xref: /linux/include/linux/spi/spi.h (revision 5722a6cecfff3e381b96bbbd7e9b3911731e80d9)
1 /* SPDX-License-Identifier: GPL-2.0-or-later
2  *
3  * Copyright (C) 2005 David Brownell
4  */
5 
6 #ifndef __LINUX_SPI_H
7 #define __LINUX_SPI_H
8 
9 #include <linux/acpi.h>
10 #include <linux/bits.h>
11 #include <linux/completion.h>
12 #include <linux/device.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/kthread.h>
15 #include <linux/mod_devicetable.h>
16 #include <linux/overflow.h>
17 #include <linux/scatterlist.h>
18 #include <linux/slab.h>
19 #include <linux/u64_stats_sync.h>
20 
21 #include <uapi/linux/spi/spi.h>
22 
23 /* Max no. of CS supported per spi device */
24 #define SPI_CS_CNT_MAX 16
25 
26 struct dma_chan;
27 struct software_node;
28 struct ptp_system_timestamp;
29 struct spi_controller;
30 struct spi_transfer;
31 struct spi_controller_mem_ops;
32 struct spi_controller_mem_caps;
33 struct spi_message;
34 struct spi_offload;
35 struct spi_offload_config;
36 
37 /*
38  * INTERFACES between SPI controller-side drivers and SPI target protocol handlers,
39  * and SPI infrastructure.
40  */
41 extern const struct bus_type spi_bus_type;
42 
43 /**
44  * struct spi_statistics - statistics for spi transfers
45  * @syncp:         seqcount to protect members in this struct for per-cpu update
46  *                 on 32-bit systems
47  *
48  * @messages:      number of spi-messages handled
49  * @transfers:     number of spi_transfers handled
50  * @errors:        number of errors during spi_transfer
51  * @timedout:      number of timeouts during spi_transfer
52  *
53  * @spi_sync:      number of times spi_sync is used
54  * @spi_sync_immediate:
55  *                 number of times spi_sync is executed immediately
56  *                 in calling context without queuing and scheduling
57  * @spi_async:     number of times spi_async is used
58  *
59  * @bytes:         number of bytes transferred to/from device
60  * @bytes_tx:      number of bytes sent to device
61  * @bytes_rx:      number of bytes received from device
62  *
63  * @transfer_bytes_histo:
64  *                 transfer bytes histogram
65  *
66  * @transfers_split_maxsize:
67  *                 number of transfers that have been split because of
68  *                 maxsize limit
69  */
70 struct spi_statistics {
71 	struct u64_stats_sync	syncp;
72 
73 	u64_stats_t		messages;
74 	u64_stats_t		transfers;
75 	u64_stats_t		errors;
76 	u64_stats_t		timedout;
77 
78 	u64_stats_t		spi_sync;
79 	u64_stats_t		spi_sync_immediate;
80 	u64_stats_t		spi_async;
81 
82 	u64_stats_t		bytes;
83 	u64_stats_t		bytes_rx;
84 	u64_stats_t		bytes_tx;
85 
86 #define SPI_STATISTICS_HISTO_SIZE 17
87 	u64_stats_t	transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
88 
89 	u64_stats_t	transfers_split_maxsize;
90 };
91 
92 #define SPI_STATISTICS_ADD_TO_FIELD(pcpu_stats, field, count)		\
93 	do {								\
94 		struct spi_statistics *__lstats;			\
95 		get_cpu();						\
96 		__lstats = this_cpu_ptr(pcpu_stats);			\
97 		u64_stats_update_begin(&__lstats->syncp);		\
98 		u64_stats_add(&__lstats->field, count);			\
99 		u64_stats_update_end(&__lstats->syncp);			\
100 		put_cpu();						\
101 	} while (0)
102 
103 #define SPI_STATISTICS_INCREMENT_FIELD(pcpu_stats, field)		\
104 	do {								\
105 		struct spi_statistics *__lstats;			\
106 		get_cpu();						\
107 		__lstats = this_cpu_ptr(pcpu_stats);			\
108 		u64_stats_update_begin(&__lstats->syncp);		\
109 		u64_stats_inc(&__lstats->field);			\
110 		u64_stats_update_end(&__lstats->syncp);			\
111 		put_cpu();						\
112 	} while (0)
113 
114 /**
115  * struct spi_delay - SPI delay information
116  * @value: Value for the delay
117  * @unit: Unit for the delay
118  */
119 struct spi_delay {
120 #define SPI_DELAY_UNIT_USECS	0
121 #define SPI_DELAY_UNIT_NSECS	1
122 #define SPI_DELAY_UNIT_SCK	2
123 	u16	value;
124 	u8	unit;
125 };
126 
127 extern int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer);
128 extern int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer);
129 extern void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
130 						  struct spi_transfer *xfer);
131 
132 /**
133  * struct spi_device - Controller side proxy for an SPI target device
134  * @dev: Driver model representation of the device.
135  * @controller: SPI controller used with the device.
136  * @max_speed_hz: Maximum clock rate to be used with this chip
137  *	(on this board); may be changed by the device's driver.
138  *	The spi_transfer.speed_hz can override this for each transfer.
139  * @bits_per_word: Data transfers involve one or more words; word sizes
140  *	like eight or 12 bits are common.  In-memory wordsizes are
141  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
142  *	This may be changed by the device's driver, or left at the
143  *	default (0) indicating protocol words are eight bit bytes.
144  *	The spi_transfer.bits_per_word can override this for each transfer.
145  * @rt: Make the pump thread real time priority.
146  * @mode: The spi mode defines how data is clocked out and in.
147  *	This may be changed by the device's driver.
148  *	The "active low" default for chipselect mode can be overridden
149  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
150  *	each word in a transfer (by specifying SPI_LSB_FIRST).
151  * @irq: Negative, or the number passed to request_irq() to receive
152  *	interrupts from this device.
153  * @controller_state: Controller's runtime state
154  * @controller_data: Board-specific definitions for controller, such as
155  *	FIFO initialization parameters; from board_info.controller_data
156  * @modalias: Name of the driver to use with this device, or an alias
157  *	for that name.  This appears in the sysfs "modalias" attribute
158  *	for driver coldplugging, and in uevents used for hotplugging
159  * @driver_override: If the name of a driver is written to this attribute, then
160  *	the device will bind to the named driver and only the named driver.
161  *	Do not set directly, because core frees it; use driver_set_override() to
162  *	set or clear it.
163  * @pcpu_statistics: statistics for the spi_device
164  * @word_delay: delay to be inserted between consecutive
165  *	words of a transfer
166  * @cs_setup: delay to be introduced by the controller after CS is asserted
167  * @cs_hold: delay to be introduced by the controller before CS is deasserted
168  * @cs_inactive: delay to be introduced by the controller after CS is
169  *	deasserted. If @cs_change_delay is used from @spi_transfer, then the
170  *	two delays will be added up.
171  * @chip_select: Array of physical chipselect, spi->chipselect[i] gives
172  *	the corresponding physical CS for logical CS i.
173  * @cs_index_mask: Bit mask of the active chipselect(s) in the chipselect array
174  * @cs_gpiod: Array of GPIO descriptors of the corresponding chipselect lines
175  *	(optional, NULL when not using a GPIO line)
176  *
177  * A @spi_device is used to interchange data between an SPI target device
178  * (usually a discrete chip) and CPU memory.
179  *
180  * In @dev, the platform_data is used to hold information about this
181  * device that's meaningful to the device's protocol driver, but not
182  * to its controller.  One example might be an identifier for a chip
183  * variant with slightly different functionality; another might be
184  * information about how this particular board wires the chip's pins.
185  */
186 struct spi_device {
187 	struct device		dev;
188 	struct spi_controller	*controller;
189 	u32			max_speed_hz;
190 	u8			bits_per_word;
191 	bool			rt;
192 #define SPI_NO_TX		BIT(31)		/* No transmit wire */
193 #define SPI_NO_RX		BIT(30)		/* No receive wire */
194 	/*
195 	 * TPM specification defines flow control over SPI. Client device
196 	 * can insert a wait state on MISO when address is transmitted by
197 	 * controller on MOSI. Detecting the wait state in software is only
198 	 * possible for full duplex controllers. For controllers that support
199 	 * only half-duplex, the wait state detection needs to be implemented
200 	 * in hardware. TPM devices would set this flag when hardware flow
201 	 * control is expected from SPI controller.
202 	 */
203 #define SPI_TPM_HW_FLOW		BIT(29)		/* TPM HW flow control */
204 	/*
205 	 * All bits defined above should be covered by SPI_MODE_KERNEL_MASK.
206 	 * The SPI_MODE_KERNEL_MASK has the SPI_MODE_USER_MASK counterpart,
207 	 * which is defined in 'include/uapi/linux/spi/spi.h'.
208 	 * The bits defined here are from bit 31 downwards, while in
209 	 * SPI_MODE_USER_MASK are from 0 upwards.
210 	 * These bits must not overlap. A static assert check should make sure of that.
211 	 * If adding extra bits, make sure to decrease the bit index below as well.
212 	 */
213 #define SPI_MODE_KERNEL_MASK	(~(BIT(29) - 1))
214 	u32			mode;
215 	int			irq;
216 	void			*controller_state;
217 	void			*controller_data;
218 	char			modalias[SPI_NAME_SIZE];
219 	const char		*driver_override;
220 
221 	/* The statistics */
222 	struct spi_statistics __percpu	*pcpu_statistics;
223 
224 	struct spi_delay	word_delay; /* Inter-word delay */
225 
226 	/* CS delays */
227 	struct spi_delay	cs_setup;
228 	struct spi_delay	cs_hold;
229 	struct spi_delay	cs_inactive;
230 
231 	u8			chip_select[SPI_CS_CNT_MAX];
232 
233 	/*
234 	 * Bit mask of the chipselect(s) that the driver need to use from
235 	 * the chipselect array. When the controller is capable to handle
236 	 * multiple chip selects & memories are connected in parallel
237 	 * then more than one bit need to be set in cs_index_mask.
238 	 */
239 	u32			cs_index_mask : SPI_CS_CNT_MAX;
240 
241 	struct gpio_desc	*cs_gpiod[SPI_CS_CNT_MAX];	/* Chip select gpio desc */
242 
243 	/*
244 	 * Likely need more hooks for more protocol options affecting how
245 	 * the controller talks to each chip, like:
246 	 *  - memory packing (12 bit samples into low bits, others zeroed)
247 	 *  - priority
248 	 *  - chipselect delays
249 	 *  - ...
250 	 */
251 };
252 
253 /* Make sure that SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK don't overlap */
254 static_assert((SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK) == 0,
255 	      "SPI_MODE_USER_MASK & SPI_MODE_KERNEL_MASK must not overlap");
256 
257 #define to_spi_device(__dev)	container_of_const(__dev, struct spi_device, dev)
258 
259 /* Most drivers won't need to care about device refcounting */
spi_dev_get(struct spi_device * spi)260 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
261 {
262 	return (spi && get_device(&spi->dev)) ? spi : NULL;
263 }
264 
spi_dev_put(struct spi_device * spi)265 static inline void spi_dev_put(struct spi_device *spi)
266 {
267 	if (spi)
268 		put_device(&spi->dev);
269 }
270 
271 /* ctldata is for the bus_controller driver's runtime state */
spi_get_ctldata(const struct spi_device * spi)272 static inline void *spi_get_ctldata(const struct spi_device *spi)
273 {
274 	return spi->controller_state;
275 }
276 
spi_set_ctldata(struct spi_device * spi,void * state)277 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
278 {
279 	spi->controller_state = state;
280 }
281 
282 /* Device driver data */
283 
spi_set_drvdata(struct spi_device * spi,void * data)284 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
285 {
286 	dev_set_drvdata(&spi->dev, data);
287 }
288 
spi_get_drvdata(const struct spi_device * spi)289 static inline void *spi_get_drvdata(const struct spi_device *spi)
290 {
291 	return dev_get_drvdata(&spi->dev);
292 }
293 
spi_get_chipselect(const struct spi_device * spi,u8 idx)294 static inline u8 spi_get_chipselect(const struct spi_device *spi, u8 idx)
295 {
296 	return spi->chip_select[idx];
297 }
298 
spi_set_chipselect(struct spi_device * spi,u8 idx,u8 chipselect)299 static inline void spi_set_chipselect(struct spi_device *spi, u8 idx, u8 chipselect)
300 {
301 	spi->chip_select[idx] = chipselect;
302 }
303 
spi_get_csgpiod(const struct spi_device * spi,u8 idx)304 static inline struct gpio_desc *spi_get_csgpiod(const struct spi_device *spi, u8 idx)
305 {
306 	return spi->cs_gpiod[idx];
307 }
308 
spi_set_csgpiod(struct spi_device * spi,u8 idx,struct gpio_desc * csgpiod)309 static inline void spi_set_csgpiod(struct spi_device *spi, u8 idx, struct gpio_desc *csgpiod)
310 {
311 	spi->cs_gpiod[idx] = csgpiod;
312 }
313 
spi_is_csgpiod(struct spi_device * spi)314 static inline bool spi_is_csgpiod(struct spi_device *spi)
315 {
316 	u8 idx;
317 
318 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
319 		if (spi_get_csgpiod(spi, idx))
320 			return true;
321 	}
322 	return false;
323 }
324 
325 /**
326  * struct spi_driver - Host side "protocol" driver
327  * @id_table: List of SPI devices supported by this driver
328  * @probe: Binds this driver to the SPI device.  Drivers can verify
329  *	that the device is actually present, and may need to configure
330  *	characteristics (such as bits_per_word) which weren't needed for
331  *	the initial configuration done during system setup.
332  * @remove: Unbinds this driver from the SPI device
333  * @shutdown: Standard shutdown callback used during system state
334  *	transitions such as powerdown/halt and kexec
335  * @driver: SPI device drivers should initialize the name and owner
336  *	field of this structure.
337  *
338  * This represents the kind of device driver that uses SPI messages to
339  * interact with the hardware at the other end of a SPI link.  It's called
340  * a "protocol" driver because it works through messages rather than talking
341  * directly to SPI hardware (which is what the underlying SPI controller
342  * driver does to pass those messages).  These protocols are defined in the
343  * specification for the device(s) supported by the driver.
344  *
345  * As a rule, those device protocols represent the lowest level interface
346  * supported by a driver, and it will support upper level interfaces too.
347  * Examples of such upper levels include frameworks like MTD, networking,
348  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
349  */
350 struct spi_driver {
351 	const struct spi_device_id *id_table;
352 	int			(*probe)(struct spi_device *spi);
353 	void			(*remove)(struct spi_device *spi);
354 	void			(*shutdown)(struct spi_device *spi);
355 	struct device_driver	driver;
356 };
357 
358 #define to_spi_driver(__drv)   \
359 	( __drv ? container_of_const(__drv, struct spi_driver, driver) : NULL )
360 
361 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
362 
363 /**
364  * spi_unregister_driver - reverse effect of spi_register_driver
365  * @sdrv: the driver to unregister
366  * Context: can sleep
367  */
spi_unregister_driver(struct spi_driver * sdrv)368 static inline void spi_unregister_driver(struct spi_driver *sdrv)
369 {
370 	if (sdrv)
371 		driver_unregister(&sdrv->driver);
372 }
373 
374 extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 chip_select);
375 
376 /* Use a define to avoid include chaining to get THIS_MODULE */
377 #define spi_register_driver(driver) \
378 	__spi_register_driver(THIS_MODULE, driver)
379 
380 /**
381  * module_spi_driver() - Helper macro for registering a SPI driver
382  * @__spi_driver: spi_driver struct
383  *
384  * Helper macro for SPI drivers which do not do anything special in module
385  * init/exit. This eliminates a lot of boilerplate. Each module may only
386  * use this macro once, and calling it replaces module_init() and module_exit()
387  */
388 #define module_spi_driver(__spi_driver) \
389 	module_driver(__spi_driver, spi_register_driver, \
390 			spi_unregister_driver)
391 
392 /**
393  * struct spi_controller - interface to SPI host or target controller
394  * @dev: device interface to this driver
395  * @list: link with the global spi_controller list
396  * @bus_num: board-specific (and often SOC-specific) identifier for a
397  *	given SPI controller.
398  * @num_chipselect: chipselects are used to distinguish individual
399  *	SPI targets, and are numbered from zero to num_chipselects.
400  *	each target has a chipselect signal, but it's common that not
401  *	every chipselect is connected to a target.
402  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
403  * @mode_bits: flags understood by this controller driver
404  * @buswidth_override_bits: flags to override for this controller driver
405  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
406  *	supported by the driver. Bit n indicates that a bits_per_word n+1 is
407  *	supported. If set, the SPI core will reject any transfer with an
408  *	unsupported bits_per_word. If not set, this value is simply ignored,
409  *	and it's up to the individual driver to perform any validation.
410  * @min_speed_hz: Lowest supported transfer speed
411  * @max_speed_hz: Highest supported transfer speed
412  * @flags: other constraints relevant to this driver
413  * @slave: indicates that this is an SPI slave controller
414  * @target: indicates that this is an SPI target controller
415  * @devm_allocated: whether the allocation of this struct is devres-managed
416  * @max_transfer_size: function that returns the max transfer size for
417  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
418  * @max_message_size: function that returns the max message size for
419  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
420  * @io_mutex: mutex for physical bus access
421  * @add_lock: mutex to avoid adding devices to the same chipselect
422  * @bus_lock_spinlock: spinlock for SPI bus locking
423  * @bus_lock_mutex: mutex for exclusion of multiple callers
424  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
425  * @setup: updates the device mode and clocking records used by a
426  *	device's SPI controller; protocol code may call this.  This
427  *	must fail if an unrecognized or unsupported mode is requested.
428  *	It's always safe to call this unless transfers are pending on
429  *	the device whose settings are being modified.
430  * @set_cs_timing: optional hook for SPI devices to request SPI
431  * controller for configuring specific CS setup time, hold time and inactive
432  * delay in terms of clock counts
433  * @transfer: adds a message to the controller's transfer queue.
434  * @cleanup: frees controller-specific state
435  * @can_dma: determine whether this controller supports DMA
436  * @dma_map_dev: device which can be used for DMA mapping
437  * @cur_rx_dma_dev: device which is currently used for RX DMA mapping
438  * @cur_tx_dma_dev: device which is currently used for TX DMA mapping
439  * @queued: whether this controller is providing an internal message queue
440  * @kworker: pointer to thread struct for message pump
441  * @pump_messages: work struct for scheduling work to the message pump
442  * @queue_lock: spinlock to synchronise access to message queue
443  * @queue: message queue
444  * @cur_msg: the currently in-flight message
445  * @cur_msg_completion: a completion for the current in-flight message
446  * @cur_msg_incomplete: Flag used internally to opportunistically skip
447  *	the @cur_msg_completion. This flag is used to check if the driver has
448  *	already called spi_finalize_current_message().
449  * @cur_msg_need_completion: Flag used internally to opportunistically skip
450  *	the @cur_msg_completion. This flag is used to signal the context that
451  *	is running spi_finalize_current_message() that it needs to complete()
452  * @fallback: fallback to PIO if DMA transfer return failure with
453  *	SPI_TRANS_FAIL_NO_START.
454  * @last_cs_mode_high: was (mode & SPI_CS_HIGH) true on the last call to set_cs.
455  * @last_cs: the last chip_select that is recorded by set_cs, -1 on non chip
456  *           selected
457  * @last_cs_index_mask: bit mask the last chip selects that were used
458  * @xfer_completion: used by core transfer_one_message()
459  * @busy: message pump is busy
460  * @running: message pump is running
461  * @rt: whether this queue is set to run as a realtime task
462  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
463  *                   while the hardware is prepared, using the parent
464  *                   device for the spidev
465  * @max_dma_len: Maximum length of a DMA transfer for the device.
466  * @prepare_transfer_hardware: a message will soon arrive from the queue
467  *	so the subsystem requests the driver to prepare the transfer hardware
468  *	by issuing this call
469  * @transfer_one_message: the subsystem calls the driver to transfer a single
470  *	message while queuing transfers that arrive in the meantime. When the
471  *	driver is finished with this message, it must call
472  *	spi_finalize_current_message() so the subsystem can issue the next
473  *	message
474  * @unprepare_transfer_hardware: there are currently no more messages on the
475  *	queue so the subsystem notifies the driver that it may relax the
476  *	hardware by issuing this call
477  *
478  * @set_cs: set the logic level of the chip select line.  May be called
479  *          from interrupt context.
480  * @optimize_message: optimize the message for reuse
481  * @unoptimize_message: release resources allocated by optimize_message
482  * @prepare_message: set up the controller to transfer a single message,
483  *                   for example doing DMA mapping.  Called from threaded
484  *                   context.
485  * @transfer_one: transfer a single spi_transfer.
486  *
487  *                  - return 0 if the transfer is finished,
488  *                  - return 1 if the transfer is still in progress. When
489  *                    the driver is finished with this transfer it must
490  *                    call spi_finalize_current_transfer() so the subsystem
491  *                    can issue the next transfer. If the transfer fails, the
492  *                    driver must set the flag SPI_TRANS_FAIL_IO to
493  *                    spi_transfer->error first, before calling
494  *                    spi_finalize_current_transfer().
495  *                    Note: transfer_one and transfer_one_message are mutually
496  *                    exclusive; when both are set, the generic subsystem does
497  *                    not call your transfer_one callback.
498  * @handle_err: the subsystem calls the driver to handle an error that occurs
499  *		in the generic implementation of transfer_one_message().
500  * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
501  *	     This field is optional and should only be implemented if the
502  *	     controller has native support for memory like operations.
503  * @get_offload: callback for controllers with offload support to get matching
504  *	offload instance. Implementations should return -ENODEV if no match is
505  *	found.
506  * @put_offload: release the offload instance acquired by @get_offload.
507  * @mem_caps: controller capabilities for the handling of memory operations.
508  * @dtr_caps: true if controller has dtr(single/dual transfer rate) capability.
509  *	QSPI based controller should fill this based on controller's capability.
510  * @unprepare_message: undo any work done by prepare_message().
511  * @target_abort: abort the ongoing transfer request on an SPI target controller
512  * @cs_gpiods: Array of GPIO descriptors to use as chip select lines; one per CS
513  *	number. Any individual value may be NULL for CS lines that
514  *	are not GPIOs (driven by the SPI controller itself).
515  * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
516  *	GPIO descriptors. This will fill in @cs_gpiods and SPI devices will have
517  *	the cs_gpiod assigned if a GPIO line is found for the chipselect.
518  * @unused_native_cs: When cs_gpiods is used, spi_register_controller() will
519  *	fill in this field with the first unused native CS, to be used by SPI
520  *	controller drivers that need to drive a native CS when using GPIO CS.
521  * @max_native_cs: When cs_gpiods is used, and this field is filled in,
522  *	spi_register_controller() will validate all native CS (including the
523  *	unused native CS) against this value.
524  * @pcpu_statistics: statistics for the spi_controller
525  * @dma_tx: DMA transmit channel
526  * @dma_rx: DMA receive channel
527  * @dummy_rx: dummy receive buffer for full-duplex devices
528  * @dummy_tx: dummy transmit buffer for full-duplex devices
529  * @fw_translate_cs: If the boot firmware uses different numbering scheme
530  *	what Linux expects, this optional hook can be used to translate
531  *	between the two.
532  * @ptp_sts_supported: If the driver sets this to true, it must provide a
533  *	time snapshot in @spi_transfer->ptp_sts as close as possible to the
534  *	moment in time when @spi_transfer->ptp_sts_word_pre and
535  *	@spi_transfer->ptp_sts_word_post were transmitted.
536  *	If the driver does not set this, the SPI core takes the snapshot as
537  *	close to the driver hand-over as possible.
538  * @irq_flags: Interrupt enable state during PTP system timestamping
539  * @queue_empty: signal green light for opportunistically skipping the queue
540  *	for spi_sync transfers.
541  * @must_async: disable all fast paths in the core
542  * @defer_optimize_message: set to true if controller cannot pre-optimize messages
543  *	and needs to defer the optimization step until the message is actually
544  *	being transferred
545  *
546  * Each SPI controller can communicate with one or more @spi_device
547  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
548  * but not chip select signals.  Each device may be configured to use a
549  * different clock rate, since those shared signals are ignored unless
550  * the chip is selected.
551  *
552  * The driver for an SPI controller manages access to those devices through
553  * a queue of spi_message transactions, copying data between CPU memory and
554  * an SPI target device.  For each such message it queues, it calls the
555  * message's completion function when the transaction completes.
556  */
557 struct spi_controller {
558 	struct device	dev;
559 
560 	struct list_head list;
561 
562 	/*
563 	 * Other than negative (== assign one dynamically), bus_num is fully
564 	 * board-specific. Usually that simplifies to being SoC-specific.
565 	 * example: one SoC has three SPI controllers, numbered 0..2,
566 	 * and one board's schematics might show it using SPI-2. Software
567 	 * would normally use bus_num=2 for that controller.
568 	 */
569 	s16			bus_num;
570 
571 	/*
572 	 * Chipselects will be integral to many controllers; some others
573 	 * might use board-specific GPIOs.
574 	 */
575 	u16			num_chipselect;
576 
577 	/* Some SPI controllers pose alignment requirements on DMAable
578 	 * buffers; let protocol drivers know about these requirements.
579 	 */
580 	u16			dma_alignment;
581 
582 	/* spi_device.mode flags understood by this controller driver */
583 	u32			mode_bits;
584 
585 	/* spi_device.mode flags override flags for this controller */
586 	u32			buswidth_override_bits;
587 
588 	/* Bitmask of supported bits_per_word for transfers */
589 	u32			bits_per_word_mask;
590 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
591 #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1)
592 
593 	/* Limits on transfer speed */
594 	u32			min_speed_hz;
595 	u32			max_speed_hz;
596 
597 	/* Other constraints relevant to this driver */
598 	u16			flags;
599 #define SPI_CONTROLLER_HALF_DUPLEX	BIT(0)	/* Can't do full duplex */
600 #define SPI_CONTROLLER_NO_RX		BIT(1)	/* Can't do buffer read */
601 #define SPI_CONTROLLER_NO_TX		BIT(2)	/* Can't do buffer write */
602 #define SPI_CONTROLLER_MUST_RX		BIT(3)	/* Requires rx */
603 #define SPI_CONTROLLER_MUST_TX		BIT(4)	/* Requires tx */
604 #define SPI_CONTROLLER_GPIO_SS		BIT(5)	/* GPIO CS must select target device */
605 #define SPI_CONTROLLER_SUSPENDED	BIT(6)	/* Currently suspended */
606 	/*
607 	 * The spi-controller has multi chip select capability and can
608 	 * assert/de-assert more than one chip select at once.
609 	 */
610 #define SPI_CONTROLLER_MULTI_CS		BIT(7)
611 
612 	/* Flag indicating if the allocation of this struct is devres-managed */
613 	bool			devm_allocated;
614 
615 	union {
616 		/* Flag indicating this is an SPI slave controller */
617 		bool			slave;
618 		/* Flag indicating this is an SPI target controller */
619 		bool			target;
620 	};
621 
622 	/*
623 	 * On some hardware transfer / message size may be constrained
624 	 * the limit may depend on device transfer settings.
625 	 */
626 	size_t (*max_transfer_size)(struct spi_device *spi);
627 	size_t (*max_message_size)(struct spi_device *spi);
628 
629 	/* I/O mutex */
630 	struct mutex		io_mutex;
631 
632 	/* Used to avoid adding the same CS twice */
633 	struct mutex		add_lock;
634 
635 	/* Lock and mutex for SPI bus locking */
636 	spinlock_t		bus_lock_spinlock;
637 	struct mutex		bus_lock_mutex;
638 
639 	/* Flag indicating that the SPI bus is locked for exclusive use */
640 	bool			bus_lock_flag;
641 
642 	/*
643 	 * Setup mode and clock, etc (SPI driver may call many times).
644 	 *
645 	 * IMPORTANT:  this may be called when transfers to another
646 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
647 	 * which could break those transfers.
648 	 */
649 	int			(*setup)(struct spi_device *spi);
650 
651 	/*
652 	 * set_cs_timing() method is for SPI controllers that supports
653 	 * configuring CS timing.
654 	 *
655 	 * This hook allows SPI client drivers to request SPI controllers
656 	 * to configure specific CS timing through spi_set_cs_timing() after
657 	 * spi_setup().
658 	 */
659 	int (*set_cs_timing)(struct spi_device *spi);
660 
661 	/*
662 	 * Bidirectional bulk transfers
663 	 *
664 	 * + The transfer() method may not sleep; its main role is
665 	 *   just to add the message to the queue.
666 	 * + For now there's no remove-from-queue operation, or
667 	 *   any other request management
668 	 * + To a given spi_device, message queueing is pure FIFO
669 	 *
670 	 * + The controller's main job is to process its message queue,
671 	 *   selecting a chip (for controllers), then transferring data
672 	 * + If there are multiple spi_device children, the i/o queue
673 	 *   arbitration algorithm is unspecified (round robin, FIFO,
674 	 *   priority, reservations, preemption, etc)
675 	 *
676 	 * + Chipselect stays active during the entire message
677 	 *   (unless modified by spi_transfer.cs_change != 0).
678 	 * + The message transfers use clock and SPI mode parameters
679 	 *   previously established by setup() for this device
680 	 */
681 	int			(*transfer)(struct spi_device *spi,
682 						struct spi_message *mesg);
683 
684 	/* Called on release() to free memory provided by spi_controller */
685 	void			(*cleanup)(struct spi_device *spi);
686 
687 	/*
688 	 * Used to enable core support for DMA handling, if can_dma()
689 	 * exists and returns true then the transfer will be mapped
690 	 * prior to transfer_one() being called.  The driver should
691 	 * not modify or store xfer and dma_tx and dma_rx must be set
692 	 * while the device is prepared.
693 	 */
694 	bool			(*can_dma)(struct spi_controller *ctlr,
695 					   struct spi_device *spi,
696 					   struct spi_transfer *xfer);
697 	struct device *dma_map_dev;
698 	struct device *cur_rx_dma_dev;
699 	struct device *cur_tx_dma_dev;
700 
701 	/*
702 	 * These hooks are for drivers that want to use the generic
703 	 * controller transfer queueing mechanism. If these are used, the
704 	 * transfer() function above must NOT be specified by the driver.
705 	 * Over time we expect SPI drivers to be phased over to this API.
706 	 */
707 	bool				queued;
708 	struct kthread_worker		*kworker;
709 	struct kthread_work		pump_messages;
710 	spinlock_t			queue_lock;
711 	struct list_head		queue;
712 	struct spi_message		*cur_msg;
713 	struct completion               cur_msg_completion;
714 	bool				cur_msg_incomplete;
715 	bool				cur_msg_need_completion;
716 	bool				busy;
717 	bool				running;
718 	bool				rt;
719 	bool				auto_runtime_pm;
720 	bool                            fallback;
721 	bool				last_cs_mode_high;
722 	s8				last_cs[SPI_CS_CNT_MAX];
723 	u32				last_cs_index_mask : SPI_CS_CNT_MAX;
724 	struct completion               xfer_completion;
725 	size_t				max_dma_len;
726 
727 	int (*optimize_message)(struct spi_message *msg);
728 	int (*unoptimize_message)(struct spi_message *msg);
729 	int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
730 	int (*transfer_one_message)(struct spi_controller *ctlr,
731 				    struct spi_message *mesg);
732 	int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
733 	int (*prepare_message)(struct spi_controller *ctlr,
734 			       struct spi_message *message);
735 	int (*unprepare_message)(struct spi_controller *ctlr,
736 				 struct spi_message *message);
737 	int (*target_abort)(struct spi_controller *ctlr);
738 
739 	/*
740 	 * These hooks are for drivers that use a generic implementation
741 	 * of transfer_one_message() provided by the core.
742 	 */
743 	void (*set_cs)(struct spi_device *spi, bool enable);
744 	int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
745 			    struct spi_transfer *transfer);
746 	void (*handle_err)(struct spi_controller *ctlr,
747 			   struct spi_message *message);
748 
749 	/* Optimized handlers for SPI memory-like operations. */
750 	const struct spi_controller_mem_ops *mem_ops;
751 	const struct spi_controller_mem_caps *mem_caps;
752 
753 	/* SPI or QSPI controller can set to true if supports SDR/DDR transfer rate */
754 	bool			dtr_caps;
755 
756 	struct spi_offload *(*get_offload)(struct spi_device *spi,
757 					   const struct spi_offload_config *config);
758 	void (*put_offload)(struct spi_offload *offload);
759 
760 	/* GPIO chip select */
761 	struct gpio_desc	**cs_gpiods;
762 	bool			use_gpio_descriptors;
763 	s8			unused_native_cs;
764 	s8			max_native_cs;
765 
766 	/* Statistics */
767 	struct spi_statistics __percpu	*pcpu_statistics;
768 
769 	/* DMA channels for use with core dmaengine helpers */
770 	struct dma_chan		*dma_tx;
771 	struct dma_chan		*dma_rx;
772 
773 	/* Dummy data for full duplex devices */
774 	void			*dummy_rx;
775 	void			*dummy_tx;
776 
777 	int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
778 
779 	/*
780 	 * Driver sets this field to indicate it is able to snapshot SPI
781 	 * transfers (needed e.g. for reading the time of POSIX clocks)
782 	 */
783 	bool			ptp_sts_supported;
784 
785 	/* Interrupt enable state during PTP system timestamping */
786 	unsigned long		irq_flags;
787 
788 	/* Flag for enabling opportunistic skipping of the queue in spi_sync */
789 	bool			queue_empty;
790 	bool			must_async;
791 	bool			defer_optimize_message;
792 };
793 
spi_controller_get_devdata(struct spi_controller * ctlr)794 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
795 {
796 	return dev_get_drvdata(&ctlr->dev);
797 }
798 
spi_controller_set_devdata(struct spi_controller * ctlr,void * data)799 static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
800 					      void *data)
801 {
802 	dev_set_drvdata(&ctlr->dev, data);
803 }
804 
spi_controller_get(struct spi_controller * ctlr)805 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
806 {
807 	if (!ctlr || !get_device(&ctlr->dev))
808 		return NULL;
809 	return ctlr;
810 }
811 
spi_controller_put(struct spi_controller * ctlr)812 static inline void spi_controller_put(struct spi_controller *ctlr)
813 {
814 	if (ctlr)
815 		put_device(&ctlr->dev);
816 }
817 
spi_controller_is_target(struct spi_controller * ctlr)818 static inline bool spi_controller_is_target(struct spi_controller *ctlr)
819 {
820 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->target;
821 }
822 
823 /* PM calls that need to be issued by the driver */
824 extern int spi_controller_suspend(struct spi_controller *ctlr);
825 extern int spi_controller_resume(struct spi_controller *ctlr);
826 
827 /* Calls the driver make to interact with the message queue */
828 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
829 extern void spi_finalize_current_message(struct spi_controller *ctlr);
830 extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
831 
832 /* Helper calls for driver to timestamp transfer */
833 void spi_take_timestamp_pre(struct spi_controller *ctlr,
834 			    struct spi_transfer *xfer,
835 			    size_t progress, bool irqs_off);
836 void spi_take_timestamp_post(struct spi_controller *ctlr,
837 			     struct spi_transfer *xfer,
838 			     size_t progress, bool irqs_off);
839 
840 /* The SPI driver core manages memory for the spi_controller classdev */
841 extern struct spi_controller *__spi_alloc_controller(struct device *host,
842 						unsigned int size, bool target);
843 
spi_alloc_host(struct device * dev,unsigned int size)844 static inline struct spi_controller *spi_alloc_host(struct device *dev,
845 						    unsigned int size)
846 {
847 	return __spi_alloc_controller(dev, size, false);
848 }
849 
spi_alloc_target(struct device * dev,unsigned int size)850 static inline struct spi_controller *spi_alloc_target(struct device *dev,
851 						      unsigned int size)
852 {
853 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
854 		return NULL;
855 
856 	return __spi_alloc_controller(dev, size, true);
857 }
858 
859 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
860 						   unsigned int size,
861 						   bool target);
862 
devm_spi_alloc_host(struct device * dev,unsigned int size)863 static inline struct spi_controller *devm_spi_alloc_host(struct device *dev,
864 							 unsigned int size)
865 {
866 	return __devm_spi_alloc_controller(dev, size, false);
867 }
868 
devm_spi_alloc_target(struct device * dev,unsigned int size)869 static inline struct spi_controller *devm_spi_alloc_target(struct device *dev,
870 							   unsigned int size)
871 {
872 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
873 		return NULL;
874 
875 	return __devm_spi_alloc_controller(dev, size, true);
876 }
877 
878 extern int spi_register_controller(struct spi_controller *ctlr);
879 extern int devm_spi_register_controller(struct device *dev,
880 					struct spi_controller *ctlr);
881 extern void spi_unregister_controller(struct spi_controller *ctlr);
882 
883 #if IS_ENABLED(CONFIG_ACPI) && IS_ENABLED(CONFIG_SPI_MASTER)
884 extern struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
885 extern struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
886 						struct acpi_device *adev,
887 						int index);
888 int acpi_spi_count_resources(struct acpi_device *adev);
889 #else
acpi_spi_find_controller_by_adev(struct acpi_device * adev)890 static inline struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
891 {
892 	return NULL;
893 }
894 
acpi_spi_device_alloc(struct spi_controller * ctlr,struct acpi_device * adev,int index)895 static inline struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
896 						       struct acpi_device *adev,
897 						       int index)
898 {
899 	return ERR_PTR(-ENODEV);
900 }
901 
acpi_spi_count_resources(struct acpi_device * adev)902 static inline int acpi_spi_count_resources(struct acpi_device *adev)
903 {
904 	return 0;
905 }
906 #endif
907 
908 /*
909  * SPI resource management while processing a SPI message
910  */
911 
912 typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
913 				  struct spi_message *msg,
914 				  void *res);
915 
916 /**
917  * struct spi_res - SPI resource management structure
918  * @entry:   list entry
919  * @release: release code called prior to freeing this resource
920  * @data:    extra data allocated for the specific use-case
921  *
922  * This is based on ideas from devres, but focused on life-cycle
923  * management during spi_message processing.
924  */
925 struct spi_res {
926 	struct list_head        entry;
927 	spi_res_release_t       release;
928 	unsigned long long      data[]; /* Guarantee ull alignment */
929 };
930 
931 /*---------------------------------------------------------------------------*/
932 
933 /*
934  * I/O INTERFACE between SPI controller and protocol drivers
935  *
936  * Protocol drivers use a queue of spi_messages, each transferring data
937  * between the controller and memory buffers.
938  *
939  * The spi_messages themselves consist of a series of read+write transfer
940  * segments.  Those segments always read the same number of bits as they
941  * write; but one or the other is easily ignored by passing a NULL buffer
942  * pointer.  (This is unlike most types of I/O API, because SPI hardware
943  * is full duplex.)
944  *
945  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
946  * up to the protocol driver, which guarantees the integrity of both (as
947  * well as the data buffers) for as long as the message is queued.
948  */
949 
950 /**
951  * struct spi_transfer - a read/write buffer pair
952  * @tx_buf: data to be written (DMA-safe memory), or NULL
953  * @rx_buf: data to be read (DMA-safe memory), or NULL
954  * @tx_dma: DMA address of tx_buf, currently not for client use
955  * @rx_dma: DMA address of rx_buf, currently not for client use
956  * @tx_nbits: number of bits used for writing. If 0 the default
957  *      (SPI_NBITS_SINGLE) is used.
958  * @rx_nbits: number of bits used for reading. If 0 the default
959  *      (SPI_NBITS_SINGLE) is used.
960  * @len: size of rx and tx buffers (in bytes)
961  * @speed_hz: Select a speed other than the device default for this
962  *      transfer. If 0 the default (from @spi_device) is used.
963  * @bits_per_word: select a bits_per_word other than the device default
964  *      for this transfer. If 0 the default (from @spi_device) is used.
965  * @dummy_data: indicates transfer is dummy bytes transfer.
966  * @cs_off: performs the transfer with chipselect off.
967  * @cs_change: affects chipselect after this transfer completes
968  * @cs_change_delay: delay between cs deassert and assert when
969  *      @cs_change is set and @spi_transfer is not the last in @spi_message
970  * @delay: delay to be introduced after this transfer before
971  *	(optionally) changing the chipselect status, then starting
972  *	the next transfer or completing this @spi_message.
973  * @word_delay: inter word delay to be introduced after each word size
974  *	(set by bits_per_word) transmission.
975  * @effective_speed_hz: the effective SCK-speed that was used to
976  *      transfer this transfer. Set to 0 if the SPI bus driver does
977  *      not support it.
978  * @transfer_list: transfers are sequenced through @spi_message.transfers
979  * @tx_sg_mapped: If true, the @tx_sg is mapped for DMA
980  * @rx_sg_mapped: If true, the @rx_sg is mapped for DMA
981  * @tx_sg: Scatterlist for transmit, currently not for client use
982  * @rx_sg: Scatterlist for receive, currently not for client use
983  * @offload_flags: Flags that are only applicable to specialized SPI offload
984  *	transfers. See %SPI_OFFLOAD_XFER_* in spi-offload.h.
985  * @ptp_sts_word_pre: The word (subject to bits_per_word semantics) offset
986  *	within @tx_buf for which the SPI device is requesting that the time
987  *	snapshot for this transfer begins. Upon completing the SPI transfer,
988  *	this value may have changed compared to what was requested, depending
989  *	on the available snapshotting resolution (DMA transfer,
990  *	@ptp_sts_supported is false, etc).
991  * @ptp_sts_word_post: See @ptp_sts_word_post. The two can be equal (meaning
992  *	that a single byte should be snapshotted).
993  *	If the core takes care of the timestamp (if @ptp_sts_supported is false
994  *	for this controller), it will set @ptp_sts_word_pre to 0, and
995  *	@ptp_sts_word_post to the length of the transfer. This is done
996  *	purposefully (instead of setting to spi_transfer->len - 1) to denote
997  *	that a transfer-level snapshot taken from within the driver may still
998  *	be of higher quality.
999  * @ptp_sts: Pointer to a memory location held by the SPI target device where a
1000  *	PTP system timestamp structure may lie. If drivers use PIO or their
1001  *	hardware has some sort of assist for retrieving exact transfer timing,
1002  *	they can (and should) assert @ptp_sts_supported and populate this
1003  *	structure using the ptp_read_system_*ts helper functions.
1004  *	The timestamp must represent the time at which the SPI target device has
1005  *	processed the word, i.e. the "pre" timestamp should be taken before
1006  *	transmitting the "pre" word, and the "post" timestamp after receiving
1007  *	transmit confirmation from the controller for the "post" word.
1008  * @dtr_mode: true if supports double transfer rate.
1009  * @timestamped: true if the transfer has been timestamped
1010  * @error: Error status logged by SPI controller driver.
1011  *
1012  * SPI transfers always write the same number of bytes as they read.
1013  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
1014  * In some cases, they may also want to provide DMA addresses for
1015  * the data being transferred; that may reduce overhead, when the
1016  * underlying driver uses DMA.
1017  *
1018  * If the transmit buffer is NULL, zeroes will be shifted out
1019  * while filling @rx_buf.  If the receive buffer is NULL, the data
1020  * shifted in will be discarded.  Only "len" bytes shift out (or in).
1021  * It's an error to try to shift out a partial word.  (For example, by
1022  * shifting out three bytes with word size of sixteen or twenty bits;
1023  * the former uses two bytes per word, the latter uses four bytes.)
1024  *
1025  * In-memory data values are always in native CPU byte order, translated
1026  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
1027  * for example when bits_per_word is sixteen, buffers are 2N bytes long
1028  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
1029  *
1030  * When the word size of the SPI transfer is not a power-of-two multiple
1031  * of eight bits, those in-memory words include extra bits.  In-memory
1032  * words are always seen by protocol drivers as right-justified, so the
1033  * undefined (rx) or unused (tx) bits are always the most significant bits.
1034  *
1035  * All SPI transfers start with the relevant chipselect active.  Normally
1036  * it stays selected until after the last transfer in a message.  Drivers
1037  * can affect the chipselect signal using cs_change.
1038  *
1039  * (i) If the transfer isn't the last one in the message, this flag is
1040  * used to make the chipselect briefly go inactive in the middle of the
1041  * message.  Toggling chipselect in this way may be needed to terminate
1042  * a chip command, letting a single spi_message perform all of group of
1043  * chip transactions together.
1044  *
1045  * (ii) When the transfer is the last one in the message, the chip may
1046  * stay selected until the next transfer.  On multi-device SPI busses
1047  * with nothing blocking messages going to other devices, this is just
1048  * a performance hint; starting a message to another device deselects
1049  * this one.  But in other cases, this can be used to ensure correctness.
1050  * Some devices need protocol transactions to be built from a series of
1051  * spi_message submissions, where the content of one message is determined
1052  * by the results of previous messages and where the whole transaction
1053  * ends when the chipselect goes inactive.
1054  *
1055  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
1056  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
1057  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
1058  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
1059  *
1060  * User may also set dtr_mode to true to use dual transfer mode if desired. if
1061  * not, default considered as single transfer mode.
1062  *
1063  * The code that submits an spi_message (and its spi_transfers)
1064  * to the lower layers is responsible for managing its memory.
1065  * Zero-initialize every field you don't set up explicitly, to
1066  * insulate against future API updates.  After you submit a message
1067  * and its transfers, ignore them until its completion callback.
1068  */
1069 struct spi_transfer {
1070 	/*
1071 	 * It's okay if tx_buf == rx_buf (right?).
1072 	 * For MicroWire, one buffer must be NULL.
1073 	 * Buffers must work with dma_*map_single() calls.
1074 	 */
1075 	const void	*tx_buf;
1076 	void		*rx_buf;
1077 	unsigned	len;
1078 
1079 #define SPI_TRANS_FAIL_NO_START	BIT(0)
1080 #define SPI_TRANS_FAIL_IO	BIT(1)
1081 	u16		error;
1082 
1083 	bool		tx_sg_mapped;
1084 	bool		rx_sg_mapped;
1085 
1086 	struct sg_table tx_sg;
1087 	struct sg_table rx_sg;
1088 	dma_addr_t	tx_dma;
1089 	dma_addr_t	rx_dma;
1090 
1091 	unsigned	dummy_data:1;
1092 	unsigned	cs_off:1;
1093 	unsigned	cs_change:1;
1094 	unsigned	tx_nbits:4;
1095 	unsigned	rx_nbits:4;
1096 	unsigned	timestamped:1;
1097 	bool		dtr_mode;
1098 #define	SPI_NBITS_SINGLE	0x01 /* 1-bit transfer */
1099 #define	SPI_NBITS_DUAL		0x02 /* 2-bit transfer */
1100 #define	SPI_NBITS_QUAD		0x04 /* 4-bit transfer */
1101 #define	SPI_NBITS_OCTAL	0x08 /* 8-bit transfer */
1102 	u8		bits_per_word;
1103 	struct spi_delay	delay;
1104 	struct spi_delay	cs_change_delay;
1105 	struct spi_delay	word_delay;
1106 	u32		speed_hz;
1107 
1108 	u32		effective_speed_hz;
1109 
1110 	/* Use %SPI_OFFLOAD_XFER_* from spi-offload.h */
1111 	unsigned int	offload_flags;
1112 
1113 	unsigned int	ptp_sts_word_pre;
1114 	unsigned int	ptp_sts_word_post;
1115 
1116 	struct ptp_system_timestamp *ptp_sts;
1117 
1118 	struct list_head transfer_list;
1119 };
1120 
1121 /**
1122  * struct spi_message - one multi-segment SPI transaction
1123  * @transfers: list of transfer segments in this transaction
1124  * @spi: SPI device to which the transaction is queued
1125  * @pre_optimized: peripheral driver pre-optimized the message
1126  * @optimized: the message is in the optimized state
1127  * @prepared: spi_prepare_message was called for the this message
1128  * @status: zero for success, else negative errno
1129  * @complete: called to report transaction completions
1130  * @context: the argument to complete() when it's called
1131  * @frame_length: the total number of bytes in the message
1132  * @actual_length: the total number of bytes that were transferred in all
1133  *	successful segments
1134  * @queue: for use by whichever driver currently owns the message
1135  * @state: for use by whichever driver currently owns the message
1136  * @opt_state: for use by whichever driver currently owns the message
1137  * @resources: for resource management when the SPI message is processed
1138  * @offload: (optional) offload instance used by this message
1139  *
1140  * A @spi_message is used to execute an atomic sequence of data transfers,
1141  * each represented by a struct spi_transfer.  The sequence is "atomic"
1142  * in the sense that no other spi_message may use that SPI bus until that
1143  * sequence completes.  On some systems, many such sequences can execute as
1144  * a single programmed DMA transfer.  On all systems, these messages are
1145  * queued, and might complete after transactions to other devices.  Messages
1146  * sent to a given spi_device are always executed in FIFO order.
1147  *
1148  * The code that submits an spi_message (and its spi_transfers)
1149  * to the lower layers is responsible for managing its memory.
1150  * Zero-initialize every field you don't set up explicitly, to
1151  * insulate against future API updates.  After you submit a message
1152  * and its transfers, ignore them until its completion callback.
1153  */
1154 struct spi_message {
1155 	struct list_head	transfers;
1156 
1157 	struct spi_device	*spi;
1158 
1159 	/* spi_optimize_message() was called for this message */
1160 	bool			pre_optimized;
1161 	/* __spi_optimize_message() was called for this message */
1162 	bool			optimized;
1163 
1164 	/* spi_prepare_message() was called for this message */
1165 	bool			prepared;
1166 
1167 	/*
1168 	 * REVISIT: we might want a flag affecting the behavior of the
1169 	 * last transfer ... allowing things like "read 16 bit length L"
1170 	 * immediately followed by "read L bytes".  Basically imposing
1171 	 * a specific message scheduling algorithm.
1172 	 *
1173 	 * Some controller drivers (message-at-a-time queue processing)
1174 	 * could provide that as their default scheduling algorithm.  But
1175 	 * others (with multi-message pipelines) could need a flag to
1176 	 * tell them about such special cases.
1177 	 */
1178 
1179 	/* Completion is reported through a callback */
1180 	int			status;
1181 	void			(*complete)(void *context);
1182 	void			*context;
1183 	unsigned		frame_length;
1184 	unsigned		actual_length;
1185 
1186 	/*
1187 	 * For optional use by whatever driver currently owns the
1188 	 * spi_message ...  between calls to spi_async and then later
1189 	 * complete(), that's the spi_controller controller driver.
1190 	 */
1191 	struct list_head	queue;
1192 	void			*state;
1193 	/*
1194 	 * Optional state for use by controller driver between calls to
1195 	 * __spi_optimize_message() and __spi_unoptimize_message().
1196 	 */
1197 	void			*opt_state;
1198 
1199 	/*
1200 	 * Optional offload instance used by this message. This must be set
1201 	 * by the peripheral driver before calling spi_optimize_message().
1202 	 */
1203 	struct spi_offload	*offload;
1204 
1205 	/* List of spi_res resources when the SPI message is processed */
1206 	struct list_head        resources;
1207 };
1208 
spi_message_init_no_memset(struct spi_message * m)1209 static inline void spi_message_init_no_memset(struct spi_message *m)
1210 {
1211 	INIT_LIST_HEAD(&m->transfers);
1212 	INIT_LIST_HEAD(&m->resources);
1213 }
1214 
spi_message_init(struct spi_message * m)1215 static inline void spi_message_init(struct spi_message *m)
1216 {
1217 	memset(m, 0, sizeof *m);
1218 	spi_message_init_no_memset(m);
1219 }
1220 
1221 static inline void
spi_message_add_tail(struct spi_transfer * t,struct spi_message * m)1222 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
1223 {
1224 	list_add_tail(&t->transfer_list, &m->transfers);
1225 }
1226 
1227 static inline void
spi_transfer_del(struct spi_transfer * t)1228 spi_transfer_del(struct spi_transfer *t)
1229 {
1230 	list_del(&t->transfer_list);
1231 }
1232 
1233 static inline int
spi_transfer_delay_exec(struct spi_transfer * t)1234 spi_transfer_delay_exec(struct spi_transfer *t)
1235 {
1236 	return spi_delay_exec(&t->delay, t);
1237 }
1238 
1239 /**
1240  * spi_message_init_with_transfers - Initialize spi_message and append transfers
1241  * @m: spi_message to be initialized
1242  * @xfers: An array of SPI transfers
1243  * @num_xfers: Number of items in the xfer array
1244  *
1245  * This function initializes the given spi_message and adds each spi_transfer in
1246  * the given array to the message.
1247  */
1248 static inline void
spi_message_init_with_transfers(struct spi_message * m,struct spi_transfer * xfers,unsigned int num_xfers)1249 spi_message_init_with_transfers(struct spi_message *m,
1250 struct spi_transfer *xfers, unsigned int num_xfers)
1251 {
1252 	unsigned int i;
1253 
1254 	spi_message_init(m);
1255 	for (i = 0; i < num_xfers; ++i)
1256 		spi_message_add_tail(&xfers[i], m);
1257 }
1258 
1259 /*
1260  * It's fine to embed message and transaction structures in other data
1261  * structures so long as you don't free them while they're in use.
1262  */
spi_message_alloc(unsigned ntrans,gfp_t flags)1263 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
1264 {
1265 	struct spi_message_with_transfers {
1266 		struct spi_message m;
1267 		struct spi_transfer t[];
1268 	} *mwt;
1269 	unsigned i;
1270 
1271 	mwt = kzalloc(struct_size(mwt, t, ntrans), flags);
1272 	if (!mwt)
1273 		return NULL;
1274 
1275 	spi_message_init_no_memset(&mwt->m);
1276 	for (i = 0; i < ntrans; i++)
1277 		spi_message_add_tail(&mwt->t[i], &mwt->m);
1278 
1279 	return &mwt->m;
1280 }
1281 
spi_message_free(struct spi_message * m)1282 static inline void spi_message_free(struct spi_message *m)
1283 {
1284 	kfree(m);
1285 }
1286 
1287 extern int spi_optimize_message(struct spi_device *spi, struct spi_message *msg);
1288 extern void spi_unoptimize_message(struct spi_message *msg);
1289 extern int devm_spi_optimize_message(struct device *dev, struct spi_device *spi,
1290 				     struct spi_message *msg);
1291 
1292 extern int spi_setup(struct spi_device *spi);
1293 extern int spi_async(struct spi_device *spi, struct spi_message *message);
1294 extern int spi_target_abort(struct spi_device *spi);
1295 
1296 static inline size_t
spi_max_message_size(struct spi_device * spi)1297 spi_max_message_size(struct spi_device *spi)
1298 {
1299 	struct spi_controller *ctlr = spi->controller;
1300 
1301 	if (!ctlr->max_message_size)
1302 		return SIZE_MAX;
1303 	return ctlr->max_message_size(spi);
1304 }
1305 
1306 static inline size_t
spi_max_transfer_size(struct spi_device * spi)1307 spi_max_transfer_size(struct spi_device *spi)
1308 {
1309 	struct spi_controller *ctlr = spi->controller;
1310 	size_t tr_max = SIZE_MAX;
1311 	size_t msg_max = spi_max_message_size(spi);
1312 
1313 	if (ctlr->max_transfer_size)
1314 		tr_max = ctlr->max_transfer_size(spi);
1315 
1316 	/* Transfer size limit must not be greater than message size limit */
1317 	return min(tr_max, msg_max);
1318 }
1319 
1320 /**
1321  * spi_is_bpw_supported - Check if bits per word is supported
1322  * @spi: SPI device
1323  * @bpw: Bits per word
1324  *
1325  * This function checks to see if the SPI controller supports @bpw.
1326  *
1327  * Returns:
1328  * True if @bpw is supported, false otherwise.
1329  */
spi_is_bpw_supported(struct spi_device * spi,u32 bpw)1330 static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw)
1331 {
1332 	u32 bpw_mask = spi->controller->bits_per_word_mask;
1333 
1334 	if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw)))
1335 		return true;
1336 
1337 	return false;
1338 }
1339 
1340 /**
1341  * spi_bpw_to_bytes - Covert bits per word to bytes
1342  * @bpw: Bits per word
1343  *
1344  * This function converts the given @bpw to bytes. The result is always
1345  * power-of-two, e.g.,
1346  *
1347  *  ===============    =================
1348  *  Input (in bits)    Output (in bytes)
1349  *  ===============    =================
1350  *          5                   1
1351  *          9                   2
1352  *          21                  4
1353  *          37                  8
1354  *  ===============    =================
1355  *
1356  * It will return 0 for the 0 input.
1357  *
1358  * Returns:
1359  * Bytes for the given @bpw.
1360  */
spi_bpw_to_bytes(u32 bpw)1361 static inline u32 spi_bpw_to_bytes(u32 bpw)
1362 {
1363 	return roundup_pow_of_two(BITS_TO_BYTES(bpw));
1364 }
1365 
1366 /**
1367  * spi_controller_xfer_timeout - Compute a suitable timeout value
1368  * @ctlr: SPI device
1369  * @xfer: Transfer descriptor
1370  *
1371  * Compute a relevant timeout value for the given transfer. We derive the time
1372  * that it would take on a single data line and take twice this amount of time
1373  * with a minimum of 500ms to avoid false positives on loaded systems.
1374  *
1375  * Returns: Transfer timeout value in milliseconds.
1376  */
spi_controller_xfer_timeout(struct spi_controller * ctlr,struct spi_transfer * xfer)1377 static inline unsigned int spi_controller_xfer_timeout(struct spi_controller *ctlr,
1378 						       struct spi_transfer *xfer)
1379 {
1380 	return max(xfer->len * 8 * 2 / (xfer->speed_hz / 1000), 500U);
1381 }
1382 
1383 /*---------------------------------------------------------------------------*/
1384 
1385 /* SPI transfer replacement methods which make use of spi_res */
1386 
1387 struct spi_replaced_transfers;
1388 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
1389 				       struct spi_message *msg,
1390 				       struct spi_replaced_transfers *res);
1391 /**
1392  * struct spi_replaced_transfers - structure describing the spi_transfer
1393  *                                 replacements that have occurred
1394  *                                 so that they can get reverted
1395  * @release:            some extra release code to get executed prior to
1396  *                      releasing this structure
1397  * @extradata:          pointer to some extra data if requested or NULL
1398  * @replaced_transfers: transfers that have been replaced and which need
1399  *                      to get restored
1400  * @replaced_after:     the transfer after which the @replaced_transfers
1401  *                      are to get re-inserted
1402  * @inserted:           number of transfers inserted
1403  * @inserted_transfers: array of spi_transfers of array-size @inserted,
1404  *                      that have been replacing replaced_transfers
1405  *
1406  * Note: that @extradata will point to @inserted_transfers[@inserted]
1407  * if some extra allocation is requested, so alignment will be the same
1408  * as for spi_transfers.
1409  */
1410 struct spi_replaced_transfers {
1411 	spi_replaced_release_t release;
1412 	void *extradata;
1413 	struct list_head replaced_transfers;
1414 	struct list_head *replaced_after;
1415 	size_t inserted;
1416 	struct spi_transfer inserted_transfers[];
1417 };
1418 
1419 /*---------------------------------------------------------------------------*/
1420 
1421 /* SPI transfer transformation methods */
1422 
1423 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1424 				       struct spi_message *msg,
1425 				       size_t maxsize);
1426 extern int spi_split_transfers_maxwords(struct spi_controller *ctlr,
1427 					struct spi_message *msg,
1428 					size_t maxwords);
1429 
1430 /*---------------------------------------------------------------------------*/
1431 
1432 /*
1433  * All these synchronous SPI transfer routines are utilities layered
1434  * over the core async transfer primitive.  Here, "synchronous" means
1435  * they will sleep uninterruptibly until the async transfer completes.
1436  */
1437 
1438 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1439 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1440 extern int spi_bus_lock(struct spi_controller *ctlr);
1441 extern int spi_bus_unlock(struct spi_controller *ctlr);
1442 
1443 /**
1444  * spi_sync_transfer - synchronous SPI data transfer
1445  * @spi: device with which data will be exchanged
1446  * @xfers: An array of spi_transfers
1447  * @num_xfers: Number of items in the xfer array
1448  * Context: can sleep
1449  *
1450  * Does a synchronous SPI data transfer of the given spi_transfer array.
1451  *
1452  * For more specific semantics see spi_sync().
1453  *
1454  * Return: zero on success, else a negative error code.
1455  */
1456 static inline int
spi_sync_transfer(struct spi_device * spi,struct spi_transfer * xfers,unsigned int num_xfers)1457 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1458 	unsigned int num_xfers)
1459 {
1460 	struct spi_message msg;
1461 
1462 	spi_message_init_with_transfers(&msg, xfers, num_xfers);
1463 
1464 	return spi_sync(spi, &msg);
1465 }
1466 
1467 /**
1468  * spi_write - SPI synchronous write
1469  * @spi: device to which data will be written
1470  * @buf: data buffer
1471  * @len: data buffer size
1472  * Context: can sleep
1473  *
1474  * This function writes the buffer @buf.
1475  * Callable only from contexts that can sleep.
1476  *
1477  * Return: zero on success, else a negative error code.
1478  */
1479 static inline int
spi_write(struct spi_device * spi,const void * buf,size_t len)1480 spi_write(struct spi_device *spi, const void *buf, size_t len)
1481 {
1482 	struct spi_transfer	t = {
1483 			.tx_buf		= buf,
1484 			.len		= len,
1485 		};
1486 
1487 	return spi_sync_transfer(spi, &t, 1);
1488 }
1489 
1490 /**
1491  * spi_read - SPI synchronous read
1492  * @spi: device from which data will be read
1493  * @buf: data buffer
1494  * @len: data buffer size
1495  * Context: can sleep
1496  *
1497  * This function reads the buffer @buf.
1498  * Callable only from contexts that can sleep.
1499  *
1500  * Return: zero on success, else a negative error code.
1501  */
1502 static inline int
spi_read(struct spi_device * spi,void * buf,size_t len)1503 spi_read(struct spi_device *spi, void *buf, size_t len)
1504 {
1505 	struct spi_transfer	t = {
1506 			.rx_buf		= buf,
1507 			.len		= len,
1508 		};
1509 
1510 	return spi_sync_transfer(spi, &t, 1);
1511 }
1512 
1513 /* This copies txbuf and rxbuf data; for small transfers only! */
1514 extern int spi_write_then_read(struct spi_device *spi,
1515 		const void *txbuf, unsigned n_tx,
1516 		void *rxbuf, unsigned n_rx);
1517 
1518 /**
1519  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1520  * @spi: device with which data will be exchanged
1521  * @cmd: command to be written before data is read back
1522  * Context: can sleep
1523  *
1524  * Callable only from contexts that can sleep.
1525  *
1526  * Return: the (unsigned) eight bit number returned by the
1527  * device, or else a negative error code.
1528  */
spi_w8r8(struct spi_device * spi,u8 cmd)1529 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1530 {
1531 	ssize_t			status;
1532 	u8			result;
1533 
1534 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1535 
1536 	/* Return negative errno or unsigned value */
1537 	return (status < 0) ? status : result;
1538 }
1539 
1540 /**
1541  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1542  * @spi: device with which data will be exchanged
1543  * @cmd: command to be written before data is read back
1544  * Context: can sleep
1545  *
1546  * The number is returned in wire-order, which is at least sometimes
1547  * big-endian.
1548  *
1549  * Callable only from contexts that can sleep.
1550  *
1551  * Return: the (unsigned) sixteen bit number returned by the
1552  * device, or else a negative error code.
1553  */
spi_w8r16(struct spi_device * spi,u8 cmd)1554 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1555 {
1556 	ssize_t			status;
1557 	u16			result;
1558 
1559 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1560 
1561 	/* Return negative errno or unsigned value */
1562 	return (status < 0) ? status : result;
1563 }
1564 
1565 /**
1566  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1567  * @spi: device with which data will be exchanged
1568  * @cmd: command to be written before data is read back
1569  * Context: can sleep
1570  *
1571  * This function is similar to spi_w8r16, with the exception that it will
1572  * convert the read 16 bit data word from big-endian to native endianness.
1573  *
1574  * Callable only from contexts that can sleep.
1575  *
1576  * Return: the (unsigned) sixteen bit number returned by the device in CPU
1577  * endianness, or else a negative error code.
1578  */
spi_w8r16be(struct spi_device * spi,u8 cmd)1579 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1580 
1581 {
1582 	ssize_t status;
1583 	__be16 result;
1584 
1585 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1586 	if (status < 0)
1587 		return status;
1588 
1589 	return be16_to_cpu(result);
1590 }
1591 
1592 /*---------------------------------------------------------------------------*/
1593 
1594 /*
1595  * INTERFACE between board init code and SPI infrastructure.
1596  *
1597  * No SPI driver ever sees these SPI device table segments, but
1598  * it's how the SPI core (or adapters that get hotplugged) grows
1599  * the driver model tree.
1600  *
1601  * As a rule, SPI devices can't be probed.  Instead, board init code
1602  * provides a table listing the devices which are present, with enough
1603  * information to bind and set up the device's driver.  There's basic
1604  * support for non-static configurations too; enough to handle adding
1605  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1606  */
1607 
1608 /**
1609  * struct spi_board_info - board-specific template for a SPI device
1610  * @modalias: Initializes spi_device.modalias; identifies the driver.
1611  * @platform_data: Initializes spi_device.platform_data; the particular
1612  *	data stored there is driver-specific.
1613  * @swnode: Software node for the device.
1614  * @controller_data: Initializes spi_device.controller_data; some
1615  *	controllers need hints about hardware setup, e.g. for DMA.
1616  * @irq: Initializes spi_device.irq; depends on how the board is wired.
1617  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1618  *	from the chip datasheet and board-specific signal quality issues.
1619  * @bus_num: Identifies which spi_controller parents the spi_device; unused
1620  *	by spi_new_device(), and otherwise depends on board wiring.
1621  * @chip_select: Initializes spi_device.chip_select; depends on how
1622  *	the board is wired.
1623  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1624  *	wiring (some devices support both 3WIRE and standard modes), and
1625  *	possibly presence of an inverter in the chipselect path.
1626  *
1627  * When adding new SPI devices to the device tree, these structures serve
1628  * as a partial device template.  They hold information which can't always
1629  * be determined by drivers.  Information that probe() can establish (such
1630  * as the default transfer wordsize) is not included here.
1631  *
1632  * These structures are used in two places.  Their primary role is to
1633  * be stored in tables of board-specific device descriptors, which are
1634  * declared early in board initialization and then used (much later) to
1635  * populate a controller's device tree after the that controller's driver
1636  * initializes.  A secondary (and atypical) role is as a parameter to
1637  * spi_new_device() call, which happens after those controller drivers
1638  * are active in some dynamic board configuration models.
1639  */
1640 struct spi_board_info {
1641 	/*
1642 	 * The device name and module name are coupled, like platform_bus;
1643 	 * "modalias" is normally the driver name.
1644 	 *
1645 	 * platform_data goes to spi_device.dev.platform_data,
1646 	 * controller_data goes to spi_device.controller_data,
1647 	 * IRQ is copied too.
1648 	 */
1649 	char		modalias[SPI_NAME_SIZE];
1650 	const void	*platform_data;
1651 	const struct software_node *swnode;
1652 	void		*controller_data;
1653 	int		irq;
1654 
1655 	/* Slower signaling on noisy or low voltage boards */
1656 	u32		max_speed_hz;
1657 
1658 
1659 	/*
1660 	 * bus_num is board specific and matches the bus_num of some
1661 	 * spi_controller that will probably be registered later.
1662 	 *
1663 	 * chip_select reflects how this chip is wired to that controller;
1664 	 * it's less than num_chipselect.
1665 	 */
1666 	u16		bus_num;
1667 	u16		chip_select;
1668 
1669 	/*
1670 	 * mode becomes spi_device.mode, and is essential for chips
1671 	 * where the default of SPI_CS_HIGH = 0 is wrong.
1672 	 */
1673 	u32		mode;
1674 
1675 	/*
1676 	 * ... may need additional spi_device chip config data here.
1677 	 * avoid stuff protocol drivers can set; but include stuff
1678 	 * needed to behave without being bound to a driver:
1679 	 *  - quirks like clock rate mattering when not selected
1680 	 */
1681 };
1682 
1683 #ifdef	CONFIG_SPI
1684 extern int
1685 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1686 #else
1687 /* Board init code may ignore whether SPI is configured or not */
1688 static inline int
spi_register_board_info(struct spi_board_info const * info,unsigned n)1689 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1690 	{ return 0; }
1691 #endif
1692 
1693 /*
1694  * If you're hotplugging an adapter with devices (parport, USB, etc)
1695  * use spi_new_device() to describe each device.  You can also call
1696  * spi_unregister_device() to start making that device vanish, but
1697  * normally that would be handled by spi_unregister_controller().
1698  *
1699  * You can also use spi_alloc_device() and spi_add_device() to use a two
1700  * stage registration sequence for each spi_device. This gives the caller
1701  * some more control over the spi_device structure before it is registered,
1702  * but requires that caller to initialize fields that would otherwise
1703  * be defined using the board info.
1704  */
1705 extern struct spi_device *
1706 spi_alloc_device(struct spi_controller *ctlr);
1707 
1708 extern int
1709 spi_add_device(struct spi_device *spi);
1710 
1711 extern struct spi_device *
1712 spi_new_device(struct spi_controller *, struct spi_board_info *);
1713 
1714 extern void spi_unregister_device(struct spi_device *spi);
1715 
1716 extern const struct spi_device_id *
1717 spi_get_device_id(const struct spi_device *sdev);
1718 
1719 extern const void *
1720 spi_get_device_match_data(const struct spi_device *sdev);
1721 
1722 static inline bool
spi_transfer_is_last(struct spi_controller * ctlr,struct spi_transfer * xfer)1723 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1724 {
1725 	return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1726 }
1727 
1728 #endif /* __LINUX_SPI_H */
1729