1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California.
6 * Copyright (c) 2004 The FreeBSD Foundation
7 * Copyright (c) 2004-2008 Robert N. M. Watson
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 /*
36 * Comments on the socket life cycle:
37 *
38 * soalloc() sets of socket layer state for a socket, called only by
39 * socreate() and sonewconn(). Socket layer private.
40 *
41 * sodealloc() tears down socket layer state for a socket, called only by
42 * sofree() and sonewconn(). Socket layer private.
43 *
44 * pru_attach() associates protocol layer state with an allocated socket;
45 * called only once, may fail, aborting socket allocation. This is called
46 * from socreate() and sonewconn(). Socket layer private.
47 *
48 * pru_detach() disassociates protocol layer state from an attached socket,
49 * and will be called exactly once for sockets in which pru_attach() has
50 * been successfully called. If pru_attach() returned an error,
51 * pru_detach() will not be called. Socket layer private.
52 *
53 * pru_abort() and pru_close() notify the protocol layer that the last
54 * consumer of a socket is starting to tear down the socket, and that the
55 * protocol should terminate the connection. Historically, pru_abort() also
56 * detached protocol state from the socket state, but this is no longer the
57 * case.
58 *
59 * socreate() creates a socket and attaches protocol state. This is a public
60 * interface that may be used by socket layer consumers to create new
61 * sockets.
62 *
63 * sonewconn() creates a socket and attaches protocol state. This is a
64 * public interface that may be used by protocols to create new sockets when
65 * a new connection is received and will be available for accept() on a
66 * listen socket.
67 *
68 * soclose() destroys a socket after possibly waiting for it to disconnect.
69 * This is a public interface that socket consumers should use to close and
70 * release a socket when done with it.
71 *
72 * soabort() destroys a socket without waiting for it to disconnect (used
73 * only for incoming connections that are already partially or fully
74 * connected). This is used internally by the socket layer when clearing
75 * listen socket queues (due to overflow or close on the listen socket), but
76 * is also a public interface protocols may use to abort connections in
77 * their incomplete listen queues should they no longer be required. Sockets
78 * placed in completed connection listen queues should not be aborted for
79 * reasons described in the comment above the soclose() implementation. This
80 * is not a general purpose close routine, and except in the specific
81 * circumstances described here, should not be used.
82 *
83 * sofree() will free a socket and its protocol state if all references on
84 * the socket have been released, and is the public interface to attempt to
85 * free a socket when a reference is removed. This is a socket layer private
86 * interface.
87 *
88 * NOTE: In addition to socreate() and soclose(), which provide a single
89 * socket reference to the consumer to be managed as required, there are two
90 * calls to explicitly manage socket references, soref(), and sorele().
91 * Currently, these are generally required only when transitioning a socket
92 * from a listen queue to a file descriptor, in order to prevent garbage
93 * collection of the socket at an untimely moment. For a number of reasons,
94 * these interfaces are not preferred, and should be avoided.
95 *
96 * NOTE: With regard to VNETs the general rule is that callers do not set
97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98 * sofree(), sorele(), sonewconn() and sorflush(), which are usually called
99 * from a pre-set VNET context. sopoll() currently does not need a VNET
100 * context to be set.
101 */
102
103 #include <sys/cdefs.h>
104 #include "opt_inet.h"
105 #include "opt_inet6.h"
106 #include "opt_kern_tls.h"
107 #include "opt_ktrace.h"
108 #include "opt_sctp.h"
109
110 #include <sys/param.h>
111 #include <sys/systm.h>
112 #include <sys/capsicum.h>
113 #include <sys/fcntl.h>
114 #include <sys/limits.h>
115 #include <sys/lock.h>
116 #include <sys/mac.h>
117 #include <sys/malloc.h>
118 #include <sys/mbuf.h>
119 #include <sys/mutex.h>
120 #include <sys/domain.h>
121 #include <sys/file.h> /* for struct knote */
122 #include <sys/hhook.h>
123 #include <sys/kernel.h>
124 #include <sys/khelp.h>
125 #include <sys/kthread.h>
126 #include <sys/ktls.h>
127 #include <sys/event.h>
128 #include <sys/eventhandler.h>
129 #include <sys/poll.h>
130 #include <sys/proc.h>
131 #include <sys/protosw.h>
132 #include <sys/sbuf.h>
133 #include <sys/socket.h>
134 #include <sys/socketvar.h>
135 #include <sys/resourcevar.h>
136 #include <net/route.h>
137 #include <sys/sched.h>
138 #include <sys/signalvar.h>
139 #include <sys/smp.h>
140 #include <sys/stat.h>
141 #include <sys/sx.h>
142 #include <sys/sysctl.h>
143 #include <sys/taskqueue.h>
144 #include <sys/uio.h>
145 #include <sys/un.h>
146 #include <sys/unpcb.h>
147 #include <sys/jail.h>
148 #include <sys/syslog.h>
149 #include <netinet/in.h>
150 #include <netinet/in_pcb.h>
151 #include <netinet/tcp.h>
152
153 #include <net/vnet.h>
154
155 #include <security/mac/mac_framework.h>
156 #include <security/mac/mac_internal.h>
157
158 #include <vm/uma.h>
159
160 #ifdef COMPAT_FREEBSD32
161 #include <sys/mount.h>
162 #include <sys/sysent.h>
163 #include <compat/freebsd32/freebsd32.h>
164 #endif
165
166 static int soreceive_generic_locked(struct socket *so,
167 struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
168 struct mbuf **controlp, int *flagsp);
169 static int soreceive_rcvoob(struct socket *so, struct uio *uio,
170 int flags);
171 static int soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
172 struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
173 struct mbuf **controlp, int flags);
174 static int sosend_generic_locked(struct socket *so, struct sockaddr *addr,
175 struct uio *uio, struct mbuf *top, struct mbuf *control,
176 int flags, struct thread *td);
177 static void so_rdknl_lock(void *);
178 static void so_rdknl_unlock(void *);
179 static void so_rdknl_assert_lock(void *, int);
180 static void so_wrknl_lock(void *);
181 static void so_wrknl_unlock(void *);
182 static void so_wrknl_assert_lock(void *, int);
183
184 static void filt_sordetach(struct knote *kn);
185 static int filt_soread(struct knote *kn, long hint);
186 static void filt_sowdetach(struct knote *kn);
187 static int filt_sowrite(struct knote *kn, long hint);
188 static int filt_soempty(struct knote *kn, long hint);
189 fo_kqfilter_t soo_kqfilter;
190
191 static const struct filterops soread_filtops = {
192 .f_isfd = 1,
193 .f_detach = filt_sordetach,
194 .f_event = filt_soread,
195 };
196 static const struct filterops sowrite_filtops = {
197 .f_isfd = 1,
198 .f_detach = filt_sowdetach,
199 .f_event = filt_sowrite,
200 };
201 static const struct filterops soempty_filtops = {
202 .f_isfd = 1,
203 .f_detach = filt_sowdetach,
204 .f_event = filt_soempty,
205 };
206
207 so_gen_t so_gencnt; /* generation count for sockets */
208
209 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
210 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
211
212 #define VNET_SO_ASSERT(so) \
213 VNET_ASSERT(curvnet != NULL, \
214 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
215
216 #ifdef SOCKET_HHOOK
217 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
218 #define V_socket_hhh VNET(socket_hhh)
219 static inline int hhook_run_socket(struct socket *, void *, int32_t);
220 #endif
221
222 #ifdef COMPAT_FREEBSD32
223 #ifdef __amd64__
224 /* off_t has 4-byte alignment on i386 but not on other 32-bit platforms. */
225 #define __splice32_packed __packed
226 #else
227 #define __splice32_packed
228 #endif
229 struct splice32 {
230 int32_t sp_fd;
231 int64_t sp_max;
232 struct timeval32 sp_idle;
233 } __splice32_packed;
234 #undef __splice32_packed
235 #endif
236
237 /*
238 * Limit on the number of connections in the listen queue waiting
239 * for accept(2).
240 * NB: The original sysctl somaxconn is still available but hidden
241 * to prevent confusion about the actual purpose of this number.
242 */
243 static u_int somaxconn = SOMAXCONN;
244
245 static int
sysctl_somaxconn(SYSCTL_HANDLER_ARGS)246 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
247 {
248 int error;
249 int val;
250
251 val = somaxconn;
252 error = sysctl_handle_int(oidp, &val, 0, req);
253 if (error || !req->newptr )
254 return (error);
255
256 /*
257 * The purpose of the UINT_MAX / 3 limit, is so that the formula
258 * 3 * so_qlimit / 2
259 * below, will not overflow.
260 */
261
262 if (val < 1 || val > UINT_MAX / 3)
263 return (EINVAL);
264
265 somaxconn = val;
266 return (0);
267 }
268 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
269 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int),
270 sysctl_somaxconn, "I",
271 "Maximum listen socket pending connection accept queue size");
272 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
273 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0,
274 sizeof(int), sysctl_somaxconn, "I",
275 "Maximum listen socket pending connection accept queue size (compat)");
276
277 static int numopensockets;
278 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
279 &numopensockets, 0, "Number of open sockets");
280
281 /*
282 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
283 * so_gencnt field.
284 */
285 static struct mtx so_global_mtx;
286 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
287
288 /*
289 * General IPC sysctl name space, used by sockets and a variety of other IPC
290 * types.
291 */
292 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
293 "IPC");
294
295 /*
296 * Initialize the socket subsystem and set up the socket
297 * memory allocator.
298 */
299 static uma_zone_t socket_zone;
300 int maxsockets;
301
302 static void
socket_zone_change(void * tag)303 socket_zone_change(void *tag)
304 {
305
306 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
307 }
308
309 static int splice_init_state;
310 static struct sx splice_init_lock;
311 SX_SYSINIT(splice_init_lock, &splice_init_lock, "splice_init");
312
313 static SYSCTL_NODE(_kern_ipc, OID_AUTO, splice, CTLFLAG_RW, 0,
314 "Settings relating to the SO_SPLICE socket option");
315
316 static bool splice_receive_stream = true;
317 SYSCTL_BOOL(_kern_ipc_splice, OID_AUTO, receive_stream, CTLFLAG_RWTUN,
318 &splice_receive_stream, 0,
319 "Use soreceive_stream() for stream splices");
320
321 static uma_zone_t splice_zone;
322 static struct proc *splice_proc;
323 struct splice_wq {
324 struct mtx mtx;
325 STAILQ_HEAD(, so_splice) head;
326 bool running;
327 } __aligned(CACHE_LINE_SIZE);
328 static struct splice_wq *splice_wq;
329 static uint32_t splice_index = 0;
330
331 static void so_splice_timeout(void *arg, int pending);
332 static void so_splice_xfer(struct so_splice *s);
333 static int so_unsplice(struct socket *so, bool timeout);
334
335 static void
splice_work_thread(void * ctx)336 splice_work_thread(void *ctx)
337 {
338 struct splice_wq *wq = ctx;
339 struct so_splice *s, *s_temp;
340 STAILQ_HEAD(, so_splice) local_head;
341 int cpu;
342
343 cpu = wq - splice_wq;
344 if (bootverbose)
345 printf("starting so_splice worker thread for CPU %d\n", cpu);
346
347 for (;;) {
348 mtx_lock(&wq->mtx);
349 while (STAILQ_EMPTY(&wq->head)) {
350 wq->running = false;
351 mtx_sleep(wq, &wq->mtx, 0, "-", 0);
352 wq->running = true;
353 }
354 STAILQ_INIT(&local_head);
355 STAILQ_CONCAT(&local_head, &wq->head);
356 STAILQ_INIT(&wq->head);
357 mtx_unlock(&wq->mtx);
358 STAILQ_FOREACH_SAFE(s, &local_head, next, s_temp) {
359 mtx_lock(&s->mtx);
360 CURVNET_SET(s->src->so_vnet);
361 so_splice_xfer(s);
362 CURVNET_RESTORE();
363 }
364 }
365 }
366
367 static void
so_splice_dispatch_async(struct so_splice * sp)368 so_splice_dispatch_async(struct so_splice *sp)
369 {
370 struct splice_wq *wq;
371 bool running;
372
373 wq = &splice_wq[sp->wq_index];
374 mtx_lock(&wq->mtx);
375 STAILQ_INSERT_TAIL(&wq->head, sp, next);
376 running = wq->running;
377 mtx_unlock(&wq->mtx);
378 if (!running)
379 wakeup(wq);
380 }
381
382 void
so_splice_dispatch(struct so_splice * sp)383 so_splice_dispatch(struct so_splice *sp)
384 {
385 mtx_assert(&sp->mtx, MA_OWNED);
386
387 if (sp->state != SPLICE_IDLE) {
388 mtx_unlock(&sp->mtx);
389 } else {
390 sp->state = SPLICE_QUEUED;
391 mtx_unlock(&sp->mtx);
392 so_splice_dispatch_async(sp);
393 }
394 }
395
396 static int
splice_zinit(void * mem,int size __unused,int flags __unused)397 splice_zinit(void *mem, int size __unused, int flags __unused)
398 {
399 struct so_splice *s;
400
401 s = (struct so_splice *)mem;
402 mtx_init(&s->mtx, "so_splice", NULL, MTX_DEF);
403 return (0);
404 }
405
406 static void
splice_zfini(void * mem,int size)407 splice_zfini(void *mem, int size)
408 {
409 struct so_splice *s;
410
411 s = (struct so_splice *)mem;
412 mtx_destroy(&s->mtx);
413 }
414
415 static int
splice_init(void)416 splice_init(void)
417 {
418 struct thread *td;
419 int error, i, state;
420
421 state = atomic_load_acq_int(&splice_init_state);
422 if (__predict_true(state > 0))
423 return (0);
424 if (state < 0)
425 return (ENXIO);
426 sx_xlock(&splice_init_lock);
427 if (splice_init_state != 0) {
428 sx_xunlock(&splice_init_lock);
429 return (0);
430 }
431
432 splice_zone = uma_zcreate("splice", sizeof(struct so_splice), NULL,
433 NULL, splice_zinit, splice_zfini, UMA_ALIGN_CACHE, 0);
434
435 splice_wq = mallocarray(mp_maxid + 1, sizeof(*splice_wq), M_TEMP,
436 M_WAITOK | M_ZERO);
437
438 /*
439 * Initialize the workqueues to run the splice work. We create a
440 * work queue for each CPU.
441 */
442 CPU_FOREACH(i) {
443 STAILQ_INIT(&splice_wq[i].head);
444 mtx_init(&splice_wq[i].mtx, "splice work queue", NULL, MTX_DEF);
445 }
446
447 /* Start kthreads for each workqueue. */
448 error = 0;
449 CPU_FOREACH(i) {
450 error = kproc_kthread_add(splice_work_thread, &splice_wq[i],
451 &splice_proc, &td, 0, 0, "so_splice", "thr_%d", i);
452 if (error) {
453 printf("Can't add so_splice thread %d error %d\n",
454 i, error);
455 break;
456 }
457
458 /*
459 * It's possible to create loops with SO_SPLICE; ensure that
460 * worker threads aren't able to starve the system too easily.
461 */
462 thread_lock(td);
463 sched_prio(td, PUSER);
464 thread_unlock(td);
465 }
466
467 splice_init_state = error != 0 ? -1 : 1;
468 sx_xunlock(&splice_init_lock);
469
470 return (error);
471 }
472
473 /*
474 * Lock a pair of socket's I/O locks for splicing. Avoid blocking while holding
475 * one lock in order to avoid potential deadlocks in case there is some other
476 * code path which acquires more than one I/O lock at a time.
477 */
478 static void
splice_lock_pair(struct socket * so_src,struct socket * so_dst)479 splice_lock_pair(struct socket *so_src, struct socket *so_dst)
480 {
481 int error;
482
483 for (;;) {
484 error = SOCK_IO_SEND_LOCK(so_dst, SBL_WAIT | SBL_NOINTR);
485 KASSERT(error == 0,
486 ("%s: failed to lock send I/O lock: %d", __func__, error));
487 error = SOCK_IO_RECV_LOCK(so_src, 0);
488 KASSERT(error == 0 || error == EWOULDBLOCK,
489 ("%s: failed to lock recv I/O lock: %d", __func__, error));
490 if (error == 0)
491 break;
492 SOCK_IO_SEND_UNLOCK(so_dst);
493
494 error = SOCK_IO_RECV_LOCK(so_src, SBL_WAIT | SBL_NOINTR);
495 KASSERT(error == 0,
496 ("%s: failed to lock recv I/O lock: %d", __func__, error));
497 error = SOCK_IO_SEND_LOCK(so_dst, 0);
498 KASSERT(error == 0 || error == EWOULDBLOCK,
499 ("%s: failed to lock send I/O lock: %d", __func__, error));
500 if (error == 0)
501 break;
502 SOCK_IO_RECV_UNLOCK(so_src);
503 }
504 }
505
506 static void
splice_unlock_pair(struct socket * so_src,struct socket * so_dst)507 splice_unlock_pair(struct socket *so_src, struct socket *so_dst)
508 {
509 SOCK_IO_RECV_UNLOCK(so_src);
510 SOCK_IO_SEND_UNLOCK(so_dst);
511 }
512
513 /*
514 * Move data from the source to the sink. Assumes that both of the relevant
515 * socket I/O locks are held.
516 */
517 static int
so_splice_xfer_data(struct socket * so_src,struct socket * so_dst,off_t max,ssize_t * lenp)518 so_splice_xfer_data(struct socket *so_src, struct socket *so_dst, off_t max,
519 ssize_t *lenp)
520 {
521 struct uio uio;
522 struct mbuf *m;
523 struct sockbuf *sb_src, *sb_dst;
524 ssize_t len;
525 long space;
526 int error, flags;
527
528 SOCK_IO_RECV_ASSERT_LOCKED(so_src);
529 SOCK_IO_SEND_ASSERT_LOCKED(so_dst);
530
531 error = 0;
532 m = NULL;
533 memset(&uio, 0, sizeof(uio));
534
535 sb_src = &so_src->so_rcv;
536 sb_dst = &so_dst->so_snd;
537
538 space = sbspace(sb_dst);
539 if (space < 0)
540 space = 0;
541 len = MIN(max, MIN(space, sbavail(sb_src)));
542 if (len == 0) {
543 SOCK_RECVBUF_LOCK(so_src);
544 if ((sb_src->sb_state & SBS_CANTRCVMORE) != 0)
545 error = EPIPE;
546 SOCK_RECVBUF_UNLOCK(so_src);
547 } else {
548 flags = MSG_DONTWAIT;
549 uio.uio_resid = len;
550 if (splice_receive_stream && sb_src->sb_tls_info == NULL) {
551 error = soreceive_stream_locked(so_src, sb_src, NULL,
552 &uio, &m, NULL, flags);
553 } else {
554 error = soreceive_generic_locked(so_src, NULL,
555 &uio, &m, NULL, &flags);
556 }
557 if (error != 0 && m != NULL) {
558 m_freem(m);
559 m = NULL;
560 }
561 }
562 if (m != NULL) {
563 len -= uio.uio_resid;
564 error = sosend_generic_locked(so_dst, NULL, NULL, m, NULL,
565 MSG_DONTWAIT, curthread);
566 } else if (error == 0) {
567 len = 0;
568 SOCK_SENDBUF_LOCK(so_dst);
569 if ((sb_dst->sb_state & SBS_CANTSENDMORE) != 0)
570 error = EPIPE;
571 SOCK_SENDBUF_UNLOCK(so_dst);
572 }
573 if (error == 0)
574 *lenp = len;
575 return (error);
576 }
577
578 /*
579 * Transfer data from the source to the sink.
580 *
581 * If "direct" is true, the transfer is done in the context of whichever thread
582 * is operating on one of the socket buffers. We do not know which locks are
583 * held, so we can only trylock the socket buffers; if this fails, we fall back
584 * to the worker thread, which invokes this routine with "direct" set to false.
585 */
586 static void
so_splice_xfer(struct so_splice * sp)587 so_splice_xfer(struct so_splice *sp)
588 {
589 struct socket *so_src, *so_dst;
590 off_t max;
591 ssize_t len;
592 int error;
593
594 mtx_assert(&sp->mtx, MA_OWNED);
595 KASSERT(sp->state == SPLICE_QUEUED || sp->state == SPLICE_CLOSING,
596 ("so_splice_xfer: invalid state %d", sp->state));
597 KASSERT(sp->max != 0, ("so_splice_xfer: max == 0"));
598
599 if (sp->state == SPLICE_CLOSING) {
600 /* Userspace asked us to close the splice. */
601 goto closing;
602 }
603
604 sp->state = SPLICE_RUNNING;
605 so_src = sp->src;
606 so_dst = sp->dst;
607 max = sp->max > 0 ? sp->max - so_src->so_splice_sent : OFF_MAX;
608 if (max < 0)
609 max = 0;
610
611 /*
612 * Lock the sockets in order to block userspace from doing anything
613 * sneaky. If an error occurs or one of the sockets can no longer
614 * transfer data, we will automatically unsplice.
615 */
616 mtx_unlock(&sp->mtx);
617 splice_lock_pair(so_src, so_dst);
618
619 error = so_splice_xfer_data(so_src, so_dst, max, &len);
620
621 mtx_lock(&sp->mtx);
622
623 /*
624 * Update our stats while still holding the socket locks. This
625 * synchronizes with getsockopt(SO_SPLICE), see the comment there.
626 */
627 if (error == 0) {
628 KASSERT(len >= 0, ("%s: len %zd < 0", __func__, len));
629 so_src->so_splice_sent += len;
630 }
631 splice_unlock_pair(so_src, so_dst);
632
633 switch (sp->state) {
634 case SPLICE_CLOSING:
635 closing:
636 sp->state = SPLICE_CLOSED;
637 wakeup(sp);
638 mtx_unlock(&sp->mtx);
639 break;
640 case SPLICE_RUNNING:
641 if (error != 0 ||
642 (sp->max > 0 && so_src->so_splice_sent >= sp->max)) {
643 sp->state = SPLICE_EXCEPTION;
644 soref(so_src);
645 mtx_unlock(&sp->mtx);
646 (void)so_unsplice(so_src, false);
647 sorele(so_src);
648 } else {
649 /*
650 * Locklessly check for additional bytes in the source's
651 * receive buffer and queue more work if possible. We
652 * may end up queuing needless work, but that's ok, and
653 * if we race with a thread inserting more data into the
654 * buffer and observe sbavail() == 0, the splice mutex
655 * ensures that splice_push() will queue more work for
656 * us.
657 */
658 if (sbavail(&so_src->so_rcv) > 0 &&
659 sbspace(&so_dst->so_snd) > 0) {
660 sp->state = SPLICE_QUEUED;
661 mtx_unlock(&sp->mtx);
662 so_splice_dispatch_async(sp);
663 } else {
664 sp->state = SPLICE_IDLE;
665 mtx_unlock(&sp->mtx);
666 }
667 }
668 break;
669 default:
670 __assert_unreachable();
671 }
672 }
673
674 static void
socket_init(void * tag)675 socket_init(void *tag)
676 {
677
678 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
679 NULL, NULL, UMA_ALIGN_PTR, 0);
680 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
681 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
682 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
683 EVENTHANDLER_PRI_FIRST);
684 }
685 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
686
687 #ifdef SOCKET_HHOOK
688 static void
socket_hhook_register(int subtype)689 socket_hhook_register(int subtype)
690 {
691
692 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
693 &V_socket_hhh[subtype],
694 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
695 printf("%s: WARNING: unable to register hook\n", __func__);
696 }
697
698 static void
socket_hhook_deregister(int subtype)699 socket_hhook_deregister(int subtype)
700 {
701
702 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
703 printf("%s: WARNING: unable to deregister hook\n", __func__);
704 }
705
706 static void
socket_vnet_init(const void * unused __unused)707 socket_vnet_init(const void *unused __unused)
708 {
709 int i;
710
711 /* We expect a contiguous range */
712 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
713 socket_hhook_register(i);
714 }
715 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
716 socket_vnet_init, NULL);
717
718 static void
socket_vnet_uninit(const void * unused __unused)719 socket_vnet_uninit(const void *unused __unused)
720 {
721 int i;
722
723 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
724 socket_hhook_deregister(i);
725 }
726 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
727 socket_vnet_uninit, NULL);
728 #endif /* SOCKET_HHOOK */
729
730 /*
731 * Initialise maxsockets. This SYSINIT must be run after
732 * tunable_mbinit().
733 */
734 static void
init_maxsockets(void * ignored)735 init_maxsockets(void *ignored)
736 {
737
738 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
739 maxsockets = imax(maxsockets, maxfiles);
740 }
741 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
742
743 /*
744 * Sysctl to get and set the maximum global sockets limit. Notify protocols
745 * of the change so that they can update their dependent limits as required.
746 */
747 static int
sysctl_maxsockets(SYSCTL_HANDLER_ARGS)748 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
749 {
750 int error, newmaxsockets;
751
752 newmaxsockets = maxsockets;
753 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
754 if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
755 if (newmaxsockets > maxsockets &&
756 newmaxsockets <= maxfiles) {
757 maxsockets = newmaxsockets;
758 EVENTHANDLER_INVOKE(maxsockets_change);
759 } else
760 error = EINVAL;
761 }
762 return (error);
763 }
764 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
765 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
766 &maxsockets, 0, sysctl_maxsockets, "IU",
767 "Maximum number of sockets available");
768
769 /*
770 * Socket operation routines. These routines are called by the routines in
771 * sys_socket.c or from a system process, and implement the semantics of
772 * socket operations by switching out to the protocol specific routines.
773 */
774
775 /*
776 * Get a socket structure from our zone, and initialize it. Note that it
777 * would probably be better to allocate socket and PCB at the same time, but
778 * I'm not convinced that all the protocols can be easily modified to do
779 * this.
780 *
781 * soalloc() returns a socket with a ref count of 0.
782 */
783 static struct socket *
soalloc(struct vnet * vnet)784 soalloc(struct vnet *vnet)
785 {
786 struct socket *so;
787
788 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
789 if (so == NULL)
790 return (NULL);
791 #ifdef MAC
792 if (mac_socket_init(so, M_NOWAIT) != 0) {
793 uma_zfree(socket_zone, so);
794 return (NULL);
795 }
796 #endif
797 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
798 uma_zfree(socket_zone, so);
799 return (NULL);
800 }
801
802 /*
803 * The socket locking protocol allows to lock 2 sockets at a time,
804 * however, the first one must be a listening socket. WITNESS lacks
805 * a feature to change class of an existing lock, so we use DUPOK.
806 */
807 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
808 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
809 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
810 so->so_rcv.sb_sel = &so->so_rdsel;
811 so->so_snd.sb_sel = &so->so_wrsel;
812 sx_init(&so->so_snd_sx, "so_snd_sx");
813 sx_init(&so->so_rcv_sx, "so_rcv_sx");
814 TAILQ_INIT(&so->so_snd.sb_aiojobq);
815 TAILQ_INIT(&so->so_rcv.sb_aiojobq);
816 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
817 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
818 #ifdef VIMAGE
819 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
820 __func__, __LINE__, so));
821 so->so_vnet = vnet;
822 #endif
823 #ifdef SOCKET_HHOOK
824 /* We shouldn't need the so_global_mtx */
825 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
826 /* Do we need more comprehensive error returns? */
827 uma_zfree(socket_zone, so);
828 return (NULL);
829 }
830 #endif
831 mtx_lock(&so_global_mtx);
832 so->so_gencnt = ++so_gencnt;
833 ++numopensockets;
834 #ifdef VIMAGE
835 vnet->vnet_sockcnt++;
836 #endif
837 mtx_unlock(&so_global_mtx);
838
839 return (so);
840 }
841
842 /*
843 * Free the storage associated with a socket at the socket layer, tear down
844 * locks, labels, etc. All protocol state is assumed already to have been
845 * torn down (and possibly never set up) by the caller.
846 */
847 void
sodealloc(struct socket * so)848 sodealloc(struct socket *so)
849 {
850
851 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
852 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
853
854 mtx_lock(&so_global_mtx);
855 so->so_gencnt = ++so_gencnt;
856 --numopensockets; /* Could be below, but faster here. */
857 #ifdef VIMAGE
858 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
859 __func__, __LINE__, so));
860 so->so_vnet->vnet_sockcnt--;
861 #endif
862 mtx_unlock(&so_global_mtx);
863 #ifdef MAC
864 mac_socket_destroy(so);
865 #endif
866 #ifdef SOCKET_HHOOK
867 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
868 #endif
869
870 khelp_destroy_osd(&so->osd);
871 if (SOLISTENING(so)) {
872 if (so->sol_accept_filter != NULL)
873 accept_filt_setopt(so, NULL);
874 } else {
875 if (so->so_rcv.sb_hiwat)
876 (void)chgsbsize(so->so_cred->cr_uidinfo,
877 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
878 if (so->so_snd.sb_hiwat)
879 (void)chgsbsize(so->so_cred->cr_uidinfo,
880 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
881 sx_destroy(&so->so_snd_sx);
882 sx_destroy(&so->so_rcv_sx);
883 mtx_destroy(&so->so_snd_mtx);
884 mtx_destroy(&so->so_rcv_mtx);
885 }
886 crfree(so->so_cred);
887 mtx_destroy(&so->so_lock);
888 uma_zfree(socket_zone, so);
889 }
890
891 /*
892 * socreate returns a socket with a ref count of 1 and a file descriptor
893 * reference. The socket should be closed with soclose().
894 */
895 int
socreate(int dom,struct socket ** aso,int type,int proto,struct ucred * cred,struct thread * td)896 socreate(int dom, struct socket **aso, int type, int proto,
897 struct ucred *cred, struct thread *td)
898 {
899 struct protosw *prp;
900 struct socket *so;
901 int error;
902
903 /*
904 * XXX: divert(4) historically abused PF_INET. Keep this compatibility
905 * shim until all applications have been updated.
906 */
907 if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
908 proto == IPPROTO_DIVERT)) {
909 dom = PF_DIVERT;
910 printf("%s uses obsolete way to create divert(4) socket\n",
911 td->td_proc->p_comm);
912 }
913
914 prp = pffindproto(dom, type, proto);
915 if (prp == NULL) {
916 /* No support for domain. */
917 if (pffinddomain(dom) == NULL)
918 return (EAFNOSUPPORT);
919 /* No support for socket type. */
920 if (proto == 0 && type != 0)
921 return (EPROTOTYPE);
922 return (EPROTONOSUPPORT);
923 }
924
925 MPASS(prp->pr_attach);
926
927 if ((prp->pr_flags & PR_CAPATTACH) == 0) {
928 if (CAP_TRACING(td))
929 ktrcapfail(CAPFAIL_PROTO, &proto);
930 if (IN_CAPABILITY_MODE(td))
931 return (ECAPMODE);
932 }
933
934 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
935 return (EPROTONOSUPPORT);
936
937 so = soalloc(CRED_TO_VNET(cred));
938 if (so == NULL)
939 return (ENOBUFS);
940
941 so->so_type = type;
942 so->so_cred = crhold(cred);
943 if ((prp->pr_domain->dom_family == PF_INET) ||
944 (prp->pr_domain->dom_family == PF_INET6) ||
945 (prp->pr_domain->dom_family == PF_ROUTE))
946 so->so_fibnum = td->td_proc->p_fibnum;
947 else
948 so->so_fibnum = 0;
949 so->so_proto = prp;
950 #ifdef MAC
951 mac_socket_create(cred, so);
952 #endif
953 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
954 so_rdknl_assert_lock);
955 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
956 so_wrknl_assert_lock);
957 if ((prp->pr_flags & PR_SOCKBUF) == 0) {
958 so->so_snd.sb_mtx = &so->so_snd_mtx;
959 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
960 }
961 /*
962 * Auto-sizing of socket buffers is managed by the protocols and
963 * the appropriate flags must be set in the pru_attach function.
964 */
965 CURVNET_SET(so->so_vnet);
966 error = prp->pr_attach(so, proto, td);
967 CURVNET_RESTORE();
968 if (error) {
969 sodealloc(so);
970 return (error);
971 }
972 soref(so);
973 *aso = so;
974 return (0);
975 }
976
977 #ifdef REGRESSION
978 static int regression_sonewconn_earlytest = 1;
979 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
980 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
981 #endif
982
983 static int sooverprio = LOG_DEBUG;
984 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW,
985 &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable");
986
987 static struct timeval overinterval = { 60, 0 };
988 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
989 &overinterval,
990 "Delay in seconds between warnings for listen socket overflows");
991
992 /*
993 * When an attempt at a new connection is noted on a socket which supports
994 * accept(2), the protocol has two options:
995 * 1) Call legacy sonewconn() function, which would call protocol attach
996 * method, same as used for socket(2).
997 * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
998 * and then call solisten_enqueue().
999 *
1000 * Note: the ref count on the socket is 0 on return.
1001 */
1002 struct socket *
solisten_clone(struct socket * head)1003 solisten_clone(struct socket *head)
1004 {
1005 struct sbuf descrsb;
1006 struct socket *so;
1007 int len, overcount;
1008 u_int qlen;
1009 const char localprefix[] = "local:";
1010 char descrbuf[SUNPATHLEN + sizeof(localprefix)];
1011 #if defined(INET6)
1012 char addrbuf[INET6_ADDRSTRLEN];
1013 #elif defined(INET)
1014 char addrbuf[INET_ADDRSTRLEN];
1015 #endif
1016 bool dolog, over;
1017
1018 SOLISTEN_LOCK(head);
1019 over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
1020 #ifdef REGRESSION
1021 if (regression_sonewconn_earlytest && over) {
1022 #else
1023 if (over) {
1024 #endif
1025 head->sol_overcount++;
1026 dolog = (sooverprio >= 0) &&
1027 !!ratecheck(&head->sol_lastover, &overinterval);
1028
1029 /*
1030 * If we're going to log, copy the overflow count and queue
1031 * length from the listen socket before dropping the lock.
1032 * Also, reset the overflow count.
1033 */
1034 if (dolog) {
1035 overcount = head->sol_overcount;
1036 head->sol_overcount = 0;
1037 qlen = head->sol_qlen;
1038 }
1039 SOLISTEN_UNLOCK(head);
1040
1041 if (dolog) {
1042 /*
1043 * Try to print something descriptive about the
1044 * socket for the error message.
1045 */
1046 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
1047 SBUF_FIXEDLEN);
1048 switch (head->so_proto->pr_domain->dom_family) {
1049 #if defined(INET) || defined(INET6)
1050 #ifdef INET
1051 case AF_INET:
1052 #endif
1053 #ifdef INET6
1054 case AF_INET6:
1055 if (head->so_proto->pr_domain->dom_family ==
1056 AF_INET6 ||
1057 (sotoinpcb(head)->inp_inc.inc_flags &
1058 INC_ISIPV6)) {
1059 ip6_sprintf(addrbuf,
1060 &sotoinpcb(head)->inp_inc.inc6_laddr);
1061 sbuf_printf(&descrsb, "[%s]", addrbuf);
1062 } else
1063 #endif
1064 {
1065 #ifdef INET
1066 inet_ntoa_r(
1067 sotoinpcb(head)->inp_inc.inc_laddr,
1068 addrbuf);
1069 sbuf_cat(&descrsb, addrbuf);
1070 #endif
1071 }
1072 sbuf_printf(&descrsb, ":%hu (proto %u)",
1073 ntohs(sotoinpcb(head)->inp_inc.inc_lport),
1074 head->so_proto->pr_protocol);
1075 break;
1076 #endif /* INET || INET6 */
1077 case AF_UNIX:
1078 sbuf_cat(&descrsb, localprefix);
1079 if (sotounpcb(head)->unp_addr != NULL)
1080 len =
1081 sotounpcb(head)->unp_addr->sun_len -
1082 offsetof(struct sockaddr_un,
1083 sun_path);
1084 else
1085 len = 0;
1086 if (len > 0)
1087 sbuf_bcat(&descrsb,
1088 sotounpcb(head)->unp_addr->sun_path,
1089 len);
1090 else
1091 sbuf_cat(&descrsb, "(unknown)");
1092 break;
1093 }
1094
1095 /*
1096 * If we can't print something more specific, at least
1097 * print the domain name.
1098 */
1099 if (sbuf_finish(&descrsb) != 0 ||
1100 sbuf_len(&descrsb) <= 0) {
1101 sbuf_clear(&descrsb);
1102 sbuf_cat(&descrsb,
1103 head->so_proto->pr_domain->dom_name ?:
1104 "unknown");
1105 sbuf_finish(&descrsb);
1106 }
1107 KASSERT(sbuf_len(&descrsb) > 0,
1108 ("%s: sbuf creation failed", __func__));
1109 /*
1110 * Preserve the historic listen queue overflow log
1111 * message, that starts with "sonewconn:". It has
1112 * been known to sysadmins for years and also test
1113 * sys/kern/sonewconn_overflow checks for it.
1114 */
1115 if (head->so_cred == 0) {
1116 log(LOG_PRI(sooverprio),
1117 "sonewconn: pcb %p (%s): "
1118 "Listen queue overflow: %i already in "
1119 "queue awaiting acceptance (%d "
1120 "occurrences)\n", head->so_pcb,
1121 sbuf_data(&descrsb),
1122 qlen, overcount);
1123 } else {
1124 log(LOG_PRI(sooverprio),
1125 "sonewconn: pcb %p (%s): "
1126 "Listen queue overflow: "
1127 "%i already in queue awaiting acceptance "
1128 "(%d occurrences), euid %d, rgid %d, jail %s\n",
1129 head->so_pcb, sbuf_data(&descrsb), qlen,
1130 overcount, head->so_cred->cr_uid,
1131 head->so_cred->cr_rgid,
1132 head->so_cred->cr_prison ?
1133 head->so_cred->cr_prison->pr_name :
1134 "not_jailed");
1135 }
1136 sbuf_delete(&descrsb);
1137
1138 overcount = 0;
1139 }
1140
1141 return (NULL);
1142 }
1143 SOLISTEN_UNLOCK(head);
1144 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
1145 __func__, head));
1146 so = soalloc(head->so_vnet);
1147 if (so == NULL) {
1148 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1149 "limit reached or out of memory\n",
1150 __func__, head->so_pcb);
1151 return (NULL);
1152 }
1153 so->so_listen = head;
1154 so->so_type = head->so_type;
1155 /*
1156 * POSIX is ambiguous on what options an accept(2)ed socket should
1157 * inherit from the listener. Words "create a new socket" may be
1158 * interpreted as not inheriting anything. Best programming practice
1159 * for application developers is to not rely on such inheritance.
1160 * FreeBSD had historically inherited all so_options excluding
1161 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options,
1162 * including those completely irrelevant to a new born socket. For
1163 * compatibility with older versions we will inherit a list of
1164 * meaningful options.
1165 * The crucial bit to inherit is SO_ACCEPTFILTER. We need it present
1166 * in the child socket for soisconnected() promoting socket from the
1167 * incomplete queue to complete. It will be cleared before the child
1168 * gets available to accept(2).
1169 */
1170 so->so_options = head->so_options & (SO_ACCEPTFILTER | SO_KEEPALIVE |
1171 SO_DONTROUTE | SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE);
1172 so->so_linger = head->so_linger;
1173 so->so_state = head->so_state;
1174 so->so_fibnum = head->so_fibnum;
1175 so->so_proto = head->so_proto;
1176 so->so_cred = crhold(head->so_cred);
1177 #ifdef SOCKET_HHOOK
1178 if (V_socket_hhh[HHOOK_SOCKET_NEWCONN]->hhh_nhooks > 0) {
1179 if (hhook_run_socket(so, head, HHOOK_SOCKET_NEWCONN)) {
1180 sodealloc(so);
1181 log(LOG_DEBUG, "%s: hhook run failed\n", __func__);
1182 return (NULL);
1183 }
1184 }
1185 #endif
1186 #ifdef MAC
1187 mac_socket_newconn(head, so);
1188 #endif
1189 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1190 so_rdknl_assert_lock);
1191 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1192 so_wrknl_assert_lock);
1193 VNET_SO_ASSERT(head);
1194 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
1195 sodealloc(so);
1196 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1197 __func__, head->so_pcb);
1198 return (NULL);
1199 }
1200 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
1201 so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
1202 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
1203 so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
1204 so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
1205 so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE;
1206 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1207 so->so_snd.sb_mtx = &so->so_snd_mtx;
1208 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1209 }
1210
1211 return (so);
1212 }
1213
1214 /* Connstatus may be 0 or SS_ISCONNECTED. */
1215 struct socket *
1216 sonewconn(struct socket *head, int connstatus)
1217 {
1218 struct socket *so;
1219
1220 if ((so = solisten_clone(head)) == NULL)
1221 return (NULL);
1222
1223 if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
1224 sodealloc(so);
1225 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1226 __func__, head->so_pcb);
1227 return (NULL);
1228 }
1229
1230 (void)solisten_enqueue(so, connstatus);
1231
1232 return (so);
1233 }
1234
1235 /*
1236 * Enqueue socket cloned by solisten_clone() to the listen queue of the
1237 * listener it has been cloned from.
1238 *
1239 * Return 'true' if socket landed on complete queue, otherwise 'false'.
1240 */
1241 bool
1242 solisten_enqueue(struct socket *so, int connstatus)
1243 {
1244 struct socket *head = so->so_listen;
1245
1246 MPASS(refcount_load(&so->so_count) == 0);
1247 refcount_init(&so->so_count, 1);
1248
1249 SOLISTEN_LOCK(head);
1250 if (head->sol_accept_filter != NULL)
1251 connstatus = 0;
1252 so->so_state |= connstatus;
1253 soref(head); /* A socket on (in)complete queue refs head. */
1254 if (connstatus) {
1255 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
1256 so->so_qstate = SQ_COMP;
1257 head->sol_qlen++;
1258 solisten_wakeup(head); /* unlocks */
1259 return (true);
1260 } else {
1261 /*
1262 * Keep removing sockets from the head until there's room for
1263 * us to insert on the tail. In pre-locking revisions, this
1264 * was a simple if(), but as we could be racing with other
1265 * threads and soabort() requires dropping locks, we must
1266 * loop waiting for the condition to be true.
1267 */
1268 while (head->sol_incqlen > head->sol_qlimit) {
1269 struct socket *sp;
1270
1271 sp = TAILQ_FIRST(&head->sol_incomp);
1272 TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
1273 head->sol_incqlen--;
1274 SOCK_LOCK(sp);
1275 sp->so_qstate = SQ_NONE;
1276 sp->so_listen = NULL;
1277 SOCK_UNLOCK(sp);
1278 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */
1279 soabort(sp);
1280 SOLISTEN_LOCK(head);
1281 }
1282 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
1283 so->so_qstate = SQ_INCOMP;
1284 head->sol_incqlen++;
1285 SOLISTEN_UNLOCK(head);
1286 return (false);
1287 }
1288 }
1289
1290 #if defined(SCTP) || defined(SCTP_SUPPORT)
1291 /*
1292 * Socket part of sctp_peeloff(). Detach a new socket from an
1293 * association. The new socket is returned with a reference.
1294 *
1295 * XXXGL: reduce copy-paste with solisten_clone().
1296 */
1297 struct socket *
1298 sopeeloff(struct socket *head)
1299 {
1300 struct socket *so;
1301
1302 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
1303 __func__, __LINE__, head));
1304 so = soalloc(head->so_vnet);
1305 if (so == NULL) {
1306 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1307 "limit reached or out of memory\n",
1308 __func__, head->so_pcb);
1309 return (NULL);
1310 }
1311 so->so_type = head->so_type;
1312 so->so_options = head->so_options;
1313 so->so_linger = head->so_linger;
1314 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
1315 so->so_fibnum = head->so_fibnum;
1316 so->so_proto = head->so_proto;
1317 so->so_cred = crhold(head->so_cred);
1318 #ifdef MAC
1319 mac_socket_newconn(head, so);
1320 #endif
1321 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1322 so_rdknl_assert_lock);
1323 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1324 so_wrknl_assert_lock);
1325 VNET_SO_ASSERT(head);
1326 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
1327 sodealloc(so);
1328 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1329 __func__, head->so_pcb);
1330 return (NULL);
1331 }
1332 if ((*so->so_proto->pr_attach)(so, 0, NULL)) {
1333 sodealloc(so);
1334 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
1335 __func__, head->so_pcb);
1336 return (NULL);
1337 }
1338 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
1339 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
1340 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
1341 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
1342 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
1343 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
1344 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1345 so->so_snd.sb_mtx = &so->so_snd_mtx;
1346 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1347 }
1348
1349 soref(so);
1350
1351 return (so);
1352 }
1353 #endif /* SCTP */
1354
1355 int
1356 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
1357 {
1358 int error;
1359
1360 CURVNET_SET(so->so_vnet);
1361 error = so->so_proto->pr_bind(so, nam, td);
1362 CURVNET_RESTORE();
1363 return (error);
1364 }
1365
1366 int
1367 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1368 {
1369 int error;
1370
1371 CURVNET_SET(so->so_vnet);
1372 error = so->so_proto->pr_bindat(fd, so, nam, td);
1373 CURVNET_RESTORE();
1374 return (error);
1375 }
1376
1377 /*
1378 * solisten() transitions a socket from a non-listening state to a listening
1379 * state, but can also be used to update the listen queue depth on an
1380 * existing listen socket. The protocol will call back into the sockets
1381 * layer using solisten_proto_check() and solisten_proto() to check and set
1382 * socket-layer listen state. Call backs are used so that the protocol can
1383 * acquire both protocol and socket layer locks in whatever order is required
1384 * by the protocol.
1385 *
1386 * Protocol implementors are advised to hold the socket lock across the
1387 * socket-layer test and set to avoid races at the socket layer.
1388 */
1389 int
1390 solisten(struct socket *so, int backlog, struct thread *td)
1391 {
1392 int error;
1393
1394 CURVNET_SET(so->so_vnet);
1395 error = so->so_proto->pr_listen(so, backlog, td);
1396 CURVNET_RESTORE();
1397 return (error);
1398 }
1399
1400 /*
1401 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in
1402 * order to interlock with socket I/O.
1403 */
1404 int
1405 solisten_proto_check(struct socket *so)
1406 {
1407 SOCK_LOCK_ASSERT(so);
1408
1409 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1410 SS_ISDISCONNECTING)) != 0)
1411 return (EINVAL);
1412
1413 /*
1414 * Sleeping is not permitted here, so simply fail if userspace is
1415 * attempting to transmit or receive on the socket. This kind of
1416 * transient failure is not ideal, but it should occur only if userspace
1417 * is misusing the socket interfaces.
1418 */
1419 if (!sx_try_xlock(&so->so_snd_sx))
1420 return (EAGAIN);
1421 if (!sx_try_xlock(&so->so_rcv_sx)) {
1422 sx_xunlock(&so->so_snd_sx);
1423 return (EAGAIN);
1424 }
1425 mtx_lock(&so->so_snd_mtx);
1426 mtx_lock(&so->so_rcv_mtx);
1427
1428 /* Interlock with soo_aio_queue() and KTLS. */
1429 if (!SOLISTENING(so)) {
1430 bool ktls;
1431
1432 #ifdef KERN_TLS
1433 ktls = so->so_snd.sb_tls_info != NULL ||
1434 so->so_rcv.sb_tls_info != NULL;
1435 #else
1436 ktls = false;
1437 #endif
1438 if (ktls ||
1439 (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
1440 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) {
1441 solisten_proto_abort(so);
1442 return (EINVAL);
1443 }
1444 }
1445
1446 return (0);
1447 }
1448
1449 /*
1450 * Undo the setup done by solisten_proto_check().
1451 */
1452 void
1453 solisten_proto_abort(struct socket *so)
1454 {
1455 mtx_unlock(&so->so_snd_mtx);
1456 mtx_unlock(&so->so_rcv_mtx);
1457 sx_xunlock(&so->so_snd_sx);
1458 sx_xunlock(&so->so_rcv_sx);
1459 }
1460
1461 void
1462 solisten_proto(struct socket *so, int backlog)
1463 {
1464 int sbrcv_lowat, sbsnd_lowat;
1465 u_int sbrcv_hiwat, sbsnd_hiwat;
1466 short sbrcv_flags, sbsnd_flags;
1467 sbintime_t sbrcv_timeo, sbsnd_timeo;
1468
1469 SOCK_LOCK_ASSERT(so);
1470 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1471 SS_ISDISCONNECTING)) == 0,
1472 ("%s: bad socket state %p", __func__, so));
1473
1474 if (SOLISTENING(so))
1475 goto listening;
1476
1477 /*
1478 * Change this socket to listening state.
1479 */
1480 sbrcv_lowat = so->so_rcv.sb_lowat;
1481 sbsnd_lowat = so->so_snd.sb_lowat;
1482 sbrcv_hiwat = so->so_rcv.sb_hiwat;
1483 sbsnd_hiwat = so->so_snd.sb_hiwat;
1484 sbrcv_flags = so->so_rcv.sb_flags;
1485 sbsnd_flags = so->so_snd.sb_flags;
1486 sbrcv_timeo = so->so_rcv.sb_timeo;
1487 sbsnd_timeo = so->so_snd.sb_timeo;
1488
1489 #ifdef MAC
1490 mac_socketpeer_label_free(so->so_peerlabel);
1491 #endif
1492
1493 if (!(so->so_proto->pr_flags & PR_SOCKBUF)) {
1494 sbdestroy(so, SO_SND);
1495 sbdestroy(so, SO_RCV);
1496 }
1497
1498 #ifdef INVARIANTS
1499 bzero(&so->so_rcv,
1500 sizeof(struct socket) - offsetof(struct socket, so_rcv));
1501 #endif
1502
1503 so->sol_sbrcv_lowat = sbrcv_lowat;
1504 so->sol_sbsnd_lowat = sbsnd_lowat;
1505 so->sol_sbrcv_hiwat = sbrcv_hiwat;
1506 so->sol_sbsnd_hiwat = sbsnd_hiwat;
1507 so->sol_sbrcv_flags = sbrcv_flags;
1508 so->sol_sbsnd_flags = sbsnd_flags;
1509 so->sol_sbrcv_timeo = sbrcv_timeo;
1510 so->sol_sbsnd_timeo = sbsnd_timeo;
1511
1512 so->sol_qlen = so->sol_incqlen = 0;
1513 TAILQ_INIT(&so->sol_incomp);
1514 TAILQ_INIT(&so->sol_comp);
1515
1516 so->sol_accept_filter = NULL;
1517 so->sol_accept_filter_arg = NULL;
1518 so->sol_accept_filter_str = NULL;
1519
1520 so->sol_upcall = NULL;
1521 so->sol_upcallarg = NULL;
1522
1523 so->so_options |= SO_ACCEPTCONN;
1524
1525 listening:
1526 if (backlog < 0 || backlog > somaxconn)
1527 backlog = somaxconn;
1528 so->sol_qlimit = backlog;
1529
1530 mtx_unlock(&so->so_snd_mtx);
1531 mtx_unlock(&so->so_rcv_mtx);
1532 sx_xunlock(&so->so_snd_sx);
1533 sx_xunlock(&so->so_rcv_sx);
1534 }
1535
1536 /*
1537 * Wakeup listeners/subsystems once we have a complete connection.
1538 * Enters with lock, returns unlocked.
1539 */
1540 void
1541 solisten_wakeup(struct socket *sol)
1542 {
1543
1544 if (sol->sol_upcall != NULL)
1545 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1546 else {
1547 selwakeuppri(&sol->so_rdsel, PSOCK);
1548 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1549 }
1550 SOLISTEN_UNLOCK(sol);
1551 wakeup_one(&sol->sol_comp);
1552 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1553 pgsigio(&sol->so_sigio, SIGIO, 0);
1554 }
1555
1556 /*
1557 * Return single connection off a listening socket queue. Main consumer of
1558 * the function is kern_accept4(). Some modules, that do their own accept
1559 * management also use the function. The socket reference held by the
1560 * listen queue is handed to the caller.
1561 *
1562 * Listening socket must be locked on entry and is returned unlocked on
1563 * return.
1564 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1565 */
1566 int
1567 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1568 {
1569 struct socket *so;
1570 int error;
1571
1572 SOLISTEN_LOCK_ASSERT(head);
1573
1574 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1575 head->so_error == 0) {
1576 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1577 "accept", 0);
1578 if (error != 0) {
1579 SOLISTEN_UNLOCK(head);
1580 return (error);
1581 }
1582 }
1583 if (head->so_error) {
1584 error = head->so_error;
1585 head->so_error = 0;
1586 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1587 error = EWOULDBLOCK;
1588 else
1589 error = 0;
1590 if (error) {
1591 SOLISTEN_UNLOCK(head);
1592 return (error);
1593 }
1594 so = TAILQ_FIRST(&head->sol_comp);
1595 SOCK_LOCK(so);
1596 KASSERT(so->so_qstate == SQ_COMP,
1597 ("%s: so %p not SQ_COMP", __func__, so));
1598 head->sol_qlen--;
1599 so->so_qstate = SQ_NONE;
1600 so->so_listen = NULL;
1601 TAILQ_REMOVE(&head->sol_comp, so, so_list);
1602 if (flags & ACCEPT4_INHERIT)
1603 so->so_state |= (head->so_state & SS_NBIO);
1604 else
1605 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1606 SOCK_UNLOCK(so);
1607 sorele_locked(head);
1608
1609 *ret = so;
1610 return (0);
1611 }
1612
1613 static struct so_splice *
1614 so_splice_alloc(off_t max)
1615 {
1616 struct so_splice *sp;
1617
1618 sp = uma_zalloc(splice_zone, M_WAITOK);
1619 sp->src = NULL;
1620 sp->dst = NULL;
1621 sp->max = max > 0 ? max : -1;
1622 do {
1623 sp->wq_index = atomic_fetchadd_32(&splice_index, 1) %
1624 (mp_maxid + 1);
1625 } while (CPU_ABSENT(sp->wq_index));
1626 sp->state = SPLICE_IDLE;
1627 TIMEOUT_TASK_INIT(taskqueue_thread, &sp->timeout, 0, so_splice_timeout,
1628 sp);
1629 return (sp);
1630 }
1631
1632 static void
1633 so_splice_free(struct so_splice *sp)
1634 {
1635 KASSERT(sp->state == SPLICE_CLOSED,
1636 ("so_splice_free: sp %p not closed", sp));
1637 uma_zfree(splice_zone, sp);
1638 }
1639
1640 static void
1641 so_splice_timeout(void *arg, int pending __unused)
1642 {
1643 struct so_splice *sp;
1644
1645 sp = arg;
1646 (void)so_unsplice(sp->src, true);
1647 }
1648
1649 /*
1650 * Splice the output from so to the input of so2.
1651 */
1652 static int
1653 so_splice(struct socket *so, struct socket *so2, struct splice *splice)
1654 {
1655 struct so_splice *sp;
1656 int error;
1657
1658 if (splice->sp_max < 0)
1659 return (EINVAL);
1660 /* Handle only TCP for now; TODO: other streaming protos */
1661 if (so->so_proto->pr_protocol != IPPROTO_TCP ||
1662 so2->so_proto->pr_protocol != IPPROTO_TCP)
1663 return (EPROTONOSUPPORT);
1664 if (so->so_vnet != so2->so_vnet)
1665 return (EINVAL);
1666
1667 /* so_splice_xfer() assumes that we're using these implementations. */
1668 KASSERT(so->so_proto->pr_sosend == sosend_generic,
1669 ("so_splice: sosend not sosend_generic"));
1670 KASSERT(so2->so_proto->pr_soreceive == soreceive_generic ||
1671 so2->so_proto->pr_soreceive == soreceive_stream,
1672 ("so_splice: soreceive not soreceive_generic/stream"));
1673
1674 sp = so_splice_alloc(splice->sp_max);
1675 so->so_splice_sent = 0;
1676 sp->src = so;
1677 sp->dst = so2;
1678
1679 error = 0;
1680 SOCK_LOCK(so);
1681 if (SOLISTENING(so))
1682 error = EINVAL;
1683 else if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1684 error = ENOTCONN;
1685 else if (so->so_splice != NULL)
1686 error = EBUSY;
1687 if (error != 0) {
1688 SOCK_UNLOCK(so);
1689 uma_zfree(splice_zone, sp);
1690 return (error);
1691 }
1692 soref(so);
1693 so->so_splice = sp;
1694 SOCK_RECVBUF_LOCK(so);
1695 so->so_rcv.sb_flags |= SB_SPLICED;
1696 SOCK_RECVBUF_UNLOCK(so);
1697 SOCK_UNLOCK(so);
1698
1699 error = 0;
1700 SOCK_LOCK(so2);
1701 if (SOLISTENING(so2))
1702 error = EINVAL;
1703 else if ((so2->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1704 error = ENOTCONN;
1705 else if (so2->so_splice_back != NULL)
1706 error = EBUSY;
1707 if (error != 0) {
1708 SOCK_UNLOCK(so2);
1709 SOCK_LOCK(so);
1710 so->so_splice = NULL;
1711 SOCK_RECVBUF_LOCK(so);
1712 so->so_rcv.sb_flags &= ~SB_SPLICED;
1713 SOCK_RECVBUF_UNLOCK(so);
1714 SOCK_UNLOCK(so);
1715 sorele(so);
1716 uma_zfree(splice_zone, sp);
1717 return (error);
1718 }
1719 soref(so2);
1720 so2->so_splice_back = sp;
1721 SOCK_SENDBUF_LOCK(so2);
1722 so2->so_snd.sb_flags |= SB_SPLICED;
1723 mtx_lock(&sp->mtx);
1724 SOCK_SENDBUF_UNLOCK(so2);
1725 SOCK_UNLOCK(so2);
1726
1727 if (splice->sp_idle.tv_sec != 0 || splice->sp_idle.tv_usec != 0) {
1728 taskqueue_enqueue_timeout_sbt(taskqueue_thread, &sp->timeout,
1729 tvtosbt(splice->sp_idle), 0, C_PREL(4));
1730 }
1731
1732 /*
1733 * Transfer any data already present in the socket buffer.
1734 */
1735 sp->state = SPLICE_QUEUED;
1736 so_splice_xfer(sp);
1737 return (0);
1738 }
1739
1740 static int
1741 so_unsplice(struct socket *so, bool timeout)
1742 {
1743 struct socket *so2;
1744 struct so_splice *sp;
1745 bool drain;
1746
1747 /*
1748 * First unset SB_SPLICED and hide the splice structure so that
1749 * wakeup routines will stop enqueuing work. This also ensures that
1750 * a only a single thread will proceed with the unsplice.
1751 */
1752 SOCK_LOCK(so);
1753 if (SOLISTENING(so)) {
1754 SOCK_UNLOCK(so);
1755 return (EINVAL);
1756 }
1757 SOCK_RECVBUF_LOCK(so);
1758 if ((so->so_rcv.sb_flags & SB_SPLICED) == 0) {
1759 SOCK_RECVBUF_UNLOCK(so);
1760 SOCK_UNLOCK(so);
1761 return (ENOTCONN);
1762 }
1763 so->so_rcv.sb_flags &= ~SB_SPLICED;
1764 sp = so->so_splice;
1765 so->so_splice = NULL;
1766 SOCK_RECVBUF_UNLOCK(so);
1767 SOCK_UNLOCK(so);
1768
1769 so2 = sp->dst;
1770 SOCK_LOCK(so2);
1771 KASSERT(!SOLISTENING(so2), ("%s: so2 is listening", __func__));
1772 SOCK_SENDBUF_LOCK(so2);
1773 KASSERT((so2->so_snd.sb_flags & SB_SPLICED) != 0,
1774 ("%s: so2 is not spliced", __func__));
1775 KASSERT(so2->so_splice_back == sp,
1776 ("%s: so_splice_back != sp", __func__));
1777 so2->so_snd.sb_flags &= ~SB_SPLICED;
1778 so2->so_splice_back = NULL;
1779 SOCK_SENDBUF_UNLOCK(so2);
1780 SOCK_UNLOCK(so2);
1781
1782 /*
1783 * No new work is being enqueued. The worker thread might be
1784 * splicing data right now, in which case we want to wait for it to
1785 * finish before proceeding.
1786 */
1787 mtx_lock(&sp->mtx);
1788 switch (sp->state) {
1789 case SPLICE_QUEUED:
1790 case SPLICE_RUNNING:
1791 sp->state = SPLICE_CLOSING;
1792 while (sp->state == SPLICE_CLOSING)
1793 msleep(sp, &sp->mtx, PSOCK, "unsplice", 0);
1794 break;
1795 case SPLICE_IDLE:
1796 case SPLICE_EXCEPTION:
1797 sp->state = SPLICE_CLOSED;
1798 break;
1799 default:
1800 __assert_unreachable();
1801 }
1802 if (!timeout) {
1803 drain = taskqueue_cancel_timeout(taskqueue_thread, &sp->timeout,
1804 NULL) != 0;
1805 } else {
1806 drain = false;
1807 }
1808 mtx_unlock(&sp->mtx);
1809 if (drain)
1810 taskqueue_drain_timeout(taskqueue_thread, &sp->timeout);
1811
1812 /*
1813 * Now we hold the sole reference to the splice structure.
1814 * Clean up: signal userspace and release socket references.
1815 */
1816 sorwakeup(so);
1817 CURVNET_SET(so->so_vnet);
1818 sorele(so);
1819 sowwakeup(so2);
1820 sorele(so2);
1821 CURVNET_RESTORE();
1822 so_splice_free(sp);
1823 return (0);
1824 }
1825
1826 /*
1827 * Free socket upon release of the very last reference.
1828 */
1829 static void
1830 sofree(struct socket *so)
1831 {
1832 struct protosw *pr = so->so_proto;
1833
1834 SOCK_LOCK_ASSERT(so);
1835 KASSERT(refcount_load(&so->so_count) == 0,
1836 ("%s: so %p has references", __func__, so));
1837 KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1838 ("%s: so %p is on listen queue", __func__, so));
1839 KASSERT(SOLISTENING(so) || (so->so_rcv.sb_flags & SB_SPLICED) == 0,
1840 ("%s: so %p rcvbuf is spliced", __func__, so));
1841 KASSERT(SOLISTENING(so) || (so->so_snd.sb_flags & SB_SPLICED) == 0,
1842 ("%s: so %p sndbuf is spliced", __func__, so));
1843 KASSERT(so->so_splice == NULL && so->so_splice_back == NULL,
1844 ("%s: so %p has spliced data", __func__, so));
1845
1846 SOCK_UNLOCK(so);
1847
1848 if (so->so_dtor != NULL)
1849 so->so_dtor(so);
1850
1851 VNET_SO_ASSERT(so);
1852 if (pr->pr_detach != NULL)
1853 pr->pr_detach(so);
1854
1855 /*
1856 * From this point on, we assume that no other references to this
1857 * socket exist anywhere else in the stack. Therefore, no locks need
1858 * to be acquired or held.
1859 */
1860 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1861 sbdestroy(so, SO_SND);
1862 sbdestroy(so, SO_RCV);
1863 }
1864 seldrain(&so->so_rdsel);
1865 seldrain(&so->so_wrsel);
1866 knlist_destroy(&so->so_rdsel.si_note);
1867 knlist_destroy(&so->so_wrsel.si_note);
1868 sodealloc(so);
1869 }
1870
1871 /*
1872 * Release a reference on a socket while holding the socket lock.
1873 * Unlocks the socket lock before returning.
1874 */
1875 void
1876 sorele_locked(struct socket *so)
1877 {
1878 SOCK_LOCK_ASSERT(so);
1879 if (refcount_release(&so->so_count))
1880 sofree(so);
1881 else
1882 SOCK_UNLOCK(so);
1883 }
1884
1885 /*
1886 * Close a socket on last file table reference removal. Initiate disconnect
1887 * if connected. Free socket when disconnect complete.
1888 *
1889 * This function will sorele() the socket. Note that soclose() may be called
1890 * prior to the ref count reaching zero. The actual socket structure will
1891 * not be freed until the ref count reaches zero.
1892 */
1893 int
1894 soclose(struct socket *so)
1895 {
1896 struct accept_queue lqueue;
1897 int error = 0;
1898 bool listening, last __diagused;
1899
1900 CURVNET_SET(so->so_vnet);
1901 funsetown(&so->so_sigio);
1902 if (so->so_state & SS_ISCONNECTED) {
1903 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1904 error = sodisconnect(so);
1905 if (error) {
1906 if (error == ENOTCONN)
1907 error = 0;
1908 goto drop;
1909 }
1910 }
1911
1912 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1913 if ((so->so_state & SS_ISDISCONNECTING) &&
1914 (so->so_state & SS_NBIO))
1915 goto drop;
1916 while (so->so_state & SS_ISCONNECTED) {
1917 error = tsleep(&so->so_timeo,
1918 PSOCK | PCATCH, "soclos",
1919 so->so_linger * hz);
1920 if (error)
1921 break;
1922 }
1923 }
1924 }
1925
1926 drop:
1927 if (so->so_proto->pr_close != NULL)
1928 so->so_proto->pr_close(so);
1929
1930 SOCK_LOCK(so);
1931 if ((listening = SOLISTENING(so))) {
1932 struct socket *sp;
1933
1934 TAILQ_INIT(&lqueue);
1935 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1936 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1937
1938 so->sol_qlen = so->sol_incqlen = 0;
1939
1940 TAILQ_FOREACH(sp, &lqueue, so_list) {
1941 SOCK_LOCK(sp);
1942 sp->so_qstate = SQ_NONE;
1943 sp->so_listen = NULL;
1944 SOCK_UNLOCK(sp);
1945 last = refcount_release(&so->so_count);
1946 KASSERT(!last, ("%s: released last reference for %p",
1947 __func__, so));
1948 }
1949 }
1950 sorele_locked(so);
1951 if (listening) {
1952 struct socket *sp, *tsp;
1953
1954 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
1955 soabort(sp);
1956 }
1957 CURVNET_RESTORE();
1958 return (error);
1959 }
1960
1961 /*
1962 * soabort() is used to abruptly tear down a connection, such as when a
1963 * resource limit is reached (listen queue depth exceeded), or if a listen
1964 * socket is closed while there are sockets waiting to be accepted.
1965 *
1966 * This interface is tricky, because it is called on an unreferenced socket,
1967 * and must be called only by a thread that has actually removed the socket
1968 * from the listen queue it was on. Likely this thread holds the last
1969 * reference on the socket and soabort() will proceed with sofree(). But
1970 * it might be not the last, as the sockets on the listen queues are seen
1971 * from the protocol side.
1972 *
1973 * This interface will call into the protocol code, so must not be called
1974 * with any socket locks held. Protocols do call it while holding their own
1975 * recursible protocol mutexes, but this is something that should be subject
1976 * to review in the future.
1977 *
1978 * Usually socket should have a single reference left, but this is not a
1979 * requirement. In the past, when we have had named references for file
1980 * descriptor and protocol, we asserted that none of them are being held.
1981 */
1982 void
1983 soabort(struct socket *so)
1984 {
1985
1986 VNET_SO_ASSERT(so);
1987
1988 if (so->so_proto->pr_abort != NULL)
1989 so->so_proto->pr_abort(so);
1990 SOCK_LOCK(so);
1991 sorele_locked(so);
1992 }
1993
1994 int
1995 soaccept(struct socket *so, struct sockaddr *sa)
1996 {
1997 #ifdef INVARIANTS
1998 u_char len = sa->sa_len;
1999 #endif
2000 int error;
2001
2002 CURVNET_SET(so->so_vnet);
2003 error = so->so_proto->pr_accept(so, sa);
2004 KASSERT(sa->sa_len <= len,
2005 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2006 CURVNET_RESTORE();
2007 return (error);
2008 }
2009
2010 int
2011 sopeeraddr(struct socket *so, struct sockaddr *sa)
2012 {
2013 #ifdef INVARIANTS
2014 u_char len = sa->sa_len;
2015 #endif
2016 int error;
2017
2018 CURVNET_SET(so->so_vnet);
2019 error = so->so_proto->pr_peeraddr(so, sa);
2020 KASSERT(sa->sa_len <= len,
2021 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2022 CURVNET_RESTORE();
2023
2024 return (error);
2025 }
2026
2027 int
2028 sosockaddr(struct socket *so, struct sockaddr *sa)
2029 {
2030 #ifdef INVARIANTS
2031 u_char len = sa->sa_len;
2032 #endif
2033 int error;
2034
2035 CURVNET_SET(so->so_vnet);
2036 error = so->so_proto->pr_sockaddr(so, sa);
2037 KASSERT(sa->sa_len <= len,
2038 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2039 CURVNET_RESTORE();
2040
2041 return (error);
2042 }
2043
2044 int
2045 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
2046 {
2047
2048 return (soconnectat(AT_FDCWD, so, nam, td));
2049 }
2050
2051 int
2052 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
2053 {
2054 int error;
2055
2056 CURVNET_SET(so->so_vnet);
2057
2058 /*
2059 * If protocol is connection-based, can only connect once.
2060 * Otherwise, if connected, try to disconnect first. This allows
2061 * user to disconnect by connecting to, e.g., a null address.
2062 *
2063 * Note, this check is racy and may need to be re-evaluated at the
2064 * protocol layer.
2065 */
2066 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
2067 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
2068 (error = sodisconnect(so)))) {
2069 error = EISCONN;
2070 } else {
2071 /*
2072 * Prevent accumulated error from previous connection from
2073 * biting us.
2074 */
2075 so->so_error = 0;
2076 if (fd == AT_FDCWD) {
2077 error = so->so_proto->pr_connect(so, nam, td);
2078 } else {
2079 error = so->so_proto->pr_connectat(fd, so, nam, td);
2080 }
2081 }
2082 CURVNET_RESTORE();
2083
2084 return (error);
2085 }
2086
2087 int
2088 soconnect2(struct socket *so1, struct socket *so2)
2089 {
2090 int error;
2091
2092 CURVNET_SET(so1->so_vnet);
2093 error = so1->so_proto->pr_connect2(so1, so2);
2094 CURVNET_RESTORE();
2095 return (error);
2096 }
2097
2098 int
2099 sodisconnect(struct socket *so)
2100 {
2101 int error;
2102
2103 if ((so->so_state & SS_ISCONNECTED) == 0)
2104 return (ENOTCONN);
2105 if (so->so_state & SS_ISDISCONNECTING)
2106 return (EALREADY);
2107 VNET_SO_ASSERT(so);
2108 error = so->so_proto->pr_disconnect(so);
2109 return (error);
2110 }
2111
2112 int
2113 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
2114 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2115 {
2116 long space;
2117 ssize_t resid;
2118 int clen = 0, error, dontroute;
2119
2120 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
2121 KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
2122 ("sosend_dgram: !PR_ATOMIC"));
2123
2124 if (uio != NULL)
2125 resid = uio->uio_resid;
2126 else
2127 resid = top->m_pkthdr.len;
2128 /*
2129 * In theory resid should be unsigned. However, space must be
2130 * signed, as it might be less than 0 if we over-committed, and we
2131 * must use a signed comparison of space and resid. On the other
2132 * hand, a negative resid causes us to loop sending 0-length
2133 * segments to the protocol.
2134 */
2135 if (resid < 0) {
2136 error = EINVAL;
2137 goto out;
2138 }
2139
2140 dontroute =
2141 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
2142 if (td != NULL)
2143 td->td_ru.ru_msgsnd++;
2144 if (control != NULL)
2145 clen = control->m_len;
2146
2147 SOCKBUF_LOCK(&so->so_snd);
2148 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2149 SOCKBUF_UNLOCK(&so->so_snd);
2150 error = EPIPE;
2151 goto out;
2152 }
2153 if (so->so_error) {
2154 error = so->so_error;
2155 so->so_error = 0;
2156 SOCKBUF_UNLOCK(&so->so_snd);
2157 goto out;
2158 }
2159 if ((so->so_state & SS_ISCONNECTED) == 0) {
2160 /*
2161 * `sendto' and `sendmsg' is allowed on a connection-based
2162 * socket if it supports implied connect. Return ENOTCONN if
2163 * not connected and no address is supplied.
2164 */
2165 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2166 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2167 if (!(resid == 0 && clen != 0)) {
2168 SOCKBUF_UNLOCK(&so->so_snd);
2169 error = ENOTCONN;
2170 goto out;
2171 }
2172 } else if (addr == NULL) {
2173 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2174 error = ENOTCONN;
2175 else
2176 error = EDESTADDRREQ;
2177 SOCKBUF_UNLOCK(&so->so_snd);
2178 goto out;
2179 }
2180 }
2181
2182 /*
2183 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a
2184 * problem and need fixing.
2185 */
2186 space = sbspace(&so->so_snd);
2187 if (flags & MSG_OOB)
2188 space += 1024;
2189 space -= clen;
2190 SOCKBUF_UNLOCK(&so->so_snd);
2191 if (resid > space) {
2192 error = EMSGSIZE;
2193 goto out;
2194 }
2195 if (uio == NULL) {
2196 resid = 0;
2197 if (flags & MSG_EOR)
2198 top->m_flags |= M_EOR;
2199 } else {
2200 /*
2201 * Copy the data from userland into a mbuf chain.
2202 * If no data is to be copied in, a single empty mbuf
2203 * is returned.
2204 */
2205 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
2206 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
2207 if (top == NULL) {
2208 error = EFAULT; /* only possible error */
2209 goto out;
2210 }
2211 space -= resid - uio->uio_resid;
2212 resid = uio->uio_resid;
2213 }
2214 KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
2215 /*
2216 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
2217 * than with.
2218 */
2219 if (dontroute) {
2220 SOCK_LOCK(so);
2221 so->so_options |= SO_DONTROUTE;
2222 SOCK_UNLOCK(so);
2223 }
2224 /*
2225 * XXX all the SBS_CANTSENDMORE checks previously done could be out
2226 * of date. We could have received a reset packet in an interrupt or
2227 * maybe we slept while doing page faults in uiomove() etc. We could
2228 * probably recheck again inside the locking protection here, but
2229 * there are probably other places that this also happens. We must
2230 * rethink this.
2231 */
2232 VNET_SO_ASSERT(so);
2233 error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
2234 /*
2235 * If the user set MSG_EOF, the protocol understands this flag and
2236 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
2237 */
2238 ((flags & MSG_EOF) &&
2239 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2240 (resid <= 0)) ?
2241 PRUS_EOF :
2242 /* If there is more to send set PRUS_MORETOCOME */
2243 (flags & MSG_MORETOCOME) ||
2244 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
2245 top, addr, control, td);
2246 if (dontroute) {
2247 SOCK_LOCK(so);
2248 so->so_options &= ~SO_DONTROUTE;
2249 SOCK_UNLOCK(so);
2250 }
2251 clen = 0;
2252 control = NULL;
2253 top = NULL;
2254 out:
2255 if (top != NULL)
2256 m_freem(top);
2257 if (control != NULL)
2258 m_freem(control);
2259 return (error);
2260 }
2261
2262 /*
2263 * Send on a socket. If send must go all at once and message is larger than
2264 * send buffering, then hard error. Lock against other senders. If must go
2265 * all at once and not enough room now, then inform user that this would
2266 * block and do nothing. Otherwise, if nonblocking, send as much as
2267 * possible. The data to be sent is described by "uio" if nonzero, otherwise
2268 * by the mbuf chain "top" (which must be null if uio is not). Data provided
2269 * in mbuf chain must be small enough to send all at once.
2270 *
2271 * Returns nonzero on error, timeout or signal; callers must check for short
2272 * counts if EINTR/ERESTART are returned. Data and control buffers are freed
2273 * on return.
2274 */
2275 static int
2276 sosend_generic_locked(struct socket *so, struct sockaddr *addr, struct uio *uio,
2277 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2278 {
2279 long space;
2280 ssize_t resid;
2281 int clen = 0, error, dontroute;
2282 int atomic = sosendallatonce(so) || top;
2283 int pr_send_flag;
2284 #ifdef KERN_TLS
2285 struct ktls_session *tls;
2286 int tls_enq_cnt, tls_send_flag;
2287 uint8_t tls_rtype;
2288
2289 tls = NULL;
2290 tls_rtype = TLS_RLTYPE_APP;
2291 #endif
2292
2293 SOCK_IO_SEND_ASSERT_LOCKED(so);
2294
2295 if (uio != NULL)
2296 resid = uio->uio_resid;
2297 else if ((top->m_flags & M_PKTHDR) != 0)
2298 resid = top->m_pkthdr.len;
2299 else
2300 resid = m_length(top, NULL);
2301 /*
2302 * In theory resid should be unsigned. However, space must be
2303 * signed, as it might be less than 0 if we over-committed, and we
2304 * must use a signed comparison of space and resid. On the other
2305 * hand, a negative resid causes us to loop sending 0-length
2306 * segments to the protocol.
2307 *
2308 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
2309 * type sockets since that's an error.
2310 */
2311 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
2312 error = EINVAL;
2313 goto out;
2314 }
2315
2316 dontroute =
2317 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
2318 (so->so_proto->pr_flags & PR_ATOMIC);
2319 if (td != NULL)
2320 td->td_ru.ru_msgsnd++;
2321 if (control != NULL)
2322 clen = control->m_len;
2323
2324 #ifdef KERN_TLS
2325 tls_send_flag = 0;
2326 tls = ktls_hold(so->so_snd.sb_tls_info);
2327 if (tls != NULL) {
2328 if (tls->mode == TCP_TLS_MODE_SW)
2329 tls_send_flag = PRUS_NOTREADY;
2330
2331 if (control != NULL) {
2332 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2333
2334 if (clen >= sizeof(*cm) &&
2335 cm->cmsg_type == TLS_SET_RECORD_TYPE) {
2336 tls_rtype = *((uint8_t *)CMSG_DATA(cm));
2337 clen = 0;
2338 m_freem(control);
2339 control = NULL;
2340 atomic = 1;
2341 }
2342 }
2343
2344 if (resid == 0 && !ktls_permit_empty_frames(tls)) {
2345 error = EINVAL;
2346 goto out;
2347 }
2348 }
2349 #endif
2350
2351 restart:
2352 do {
2353 SOCKBUF_LOCK(&so->so_snd);
2354 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2355 SOCKBUF_UNLOCK(&so->so_snd);
2356 error = EPIPE;
2357 goto out;
2358 }
2359 if (so->so_error) {
2360 error = so->so_error;
2361 so->so_error = 0;
2362 SOCKBUF_UNLOCK(&so->so_snd);
2363 goto out;
2364 }
2365 if ((so->so_state & SS_ISCONNECTED) == 0) {
2366 /*
2367 * `sendto' and `sendmsg' is allowed on a connection-
2368 * based socket if it supports implied connect.
2369 * Return ENOTCONN if not connected and no address is
2370 * supplied.
2371 */
2372 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2373 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2374 if (!(resid == 0 && clen != 0)) {
2375 SOCKBUF_UNLOCK(&so->so_snd);
2376 error = ENOTCONN;
2377 goto out;
2378 }
2379 } else if (addr == NULL) {
2380 SOCKBUF_UNLOCK(&so->so_snd);
2381 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2382 error = ENOTCONN;
2383 else
2384 error = EDESTADDRREQ;
2385 goto out;
2386 }
2387 }
2388 space = sbspace(&so->so_snd);
2389 if (flags & MSG_OOB)
2390 space += 1024;
2391 if ((atomic && resid > so->so_snd.sb_hiwat) ||
2392 clen > so->so_snd.sb_hiwat) {
2393 SOCKBUF_UNLOCK(&so->so_snd);
2394 error = EMSGSIZE;
2395 goto out;
2396 }
2397 if (space < resid + clen &&
2398 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
2399 if ((so->so_state & SS_NBIO) ||
2400 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
2401 SOCKBUF_UNLOCK(&so->so_snd);
2402 error = EWOULDBLOCK;
2403 goto out;
2404 }
2405 error = sbwait(so, SO_SND);
2406 SOCKBUF_UNLOCK(&so->so_snd);
2407 if (error)
2408 goto out;
2409 goto restart;
2410 }
2411 SOCKBUF_UNLOCK(&so->so_snd);
2412 space -= clen;
2413 do {
2414 if (uio == NULL) {
2415 resid = 0;
2416 if (flags & MSG_EOR)
2417 top->m_flags |= M_EOR;
2418 #ifdef KERN_TLS
2419 if (tls != NULL) {
2420 ktls_frame(top, tls, &tls_enq_cnt,
2421 tls_rtype);
2422 tls_rtype = TLS_RLTYPE_APP;
2423 }
2424 #endif
2425 } else {
2426 /*
2427 * Copy the data from userland into a mbuf
2428 * chain. If resid is 0, which can happen
2429 * only if we have control to send, then
2430 * a single empty mbuf is returned. This
2431 * is a workaround to prevent protocol send
2432 * methods to panic.
2433 */
2434 #ifdef KERN_TLS
2435 if (tls != NULL) {
2436 top = m_uiotombuf(uio, M_WAITOK, space,
2437 tls->params.max_frame_len,
2438 M_EXTPG |
2439 ((flags & MSG_EOR) ? M_EOR : 0));
2440 if (top != NULL) {
2441 ktls_frame(top, tls,
2442 &tls_enq_cnt, tls_rtype);
2443 }
2444 tls_rtype = TLS_RLTYPE_APP;
2445 } else
2446 #endif
2447 top = m_uiotombuf(uio, M_WAITOK, space,
2448 (atomic ? max_hdr : 0),
2449 (atomic ? M_PKTHDR : 0) |
2450 ((flags & MSG_EOR) ? M_EOR : 0));
2451 if (top == NULL) {
2452 error = EFAULT; /* only possible error */
2453 goto out;
2454 }
2455 space -= resid - uio->uio_resid;
2456 resid = uio->uio_resid;
2457 }
2458 if (dontroute) {
2459 SOCK_LOCK(so);
2460 so->so_options |= SO_DONTROUTE;
2461 SOCK_UNLOCK(so);
2462 }
2463 /*
2464 * XXX all the SBS_CANTSENDMORE checks previously
2465 * done could be out of date. We could have received
2466 * a reset packet in an interrupt or maybe we slept
2467 * while doing page faults in uiomove() etc. We
2468 * could probably recheck again inside the locking
2469 * protection here, but there are probably other
2470 * places that this also happens. We must rethink
2471 * this.
2472 */
2473 VNET_SO_ASSERT(so);
2474
2475 pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
2476 /*
2477 * If the user set MSG_EOF, the protocol understands
2478 * this flag and nothing left to send then use
2479 * PRU_SEND_EOF instead of PRU_SEND.
2480 */
2481 ((flags & MSG_EOF) &&
2482 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2483 (resid <= 0)) ?
2484 PRUS_EOF :
2485 /* If there is more to send set PRUS_MORETOCOME. */
2486 (flags & MSG_MORETOCOME) ||
2487 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
2488
2489 #ifdef KERN_TLS
2490 pr_send_flag |= tls_send_flag;
2491 #endif
2492
2493 error = so->so_proto->pr_send(so, pr_send_flag, top,
2494 addr, control, td);
2495
2496 if (dontroute) {
2497 SOCK_LOCK(so);
2498 so->so_options &= ~SO_DONTROUTE;
2499 SOCK_UNLOCK(so);
2500 }
2501
2502 #ifdef KERN_TLS
2503 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
2504 if (error != 0) {
2505 m_freem(top);
2506 top = NULL;
2507 } else {
2508 soref(so);
2509 ktls_enqueue(top, so, tls_enq_cnt);
2510 }
2511 }
2512 #endif
2513 clen = 0;
2514 control = NULL;
2515 top = NULL;
2516 if (error)
2517 goto out;
2518 } while (resid && space > 0);
2519 } while (resid);
2520
2521 out:
2522 #ifdef KERN_TLS
2523 if (tls != NULL)
2524 ktls_free(tls);
2525 #endif
2526 if (top != NULL)
2527 m_freem(top);
2528 if (control != NULL)
2529 m_freem(control);
2530 return (error);
2531 }
2532
2533 int
2534 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
2535 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2536 {
2537 int error;
2538
2539 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
2540 if (error)
2541 return (error);
2542 error = sosend_generic_locked(so, addr, uio, top, control, flags, td);
2543 SOCK_IO_SEND_UNLOCK(so);
2544 return (error);
2545 }
2546
2547 /*
2548 * Send to a socket from a kernel thread.
2549 *
2550 * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
2551 * Exception is nfs/bootp_subr.c. It is arguable that the VNET context needs
2552 * to be set at all. This function should just boil down to a static inline
2553 * calling the protocol method.
2554 */
2555 int
2556 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2557 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2558 {
2559 int error;
2560
2561 CURVNET_SET(so->so_vnet);
2562 error = so->so_proto->pr_sosend(so, addr, uio,
2563 top, control, flags, td);
2564 CURVNET_RESTORE();
2565 return (error);
2566 }
2567
2568 /*
2569 * send(2), write(2) or aio_write(2) on a socket.
2570 */
2571 int
2572 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2573 struct mbuf *control, int flags, struct proc *userproc)
2574 {
2575 struct thread *td;
2576 ssize_t len;
2577 int error;
2578
2579 td = uio->uio_td;
2580 len = uio->uio_resid;
2581 CURVNET_SET(so->so_vnet);
2582 error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
2583 td);
2584 CURVNET_RESTORE();
2585 if (error != 0) {
2586 /*
2587 * Clear transient errors for stream protocols if they made
2588 * some progress. Make exclusion for aio(4) that would
2589 * schedule a new write in case of EWOULDBLOCK and clear
2590 * error itself. See soaio_process_job().
2591 */
2592 if (uio->uio_resid != len &&
2593 (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
2594 userproc == NULL &&
2595 (error == ERESTART || error == EINTR ||
2596 error == EWOULDBLOCK))
2597 error = 0;
2598 /* Generation of SIGPIPE can be controlled per socket. */
2599 if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
2600 (flags & MSG_NOSIGNAL) == 0) {
2601 if (userproc != NULL) {
2602 /* aio(4) job */
2603 PROC_LOCK(userproc);
2604 kern_psignal(userproc, SIGPIPE);
2605 PROC_UNLOCK(userproc);
2606 } else {
2607 PROC_LOCK(td->td_proc);
2608 tdsignal(td, SIGPIPE);
2609 PROC_UNLOCK(td->td_proc);
2610 }
2611 }
2612 }
2613 return (error);
2614 }
2615
2616 /*
2617 * The part of soreceive() that implements reading non-inline out-of-band
2618 * data from a socket. For more complete comments, see soreceive(), from
2619 * which this code originated.
2620 *
2621 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
2622 * unable to return an mbuf chain to the caller.
2623 */
2624 static int
2625 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
2626 {
2627 struct protosw *pr = so->so_proto;
2628 struct mbuf *m;
2629 int error;
2630
2631 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
2632 VNET_SO_ASSERT(so);
2633
2634 m = m_get(M_WAITOK, MT_DATA);
2635 error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
2636 if (error)
2637 goto bad;
2638 do {
2639 error = uiomove(mtod(m, void *),
2640 (int) min(uio->uio_resid, m->m_len), uio);
2641 m = m_free(m);
2642 } while (uio->uio_resid && error == 0 && m);
2643 bad:
2644 if (m != NULL)
2645 m_freem(m);
2646 return (error);
2647 }
2648
2649 /*
2650 * Following replacement or removal of the first mbuf on the first mbuf chain
2651 * of a socket buffer, push necessary state changes back into the socket
2652 * buffer so that other consumers see the values consistently. 'nextrecord'
2653 * is the callers locally stored value of the original value of
2654 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
2655 * NOTE: 'nextrecord' may be NULL.
2656 */
2657 static __inline void
2658 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
2659 {
2660
2661 SOCKBUF_LOCK_ASSERT(sb);
2662 /*
2663 * First, update for the new value of nextrecord. If necessary, make
2664 * it the first record.
2665 */
2666 if (sb->sb_mb != NULL)
2667 sb->sb_mb->m_nextpkt = nextrecord;
2668 else
2669 sb->sb_mb = nextrecord;
2670
2671 /*
2672 * Now update any dependent socket buffer fields to reflect the new
2673 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the
2674 * addition of a second clause that takes care of the case where
2675 * sb_mb has been updated, but remains the last record.
2676 */
2677 if (sb->sb_mb == NULL) {
2678 sb->sb_mbtail = NULL;
2679 sb->sb_lastrecord = NULL;
2680 } else if (sb->sb_mb->m_nextpkt == NULL)
2681 sb->sb_lastrecord = sb->sb_mb;
2682 }
2683
2684 /*
2685 * Implement receive operations on a socket. We depend on the way that
2686 * records are added to the sockbuf by sbappend. In particular, each record
2687 * (mbufs linked through m_next) must begin with an address if the protocol
2688 * so specifies, followed by an optional mbuf or mbufs containing ancillary
2689 * data, and then zero or more mbufs of data. In order to allow parallelism
2690 * between network receive and copying to user space, as well as avoid
2691 * sleeping with a mutex held, we release the socket buffer mutex during the
2692 * user space copy. Although the sockbuf is locked, new data may still be
2693 * appended, and thus we must maintain consistency of the sockbuf during that
2694 * time.
2695 *
2696 * The caller may receive the data as a single mbuf chain by supplying an
2697 * mbuf **mp0 for use in returning the chain. The uio is then used only for
2698 * the count in uio_resid.
2699 */
2700 static int
2701 soreceive_generic_locked(struct socket *so, struct sockaddr **psa,
2702 struct uio *uio, struct mbuf **mp, struct mbuf **controlp, int *flagsp)
2703 {
2704 struct mbuf *m;
2705 int flags, error, offset;
2706 ssize_t len;
2707 struct protosw *pr = so->so_proto;
2708 struct mbuf *nextrecord;
2709 int moff, type = 0;
2710 ssize_t orig_resid = uio->uio_resid;
2711 bool report_real_len = false;
2712
2713 SOCK_IO_RECV_ASSERT_LOCKED(so);
2714
2715 error = 0;
2716 if (flagsp != NULL) {
2717 report_real_len = *flagsp & MSG_TRUNC;
2718 *flagsp &= ~MSG_TRUNC;
2719 flags = *flagsp &~ MSG_EOR;
2720 } else
2721 flags = 0;
2722
2723 restart:
2724 SOCKBUF_LOCK(&so->so_rcv);
2725 m = so->so_rcv.sb_mb;
2726 /*
2727 * If we have less data than requested, block awaiting more (subject
2728 * to any timeout) if:
2729 * 1. the current count is less than the low water mark, or
2730 * 2. MSG_DONTWAIT is not set
2731 */
2732 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
2733 sbavail(&so->so_rcv) < uio->uio_resid) &&
2734 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
2735 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
2736 KASSERT(m != NULL || !sbavail(&so->so_rcv),
2737 ("receive: m == %p sbavail == %u",
2738 m, sbavail(&so->so_rcv)));
2739 if (so->so_error || so->so_rerror) {
2740 if (m != NULL)
2741 goto dontblock;
2742 if (so->so_error)
2743 error = so->so_error;
2744 else
2745 error = so->so_rerror;
2746 if ((flags & MSG_PEEK) == 0) {
2747 if (so->so_error)
2748 so->so_error = 0;
2749 else
2750 so->so_rerror = 0;
2751 }
2752 SOCKBUF_UNLOCK(&so->so_rcv);
2753 goto release;
2754 }
2755 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2756 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2757 if (m != NULL)
2758 goto dontblock;
2759 #ifdef KERN_TLS
2760 else if (so->so_rcv.sb_tlsdcc == 0 &&
2761 so->so_rcv.sb_tlscc == 0) {
2762 #else
2763 else {
2764 #endif
2765 SOCKBUF_UNLOCK(&so->so_rcv);
2766 goto release;
2767 }
2768 }
2769 for (; m != NULL; m = m->m_next)
2770 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
2771 m = so->so_rcv.sb_mb;
2772 goto dontblock;
2773 }
2774 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2775 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2776 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2777 SOCKBUF_UNLOCK(&so->so_rcv);
2778 error = ENOTCONN;
2779 goto release;
2780 }
2781 if (uio->uio_resid == 0 && !report_real_len) {
2782 SOCKBUF_UNLOCK(&so->so_rcv);
2783 goto release;
2784 }
2785 if ((so->so_state & SS_NBIO) ||
2786 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2787 SOCKBUF_UNLOCK(&so->so_rcv);
2788 error = EWOULDBLOCK;
2789 goto release;
2790 }
2791 SBLASTRECORDCHK(&so->so_rcv);
2792 SBLASTMBUFCHK(&so->so_rcv);
2793 error = sbwait(so, SO_RCV);
2794 SOCKBUF_UNLOCK(&so->so_rcv);
2795 if (error)
2796 goto release;
2797 goto restart;
2798 }
2799 dontblock:
2800 /*
2801 * From this point onward, we maintain 'nextrecord' as a cache of the
2802 * pointer to the next record in the socket buffer. We must keep the
2803 * various socket buffer pointers and local stack versions of the
2804 * pointers in sync, pushing out modifications before dropping the
2805 * socket buffer mutex, and re-reading them when picking it up.
2806 *
2807 * Otherwise, we will race with the network stack appending new data
2808 * or records onto the socket buffer by using inconsistent/stale
2809 * versions of the field, possibly resulting in socket buffer
2810 * corruption.
2811 *
2812 * By holding the high-level sblock(), we prevent simultaneous
2813 * readers from pulling off the front of the socket buffer.
2814 */
2815 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2816 if (uio->uio_td)
2817 uio->uio_td->td_ru.ru_msgrcv++;
2818 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2819 SBLASTRECORDCHK(&so->so_rcv);
2820 SBLASTMBUFCHK(&so->so_rcv);
2821 nextrecord = m->m_nextpkt;
2822 if (pr->pr_flags & PR_ADDR) {
2823 KASSERT(m->m_type == MT_SONAME,
2824 ("m->m_type == %d", m->m_type));
2825 orig_resid = 0;
2826 if (psa != NULL)
2827 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
2828 M_NOWAIT);
2829 if (flags & MSG_PEEK) {
2830 m = m->m_next;
2831 } else {
2832 sbfree(&so->so_rcv, m);
2833 so->so_rcv.sb_mb = m_free(m);
2834 m = so->so_rcv.sb_mb;
2835 sockbuf_pushsync(&so->so_rcv, nextrecord);
2836 }
2837 }
2838
2839 /*
2840 * Process one or more MT_CONTROL mbufs present before any data mbufs
2841 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
2842 * just copy the data; if !MSG_PEEK, we call into the protocol to
2843 * perform externalization (or freeing if controlp == NULL).
2844 */
2845 if (m != NULL && m->m_type == MT_CONTROL) {
2846 struct mbuf *cm = NULL, *cmn;
2847 struct mbuf **cme = &cm;
2848 #ifdef KERN_TLS
2849 struct cmsghdr *cmsg;
2850 struct tls_get_record tgr;
2851
2852 /*
2853 * For MSG_TLSAPPDATA, check for an alert record.
2854 * If found, return ENXIO without removing
2855 * it from the receive queue. This allows a subsequent
2856 * call without MSG_TLSAPPDATA to receive it.
2857 * Note that, for TLS, there should only be a single
2858 * control mbuf with the TLS_GET_RECORD message in it.
2859 */
2860 if (flags & MSG_TLSAPPDATA) {
2861 cmsg = mtod(m, struct cmsghdr *);
2862 if (cmsg->cmsg_type == TLS_GET_RECORD &&
2863 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2864 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2865 if (__predict_false(tgr.tls_type ==
2866 TLS_RLTYPE_ALERT)) {
2867 SOCKBUF_UNLOCK(&so->so_rcv);
2868 error = ENXIO;
2869 goto release;
2870 }
2871 }
2872 }
2873 #endif
2874
2875 do {
2876 if (flags & MSG_PEEK) {
2877 if (controlp != NULL) {
2878 *controlp = m_copym(m, 0, m->m_len,
2879 M_NOWAIT);
2880 controlp = &(*controlp)->m_next;
2881 }
2882 m = m->m_next;
2883 } else {
2884 sbfree(&so->so_rcv, m);
2885 so->so_rcv.sb_mb = m->m_next;
2886 m->m_next = NULL;
2887 *cme = m;
2888 cme = &(*cme)->m_next;
2889 m = so->so_rcv.sb_mb;
2890 }
2891 } while (m != NULL && m->m_type == MT_CONTROL);
2892 if ((flags & MSG_PEEK) == 0)
2893 sockbuf_pushsync(&so->so_rcv, nextrecord);
2894 while (cm != NULL) {
2895 cmn = cm->m_next;
2896 cm->m_next = NULL;
2897 if (pr->pr_domain->dom_externalize != NULL) {
2898 SOCKBUF_UNLOCK(&so->so_rcv);
2899 VNET_SO_ASSERT(so);
2900 error = (*pr->pr_domain->dom_externalize)
2901 (cm, controlp, flags);
2902 SOCKBUF_LOCK(&so->so_rcv);
2903 } else if (controlp != NULL)
2904 *controlp = cm;
2905 else
2906 m_freem(cm);
2907 if (controlp != NULL) {
2908 while (*controlp != NULL)
2909 controlp = &(*controlp)->m_next;
2910 }
2911 cm = cmn;
2912 }
2913 if (m != NULL)
2914 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2915 else
2916 nextrecord = so->so_rcv.sb_mb;
2917 orig_resid = 0;
2918 }
2919 if (m != NULL) {
2920 if ((flags & MSG_PEEK) == 0) {
2921 KASSERT(m->m_nextpkt == nextrecord,
2922 ("soreceive: post-control, nextrecord !sync"));
2923 if (nextrecord == NULL) {
2924 KASSERT(so->so_rcv.sb_mb == m,
2925 ("soreceive: post-control, sb_mb!=m"));
2926 KASSERT(so->so_rcv.sb_lastrecord == m,
2927 ("soreceive: post-control, lastrecord!=m"));
2928 }
2929 }
2930 type = m->m_type;
2931 if (type == MT_OOBDATA)
2932 flags |= MSG_OOB;
2933 } else {
2934 if ((flags & MSG_PEEK) == 0) {
2935 KASSERT(so->so_rcv.sb_mb == nextrecord,
2936 ("soreceive: sb_mb != nextrecord"));
2937 if (so->so_rcv.sb_mb == NULL) {
2938 KASSERT(so->so_rcv.sb_lastrecord == NULL,
2939 ("soreceive: sb_lastercord != NULL"));
2940 }
2941 }
2942 }
2943 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2944 SBLASTRECORDCHK(&so->so_rcv);
2945 SBLASTMBUFCHK(&so->so_rcv);
2946
2947 /*
2948 * Now continue to read any data mbufs off of the head of the socket
2949 * buffer until the read request is satisfied. Note that 'type' is
2950 * used to store the type of any mbuf reads that have happened so far
2951 * such that soreceive() can stop reading if the type changes, which
2952 * causes soreceive() to return only one of regular data and inline
2953 * out-of-band data in a single socket receive operation.
2954 */
2955 moff = 0;
2956 offset = 0;
2957 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2958 && error == 0) {
2959 /*
2960 * If the type of mbuf has changed since the last mbuf
2961 * examined ('type'), end the receive operation.
2962 */
2963 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2964 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2965 if (type != m->m_type)
2966 break;
2967 } else if (type == MT_OOBDATA)
2968 break;
2969 else
2970 KASSERT(m->m_type == MT_DATA,
2971 ("m->m_type == %d", m->m_type));
2972 so->so_rcv.sb_state &= ~SBS_RCVATMARK;
2973 len = uio->uio_resid;
2974 if (so->so_oobmark && len > so->so_oobmark - offset)
2975 len = so->so_oobmark - offset;
2976 if (len > m->m_len - moff)
2977 len = m->m_len - moff;
2978 /*
2979 * If mp is set, just pass back the mbufs. Otherwise copy
2980 * them out via the uio, then free. Sockbuf must be
2981 * consistent here (points to current mbuf, it points to next
2982 * record) when we drop priority; we must note any additions
2983 * to the sockbuf when we block interrupts again.
2984 */
2985 if (mp == NULL) {
2986 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2987 SBLASTRECORDCHK(&so->so_rcv);
2988 SBLASTMBUFCHK(&so->so_rcv);
2989 SOCKBUF_UNLOCK(&so->so_rcv);
2990 if ((m->m_flags & M_EXTPG) != 0)
2991 error = m_unmapped_uiomove(m, moff, uio,
2992 (int)len);
2993 else
2994 error = uiomove(mtod(m, char *) + moff,
2995 (int)len, uio);
2996 SOCKBUF_LOCK(&so->so_rcv);
2997 if (error) {
2998 /*
2999 * The MT_SONAME mbuf has already been removed
3000 * from the record, so it is necessary to
3001 * remove the data mbufs, if any, to preserve
3002 * the invariant in the case of PR_ADDR that
3003 * requires MT_SONAME mbufs at the head of
3004 * each record.
3005 */
3006 if (pr->pr_flags & PR_ATOMIC &&
3007 ((flags & MSG_PEEK) == 0))
3008 (void)sbdroprecord_locked(&so->so_rcv);
3009 SOCKBUF_UNLOCK(&so->so_rcv);
3010 goto release;
3011 }
3012 } else
3013 uio->uio_resid -= len;
3014 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3015 if (len == m->m_len - moff) {
3016 if (m->m_flags & M_EOR)
3017 flags |= MSG_EOR;
3018 if (flags & MSG_PEEK) {
3019 m = m->m_next;
3020 moff = 0;
3021 } else {
3022 nextrecord = m->m_nextpkt;
3023 sbfree(&so->so_rcv, m);
3024 if (mp != NULL) {
3025 m->m_nextpkt = NULL;
3026 *mp = m;
3027 mp = &m->m_next;
3028 so->so_rcv.sb_mb = m = m->m_next;
3029 *mp = NULL;
3030 } else {
3031 so->so_rcv.sb_mb = m_free(m);
3032 m = so->so_rcv.sb_mb;
3033 }
3034 sockbuf_pushsync(&so->so_rcv, nextrecord);
3035 SBLASTRECORDCHK(&so->so_rcv);
3036 SBLASTMBUFCHK(&so->so_rcv);
3037 }
3038 } else {
3039 if (flags & MSG_PEEK)
3040 moff += len;
3041 else {
3042 if (mp != NULL) {
3043 if (flags & MSG_DONTWAIT) {
3044 *mp = m_copym(m, 0, len,
3045 M_NOWAIT);
3046 if (*mp == NULL) {
3047 /*
3048 * m_copym() couldn't
3049 * allocate an mbuf.
3050 * Adjust uio_resid back
3051 * (it was adjusted
3052 * down by len bytes,
3053 * which we didn't end
3054 * up "copying" over).
3055 */
3056 uio->uio_resid += len;
3057 break;
3058 }
3059 } else {
3060 SOCKBUF_UNLOCK(&so->so_rcv);
3061 *mp = m_copym(m, 0, len,
3062 M_WAITOK);
3063 SOCKBUF_LOCK(&so->so_rcv);
3064 }
3065 }
3066 sbcut_locked(&so->so_rcv, len);
3067 }
3068 }
3069 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3070 if (so->so_oobmark) {
3071 if ((flags & MSG_PEEK) == 0) {
3072 so->so_oobmark -= len;
3073 if (so->so_oobmark == 0) {
3074 so->so_rcv.sb_state |= SBS_RCVATMARK;
3075 break;
3076 }
3077 } else {
3078 offset += len;
3079 if (offset == so->so_oobmark)
3080 break;
3081 }
3082 }
3083 if (flags & MSG_EOR)
3084 break;
3085 /*
3086 * If the MSG_WAITALL flag is set (for non-atomic socket), we
3087 * must not quit until "uio->uio_resid == 0" or an error
3088 * termination. If a signal/timeout occurs, return with a
3089 * short count but without error. Keep sockbuf locked
3090 * against other readers.
3091 */
3092 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
3093 !sosendallatonce(so) && nextrecord == NULL) {
3094 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3095 if (so->so_error || so->so_rerror ||
3096 so->so_rcv.sb_state & SBS_CANTRCVMORE)
3097 break;
3098 /*
3099 * Notify the protocol that some data has been
3100 * drained before blocking.
3101 */
3102 if (pr->pr_flags & PR_WANTRCVD) {
3103 SOCKBUF_UNLOCK(&so->so_rcv);
3104 VNET_SO_ASSERT(so);
3105 pr->pr_rcvd(so, flags);
3106 SOCKBUF_LOCK(&so->so_rcv);
3107 if (__predict_false(so->so_rcv.sb_mb == NULL &&
3108 (so->so_error || so->so_rerror ||
3109 so->so_rcv.sb_state & SBS_CANTRCVMORE)))
3110 break;
3111 }
3112 SBLASTRECORDCHK(&so->so_rcv);
3113 SBLASTMBUFCHK(&so->so_rcv);
3114 /*
3115 * We could receive some data while was notifying
3116 * the protocol. Skip blocking in this case.
3117 */
3118 if (so->so_rcv.sb_mb == NULL) {
3119 error = sbwait(so, SO_RCV);
3120 if (error) {
3121 SOCKBUF_UNLOCK(&so->so_rcv);
3122 goto release;
3123 }
3124 }
3125 m = so->so_rcv.sb_mb;
3126 if (m != NULL)
3127 nextrecord = m->m_nextpkt;
3128 }
3129 }
3130
3131 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3132 if (m != NULL && pr->pr_flags & PR_ATOMIC) {
3133 if (report_real_len)
3134 uio->uio_resid -= m_length(m, NULL) - moff;
3135 flags |= MSG_TRUNC;
3136 if ((flags & MSG_PEEK) == 0)
3137 (void) sbdroprecord_locked(&so->so_rcv);
3138 }
3139 if ((flags & MSG_PEEK) == 0) {
3140 if (m == NULL) {
3141 /*
3142 * First part is an inline SB_EMPTY_FIXUP(). Second
3143 * part makes sure sb_lastrecord is up-to-date if
3144 * there is still data in the socket buffer.
3145 */
3146 so->so_rcv.sb_mb = nextrecord;
3147 if (so->so_rcv.sb_mb == NULL) {
3148 so->so_rcv.sb_mbtail = NULL;
3149 so->so_rcv.sb_lastrecord = NULL;
3150 } else if (nextrecord->m_nextpkt == NULL)
3151 so->so_rcv.sb_lastrecord = nextrecord;
3152 }
3153 SBLASTRECORDCHK(&so->so_rcv);
3154 SBLASTMBUFCHK(&so->so_rcv);
3155 /*
3156 * If soreceive() is being done from the socket callback,
3157 * then don't need to generate ACK to peer to update window,
3158 * since ACK will be generated on return to TCP.
3159 */
3160 if (!(flags & MSG_SOCALLBCK) &&
3161 (pr->pr_flags & PR_WANTRCVD)) {
3162 SOCKBUF_UNLOCK(&so->so_rcv);
3163 VNET_SO_ASSERT(so);
3164 pr->pr_rcvd(so, flags);
3165 SOCKBUF_LOCK(&so->so_rcv);
3166 }
3167 }
3168 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3169 if (orig_resid == uio->uio_resid && orig_resid &&
3170 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
3171 SOCKBUF_UNLOCK(&so->so_rcv);
3172 goto restart;
3173 }
3174 SOCKBUF_UNLOCK(&so->so_rcv);
3175
3176 if (flagsp != NULL)
3177 *flagsp |= flags;
3178 release:
3179 return (error);
3180 }
3181
3182 int
3183 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
3184 struct mbuf **mp, struct mbuf **controlp, int *flagsp)
3185 {
3186 int error, flags;
3187
3188 if (psa != NULL)
3189 *psa = NULL;
3190 if (controlp != NULL)
3191 *controlp = NULL;
3192 if (flagsp != NULL) {
3193 flags = *flagsp;
3194 if ((flags & MSG_OOB) != 0)
3195 return (soreceive_rcvoob(so, uio, flags));
3196 } else {
3197 flags = 0;
3198 }
3199 if (mp != NULL)
3200 *mp = NULL;
3201
3202 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3203 if (error)
3204 return (error);
3205 error = soreceive_generic_locked(so, psa, uio, mp, controlp, flagsp);
3206 SOCK_IO_RECV_UNLOCK(so);
3207 return (error);
3208 }
3209
3210 /*
3211 * Optimized version of soreceive() for stream (TCP) sockets.
3212 */
3213 static int
3214 soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
3215 struct sockaddr **psa, struct uio *uio, struct mbuf **mp0,
3216 struct mbuf **controlp, int flags)
3217 {
3218 int len = 0, error = 0, oresid;
3219 struct mbuf *m, *n = NULL;
3220
3221 SOCK_IO_RECV_ASSERT_LOCKED(so);
3222
3223 /* Easy one, no space to copyout anything. */
3224 if (uio->uio_resid == 0)
3225 return (EINVAL);
3226 oresid = uio->uio_resid;
3227
3228 SOCKBUF_LOCK(sb);
3229 /* We will never ever get anything unless we are or were connected. */
3230 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
3231 error = ENOTCONN;
3232 goto out;
3233 }
3234
3235 restart:
3236 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3237
3238 /* Abort if socket has reported problems. */
3239 if (so->so_error) {
3240 if (sbavail(sb) > 0)
3241 goto deliver;
3242 if (oresid > uio->uio_resid)
3243 goto out;
3244 error = so->so_error;
3245 if (!(flags & MSG_PEEK))
3246 so->so_error = 0;
3247 goto out;
3248 }
3249
3250 /* Door is closed. Deliver what is left, if any. */
3251 if (sb->sb_state & SBS_CANTRCVMORE) {
3252 if (sbavail(sb) > 0)
3253 goto deliver;
3254 else
3255 goto out;
3256 }
3257
3258 /* Socket buffer is empty and we shall not block. */
3259 if (sbavail(sb) == 0 &&
3260 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
3261 error = EAGAIN;
3262 goto out;
3263 }
3264
3265 /* Socket buffer got some data that we shall deliver now. */
3266 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
3267 ((so->so_state & SS_NBIO) ||
3268 (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
3269 sbavail(sb) >= sb->sb_lowat ||
3270 sbavail(sb) >= uio->uio_resid ||
3271 sbavail(sb) >= sb->sb_hiwat) ) {
3272 goto deliver;
3273 }
3274
3275 /* On MSG_WAITALL we must wait until all data or error arrives. */
3276 if ((flags & MSG_WAITALL) &&
3277 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
3278 goto deliver;
3279
3280 /*
3281 * Wait and block until (more) data comes in.
3282 * NB: Drops the sockbuf lock during wait.
3283 */
3284 error = sbwait(so, SO_RCV);
3285 if (error)
3286 goto out;
3287 goto restart;
3288
3289 deliver:
3290 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3291 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
3292 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
3293
3294 /* Statistics. */
3295 if (uio->uio_td)
3296 uio->uio_td->td_ru.ru_msgrcv++;
3297
3298 /* Fill uio until full or current end of socket buffer is reached. */
3299 len = min(uio->uio_resid, sbavail(sb));
3300 if (mp0 != NULL) {
3301 /* Dequeue as many mbufs as possible. */
3302 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
3303 if (*mp0 == NULL)
3304 *mp0 = sb->sb_mb;
3305 else
3306 m_cat(*mp0, sb->sb_mb);
3307 for (m = sb->sb_mb;
3308 m != NULL && m->m_len <= len;
3309 m = m->m_next) {
3310 KASSERT(!(m->m_flags & M_NOTAVAIL),
3311 ("%s: m %p not available", __func__, m));
3312 len -= m->m_len;
3313 uio->uio_resid -= m->m_len;
3314 sbfree(sb, m);
3315 n = m;
3316 }
3317 n->m_next = NULL;
3318 sb->sb_mb = m;
3319 sb->sb_lastrecord = sb->sb_mb;
3320 if (sb->sb_mb == NULL)
3321 SB_EMPTY_FIXUP(sb);
3322 }
3323 /* Copy the remainder. */
3324 if (len > 0) {
3325 KASSERT(sb->sb_mb != NULL,
3326 ("%s: len > 0 && sb->sb_mb empty", __func__));
3327
3328 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
3329 if (m == NULL)
3330 len = 0; /* Don't flush data from sockbuf. */
3331 else
3332 uio->uio_resid -= len;
3333 if (*mp0 != NULL)
3334 m_cat(*mp0, m);
3335 else
3336 *mp0 = m;
3337 if (*mp0 == NULL) {
3338 error = ENOBUFS;
3339 goto out;
3340 }
3341 }
3342 } else {
3343 /* NB: Must unlock socket buffer as uiomove may sleep. */
3344 SOCKBUF_UNLOCK(sb);
3345 error = m_mbuftouio(uio, sb->sb_mb, len);
3346 SOCKBUF_LOCK(sb);
3347 if (error)
3348 goto out;
3349 }
3350 SBLASTRECORDCHK(sb);
3351 SBLASTMBUFCHK(sb);
3352
3353 /*
3354 * Remove the delivered data from the socket buffer unless we
3355 * were only peeking.
3356 */
3357 if (!(flags & MSG_PEEK)) {
3358 if (len > 0)
3359 sbdrop_locked(sb, len);
3360
3361 /* Notify protocol that we drained some data. */
3362 if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
3363 (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
3364 !(flags & MSG_SOCALLBCK))) {
3365 SOCKBUF_UNLOCK(sb);
3366 VNET_SO_ASSERT(so);
3367 so->so_proto->pr_rcvd(so, flags);
3368 SOCKBUF_LOCK(sb);
3369 }
3370 }
3371
3372 /*
3373 * For MSG_WAITALL we may have to loop again and wait for
3374 * more data to come in.
3375 */
3376 if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
3377 goto restart;
3378 out:
3379 SBLASTRECORDCHK(sb);
3380 SBLASTMBUFCHK(sb);
3381 SOCKBUF_UNLOCK(sb);
3382 return (error);
3383 }
3384
3385 int
3386 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
3387 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3388 {
3389 struct sockbuf *sb;
3390 int error, flags;
3391
3392 sb = &so->so_rcv;
3393
3394 /* We only do stream sockets. */
3395 if (so->so_type != SOCK_STREAM)
3396 return (EINVAL);
3397 if (psa != NULL)
3398 *psa = NULL;
3399 if (flagsp != NULL)
3400 flags = *flagsp & ~MSG_EOR;
3401 else
3402 flags = 0;
3403 if (controlp != NULL)
3404 *controlp = NULL;
3405 if (flags & MSG_OOB)
3406 return (soreceive_rcvoob(so, uio, flags));
3407 if (mp0 != NULL)
3408 *mp0 = NULL;
3409
3410 #ifdef KERN_TLS
3411 /*
3412 * KTLS store TLS records as records with a control message to
3413 * describe the framing.
3414 *
3415 * We check once here before acquiring locks to optimize the
3416 * common case.
3417 */
3418 if (sb->sb_tls_info != NULL)
3419 return (soreceive_generic(so, psa, uio, mp0, controlp,
3420 flagsp));
3421 #endif
3422
3423 /*
3424 * Prevent other threads from reading from the socket. This lock may be
3425 * dropped in order to sleep waiting for data to arrive.
3426 */
3427 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3428 if (error)
3429 return (error);
3430 #ifdef KERN_TLS
3431 if (__predict_false(sb->sb_tls_info != NULL)) {
3432 SOCK_IO_RECV_UNLOCK(so);
3433 return (soreceive_generic(so, psa, uio, mp0, controlp,
3434 flagsp));
3435 }
3436 #endif
3437 error = soreceive_stream_locked(so, sb, psa, uio, mp0, controlp, flags);
3438 SOCK_IO_RECV_UNLOCK(so);
3439 return (error);
3440 }
3441
3442 /*
3443 * Optimized version of soreceive() for simple datagram cases from userspace.
3444 * Unlike in the stream case, we're able to drop a datagram if copyout()
3445 * fails, and because we handle datagrams atomically, we don't need to use a
3446 * sleep lock to prevent I/O interlacing.
3447 */
3448 int
3449 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
3450 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3451 {
3452 struct mbuf *m, *m2;
3453 int flags, error;
3454 ssize_t len;
3455 struct protosw *pr = so->so_proto;
3456 struct mbuf *nextrecord;
3457
3458 if (psa != NULL)
3459 *psa = NULL;
3460 if (controlp != NULL)
3461 *controlp = NULL;
3462 if (flagsp != NULL)
3463 flags = *flagsp &~ MSG_EOR;
3464 else
3465 flags = 0;
3466
3467 /*
3468 * For any complicated cases, fall back to the full
3469 * soreceive_generic().
3470 */
3471 if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
3472 return (soreceive_generic(so, psa, uio, mp0, controlp,
3473 flagsp));
3474
3475 /*
3476 * Enforce restrictions on use.
3477 */
3478 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
3479 ("soreceive_dgram: wantrcvd"));
3480 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
3481 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
3482 ("soreceive_dgram: SBS_RCVATMARK"));
3483 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
3484 ("soreceive_dgram: P_CONNREQUIRED"));
3485
3486 /*
3487 * Loop blocking while waiting for a datagram.
3488 */
3489 SOCKBUF_LOCK(&so->so_rcv);
3490 while ((m = so->so_rcv.sb_mb) == NULL) {
3491 KASSERT(sbavail(&so->so_rcv) == 0,
3492 ("soreceive_dgram: sb_mb NULL but sbavail %u",
3493 sbavail(&so->so_rcv)));
3494 if (so->so_error) {
3495 error = so->so_error;
3496 so->so_error = 0;
3497 SOCKBUF_UNLOCK(&so->so_rcv);
3498 return (error);
3499 }
3500 if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
3501 uio->uio_resid == 0) {
3502 SOCKBUF_UNLOCK(&so->so_rcv);
3503 return (0);
3504 }
3505 if ((so->so_state & SS_NBIO) ||
3506 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
3507 SOCKBUF_UNLOCK(&so->so_rcv);
3508 return (EWOULDBLOCK);
3509 }
3510 SBLASTRECORDCHK(&so->so_rcv);
3511 SBLASTMBUFCHK(&so->so_rcv);
3512 error = sbwait(so, SO_RCV);
3513 if (error) {
3514 SOCKBUF_UNLOCK(&so->so_rcv);
3515 return (error);
3516 }
3517 }
3518 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3519
3520 if (uio->uio_td)
3521 uio->uio_td->td_ru.ru_msgrcv++;
3522 SBLASTRECORDCHK(&so->so_rcv);
3523 SBLASTMBUFCHK(&so->so_rcv);
3524 nextrecord = m->m_nextpkt;
3525 if (nextrecord == NULL) {
3526 KASSERT(so->so_rcv.sb_lastrecord == m,
3527 ("soreceive_dgram: lastrecord != m"));
3528 }
3529
3530 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
3531 ("soreceive_dgram: m_nextpkt != nextrecord"));
3532
3533 /*
3534 * Pull 'm' and its chain off the front of the packet queue.
3535 */
3536 so->so_rcv.sb_mb = NULL;
3537 sockbuf_pushsync(&so->so_rcv, nextrecord);
3538
3539 /*
3540 * Walk 'm's chain and free that many bytes from the socket buffer.
3541 */
3542 for (m2 = m; m2 != NULL; m2 = m2->m_next)
3543 sbfree(&so->so_rcv, m2);
3544
3545 /*
3546 * Do a few last checks before we let go of the lock.
3547 */
3548 SBLASTRECORDCHK(&so->so_rcv);
3549 SBLASTMBUFCHK(&so->so_rcv);
3550 SOCKBUF_UNLOCK(&so->so_rcv);
3551
3552 if (pr->pr_flags & PR_ADDR) {
3553 KASSERT(m->m_type == MT_SONAME,
3554 ("m->m_type == %d", m->m_type));
3555 if (psa != NULL)
3556 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
3557 M_WAITOK);
3558 m = m_free(m);
3559 }
3560 KASSERT(m, ("%s: no data or control after soname", __func__));
3561
3562 /*
3563 * Packet to copyout() is now in 'm' and it is disconnected from the
3564 * queue.
3565 *
3566 * Process one or more MT_CONTROL mbufs present before any data mbufs
3567 * in the first mbuf chain on the socket buffer. We call into the
3568 * protocol to perform externalization (or freeing if controlp ==
3569 * NULL). In some cases there can be only MT_CONTROL mbufs without
3570 * MT_DATA mbufs.
3571 */
3572 if (m->m_type == MT_CONTROL) {
3573 struct mbuf *cm = NULL, *cmn;
3574 struct mbuf **cme = &cm;
3575
3576 do {
3577 m2 = m->m_next;
3578 m->m_next = NULL;
3579 *cme = m;
3580 cme = &(*cme)->m_next;
3581 m = m2;
3582 } while (m != NULL && m->m_type == MT_CONTROL);
3583 while (cm != NULL) {
3584 cmn = cm->m_next;
3585 cm->m_next = NULL;
3586 if (pr->pr_domain->dom_externalize != NULL) {
3587 error = (*pr->pr_domain->dom_externalize)
3588 (cm, controlp, flags);
3589 } else if (controlp != NULL)
3590 *controlp = cm;
3591 else
3592 m_freem(cm);
3593 if (controlp != NULL) {
3594 while (*controlp != NULL)
3595 controlp = &(*controlp)->m_next;
3596 }
3597 cm = cmn;
3598 }
3599 }
3600 KASSERT(m == NULL || m->m_type == MT_DATA,
3601 ("soreceive_dgram: !data"));
3602 while (m != NULL && uio->uio_resid > 0) {
3603 len = uio->uio_resid;
3604 if (len > m->m_len)
3605 len = m->m_len;
3606 error = uiomove(mtod(m, char *), (int)len, uio);
3607 if (error) {
3608 m_freem(m);
3609 return (error);
3610 }
3611 if (len == m->m_len)
3612 m = m_free(m);
3613 else {
3614 m->m_data += len;
3615 m->m_len -= len;
3616 }
3617 }
3618 if (m != NULL) {
3619 flags |= MSG_TRUNC;
3620 m_freem(m);
3621 }
3622 if (flagsp != NULL)
3623 *flagsp |= flags;
3624 return (0);
3625 }
3626
3627 int
3628 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
3629 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3630 {
3631 int error;
3632
3633 CURVNET_SET(so->so_vnet);
3634 error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
3635 CURVNET_RESTORE();
3636 return (error);
3637 }
3638
3639 int
3640 soshutdown(struct socket *so, enum shutdown_how how)
3641 {
3642 int error;
3643
3644 CURVNET_SET(so->so_vnet);
3645 error = so->so_proto->pr_shutdown(so, how);
3646 CURVNET_RESTORE();
3647
3648 return (error);
3649 }
3650
3651 /*
3652 * Used by several pr_shutdown implementations that use generic socket buffers.
3653 */
3654 void
3655 sorflush(struct socket *so)
3656 {
3657 int error;
3658
3659 VNET_SO_ASSERT(so);
3660
3661 /*
3662 * Dislodge threads currently blocked in receive and wait to acquire
3663 * a lock against other simultaneous readers before clearing the
3664 * socket buffer. Don't let our acquire be interrupted by a signal
3665 * despite any existing socket disposition on interruptable waiting.
3666 *
3667 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive
3668 * methods that read the top of the socket buffer without acquisition
3669 * of the socket buffer mutex, assuming that top of the buffer
3670 * exclusively belongs to the read(2) syscall. This is handy when
3671 * performing MSG_PEEK.
3672 */
3673 socantrcvmore(so);
3674
3675 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
3676 if (error != 0) {
3677 KASSERT(SOLISTENING(so),
3678 ("%s: soiolock(%p) failed", __func__, so));
3679 return;
3680 }
3681
3682 sbrelease(so, SO_RCV);
3683 SOCK_IO_RECV_UNLOCK(so);
3684
3685 }
3686
3687 #ifdef SOCKET_HHOOK
3688 /*
3689 * Wrapper for Socket established helper hook.
3690 * Parameters: socket, context of the hook point, hook id.
3691 */
3692 static inline int
3693 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
3694 {
3695 struct socket_hhook_data hhook_data = {
3696 .so = so,
3697 .hctx = hctx,
3698 .m = NULL,
3699 .status = 0
3700 };
3701
3702 CURVNET_SET(so->so_vnet);
3703 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
3704 CURVNET_RESTORE();
3705
3706 /* Ugly but needed, since hhooks return void for now */
3707 return (hhook_data.status);
3708 }
3709 #endif
3710
3711 /*
3712 * Perhaps this routine, and sooptcopyout(), below, ought to come in an
3713 * additional variant to handle the case where the option value needs to be
3714 * some kind of integer, but not a specific size. In addition to their use
3715 * here, these functions are also called by the protocol-level pr_ctloutput()
3716 * routines.
3717 */
3718 int
3719 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
3720 {
3721 size_t valsize;
3722
3723 /*
3724 * If the user gives us more than we wanted, we ignore it, but if we
3725 * don't get the minimum length the caller wants, we return EINVAL.
3726 * On success, sopt->sopt_valsize is set to however much we actually
3727 * retrieved.
3728 */
3729 if ((valsize = sopt->sopt_valsize) < minlen)
3730 return EINVAL;
3731 if (valsize > len)
3732 sopt->sopt_valsize = valsize = len;
3733
3734 if (sopt->sopt_td != NULL)
3735 return (copyin(sopt->sopt_val, buf, valsize));
3736
3737 bcopy(sopt->sopt_val, buf, valsize);
3738 return (0);
3739 }
3740
3741 /*
3742 * Kernel version of setsockopt(2).
3743 *
3744 * XXX: optlen is size_t, not socklen_t
3745 */
3746 int
3747 so_setsockopt(struct socket *so, int level, int optname, void *optval,
3748 size_t optlen)
3749 {
3750 struct sockopt sopt;
3751
3752 sopt.sopt_level = level;
3753 sopt.sopt_name = optname;
3754 sopt.sopt_dir = SOPT_SET;
3755 sopt.sopt_val = optval;
3756 sopt.sopt_valsize = optlen;
3757 sopt.sopt_td = NULL;
3758 return (sosetopt(so, &sopt));
3759 }
3760
3761 int
3762 sosetopt(struct socket *so, struct sockopt *sopt)
3763 {
3764 int error, optval;
3765 struct linger l;
3766 struct timeval tv;
3767 sbintime_t val, *valp;
3768 uint32_t val32;
3769 #ifdef MAC
3770 struct mac extmac;
3771 #endif
3772
3773 CURVNET_SET(so->so_vnet);
3774 error = 0;
3775 if (sopt->sopt_level != SOL_SOCKET) {
3776 if (so->so_proto->pr_ctloutput != NULL)
3777 error = (*so->so_proto->pr_ctloutput)(so, sopt);
3778 else
3779 error = ENOPROTOOPT;
3780 } else {
3781 switch (sopt->sopt_name) {
3782 case SO_ACCEPTFILTER:
3783 error = accept_filt_setopt(so, sopt);
3784 if (error)
3785 goto bad;
3786 break;
3787
3788 case SO_LINGER:
3789 error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3790 if (error)
3791 goto bad;
3792 if (l.l_linger < 0 ||
3793 l.l_linger > USHRT_MAX ||
3794 l.l_linger > (INT_MAX / hz)) {
3795 error = EDOM;
3796 goto bad;
3797 }
3798 SOCK_LOCK(so);
3799 so->so_linger = l.l_linger;
3800 if (l.l_onoff)
3801 so->so_options |= SO_LINGER;
3802 else
3803 so->so_options &= ~SO_LINGER;
3804 SOCK_UNLOCK(so);
3805 break;
3806
3807 case SO_DEBUG:
3808 case SO_KEEPALIVE:
3809 case SO_DONTROUTE:
3810 case SO_USELOOPBACK:
3811 case SO_BROADCAST:
3812 case SO_REUSEADDR:
3813 case SO_REUSEPORT:
3814 case SO_REUSEPORT_LB:
3815 case SO_OOBINLINE:
3816 case SO_TIMESTAMP:
3817 case SO_BINTIME:
3818 case SO_NOSIGPIPE:
3819 case SO_NO_DDP:
3820 case SO_NO_OFFLOAD:
3821 case SO_RERROR:
3822 error = sooptcopyin(sopt, &optval, sizeof optval,
3823 sizeof optval);
3824 if (error)
3825 goto bad;
3826 SOCK_LOCK(so);
3827 if (optval)
3828 so->so_options |= sopt->sopt_name;
3829 else
3830 so->so_options &= ~sopt->sopt_name;
3831 SOCK_UNLOCK(so);
3832 break;
3833
3834 case SO_SETFIB:
3835 error = sooptcopyin(sopt, &optval, sizeof optval,
3836 sizeof optval);
3837 if (error)
3838 goto bad;
3839
3840 if (optval < 0 || optval >= rt_numfibs) {
3841 error = EINVAL;
3842 goto bad;
3843 }
3844 if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
3845 (so->so_proto->pr_domain->dom_family == PF_INET6) ||
3846 (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
3847 so->so_fibnum = optval;
3848 else
3849 so->so_fibnum = 0;
3850 break;
3851
3852 case SO_USER_COOKIE:
3853 error = sooptcopyin(sopt, &val32, sizeof val32,
3854 sizeof val32);
3855 if (error)
3856 goto bad;
3857 so->so_user_cookie = val32;
3858 break;
3859
3860 case SO_SNDBUF:
3861 case SO_RCVBUF:
3862 case SO_SNDLOWAT:
3863 case SO_RCVLOWAT:
3864 error = so->so_proto->pr_setsbopt(so, sopt);
3865 if (error)
3866 goto bad;
3867 break;
3868
3869 case SO_SNDTIMEO:
3870 case SO_RCVTIMEO:
3871 #ifdef COMPAT_FREEBSD32
3872 if (SV_CURPROC_FLAG(SV_ILP32)) {
3873 struct timeval32 tv32;
3874
3875 error = sooptcopyin(sopt, &tv32, sizeof tv32,
3876 sizeof tv32);
3877 CP(tv32, tv, tv_sec);
3878 CP(tv32, tv, tv_usec);
3879 } else
3880 #endif
3881 error = sooptcopyin(sopt, &tv, sizeof tv,
3882 sizeof tv);
3883 if (error)
3884 goto bad;
3885 if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3886 tv.tv_usec >= 1000000) {
3887 error = EDOM;
3888 goto bad;
3889 }
3890 if (tv.tv_sec > INT32_MAX)
3891 val = SBT_MAX;
3892 else
3893 val = tvtosbt(tv);
3894 SOCK_LOCK(so);
3895 valp = sopt->sopt_name == SO_SNDTIMEO ?
3896 (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3897 &so->so_snd.sb_timeo) :
3898 (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3899 &so->so_rcv.sb_timeo);
3900 *valp = val;
3901 SOCK_UNLOCK(so);
3902 break;
3903
3904 case SO_LABEL:
3905 #ifdef MAC
3906 error = sooptcopyin(sopt, &extmac, sizeof extmac,
3907 sizeof extmac);
3908 if (error)
3909 goto bad;
3910 error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3911 so, &extmac);
3912 #else
3913 error = EOPNOTSUPP;
3914 #endif
3915 break;
3916
3917 case SO_TS_CLOCK:
3918 error = sooptcopyin(sopt, &optval, sizeof optval,
3919 sizeof optval);
3920 if (error)
3921 goto bad;
3922 if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3923 error = EINVAL;
3924 goto bad;
3925 }
3926 so->so_ts_clock = optval;
3927 break;
3928
3929 case SO_MAX_PACING_RATE:
3930 error = sooptcopyin(sopt, &val32, sizeof(val32),
3931 sizeof(val32));
3932 if (error)
3933 goto bad;
3934 so->so_max_pacing_rate = val32;
3935 break;
3936
3937 case SO_SPLICE: {
3938 struct splice splice;
3939
3940 #ifdef COMPAT_FREEBSD32
3941 if (SV_CURPROC_FLAG(SV_ILP32)) {
3942 struct splice32 splice32;
3943
3944 error = sooptcopyin(sopt, &splice32,
3945 sizeof(splice32), sizeof(splice32));
3946 if (error == 0) {
3947 splice.sp_fd = splice32.sp_fd;
3948 splice.sp_max = splice32.sp_max;
3949 CP(splice32.sp_idle, splice.sp_idle,
3950 tv_sec);
3951 CP(splice32.sp_idle, splice.sp_idle,
3952 tv_usec);
3953 }
3954 } else
3955 #endif
3956 {
3957 error = sooptcopyin(sopt, &splice,
3958 sizeof(splice), sizeof(splice));
3959 }
3960 if (error)
3961 goto bad;
3962 #ifdef KTRACE
3963 if (KTRPOINT(curthread, KTR_STRUCT))
3964 ktrsplice(&splice);
3965 #endif
3966
3967 error = splice_init();
3968 if (error != 0)
3969 goto bad;
3970
3971 if (splice.sp_fd >= 0) {
3972 struct file *fp;
3973 struct socket *so2;
3974
3975 if (!cap_rights_contains(sopt->sopt_rights,
3976 &cap_recv_rights)) {
3977 error = ENOTCAPABLE;
3978 goto bad;
3979 }
3980 error = getsock(sopt->sopt_td, splice.sp_fd,
3981 &cap_send_rights, &fp);
3982 if (error != 0)
3983 goto bad;
3984 so2 = fp->f_data;
3985
3986 error = so_splice(so, so2, &splice);
3987 fdrop(fp, sopt->sopt_td);
3988 } else {
3989 error = so_unsplice(so, false);
3990 }
3991 break;
3992 }
3993 default:
3994 #ifdef SOCKET_HHOOK
3995 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3996 error = hhook_run_socket(so, sopt,
3997 HHOOK_SOCKET_OPT);
3998 else
3999 #endif
4000 error = ENOPROTOOPT;
4001 break;
4002 }
4003 if (error == 0 && so->so_proto->pr_ctloutput != NULL)
4004 (void)(*so->so_proto->pr_ctloutput)(so, sopt);
4005 }
4006 bad:
4007 CURVNET_RESTORE();
4008 return (error);
4009 }
4010
4011 /*
4012 * Helper routine for getsockopt.
4013 */
4014 int
4015 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
4016 {
4017 int error;
4018 size_t valsize;
4019
4020 error = 0;
4021
4022 /*
4023 * Documented get behavior is that we always return a value, possibly
4024 * truncated to fit in the user's buffer. Traditional behavior is
4025 * that we always tell the user precisely how much we copied, rather
4026 * than something useful like the total amount we had available for
4027 * her. Note that this interface is not idempotent; the entire
4028 * answer must be generated ahead of time.
4029 */
4030 valsize = min(len, sopt->sopt_valsize);
4031 sopt->sopt_valsize = valsize;
4032 if (sopt->sopt_val != NULL) {
4033 if (sopt->sopt_td != NULL)
4034 error = copyout(buf, sopt->sopt_val, valsize);
4035 else
4036 bcopy(buf, sopt->sopt_val, valsize);
4037 }
4038 return (error);
4039 }
4040
4041 int
4042 sogetopt(struct socket *so, struct sockopt *sopt)
4043 {
4044 int error, optval;
4045 struct linger l;
4046 struct timeval tv;
4047 #ifdef MAC
4048 struct mac extmac;
4049 #endif
4050
4051 CURVNET_SET(so->so_vnet);
4052 error = 0;
4053 if (sopt->sopt_level != SOL_SOCKET) {
4054 if (so->so_proto->pr_ctloutput != NULL)
4055 error = (*so->so_proto->pr_ctloutput)(so, sopt);
4056 else
4057 error = ENOPROTOOPT;
4058 CURVNET_RESTORE();
4059 return (error);
4060 } else {
4061 switch (sopt->sopt_name) {
4062 case SO_ACCEPTFILTER:
4063 error = accept_filt_getopt(so, sopt);
4064 break;
4065
4066 case SO_LINGER:
4067 SOCK_LOCK(so);
4068 l.l_onoff = so->so_options & SO_LINGER;
4069 l.l_linger = so->so_linger;
4070 SOCK_UNLOCK(so);
4071 error = sooptcopyout(sopt, &l, sizeof l);
4072 break;
4073
4074 case SO_USELOOPBACK:
4075 case SO_DONTROUTE:
4076 case SO_DEBUG:
4077 case SO_KEEPALIVE:
4078 case SO_REUSEADDR:
4079 case SO_REUSEPORT:
4080 case SO_REUSEPORT_LB:
4081 case SO_BROADCAST:
4082 case SO_OOBINLINE:
4083 case SO_ACCEPTCONN:
4084 case SO_TIMESTAMP:
4085 case SO_BINTIME:
4086 case SO_NOSIGPIPE:
4087 case SO_NO_DDP:
4088 case SO_NO_OFFLOAD:
4089 case SO_RERROR:
4090 optval = so->so_options & sopt->sopt_name;
4091 integer:
4092 error = sooptcopyout(sopt, &optval, sizeof optval);
4093 break;
4094
4095 case SO_DOMAIN:
4096 optval = so->so_proto->pr_domain->dom_family;
4097 goto integer;
4098
4099 case SO_TYPE:
4100 optval = so->so_type;
4101 goto integer;
4102
4103 case SO_PROTOCOL:
4104 optval = so->so_proto->pr_protocol;
4105 goto integer;
4106
4107 case SO_ERROR:
4108 SOCK_LOCK(so);
4109 if (so->so_error) {
4110 optval = so->so_error;
4111 so->so_error = 0;
4112 } else {
4113 optval = so->so_rerror;
4114 so->so_rerror = 0;
4115 }
4116 SOCK_UNLOCK(so);
4117 goto integer;
4118
4119 case SO_SNDBUF:
4120 SOCK_LOCK(so);
4121 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
4122 so->so_snd.sb_hiwat;
4123 SOCK_UNLOCK(so);
4124 goto integer;
4125
4126 case SO_RCVBUF:
4127 SOCK_LOCK(so);
4128 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
4129 so->so_rcv.sb_hiwat;
4130 SOCK_UNLOCK(so);
4131 goto integer;
4132
4133 case SO_SNDLOWAT:
4134 SOCK_LOCK(so);
4135 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
4136 so->so_snd.sb_lowat;
4137 SOCK_UNLOCK(so);
4138 goto integer;
4139
4140 case SO_RCVLOWAT:
4141 SOCK_LOCK(so);
4142 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
4143 so->so_rcv.sb_lowat;
4144 SOCK_UNLOCK(so);
4145 goto integer;
4146
4147 case SO_SNDTIMEO:
4148 case SO_RCVTIMEO:
4149 SOCK_LOCK(so);
4150 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
4151 (SOLISTENING(so) ? so->sol_sbsnd_timeo :
4152 so->so_snd.sb_timeo) :
4153 (SOLISTENING(so) ? so->sol_sbrcv_timeo :
4154 so->so_rcv.sb_timeo));
4155 SOCK_UNLOCK(so);
4156 #ifdef COMPAT_FREEBSD32
4157 if (SV_CURPROC_FLAG(SV_ILP32)) {
4158 struct timeval32 tv32;
4159
4160 CP(tv, tv32, tv_sec);
4161 CP(tv, tv32, tv_usec);
4162 error = sooptcopyout(sopt, &tv32, sizeof tv32);
4163 } else
4164 #endif
4165 error = sooptcopyout(sopt, &tv, sizeof tv);
4166 break;
4167
4168 case SO_LABEL:
4169 #ifdef MAC
4170 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4171 sizeof(extmac));
4172 if (error)
4173 goto bad;
4174 error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
4175 so, &extmac);
4176 if (error)
4177 goto bad;
4178 /* Don't copy out extmac, it is unchanged. */
4179 #else
4180 error = EOPNOTSUPP;
4181 #endif
4182 break;
4183
4184 case SO_PEERLABEL:
4185 #ifdef MAC
4186 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4187 sizeof(extmac));
4188 if (error)
4189 goto bad;
4190 error = mac_getsockopt_peerlabel(
4191 sopt->sopt_td->td_ucred, so, &extmac);
4192 if (error)
4193 goto bad;
4194 /* Don't copy out extmac, it is unchanged. */
4195 #else
4196 error = EOPNOTSUPP;
4197 #endif
4198 break;
4199
4200 case SO_LISTENQLIMIT:
4201 SOCK_LOCK(so);
4202 optval = SOLISTENING(so) ? so->sol_qlimit : 0;
4203 SOCK_UNLOCK(so);
4204 goto integer;
4205
4206 case SO_LISTENQLEN:
4207 SOCK_LOCK(so);
4208 optval = SOLISTENING(so) ? so->sol_qlen : 0;
4209 SOCK_UNLOCK(so);
4210 goto integer;
4211
4212 case SO_LISTENINCQLEN:
4213 SOCK_LOCK(so);
4214 optval = SOLISTENING(so) ? so->sol_incqlen : 0;
4215 SOCK_UNLOCK(so);
4216 goto integer;
4217
4218 case SO_TS_CLOCK:
4219 optval = so->so_ts_clock;
4220 goto integer;
4221
4222 case SO_MAX_PACING_RATE:
4223 optval = so->so_max_pacing_rate;
4224 goto integer;
4225
4226 case SO_SPLICE: {
4227 off_t n;
4228
4229 /*
4230 * Acquire the I/O lock to serialize with
4231 * so_splice_xfer(). This is not required for
4232 * correctness, but makes testing simpler: once a byte
4233 * has been transmitted to the sink and observed (e.g.,
4234 * by reading from the socket to which the sink is
4235 * connected), a subsequent getsockopt(SO_SPLICE) will
4236 * return an up-to-date value.
4237 */
4238 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT);
4239 if (error != 0)
4240 goto bad;
4241 SOCK_LOCK(so);
4242 if (SOLISTENING(so)) {
4243 n = 0;
4244 } else {
4245 n = so->so_splice_sent;
4246 }
4247 SOCK_UNLOCK(so);
4248 SOCK_IO_RECV_UNLOCK(so);
4249 error = sooptcopyout(sopt, &n, sizeof(n));
4250 break;
4251 }
4252
4253 default:
4254 #ifdef SOCKET_HHOOK
4255 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4256 error = hhook_run_socket(so, sopt,
4257 HHOOK_SOCKET_OPT);
4258 else
4259 #endif
4260 error = ENOPROTOOPT;
4261 break;
4262 }
4263 }
4264 bad:
4265 CURVNET_RESTORE();
4266 return (error);
4267 }
4268
4269 int
4270 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
4271 {
4272 struct mbuf *m, *m_prev;
4273 int sopt_size = sopt->sopt_valsize;
4274
4275 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4276 if (m == NULL)
4277 return ENOBUFS;
4278 if (sopt_size > MLEN) {
4279 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
4280 if ((m->m_flags & M_EXT) == 0) {
4281 m_free(m);
4282 return ENOBUFS;
4283 }
4284 m->m_len = min(MCLBYTES, sopt_size);
4285 } else {
4286 m->m_len = min(MLEN, sopt_size);
4287 }
4288 sopt_size -= m->m_len;
4289 *mp = m;
4290 m_prev = m;
4291
4292 while (sopt_size) {
4293 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4294 if (m == NULL) {
4295 m_freem(*mp);
4296 return ENOBUFS;
4297 }
4298 if (sopt_size > MLEN) {
4299 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
4300 M_NOWAIT);
4301 if ((m->m_flags & M_EXT) == 0) {
4302 m_freem(m);
4303 m_freem(*mp);
4304 return ENOBUFS;
4305 }
4306 m->m_len = min(MCLBYTES, sopt_size);
4307 } else {
4308 m->m_len = min(MLEN, sopt_size);
4309 }
4310 sopt_size -= m->m_len;
4311 m_prev->m_next = m;
4312 m_prev = m;
4313 }
4314 return (0);
4315 }
4316
4317 int
4318 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
4319 {
4320 struct mbuf *m0 = m;
4321
4322 if (sopt->sopt_val == NULL)
4323 return (0);
4324 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4325 if (sopt->sopt_td != NULL) {
4326 int error;
4327
4328 error = copyin(sopt->sopt_val, mtod(m, char *),
4329 m->m_len);
4330 if (error != 0) {
4331 m_freem(m0);
4332 return(error);
4333 }
4334 } else
4335 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
4336 sopt->sopt_valsize -= m->m_len;
4337 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4338 m = m->m_next;
4339 }
4340 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
4341 panic("ip6_sooptmcopyin");
4342 return (0);
4343 }
4344
4345 int
4346 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
4347 {
4348 struct mbuf *m0 = m;
4349 size_t valsize = 0;
4350
4351 if (sopt->sopt_val == NULL)
4352 return (0);
4353 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4354 if (sopt->sopt_td != NULL) {
4355 int error;
4356
4357 error = copyout(mtod(m, char *), sopt->sopt_val,
4358 m->m_len);
4359 if (error != 0) {
4360 m_freem(m0);
4361 return(error);
4362 }
4363 } else
4364 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
4365 sopt->sopt_valsize -= m->m_len;
4366 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4367 valsize += m->m_len;
4368 m = m->m_next;
4369 }
4370 if (m != NULL) {
4371 /* enough soopt buffer should be given from user-land */
4372 m_freem(m0);
4373 return(EINVAL);
4374 }
4375 sopt->sopt_valsize = valsize;
4376 return (0);
4377 }
4378
4379 /*
4380 * sohasoutofband(): protocol notifies socket layer of the arrival of new
4381 * out-of-band data, which will then notify socket consumers.
4382 */
4383 void
4384 sohasoutofband(struct socket *so)
4385 {
4386
4387 if (so->so_sigio != NULL)
4388 pgsigio(&so->so_sigio, SIGURG, 0);
4389 selwakeuppri(&so->so_rdsel, PSOCK);
4390 }
4391
4392 int
4393 sopoll(struct socket *so, int events, struct ucred *active_cred,
4394 struct thread *td)
4395 {
4396
4397 /*
4398 * We do not need to set or assert curvnet as long as everyone uses
4399 * sopoll_generic().
4400 */
4401 return (so->so_proto->pr_sopoll(so, events, active_cred, td));
4402 }
4403
4404 int
4405 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
4406 struct thread *td)
4407 {
4408 int revents;
4409
4410 SOCK_LOCK(so);
4411 if (SOLISTENING(so)) {
4412 if (!(events & (POLLIN | POLLRDNORM)))
4413 revents = 0;
4414 else if (!TAILQ_EMPTY(&so->sol_comp))
4415 revents = events & (POLLIN | POLLRDNORM);
4416 else if ((events & POLLINIGNEOF) == 0 && so->so_error)
4417 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
4418 else {
4419 selrecord(td, &so->so_rdsel);
4420 revents = 0;
4421 }
4422 } else {
4423 revents = 0;
4424 SOCK_SENDBUF_LOCK(so);
4425 SOCK_RECVBUF_LOCK(so);
4426 if (events & (POLLIN | POLLRDNORM))
4427 if (soreadabledata(so) && !isspliced(so))
4428 revents |= events & (POLLIN | POLLRDNORM);
4429 if (events & (POLLOUT | POLLWRNORM))
4430 if (sowriteable(so) && !issplicedback(so))
4431 revents |= events & (POLLOUT | POLLWRNORM);
4432 if (events & (POLLPRI | POLLRDBAND))
4433 if (so->so_oobmark ||
4434 (so->so_rcv.sb_state & SBS_RCVATMARK))
4435 revents |= events & (POLLPRI | POLLRDBAND);
4436 if ((events & POLLINIGNEOF) == 0) {
4437 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4438 revents |= events & (POLLIN | POLLRDNORM);
4439 if (so->so_snd.sb_state & SBS_CANTSENDMORE)
4440 revents |= POLLHUP;
4441 }
4442 }
4443 if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
4444 revents |= events & POLLRDHUP;
4445 if (revents == 0) {
4446 if (events &
4447 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
4448 selrecord(td, &so->so_rdsel);
4449 so->so_rcv.sb_flags |= SB_SEL;
4450 }
4451 if (events & (POLLOUT | POLLWRNORM)) {
4452 selrecord(td, &so->so_wrsel);
4453 so->so_snd.sb_flags |= SB_SEL;
4454 }
4455 }
4456 SOCK_RECVBUF_UNLOCK(so);
4457 SOCK_SENDBUF_UNLOCK(so);
4458 }
4459 SOCK_UNLOCK(so);
4460 return (revents);
4461 }
4462
4463 int
4464 soo_kqfilter(struct file *fp, struct knote *kn)
4465 {
4466 struct socket *so = kn->kn_fp->f_data;
4467 struct sockbuf *sb;
4468 sb_which which;
4469 struct knlist *knl;
4470
4471 switch (kn->kn_filter) {
4472 case EVFILT_READ:
4473 kn->kn_fop = &soread_filtops;
4474 knl = &so->so_rdsel.si_note;
4475 sb = &so->so_rcv;
4476 which = SO_RCV;
4477 break;
4478 case EVFILT_WRITE:
4479 kn->kn_fop = &sowrite_filtops;
4480 knl = &so->so_wrsel.si_note;
4481 sb = &so->so_snd;
4482 which = SO_SND;
4483 break;
4484 case EVFILT_EMPTY:
4485 kn->kn_fop = &soempty_filtops;
4486 knl = &so->so_wrsel.si_note;
4487 sb = &so->so_snd;
4488 which = SO_SND;
4489 break;
4490 default:
4491 return (EINVAL);
4492 }
4493
4494 SOCK_LOCK(so);
4495 if (SOLISTENING(so)) {
4496 knlist_add(knl, kn, 1);
4497 } else {
4498 SOCK_BUF_LOCK(so, which);
4499 knlist_add(knl, kn, 1);
4500 sb->sb_flags |= SB_KNOTE;
4501 SOCK_BUF_UNLOCK(so, which);
4502 }
4503 SOCK_UNLOCK(so);
4504 return (0);
4505 }
4506
4507 static void
4508 filt_sordetach(struct knote *kn)
4509 {
4510 struct socket *so = kn->kn_fp->f_data;
4511
4512 so_rdknl_lock(so);
4513 knlist_remove(&so->so_rdsel.si_note, kn, 1);
4514 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
4515 so->so_rcv.sb_flags &= ~SB_KNOTE;
4516 so_rdknl_unlock(so);
4517 }
4518
4519 /*ARGSUSED*/
4520 static int
4521 filt_soread(struct knote *kn, long hint)
4522 {
4523 struct socket *so;
4524
4525 so = kn->kn_fp->f_data;
4526
4527 if (SOLISTENING(so)) {
4528 SOCK_LOCK_ASSERT(so);
4529 kn->kn_data = so->sol_qlen;
4530 if (so->so_error) {
4531 kn->kn_flags |= EV_EOF;
4532 kn->kn_fflags = so->so_error;
4533 return (1);
4534 }
4535 return (!TAILQ_EMPTY(&so->sol_comp));
4536 }
4537
4538 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
4539 return (0);
4540
4541 SOCK_RECVBUF_LOCK_ASSERT(so);
4542
4543 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
4544 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4545 kn->kn_flags |= EV_EOF;
4546 kn->kn_fflags = so->so_error;
4547 return (1);
4548 } else if (so->so_error || so->so_rerror)
4549 return (1);
4550
4551 if (kn->kn_sfflags & NOTE_LOWAT) {
4552 if (kn->kn_data >= kn->kn_sdata)
4553 return (1);
4554 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
4555 return (1);
4556
4557 #ifdef SOCKET_HHOOK
4558 /* This hook returning non-zero indicates an event, not error */
4559 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
4560 #else
4561 return (0);
4562 #endif
4563 }
4564
4565 static void
4566 filt_sowdetach(struct knote *kn)
4567 {
4568 struct socket *so = kn->kn_fp->f_data;
4569
4570 so_wrknl_lock(so);
4571 knlist_remove(&so->so_wrsel.si_note, kn, 1);
4572 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
4573 so->so_snd.sb_flags &= ~SB_KNOTE;
4574 so_wrknl_unlock(so);
4575 }
4576
4577 /*ARGSUSED*/
4578 static int
4579 filt_sowrite(struct knote *kn, long hint)
4580 {
4581 struct socket *so;
4582
4583 so = kn->kn_fp->f_data;
4584
4585 if (SOLISTENING(so))
4586 return (0);
4587
4588 SOCK_SENDBUF_LOCK_ASSERT(so);
4589 kn->kn_data = sbspace(&so->so_snd);
4590
4591 #ifdef SOCKET_HHOOK
4592 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
4593 #endif
4594
4595 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
4596 kn->kn_flags |= EV_EOF;
4597 kn->kn_fflags = so->so_error;
4598 return (1);
4599 } else if (so->so_error) /* temporary udp error */
4600 return (1);
4601 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
4602 (so->so_proto->pr_flags & PR_CONNREQUIRED))
4603 return (0);
4604 else if (kn->kn_sfflags & NOTE_LOWAT)
4605 return (kn->kn_data >= kn->kn_sdata);
4606 else
4607 return (kn->kn_data >= so->so_snd.sb_lowat);
4608 }
4609
4610 static int
4611 filt_soempty(struct knote *kn, long hint)
4612 {
4613 struct socket *so;
4614
4615 so = kn->kn_fp->f_data;
4616
4617 if (SOLISTENING(so))
4618 return (1);
4619
4620 SOCK_SENDBUF_LOCK_ASSERT(so);
4621 kn->kn_data = sbused(&so->so_snd);
4622
4623 if (kn->kn_data == 0)
4624 return (1);
4625 else
4626 return (0);
4627 }
4628
4629 int
4630 socheckuid(struct socket *so, uid_t uid)
4631 {
4632
4633 if (so == NULL)
4634 return (EPERM);
4635 if (so->so_cred->cr_uid != uid)
4636 return (EPERM);
4637 return (0);
4638 }
4639
4640 /*
4641 * These functions are used by protocols to notify the socket layer (and its
4642 * consumers) of state changes in the sockets driven by protocol-side events.
4643 */
4644
4645 /*
4646 * Procedures to manipulate state flags of socket and do appropriate wakeups.
4647 *
4648 * Normal sequence from the active (originating) side is that
4649 * soisconnecting() is called during processing of connect() call, resulting
4650 * in an eventual call to soisconnected() if/when the connection is
4651 * established. When the connection is torn down soisdisconnecting() is
4652 * called during processing of disconnect() call, and soisdisconnected() is
4653 * called when the connection to the peer is totally severed. The semantics
4654 * of these routines are such that connectionless protocols can call
4655 * soisconnected() and soisdisconnected() only, bypassing the in-progress
4656 * calls when setting up a ``connection'' takes no time.
4657 *
4658 * From the passive side, a socket is created with two queues of sockets:
4659 * so_incomp for connections in progress and so_comp for connections already
4660 * made and awaiting user acceptance. As a protocol is preparing incoming
4661 * connections, it creates a socket structure queued on so_incomp by calling
4662 * sonewconn(). When the connection is established, soisconnected() is
4663 * called, and transfers the socket structure to so_comp, making it available
4664 * to accept().
4665 *
4666 * If a socket is closed with sockets on either so_incomp or so_comp, these
4667 * sockets are dropped.
4668 *
4669 * If higher-level protocols are implemented in the kernel, the wakeups done
4670 * here will sometimes cause software-interrupt process scheduling.
4671 */
4672 void
4673 soisconnecting(struct socket *so)
4674 {
4675
4676 SOCK_LOCK(so);
4677 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
4678 so->so_state |= SS_ISCONNECTING;
4679 SOCK_UNLOCK(so);
4680 }
4681
4682 void
4683 soisconnected(struct socket *so)
4684 {
4685 bool last __diagused;
4686
4687 SOCK_LOCK(so);
4688 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING);
4689 so->so_state |= SS_ISCONNECTED;
4690
4691 if (so->so_qstate == SQ_INCOMP) {
4692 struct socket *head = so->so_listen;
4693 int ret;
4694
4695 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
4696 /*
4697 * Promoting a socket from incomplete queue to complete, we
4698 * need to go through reverse order of locking. We first do
4699 * trylock, and if that doesn't succeed, we go the hard way
4700 * leaving a reference and rechecking consistency after proper
4701 * locking.
4702 */
4703 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
4704 soref(head);
4705 SOCK_UNLOCK(so);
4706 SOLISTEN_LOCK(head);
4707 SOCK_LOCK(so);
4708 if (__predict_false(head != so->so_listen)) {
4709 /*
4710 * The socket went off the listen queue,
4711 * should be lost race to close(2) of sol.
4712 * The socket is about to soabort().
4713 */
4714 SOCK_UNLOCK(so);
4715 sorele_locked(head);
4716 return;
4717 }
4718 last = refcount_release(&head->so_count);
4719 KASSERT(!last, ("%s: released last reference for %p",
4720 __func__, head));
4721 }
4722 again:
4723 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
4724 TAILQ_REMOVE(&head->sol_incomp, so, so_list);
4725 head->sol_incqlen--;
4726 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
4727 head->sol_qlen++;
4728 so->so_qstate = SQ_COMP;
4729 SOCK_UNLOCK(so);
4730 solisten_wakeup(head); /* unlocks */
4731 } else {
4732 SOCK_RECVBUF_LOCK(so);
4733 soupcall_set(so, SO_RCV,
4734 head->sol_accept_filter->accf_callback,
4735 head->sol_accept_filter_arg);
4736 so->so_options &= ~SO_ACCEPTFILTER;
4737 ret = head->sol_accept_filter->accf_callback(so,
4738 head->sol_accept_filter_arg, M_NOWAIT);
4739 if (ret == SU_ISCONNECTED) {
4740 soupcall_clear(so, SO_RCV);
4741 SOCK_RECVBUF_UNLOCK(so);
4742 goto again;
4743 }
4744 SOCK_RECVBUF_UNLOCK(so);
4745 SOCK_UNLOCK(so);
4746 SOLISTEN_UNLOCK(head);
4747 }
4748 return;
4749 }
4750 SOCK_UNLOCK(so);
4751 wakeup(&so->so_timeo);
4752 sorwakeup(so);
4753 sowwakeup(so);
4754 }
4755
4756 void
4757 soisdisconnecting(struct socket *so)
4758 {
4759
4760 SOCK_LOCK(so);
4761 so->so_state &= ~SS_ISCONNECTING;
4762 so->so_state |= SS_ISDISCONNECTING;
4763
4764 if (!SOLISTENING(so)) {
4765 SOCK_RECVBUF_LOCK(so);
4766 socantrcvmore_locked(so);
4767 SOCK_SENDBUF_LOCK(so);
4768 socantsendmore_locked(so);
4769 }
4770 SOCK_UNLOCK(so);
4771 wakeup(&so->so_timeo);
4772 }
4773
4774 void
4775 soisdisconnected(struct socket *so)
4776 {
4777
4778 SOCK_LOCK(so);
4779
4780 /*
4781 * There is at least one reader of so_state that does not
4782 * acquire socket lock, namely soreceive_generic(). Ensure
4783 * that it never sees all flags that track connection status
4784 * cleared, by ordering the update with a barrier semantic of
4785 * our release thread fence.
4786 */
4787 so->so_state |= SS_ISDISCONNECTED;
4788 atomic_thread_fence_rel();
4789 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4790
4791 if (!SOLISTENING(so)) {
4792 SOCK_UNLOCK(so);
4793 SOCK_RECVBUF_LOCK(so);
4794 socantrcvmore_locked(so);
4795 SOCK_SENDBUF_LOCK(so);
4796 sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4797 socantsendmore_locked(so);
4798 } else
4799 SOCK_UNLOCK(so);
4800 wakeup(&so->so_timeo);
4801 }
4802
4803 int
4804 soiolock(struct socket *so, struct sx *sx, int flags)
4805 {
4806 int error;
4807
4808 KASSERT((flags & SBL_VALID) == flags,
4809 ("soiolock: invalid flags %#x", flags));
4810
4811 if ((flags & SBL_WAIT) != 0) {
4812 if ((flags & SBL_NOINTR) != 0) {
4813 sx_xlock(sx);
4814 } else {
4815 error = sx_xlock_sig(sx);
4816 if (error != 0)
4817 return (error);
4818 }
4819 } else if (!sx_try_xlock(sx)) {
4820 return (EWOULDBLOCK);
4821 }
4822
4823 if (__predict_false(SOLISTENING(so))) {
4824 sx_xunlock(sx);
4825 return (ENOTCONN);
4826 }
4827 return (0);
4828 }
4829
4830 void
4831 soiounlock(struct sx *sx)
4832 {
4833 sx_xunlock(sx);
4834 }
4835
4836 /*
4837 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4838 */
4839 struct sockaddr *
4840 sodupsockaddr(const struct sockaddr *sa, int mflags)
4841 {
4842 struct sockaddr *sa2;
4843
4844 sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4845 if (sa2)
4846 bcopy(sa, sa2, sa->sa_len);
4847 return sa2;
4848 }
4849
4850 /*
4851 * Register per-socket destructor.
4852 */
4853 void
4854 sodtor_set(struct socket *so, so_dtor_t *func)
4855 {
4856
4857 SOCK_LOCK_ASSERT(so);
4858 so->so_dtor = func;
4859 }
4860
4861 /*
4862 * Register per-socket buffer upcalls.
4863 */
4864 void
4865 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4866 {
4867 struct sockbuf *sb;
4868
4869 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4870
4871 switch (which) {
4872 case SO_RCV:
4873 sb = &so->so_rcv;
4874 break;
4875 case SO_SND:
4876 sb = &so->so_snd;
4877 break;
4878 }
4879 SOCK_BUF_LOCK_ASSERT(so, which);
4880 sb->sb_upcall = func;
4881 sb->sb_upcallarg = arg;
4882 sb->sb_flags |= SB_UPCALL;
4883 }
4884
4885 void
4886 soupcall_clear(struct socket *so, sb_which which)
4887 {
4888 struct sockbuf *sb;
4889
4890 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4891
4892 switch (which) {
4893 case SO_RCV:
4894 sb = &so->so_rcv;
4895 break;
4896 case SO_SND:
4897 sb = &so->so_snd;
4898 break;
4899 }
4900 SOCK_BUF_LOCK_ASSERT(so, which);
4901 KASSERT(sb->sb_upcall != NULL,
4902 ("%s: so %p no upcall to clear", __func__, so));
4903 sb->sb_upcall = NULL;
4904 sb->sb_upcallarg = NULL;
4905 sb->sb_flags &= ~SB_UPCALL;
4906 }
4907
4908 void
4909 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4910 {
4911
4912 SOLISTEN_LOCK_ASSERT(so);
4913 so->sol_upcall = func;
4914 so->sol_upcallarg = arg;
4915 }
4916
4917 static void
4918 so_rdknl_lock(void *arg)
4919 {
4920 struct socket *so = arg;
4921
4922 retry:
4923 if (SOLISTENING(so)) {
4924 SOLISTEN_LOCK(so);
4925 } else {
4926 SOCK_RECVBUF_LOCK(so);
4927 if (__predict_false(SOLISTENING(so))) {
4928 SOCK_RECVBUF_UNLOCK(so);
4929 goto retry;
4930 }
4931 }
4932 }
4933
4934 static void
4935 so_rdknl_unlock(void *arg)
4936 {
4937 struct socket *so = arg;
4938
4939 if (SOLISTENING(so))
4940 SOLISTEN_UNLOCK(so);
4941 else
4942 SOCK_RECVBUF_UNLOCK(so);
4943 }
4944
4945 static void
4946 so_rdknl_assert_lock(void *arg, int what)
4947 {
4948 struct socket *so = arg;
4949
4950 if (what == LA_LOCKED) {
4951 if (SOLISTENING(so))
4952 SOLISTEN_LOCK_ASSERT(so);
4953 else
4954 SOCK_RECVBUF_LOCK_ASSERT(so);
4955 } else {
4956 if (SOLISTENING(so))
4957 SOLISTEN_UNLOCK_ASSERT(so);
4958 else
4959 SOCK_RECVBUF_UNLOCK_ASSERT(so);
4960 }
4961 }
4962
4963 static void
4964 so_wrknl_lock(void *arg)
4965 {
4966 struct socket *so = arg;
4967
4968 retry:
4969 if (SOLISTENING(so)) {
4970 SOLISTEN_LOCK(so);
4971 } else {
4972 SOCK_SENDBUF_LOCK(so);
4973 if (__predict_false(SOLISTENING(so))) {
4974 SOCK_SENDBUF_UNLOCK(so);
4975 goto retry;
4976 }
4977 }
4978 }
4979
4980 static void
4981 so_wrknl_unlock(void *arg)
4982 {
4983 struct socket *so = arg;
4984
4985 if (SOLISTENING(so))
4986 SOLISTEN_UNLOCK(so);
4987 else
4988 SOCK_SENDBUF_UNLOCK(so);
4989 }
4990
4991 static void
4992 so_wrknl_assert_lock(void *arg, int what)
4993 {
4994 struct socket *so = arg;
4995
4996 if (what == LA_LOCKED) {
4997 if (SOLISTENING(so))
4998 SOLISTEN_LOCK_ASSERT(so);
4999 else
5000 SOCK_SENDBUF_LOCK_ASSERT(so);
5001 } else {
5002 if (SOLISTENING(so))
5003 SOLISTEN_UNLOCK_ASSERT(so);
5004 else
5005 SOCK_SENDBUF_UNLOCK_ASSERT(so);
5006 }
5007 }
5008
5009 /*
5010 * Create an external-format (``xsocket'') structure using the information in
5011 * the kernel-format socket structure pointed to by so. This is done to
5012 * reduce the spew of irrelevant information over this interface, to isolate
5013 * user code from changes in the kernel structure, and potentially to provide
5014 * information-hiding if we decide that some of this information should be
5015 * hidden from users.
5016 */
5017 void
5018 sotoxsocket(struct socket *so, struct xsocket *xso)
5019 {
5020
5021 bzero(xso, sizeof(*xso));
5022 xso->xso_len = sizeof *xso;
5023 xso->xso_so = (uintptr_t)so;
5024 xso->so_type = so->so_type;
5025 xso->so_options = so->so_options;
5026 xso->so_linger = so->so_linger;
5027 xso->so_state = so->so_state;
5028 xso->so_pcb = (uintptr_t)so->so_pcb;
5029 xso->xso_protocol = so->so_proto->pr_protocol;
5030 xso->xso_family = so->so_proto->pr_domain->dom_family;
5031 xso->so_timeo = so->so_timeo;
5032 xso->so_error = so->so_error;
5033 xso->so_uid = so->so_cred->cr_uid;
5034 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
5035 SOCK_LOCK(so);
5036 xso->so_fibnum = so->so_fibnum;
5037 if (SOLISTENING(so)) {
5038 xso->so_qlen = so->sol_qlen;
5039 xso->so_incqlen = so->sol_incqlen;
5040 xso->so_qlimit = so->sol_qlimit;
5041 xso->so_oobmark = 0;
5042 } else {
5043 xso->so_state |= so->so_qstate;
5044 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
5045 xso->so_oobmark = so->so_oobmark;
5046 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
5047 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
5048 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
5049 xso->so_splice_so = (uintptr_t)so->so_splice->dst;
5050 }
5051 SOCK_UNLOCK(so);
5052 }
5053
5054 int
5055 so_options_get(const struct socket *so)
5056 {
5057
5058 return (so->so_options);
5059 }
5060
5061 void
5062 so_options_set(struct socket *so, int val)
5063 {
5064
5065 so->so_options = val;
5066 }
5067
5068 int
5069 so_error_get(const struct socket *so)
5070 {
5071
5072 return (so->so_error);
5073 }
5074
5075 void
5076 so_error_set(struct socket *so, int val)
5077 {
5078
5079 so->so_error = val;
5080 }
5081