1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2016-2017 Micron Technology, Inc.
4 *
5 * Authors:
6 * Peter Pan <peterpandong@micron.com>
7 * Boris Brezillon <boris.brezillon@bootlin.com>
8 */
9
10 #define pr_fmt(fmt) "spi-nand: " fmt
11
12 #include <linux/device.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mtd/spinand.h>
17 #include <linux/of.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22
spinand_read_reg_op(struct spinand_device * spinand,u8 reg,u8 * val)23 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
24 {
25 struct spi_mem_op op = SPINAND_GET_FEATURE_1S_1S_1S_OP(reg,
26 spinand->scratchbuf);
27 int ret;
28
29 ret = spi_mem_exec_op(spinand->spimem, &op);
30 if (ret)
31 return ret;
32
33 *val = *spinand->scratchbuf;
34 return 0;
35 }
36
spinand_write_reg_op(struct spinand_device * spinand,u8 reg,u8 val)37 int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
38 {
39 struct spi_mem_op op = SPINAND_SET_FEATURE_1S_1S_1S_OP(reg,
40 spinand->scratchbuf);
41
42 *spinand->scratchbuf = val;
43 return spi_mem_exec_op(spinand->spimem, &op);
44 }
45
spinand_read_status(struct spinand_device * spinand,u8 * status)46 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
47 {
48 return spinand_read_reg_op(spinand, REG_STATUS, status);
49 }
50
spinand_get_cfg(struct spinand_device * spinand,u8 * cfg)51 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
52 {
53 struct nand_device *nand = spinand_to_nand(spinand);
54
55 if (WARN_ON(spinand->cur_target < 0 ||
56 spinand->cur_target >= nand->memorg.ntargets))
57 return -EINVAL;
58
59 *cfg = spinand->cfg_cache[spinand->cur_target];
60 return 0;
61 }
62
spinand_set_cfg(struct spinand_device * spinand,u8 cfg)63 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
64 {
65 struct nand_device *nand = spinand_to_nand(spinand);
66 int ret;
67
68 if (WARN_ON(spinand->cur_target < 0 ||
69 spinand->cur_target >= nand->memorg.ntargets))
70 return -EINVAL;
71
72 if (spinand->cfg_cache[spinand->cur_target] == cfg)
73 return 0;
74
75 ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
76 if (ret)
77 return ret;
78
79 spinand->cfg_cache[spinand->cur_target] = cfg;
80 return 0;
81 }
82
83 /**
84 * spinand_upd_cfg() - Update the configuration register
85 * @spinand: the spinand device
86 * @mask: the mask encoding the bits to update in the config reg
87 * @val: the new value to apply
88 *
89 * Update the configuration register.
90 *
91 * Return: 0 on success, a negative error code otherwise.
92 */
spinand_upd_cfg(struct spinand_device * spinand,u8 mask,u8 val)93 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
94 {
95 int ret;
96 u8 cfg;
97
98 ret = spinand_get_cfg(spinand, &cfg);
99 if (ret)
100 return ret;
101
102 cfg &= ~mask;
103 cfg |= val;
104
105 return spinand_set_cfg(spinand, cfg);
106 }
107
108 /**
109 * spinand_select_target() - Select a specific NAND target/die
110 * @spinand: the spinand device
111 * @target: the target/die to select
112 *
113 * Select a new target/die. If chip only has one die, this function is a NOOP.
114 *
115 * Return: 0 on success, a negative error code otherwise.
116 */
spinand_select_target(struct spinand_device * spinand,unsigned int target)117 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
118 {
119 struct nand_device *nand = spinand_to_nand(spinand);
120 int ret;
121
122 if (WARN_ON(target >= nand->memorg.ntargets))
123 return -EINVAL;
124
125 if (spinand->cur_target == target)
126 return 0;
127
128 if (nand->memorg.ntargets == 1) {
129 spinand->cur_target = target;
130 return 0;
131 }
132
133 ret = spinand->select_target(spinand, target);
134 if (ret)
135 return ret;
136
137 spinand->cur_target = target;
138 return 0;
139 }
140
spinand_read_cfg(struct spinand_device * spinand)141 static int spinand_read_cfg(struct spinand_device *spinand)
142 {
143 struct nand_device *nand = spinand_to_nand(spinand);
144 unsigned int target;
145 int ret;
146
147 for (target = 0; target < nand->memorg.ntargets; target++) {
148 ret = spinand_select_target(spinand, target);
149 if (ret)
150 return ret;
151
152 /*
153 * We use spinand_read_reg_op() instead of spinand_get_cfg()
154 * here to bypass the config cache.
155 */
156 ret = spinand_read_reg_op(spinand, REG_CFG,
157 &spinand->cfg_cache[target]);
158 if (ret)
159 return ret;
160 }
161
162 return 0;
163 }
164
spinand_init_cfg_cache(struct spinand_device * spinand)165 static int spinand_init_cfg_cache(struct spinand_device *spinand)
166 {
167 struct nand_device *nand = spinand_to_nand(spinand);
168 struct device *dev = &spinand->spimem->spi->dev;
169
170 spinand->cfg_cache = devm_kcalloc(dev,
171 nand->memorg.ntargets,
172 sizeof(*spinand->cfg_cache),
173 GFP_KERNEL);
174 if (!spinand->cfg_cache)
175 return -ENOMEM;
176
177 return 0;
178 }
179
spinand_init_quad_enable(struct spinand_device * spinand)180 static int spinand_init_quad_enable(struct spinand_device *spinand)
181 {
182 bool enable = false;
183
184 if (!(spinand->flags & SPINAND_HAS_QE_BIT))
185 return 0;
186
187 if (spinand->op_templates.read_cache->data.buswidth == 4 ||
188 spinand->op_templates.write_cache->data.buswidth == 4 ||
189 spinand->op_templates.update_cache->data.buswidth == 4)
190 enable = true;
191
192 return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
193 enable ? CFG_QUAD_ENABLE : 0);
194 }
195
spinand_ecc_enable(struct spinand_device * spinand,bool enable)196 static int spinand_ecc_enable(struct spinand_device *spinand,
197 bool enable)
198 {
199 return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
200 enable ? CFG_ECC_ENABLE : 0);
201 }
202
spinand_cont_read_enable(struct spinand_device * spinand,bool enable)203 static int spinand_cont_read_enable(struct spinand_device *spinand,
204 bool enable)
205 {
206 return spinand->set_cont_read(spinand, enable);
207 }
208
spinand_check_ecc_status(struct spinand_device * spinand,u8 status)209 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
210 {
211 struct nand_device *nand = spinand_to_nand(spinand);
212
213 if (spinand->eccinfo.get_status)
214 return spinand->eccinfo.get_status(spinand, status);
215
216 switch (status & STATUS_ECC_MASK) {
217 case STATUS_ECC_NO_BITFLIPS:
218 return 0;
219
220 case STATUS_ECC_HAS_BITFLIPS:
221 /*
222 * We have no way to know exactly how many bitflips have been
223 * fixed, so let's return the maximum possible value so that
224 * wear-leveling layers move the data immediately.
225 */
226 return nanddev_get_ecc_conf(nand)->strength;
227
228 case STATUS_ECC_UNCOR_ERROR:
229 return -EBADMSG;
230
231 default:
232 break;
233 }
234
235 return -EINVAL;
236 }
237
spinand_noecc_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * region)238 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
239 struct mtd_oob_region *region)
240 {
241 return -ERANGE;
242 }
243
spinand_noecc_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * region)244 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
245 struct mtd_oob_region *region)
246 {
247 if (section)
248 return -ERANGE;
249
250 /* Reserve 2 bytes for the BBM. */
251 region->offset = 2;
252 region->length = 62;
253
254 return 0;
255 }
256
257 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
258 .ecc = spinand_noecc_ooblayout_ecc,
259 .free = spinand_noecc_ooblayout_free,
260 };
261
spinand_ondie_ecc_init_ctx(struct nand_device * nand)262 static int spinand_ondie_ecc_init_ctx(struct nand_device *nand)
263 {
264 struct spinand_device *spinand = nand_to_spinand(nand);
265 struct mtd_info *mtd = nanddev_to_mtd(nand);
266 struct spinand_ondie_ecc_conf *engine_conf;
267
268 nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
269 nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size;
270 nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength;
271
272 engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
273 if (!engine_conf)
274 return -ENOMEM;
275
276 nand->ecc.ctx.priv = engine_conf;
277
278 if (spinand->eccinfo.ooblayout)
279 mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
280 else
281 mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
282
283 return 0;
284 }
285
spinand_ondie_ecc_cleanup_ctx(struct nand_device * nand)286 static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand)
287 {
288 kfree(nand->ecc.ctx.priv);
289 }
290
spinand_ondie_ecc_prepare_io_req(struct nand_device * nand,struct nand_page_io_req * req)291 static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand,
292 struct nand_page_io_req *req)
293 {
294 struct spinand_device *spinand = nand_to_spinand(nand);
295 bool enable = (req->mode != MTD_OPS_RAW);
296
297 if (!enable && spinand->flags & SPINAND_NO_RAW_ACCESS)
298 return -EOPNOTSUPP;
299
300 memset(spinand->oobbuf, 0xff, nanddev_per_page_oobsize(nand));
301
302 /* Only enable or disable the engine */
303 return spinand_ecc_enable(spinand, enable);
304 }
305
spinand_ondie_ecc_finish_io_req(struct nand_device * nand,struct nand_page_io_req * req)306 static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand,
307 struct nand_page_io_req *req)
308 {
309 struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
310 struct spinand_device *spinand = nand_to_spinand(nand);
311 struct mtd_info *mtd = spinand_to_mtd(spinand);
312 int ret;
313
314 if (req->mode == MTD_OPS_RAW)
315 return 0;
316
317 /* Nothing to do when finishing a page write */
318 if (req->type == NAND_PAGE_WRITE)
319 return 0;
320
321 /* Finish a page read: check the status, report errors/bitflips */
322 ret = spinand_check_ecc_status(spinand, engine_conf->status);
323 if (ret == -EBADMSG) {
324 mtd->ecc_stats.failed++;
325 } else if (ret > 0) {
326 unsigned int pages;
327
328 /*
329 * Continuous reads don't allow us to get the detail,
330 * so we may exagerate the actual number of corrected bitflips.
331 */
332 if (!req->continuous)
333 pages = 1;
334 else
335 pages = req->datalen / nanddev_page_size(nand);
336
337 mtd->ecc_stats.corrected += ret * pages;
338 }
339
340 return ret;
341 }
342
343 static const struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = {
344 .init_ctx = spinand_ondie_ecc_init_ctx,
345 .cleanup_ctx = spinand_ondie_ecc_cleanup_ctx,
346 .prepare_io_req = spinand_ondie_ecc_prepare_io_req,
347 .finish_io_req = spinand_ondie_ecc_finish_io_req,
348 };
349
350 static struct nand_ecc_engine spinand_ondie_ecc_engine = {
351 .ops = &spinand_ondie_ecc_engine_ops,
352 };
353
spinand_ondie_ecc_save_status(struct nand_device * nand,u8 status)354 static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status)
355 {
356 struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
357
358 if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE &&
359 engine_conf)
360 engine_conf->status = status;
361 }
362
spinand_write_enable_op(struct spinand_device * spinand)363 static int spinand_write_enable_op(struct spinand_device *spinand)
364 {
365 struct spi_mem_op op = SPINAND_WR_EN_DIS_1S_0_0_OP(true);
366
367 return spi_mem_exec_op(spinand->spimem, &op);
368 }
369
spinand_load_page_op(struct spinand_device * spinand,const struct nand_page_io_req * req)370 static int spinand_load_page_op(struct spinand_device *spinand,
371 const struct nand_page_io_req *req)
372 {
373 struct nand_device *nand = spinand_to_nand(spinand);
374 unsigned int row = nanddev_pos_to_row(nand, &req->pos);
375 struct spi_mem_op op = SPINAND_PAGE_READ_1S_1S_0_OP(row);
376
377 return spi_mem_exec_op(spinand->spimem, &op);
378 }
379
spinand_read_from_cache_op(struct spinand_device * spinand,const struct nand_page_io_req * req)380 static int spinand_read_from_cache_op(struct spinand_device *spinand,
381 const struct nand_page_io_req *req)
382 {
383 struct nand_device *nand = spinand_to_nand(spinand);
384 struct mtd_info *mtd = spinand_to_mtd(spinand);
385 struct spi_mem_dirmap_desc *rdesc;
386 unsigned int nbytes = 0;
387 void *buf = NULL;
388 u16 column = 0;
389 ssize_t ret;
390
391 if (req->datalen) {
392 buf = spinand->databuf;
393 if (!req->continuous)
394 nbytes = nanddev_page_size(nand);
395 else
396 nbytes = round_up(req->dataoffs + req->datalen,
397 nanddev_page_size(nand));
398 column = 0;
399 }
400
401 if (req->ooblen) {
402 nbytes += nanddev_per_page_oobsize(nand);
403 if (!buf) {
404 buf = spinand->oobbuf;
405 column = nanddev_page_size(nand);
406 }
407 }
408
409 if (req->mode == MTD_OPS_RAW)
410 rdesc = spinand->dirmaps[req->pos.plane].rdesc;
411 else
412 rdesc = spinand->dirmaps[req->pos.plane].rdesc_ecc;
413
414 if (spinand->flags & SPINAND_HAS_READ_PLANE_SELECT_BIT)
415 column |= req->pos.plane << fls(nanddev_page_size(nand));
416
417 while (nbytes) {
418 ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf);
419 if (ret < 0)
420 return ret;
421
422 if (!ret || ret > nbytes)
423 return -EIO;
424
425 nbytes -= ret;
426 column += ret;
427 buf += ret;
428
429 /*
430 * Dirmap accesses are allowed to toggle the CS.
431 * Toggling the CS during a continuous read is forbidden.
432 */
433 if (nbytes && req->continuous)
434 return -EIO;
435 }
436
437 if (req->datalen)
438 memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
439 req->datalen);
440
441 if (req->ooblen) {
442 if (req->mode == MTD_OPS_AUTO_OOB)
443 mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
444 spinand->oobbuf,
445 req->ooboffs,
446 req->ooblen);
447 else
448 memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
449 req->ooblen);
450 }
451
452 return 0;
453 }
454
spinand_write_to_cache_op(struct spinand_device * spinand,const struct nand_page_io_req * req)455 static int spinand_write_to_cache_op(struct spinand_device *spinand,
456 const struct nand_page_io_req *req)
457 {
458 struct nand_device *nand = spinand_to_nand(spinand);
459 struct mtd_info *mtd = spinand_to_mtd(spinand);
460 struct spi_mem_dirmap_desc *wdesc;
461 unsigned int nbytes, column = 0;
462 void *buf = spinand->databuf;
463 ssize_t ret;
464
465 /*
466 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
467 * the cache content to 0xFF (depends on vendor implementation), so we
468 * must fill the page cache entirely even if we only want to program
469 * the data portion of the page, otherwise we might corrupt the BBM or
470 * user data previously programmed in OOB area.
471 *
472 * Only reset the data buffer manually, the OOB buffer is prepared by
473 * ECC engines ->prepare_io_req() callback.
474 */
475 nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
476 memset(spinand->databuf, 0xff, nanddev_page_size(nand));
477
478 if (req->datalen)
479 memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
480 req->datalen);
481
482 if (req->ooblen) {
483 if (req->mode == MTD_OPS_AUTO_OOB)
484 mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
485 spinand->oobbuf,
486 req->ooboffs,
487 req->ooblen);
488 else
489 memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
490 req->ooblen);
491 }
492
493 if (req->mode == MTD_OPS_RAW)
494 wdesc = spinand->dirmaps[req->pos.plane].wdesc;
495 else
496 wdesc = spinand->dirmaps[req->pos.plane].wdesc_ecc;
497
498 if (spinand->flags & SPINAND_HAS_PROG_PLANE_SELECT_BIT)
499 column |= req->pos.plane << fls(nanddev_page_size(nand));
500
501 while (nbytes) {
502 ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf);
503 if (ret < 0)
504 return ret;
505
506 if (!ret || ret > nbytes)
507 return -EIO;
508
509 nbytes -= ret;
510 column += ret;
511 buf += ret;
512 }
513
514 return 0;
515 }
516
spinand_program_op(struct spinand_device * spinand,const struct nand_page_io_req * req)517 static int spinand_program_op(struct spinand_device *spinand,
518 const struct nand_page_io_req *req)
519 {
520 struct nand_device *nand = spinand_to_nand(spinand);
521 unsigned int row = nanddev_pos_to_row(nand, &req->pos);
522 struct spi_mem_op op = SPINAND_PROG_EXEC_1S_1S_0_OP(row);
523
524 return spi_mem_exec_op(spinand->spimem, &op);
525 }
526
spinand_erase_op(struct spinand_device * spinand,const struct nand_pos * pos)527 static int spinand_erase_op(struct spinand_device *spinand,
528 const struct nand_pos *pos)
529 {
530 struct nand_device *nand = spinand_to_nand(spinand);
531 unsigned int row = nanddev_pos_to_row(nand, pos);
532 struct spi_mem_op op = SPINAND_BLK_ERASE_1S_1S_0_OP(row);
533
534 return spi_mem_exec_op(spinand->spimem, &op);
535 }
536
537 /**
538 * spinand_wait() - Poll memory device status
539 * @spinand: the spinand device
540 * @initial_delay_us: delay in us before starting to poll
541 * @poll_delay_us: time to sleep between reads in us
542 * @s: the pointer to variable to store the value of REG_STATUS
543 *
544 * This function polls a status register (REG_STATUS) and returns when
545 * the STATUS_READY bit is 0 or when the timeout has expired.
546 *
547 * Return: 0 on success, a negative error code otherwise.
548 */
spinand_wait(struct spinand_device * spinand,unsigned long initial_delay_us,unsigned long poll_delay_us,u8 * s)549 int spinand_wait(struct spinand_device *spinand, unsigned long initial_delay_us,
550 unsigned long poll_delay_us, u8 *s)
551 {
552 struct spi_mem_op op = SPINAND_GET_FEATURE_1S_1S_1S_OP(REG_STATUS,
553 spinand->scratchbuf);
554 u8 status;
555 int ret;
556
557 ret = spi_mem_poll_status(spinand->spimem, &op, STATUS_BUSY, 0,
558 initial_delay_us,
559 poll_delay_us,
560 SPINAND_WAITRDY_TIMEOUT_MS);
561 if (ret)
562 return ret;
563
564 status = *spinand->scratchbuf;
565 if (!(status & STATUS_BUSY))
566 goto out;
567
568 /*
569 * Extra read, just in case the STATUS_READY bit has changed
570 * since our last check
571 */
572 ret = spinand_read_status(spinand, &status);
573 if (ret)
574 return ret;
575
576 out:
577 if (s)
578 *s = status;
579
580 return status & STATUS_BUSY ? -ETIMEDOUT : 0;
581 }
582
spinand_read_id_op(struct spinand_device * spinand,u8 naddr,u8 ndummy,u8 * buf)583 static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
584 u8 ndummy, u8 *buf)
585 {
586 struct spi_mem_op op = SPINAND_READID_1S_1S_1S_OP(
587 naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
588 int ret;
589
590 ret = spi_mem_exec_op(spinand->spimem, &op);
591 if (!ret)
592 memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
593
594 return ret;
595 }
596
spinand_reset_op(struct spinand_device * spinand)597 static int spinand_reset_op(struct spinand_device *spinand)
598 {
599 struct spi_mem_op op = SPINAND_RESET_1S_0_0_OP;
600 int ret;
601
602 ret = spi_mem_exec_op(spinand->spimem, &op);
603 if (ret)
604 return ret;
605
606 return spinand_wait(spinand,
607 SPINAND_RESET_INITIAL_DELAY_US,
608 SPINAND_RESET_POLL_DELAY_US,
609 NULL);
610 }
611
spinand_lock_block(struct spinand_device * spinand,u8 lock)612 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
613 {
614 return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
615 }
616
617 /**
618 * spinand_read_page() - Read a page
619 * @spinand: the spinand device
620 * @req: the I/O request
621 *
622 * Return: 0 or a positive number of bitflips corrected on success.
623 * A negative error code otherwise.
624 */
spinand_read_page(struct spinand_device * spinand,const struct nand_page_io_req * req)625 int spinand_read_page(struct spinand_device *spinand,
626 const struct nand_page_io_req *req)
627 {
628 struct nand_device *nand = spinand_to_nand(spinand);
629 u8 status;
630 int ret;
631
632 ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
633 if (ret)
634 return ret;
635
636 ret = spinand_load_page_op(spinand, req);
637 if (ret)
638 return ret;
639
640 ret = spinand_wait(spinand,
641 SPINAND_READ_INITIAL_DELAY_US,
642 SPINAND_READ_POLL_DELAY_US,
643 &status);
644 if (ret < 0)
645 return ret;
646
647 spinand_ondie_ecc_save_status(nand, status);
648
649 ret = spinand_read_from_cache_op(spinand, req);
650 if (ret)
651 return ret;
652
653 return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
654 }
655
656 /**
657 * spinand_write_page() - Write a page
658 * @spinand: the spinand device
659 * @req: the I/O request
660 *
661 * Return: 0 or a positive number of bitflips corrected on success.
662 * A negative error code otherwise.
663 */
spinand_write_page(struct spinand_device * spinand,const struct nand_page_io_req * req)664 int spinand_write_page(struct spinand_device *spinand,
665 const struct nand_page_io_req *req)
666 {
667 struct nand_device *nand = spinand_to_nand(spinand);
668 u8 status;
669 int ret;
670
671 ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
672 if (ret)
673 return ret;
674
675 ret = spinand_write_enable_op(spinand);
676 if (ret)
677 return ret;
678
679 ret = spinand_write_to_cache_op(spinand, req);
680 if (ret)
681 return ret;
682
683 ret = spinand_program_op(spinand, req);
684 if (ret)
685 return ret;
686
687 ret = spinand_wait(spinand,
688 SPINAND_WRITE_INITIAL_DELAY_US,
689 SPINAND_WRITE_POLL_DELAY_US,
690 &status);
691 if (!ret && (status & STATUS_PROG_FAILED))
692 return -EIO;
693
694 return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
695 }
696
spinand_mtd_regular_page_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops,unsigned int * max_bitflips)697 static int spinand_mtd_regular_page_read(struct mtd_info *mtd, loff_t from,
698 struct mtd_oob_ops *ops,
699 unsigned int *max_bitflips)
700 {
701 struct spinand_device *spinand = mtd_to_spinand(mtd);
702 struct nand_device *nand = mtd_to_nanddev(mtd);
703 struct mtd_ecc_stats old_stats;
704 struct nand_io_iter iter;
705 bool disable_ecc = false;
706 bool ecc_failed = false;
707 unsigned int retry_mode = 0;
708 int ret;
709
710 old_stats = mtd->ecc_stats;
711
712 if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
713 disable_ecc = true;
714
715 nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) {
716 if (disable_ecc)
717 iter.req.mode = MTD_OPS_RAW;
718
719 ret = spinand_select_target(spinand, iter.req.pos.target);
720 if (ret)
721 break;
722
723 read_retry:
724 ret = spinand_read_page(spinand, &iter.req);
725 if (ret < 0 && ret != -EBADMSG)
726 break;
727
728 if (ret == -EBADMSG && spinand->set_read_retry) {
729 if (spinand->read_retries && (++retry_mode <= spinand->read_retries)) {
730 ret = spinand->set_read_retry(spinand, retry_mode);
731 if (ret < 0) {
732 spinand->set_read_retry(spinand, 0);
733 return ret;
734 }
735
736 /* Reset ecc_stats; retry */
737 mtd->ecc_stats = old_stats;
738 goto read_retry;
739 } else {
740 /* No more retry modes; real failure */
741 ecc_failed = true;
742 }
743 } else if (ret == -EBADMSG) {
744 ecc_failed = true;
745 } else {
746 *max_bitflips = max_t(unsigned int, *max_bitflips, ret);
747 }
748
749 ret = 0;
750 ops->retlen += iter.req.datalen;
751 ops->oobretlen += iter.req.ooblen;
752
753 /* Reset to retry mode 0 */
754 if (retry_mode) {
755 retry_mode = 0;
756 ret = spinand->set_read_retry(spinand, retry_mode);
757 if (ret < 0)
758 return ret;
759 }
760 }
761
762 if (ecc_failed && !ret)
763 ret = -EBADMSG;
764
765 return ret;
766 }
767
spinand_mtd_continuous_page_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops,unsigned int * max_bitflips)768 static int spinand_mtd_continuous_page_read(struct mtd_info *mtd, loff_t from,
769 struct mtd_oob_ops *ops,
770 unsigned int *max_bitflips)
771 {
772 struct spinand_device *spinand = mtd_to_spinand(mtd);
773 struct nand_device *nand = mtd_to_nanddev(mtd);
774 struct nand_io_iter iter;
775 u8 status;
776 int ret;
777
778 ret = spinand_cont_read_enable(spinand, true);
779 if (ret)
780 return ret;
781
782 /*
783 * The cache is divided into two halves. While one half of the cache has
784 * the requested data, the other half is loaded with the next chunk of data.
785 * Therefore, the host can read out the data continuously from page to page.
786 * Each data read must be a multiple of 4-bytes and full pages should be read;
787 * otherwise, the data output might get out of sequence from one read command
788 * to another.
789 */
790 nanddev_io_for_each_block(nand, NAND_PAGE_READ, from, ops, &iter) {
791 ret = spinand_select_target(spinand, iter.req.pos.target);
792 if (ret)
793 goto end_cont_read;
794
795 ret = nand_ecc_prepare_io_req(nand, &iter.req);
796 if (ret)
797 goto end_cont_read;
798
799 ret = spinand_load_page_op(spinand, &iter.req);
800 if (ret)
801 goto end_cont_read;
802
803 ret = spinand_wait(spinand, SPINAND_READ_INITIAL_DELAY_US,
804 SPINAND_READ_POLL_DELAY_US, NULL);
805 if (ret < 0)
806 goto end_cont_read;
807
808 ret = spinand_read_from_cache_op(spinand, &iter.req);
809 if (ret)
810 goto end_cont_read;
811
812 ops->retlen += iter.req.datalen;
813
814 ret = spinand_read_status(spinand, &status);
815 if (ret)
816 goto end_cont_read;
817
818 spinand_ondie_ecc_save_status(nand, status);
819
820 ret = nand_ecc_finish_io_req(nand, &iter.req);
821 if (ret < 0)
822 goto end_cont_read;
823
824 *max_bitflips = max_t(unsigned int, *max_bitflips, ret);
825 ret = 0;
826 }
827
828 end_cont_read:
829 /*
830 * Once all the data has been read out, the host can either pull CS#
831 * high and wait for tRST or manually clear the bit in the configuration
832 * register to terminate the continuous read operation. We have no
833 * guarantee the SPI controller drivers will effectively deassert the CS
834 * when we expect them to, so take the register based approach.
835 */
836 spinand_cont_read_enable(spinand, false);
837
838 return ret;
839 }
840
spinand_cont_read_init(struct spinand_device * spinand)841 static void spinand_cont_read_init(struct spinand_device *spinand)
842 {
843 struct nand_device *nand = spinand_to_nand(spinand);
844 enum nand_ecc_engine_type engine_type = nand->ecc.ctx.conf.engine_type;
845
846 /* OOBs cannot be retrieved so external/on-host ECC engine won't work */
847 if (spinand->set_cont_read &&
848 (engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE ||
849 engine_type == NAND_ECC_ENGINE_TYPE_NONE)) {
850 spinand->cont_read_possible = true;
851 }
852 }
853
spinand_use_cont_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)854 static bool spinand_use_cont_read(struct mtd_info *mtd, loff_t from,
855 struct mtd_oob_ops *ops)
856 {
857 struct nand_device *nand = mtd_to_nanddev(mtd);
858 struct spinand_device *spinand = nand_to_spinand(nand);
859 struct nand_pos start_pos, end_pos;
860
861 if (!spinand->cont_read_possible)
862 return false;
863
864 /* OOBs won't be retrieved */
865 if (ops->ooblen || ops->oobbuf)
866 return false;
867
868 nanddev_offs_to_pos(nand, from, &start_pos);
869 nanddev_offs_to_pos(nand, from + ops->len - 1, &end_pos);
870
871 /*
872 * Continuous reads never cross LUN boundaries. Some devices don't
873 * support crossing planes boundaries. Some devices don't even support
874 * crossing blocks boundaries. The common case being to read through UBI,
875 * we will very rarely read two consequent blocks or more, so it is safer
876 * and easier (can be improved) to only enable continuous reads when
877 * reading within the same erase block.
878 */
879 if (start_pos.target != end_pos.target ||
880 start_pos.plane != end_pos.plane ||
881 start_pos.eraseblock != end_pos.eraseblock)
882 return false;
883
884 return start_pos.page < end_pos.page;
885 }
886
spinand_mtd_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)887 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
888 struct mtd_oob_ops *ops)
889 {
890 struct spinand_device *spinand = mtd_to_spinand(mtd);
891 struct mtd_ecc_stats old_stats;
892 unsigned int max_bitflips = 0;
893 int ret;
894
895 mutex_lock(&spinand->lock);
896
897 old_stats = mtd->ecc_stats;
898
899 if (spinand_use_cont_read(mtd, from, ops))
900 ret = spinand_mtd_continuous_page_read(mtd, from, ops, &max_bitflips);
901 else
902 ret = spinand_mtd_regular_page_read(mtd, from, ops, &max_bitflips);
903
904 if (ops->stats) {
905 ops->stats->uncorrectable_errors +=
906 mtd->ecc_stats.failed - old_stats.failed;
907 ops->stats->corrected_bitflips +=
908 mtd->ecc_stats.corrected - old_stats.corrected;
909 }
910
911 mutex_unlock(&spinand->lock);
912
913 return ret ? ret : max_bitflips;
914 }
915
spinand_mtd_write(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)916 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
917 struct mtd_oob_ops *ops)
918 {
919 struct spinand_device *spinand = mtd_to_spinand(mtd);
920 struct nand_device *nand = mtd_to_nanddev(mtd);
921 struct nand_io_iter iter;
922 bool disable_ecc = false;
923 int ret = 0;
924
925 if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
926 disable_ecc = true;
927
928 mutex_lock(&spinand->lock);
929
930 nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) {
931 if (disable_ecc)
932 iter.req.mode = MTD_OPS_RAW;
933
934 ret = spinand_select_target(spinand, iter.req.pos.target);
935 if (ret)
936 break;
937
938 ret = spinand_write_page(spinand, &iter.req);
939 if (ret)
940 break;
941
942 ops->retlen += iter.req.datalen;
943 ops->oobretlen += iter.req.ooblen;
944 }
945
946 mutex_unlock(&spinand->lock);
947
948 return ret;
949 }
950
spinand_isbad(struct nand_device * nand,const struct nand_pos * pos)951 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
952 {
953 struct spinand_device *spinand = nand_to_spinand(nand);
954 u8 marker[2] = { };
955 struct nand_page_io_req req = {
956 .pos = *pos,
957 .ooblen = sizeof(marker),
958 .ooboffs = 0,
959 .oobbuf.in = marker,
960 .mode = MTD_OPS_RAW,
961 };
962 int ret;
963
964 spinand_select_target(spinand, pos->target);
965
966 ret = spinand_read_page(spinand, &req);
967 if (ret == -EOPNOTSUPP) {
968 /* Retry with ECC in case raw access is not supported */
969 req.mode = MTD_OPS_PLACE_OOB;
970 spinand_read_page(spinand, &req);
971 }
972
973 if (marker[0] != 0xff || marker[1] != 0xff)
974 return true;
975
976 return false;
977 }
978
spinand_mtd_block_isbad(struct mtd_info * mtd,loff_t offs)979 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
980 {
981 struct nand_device *nand = mtd_to_nanddev(mtd);
982 struct spinand_device *spinand = nand_to_spinand(nand);
983 struct nand_pos pos;
984 int ret;
985
986 nanddev_offs_to_pos(nand, offs, &pos);
987 mutex_lock(&spinand->lock);
988 ret = nanddev_isbad(nand, &pos);
989 mutex_unlock(&spinand->lock);
990
991 return ret;
992 }
993
spinand_markbad(struct nand_device * nand,const struct nand_pos * pos)994 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
995 {
996 struct spinand_device *spinand = nand_to_spinand(nand);
997 u8 marker[2] = { };
998 struct nand_page_io_req req = {
999 .pos = *pos,
1000 .ooboffs = 0,
1001 .ooblen = sizeof(marker),
1002 .oobbuf.out = marker,
1003 .mode = MTD_OPS_RAW,
1004 };
1005 int ret;
1006
1007 ret = spinand_select_target(spinand, pos->target);
1008 if (ret)
1009 return ret;
1010
1011 ret = spinand_write_page(spinand, &req);
1012 if (ret == -EOPNOTSUPP) {
1013 /* Retry with ECC in case raw access is not supported */
1014 req.mode = MTD_OPS_PLACE_OOB;
1015 ret = spinand_write_page(spinand, &req);
1016 }
1017
1018 return ret;
1019 }
1020
spinand_mtd_block_markbad(struct mtd_info * mtd,loff_t offs)1021 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
1022 {
1023 struct nand_device *nand = mtd_to_nanddev(mtd);
1024 struct spinand_device *spinand = nand_to_spinand(nand);
1025 struct nand_pos pos;
1026 int ret;
1027
1028 nanddev_offs_to_pos(nand, offs, &pos);
1029 mutex_lock(&spinand->lock);
1030 ret = nanddev_markbad(nand, &pos);
1031 mutex_unlock(&spinand->lock);
1032
1033 return ret;
1034 }
1035
spinand_erase(struct nand_device * nand,const struct nand_pos * pos)1036 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
1037 {
1038 struct spinand_device *spinand = nand_to_spinand(nand);
1039 u8 status;
1040 int ret;
1041
1042 ret = spinand_select_target(spinand, pos->target);
1043 if (ret)
1044 return ret;
1045
1046 ret = spinand_write_enable_op(spinand);
1047 if (ret)
1048 return ret;
1049
1050 ret = spinand_erase_op(spinand, pos);
1051 if (ret)
1052 return ret;
1053
1054 ret = spinand_wait(spinand,
1055 SPINAND_ERASE_INITIAL_DELAY_US,
1056 SPINAND_ERASE_POLL_DELAY_US,
1057 &status);
1058
1059 if (!ret && (status & STATUS_ERASE_FAILED))
1060 ret = -EIO;
1061
1062 return ret;
1063 }
1064
spinand_mtd_erase(struct mtd_info * mtd,struct erase_info * einfo)1065 static int spinand_mtd_erase(struct mtd_info *mtd,
1066 struct erase_info *einfo)
1067 {
1068 struct spinand_device *spinand = mtd_to_spinand(mtd);
1069 int ret;
1070
1071 mutex_lock(&spinand->lock);
1072 ret = nanddev_mtd_erase(mtd, einfo);
1073 mutex_unlock(&spinand->lock);
1074
1075 return ret;
1076 }
1077
spinand_mtd_block_isreserved(struct mtd_info * mtd,loff_t offs)1078 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
1079 {
1080 struct spinand_device *spinand = mtd_to_spinand(mtd);
1081 struct nand_device *nand = mtd_to_nanddev(mtd);
1082 struct nand_pos pos;
1083 int ret;
1084
1085 nanddev_offs_to_pos(nand, offs, &pos);
1086 mutex_lock(&spinand->lock);
1087 ret = nanddev_isreserved(nand, &pos);
1088 mutex_unlock(&spinand->lock);
1089
1090 return ret;
1091 }
1092
spinand_create_dirmap(struct spinand_device * spinand,unsigned int plane)1093 static int spinand_create_dirmap(struct spinand_device *spinand,
1094 unsigned int plane)
1095 {
1096 struct nand_device *nand = spinand_to_nand(spinand);
1097 struct spi_mem_dirmap_info info = {
1098 .length = nanddev_page_size(nand) +
1099 nanddev_per_page_oobsize(nand),
1100 };
1101 struct spi_mem_dirmap_desc *desc;
1102
1103 if (spinand->cont_read_possible)
1104 info.length = nanddev_eraseblock_size(nand);
1105
1106 /* The plane number is passed in MSB just above the column address */
1107 info.offset = plane << fls(nand->memorg.pagesize);
1108
1109 info.op_tmpl = *spinand->op_templates.update_cache;
1110 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
1111 spinand->spimem, &info);
1112 if (IS_ERR(desc))
1113 return PTR_ERR(desc);
1114
1115 spinand->dirmaps[plane].wdesc = desc;
1116
1117 info.op_tmpl = *spinand->op_templates.read_cache;
1118 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
1119 spinand->spimem, &info);
1120 if (IS_ERR(desc))
1121 return PTR_ERR(desc);
1122
1123 spinand->dirmaps[plane].rdesc = desc;
1124
1125 if (nand->ecc.engine->integration != NAND_ECC_ENGINE_INTEGRATION_PIPELINED) {
1126 spinand->dirmaps[plane].wdesc_ecc = spinand->dirmaps[plane].wdesc;
1127 spinand->dirmaps[plane].rdesc_ecc = spinand->dirmaps[plane].rdesc;
1128
1129 return 0;
1130 }
1131
1132 info.op_tmpl = *spinand->op_templates.update_cache;
1133 info.op_tmpl.data.ecc = true;
1134 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
1135 spinand->spimem, &info);
1136 if (IS_ERR(desc))
1137 return PTR_ERR(desc);
1138
1139 spinand->dirmaps[plane].wdesc_ecc = desc;
1140
1141 info.op_tmpl = *spinand->op_templates.read_cache;
1142 info.op_tmpl.data.ecc = true;
1143 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
1144 spinand->spimem, &info);
1145 if (IS_ERR(desc))
1146 return PTR_ERR(desc);
1147
1148 spinand->dirmaps[plane].rdesc_ecc = desc;
1149
1150 return 0;
1151 }
1152
spinand_create_dirmaps(struct spinand_device * spinand)1153 static int spinand_create_dirmaps(struct spinand_device *spinand)
1154 {
1155 struct nand_device *nand = spinand_to_nand(spinand);
1156 int i, ret;
1157
1158 spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev,
1159 sizeof(*spinand->dirmaps) *
1160 nand->memorg.planes_per_lun,
1161 GFP_KERNEL);
1162 if (!spinand->dirmaps)
1163 return -ENOMEM;
1164
1165 for (i = 0; i < nand->memorg.planes_per_lun; i++) {
1166 ret = spinand_create_dirmap(spinand, i);
1167 if (ret)
1168 return ret;
1169 }
1170
1171 return 0;
1172 }
1173
1174 static const struct nand_ops spinand_ops = {
1175 .erase = spinand_erase,
1176 .markbad = spinand_markbad,
1177 .isbad = spinand_isbad,
1178 };
1179
1180 static const struct spinand_manufacturer *spinand_manufacturers[] = {
1181 &alliancememory_spinand_manufacturer,
1182 &ato_spinand_manufacturer,
1183 &esmt_c8_spinand_manufacturer,
1184 &foresee_spinand_manufacturer,
1185 &gigadevice_spinand_manufacturer,
1186 ¯onix_spinand_manufacturer,
1187 µn_spinand_manufacturer,
1188 ¶gon_spinand_manufacturer,
1189 &skyhigh_spinand_manufacturer,
1190 &toshiba_spinand_manufacturer,
1191 &winbond_spinand_manufacturer,
1192 &xtx_spinand_manufacturer,
1193 };
1194
spinand_manufacturer_match(struct spinand_device * spinand,enum spinand_readid_method rdid_method)1195 static int spinand_manufacturer_match(struct spinand_device *spinand,
1196 enum spinand_readid_method rdid_method)
1197 {
1198 u8 *id = spinand->id.data;
1199 unsigned int i;
1200 int ret;
1201
1202 for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
1203 const struct spinand_manufacturer *manufacturer =
1204 spinand_manufacturers[i];
1205
1206 if (id[0] != manufacturer->id)
1207 continue;
1208
1209 ret = spinand_match_and_init(spinand,
1210 manufacturer->chips,
1211 manufacturer->nchips,
1212 rdid_method);
1213 if (ret < 0)
1214 continue;
1215
1216 spinand->manufacturer = manufacturer;
1217 return 0;
1218 }
1219 return -EOPNOTSUPP;
1220 }
1221
spinand_id_detect(struct spinand_device * spinand)1222 static int spinand_id_detect(struct spinand_device *spinand)
1223 {
1224 u8 *id = spinand->id.data;
1225 int ret;
1226
1227 ret = spinand_read_id_op(spinand, 0, 0, id);
1228 if (ret)
1229 return ret;
1230 ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
1231 if (!ret)
1232 return 0;
1233
1234 ret = spinand_read_id_op(spinand, 1, 0, id);
1235 if (ret)
1236 return ret;
1237 ret = spinand_manufacturer_match(spinand,
1238 SPINAND_READID_METHOD_OPCODE_ADDR);
1239 if (!ret)
1240 return 0;
1241
1242 ret = spinand_read_id_op(spinand, 0, 1, id);
1243 if (ret)
1244 return ret;
1245 ret = spinand_manufacturer_match(spinand,
1246 SPINAND_READID_METHOD_OPCODE_DUMMY);
1247
1248 return ret;
1249 }
1250
spinand_manufacturer_init(struct spinand_device * spinand)1251 static int spinand_manufacturer_init(struct spinand_device *spinand)
1252 {
1253 if (spinand->manufacturer->ops->init)
1254 return spinand->manufacturer->ops->init(spinand);
1255
1256 return 0;
1257 }
1258
spinand_manufacturer_cleanup(struct spinand_device * spinand)1259 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
1260 {
1261 /* Release manufacturer private data */
1262 if (spinand->manufacturer->ops->cleanup)
1263 return spinand->manufacturer->ops->cleanup(spinand);
1264 }
1265
1266 static const struct spi_mem_op *
spinand_select_op_variant(struct spinand_device * spinand,const struct spinand_op_variants * variants)1267 spinand_select_op_variant(struct spinand_device *spinand,
1268 const struct spinand_op_variants *variants)
1269 {
1270 struct nand_device *nand = spinand_to_nand(spinand);
1271 const struct spi_mem_op *best_variant = NULL;
1272 u64 best_op_duration_ns = ULLONG_MAX;
1273 unsigned int i;
1274
1275 for (i = 0; i < variants->nops; i++) {
1276 struct spi_mem_op op = variants->ops[i];
1277 u64 op_duration_ns = 0;
1278 unsigned int nbytes;
1279 int ret;
1280
1281 nbytes = nanddev_per_page_oobsize(nand) +
1282 nanddev_page_size(nand);
1283
1284 while (nbytes) {
1285 op.data.nbytes = nbytes;
1286 ret = spi_mem_adjust_op_size(spinand->spimem, &op);
1287 if (ret)
1288 break;
1289
1290 spi_mem_adjust_op_freq(spinand->spimem, &op);
1291
1292 if (!spi_mem_supports_op(spinand->spimem, &op))
1293 break;
1294
1295 nbytes -= op.data.nbytes;
1296
1297 op_duration_ns += spi_mem_calc_op_duration(&op);
1298 }
1299
1300 if (!nbytes && op_duration_ns < best_op_duration_ns) {
1301 best_op_duration_ns = op_duration_ns;
1302 best_variant = &variants->ops[i];
1303 }
1304 }
1305
1306 return best_variant;
1307 }
1308
1309 /**
1310 * spinand_match_and_init() - Try to find a match between a device ID and an
1311 * entry in a spinand_info table
1312 * @spinand: SPI NAND object
1313 * @table: SPI NAND device description table
1314 * @table_size: size of the device description table
1315 * @rdid_method: read id method to match
1316 *
1317 * Match between a device ID retrieved through the READ_ID command and an
1318 * entry in the SPI NAND description table. If a match is found, the spinand
1319 * object will be initialized with information provided by the matching
1320 * spinand_info entry.
1321 *
1322 * Return: 0 on success, a negative error code otherwise.
1323 */
spinand_match_and_init(struct spinand_device * spinand,const struct spinand_info * table,unsigned int table_size,enum spinand_readid_method rdid_method)1324 int spinand_match_and_init(struct spinand_device *spinand,
1325 const struct spinand_info *table,
1326 unsigned int table_size,
1327 enum spinand_readid_method rdid_method)
1328 {
1329 u8 *id = spinand->id.data;
1330 struct nand_device *nand = spinand_to_nand(spinand);
1331 unsigned int i;
1332
1333 for (i = 0; i < table_size; i++) {
1334 const struct spinand_info *info = &table[i];
1335 const struct spi_mem_op *op;
1336
1337 if (rdid_method != info->devid.method)
1338 continue;
1339
1340 if (memcmp(id + 1, info->devid.id, info->devid.len))
1341 continue;
1342
1343 nand->memorg = table[i].memorg;
1344 nanddev_set_ecc_requirements(nand, &table[i].eccreq);
1345 spinand->eccinfo = table[i].eccinfo;
1346 spinand->flags = table[i].flags;
1347 spinand->id.len = 1 + table[i].devid.len;
1348 spinand->select_target = table[i].select_target;
1349 spinand->set_cont_read = table[i].set_cont_read;
1350 spinand->fact_otp = &table[i].fact_otp;
1351 spinand->user_otp = &table[i].user_otp;
1352 spinand->read_retries = table[i].read_retries;
1353 spinand->set_read_retry = table[i].set_read_retry;
1354
1355 op = spinand_select_op_variant(spinand,
1356 info->op_variants.read_cache);
1357 if (!op)
1358 return -ENOTSUPP;
1359
1360 spinand->op_templates.read_cache = op;
1361
1362 op = spinand_select_op_variant(spinand,
1363 info->op_variants.write_cache);
1364 if (!op)
1365 return -ENOTSUPP;
1366
1367 spinand->op_templates.write_cache = op;
1368
1369 op = spinand_select_op_variant(spinand,
1370 info->op_variants.update_cache);
1371 spinand->op_templates.update_cache = op;
1372
1373 return 0;
1374 }
1375
1376 return -ENOTSUPP;
1377 }
1378
spinand_detect(struct spinand_device * spinand)1379 static int spinand_detect(struct spinand_device *spinand)
1380 {
1381 struct device *dev = &spinand->spimem->spi->dev;
1382 struct nand_device *nand = spinand_to_nand(spinand);
1383 int ret;
1384
1385 ret = spinand_reset_op(spinand);
1386 if (ret)
1387 return ret;
1388
1389 ret = spinand_id_detect(spinand);
1390 if (ret) {
1391 dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
1392 spinand->id.data);
1393 return ret;
1394 }
1395
1396 if (nand->memorg.ntargets > 1 && !spinand->select_target) {
1397 dev_err(dev,
1398 "SPI NANDs with more than one die must implement ->select_target()\n");
1399 return -EINVAL;
1400 }
1401
1402 dev_info(&spinand->spimem->spi->dev,
1403 "%s SPI NAND was found.\n", spinand->manufacturer->name);
1404 dev_info(&spinand->spimem->spi->dev,
1405 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
1406 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
1407 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
1408
1409 return 0;
1410 }
1411
spinand_init_flash(struct spinand_device * spinand)1412 static int spinand_init_flash(struct spinand_device *spinand)
1413 {
1414 struct device *dev = &spinand->spimem->spi->dev;
1415 struct nand_device *nand = spinand_to_nand(spinand);
1416 int ret, i;
1417
1418 ret = spinand_read_cfg(spinand);
1419 if (ret)
1420 return ret;
1421
1422 ret = spinand_init_quad_enable(spinand);
1423 if (ret)
1424 return ret;
1425
1426 ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1427 if (ret)
1428 return ret;
1429
1430 ret = spinand_manufacturer_init(spinand);
1431 if (ret) {
1432 dev_err(dev,
1433 "Failed to initialize the SPI NAND chip (err = %d)\n",
1434 ret);
1435 return ret;
1436 }
1437
1438 /* After power up, all blocks are locked, so unlock them here. */
1439 for (i = 0; i < nand->memorg.ntargets; i++) {
1440 ret = spinand_select_target(spinand, i);
1441 if (ret)
1442 break;
1443
1444 ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1445 if (ret)
1446 break;
1447 }
1448
1449 if (ret)
1450 spinand_manufacturer_cleanup(spinand);
1451
1452 return ret;
1453 }
1454
spinand_mtd_resume(struct mtd_info * mtd)1455 static void spinand_mtd_resume(struct mtd_info *mtd)
1456 {
1457 struct spinand_device *spinand = mtd_to_spinand(mtd);
1458 int ret;
1459
1460 ret = spinand_reset_op(spinand);
1461 if (ret)
1462 return;
1463
1464 ret = spinand_init_flash(spinand);
1465 if (ret)
1466 return;
1467
1468 spinand_ecc_enable(spinand, false);
1469 }
1470
spinand_init(struct spinand_device * spinand)1471 static int spinand_init(struct spinand_device *spinand)
1472 {
1473 struct device *dev = &spinand->spimem->spi->dev;
1474 struct mtd_info *mtd = spinand_to_mtd(spinand);
1475 struct nand_device *nand = mtd_to_nanddev(mtd);
1476 int ret;
1477
1478 /*
1479 * We need a scratch buffer because the spi_mem interface requires that
1480 * buf passed in spi_mem_op->data.buf be DMA-able.
1481 */
1482 spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1483 if (!spinand->scratchbuf)
1484 return -ENOMEM;
1485
1486 ret = spinand_detect(spinand);
1487 if (ret)
1488 goto err_free_bufs;
1489
1490 /*
1491 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1492 * may use this buffer for DMA access.
1493 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1494 */
1495 spinand->databuf = kzalloc(nanddev_eraseblock_size(nand),
1496 GFP_KERNEL);
1497 if (!spinand->databuf) {
1498 ret = -ENOMEM;
1499 goto err_free_bufs;
1500 }
1501
1502 spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1503
1504 ret = spinand_init_cfg_cache(spinand);
1505 if (ret)
1506 goto err_free_bufs;
1507
1508 ret = spinand_init_flash(spinand);
1509 if (ret)
1510 goto err_free_bufs;
1511
1512 ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1513 if (ret)
1514 goto err_manuf_cleanup;
1515
1516 /* SPI-NAND default ECC engine is on-die */
1517 nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
1518 nand->ecc.ondie_engine = &spinand_ondie_ecc_engine;
1519
1520 spinand_ecc_enable(spinand, false);
1521 ret = nanddev_ecc_engine_init(nand);
1522 if (ret)
1523 goto err_cleanup_nanddev;
1524
1525 /*
1526 * Continuous read can only be enabled with an on-die ECC engine, so the
1527 * ECC initialization must have happened previously.
1528 */
1529 spinand_cont_read_init(spinand);
1530
1531 mtd->_read_oob = spinand_mtd_read;
1532 mtd->_write_oob = spinand_mtd_write;
1533 mtd->_block_isbad = spinand_mtd_block_isbad;
1534 mtd->_block_markbad = spinand_mtd_block_markbad;
1535 mtd->_block_isreserved = spinand_mtd_block_isreserved;
1536 mtd->_erase = spinand_mtd_erase;
1537 mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
1538 mtd->_resume = spinand_mtd_resume;
1539
1540 if (spinand_user_otp_size(spinand) || spinand_fact_otp_size(spinand)) {
1541 ret = spinand_set_mtd_otp_ops(spinand);
1542 if (ret)
1543 goto err_cleanup_ecc_engine;
1544 }
1545
1546 if (nand->ecc.engine) {
1547 ret = mtd_ooblayout_count_freebytes(mtd);
1548 if (ret < 0)
1549 goto err_cleanup_ecc_engine;
1550 }
1551
1552 mtd->oobavail = ret;
1553
1554 /* Propagate ECC information to mtd_info */
1555 mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength;
1556 mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size;
1557 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
1558
1559 ret = spinand_create_dirmaps(spinand);
1560 if (ret) {
1561 dev_err(dev,
1562 "Failed to create direct mappings for read/write operations (err = %d)\n",
1563 ret);
1564 goto err_cleanup_ecc_engine;
1565 }
1566
1567 return 0;
1568
1569 err_cleanup_ecc_engine:
1570 nanddev_ecc_engine_cleanup(nand);
1571
1572 err_cleanup_nanddev:
1573 nanddev_cleanup(nand);
1574
1575 err_manuf_cleanup:
1576 spinand_manufacturer_cleanup(spinand);
1577
1578 err_free_bufs:
1579 kfree(spinand->databuf);
1580 kfree(spinand->scratchbuf);
1581 return ret;
1582 }
1583
spinand_cleanup(struct spinand_device * spinand)1584 static void spinand_cleanup(struct spinand_device *spinand)
1585 {
1586 struct nand_device *nand = spinand_to_nand(spinand);
1587
1588 nanddev_ecc_engine_cleanup(nand);
1589 nanddev_cleanup(nand);
1590 spinand_manufacturer_cleanup(spinand);
1591 kfree(spinand->databuf);
1592 kfree(spinand->scratchbuf);
1593 }
1594
spinand_probe(struct spi_mem * mem)1595 static int spinand_probe(struct spi_mem *mem)
1596 {
1597 struct spinand_device *spinand;
1598 struct mtd_info *mtd;
1599 int ret;
1600
1601 spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1602 GFP_KERNEL);
1603 if (!spinand)
1604 return -ENOMEM;
1605
1606 spinand->spimem = mem;
1607 spi_mem_set_drvdata(mem, spinand);
1608 spinand_set_of_node(spinand, mem->spi->dev.of_node);
1609 mutex_init(&spinand->lock);
1610 mtd = spinand_to_mtd(spinand);
1611 mtd->dev.parent = &mem->spi->dev;
1612
1613 ret = spinand_init(spinand);
1614 if (ret)
1615 return ret;
1616
1617 ret = mtd_device_register(mtd, NULL, 0);
1618 if (ret)
1619 goto err_spinand_cleanup;
1620
1621 return 0;
1622
1623 err_spinand_cleanup:
1624 spinand_cleanup(spinand);
1625
1626 return ret;
1627 }
1628
spinand_remove(struct spi_mem * mem)1629 static int spinand_remove(struct spi_mem *mem)
1630 {
1631 struct spinand_device *spinand;
1632 struct mtd_info *mtd;
1633 int ret;
1634
1635 spinand = spi_mem_get_drvdata(mem);
1636 mtd = spinand_to_mtd(spinand);
1637
1638 ret = mtd_device_unregister(mtd);
1639 if (ret)
1640 return ret;
1641
1642 spinand_cleanup(spinand);
1643
1644 return 0;
1645 }
1646
1647 static const struct spi_device_id spinand_ids[] = {
1648 { .name = "spi-nand" },
1649 { /* sentinel */ },
1650 };
1651 MODULE_DEVICE_TABLE(spi, spinand_ids);
1652
1653 #ifdef CONFIG_OF
1654 static const struct of_device_id spinand_of_ids[] = {
1655 { .compatible = "spi-nand" },
1656 { /* sentinel */ },
1657 };
1658 MODULE_DEVICE_TABLE(of, spinand_of_ids);
1659 #endif
1660
1661 static struct spi_mem_driver spinand_drv = {
1662 .spidrv = {
1663 .id_table = spinand_ids,
1664 .driver = {
1665 .name = "spi-nand",
1666 .of_match_table = of_match_ptr(spinand_of_ids),
1667 },
1668 },
1669 .probe = spinand_probe,
1670 .remove = spinand_remove,
1671 };
1672 module_spi_mem_driver(spinand_drv);
1673
1674 MODULE_DESCRIPTION("SPI NAND framework");
1675 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1676 MODULE_LICENSE("GPL v2");
1677