1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2016-2017 Micron Technology, Inc.
4 *
5 * Authors:
6 * Peter Pan <peterpandong@micron.com>
7 * Boris Brezillon <boris.brezillon@bootlin.com>
8 */
9
10 #define pr_fmt(fmt) "spi-nand: " fmt
11
12 #include <linux/device.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mtd/spinand.h>
17 #include <linux/of.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22
spinand_read_reg_op(struct spinand_device * spinand,u8 reg,u8 * val)23 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
24 {
25 struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
26 spinand->scratchbuf);
27 int ret;
28
29 ret = spi_mem_exec_op(spinand->spimem, &op);
30 if (ret)
31 return ret;
32
33 *val = *spinand->scratchbuf;
34 return 0;
35 }
36
spinand_write_reg_op(struct spinand_device * spinand,u8 reg,u8 val)37 int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
38 {
39 struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
40 spinand->scratchbuf);
41
42 *spinand->scratchbuf = val;
43 return spi_mem_exec_op(spinand->spimem, &op);
44 }
45
spinand_read_status(struct spinand_device * spinand,u8 * status)46 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
47 {
48 return spinand_read_reg_op(spinand, REG_STATUS, status);
49 }
50
spinand_get_cfg(struct spinand_device * spinand,u8 * cfg)51 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
52 {
53 struct nand_device *nand = spinand_to_nand(spinand);
54
55 if (WARN_ON(spinand->cur_target < 0 ||
56 spinand->cur_target >= nand->memorg.ntargets))
57 return -EINVAL;
58
59 *cfg = spinand->cfg_cache[spinand->cur_target];
60 return 0;
61 }
62
spinand_set_cfg(struct spinand_device * spinand,u8 cfg)63 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
64 {
65 struct nand_device *nand = spinand_to_nand(spinand);
66 int ret;
67
68 if (WARN_ON(spinand->cur_target < 0 ||
69 spinand->cur_target >= nand->memorg.ntargets))
70 return -EINVAL;
71
72 if (spinand->cfg_cache[spinand->cur_target] == cfg)
73 return 0;
74
75 ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
76 if (ret)
77 return ret;
78
79 spinand->cfg_cache[spinand->cur_target] = cfg;
80 return 0;
81 }
82
83 /**
84 * spinand_upd_cfg() - Update the configuration register
85 * @spinand: the spinand device
86 * @mask: the mask encoding the bits to update in the config reg
87 * @val: the new value to apply
88 *
89 * Update the configuration register.
90 *
91 * Return: 0 on success, a negative error code otherwise.
92 */
spinand_upd_cfg(struct spinand_device * spinand,u8 mask,u8 val)93 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
94 {
95 int ret;
96 u8 cfg;
97
98 ret = spinand_get_cfg(spinand, &cfg);
99 if (ret)
100 return ret;
101
102 cfg &= ~mask;
103 cfg |= val;
104
105 return spinand_set_cfg(spinand, cfg);
106 }
107
108 /**
109 * spinand_select_target() - Select a specific NAND target/die
110 * @spinand: the spinand device
111 * @target: the target/die to select
112 *
113 * Select a new target/die. If chip only has one die, this function is a NOOP.
114 *
115 * Return: 0 on success, a negative error code otherwise.
116 */
spinand_select_target(struct spinand_device * spinand,unsigned int target)117 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
118 {
119 struct nand_device *nand = spinand_to_nand(spinand);
120 int ret;
121
122 if (WARN_ON(target >= nand->memorg.ntargets))
123 return -EINVAL;
124
125 if (spinand->cur_target == target)
126 return 0;
127
128 if (nand->memorg.ntargets == 1) {
129 spinand->cur_target = target;
130 return 0;
131 }
132
133 ret = spinand->select_target(spinand, target);
134 if (ret)
135 return ret;
136
137 spinand->cur_target = target;
138 return 0;
139 }
140
spinand_read_cfg(struct spinand_device * spinand)141 static int spinand_read_cfg(struct spinand_device *spinand)
142 {
143 struct nand_device *nand = spinand_to_nand(spinand);
144 unsigned int target;
145 int ret;
146
147 for (target = 0; target < nand->memorg.ntargets; target++) {
148 ret = spinand_select_target(spinand, target);
149 if (ret)
150 return ret;
151
152 /*
153 * We use spinand_read_reg_op() instead of spinand_get_cfg()
154 * here to bypass the config cache.
155 */
156 ret = spinand_read_reg_op(spinand, REG_CFG,
157 &spinand->cfg_cache[target]);
158 if (ret)
159 return ret;
160 }
161
162 return 0;
163 }
164
spinand_init_cfg_cache(struct spinand_device * spinand)165 static int spinand_init_cfg_cache(struct spinand_device *spinand)
166 {
167 struct nand_device *nand = spinand_to_nand(spinand);
168 struct device *dev = &spinand->spimem->spi->dev;
169
170 spinand->cfg_cache = devm_kcalloc(dev,
171 nand->memorg.ntargets,
172 sizeof(*spinand->cfg_cache),
173 GFP_KERNEL);
174 if (!spinand->cfg_cache)
175 return -ENOMEM;
176
177 return 0;
178 }
179
spinand_init_quad_enable(struct spinand_device * spinand)180 static int spinand_init_quad_enable(struct spinand_device *spinand)
181 {
182 bool enable = false;
183
184 if (!(spinand->flags & SPINAND_HAS_QE_BIT))
185 return 0;
186
187 if (spinand->op_templates.read_cache->data.buswidth == 4 ||
188 spinand->op_templates.write_cache->data.buswidth == 4 ||
189 spinand->op_templates.update_cache->data.buswidth == 4)
190 enable = true;
191
192 return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
193 enable ? CFG_QUAD_ENABLE : 0);
194 }
195
spinand_ecc_enable(struct spinand_device * spinand,bool enable)196 static int spinand_ecc_enable(struct spinand_device *spinand,
197 bool enable)
198 {
199 return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
200 enable ? CFG_ECC_ENABLE : 0);
201 }
202
spinand_cont_read_enable(struct spinand_device * spinand,bool enable)203 static int spinand_cont_read_enable(struct spinand_device *spinand,
204 bool enable)
205 {
206 return spinand->set_cont_read(spinand, enable);
207 }
208
spinand_check_ecc_status(struct spinand_device * spinand,u8 status)209 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
210 {
211 struct nand_device *nand = spinand_to_nand(spinand);
212
213 if (spinand->eccinfo.get_status)
214 return spinand->eccinfo.get_status(spinand, status);
215
216 switch (status & STATUS_ECC_MASK) {
217 case STATUS_ECC_NO_BITFLIPS:
218 return 0;
219
220 case STATUS_ECC_HAS_BITFLIPS:
221 /*
222 * We have no way to know exactly how many bitflips have been
223 * fixed, so let's return the maximum possible value so that
224 * wear-leveling layers move the data immediately.
225 */
226 return nanddev_get_ecc_conf(nand)->strength;
227
228 case STATUS_ECC_UNCOR_ERROR:
229 return -EBADMSG;
230
231 default:
232 break;
233 }
234
235 return -EINVAL;
236 }
237
spinand_noecc_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * region)238 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
239 struct mtd_oob_region *region)
240 {
241 return -ERANGE;
242 }
243
spinand_noecc_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * region)244 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
245 struct mtd_oob_region *region)
246 {
247 if (section)
248 return -ERANGE;
249
250 /* Reserve 2 bytes for the BBM. */
251 region->offset = 2;
252 region->length = 62;
253
254 return 0;
255 }
256
257 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
258 .ecc = spinand_noecc_ooblayout_ecc,
259 .free = spinand_noecc_ooblayout_free,
260 };
261
spinand_ondie_ecc_init_ctx(struct nand_device * nand)262 static int spinand_ondie_ecc_init_ctx(struct nand_device *nand)
263 {
264 struct spinand_device *spinand = nand_to_spinand(nand);
265 struct mtd_info *mtd = nanddev_to_mtd(nand);
266 struct spinand_ondie_ecc_conf *engine_conf;
267
268 nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
269 nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size;
270 nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength;
271
272 engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
273 if (!engine_conf)
274 return -ENOMEM;
275
276 nand->ecc.ctx.priv = engine_conf;
277
278 if (spinand->eccinfo.ooblayout)
279 mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
280 else
281 mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
282
283 return 0;
284 }
285
spinand_ondie_ecc_cleanup_ctx(struct nand_device * nand)286 static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand)
287 {
288 kfree(nand->ecc.ctx.priv);
289 }
290
spinand_ondie_ecc_prepare_io_req(struct nand_device * nand,struct nand_page_io_req * req)291 static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand,
292 struct nand_page_io_req *req)
293 {
294 struct spinand_device *spinand = nand_to_spinand(nand);
295 bool enable = (req->mode != MTD_OPS_RAW);
296
297 memset(spinand->oobbuf, 0xff, nanddev_per_page_oobsize(nand));
298
299 /* Only enable or disable the engine */
300 return spinand_ecc_enable(spinand, enable);
301 }
302
spinand_ondie_ecc_finish_io_req(struct nand_device * nand,struct nand_page_io_req * req)303 static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand,
304 struct nand_page_io_req *req)
305 {
306 struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
307 struct spinand_device *spinand = nand_to_spinand(nand);
308 struct mtd_info *mtd = spinand_to_mtd(spinand);
309 int ret;
310
311 if (req->mode == MTD_OPS_RAW)
312 return 0;
313
314 /* Nothing to do when finishing a page write */
315 if (req->type == NAND_PAGE_WRITE)
316 return 0;
317
318 /* Finish a page read: check the status, report errors/bitflips */
319 ret = spinand_check_ecc_status(spinand, engine_conf->status);
320 if (ret == -EBADMSG) {
321 mtd->ecc_stats.failed++;
322 } else if (ret > 0) {
323 unsigned int pages;
324
325 /*
326 * Continuous reads don't allow us to get the detail,
327 * so we may exagerate the actual number of corrected bitflips.
328 */
329 if (!req->continuous)
330 pages = 1;
331 else
332 pages = req->datalen / nanddev_page_size(nand);
333
334 mtd->ecc_stats.corrected += ret * pages;
335 }
336
337 return ret;
338 }
339
340 static const struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = {
341 .init_ctx = spinand_ondie_ecc_init_ctx,
342 .cleanup_ctx = spinand_ondie_ecc_cleanup_ctx,
343 .prepare_io_req = spinand_ondie_ecc_prepare_io_req,
344 .finish_io_req = spinand_ondie_ecc_finish_io_req,
345 };
346
347 static struct nand_ecc_engine spinand_ondie_ecc_engine = {
348 .ops = &spinand_ondie_ecc_engine_ops,
349 };
350
spinand_ondie_ecc_save_status(struct nand_device * nand,u8 status)351 static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status)
352 {
353 struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
354
355 if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE &&
356 engine_conf)
357 engine_conf->status = status;
358 }
359
spinand_write_enable_op(struct spinand_device * spinand)360 static int spinand_write_enable_op(struct spinand_device *spinand)
361 {
362 struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
363
364 return spi_mem_exec_op(spinand->spimem, &op);
365 }
366
spinand_load_page_op(struct spinand_device * spinand,const struct nand_page_io_req * req)367 static int spinand_load_page_op(struct spinand_device *spinand,
368 const struct nand_page_io_req *req)
369 {
370 struct nand_device *nand = spinand_to_nand(spinand);
371 unsigned int row = nanddev_pos_to_row(nand, &req->pos);
372 struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
373
374 return spi_mem_exec_op(spinand->spimem, &op);
375 }
376
spinand_read_from_cache_op(struct spinand_device * spinand,const struct nand_page_io_req * req)377 static int spinand_read_from_cache_op(struct spinand_device *spinand,
378 const struct nand_page_io_req *req)
379 {
380 struct nand_device *nand = spinand_to_nand(spinand);
381 struct mtd_info *mtd = spinand_to_mtd(spinand);
382 struct spi_mem_dirmap_desc *rdesc;
383 unsigned int nbytes = 0;
384 void *buf = NULL;
385 u16 column = 0;
386 ssize_t ret;
387
388 if (req->datalen) {
389 buf = spinand->databuf;
390 if (!req->continuous)
391 nbytes = nanddev_page_size(nand);
392 else
393 nbytes = round_up(req->dataoffs + req->datalen,
394 nanddev_page_size(nand));
395 column = 0;
396 }
397
398 if (req->ooblen) {
399 nbytes += nanddev_per_page_oobsize(nand);
400 if (!buf) {
401 buf = spinand->oobbuf;
402 column = nanddev_page_size(nand);
403 }
404 }
405
406 if (req->mode == MTD_OPS_RAW)
407 rdesc = spinand->dirmaps[req->pos.plane].rdesc;
408 else
409 rdesc = spinand->dirmaps[req->pos.plane].rdesc_ecc;
410
411 if (spinand->flags & SPINAND_HAS_READ_PLANE_SELECT_BIT)
412 column |= req->pos.plane << fls(nanddev_page_size(nand));
413
414 while (nbytes) {
415 ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf);
416 if (ret < 0)
417 return ret;
418
419 if (!ret || ret > nbytes)
420 return -EIO;
421
422 nbytes -= ret;
423 column += ret;
424 buf += ret;
425
426 /*
427 * Dirmap accesses are allowed to toggle the CS.
428 * Toggling the CS during a continuous read is forbidden.
429 */
430 if (nbytes && req->continuous)
431 return -EIO;
432 }
433
434 if (req->datalen)
435 memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
436 req->datalen);
437
438 if (req->ooblen) {
439 if (req->mode == MTD_OPS_AUTO_OOB)
440 mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
441 spinand->oobbuf,
442 req->ooboffs,
443 req->ooblen);
444 else
445 memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
446 req->ooblen);
447 }
448
449 return 0;
450 }
451
spinand_write_to_cache_op(struct spinand_device * spinand,const struct nand_page_io_req * req)452 static int spinand_write_to_cache_op(struct spinand_device *spinand,
453 const struct nand_page_io_req *req)
454 {
455 struct nand_device *nand = spinand_to_nand(spinand);
456 struct mtd_info *mtd = spinand_to_mtd(spinand);
457 struct spi_mem_dirmap_desc *wdesc;
458 unsigned int nbytes, column = 0;
459 void *buf = spinand->databuf;
460 ssize_t ret;
461
462 /*
463 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
464 * the cache content to 0xFF (depends on vendor implementation), so we
465 * must fill the page cache entirely even if we only want to program
466 * the data portion of the page, otherwise we might corrupt the BBM or
467 * user data previously programmed in OOB area.
468 *
469 * Only reset the data buffer manually, the OOB buffer is prepared by
470 * ECC engines ->prepare_io_req() callback.
471 */
472 nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
473 memset(spinand->databuf, 0xff, nanddev_page_size(nand));
474
475 if (req->datalen)
476 memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
477 req->datalen);
478
479 if (req->ooblen) {
480 if (req->mode == MTD_OPS_AUTO_OOB)
481 mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
482 spinand->oobbuf,
483 req->ooboffs,
484 req->ooblen);
485 else
486 memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
487 req->ooblen);
488 }
489
490 if (req->mode == MTD_OPS_RAW)
491 wdesc = spinand->dirmaps[req->pos.plane].wdesc;
492 else
493 wdesc = spinand->dirmaps[req->pos.plane].wdesc_ecc;
494
495 if (spinand->flags & SPINAND_HAS_PROG_PLANE_SELECT_BIT)
496 column |= req->pos.plane << fls(nanddev_page_size(nand));
497
498 while (nbytes) {
499 ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf);
500 if (ret < 0)
501 return ret;
502
503 if (!ret || ret > nbytes)
504 return -EIO;
505
506 nbytes -= ret;
507 column += ret;
508 buf += ret;
509 }
510
511 return 0;
512 }
513
spinand_program_op(struct spinand_device * spinand,const struct nand_page_io_req * req)514 static int spinand_program_op(struct spinand_device *spinand,
515 const struct nand_page_io_req *req)
516 {
517 struct nand_device *nand = spinand_to_nand(spinand);
518 unsigned int row = nanddev_pos_to_row(nand, &req->pos);
519 struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
520
521 return spi_mem_exec_op(spinand->spimem, &op);
522 }
523
spinand_erase_op(struct spinand_device * spinand,const struct nand_pos * pos)524 static int spinand_erase_op(struct spinand_device *spinand,
525 const struct nand_pos *pos)
526 {
527 struct nand_device *nand = spinand_to_nand(spinand);
528 unsigned int row = nanddev_pos_to_row(nand, pos);
529 struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
530
531 return spi_mem_exec_op(spinand->spimem, &op);
532 }
533
spinand_wait(struct spinand_device * spinand,unsigned long initial_delay_us,unsigned long poll_delay_us,u8 * s)534 static int spinand_wait(struct spinand_device *spinand,
535 unsigned long initial_delay_us,
536 unsigned long poll_delay_us,
537 u8 *s)
538 {
539 struct spi_mem_op op = SPINAND_GET_FEATURE_OP(REG_STATUS,
540 spinand->scratchbuf);
541 u8 status;
542 int ret;
543
544 ret = spi_mem_poll_status(spinand->spimem, &op, STATUS_BUSY, 0,
545 initial_delay_us,
546 poll_delay_us,
547 SPINAND_WAITRDY_TIMEOUT_MS);
548 if (ret)
549 return ret;
550
551 status = *spinand->scratchbuf;
552 if (!(status & STATUS_BUSY))
553 goto out;
554
555 /*
556 * Extra read, just in case the STATUS_READY bit has changed
557 * since our last check
558 */
559 ret = spinand_read_status(spinand, &status);
560 if (ret)
561 return ret;
562
563 out:
564 if (s)
565 *s = status;
566
567 return status & STATUS_BUSY ? -ETIMEDOUT : 0;
568 }
569
spinand_read_id_op(struct spinand_device * spinand,u8 naddr,u8 ndummy,u8 * buf)570 static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
571 u8 ndummy, u8 *buf)
572 {
573 struct spi_mem_op op = SPINAND_READID_OP(
574 naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
575 int ret;
576
577 ret = spi_mem_exec_op(spinand->spimem, &op);
578 if (!ret)
579 memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
580
581 return ret;
582 }
583
spinand_reset_op(struct spinand_device * spinand)584 static int spinand_reset_op(struct spinand_device *spinand)
585 {
586 struct spi_mem_op op = SPINAND_RESET_OP;
587 int ret;
588
589 ret = spi_mem_exec_op(spinand->spimem, &op);
590 if (ret)
591 return ret;
592
593 return spinand_wait(spinand,
594 SPINAND_RESET_INITIAL_DELAY_US,
595 SPINAND_RESET_POLL_DELAY_US,
596 NULL);
597 }
598
spinand_lock_block(struct spinand_device * spinand,u8 lock)599 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
600 {
601 return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
602 }
603
spinand_read_page(struct spinand_device * spinand,const struct nand_page_io_req * req)604 static int spinand_read_page(struct spinand_device *spinand,
605 const struct nand_page_io_req *req)
606 {
607 struct nand_device *nand = spinand_to_nand(spinand);
608 u8 status;
609 int ret;
610
611 ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
612 if (ret)
613 return ret;
614
615 ret = spinand_load_page_op(spinand, req);
616 if (ret)
617 return ret;
618
619 ret = spinand_wait(spinand,
620 SPINAND_READ_INITIAL_DELAY_US,
621 SPINAND_READ_POLL_DELAY_US,
622 &status);
623 if (ret < 0)
624 return ret;
625
626 spinand_ondie_ecc_save_status(nand, status);
627
628 ret = spinand_read_from_cache_op(spinand, req);
629 if (ret)
630 return ret;
631
632 return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
633 }
634
spinand_write_page(struct spinand_device * spinand,const struct nand_page_io_req * req)635 static int spinand_write_page(struct spinand_device *spinand,
636 const struct nand_page_io_req *req)
637 {
638 struct nand_device *nand = spinand_to_nand(spinand);
639 u8 status;
640 int ret;
641
642 ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
643 if (ret)
644 return ret;
645
646 ret = spinand_write_enable_op(spinand);
647 if (ret)
648 return ret;
649
650 ret = spinand_write_to_cache_op(spinand, req);
651 if (ret)
652 return ret;
653
654 ret = spinand_program_op(spinand, req);
655 if (ret)
656 return ret;
657
658 ret = spinand_wait(spinand,
659 SPINAND_WRITE_INITIAL_DELAY_US,
660 SPINAND_WRITE_POLL_DELAY_US,
661 &status);
662 if (!ret && (status & STATUS_PROG_FAILED))
663 return -EIO;
664
665 return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
666 }
667
spinand_mtd_regular_page_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops,unsigned int * max_bitflips)668 static int spinand_mtd_regular_page_read(struct mtd_info *mtd, loff_t from,
669 struct mtd_oob_ops *ops,
670 unsigned int *max_bitflips)
671 {
672 struct spinand_device *spinand = mtd_to_spinand(mtd);
673 struct nand_device *nand = mtd_to_nanddev(mtd);
674 struct nand_io_iter iter;
675 bool disable_ecc = false;
676 bool ecc_failed = false;
677 int ret;
678
679 if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
680 disable_ecc = true;
681
682 nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) {
683 if (disable_ecc)
684 iter.req.mode = MTD_OPS_RAW;
685
686 ret = spinand_select_target(spinand, iter.req.pos.target);
687 if (ret)
688 break;
689
690 ret = spinand_read_page(spinand, &iter.req);
691 if (ret < 0 && ret != -EBADMSG)
692 break;
693
694 if (ret == -EBADMSG)
695 ecc_failed = true;
696 else
697 *max_bitflips = max_t(unsigned int, *max_bitflips, ret);
698
699 ret = 0;
700 ops->retlen += iter.req.datalen;
701 ops->oobretlen += iter.req.ooblen;
702 }
703
704 if (ecc_failed && !ret)
705 ret = -EBADMSG;
706
707 return ret;
708 }
709
spinand_mtd_continuous_page_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops,unsigned int * max_bitflips)710 static int spinand_mtd_continuous_page_read(struct mtd_info *mtd, loff_t from,
711 struct mtd_oob_ops *ops,
712 unsigned int *max_bitflips)
713 {
714 struct spinand_device *spinand = mtd_to_spinand(mtd);
715 struct nand_device *nand = mtd_to_nanddev(mtd);
716 struct nand_io_iter iter;
717 u8 status;
718 int ret;
719
720 ret = spinand_cont_read_enable(spinand, true);
721 if (ret)
722 return ret;
723
724 /*
725 * The cache is divided into two halves. While one half of the cache has
726 * the requested data, the other half is loaded with the next chunk of data.
727 * Therefore, the host can read out the data continuously from page to page.
728 * Each data read must be a multiple of 4-bytes and full pages should be read;
729 * otherwise, the data output might get out of sequence from one read command
730 * to another.
731 */
732 nanddev_io_for_each_block(nand, NAND_PAGE_READ, from, ops, &iter) {
733 ret = spinand_select_target(spinand, iter.req.pos.target);
734 if (ret)
735 goto end_cont_read;
736
737 ret = nand_ecc_prepare_io_req(nand, &iter.req);
738 if (ret)
739 goto end_cont_read;
740
741 ret = spinand_load_page_op(spinand, &iter.req);
742 if (ret)
743 goto end_cont_read;
744
745 ret = spinand_wait(spinand, SPINAND_READ_INITIAL_DELAY_US,
746 SPINAND_READ_POLL_DELAY_US, NULL);
747 if (ret < 0)
748 goto end_cont_read;
749
750 ret = spinand_read_from_cache_op(spinand, &iter.req);
751 if (ret)
752 goto end_cont_read;
753
754 ops->retlen += iter.req.datalen;
755
756 ret = spinand_read_status(spinand, &status);
757 if (ret)
758 goto end_cont_read;
759
760 spinand_ondie_ecc_save_status(nand, status);
761
762 ret = nand_ecc_finish_io_req(nand, &iter.req);
763 if (ret < 0)
764 goto end_cont_read;
765
766 *max_bitflips = max_t(unsigned int, *max_bitflips, ret);
767 ret = 0;
768 }
769
770 end_cont_read:
771 /*
772 * Once all the data has been read out, the host can either pull CS#
773 * high and wait for tRST or manually clear the bit in the configuration
774 * register to terminate the continuous read operation. We have no
775 * guarantee the SPI controller drivers will effectively deassert the CS
776 * when we expect them to, so take the register based approach.
777 */
778 spinand_cont_read_enable(spinand, false);
779
780 return ret;
781 }
782
spinand_cont_read_init(struct spinand_device * spinand)783 static void spinand_cont_read_init(struct spinand_device *spinand)
784 {
785 struct nand_device *nand = spinand_to_nand(spinand);
786 enum nand_ecc_engine_type engine_type = nand->ecc.ctx.conf.engine_type;
787
788 /* OOBs cannot be retrieved so external/on-host ECC engine won't work */
789 if (spinand->set_cont_read &&
790 (engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE ||
791 engine_type == NAND_ECC_ENGINE_TYPE_NONE)) {
792 spinand->cont_read_possible = true;
793 }
794 }
795
spinand_use_cont_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)796 static bool spinand_use_cont_read(struct mtd_info *mtd, loff_t from,
797 struct mtd_oob_ops *ops)
798 {
799 struct nand_device *nand = mtd_to_nanddev(mtd);
800 struct spinand_device *spinand = nand_to_spinand(nand);
801 struct nand_pos start_pos, end_pos;
802
803 if (!spinand->cont_read_possible)
804 return false;
805
806 /* OOBs won't be retrieved */
807 if (ops->ooblen || ops->oobbuf)
808 return false;
809
810 nanddev_offs_to_pos(nand, from, &start_pos);
811 nanddev_offs_to_pos(nand, from + ops->len - 1, &end_pos);
812
813 /*
814 * Continuous reads never cross LUN boundaries. Some devices don't
815 * support crossing planes boundaries. Some devices don't even support
816 * crossing blocks boundaries. The common case being to read through UBI,
817 * we will very rarely read two consequent blocks or more, so it is safer
818 * and easier (can be improved) to only enable continuous reads when
819 * reading within the same erase block.
820 */
821 if (start_pos.target != end_pos.target ||
822 start_pos.plane != end_pos.plane ||
823 start_pos.eraseblock != end_pos.eraseblock)
824 return false;
825
826 return start_pos.page < end_pos.page;
827 }
828
spinand_mtd_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)829 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
830 struct mtd_oob_ops *ops)
831 {
832 struct spinand_device *spinand = mtd_to_spinand(mtd);
833 struct mtd_ecc_stats old_stats;
834 unsigned int max_bitflips = 0;
835 int ret;
836
837 mutex_lock(&spinand->lock);
838
839 old_stats = mtd->ecc_stats;
840
841 if (spinand_use_cont_read(mtd, from, ops))
842 ret = spinand_mtd_continuous_page_read(mtd, from, ops, &max_bitflips);
843 else
844 ret = spinand_mtd_regular_page_read(mtd, from, ops, &max_bitflips);
845
846 if (ops->stats) {
847 ops->stats->uncorrectable_errors +=
848 mtd->ecc_stats.failed - old_stats.failed;
849 ops->stats->corrected_bitflips +=
850 mtd->ecc_stats.corrected - old_stats.corrected;
851 }
852
853 mutex_unlock(&spinand->lock);
854
855 return ret ? ret : max_bitflips;
856 }
857
spinand_mtd_write(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)858 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
859 struct mtd_oob_ops *ops)
860 {
861 struct spinand_device *spinand = mtd_to_spinand(mtd);
862 struct nand_device *nand = mtd_to_nanddev(mtd);
863 struct nand_io_iter iter;
864 bool disable_ecc = false;
865 int ret = 0;
866
867 if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
868 disable_ecc = true;
869
870 mutex_lock(&spinand->lock);
871
872 nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) {
873 if (disable_ecc)
874 iter.req.mode = MTD_OPS_RAW;
875
876 ret = spinand_select_target(spinand, iter.req.pos.target);
877 if (ret)
878 break;
879
880 ret = spinand_write_page(spinand, &iter.req);
881 if (ret)
882 break;
883
884 ops->retlen += iter.req.datalen;
885 ops->oobretlen += iter.req.ooblen;
886 }
887
888 mutex_unlock(&spinand->lock);
889
890 return ret;
891 }
892
spinand_isbad(struct nand_device * nand,const struct nand_pos * pos)893 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
894 {
895 struct spinand_device *spinand = nand_to_spinand(nand);
896 u8 marker[2] = { };
897 struct nand_page_io_req req = {
898 .pos = *pos,
899 .ooblen = sizeof(marker),
900 .ooboffs = 0,
901 .oobbuf.in = marker,
902 .mode = MTD_OPS_RAW,
903 };
904
905 spinand_select_target(spinand, pos->target);
906 spinand_read_page(spinand, &req);
907 if (marker[0] != 0xff || marker[1] != 0xff)
908 return true;
909
910 return false;
911 }
912
spinand_mtd_block_isbad(struct mtd_info * mtd,loff_t offs)913 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
914 {
915 struct nand_device *nand = mtd_to_nanddev(mtd);
916 struct spinand_device *spinand = nand_to_spinand(nand);
917 struct nand_pos pos;
918 int ret;
919
920 nanddev_offs_to_pos(nand, offs, &pos);
921 mutex_lock(&spinand->lock);
922 ret = nanddev_isbad(nand, &pos);
923 mutex_unlock(&spinand->lock);
924
925 return ret;
926 }
927
spinand_markbad(struct nand_device * nand,const struct nand_pos * pos)928 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
929 {
930 struct spinand_device *spinand = nand_to_spinand(nand);
931 u8 marker[2] = { };
932 struct nand_page_io_req req = {
933 .pos = *pos,
934 .ooboffs = 0,
935 .ooblen = sizeof(marker),
936 .oobbuf.out = marker,
937 .mode = MTD_OPS_RAW,
938 };
939 int ret;
940
941 ret = spinand_select_target(spinand, pos->target);
942 if (ret)
943 return ret;
944
945 ret = spinand_write_enable_op(spinand);
946 if (ret)
947 return ret;
948
949 return spinand_write_page(spinand, &req);
950 }
951
spinand_mtd_block_markbad(struct mtd_info * mtd,loff_t offs)952 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
953 {
954 struct nand_device *nand = mtd_to_nanddev(mtd);
955 struct spinand_device *spinand = nand_to_spinand(nand);
956 struct nand_pos pos;
957 int ret;
958
959 nanddev_offs_to_pos(nand, offs, &pos);
960 mutex_lock(&spinand->lock);
961 ret = nanddev_markbad(nand, &pos);
962 mutex_unlock(&spinand->lock);
963
964 return ret;
965 }
966
spinand_erase(struct nand_device * nand,const struct nand_pos * pos)967 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
968 {
969 struct spinand_device *spinand = nand_to_spinand(nand);
970 u8 status;
971 int ret;
972
973 ret = spinand_select_target(spinand, pos->target);
974 if (ret)
975 return ret;
976
977 ret = spinand_write_enable_op(spinand);
978 if (ret)
979 return ret;
980
981 ret = spinand_erase_op(spinand, pos);
982 if (ret)
983 return ret;
984
985 ret = spinand_wait(spinand,
986 SPINAND_ERASE_INITIAL_DELAY_US,
987 SPINAND_ERASE_POLL_DELAY_US,
988 &status);
989
990 if (!ret && (status & STATUS_ERASE_FAILED))
991 ret = -EIO;
992
993 return ret;
994 }
995
spinand_mtd_erase(struct mtd_info * mtd,struct erase_info * einfo)996 static int spinand_mtd_erase(struct mtd_info *mtd,
997 struct erase_info *einfo)
998 {
999 struct spinand_device *spinand = mtd_to_spinand(mtd);
1000 int ret;
1001
1002 mutex_lock(&spinand->lock);
1003 ret = nanddev_mtd_erase(mtd, einfo);
1004 mutex_unlock(&spinand->lock);
1005
1006 return ret;
1007 }
1008
spinand_mtd_block_isreserved(struct mtd_info * mtd,loff_t offs)1009 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
1010 {
1011 struct spinand_device *spinand = mtd_to_spinand(mtd);
1012 struct nand_device *nand = mtd_to_nanddev(mtd);
1013 struct nand_pos pos;
1014 int ret;
1015
1016 nanddev_offs_to_pos(nand, offs, &pos);
1017 mutex_lock(&spinand->lock);
1018 ret = nanddev_isreserved(nand, &pos);
1019 mutex_unlock(&spinand->lock);
1020
1021 return ret;
1022 }
1023
spinand_create_dirmap(struct spinand_device * spinand,unsigned int plane)1024 static int spinand_create_dirmap(struct spinand_device *spinand,
1025 unsigned int plane)
1026 {
1027 struct nand_device *nand = spinand_to_nand(spinand);
1028 struct spi_mem_dirmap_info info = {
1029 .length = nanddev_page_size(nand) +
1030 nanddev_per_page_oobsize(nand),
1031 };
1032 struct spi_mem_dirmap_desc *desc;
1033
1034 if (spinand->cont_read_possible)
1035 info.length = nanddev_eraseblock_size(nand);
1036
1037 /* The plane number is passed in MSB just above the column address */
1038 info.offset = plane << fls(nand->memorg.pagesize);
1039
1040 info.op_tmpl = *spinand->op_templates.update_cache;
1041 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
1042 spinand->spimem, &info);
1043 if (IS_ERR(desc))
1044 return PTR_ERR(desc);
1045
1046 spinand->dirmaps[plane].wdesc = desc;
1047
1048 info.op_tmpl = *spinand->op_templates.read_cache;
1049 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
1050 spinand->spimem, &info);
1051 if (IS_ERR(desc))
1052 return PTR_ERR(desc);
1053
1054 spinand->dirmaps[plane].rdesc = desc;
1055
1056 if (nand->ecc.engine->integration != NAND_ECC_ENGINE_INTEGRATION_PIPELINED) {
1057 spinand->dirmaps[plane].wdesc_ecc = spinand->dirmaps[plane].wdesc;
1058 spinand->dirmaps[plane].rdesc_ecc = spinand->dirmaps[plane].rdesc;
1059
1060 return 0;
1061 }
1062
1063 info.op_tmpl = *spinand->op_templates.update_cache;
1064 info.op_tmpl.data.ecc = true;
1065 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
1066 spinand->spimem, &info);
1067 if (IS_ERR(desc))
1068 return PTR_ERR(desc);
1069
1070 spinand->dirmaps[plane].wdesc_ecc = desc;
1071
1072 info.op_tmpl = *spinand->op_templates.read_cache;
1073 info.op_tmpl.data.ecc = true;
1074 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
1075 spinand->spimem, &info);
1076 if (IS_ERR(desc))
1077 return PTR_ERR(desc);
1078
1079 spinand->dirmaps[plane].rdesc_ecc = desc;
1080
1081 return 0;
1082 }
1083
spinand_create_dirmaps(struct spinand_device * spinand)1084 static int spinand_create_dirmaps(struct spinand_device *spinand)
1085 {
1086 struct nand_device *nand = spinand_to_nand(spinand);
1087 int i, ret;
1088
1089 spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev,
1090 sizeof(*spinand->dirmaps) *
1091 nand->memorg.planes_per_lun,
1092 GFP_KERNEL);
1093 if (!spinand->dirmaps)
1094 return -ENOMEM;
1095
1096 for (i = 0; i < nand->memorg.planes_per_lun; i++) {
1097 ret = spinand_create_dirmap(spinand, i);
1098 if (ret)
1099 return ret;
1100 }
1101
1102 return 0;
1103 }
1104
1105 static const struct nand_ops spinand_ops = {
1106 .erase = spinand_erase,
1107 .markbad = spinand_markbad,
1108 .isbad = spinand_isbad,
1109 };
1110
1111 static const struct spinand_manufacturer *spinand_manufacturers[] = {
1112 &alliancememory_spinand_manufacturer,
1113 &ato_spinand_manufacturer,
1114 &esmt_c8_spinand_manufacturer,
1115 &foresee_spinand_manufacturer,
1116 &gigadevice_spinand_manufacturer,
1117 ¯onix_spinand_manufacturer,
1118 µn_spinand_manufacturer,
1119 ¶gon_spinand_manufacturer,
1120 &toshiba_spinand_manufacturer,
1121 &winbond_spinand_manufacturer,
1122 &xtx_spinand_manufacturer,
1123 };
1124
spinand_manufacturer_match(struct spinand_device * spinand,enum spinand_readid_method rdid_method)1125 static int spinand_manufacturer_match(struct spinand_device *spinand,
1126 enum spinand_readid_method rdid_method)
1127 {
1128 u8 *id = spinand->id.data;
1129 unsigned int i;
1130 int ret;
1131
1132 for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
1133 const struct spinand_manufacturer *manufacturer =
1134 spinand_manufacturers[i];
1135
1136 if (id[0] != manufacturer->id)
1137 continue;
1138
1139 ret = spinand_match_and_init(spinand,
1140 manufacturer->chips,
1141 manufacturer->nchips,
1142 rdid_method);
1143 if (ret < 0)
1144 continue;
1145
1146 spinand->manufacturer = manufacturer;
1147 return 0;
1148 }
1149 return -EOPNOTSUPP;
1150 }
1151
spinand_id_detect(struct spinand_device * spinand)1152 static int spinand_id_detect(struct spinand_device *spinand)
1153 {
1154 u8 *id = spinand->id.data;
1155 int ret;
1156
1157 ret = spinand_read_id_op(spinand, 0, 0, id);
1158 if (ret)
1159 return ret;
1160 ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
1161 if (!ret)
1162 return 0;
1163
1164 ret = spinand_read_id_op(spinand, 1, 0, id);
1165 if (ret)
1166 return ret;
1167 ret = spinand_manufacturer_match(spinand,
1168 SPINAND_READID_METHOD_OPCODE_ADDR);
1169 if (!ret)
1170 return 0;
1171
1172 ret = spinand_read_id_op(spinand, 0, 1, id);
1173 if (ret)
1174 return ret;
1175 ret = spinand_manufacturer_match(spinand,
1176 SPINAND_READID_METHOD_OPCODE_DUMMY);
1177
1178 return ret;
1179 }
1180
spinand_manufacturer_init(struct spinand_device * spinand)1181 static int spinand_manufacturer_init(struct spinand_device *spinand)
1182 {
1183 if (spinand->manufacturer->ops->init)
1184 return spinand->manufacturer->ops->init(spinand);
1185
1186 return 0;
1187 }
1188
spinand_manufacturer_cleanup(struct spinand_device * spinand)1189 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
1190 {
1191 /* Release manufacturer private data */
1192 if (spinand->manufacturer->ops->cleanup)
1193 return spinand->manufacturer->ops->cleanup(spinand);
1194 }
1195
1196 static const struct spi_mem_op *
spinand_select_op_variant(struct spinand_device * spinand,const struct spinand_op_variants * variants)1197 spinand_select_op_variant(struct spinand_device *spinand,
1198 const struct spinand_op_variants *variants)
1199 {
1200 struct nand_device *nand = spinand_to_nand(spinand);
1201 unsigned int i;
1202
1203 for (i = 0; i < variants->nops; i++) {
1204 struct spi_mem_op op = variants->ops[i];
1205 unsigned int nbytes;
1206 int ret;
1207
1208 nbytes = nanddev_per_page_oobsize(nand) +
1209 nanddev_page_size(nand);
1210
1211 while (nbytes) {
1212 op.data.nbytes = nbytes;
1213 ret = spi_mem_adjust_op_size(spinand->spimem, &op);
1214 if (ret)
1215 break;
1216
1217 if (!spi_mem_supports_op(spinand->spimem, &op))
1218 break;
1219
1220 nbytes -= op.data.nbytes;
1221 }
1222
1223 if (!nbytes)
1224 return &variants->ops[i];
1225 }
1226
1227 return NULL;
1228 }
1229
1230 /**
1231 * spinand_match_and_init() - Try to find a match between a device ID and an
1232 * entry in a spinand_info table
1233 * @spinand: SPI NAND object
1234 * @table: SPI NAND device description table
1235 * @table_size: size of the device description table
1236 * @rdid_method: read id method to match
1237 *
1238 * Match between a device ID retrieved through the READ_ID command and an
1239 * entry in the SPI NAND description table. If a match is found, the spinand
1240 * object will be initialized with information provided by the matching
1241 * spinand_info entry.
1242 *
1243 * Return: 0 on success, a negative error code otherwise.
1244 */
spinand_match_and_init(struct spinand_device * spinand,const struct spinand_info * table,unsigned int table_size,enum spinand_readid_method rdid_method)1245 int spinand_match_and_init(struct spinand_device *spinand,
1246 const struct spinand_info *table,
1247 unsigned int table_size,
1248 enum spinand_readid_method rdid_method)
1249 {
1250 u8 *id = spinand->id.data;
1251 struct nand_device *nand = spinand_to_nand(spinand);
1252 unsigned int i;
1253
1254 for (i = 0; i < table_size; i++) {
1255 const struct spinand_info *info = &table[i];
1256 const struct spi_mem_op *op;
1257
1258 if (rdid_method != info->devid.method)
1259 continue;
1260
1261 if (memcmp(id + 1, info->devid.id, info->devid.len))
1262 continue;
1263
1264 nand->memorg = table[i].memorg;
1265 nanddev_set_ecc_requirements(nand, &table[i].eccreq);
1266 spinand->eccinfo = table[i].eccinfo;
1267 spinand->flags = table[i].flags;
1268 spinand->id.len = 1 + table[i].devid.len;
1269 spinand->select_target = table[i].select_target;
1270 spinand->set_cont_read = table[i].set_cont_read;
1271
1272 op = spinand_select_op_variant(spinand,
1273 info->op_variants.read_cache);
1274 if (!op)
1275 return -ENOTSUPP;
1276
1277 spinand->op_templates.read_cache = op;
1278
1279 op = spinand_select_op_variant(spinand,
1280 info->op_variants.write_cache);
1281 if (!op)
1282 return -ENOTSUPP;
1283
1284 spinand->op_templates.write_cache = op;
1285
1286 op = spinand_select_op_variant(spinand,
1287 info->op_variants.update_cache);
1288 spinand->op_templates.update_cache = op;
1289
1290 return 0;
1291 }
1292
1293 return -ENOTSUPP;
1294 }
1295
spinand_detect(struct spinand_device * spinand)1296 static int spinand_detect(struct spinand_device *spinand)
1297 {
1298 struct device *dev = &spinand->spimem->spi->dev;
1299 struct nand_device *nand = spinand_to_nand(spinand);
1300 int ret;
1301
1302 ret = spinand_reset_op(spinand);
1303 if (ret)
1304 return ret;
1305
1306 ret = spinand_id_detect(spinand);
1307 if (ret) {
1308 dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
1309 spinand->id.data);
1310 return ret;
1311 }
1312
1313 if (nand->memorg.ntargets > 1 && !spinand->select_target) {
1314 dev_err(dev,
1315 "SPI NANDs with more than one die must implement ->select_target()\n");
1316 return -EINVAL;
1317 }
1318
1319 dev_info(&spinand->spimem->spi->dev,
1320 "%s SPI NAND was found.\n", spinand->manufacturer->name);
1321 dev_info(&spinand->spimem->spi->dev,
1322 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
1323 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
1324 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
1325
1326 return 0;
1327 }
1328
spinand_init_flash(struct spinand_device * spinand)1329 static int spinand_init_flash(struct spinand_device *spinand)
1330 {
1331 struct device *dev = &spinand->spimem->spi->dev;
1332 struct nand_device *nand = spinand_to_nand(spinand);
1333 int ret, i;
1334
1335 ret = spinand_read_cfg(spinand);
1336 if (ret)
1337 return ret;
1338
1339 ret = spinand_init_quad_enable(spinand);
1340 if (ret)
1341 return ret;
1342
1343 ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1344 if (ret)
1345 return ret;
1346
1347 ret = spinand_manufacturer_init(spinand);
1348 if (ret) {
1349 dev_err(dev,
1350 "Failed to initialize the SPI NAND chip (err = %d)\n",
1351 ret);
1352 return ret;
1353 }
1354
1355 /* After power up, all blocks are locked, so unlock them here. */
1356 for (i = 0; i < nand->memorg.ntargets; i++) {
1357 ret = spinand_select_target(spinand, i);
1358 if (ret)
1359 break;
1360
1361 ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1362 if (ret)
1363 break;
1364 }
1365
1366 if (ret)
1367 spinand_manufacturer_cleanup(spinand);
1368
1369 return ret;
1370 }
1371
spinand_mtd_resume(struct mtd_info * mtd)1372 static void spinand_mtd_resume(struct mtd_info *mtd)
1373 {
1374 struct spinand_device *spinand = mtd_to_spinand(mtd);
1375 int ret;
1376
1377 ret = spinand_reset_op(spinand);
1378 if (ret)
1379 return;
1380
1381 ret = spinand_init_flash(spinand);
1382 if (ret)
1383 return;
1384
1385 spinand_ecc_enable(spinand, false);
1386 }
1387
spinand_init(struct spinand_device * spinand)1388 static int spinand_init(struct spinand_device *spinand)
1389 {
1390 struct device *dev = &spinand->spimem->spi->dev;
1391 struct mtd_info *mtd = spinand_to_mtd(spinand);
1392 struct nand_device *nand = mtd_to_nanddev(mtd);
1393 int ret;
1394
1395 /*
1396 * We need a scratch buffer because the spi_mem interface requires that
1397 * buf passed in spi_mem_op->data.buf be DMA-able.
1398 */
1399 spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1400 if (!spinand->scratchbuf)
1401 return -ENOMEM;
1402
1403 ret = spinand_detect(spinand);
1404 if (ret)
1405 goto err_free_bufs;
1406
1407 /*
1408 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1409 * may use this buffer for DMA access.
1410 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1411 */
1412 spinand->databuf = kzalloc(nanddev_eraseblock_size(nand),
1413 GFP_KERNEL);
1414 if (!spinand->databuf) {
1415 ret = -ENOMEM;
1416 goto err_free_bufs;
1417 }
1418
1419 spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1420
1421 ret = spinand_init_cfg_cache(spinand);
1422 if (ret)
1423 goto err_free_bufs;
1424
1425 ret = spinand_init_flash(spinand);
1426 if (ret)
1427 goto err_free_bufs;
1428
1429 ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1430 if (ret)
1431 goto err_manuf_cleanup;
1432
1433 /* SPI-NAND default ECC engine is on-die */
1434 nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
1435 nand->ecc.ondie_engine = &spinand_ondie_ecc_engine;
1436
1437 spinand_ecc_enable(spinand, false);
1438 ret = nanddev_ecc_engine_init(nand);
1439 if (ret)
1440 goto err_cleanup_nanddev;
1441
1442 /*
1443 * Continuous read can only be enabled with an on-die ECC engine, so the
1444 * ECC initialization must have happened previously.
1445 */
1446 spinand_cont_read_init(spinand);
1447
1448 mtd->_read_oob = spinand_mtd_read;
1449 mtd->_write_oob = spinand_mtd_write;
1450 mtd->_block_isbad = spinand_mtd_block_isbad;
1451 mtd->_block_markbad = spinand_mtd_block_markbad;
1452 mtd->_block_isreserved = spinand_mtd_block_isreserved;
1453 mtd->_erase = spinand_mtd_erase;
1454 mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
1455 mtd->_resume = spinand_mtd_resume;
1456
1457 if (nand->ecc.engine) {
1458 ret = mtd_ooblayout_count_freebytes(mtd);
1459 if (ret < 0)
1460 goto err_cleanup_ecc_engine;
1461 }
1462
1463 mtd->oobavail = ret;
1464
1465 /* Propagate ECC information to mtd_info */
1466 mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength;
1467 mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size;
1468 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
1469
1470 ret = spinand_create_dirmaps(spinand);
1471 if (ret) {
1472 dev_err(dev,
1473 "Failed to create direct mappings for read/write operations (err = %d)\n",
1474 ret);
1475 goto err_cleanup_ecc_engine;
1476 }
1477
1478 return 0;
1479
1480 err_cleanup_ecc_engine:
1481 nanddev_ecc_engine_cleanup(nand);
1482
1483 err_cleanup_nanddev:
1484 nanddev_cleanup(nand);
1485
1486 err_manuf_cleanup:
1487 spinand_manufacturer_cleanup(spinand);
1488
1489 err_free_bufs:
1490 kfree(spinand->databuf);
1491 kfree(spinand->scratchbuf);
1492 return ret;
1493 }
1494
spinand_cleanup(struct spinand_device * spinand)1495 static void spinand_cleanup(struct spinand_device *spinand)
1496 {
1497 struct nand_device *nand = spinand_to_nand(spinand);
1498
1499 nanddev_cleanup(nand);
1500 spinand_manufacturer_cleanup(spinand);
1501 kfree(spinand->databuf);
1502 kfree(spinand->scratchbuf);
1503 }
1504
spinand_probe(struct spi_mem * mem)1505 static int spinand_probe(struct spi_mem *mem)
1506 {
1507 struct spinand_device *spinand;
1508 struct mtd_info *mtd;
1509 int ret;
1510
1511 spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1512 GFP_KERNEL);
1513 if (!spinand)
1514 return -ENOMEM;
1515
1516 spinand->spimem = mem;
1517 spi_mem_set_drvdata(mem, spinand);
1518 spinand_set_of_node(spinand, mem->spi->dev.of_node);
1519 mutex_init(&spinand->lock);
1520 mtd = spinand_to_mtd(spinand);
1521 mtd->dev.parent = &mem->spi->dev;
1522
1523 ret = spinand_init(spinand);
1524 if (ret)
1525 return ret;
1526
1527 ret = mtd_device_register(mtd, NULL, 0);
1528 if (ret)
1529 goto err_spinand_cleanup;
1530
1531 return 0;
1532
1533 err_spinand_cleanup:
1534 spinand_cleanup(spinand);
1535
1536 return ret;
1537 }
1538
spinand_remove(struct spi_mem * mem)1539 static int spinand_remove(struct spi_mem *mem)
1540 {
1541 struct spinand_device *spinand;
1542 struct mtd_info *mtd;
1543 int ret;
1544
1545 spinand = spi_mem_get_drvdata(mem);
1546 mtd = spinand_to_mtd(spinand);
1547
1548 ret = mtd_device_unregister(mtd);
1549 if (ret)
1550 return ret;
1551
1552 spinand_cleanup(spinand);
1553
1554 return 0;
1555 }
1556
1557 static const struct spi_device_id spinand_ids[] = {
1558 { .name = "spi-nand" },
1559 { /* sentinel */ },
1560 };
1561 MODULE_DEVICE_TABLE(spi, spinand_ids);
1562
1563 #ifdef CONFIG_OF
1564 static const struct of_device_id spinand_of_ids[] = {
1565 { .compatible = "spi-nand" },
1566 { /* sentinel */ },
1567 };
1568 MODULE_DEVICE_TABLE(of, spinand_of_ids);
1569 #endif
1570
1571 static struct spi_mem_driver spinand_drv = {
1572 .spidrv = {
1573 .id_table = spinand_ids,
1574 .driver = {
1575 .name = "spi-nand",
1576 .of_match_table = of_match_ptr(spinand_of_ids),
1577 },
1578 },
1579 .probe = spinand_probe,
1580 .remove = spinand_remove,
1581 };
1582 module_spi_mem_driver(spinand_drv);
1583
1584 MODULE_DESCRIPTION("SPI NAND framework");
1585 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1586 MODULE_LICENSE("GPL v2");
1587