
3088 		 * termination.  If a signal/timeout occurs, return with a
3089 		 * short count but without error.  Keep sockbuf locked
3090 		 * against other readers.
3091 		 */
3092 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
3093 		    !sosendallatonce(so) && nextrecord == NULL) {
3094 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3095 			if (so->so_error || so->so_rerror ||
3096 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
3097 				break;
3098 			/*
3099 			 * Notify the protocol that some data has been
3100 			 * drained before blocking.
3101 			 */
3102 			if (pr->pr_flags & PR_WANTRCVD) {
3103 				SOCKBUF_UNLOCK(&so->so_rcv);
3104 				VNET_SO_ASSERT(so);
3105 				pr->pr_rcvd(so, flags);
3106 				SOCKBUF_LOCK(&so->so_rcv);
3107 				if (__predict_false(so->so_rcv.sb_mb == NULL &&
3108 				    (so->so_error || so->so_rerror ||
3109 				    so->so_rcv.sb_state & SBS_CANTRCVMORE)))
3110 					break;
3111 			}
3112 			SBLASTRECORDCHK(&so->so_rcv);
3113 			SBLASTMBUFCHK(&so->so_rcv);
3114 			/*
3115 			 * We could receive some data while was notifying
3116 			 * the protocol. Skip blocking in this case.
3117 			 */
3118 			if (so->so_rcv.sb_mb == NULL) {
3119 				error = sbwait(so, SO_RCV);
3120 				if (error) {
3121 					SOCKBUF_UNLOCK(&so->so_rcv);
3122 					goto release;
3123 				}
3124 			}
3125 			m = so->so_rcv.sb_mb;
3126 			if (m != NULL)
3127 				nextrecord = m->m_nextpkt;
3128 		}
3129 	}
3130 
3131 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3132 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
3133 		if (report_real_len)
3134 			uio->uio_resid -= m_length(m, NULL) - moff;
3135 		flags |= MSG_TRUNC;
3136 		if ((flags & MSG_PEEK) == 0)
3137 			(void) sbdroprecord_locked(&so->so_rcv);
3138 	}
3139 	if ((flags & MSG_PEEK) == 0) {
3140 		if (m == NULL) {
3141 			/*
3142 			 * First part is an inline SB_EMPTY_FIXUP().  Second
3143 			 * part makes sure sb_lastrecord is up-to-date if
3144 			 * there is still data in the socket buffer.
3145 			 */
3146 			so->so_rcv.sb_mb = nextrecord;
3147 			if (so->so_rcv.sb_mb == NULL) {
3148 				so->so_rcv.sb_mbtail = NULL;
3149 				so->so_rcv.sb_lastrecord = NULL;
3150 			} else if (nextrecord->m_nextpkt == NULL)
3151 				so->so_rcv.sb_lastrecord = nextrecord;
3152 		}
3153 		SBLASTRECORDCHK(&so->so_rcv);
3154 		SBLASTMBUFCHK(&so->so_rcv);
3155 		/*
3156 		 * If soreceive() is being done from the socket callback,
3157 		 * then don't need to generate ACK to peer to update window,
3158 		 * since ACK will be generated on return to TCP.
3159 		 */
3160 		if (!(flags & MSG_SOCALLBCK) &&
3161 		    (pr->pr_flags & PR_WANTRCVD)) {
3162 			SOCKBUF_UNLOCK(&so->so_rcv);
3163 			VNET_SO_ASSERT(so);
3164 			pr->pr_rcvd(so, flags);
3165 			SOCKBUF_LOCK(&so->so_rcv);
3166 		}
3167 	}
3168 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3169 	if (orig_resid == uio->uio_resid && orig_resid &&
3170 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
3171 		SOCKBUF_UNLOCK(&so->so_rcv);
3172 		goto restart;
3173 	}
3174 	SOCKBUF_UNLOCK(&so->so_rcv);
3175 
3176 	if (flagsp != NULL)
3177 		*flagsp |= flags;
3178 release:
3179 	return (error);
3180 }
3181 
3182 int
3183 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
3184     struct mbuf **mp, struct mbuf **controlp, int *flagsp)
3185 {
3186 	int error, flags;
3187 
3188 	if (psa != NULL)
3189 		*psa = NULL;
3190 	if (controlp != NULL)
3191 		*controlp = NULL;
3192 	if (flagsp != NULL) {
3193 		flags = *flagsp;
3194 		if ((flags & MSG_OOB) != 0)
3195 			return (soreceive_rcvoob(so, uio, flags));
3196 	} else {
3197 		flags = 0;
3198 	}
3199 	if (mp != NULL)
3200 		*mp = NULL;
3201 
3202 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3203 	if (error)
3204 		return (error);
3205 	error = soreceive_generic_locked(so, psa, uio, mp, controlp, flagsp);
3206 	SOCK_IO_RECV_UNLOCK(so);
3207 	return (error);
3208 }
3209 
3210 /*
3211  * Optimized version of soreceive() for stream (TCP) sockets.
3212  */
3213 static int
3214 soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
3215     struct sockaddr **psa, struct uio *uio, struct mbuf **mp0,
3216     struct mbuf **controlp, int flags)
3217 {
3218 	int len = 0, error = 0, oresid;
3219 	struct mbuf *m, *n = NULL;
3220 
3221 	SOCK_IO_RECV_ASSERT_LOCKED(so);
3222 
3223 	/* Easy one, no space to copyout anything. */
3224 	if (uio->uio_resid == 0)
3225 		return (EINVAL);
3226 	oresid = uio->uio_resid;
3227 
3228 	SOCKBUF_LOCK(sb);
3229 	/* We will never ever get anything unless we are or were connected. */
3230 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
3231 		error = ENOTCONN;
3232 		goto out;
3233 	}
3234 
3235 restart:
3236 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3237 
3238 	/* Abort if socket has reported problems. */
3239 	if (so->so_error) {
3240 		if (sbavail(sb) > 0)
3241 			goto deliver;
3242 		if (oresid > uio->uio_resid)
3243 			goto out;
3244 		error = so->so_error;
3245 		if (!(flags & MSG_PEEK))
3246 			so->so_error = 0;
3247 		goto out;
3248 	}
3249 
3250 	/* Door is closed.  Deliver what is left, if any. */
3251 	if (sb->sb_state & SBS_CANTRCVMORE) {
3252 		if (sbavail(sb) > 0)
3253 			goto deliver;
3254 		else
3255 			goto out;
3256 	}
3257 
3258 	/* Socket buffer is empty and we shall not block. */
3259 	if (sbavail(sb) == 0 &&
3260 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
3261 		error = EAGAIN;
3262 		goto out;
3263 	}
3264 
3265 	/* Socket buffer got some data that we shall deliver now. */
3266 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
3267 	    ((so->so_state & SS_NBIO) ||
3268 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
3269 	     sbavail(sb) >= sb->sb_lowat ||
3270 	     sbavail(sb) >= uio->uio_resid ||
3271 	     sbavail(sb) >= sb->sb_hiwat) ) {
3272 		goto deliver;
3273 	}
3274 
3275 	/* On MSG_WAITALL we must wait until all data or error arrives. */
3276 	if ((flags & MSG_WAITALL) &&
3277 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
3278 		goto deliver;
3279 
3280 	/*
3281 	 * Wait and block until (more) data comes in.
3282 	 * NB: Drops the sockbuf lock during wait.
3283 	 */
3284 	error = sbwait(so, SO_RCV);
3285 	if (error)
3286 		goto out;
3287 	goto restart;
3288 
3289 deliver:
3290 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3291 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
3292 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
3293 
3294 	/* Statistics. */
3295 	if (uio->uio_td)
3296 		uio->uio_td->td_ru.ru_msgrcv++;
3297 
3298 	/* Fill uio until full or current end of socket buffer is reached. */
3299 	len = min(uio->uio_resid, sbavail(sb));
3300 	if (mp0 != NULL) {
3301 		/* Dequeue as many mbufs as possible. */
3302 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
3303 			if (*mp0 == NULL)
3304 				*mp0 = sb->sb_mb;
3305 			else
3306 				m_cat(*mp0, sb->sb_mb);
3307 			for (m = sb->sb_mb;
3308 			     m != NULL && m->m_len <= len;
3309 			     m = m->m_next) {
3310 				KASSERT(!(m->m_flags & M_NOTAVAIL),
3311 				    ("%s: m %p not available", __func__, m));
3312 				len -= m->m_len;
3313 				uio->uio_resid -= m->m_len;
3314 				sbfree(sb, m);
3315 				n = m;
3316 			}
3317 			n->m_next = NULL;
3318 			sb->sb_mb = m;
3319 			sb->sb_lastrecord = sb->sb_mb;
3320 			if (sb->sb_mb == NULL)
3321 				SB_EMPTY_FIXUP(sb);
3322 		}
3323 		/* Copy the remainder. */
3324 		if (len > 0) {
3325 			KASSERT(sb->sb_mb != NULL,
3326 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
3327 
3328 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
3329 			if (m == NULL)
3330 				len = 0;	/* Don't flush data from sockbuf. */
3331 			else
3332 				uio->uio_resid -= len;
3333 			if (*mp0 != NULL)
3334 				m_cat(*mp0, m);
3335 			else
3336 				*mp0 = m;
3337 			if (*mp0 == NULL) {
3338 				error = ENOBUFS;
3339 				goto out;
3340 			}
3341 		}
3342 	} else {
3343 		/* NB: Must unlock socket buffer as uiomove may sleep. */
3344 		SOCKBUF_UNLOCK(sb);
3345 		error = m_mbuftouio(uio, sb->sb_mb, len);
3346 		SOCKBUF_LOCK(sb);
3347 		if (error)
3348 			goto out;
3349 	}
3350 	SBLASTRECORDCHK(sb);
3351 	SBLASTMBUFCHK(sb);
3352 
3353 	/*
3354 	 * Remove the delivered data from the socket buffer unless we
3355 	 * were only peeking.
3356 	 */
3357 	if (!(flags & MSG_PEEK)) {
3358 		if (len > 0)
3359 			sbdrop_locked(sb, len);
3360 
3361 		/* Notify protocol that we drained some data. */
3362 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
3363 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
3364 		     !(flags & MSG_SOCALLBCK))) {
3365 			SOCKBUF_UNLOCK(sb);
3366 			VNET_SO_ASSERT(so);
3367 			so->so_proto->pr_rcvd(so, flags);
3368 			SOCKBUF_LOCK(sb);
3369 		}
3370 	}
3371 
3372 	/*
3373 	 * For MSG_WAITALL we may have to loop again and wait for
3374 	 * more data to come in.
3375 	 */
3376 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
3377 		goto restart;
3378 out:
3379 	SBLASTRECORDCHK(sb);
3380 	SBLASTMBUFCHK(sb);
3381 	SOCKBUF_UNLOCK(sb);
3382 	return (error);
3383 }
3384 
3385 int
3386 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
3387     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3388 {
3389 	struct sockbuf *sb;
3390 	int error, flags;
3391 
3392 	sb = &so->so_rcv;
3393 
3394 	/* We only do stream sockets. */
3395 	if (so->so_type != SOCK_STREAM)
3396 		return (EINVAL);
3397 	if (psa != NULL)
3398 		*psa = NULL;
3399 	if (flagsp != NULL)
3400 		flags = *flagsp & ~MSG_EOR;
3401 	else
3402 		flags = 0;
3403 	if (controlp != NULL)
3404 		*controlp = NULL;
3405 	if (flags & MSG_OOB)
3406 		return (soreceive_rcvoob(so, uio, flags));
3407 	if (mp0 != NULL)
3408 		*mp0 = NULL;
3409 
3410 #ifdef KERN_TLS
3411 	/*
3412 	 * KTLS store TLS records as records with a control message to
3413 	 * describe the framing.
3414 	 *
3415 	 * We check once here before acquiring locks to optimize the
3416 	 * common case.
3417 	 */
3418 	if (sb->sb_tls_info != NULL)
3419 		return (soreceive_generic(so, psa, uio, mp0, controlp,
3420 		    flagsp));
3421 #endif
3422 
3423 	/*
3424 	 * Prevent other threads from reading from the socket.  This lock may be
3425 	 * dropped in order to sleep waiting for data to arrive.
3426 	 */
3427 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3428 	if (error)
3429 		return (error);
3430 #ifdef KERN_TLS
3431 	if (__predict_false(sb->sb_tls_info != NULL)) {
3432 		SOCK_IO_RECV_UNLOCK(so);
3433 		return (soreceive_generic(so, psa, uio, mp0, controlp,
3434 		    flagsp));
3435 	}
3436 #endif
3437 	error = soreceive_stream_locked(so, sb, psa, uio, mp0, controlp, flags);
3438 	SOCK_IO_RECV_UNLOCK(so);
3439 	return (error);
3440 }
3441 
3442 /*
3443  * Optimized version of soreceive() for simple datagram cases from userspace.
3444  * Unlike in the stream case, we're able to drop a datagram if copyout()
3445  * fails, and because we handle datagrams atomically, we don't need to use a
3446  * sleep lock to prevent I/O interlacing.
3447  */
3448 int
3449 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
3450     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3451 {
3452 	struct mbuf *m, *m2;
3453 	int flags, error;
3454 	ssize_t len;
3455 	struct protosw *pr = so->so_proto;
3456 	struct mbuf *nextrecord;
3457 
3458 	if (psa != NULL)
3459 		*psa = NULL;
3460 	if (controlp != NULL)
3461 		*controlp = NULL;
3462 	if (flagsp != NULL)
3463 		flags = *flagsp &~ MSG_EOR;
3464 	else
3465 		flags = 0;
3466 
3467 	/*
3468 	 * For any complicated cases, fall back to the full
3469 	 * soreceive_generic().
3470 	 */
3471 	if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
3472 		return (soreceive_generic(so, psa, uio, mp0, controlp,
3473 		    flagsp));
3474 
3475 	/*
3476 	 * Enforce restrictions on use.
3477 	 */
3478 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
3479 	    ("soreceive_dgram: wantrcvd"));
3480 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
3481 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
3482 	    ("soreceive_dgram: SBS_RCVATMARK"));
3483 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
3484 	    ("soreceive_dgram: P_CONNREQUIRED"));
3485 
3486 	/*
3487 	 * Loop blocking while waiting for a datagram.
3488 	 */
3489 	SOCKBUF_LOCK(&so->so_rcv);
3490 	while ((m = so->so_rcv.sb_mb) == NULL) {
3491 		KASSERT(sbavail(&so->so_rcv) == 0,
3492 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
3493 		    sbavail(&so->so_rcv)));
3494 		if (so->so_error) {
3495 			error = so->so_error;
3496 			so->so_error = 0;
3497 			SOCKBUF_UNLOCK(&so->so_rcv);
3498 			return (error);
3499 		}
3500 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
3501 		    uio->uio_resid == 0) {
3502 			SOCKBUF_UNLOCK(&so->so_rcv);
3503 			return (0);
3504 		}
3505 		if ((so->so_state & SS_NBIO) ||
3506 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
3507 			SOCKBUF_UNLOCK(&so->so_rcv);
3508 			return (EWOULDBLOCK);
3509 		}
3510 		SBLASTRECORDCHK(&so->so_rcv);
3511 		SBLASTMBUFCHK(&so->so_rcv);
3512 		error = sbwait(so, SO_RCV);
3513 		if (error) {
3514 			SOCKBUF_UNLOCK(&so->so_rcv);
3515 			return (error);
3516 		}
3517 	}
3518 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3519 
3520 	if (uio->uio_td)
3521 		uio->uio_td->td_ru.ru_msgrcv++;
3522 	SBLASTRECORDCHK(&so->so_rcv);
3523 	SBLASTMBUFCHK(&so->so_rcv);
3524 	nextrecord = m->m_nextpkt;
3525 	if (nextrecord == NULL) {
3526 		KASSERT(so->so_rcv.sb_lastrecord == m,
3527 		    ("soreceive_dgram: lastrecord != m"));
3528 	}
3529 
3530 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
3531 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
3532 
3533 	/*
3534 	 * Pull 'm' and its chain off the front of the packet queue.
3535 	 */
3536 	so->so_rcv.sb_mb = NULL;
3537 	sockbuf_pushsync(&so->so_rcv, nextrecord);
3538 
3539 	/*
3540 	 * Walk 'm's chain and free that many bytes from the socket buffer.
3541 	 */
3542 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
3543 		sbfree(&so->so_rcv, m2);
3544 
3545 	/*
3546 	 * Do a few last checks before we let go of the lock.
3547 	 */
3548 	SBLASTRECORDCHK(&so->so_rcv);
3549 	SBLASTMBUFCHK(&so->so_rcv);
3550 	SOCKBUF_UNLOCK(&so->so_rcv);
3551 
3552 	if (pr->pr_flags & PR_ADDR) {
3553 		KASSERT(m->m_type == MT_SONAME,
3554 		    ("m->m_type == %d", m->m_type));
3555 		if (psa != NULL)
3556 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
3557 			    M_WAITOK);
3558 		m = m_free(m);
3559 	}
3560 	KASSERT(m, ("%s: no data or control after soname", __func__));
3561 
3562 	/*
3563 	 * Packet to copyout() is now in 'm' and it is disconnected from the
3564 	 * queue.
3565 	 *
3566 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
3567 	 * in the first mbuf chain on the socket buffer.  We call into the
3568 	 * protocol to perform externalization (or freeing if controlp ==
3569 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
3570 	 * MT_DATA mbufs.
3571 	 */
3572 	if (m->m_type == MT_CONTROL) {
3573 		struct mbuf *cm = NULL, *cmn;
3574 		struct mbuf **cme = &cm;
3575 
3576 		do {
3577 			m2 = m->m_next;
3578 			m->m_next = NULL;
3579 			*cme = m;
3580 			cme = &(*cme)->m_next;
3581 			m = m2;
3582 		} while (m != NULL && m->m_type == MT_CONTROL);
3583 		while (cm != NULL) {
3584 			cmn = cm->m_next;
3585 			cm->m_next = NULL;
3586 			if (pr->pr_domain->dom_externalize != NULL) {
3587 				error = (*pr->pr_domain->dom_externalize)
3588 				    (cm, controlp, flags);
3589 			} else if (controlp != NULL)
3590 				*controlp = cm;
3591 			else
3592 				m_freem(cm);
3593 			if (controlp != NULL) {
3594 				while (*controlp != NULL)
3595 					controlp = &(*controlp)->m_next;
3596 			}
3597 			cm = cmn;
3598 		}
3599 	}
3600 	KASSERT(m == NULL || m->m_type == MT_DATA,
3601 	    ("soreceive_dgram: !data"));
3602 	while (m != NULL && uio->uio_resid > 0) {
3603 		len = uio->uio_resid;
3604 		if (len > m->m_len)
3605 			len = m->m_len;
3606 		error = uiomove(mtod(m, char *), (int)len, uio);
3607 		if (error) {
3608 			m_freem(m);
3609 			return (error);
3610 		}
3611 		if (len == m->m_len)
3612 			m = m_free(m);
3613 		else {
3614 			m->m_data += len;
3615 			m->m_len -= len;
3616 		}
3617 	}
3618 	if (m != NULL) {
3619 		flags |= MSG_TRUNC;
3620 		m_freem(m);
3621 	}
3622 	if (flagsp != NULL)
3623 		*flagsp |= flags;
3624 	return (0);
3625 }
3626 
3627 int
3628 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
3629     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3630 {
3631 	int error;
3632 
3633 	CURVNET_SET(so->so_vnet);
3634 	error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
3635 	CURVNET_RESTORE();
3636 	return (error);
3637 }
3638 
3639 int
3640 soshutdown(struct socket *so, enum shutdown_how how)
3641 {
3642 	int error;
3643 
3644 	CURVNET_SET(so->so_vnet);
3645 	error = so->so_proto->pr_shutdown(so, how);
3646 	CURVNET_RESTORE();
3647 
3648 	return (error);
3649 }
3650 
3651 /*
3652  * Used by several pr_shutdown implementations that use generic socket buffers.
3653  */
3654 void
3655 sorflush(struct socket *so)
3656 {
3657 	int error;
3658 
3659 	VNET_SO_ASSERT(so);
3660 
3661 	/*
3662 	 * Dislodge threads currently blocked in receive and wait to acquire
3663 	 * a lock against other simultaneous readers before clearing the
3664 	 * socket buffer.  Don't let our acquire be interrupted by a signal
3665 	 * despite any existing socket disposition on interruptable waiting.
3666 	 *
3667 	 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive
3668 	 * methods that read the top of the socket buffer without acquisition
3669 	 * of the socket buffer mutex, assuming that top of the buffer
3670 	 * exclusively belongs to the read(2) syscall.  This is handy when
3671 	 * performing MSG_PEEK.
3672 	 */
3673 	socantrcvmore(so);
3674 
3675 	error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
3676 	if (error != 0) {
3677 		KASSERT(SOLISTENING(so),
3678 		    ("%s: soiolock(%p) failed", __func__, so));
3679 		return;
3680 	}
3681 
3682 	sbrelease(so, SO_RCV);
3683 	SOCK_IO_RECV_UNLOCK(so);
3684 
3685 }
3686 
3687 #ifdef SOCKET_HHOOK
3688 /*
3689  * Wrapper for Socket established helper hook.
3690  * Parameters: socket, context of the hook point, hook id.
3691  */
3692 static inline int
3693 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
3694 {
3695 	struct socket_hhook_data hhook_data = {
3696 		.so = so,
3697 		.hctx = hctx,
3698 		.m = NULL,
3699 		.status = 0
3700 	};
3701 
3702 	CURVNET_SET(so->so_vnet);
3703 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
3704 	CURVNET_RESTORE();
3705 
3706 	/* Ugly but needed, since hhooks return void for now */
3707 	return (hhook_data.status);
3708 }
3709 #endif
3710 
3711 /*
3712  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
3713  * additional variant to handle the case where the option value needs to be
3714  * some kind of integer, but not a specific size.  In addition to their use
3715  * here, these functions are also called by the protocol-level pr_ctloutput()
3716  * routines.
3717  */
3718 int
3719 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
3720 {
3721 	size_t	valsize;
3722 
3723 	/*
3724 	 * If the user gives us more than we wanted, we ignore it, but if we
3725 	 * don't get the minimum length the caller wants, we return EINVAL.
3726 	 * On success, sopt->sopt_valsize is set to however much we actually
3727 	 * retrieved.
3728 	 */
3729 	if ((valsize = sopt->sopt_valsize) < minlen)
3730 		return EINVAL;
3731 	if (valsize > len)
3732 		sopt->sopt_valsize = valsize = len;
3733 
3734 	if (sopt->sopt_td != NULL)
3735 		return (copyin(sopt->sopt_val, buf, valsize));
3736 
3737 	bcopy(sopt->sopt_val, buf, valsize);
3738 	return (0);
3739 }
3740 
3741 /*
3742  * Kernel version of setsockopt(2).
3743  *
3744  * XXX: optlen is size_t, not socklen_t
3745  */
3746 int
3747 so_setsockopt(struct socket *so, int level, int optname, void *optval,
3748     size_t optlen)
3749 {
3750 	struct sockopt sopt;
3751 
3752 	sopt.sopt_level = level;
3753 	sopt.sopt_name = optname;
3754 	sopt.sopt_dir = SOPT_SET;
3755 	sopt.sopt_val = optval;
3756 	sopt.sopt_valsize = optlen;
3757 	sopt.sopt_td = NULL;
3758 	return (sosetopt(so, &sopt));
3759 }
3760 
3761 int
3762 sosetopt(struct socket *so, struct sockopt *sopt)
3763 {
3764 	int	error, optval;
3765 	struct	linger l;
3766 	struct	timeval tv;
3767 	sbintime_t val, *valp;
3768 	uint32_t val32;
3769 #ifdef MAC
3770 	struct mac extmac;
3771 #endif
3772 
3773 	CURVNET_SET(so->so_vnet);
3774 	error = 0;
3775 	if (sopt->sopt_level != SOL_SOCKET) {
3776 		if (so->so_proto->pr_ctloutput != NULL)
3777 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3778 		else
3779 			error = ENOPROTOOPT;
3780 	} else {
3781 		switch (sopt->sopt_name) {
3782 		case SO_ACCEPTFILTER:
3783 			error = accept_filt_setopt(so, sopt);
3784 			if (error)
3785 				goto bad;
3786 			break;
3787 
3788 		case SO_LINGER:
3789 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3790 			if (error)
3791 				goto bad;
3792 			if (l.l_linger < 0 ||
3793 			    l.l_linger > USHRT_MAX ||
3794 			    l.l_linger > (INT_MAX / hz)) {
3795 				error = EDOM;
3796 				goto bad;
3797 			}
3798 			SOCK_LOCK(so);
3799 			so->so_linger = l.l_linger;
3800 			if (l.l_onoff)
3801 				so->so_options |= SO_LINGER;
3802 			else
3803 				so->so_options &= ~SO_LINGER;
3804 			SOCK_UNLOCK(so);
3805 			break;
3806 
3807 		case SO_DEBUG:
3808 		case SO_KEEPALIVE:
3809 		case SO_DONTROUTE:
3810 		case SO_USELOOPBACK:
3811 		case SO_BROADCAST:
3812 		case SO_REUSEADDR:
3813 		case SO_REUSEPORT:
3814 		case SO_REUSEPORT_LB:
3815 		case SO_OOBINLINE:
3816 		case SO_TIMESTAMP:
3817 		case SO_BINTIME:
3818 		case SO_NOSIGPIPE:
3819 		case SO_NO_DDP:
3820 		case SO_NO_OFFLOAD:
3821 		case SO_RERROR:
3822 			error = sooptcopyin(sopt, &optval, sizeof optval,
3823 			    sizeof optval);
3824 			if (error)
3825 				goto bad;
3826 			SOCK_LOCK(so);
3827 			if (optval)
3828 				so->so_options |= sopt->sopt_name;
3829 			else
3830 				so->so_options &= ~sopt->sopt_name;
3831 			SOCK_UNLOCK(so);
3832 			break;
3833 
3834 		case SO_SETFIB:
3835 			error = sooptcopyin(sopt, &optval, sizeof optval,
3836 			    sizeof optval);
3837 			if (error)
3838 				goto bad;
3839 
3840 			if (optval < 0 || optval >= rt_numfibs) {
3841 				error = EINVAL;
3842 				goto bad;
3843 			}
3844 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
3845 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
3846 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
3847 				so->so_fibnum = optval;
3848 			else
3849 				so->so_fibnum = 0;
3850 			break;
3851 
3852 		case SO_USER_COOKIE:
3853 			error = sooptcopyin(sopt, &val32, sizeof val32,
3854 			    sizeof val32);
3855 			if (error)
3856 				goto bad;
3857 			so->so_user_cookie = val32;
3858 			break;
3859 
3860 		case SO_SNDBUF:
3861 		case SO_RCVBUF:
3862 		case SO_SNDLOWAT:
3863 		case SO_RCVLOWAT:
3864 			error = so->so_proto->pr_setsbopt(so, sopt);
3865 			if (error)
3866 				goto bad;
3867 			break;
3868 
3869 		case SO_SNDTIMEO:
3870 		case SO_RCVTIMEO:
3871 #ifdef COMPAT_FREEBSD32
3872 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3873 				struct timeval32 tv32;
3874 
3875 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
3876 				    sizeof tv32);
3877 				CP(tv32, tv, tv_sec);
3878 				CP(tv32, tv, tv_usec);
3879 			} else
3880 #endif
3881 				error = sooptcopyin(sopt, &tv, sizeof tv,
3882 				    sizeof tv);
3883 			if (error)
3884 				goto bad;
3885 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3886 			    tv.tv_usec >= 1000000) {
3887 				error = EDOM;
3888 				goto bad;
3889 			}
3890 			if (tv.tv_sec > INT32_MAX)
3891 				val = SBT_MAX;
3892 			else
3893 				val = tvtosbt(tv);
3894 			SOCK_LOCK(so);
3895 			valp = sopt->sopt_name == SO_SNDTIMEO ?
3896 			    (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3897 			    &so->so_snd.sb_timeo) :
3898 			    (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3899 			    &so->so_rcv.sb_timeo);
3900 			*valp = val;
3901 			SOCK_UNLOCK(so);
3902 			break;
3903 
3904 		case SO_LABEL:
3905 #ifdef MAC
3906 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
3907 			    sizeof extmac);
3908 			if (error)
3909 				goto bad;
3910 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3911 			    so, &extmac);
3912 #else
3913 			error = EOPNOTSUPP;
3914 #endif
3915 			break;
3916 
3917 		case SO_TS_CLOCK:
3918 			error = sooptcopyin(sopt, &optval, sizeof optval,
3919 			    sizeof optval);
3920 			if (error)
3921 				goto bad;
3922 			if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3923 				error = EINVAL;
3924 				goto bad;
3925 			}
3926 			so->so_ts_clock = optval;
3927 			break;
3928 
3929 		case SO_MAX_PACING_RATE:
3930 			error = sooptcopyin(sopt, &val32, sizeof(val32),
3931 			    sizeof(val32));
3932 			if (error)
3933 				goto bad;
3934 			so->so_max_pacing_rate = val32;
3935 			break;
3936 
3937 		case SO_SPLICE: {
3938 			struct splice splice;
3939 
3940 #ifdef COMPAT_FREEBSD32
3941 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3942 				struct splice32 splice32;
3943 
3944 				error = sooptcopyin(sopt, &splice32,
3945 				    sizeof(splice32), sizeof(splice32));
3946 				if (error == 0) {
3947 					splice.sp_fd = splice32.sp_fd;
3948 					splice.sp_max = splice32.sp_max;
3949 					CP(splice32.sp_idle, splice.sp_idle,
3950 					    tv_sec);
3951 					CP(splice32.sp_idle, splice.sp_idle,
3952 					    tv_usec);
3953 				}
3954 			} else
3955 #endif
3956 			{
3957 				error = sooptcopyin(sopt, &splice,
3958 				    sizeof(splice), sizeof(splice));
3959 			}
3960 			if (error)
3961 				goto bad;
3962 #ifdef KTRACE
3963 			if (KTRPOINT(curthread, KTR_STRUCT))
3964 				ktrsplice(&splice);
3965 #endif
3966 
3967 			error = splice_init();
3968 			if (error != 0)
3969 				goto bad;
3970 
3971 			if (splice.sp_fd >= 0) {
3972 				struct file *fp;
3973 				struct socket *so2;
3974 
3975 				if (!cap_rights_contains(sopt->sopt_rights,
3976 				    &cap_recv_rights)) {
3977 					error = ENOTCAPABLE;
3978 					goto bad;
3979 				}
3980 				error = getsock(sopt->sopt_td, splice.sp_fd,
3981 				    &cap_send_rights, &fp);
3982 				if (error != 0)
3983 					goto bad;
3984 				so2 = fp->f_data;
3985 
3986 				error = so_splice(so, so2, &splice);
3987 				fdrop(fp, sopt->sopt_td);
3988 			} else {
3989 				error = so_unsplice(so, false);
3990 			}
3991 			break;
3992 		}
3993 		default:
3994 #ifdef SOCKET_HHOOK
3995 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3996 				error = hhook_run_socket(so, sopt,
3997 				    HHOOK_SOCKET_OPT);
3998 			else
3999 #endif
4000 				error = ENOPROTOOPT;
4001 			break;
4002 		}
4003 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
4004 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
4005 	}
4006 bad:
4007 	CURVNET_RESTORE();
4008 	return (error);
4009 }
4010 
4011 /*
4012  * Helper routine for getsockopt.
4013  */
4014 int
4015 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
4016 {
4017 	int	error;
4018 	size_t	valsize;
4019 
4020 	error = 0;
4021 
4022 	/*
4023 	 * Documented get behavior is that we always return a value, possibly
4024 	 * truncated to fit in the user's buffer.  Traditional behavior is
4025 	 * that we always tell the user precisely how much we copied, rather
4026 	 * than something useful like the total amount we had available for
4027 	 * her.  Note that this interface is not idempotent; the entire
4028 	 * answer must be generated ahead of time.
4029 	 */
4030 	valsize = min(len, sopt->sopt_valsize);
4031 	sopt->sopt_valsize = valsize;
4032 	if (sopt->sopt_val != NULL) {
4033 		if (sopt->sopt_td != NULL)
4034 			error = copyout(buf, sopt->sopt_val, valsize);
4035 		else
4036 			bcopy(buf, sopt->sopt_val, valsize);
4037 	}
4038 	return (error);
4039 }
4040 
4041 int
4042 sogetopt(struct socket *so, struct sockopt *sopt)
4043 {
4044 	int	error, optval;
4045 	struct	linger l;
4046 	struct	timeval tv;
4047 #ifdef MAC
4048 	struct mac extmac;
4049 #endif
4050 
4051 	CURVNET_SET(so->so_vnet);
4052 	error = 0;
4053 	if (sopt->sopt_level != SOL_SOCKET) {
4054 		if (so->so_proto->pr_ctloutput != NULL)
4055 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
4056 		else
4057 			error = ENOPROTOOPT;
4058 		CURVNET_RESTORE();
4059 		return (error);
4060 	} else {
4061 		switch (sopt->sopt_name) {
4062 		case SO_ACCEPTFILTER:
4063 			error = accept_filt_getopt(so, sopt);
4064 			break;
4065 
4066 		case SO_LINGER:
4067 			SOCK_LOCK(so);
4068 			l.l_onoff = so->so_options & SO_LINGER;
4069 			l.l_linger = so->so_linger;
4070 			SOCK_UNLOCK(so);
4071 			error = sooptcopyout(sopt, &l, sizeof l);
4072 			break;
4073 
4074 		case SO_USELOOPBACK:
4075 		case SO_DONTROUTE:
4076 		case SO_DEBUG:
4077 		case SO_KEEPALIVE:
4078 		case SO_REUSEADDR:
4079 		case SO_REUSEPORT:
4080 		case SO_REUSEPORT_LB:
4081 		case SO_BROADCAST:
4082 		case SO_OOBINLINE:
4083 		case SO_ACCEPTCONN:
4084 		case SO_TIMESTAMP:
4085 		case SO_BINTIME:
4086 		case SO_NOSIGPIPE:
4087 		case SO_NO_DDP:
4088 		case SO_NO_OFFLOAD:
4089 		case SO_RERROR:
4090 			optval = so->so_options & sopt->sopt_name;
4091 integer:
4092 			error = sooptcopyout(sopt, &optval, sizeof optval);
4093 			break;
4094 
4095 		case SO_DOMAIN:
4096 			optval = so->so_proto->pr_domain->dom_family;
4097 			goto integer;
4098 
4099 		case SO_TYPE:
4100 			optval = so->so_type;
4101 			goto integer;
4102 
4103 		case SO_PROTOCOL:
4104 			optval = so->so_proto->pr_protocol;
4105 			goto integer;
4106 
4107 		case SO_ERROR:
4108 			SOCK_LOCK(so);
4109 			if (so->so_error) {
4110 				optval = so->so_error;
4111 				so->so_error = 0;
4112 			} else {
4113 				optval = so->so_rerror;
4114 				so->so_rerror = 0;
4115 			}
4116 			SOCK_UNLOCK(so);
4117 			goto integer;
4118 
4119 		case SO_SNDBUF:
4120 			SOCK_LOCK(so);
4121 			optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
4122 			    so->so_snd.sb_hiwat;
4123 			SOCK_UNLOCK(so);
4124 			goto integer;
4125 
4126 		case SO_RCVBUF:
4127 			SOCK_LOCK(so);
4128 			optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
4129 			    so->so_rcv.sb_hiwat;
4130 			SOCK_UNLOCK(so);
4131 			goto integer;
4132 
4133 		case SO_SNDLOWAT:
4134 			SOCK_LOCK(so);
4135 			optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
4136 			    so->so_snd.sb_lowat;
4137 			SOCK_UNLOCK(so);
4138 			goto integer;
4139 
4140 		case SO_RCVLOWAT:
4141 			SOCK_LOCK(so);
4142 			optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
4143 			    so->so_rcv.sb_lowat;
4144 			SOCK_UNLOCK(so);
4145 			goto integer;
4146 
4147 		case SO_SNDTIMEO:
4148 		case SO_RCVTIMEO:
4149 			SOCK_LOCK(so);
4150 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
4151 			    (SOLISTENING(so) ? so->sol_sbsnd_timeo :
4152 			    so->so_snd.sb_timeo) :
4153 			    (SOLISTENING(so) ? so->sol_sbrcv_timeo :
4154 			    so->so_rcv.sb_timeo));
4155 			SOCK_UNLOCK(so);
4156 #ifdef COMPAT_FREEBSD32
4157 			if (SV_CURPROC_FLAG(SV_ILP32)) {
4158 				struct timeval32 tv32;
4159 
4160 				CP(tv, tv32, tv_sec);
4161 				CP(tv, tv32, tv_usec);
4162 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
4163 			} else
4164 #endif
4165 				error = sooptcopyout(sopt, &tv, sizeof tv);
4166 			break;
4167 
4168 		case SO_LABEL:
4169 #ifdef MAC
4170 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4171 			    sizeof(extmac));
4172 			if (error)
4173 				goto bad;
4174 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
4175 			    so, &extmac);
4176 			if (error)
4177 				goto bad;
4178 			/* Don't copy out extmac, it is unchanged. */
4179 #else
4180 			error = EOPNOTSUPP;
4181 #endif
4182 			break;
4183 
4184 		case SO_PEERLABEL:
4185 #ifdef MAC
4186 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4187 			    sizeof(extmac));
4188 			if (error)
4189 				goto bad;
4190 			error = mac_getsockopt_peerlabel(
4191 			    sopt->sopt_td->td_ucred, so, &extmac);
4192 			if (error)
4193 				goto bad;
4194 			/* Don't copy out extmac, it is unchanged. */
4195 #else
4196 			error = EOPNOTSUPP;
4197 #endif
4198 			break;
4199 
4200 		case SO_LISTENQLIMIT:
4201 			SOCK_LOCK(so);
4202 			optval = SOLISTENING(so) ? so->sol_qlimit : 0;
4203 			SOCK_UNLOCK(so);
4204 			goto integer;
4205 
4206 		case SO_LISTENQLEN:
4207 			SOCK_LOCK(so);
4208 			optval = SOLISTENING(so) ? so->sol_qlen : 0;
4209 			SOCK_UNLOCK(so);
4210 			goto integer;
4211 
4212 		case SO_LISTENINCQLEN:
4213 			SOCK_LOCK(so);
4214 			optval = SOLISTENING(so) ? so->sol_incqlen : 0;
4215 			SOCK_UNLOCK(so);
4216 			goto integer;
4217 
4218 		case SO_TS_CLOCK:
4219 			optval = so->so_ts_clock;
4220 			goto integer;
4221 
4222 		case SO_MAX_PACING_RATE:
4223 			optval = so->so_max_pacing_rate;
4224 			goto integer;
4225 
4226 		case SO_SPLICE: {
4227 			off_t n;
4228 
4229 			/*
4230 			 * Acquire the I/O lock to serialize with
4231 			 * so_splice_xfer().  This is not required for
4232 			 * correctness, but makes testing simpler: once a byte
4233 			 * has been transmitted to the sink and observed (e.g.,
4234 			 * by reading from the socket to which the sink is
4235 			 * connected), a subsequent getsockopt(SO_SPLICE) will
4236 			 * return an up-to-date value.
4237 			 */
4238 			error = SOCK_IO_RECV_LOCK(so, SBL_WAIT);
4239 			if (error != 0)
4240 				goto bad;
4241 			SOCK_LOCK(so);
4242 			if (SOLISTENING(so)) {
4243 				n = 0;
4244 			} else {
4245 				n = so->so_splice_sent;
4246 			}
4247 			SOCK_UNLOCK(so);
4248 			SOCK_IO_RECV_UNLOCK(so);
4249 			error = sooptcopyout(sopt, &n, sizeof(n));
4250 			break;
4251 		}
4252 
4253 		default:
4254 #ifdef SOCKET_HHOOK
4255 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4256 				error = hhook_run_socket(so, sopt,
4257 				    HHOOK_SOCKET_OPT);
4258 			else
4259 #endif
4260 				error = ENOPROTOOPT;
4261 			break;
4262 		}
4263 	}
4264 bad:
4265 	CURVNET_RESTORE();
4266 	return (error);
4267 }
4268 
4269 int
4270 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
4271 {
4272 	struct mbuf *m, *m_prev;
4273 	int sopt_size = sopt->sopt_valsize;
4274 
4275 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4276 	if (m == NULL)
4277 		return ENOBUFS;
4278 	if (sopt_size > MLEN) {
4279 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
4280 		if ((m->m_flags & M_EXT) == 0) {
4281 			m_free(m);
4282 			return ENOBUFS;
4283 		}
4284 		m->m_len = min(MCLBYTES, sopt_size);
4285 	} else {
4286 		m->m_len = min(MLEN, sopt_size);
4287 	}
4288 	sopt_size -= m->m_len;
4289 	*mp = m;
4290 	m_prev = m;
4291 
4292 	while (sopt_size) {
4293 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4294 		if (m == NULL) {
4295 			m_freem(*mp);
4296 			return ENOBUFS;
4297 		}
4298 		if (sopt_size > MLEN) {
4299 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
4300 			    M_NOWAIT);
4301 			if ((m->m_flags & M_EXT) == 0) {
4302 				m_freem(m);
4303 				m_freem(*mp);
4304 				return ENOBUFS;
4305 			}
4306 			m->m_len = min(MCLBYTES, sopt_size);
4307 		} else {
4308 			m->m_len = min(MLEN, sopt_size);
4309 		}
4310 		sopt_size -= m->m_len;
4311 		m_prev->m_next = m;
4312 		m_prev = m;
4313 	}
4314 	return (0);
4315 }
4316 
4317 int
4318 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
4319 {
4320 	struct mbuf *m0 = m;
4321 
4322 	if (sopt->sopt_val == NULL)
4323 		return (0);
4324 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4325 		if (sopt->sopt_td != NULL) {
4326 			int error;
4327 
4328 			error = copyin(sopt->sopt_val, mtod(m, char *),
4329 			    m->m_len);
4330 			if (error != 0) {
4331 				m_freem(m0);
4332 				return(error);
4333 			}
4334 		} else
4335 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
4336 		sopt->sopt_valsize -= m->m_len;
4337 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4338 		m = m->m_next;
4339 	}
4340 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
4341 		panic("ip6_sooptmcopyin");
4342 	return (0);
4343 }
4344 
4345 int
4346 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
4347 {
4348 	struct mbuf *m0 = m;
4349 	size_t valsize = 0;
4350 
4351 	if (sopt->sopt_val == NULL)
4352 		return (0);
4353 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4354 		if (sopt->sopt_td != NULL) {
4355 			int error;
4356 
4357 			error = copyout(mtod(m, char *), sopt->sopt_val,
4358 			    m->m_len);
4359 			if (error != 0) {
4360 				m_freem(m0);
4361 				return(error);
4362 			}
4363 		} else
4364 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
4365 		sopt->sopt_valsize -= m->m_len;
4366 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4367 		valsize += m->m_len;
4368 		m = m->m_next;
4369 	}
4370 	if (m != NULL) {
4371 		/* enough soopt buffer should be given from user-land */
4372 		m_freem(m0);
4373 		return(EINVAL);
4374 	}
4375 	sopt->sopt_valsize = valsize;
4376 	return (0);
4377 }
4378 
4379 /*
4380  * sohasoutofband(): protocol notifies socket layer of the arrival of new
4381  * out-of-band data, which will then notify socket consumers.
4382  */
4383 void
4384 sohasoutofband(struct socket *so)
4385 {
4386 
4387 	if (so->so_sigio != NULL)
4388 		pgsigio(&so->so_sigio, SIGURG, 0);
4389 	selwakeuppri(&so->so_rdsel, PSOCK);
4390 }
4391 
4392 int
4393 sopoll(struct socket *so, int events, struct ucred *active_cred,
4394     struct thread *td)
4395 {
4396 
4397 	/*
4398 	 * We do not need to set or assert curvnet as long as everyone uses
4399 	 * sopoll_generic().
4400 	 */
4401 	return (so->so_proto->pr_sopoll(so, events, active_cred, td));
4402 }
4403 
4404 int
4405 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
4406     struct thread *td)
4407 {
4408 	int revents;
4409 
4410 	SOCK_LOCK(so);
4411 	if (SOLISTENING(so)) {
4412 		if (!(events & (POLLIN | POLLRDNORM)))
4413 			revents = 0;
4414 		else if (!TAILQ_EMPTY(&so->sol_comp))
4415 			revents = events & (POLLIN | POLLRDNORM);
4416 		else if ((events & POLLINIGNEOF) == 0 && so->so_error)
4417 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
4418 		else {
4419 			selrecord(td, &so->so_rdsel);
4420 			revents = 0;
4421 		}
4422 	} else {
4423 		revents = 0;
4424 		SOCK_SENDBUF_LOCK(so);
4425 		SOCK_RECVBUF_LOCK(so);
4426 		if (events & (POLLIN | POLLRDNORM))
4427 			if (soreadabledata(so) && !isspliced(so))
4428 				revents |= events & (POLLIN | POLLRDNORM);
4429 		if (events & (POLLOUT | POLLWRNORM))
4430 			if (sowriteable(so) && !issplicedback(so))
4431 				revents |= events & (POLLOUT | POLLWRNORM);
4432 		if (events & (POLLPRI | POLLRDBAND))
4433 			if (so->so_oobmark ||
4434 			    (so->so_rcv.sb_state & SBS_RCVATMARK))
4435 				revents |= events & (POLLPRI | POLLRDBAND);
4436 		if ((events & POLLINIGNEOF) == 0) {
4437 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4438 				revents |= events & (POLLIN | POLLRDNORM);
4439 				if (so->so_snd.sb_state & SBS_CANTSENDMORE)
4440 					revents |= POLLHUP;
4441 			}
4442 		}
4443 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
4444 			revents |= events & POLLRDHUP;
4445 		if (revents == 0) {
4446 			if (events &
4447 			    (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
4448 				selrecord(td, &so->so_rdsel);
4449 				so->so_rcv.sb_flags |= SB_SEL;
4450 			}
4451 			if (events & (POLLOUT | POLLWRNORM)) {
4452 				selrecord(td, &so->so_wrsel);
4453 				so->so_snd.sb_flags |= SB_SEL;
4454 			}
4455 		}
4456 		SOCK_RECVBUF_UNLOCK(so);
4457 		SOCK_SENDBUF_UNLOCK(so);
4458 	}
4459 	SOCK_UNLOCK(so);
4460 	return (revents);
4461 }
4462 
4463 int
4464 soo_kqfilter(struct file *fp, struct knote *kn)
4465 {
4466 	struct socket *so = kn->kn_fp->f_data;
4467 	struct sockbuf *sb;
4468 	sb_which which;
4469 	struct knlist *knl;
4470 
4471 	switch (kn->kn_filter) {
4472 	case EVFILT_READ:
4473 		kn->kn_fop = &soread_filtops;
4474 		knl = &so->so_rdsel.si_note;
4475 		sb = &so->so_rcv;
4476 		which = SO_RCV;
4477 		break;
4478 	case EVFILT_WRITE:
4479 		kn->kn_fop = &sowrite_filtops;
4480 		knl = &so->so_wrsel.si_note;
4481 		sb = &so->so_snd;
4482 		which = SO_SND;
4483 		break;
4484 	case EVFILT_EMPTY:
4485 		kn->kn_fop = &soempty_filtops;
4486 		knl = &so->so_wrsel.si_note;
4487 		sb = &so->so_snd;
4488 		which = SO_SND;
4489 		break;
4490 	default:
4491 		return (EINVAL);
4492 	}
4493 
4494 	SOCK_LOCK(so);
4495 	if (SOLISTENING(so)) {
4496 		knlist_add(knl, kn, 1);
4497 	} else {
4498 		SOCK_BUF_LOCK(so, which);
4499 		knlist_add(knl, kn, 1);
4500 		sb->sb_flags |= SB_KNOTE;
4501 		SOCK_BUF_UNLOCK(so, which);
4502 	}
4503 	SOCK_UNLOCK(so);
4504 	return (0);
4505 }
4506 
4507 static void
4508 filt_sordetach(struct knote *kn)
4509 {
4510 	struct socket *so = kn->kn_fp->f_data;
4511 
4512 	so_rdknl_lock(so);
4513 	knlist_remove(&so->so_rdsel.si_note, kn, 1);
4514 	if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
4515 		so->so_rcv.sb_flags &= ~SB_KNOTE;
4516 	so_rdknl_unlock(so);
4517 }
4518 
4519 /*ARGSUSED*/
4520 static int
4521 filt_soread(struct knote *kn, long hint)
4522 {
4523 	struct socket *so;
4524 
4525 	so = kn->kn_fp->f_data;
4526 
4527 	if (SOLISTENING(so)) {
4528 		SOCK_LOCK_ASSERT(so);
4529 		kn->kn_data = so->sol_qlen;
4530 		if (so->so_error) {
4531 			kn->kn_flags |= EV_EOF;
4532 			kn->kn_fflags = so->so_error;
4533 			return (1);
4534 		}
4535 		return (!TAILQ_EMPTY(&so->sol_comp));
4536 	}
4537 
4538 	if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
4539 		return (0);
4540 
4541 	SOCK_RECVBUF_LOCK_ASSERT(so);
4542 
4543 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
4544 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4545 		kn->kn_flags |= EV_EOF;
4546 		kn->kn_fflags = so->so_error;
4547 		return (1);
4548 	} else if (so->so_error || so->so_rerror)
4549 		return (1);
4550 
4551 	if (kn->kn_sfflags & NOTE_LOWAT) {
4552 		if (kn->kn_data >= kn->kn_sdata)
4553 			return (1);
4554 	} else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
4555 		return (1);
4556 
4557 #ifdef SOCKET_HHOOK
4558 	/* This hook returning non-zero indicates an event, not error */
4559 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
4560 #else
4561 	return (0);
4562 #endif
4563 }
4564 
4565 static void
4566 filt_sowdetach(struct knote *kn)
4567 {
4568 	struct socket *so = kn->kn_fp->f_data;
4569 
4570 	so_wrknl_lock(so);
4571 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
4572 	if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
4573 		so->so_snd.sb_flags &= ~SB_KNOTE;
4574 	so_wrknl_unlock(so);
4575 }
4576 
4577 /*ARGSUSED*/
4578 static int
4579 filt_sowrite(struct knote *kn, long hint)
4580 {
4581 	struct socket *so;
4582 
4583 	so = kn->kn_fp->f_data;
4584 
4585 	if (SOLISTENING(so))
4586 		return (0);
4587 
4588 	SOCK_SENDBUF_LOCK_ASSERT(so);
4589 	kn->kn_data = sbspace(&so->so_snd);
4590 
4591 #ifdef SOCKET_HHOOK
4592 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
4593 #endif
4594 
4595 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
4596 		kn->kn_flags |= EV_EOF;
4597 		kn->kn_fflags = so->so_error;
4598 		return (1);
4599 	} else if (so->so_error)	/* temporary udp error */
4600 		return (1);
4601 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
4602 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
4603 		return (0);
4604 	else if (kn->kn_sfflags & NOTE_LOWAT)
4605 		return (kn->kn_data >= kn->kn_sdata);
4606 	else
4607 		return (kn->kn_data >= so->so_snd.sb_lowat);
4608 }
4609 
4610 static int
4611 filt_soempty(struct knote *kn, long hint)
4612 {
4613 	struct socket *so;
4614 
4615 	so = kn->kn_fp->f_data;
4616 
4617 	if (SOLISTENING(so))
4618 		return (1);
4619 
4620 	SOCK_SENDBUF_LOCK_ASSERT(so);
4621 	kn->kn_data = sbused(&so->so_snd);
4622 
4623 	if (kn->kn_data == 0)
4624 		return (1);
4625 	else
4626 		return (0);
4627 }
4628 
4629 int
4630 socheckuid(struct socket *so, uid_t uid)
4631 {
4632 
4633 	if (so == NULL)
4634 		return (EPERM);
4635 	if (so->so_cred->cr_uid != uid)
4636 		return (EPERM);
4637 	return (0);
4638 }
4639 
4640 /*
4641  * These functions are used by protocols to notify the socket layer (and its
4642  * consumers) of state changes in the sockets driven by protocol-side events.
4643  */
4644 
4645 /*
4646  * Procedures to manipulate state flags of socket and do appropriate wakeups.
4647  *
4648  * Normal sequence from the active (originating) side is that
4649  * soisconnecting() is called during processing of connect() call, resulting
4650  * in an eventual call to soisconnected() if/when the connection is
4651  * established.  When the connection is torn down soisdisconnecting() is
4652  * called during processing of disconnect() call, and soisdisconnected() is
4653  * called when the connection to the peer is totally severed.  The semantics
4654  * of these routines are such that connectionless protocols can call
4655  * soisconnected() and soisdisconnected() only, bypassing the in-progress
4656  * calls when setting up a ``connection'' takes no time.
4657  *
4658  * From the passive side, a socket is created with two queues of sockets:
4659  * so_incomp for connections in progress and so_comp for connections already
4660  * made and awaiting user acceptance.  As a protocol is preparing incoming
4661  * connections, it creates a socket structure queued on so_incomp by calling
4662  * sonewconn().  When the connection is established, soisconnected() is
4663  * called, and transfers the socket structure to so_comp, making it available
4664  * to accept().
4665  *
4666  * If a socket is closed with sockets on either so_incomp or so_comp, these
4667  * sockets are dropped.
4668  *
4669  * If higher-level protocols are implemented in the kernel, the wakeups done
4670  * here will sometimes cause software-interrupt process scheduling.
4671  */
4672 void
4673 soisconnecting(struct socket *so)
4674 {
4675 
4676 	SOCK_LOCK(so);
4677 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
4678 	so->so_state |= SS_ISCONNECTING;
4679 	SOCK_UNLOCK(so);
4680 }
4681 
4682 void
4683 soisconnected(struct socket *so)
4684 {
4685 	bool last __diagused;
4686 
4687 	SOCK_LOCK(so);
4688 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING);
4689 	so->so_state |= SS_ISCONNECTED;
4690 
4691 	if (so->so_qstate == SQ_INCOMP) {
4692 		struct socket *head = so->so_listen;
4693 		int ret;
4694 
4695 		KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
4696 		/*
4697 		 * Promoting a socket from incomplete queue to complete, we
4698 		 * need to go through reverse order of locking.  We first do
4699 		 * trylock, and if that doesn't succeed, we go the hard way
4700 		 * leaving a reference and rechecking consistency after proper
4701 		 * locking.
4702 		 */
4703 		if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
4704 			soref(head);
4705 			SOCK_UNLOCK(so);
4706 			SOLISTEN_LOCK(head);
4707 			SOCK_LOCK(so);
4708 			if (__predict_false(head != so->so_listen)) {
4709 				/*
4710 				 * The socket went off the listen queue,
4711 				 * should be lost race to close(2) of sol.
4712 				 * The socket is about to soabort().
4713 				 */
4714 				SOCK_UNLOCK(so);
4715 				sorele_locked(head);
4716 				return;
4717 			}
4718 			last = refcount_release(&head->so_count);
4719 			KASSERT(!last, ("%s: released last reference for %p",
4720 			    __func__, head));
4721 		}
4722 again:
4723 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
4724 			TAILQ_REMOVE(&head->sol_incomp, so, so_list);
4725 			head->sol_incqlen--;
4726 			TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
4727 			head->sol_qlen++;
4728 			so->so_qstate = SQ_COMP;
4729 			SOCK_UNLOCK(so);
4730 			solisten_wakeup(head);	/* unlocks */
4731 		} else {
4732 			SOCK_RECVBUF_LOCK(so);
4733 			soupcall_set(so, SO_RCV,
4734 			    head->sol_accept_filter->accf_callback,
4735 			    head->sol_accept_filter_arg);
4736 			so->so_options &= ~SO_ACCEPTFILTER;
4737 			ret = head->sol_accept_filter->accf_callback(so,
4738 			    head->sol_accept_filter_arg, M_NOWAIT);
4739 			if (ret == SU_ISCONNECTED) {
4740 				soupcall_clear(so, SO_RCV);
4741 				SOCK_RECVBUF_UNLOCK(so);
4742 				goto again;
4743 			}
4744 			SOCK_RECVBUF_UNLOCK(so);
4745 			SOCK_UNLOCK(so);
4746 			SOLISTEN_UNLOCK(head);
4747 		}
4748 		return;
4749 	}
4750 	SOCK_UNLOCK(so);
4751 	wakeup(&so->so_timeo);
4752 	sorwakeup(so);
4753 	sowwakeup(so);
4754 }
4755 
4756 void
4757 soisdisconnecting(struct socket *so)
4758 {
4759 
4760 	SOCK_LOCK(so);
4761 	so->so_state &= ~SS_ISCONNECTING;
4762 	so->so_state |= SS_ISDISCONNECTING;
4763 
4764 	if (!SOLISTENING(so)) {
4765 		SOCK_RECVBUF_LOCK(so);
4766 		socantrcvmore_locked(so);
4767 		SOCK_SENDBUF_LOCK(so);
4768 		socantsendmore_locked(so);
4769 	}
4770 	SOCK_UNLOCK(so);
4771 	wakeup(&so->so_timeo);
4772 }
4773 
4774 void
4775 soisdisconnected(struct socket *so)
4776 {
4777 
4778 	SOCK_LOCK(so);
4779 
4780 	/*
4781 	 * There is at least one reader of so_state that does not
4782 	 * acquire socket lock, namely soreceive_generic().  Ensure
4783 	 * that it never sees all flags that track connection status
4784 	 * cleared, by ordering the update with a barrier semantic of
4785 	 * our release thread fence.
4786 	 */
4787 	so->so_state |= SS_ISDISCONNECTED;
4788 	atomic_thread_fence_rel();
4789 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4790 
4791 	if (!SOLISTENING(so)) {
4792 		SOCK_UNLOCK(so);
4793 		SOCK_RECVBUF_LOCK(so);
4794 		socantrcvmore_locked(so);
4795 		SOCK_SENDBUF_LOCK(so);
4796 		sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4797 		socantsendmore_locked(so);
4798 	} else
4799 		SOCK_UNLOCK(so);
4800 	wakeup(&so->so_timeo);
4801 }
4802 
4803 int
4804 soiolock(struct socket *so, struct sx *sx, int flags)
4805 {
4806 	int error;
4807 
4808 	KASSERT((flags & SBL_VALID) == flags,
4809 	    ("soiolock: invalid flags %#x", flags));
4810 
4811 	if ((flags & SBL_WAIT) != 0) {
4812 		if ((flags & SBL_NOINTR) != 0) {
4813 			sx_xlock(sx);
4814 		} else {
4815 			error = sx_xlock_sig(sx);
4816 			if (error != 0)
4817 				return (error);
4818 		}
4819 	} else if (!sx_try_xlock(sx)) {
4820 		return (EWOULDBLOCK);
4821 	}
4822 
4823 	if (__predict_false(SOLISTENING(so))) {
4824 		sx_xunlock(sx);
4825 		return (ENOTCONN);
4826 	}
4827 	return (0);
4828 }
4829 
4830 void
4831 soiounlock(struct sx *sx)
4832 {
4833 	sx_xunlock(sx);
4834 }
4835 
4836 /*
4837  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4838  */
4839 struct sockaddr *
4840 sodupsockaddr(const struct sockaddr *sa, int mflags)
4841 {
4842 	struct sockaddr *sa2;
4843 
4844 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4845 	if (sa2)
4846 		bcopy(sa, sa2, sa->sa_len);
4847 	return sa2;
4848 }
4849 
4850 /*
4851  * Register per-socket destructor.
4852  */
4853 void
4854 sodtor_set(struct socket *so, so_dtor_t *func)
4855 {
4856 
4857 	SOCK_LOCK_ASSERT(so);
4858 	so->so_dtor = func;
4859 }
4860 
4861 /*
4862  * Register per-socket buffer upcalls.
4863  */
4864 void
4865 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4866 {
4867 	struct sockbuf *sb;
4868 
4869 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4870 
4871 	switch (which) {
4872 	case SO_RCV:
4873 		sb = &so->so_rcv;
4874 		break;
4875 	case SO_SND:
4876 		sb = &so->so_snd;
4877 		break;
4878 	}
4879 	SOCK_BUF_LOCK_ASSERT(so, which);
4880 	sb->sb_upcall = func;
4881 	sb->sb_upcallarg = arg;
4882 	sb->sb_flags |= SB_UPCALL;
4883 }
4884 
4885 void
4886 soupcall_clear(struct socket *so, sb_which which)
4887 {
4888 	struct sockbuf *sb;
4889 
4890 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4891 
4892 	switch (which) {
4893 	case SO_RCV:
4894 		sb = &so->so_rcv;
4895 		break;
4896 	case SO_SND:
4897 		sb = &so->so_snd;
4898 		break;
4899 	}
4900 	SOCK_BUF_LOCK_ASSERT(so, which);
4901 	KASSERT(sb->sb_upcall != NULL,
4902 	    ("%s: so %p no upcall to clear", __func__, so));
4903 	sb->sb_upcall = NULL;
4904 	sb->sb_upcallarg = NULL;
4905 	sb->sb_flags &= ~SB_UPCALL;
4906 }
4907 
4908 void
4909 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4910 {
4911 
4912 	SOLISTEN_LOCK_ASSERT(so);
4913 	so->sol_upcall = func;
4914 	so->sol_upcallarg = arg;
4915 }
4916 
4917 static void
4918 so_rdknl_lock(void *arg)
4919 {
4920 	struct socket *so = arg;
4921 
4922 retry:
4923 	if (SOLISTENING(so)) {
4924 		SOLISTEN_LOCK(so);
4925 	} else {
4926 		SOCK_RECVBUF_LOCK(so);
4927 		if (__predict_false(SOLISTENING(so))) {
4928 			SOCK_RECVBUF_UNLOCK(so);
4929 			goto retry;
4930 		}
4931 	}
4932 }
4933 
4934 static void
4935 so_rdknl_unlock(void *arg)
4936 {
4937 	struct socket *so = arg;
4938 
4939 	if (SOLISTENING(so))
4940 		SOLISTEN_UNLOCK(so);
4941 	else
4942 		SOCK_RECVBUF_UNLOCK(so);
4943 }
4944 
4945 static void
4946 so_rdknl_assert_lock(void *arg, int what)
4947 {
4948 	struct socket *so = arg;
4949 
4950 	if (what == LA_LOCKED) {
4951 		if (SOLISTENING(so))
4952 			SOLISTEN_LOCK_ASSERT(so);
4953 		else
4954 			SOCK_RECVBUF_LOCK_ASSERT(so);
4955 	} else {
4956 		if (SOLISTENING(so))
4957 			SOLISTEN_UNLOCK_ASSERT(so);
4958 		else
4959 			SOCK_RECVBUF_UNLOCK_ASSERT(so);
4960 	}
4961 }
4962 
4963 static void
4964 so_wrknl_lock(void *arg)
4965 {
4966 	struct socket *so = arg;
4967 
4968 retry:
4969 	if (SOLISTENING(so)) {
4970 		SOLISTEN_LOCK(so);
4971 	} else {
4972 		SOCK_SENDBUF_LOCK(so);
4973 		if (__predict_false(SOLISTENING(so))) {
4974 			SOCK_SENDBUF_UNLOCK(so);
4975 			goto retry;
4976 		}
4977 	}
4978 }
4979 
4980 static void
4981 so_wrknl_unlock(void *arg)
4982 {
4983 	struct socket *so = arg;
4984 
4985 	if (SOLISTENING(so))
4986 		SOLISTEN_UNLOCK(so);
4987 	else
4988 		SOCK_SENDBUF_UNLOCK(so);
4989 }
4990 
4991 static void
4992 so_wrknl_assert_lock(void *arg, int what)
4993 {
4994 	struct socket *so = arg;
4995 
4996 	if (what == LA_LOCKED) {
4997 		if (SOLISTENING(so))
4998 			SOLISTEN_LOCK_ASSERT(so);
4999 		else
5000 			SOCK_SENDBUF_LOCK_ASSERT(so);
5001 	} else {
5002 		if (SOLISTENING(so))
5003 			SOLISTEN_UNLOCK_ASSERT(so);
5004 		else
5005 			SOCK_SENDBUF_UNLOCK_ASSERT(so);
5006 	}
5007 }
5008 
5009 /*
5010  * Create an external-format (``xsocket'') structure using the information in
5011  * the kernel-format socket structure pointed to by so.  This is done to
5012  * reduce the spew of irrelevant information over this interface, to isolate
5013  * user code from changes in the kernel structure, and potentially to provide
5014  * information-hiding if we decide that some of this information should be
5015  * hidden from users.
5016  */
5017 void
5018 sotoxsocket(struct socket *so, struct xsocket *xso)
5019 {
5020 
5021 	bzero(xso, sizeof(*xso));
5022 	xso->xso_len = sizeof *xso;
5023 	xso->xso_so = (uintptr_t)so;
5024 	xso->so_type = so->so_type;
5025 	xso->so_options = so->so_options;
5026 	xso->so_linger = so->so_linger;
5027 	xso->so_state = so->so_state;
5028 	xso->so_pcb = (uintptr_t)so->so_pcb;
5029 	xso->xso_protocol = so->so_proto->pr_protocol;
5030 	xso->xso_family = so->so_proto->pr_domain->dom_family;
5031 	xso->so_timeo = so->so_timeo;
5032 	xso->so_error = so->so_error;
5033 	xso->so_uid = so->so_cred->cr_uid;
5034 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
5035 	SOCK_LOCK(so);
5036 	xso->so_fibnum = so->so_fibnum;
5037 	if (SOLISTENING(so)) {
5038 		xso->so_qlen = so->sol_qlen;
5039 		xso->so_incqlen = so->sol_incqlen;
5040 		xso->so_qlimit = so->sol_qlimit;
5041 		xso->so_oobmark = 0;
5042 	} else {
5043 		xso->so_state |= so->so_qstate;
5044 		xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
5045 		xso->so_oobmark = so->so_oobmark;
5046 		sbtoxsockbuf(&so->so_snd, &xso->so_snd);
5047 		sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
5048 		if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
5049 			xso->so_splice_so = (uintptr_t)so->so_splice->dst;
5050 	}
5051 	SOCK_UNLOCK(so);
5052 }
5053 
5054 int
5055 so_options_get(const struct socket *so)
5056 {
5057 
5058 	return (so->so_options);
5059 }
5060 
5061 void
5062 so_options_set(struct socket *so, int val)
5063 {
5064 
5065 	so->so_options = val;
5066 }
5067 
5068 int
5069 so_error_get(const struct socket *so)
5070 {
5071 
5072 	return (so->so_error);
5073 }
5074 
5075 void
5076 so_error_set(struct socket *so, int val)
5077 {
5078 
5079 	so->so_error = val;
5080 }
5081