1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 // Copyright (C) 2008 Juergen Beisert
4
5 #include <linux/bits.h>
6 #include <linux/bitfield.h>
7 #include <linux/clk.h>
8 #include <linux/completion.h>
9 #include <linux/delay.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/irq.h>
16 #include <linux/kernel.h>
17 #include <linux/math.h>
18 #include <linux/math64.h>
19 #include <linux/module.h>
20 #include <linux/overflow.h>
21 #include <linux/pinctrl/consumer.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/spi/spi.h>
26 #include <linux/types.h>
27 #include <linux/of.h>
28 #include <linux/property.h>
29
30 #include <linux/dma/imx-dma.h>
31
32 #define DRIVER_NAME "spi_imx"
33
34 static bool use_dma = true;
35 module_param(use_dma, bool, 0644);
36 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)");
37
38 /* define polling limits */
39 static unsigned int polling_limit_us = 30;
40 module_param(polling_limit_us, uint, 0664);
41 MODULE_PARM_DESC(polling_limit_us,
42 "time in us to run a transfer in polling mode\n");
43
44 #define MXC_RPM_TIMEOUT 2000 /* 2000ms */
45
46 #define MXC_CSPIRXDATA 0x00
47 #define MXC_CSPITXDATA 0x04
48 #define MXC_CSPICTRL 0x08
49 #define MXC_CSPIINT 0x0c
50 #define MXC_RESET 0x1c
51
52 /* generic defines to abstract from the different register layouts */
53 #define MXC_INT_RR (1 << 0) /* Receive data ready interrupt */
54 #define MXC_INT_TE (1 << 1) /* Transmit FIFO empty interrupt */
55 #define MXC_INT_RDR BIT(4) /* Receive date threshold interrupt */
56
57 /* The maximum bytes that a sdma BD can transfer. */
58 #define MAX_SDMA_BD_BYTES (1 << 15)
59 #define MX51_ECSPI_CTRL_MAX_BURST 512
60 /* The maximum bytes that IMX53_ECSPI can transfer in target mode.*/
61 #define MX53_MAX_TRANSFER_BYTES 512
62
63 enum spi_imx_devtype {
64 IMX1_CSPI,
65 IMX21_CSPI,
66 IMX27_CSPI,
67 IMX31_CSPI,
68 IMX35_CSPI, /* CSPI on all i.mx except above */
69 IMX51_ECSPI, /* ECSPI on i.mx51 */
70 IMX53_ECSPI, /* ECSPI on i.mx53 and later */
71 };
72
73 struct spi_imx_data;
74
75 struct spi_imx_devtype_data {
76 void (*intctrl)(struct spi_imx_data *spi_imx, int enable);
77 int (*prepare_message)(struct spi_imx_data *spi_imx, struct spi_message *msg);
78 int (*prepare_transfer)(struct spi_imx_data *spi_imx, struct spi_device *spi,
79 struct spi_transfer *t);
80 void (*trigger)(struct spi_imx_data *spi_imx);
81 int (*rx_available)(struct spi_imx_data *spi_imx);
82 void (*reset)(struct spi_imx_data *spi_imx);
83 void (*setup_wml)(struct spi_imx_data *spi_imx);
84 void (*disable)(struct spi_imx_data *spi_imx);
85 bool has_dmamode;
86 bool has_targetmode;
87 unsigned int fifo_size;
88 bool dynamic_burst;
89 /*
90 * ERR009165 fixed or not:
91 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
92 */
93 bool tx_glitch_fixed;
94 enum spi_imx_devtype devtype;
95 };
96
97 struct spi_imx_data {
98 struct spi_controller *controller;
99 struct device *dev;
100
101 struct completion xfer_done;
102 void __iomem *base;
103 unsigned long base_phys;
104
105 struct clk *clk_per;
106 struct clk *clk_ipg;
107 unsigned long spi_clk;
108 unsigned int spi_bus_clk;
109
110 unsigned int bits_per_word;
111 unsigned int spi_drctl;
112
113 unsigned int count, remainder;
114 void (*tx)(struct spi_imx_data *spi_imx);
115 void (*rx)(struct spi_imx_data *spi_imx);
116 void *rx_buf;
117 const void *tx_buf;
118 unsigned int txfifo; /* number of words pushed in tx FIFO */
119 unsigned int dynamic_burst;
120 bool rx_only;
121
122 /* Target mode */
123 bool target_mode;
124 bool target_aborted;
125 unsigned int target_burst;
126
127 /* DMA */
128 bool usedma;
129 u32 wml;
130 struct completion dma_rx_completion;
131 struct completion dma_tx_completion;
132
133 const struct spi_imx_devtype_data *devtype_data;
134 };
135
is_imx27_cspi(struct spi_imx_data * d)136 static inline int is_imx27_cspi(struct spi_imx_data *d)
137 {
138 return d->devtype_data->devtype == IMX27_CSPI;
139 }
140
is_imx35_cspi(struct spi_imx_data * d)141 static inline int is_imx35_cspi(struct spi_imx_data *d)
142 {
143 return d->devtype_data->devtype == IMX35_CSPI;
144 }
145
is_imx51_ecspi(struct spi_imx_data * d)146 static inline int is_imx51_ecspi(struct spi_imx_data *d)
147 {
148 return d->devtype_data->devtype == IMX51_ECSPI;
149 }
150
is_imx53_ecspi(struct spi_imx_data * d)151 static inline int is_imx53_ecspi(struct spi_imx_data *d)
152 {
153 return d->devtype_data->devtype == IMX53_ECSPI;
154 }
155
156 #define MXC_SPI_BUF_RX(type) \
157 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx) \
158 { \
159 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); \
160 \
161 if (spi_imx->rx_buf) { \
162 *(type *)spi_imx->rx_buf = val; \
163 spi_imx->rx_buf += sizeof(type); \
164 } \
165 \
166 spi_imx->remainder -= sizeof(type); \
167 }
168
169 #define MXC_SPI_BUF_TX(type) \
170 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx) \
171 { \
172 type val = 0; \
173 \
174 if (spi_imx->tx_buf) { \
175 val = *(type *)spi_imx->tx_buf; \
176 spi_imx->tx_buf += sizeof(type); \
177 } \
178 \
179 spi_imx->count -= sizeof(type); \
180 \
181 writel(val, spi_imx->base + MXC_CSPITXDATA); \
182 }
183
184 MXC_SPI_BUF_RX(u8)
185 MXC_SPI_BUF_TX(u8)
186 MXC_SPI_BUF_RX(u16)
187 MXC_SPI_BUF_TX(u16)
188 MXC_SPI_BUF_RX(u32)
189 MXC_SPI_BUF_TX(u32)
190
191 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set
192 * (which is currently not the case in this driver)
193 */
194 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
195 256, 384, 512, 768, 1024};
196
197 /* MX21, MX27 */
spi_imx_clkdiv_1(unsigned int fin,unsigned int fspi,unsigned int max,unsigned int * fres)198 static unsigned int spi_imx_clkdiv_1(unsigned int fin,
199 unsigned int fspi, unsigned int max, unsigned int *fres)
200 {
201 int i;
202
203 for (i = 2; i < max; i++)
204 if (fspi * mxc_clkdivs[i] >= fin)
205 break;
206
207 *fres = fin / mxc_clkdivs[i];
208 return i;
209 }
210
211 /* MX1, MX31, MX35, MX51 CSPI */
spi_imx_clkdiv_2(unsigned int fin,unsigned int fspi,unsigned int * fres)212 static unsigned int spi_imx_clkdiv_2(unsigned int fin,
213 unsigned int fspi, unsigned int *fres)
214 {
215 int i, div = 4;
216
217 for (i = 0; i < 7; i++) {
218 if (fspi * div >= fin)
219 goto out;
220 div <<= 1;
221 }
222
223 out:
224 *fres = fin / div;
225 return i;
226 }
227
spi_imx_bytes_per_word(const int bits_per_word)228 static int spi_imx_bytes_per_word(const int bits_per_word)
229 {
230 if (bits_per_word <= 8)
231 return 1;
232 else if (bits_per_word <= 16)
233 return 2;
234 else
235 return 4;
236 }
237
spi_imx_can_dma(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * transfer)238 static bool spi_imx_can_dma(struct spi_controller *controller, struct spi_device *spi,
239 struct spi_transfer *transfer)
240 {
241 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
242
243 if (!use_dma || controller->fallback)
244 return false;
245
246 if (!controller->dma_rx)
247 return false;
248
249 if (spi_imx->target_mode)
250 return false;
251
252 if (transfer->len < spi_imx->devtype_data->fifo_size)
253 return false;
254
255 spi_imx->dynamic_burst = 0;
256
257 return true;
258 }
259
260 /*
261 * Note the number of natively supported chip selects for MX51 is 4. Some
262 * devices may have less actual SS pins but the register map supports 4. When
263 * using gpio chip selects the cs values passed into the macros below can go
264 * outside the range 0 - 3. We therefore need to limit the cs value to avoid
265 * corrupting bits outside the allocated locations.
266 *
267 * The simplest way to do this is to just mask the cs bits to 2 bits. This
268 * still allows all 4 native chip selects to work as well as gpio chip selects
269 * (which can use any of the 4 chip select configurations).
270 */
271
272 #define MX51_ECSPI_CTRL 0x08
273 #define MX51_ECSPI_CTRL_ENABLE (1 << 0)
274 #define MX51_ECSPI_CTRL_XCH (1 << 2)
275 #define MX51_ECSPI_CTRL_SMC (1 << 3)
276 #define MX51_ECSPI_CTRL_MODE_MASK (0xf << 4)
277 #define MX51_ECSPI_CTRL_DRCTL(drctl) ((drctl) << 16)
278 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET 8
279 #define MX51_ECSPI_CTRL_PREDIV_OFFSET 12
280 #define MX51_ECSPI_CTRL_CS(cs) ((cs & 3) << 18)
281 #define MX51_ECSPI_CTRL_BL_OFFSET 20
282 #define MX51_ECSPI_CTRL_BL_MASK (0xfff << 20)
283
284 #define MX51_ECSPI_CONFIG 0x0c
285 #define MX51_ECSPI_CONFIG_SCLKPHA(cs) (1 << ((cs & 3) + 0))
286 #define MX51_ECSPI_CONFIG_SCLKPOL(cs) (1 << ((cs & 3) + 4))
287 #define MX51_ECSPI_CONFIG_SBBCTRL(cs) (1 << ((cs & 3) + 8))
288 #define MX51_ECSPI_CONFIG_SSBPOL(cs) (1 << ((cs & 3) + 12))
289 #define MX51_ECSPI_CONFIG_DATACTL(cs) (1 << ((cs & 3) + 16))
290 #define MX51_ECSPI_CONFIG_SCLKCTL(cs) (1 << ((cs & 3) + 20))
291
292 #define MX51_ECSPI_INT 0x10
293 #define MX51_ECSPI_INT_TEEN (1 << 0)
294 #define MX51_ECSPI_INT_RREN (1 << 3)
295 #define MX51_ECSPI_INT_RDREN (1 << 4)
296
297 #define MX51_ECSPI_DMA 0x14
298 #define MX51_ECSPI_DMA_TX_WML(wml) ((wml) & 0x3f)
299 #define MX51_ECSPI_DMA_RX_WML(wml) (((wml) & 0x3f) << 16)
300 #define MX51_ECSPI_DMA_RXT_WML(wml) (((wml) & 0x3f) << 24)
301
302 #define MX51_ECSPI_DMA_TEDEN (1 << 7)
303 #define MX51_ECSPI_DMA_RXDEN (1 << 23)
304 #define MX51_ECSPI_DMA_RXTDEN (1 << 31)
305
306 #define MX51_ECSPI_STAT 0x18
307 #define MX51_ECSPI_STAT_RR (1 << 3)
308
309 #define MX51_ECSPI_PERIOD 0x1c
310 #define MX51_ECSPI_PERIOD_MASK 0x7fff
311 /*
312 * As measured on the i.MX6, the SPI host controller inserts a 4 SPI-Clock
313 * (SCLK) delay after each burst if the PERIOD reg is 0x0. This value will be
314 * called MX51_ECSPI_PERIOD_MIN_DELAY_SCK.
315 *
316 * If the PERIOD register is != 0, the controller inserts a delay of
317 * MX51_ECSPI_PERIOD_MIN_DELAY_SCK + register value + 1 SCLK after each burst.
318 */
319 #define MX51_ECSPI_PERIOD_MIN_DELAY_SCK 4
320
321 #define MX51_ECSPI_TESTREG 0x20
322 #define MX51_ECSPI_TESTREG_LBC BIT(31)
323
spi_imx_buf_rx_swap_u32(struct spi_imx_data * spi_imx)324 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx)
325 {
326 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);
327
328 if (spi_imx->rx_buf) {
329 #ifdef __LITTLE_ENDIAN
330 unsigned int bytes_per_word;
331
332 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
333 if (bytes_per_word == 1)
334 swab32s(&val);
335 else if (bytes_per_word == 2)
336 swahw32s(&val);
337 #endif
338 *(u32 *)spi_imx->rx_buf = val;
339 spi_imx->rx_buf += sizeof(u32);
340 }
341
342 spi_imx->remainder -= sizeof(u32);
343 }
344
spi_imx_buf_rx_swap(struct spi_imx_data * spi_imx)345 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx)
346 {
347 int unaligned;
348 u32 val;
349
350 unaligned = spi_imx->remainder % 4;
351
352 if (!unaligned) {
353 spi_imx_buf_rx_swap_u32(spi_imx);
354 return;
355 }
356
357 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
358 spi_imx_buf_rx_u16(spi_imx);
359 return;
360 }
361
362 val = readl(spi_imx->base + MXC_CSPIRXDATA);
363
364 while (unaligned--) {
365 if (spi_imx->rx_buf) {
366 *(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff;
367 spi_imx->rx_buf++;
368 }
369 spi_imx->remainder--;
370 }
371 }
372
spi_imx_buf_tx_swap_u32(struct spi_imx_data * spi_imx)373 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx)
374 {
375 u32 val = 0;
376 #ifdef __LITTLE_ENDIAN
377 unsigned int bytes_per_word;
378 #endif
379
380 if (spi_imx->tx_buf) {
381 val = *(u32 *)spi_imx->tx_buf;
382 spi_imx->tx_buf += sizeof(u32);
383 }
384
385 spi_imx->count -= sizeof(u32);
386 #ifdef __LITTLE_ENDIAN
387 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
388
389 if (bytes_per_word == 1)
390 swab32s(&val);
391 else if (bytes_per_word == 2)
392 swahw32s(&val);
393 #endif
394 writel(val, spi_imx->base + MXC_CSPITXDATA);
395 }
396
spi_imx_buf_tx_swap(struct spi_imx_data * spi_imx)397 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx)
398 {
399 int unaligned;
400 u32 val = 0;
401
402 unaligned = spi_imx->count % 4;
403
404 if (!unaligned) {
405 spi_imx_buf_tx_swap_u32(spi_imx);
406 return;
407 }
408
409 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
410 spi_imx_buf_tx_u16(spi_imx);
411 return;
412 }
413
414 while (unaligned--) {
415 if (spi_imx->tx_buf) {
416 val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned);
417 spi_imx->tx_buf++;
418 }
419 spi_imx->count--;
420 }
421
422 writel(val, spi_imx->base + MXC_CSPITXDATA);
423 }
424
mx53_ecspi_rx_target(struct spi_imx_data * spi_imx)425 static void mx53_ecspi_rx_target(struct spi_imx_data *spi_imx)
426 {
427 u32 val = ioread32be(spi_imx->base + MXC_CSPIRXDATA);
428
429 if (spi_imx->rx_buf) {
430 int n_bytes = spi_imx->target_burst % sizeof(val);
431
432 if (!n_bytes)
433 n_bytes = sizeof(val);
434
435 memcpy(spi_imx->rx_buf,
436 ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes);
437
438 spi_imx->rx_buf += n_bytes;
439 spi_imx->target_burst -= n_bytes;
440 }
441
442 spi_imx->remainder -= sizeof(u32);
443 }
444
mx53_ecspi_tx_target(struct spi_imx_data * spi_imx)445 static void mx53_ecspi_tx_target(struct spi_imx_data *spi_imx)
446 {
447 u32 val = 0;
448 int n_bytes = spi_imx->count % sizeof(val);
449
450 if (!n_bytes)
451 n_bytes = sizeof(val);
452
453 if (spi_imx->tx_buf) {
454 memcpy(((u8 *)&val) + sizeof(val) - n_bytes,
455 spi_imx->tx_buf, n_bytes);
456 spi_imx->tx_buf += n_bytes;
457 }
458
459 spi_imx->count -= n_bytes;
460
461 iowrite32be(val, spi_imx->base + MXC_CSPITXDATA);
462 }
463
464 /* MX51 eCSPI */
mx51_ecspi_clkdiv(struct spi_imx_data * spi_imx,unsigned int fspi,unsigned int * fres)465 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx,
466 unsigned int fspi, unsigned int *fres)
467 {
468 /*
469 * there are two 4-bit dividers, the pre-divider divides by
470 * $pre, the post-divider by 2^$post
471 */
472 unsigned int pre, post;
473 unsigned int fin = spi_imx->spi_clk;
474
475 fspi = min(fspi, fin);
476
477 post = fls(fin) - fls(fspi);
478 if (fin > fspi << post)
479 post++;
480
481 /* now we have: (fin <= fspi << post) with post being minimal */
482
483 post = max(4U, post) - 4;
484 if (unlikely(post > 0xf)) {
485 dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n",
486 fspi, fin);
487 return 0xff;
488 }
489
490 pre = DIV_ROUND_UP(fin, fspi << post) - 1;
491
492 dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n",
493 __func__, fin, fspi, post, pre);
494
495 /* Resulting frequency for the SCLK line. */
496 *fres = (fin / (pre + 1)) >> post;
497
498 return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) |
499 (post << MX51_ECSPI_CTRL_POSTDIV_OFFSET);
500 }
501
mx51_ecspi_intctrl(struct spi_imx_data * spi_imx,int enable)502 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable)
503 {
504 unsigned int val = 0;
505
506 if (enable & MXC_INT_TE)
507 val |= MX51_ECSPI_INT_TEEN;
508
509 if (enable & MXC_INT_RR)
510 val |= MX51_ECSPI_INT_RREN;
511
512 if (enable & MXC_INT_RDR)
513 val |= MX51_ECSPI_INT_RDREN;
514
515 writel(val, spi_imx->base + MX51_ECSPI_INT);
516 }
517
mx51_ecspi_trigger(struct spi_imx_data * spi_imx)518 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
519 {
520 u32 reg;
521
522 reg = readl(spi_imx->base + MX51_ECSPI_CTRL);
523 reg |= MX51_ECSPI_CTRL_XCH;
524 writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
525 }
526
mx51_ecspi_disable(struct spi_imx_data * spi_imx)527 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx)
528 {
529 u32 ctrl;
530
531 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
532 ctrl &= ~MX51_ECSPI_CTRL_ENABLE;
533 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
534 }
535
mx51_ecspi_channel(const struct spi_device * spi)536 static int mx51_ecspi_channel(const struct spi_device *spi)
537 {
538 if (!spi_get_csgpiod(spi, 0))
539 return spi_get_chipselect(spi, 0);
540 return spi->controller->unused_native_cs;
541 }
542
mx51_ecspi_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)543 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx,
544 struct spi_message *msg)
545 {
546 struct spi_device *spi = msg->spi;
547 struct spi_transfer *xfer;
548 u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
549 u32 min_speed_hz = ~0U;
550 u32 testreg, delay;
551 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
552 u32 current_cfg = cfg;
553 int channel = mx51_ecspi_channel(spi);
554
555 /* set Host or Target mode */
556 if (spi_imx->target_mode)
557 ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK;
558 else
559 ctrl |= MX51_ECSPI_CTRL_MODE_MASK;
560
561 /*
562 * Enable SPI_RDY handling (falling edge/level triggered).
563 */
564 if (spi->mode & SPI_READY)
565 ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl);
566
567 /* set chip select to use */
568 ctrl |= MX51_ECSPI_CTRL_CS(channel);
569
570 /*
571 * The ctrl register must be written first, with the EN bit set other
572 * registers must not be written to.
573 */
574 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
575
576 testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
577 if (spi->mode & SPI_LOOP)
578 testreg |= MX51_ECSPI_TESTREG_LBC;
579 else
580 testreg &= ~MX51_ECSPI_TESTREG_LBC;
581 writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG);
582
583 /*
584 * eCSPI burst completion by Chip Select signal in Target mode
585 * is not functional for imx53 Soc, config SPI burst completed when
586 * BURST_LENGTH + 1 bits are received
587 */
588 if (spi_imx->target_mode && is_imx53_ecspi(spi_imx))
589 cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(channel);
590 else
591 cfg |= MX51_ECSPI_CONFIG_SBBCTRL(channel);
592
593 if (spi->mode & SPI_CPOL) {
594 cfg |= MX51_ECSPI_CONFIG_SCLKPOL(channel);
595 cfg |= MX51_ECSPI_CONFIG_SCLKCTL(channel);
596 } else {
597 cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(channel);
598 cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(channel);
599 }
600
601 if (spi->mode & SPI_MOSI_IDLE_LOW)
602 cfg |= MX51_ECSPI_CONFIG_DATACTL(channel);
603 else
604 cfg &= ~MX51_ECSPI_CONFIG_DATACTL(channel);
605
606 if (spi->mode & SPI_CS_HIGH)
607 cfg |= MX51_ECSPI_CONFIG_SSBPOL(channel);
608 else
609 cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(channel);
610
611 if (cfg == current_cfg)
612 return 0;
613
614 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
615
616 /*
617 * Wait until the changes in the configuration register CONFIGREG
618 * propagate into the hardware. It takes exactly one tick of the
619 * SCLK clock, but we will wait two SCLK clock just to be sure. The
620 * effect of the delay it takes for the hardware to apply changes
621 * is noticable if the SCLK clock run very slow. In such a case, if
622 * the polarity of SCLK should be inverted, the GPIO ChipSelect might
623 * be asserted before the SCLK polarity changes, which would disrupt
624 * the SPI communication as the device on the other end would consider
625 * the change of SCLK polarity as a clock tick already.
626 *
627 * Because spi_imx->spi_bus_clk is only set in prepare_message
628 * callback, iterate over all the transfers in spi_message, find the
629 * one with lowest bus frequency, and use that bus frequency for the
630 * delay calculation. In case all transfers have speed_hz == 0, then
631 * min_speed_hz is ~0 and the resulting delay is zero.
632 */
633 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
634 if (!xfer->speed_hz)
635 continue;
636 min_speed_hz = min(xfer->speed_hz, min_speed_hz);
637 }
638
639 delay = (2 * 1000000) / min_speed_hz;
640 if (likely(delay < 10)) /* SCLK is faster than 200 kHz */
641 udelay(delay);
642 else /* SCLK is _very_ slow */
643 usleep_range(delay, delay + 10);
644
645 return 0;
646 }
647
mx51_configure_cpha(struct spi_imx_data * spi_imx,struct spi_device * spi)648 static void mx51_configure_cpha(struct spi_imx_data *spi_imx,
649 struct spi_device *spi)
650 {
651 bool cpha = (spi->mode & SPI_CPHA);
652 bool flip_cpha = (spi->mode & SPI_RX_CPHA_FLIP) && spi_imx->rx_only;
653 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
654 int channel = mx51_ecspi_channel(spi);
655
656 /* Flip cpha logical value iff flip_cpha */
657 cpha ^= flip_cpha;
658
659 if (cpha)
660 cfg |= MX51_ECSPI_CONFIG_SCLKPHA(channel);
661 else
662 cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(channel);
663
664 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
665 }
666
mx51_ecspi_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi,struct spi_transfer * t)667 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx,
668 struct spi_device *spi, struct spi_transfer *t)
669 {
670 u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
671 u64 word_delay_sck;
672 u32 clk;
673
674 /* Clear BL field and set the right value */
675 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
676 if (spi_imx->target_mode && is_imx53_ecspi(spi_imx))
677 ctrl |= (spi_imx->target_burst * 8 - 1)
678 << MX51_ECSPI_CTRL_BL_OFFSET;
679 else {
680 ctrl |= (spi_imx->bits_per_word - 1)
681 << MX51_ECSPI_CTRL_BL_OFFSET;
682 }
683
684 /* set clock speed */
685 ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET |
686 0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET);
687 ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk);
688 spi_imx->spi_bus_clk = clk;
689
690 mx51_configure_cpha(spi_imx, spi);
691
692 /*
693 * ERR009165: work in XHC mode instead of SMC as PIO on the chips
694 * before i.mx6ul.
695 */
696 if (spi_imx->usedma && spi_imx->devtype_data->tx_glitch_fixed)
697 ctrl |= MX51_ECSPI_CTRL_SMC;
698 else
699 ctrl &= ~MX51_ECSPI_CTRL_SMC;
700
701 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
702
703 /* calculate word delay in SPI Clock (SCLK) cycles */
704 if (t->word_delay.value == 0) {
705 word_delay_sck = 0;
706 } else if (t->word_delay.unit == SPI_DELAY_UNIT_SCK) {
707 word_delay_sck = t->word_delay.value;
708
709 if (word_delay_sck <= MX51_ECSPI_PERIOD_MIN_DELAY_SCK)
710 word_delay_sck = 0;
711 else if (word_delay_sck <= MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1)
712 word_delay_sck = 1;
713 else
714 word_delay_sck -= MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1;
715 } else {
716 int word_delay_ns;
717
718 word_delay_ns = spi_delay_to_ns(&t->word_delay, t);
719 if (word_delay_ns < 0)
720 return word_delay_ns;
721
722 if (word_delay_ns <= mul_u64_u32_div(NSEC_PER_SEC,
723 MX51_ECSPI_PERIOD_MIN_DELAY_SCK,
724 spi_imx->spi_bus_clk)) {
725 word_delay_sck = 0;
726 } else if (word_delay_ns <= mul_u64_u32_div(NSEC_PER_SEC,
727 MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1,
728 spi_imx->spi_bus_clk)) {
729 word_delay_sck = 1;
730 } else {
731 word_delay_ns -= mul_u64_u32_div(NSEC_PER_SEC,
732 MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1,
733 spi_imx->spi_bus_clk);
734
735 word_delay_sck = DIV_U64_ROUND_UP((u64)word_delay_ns * spi_imx->spi_bus_clk,
736 NSEC_PER_SEC);
737 }
738 }
739
740 if (!FIELD_FIT(MX51_ECSPI_PERIOD_MASK, word_delay_sck))
741 return -EINVAL;
742
743 writel(FIELD_PREP(MX51_ECSPI_PERIOD_MASK, word_delay_sck),
744 spi_imx->base + MX51_ECSPI_PERIOD);
745
746 return 0;
747 }
748
mx51_setup_wml(struct spi_imx_data * spi_imx)749 static void mx51_setup_wml(struct spi_imx_data *spi_imx)
750 {
751 u32 tx_wml = 0;
752
753 if (spi_imx->devtype_data->tx_glitch_fixed)
754 tx_wml = spi_imx->wml;
755 /*
756 * Configure the DMA register: setup the watermark
757 * and enable DMA request.
758 */
759 writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) |
760 MX51_ECSPI_DMA_TX_WML(tx_wml) |
761 MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
762 MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN |
763 MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA);
764 }
765
mx51_ecspi_rx_available(struct spi_imx_data * spi_imx)766 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx)
767 {
768 return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR;
769 }
770
mx51_ecspi_reset(struct spi_imx_data * spi_imx)771 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
772 {
773 /* drain receive buffer */
774 while (mx51_ecspi_rx_available(spi_imx))
775 readl(spi_imx->base + MXC_CSPIRXDATA);
776 }
777
778 #define MX31_INTREG_TEEN (1 << 0)
779 #define MX31_INTREG_RREN (1 << 3)
780
781 #define MX31_CSPICTRL_ENABLE (1 << 0)
782 #define MX31_CSPICTRL_HOST (1 << 1)
783 #define MX31_CSPICTRL_XCH (1 << 2)
784 #define MX31_CSPICTRL_SMC (1 << 3)
785 #define MX31_CSPICTRL_POL (1 << 4)
786 #define MX31_CSPICTRL_PHA (1 << 5)
787 #define MX31_CSPICTRL_SSCTL (1 << 6)
788 #define MX31_CSPICTRL_SSPOL (1 << 7)
789 #define MX31_CSPICTRL_BC_SHIFT 8
790 #define MX35_CSPICTRL_BL_SHIFT 20
791 #define MX31_CSPICTRL_CS_SHIFT 24
792 #define MX35_CSPICTRL_CS_SHIFT 12
793 #define MX31_CSPICTRL_DR_SHIFT 16
794
795 #define MX31_CSPI_DMAREG 0x10
796 #define MX31_DMAREG_RH_DEN (1<<4)
797 #define MX31_DMAREG_TH_DEN (1<<1)
798
799 #define MX31_CSPISTATUS 0x14
800 #define MX31_STATUS_RR (1 << 3)
801
802 #define MX31_CSPI_TESTREG 0x1C
803 #define MX31_TEST_LBC (1 << 14)
804
805 /* These functions also work for the i.MX35, but be aware that
806 * the i.MX35 has a slightly different register layout for bits
807 * we do not use here.
808 */
mx31_intctrl(struct spi_imx_data * spi_imx,int enable)809 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable)
810 {
811 unsigned int val = 0;
812
813 if (enable & MXC_INT_TE)
814 val |= MX31_INTREG_TEEN;
815 if (enable & MXC_INT_RR)
816 val |= MX31_INTREG_RREN;
817
818 writel(val, spi_imx->base + MXC_CSPIINT);
819 }
820
mx31_trigger(struct spi_imx_data * spi_imx)821 static void mx31_trigger(struct spi_imx_data *spi_imx)
822 {
823 unsigned int reg;
824
825 reg = readl(spi_imx->base + MXC_CSPICTRL);
826 reg |= MX31_CSPICTRL_XCH;
827 writel(reg, spi_imx->base + MXC_CSPICTRL);
828 }
829
mx31_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)830 static int mx31_prepare_message(struct spi_imx_data *spi_imx,
831 struct spi_message *msg)
832 {
833 return 0;
834 }
835
mx31_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi,struct spi_transfer * t)836 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx,
837 struct spi_device *spi, struct spi_transfer *t)
838 {
839 unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_HOST;
840 unsigned int clk;
841
842 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
843 MX31_CSPICTRL_DR_SHIFT;
844 spi_imx->spi_bus_clk = clk;
845
846 if (is_imx35_cspi(spi_imx)) {
847 reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT;
848 reg |= MX31_CSPICTRL_SSCTL;
849 } else {
850 reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT;
851 }
852
853 if (spi->mode & SPI_CPHA)
854 reg |= MX31_CSPICTRL_PHA;
855 if (spi->mode & SPI_CPOL)
856 reg |= MX31_CSPICTRL_POL;
857 if (spi->mode & SPI_CS_HIGH)
858 reg |= MX31_CSPICTRL_SSPOL;
859 if (!spi_get_csgpiod(spi, 0))
860 reg |= (spi_get_chipselect(spi, 0)) <<
861 (is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
862 MX31_CSPICTRL_CS_SHIFT);
863
864 if (spi_imx->usedma)
865 reg |= MX31_CSPICTRL_SMC;
866
867 writel(reg, spi_imx->base + MXC_CSPICTRL);
868
869 reg = readl(spi_imx->base + MX31_CSPI_TESTREG);
870 if (spi->mode & SPI_LOOP)
871 reg |= MX31_TEST_LBC;
872 else
873 reg &= ~MX31_TEST_LBC;
874 writel(reg, spi_imx->base + MX31_CSPI_TESTREG);
875
876 if (spi_imx->usedma) {
877 /*
878 * configure DMA requests when RXFIFO is half full and
879 * when TXFIFO is half empty
880 */
881 writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN,
882 spi_imx->base + MX31_CSPI_DMAREG);
883 }
884
885 return 0;
886 }
887
mx31_rx_available(struct spi_imx_data * spi_imx)888 static int mx31_rx_available(struct spi_imx_data *spi_imx)
889 {
890 return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR;
891 }
892
mx31_reset(struct spi_imx_data * spi_imx)893 static void mx31_reset(struct spi_imx_data *spi_imx)
894 {
895 /* drain receive buffer */
896 while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR)
897 readl(spi_imx->base + MXC_CSPIRXDATA);
898 }
899
900 #define MX21_INTREG_RR (1 << 4)
901 #define MX21_INTREG_TEEN (1 << 9)
902 #define MX21_INTREG_RREN (1 << 13)
903
904 #define MX21_CSPICTRL_POL (1 << 5)
905 #define MX21_CSPICTRL_PHA (1 << 6)
906 #define MX21_CSPICTRL_SSPOL (1 << 8)
907 #define MX21_CSPICTRL_XCH (1 << 9)
908 #define MX21_CSPICTRL_ENABLE (1 << 10)
909 #define MX21_CSPICTRL_HOST (1 << 11)
910 #define MX21_CSPICTRL_DR_SHIFT 14
911 #define MX21_CSPICTRL_CS_SHIFT 19
912
mx21_intctrl(struct spi_imx_data * spi_imx,int enable)913 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable)
914 {
915 unsigned int val = 0;
916
917 if (enable & MXC_INT_TE)
918 val |= MX21_INTREG_TEEN;
919 if (enable & MXC_INT_RR)
920 val |= MX21_INTREG_RREN;
921
922 writel(val, spi_imx->base + MXC_CSPIINT);
923 }
924
mx21_trigger(struct spi_imx_data * spi_imx)925 static void mx21_trigger(struct spi_imx_data *spi_imx)
926 {
927 unsigned int reg;
928
929 reg = readl(spi_imx->base + MXC_CSPICTRL);
930 reg |= MX21_CSPICTRL_XCH;
931 writel(reg, spi_imx->base + MXC_CSPICTRL);
932 }
933
mx21_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)934 static int mx21_prepare_message(struct spi_imx_data *spi_imx,
935 struct spi_message *msg)
936 {
937 return 0;
938 }
939
mx21_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi,struct spi_transfer * t)940 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx,
941 struct spi_device *spi, struct spi_transfer *t)
942 {
943 unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_HOST;
944 unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
945 unsigned int clk;
946
947 reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk)
948 << MX21_CSPICTRL_DR_SHIFT;
949 spi_imx->spi_bus_clk = clk;
950
951 reg |= spi_imx->bits_per_word - 1;
952
953 if (spi->mode & SPI_CPHA)
954 reg |= MX21_CSPICTRL_PHA;
955 if (spi->mode & SPI_CPOL)
956 reg |= MX21_CSPICTRL_POL;
957 if (spi->mode & SPI_CS_HIGH)
958 reg |= MX21_CSPICTRL_SSPOL;
959 if (!spi_get_csgpiod(spi, 0))
960 reg |= spi_get_chipselect(spi, 0) << MX21_CSPICTRL_CS_SHIFT;
961
962 writel(reg, spi_imx->base + MXC_CSPICTRL);
963
964 return 0;
965 }
966
mx21_rx_available(struct spi_imx_data * spi_imx)967 static int mx21_rx_available(struct spi_imx_data *spi_imx)
968 {
969 return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR;
970 }
971
mx21_reset(struct spi_imx_data * spi_imx)972 static void mx21_reset(struct spi_imx_data *spi_imx)
973 {
974 writel(1, spi_imx->base + MXC_RESET);
975 }
976
977 #define MX1_INTREG_RR (1 << 3)
978 #define MX1_INTREG_TEEN (1 << 8)
979 #define MX1_INTREG_RREN (1 << 11)
980
981 #define MX1_CSPICTRL_POL (1 << 4)
982 #define MX1_CSPICTRL_PHA (1 << 5)
983 #define MX1_CSPICTRL_XCH (1 << 8)
984 #define MX1_CSPICTRL_ENABLE (1 << 9)
985 #define MX1_CSPICTRL_HOST (1 << 10)
986 #define MX1_CSPICTRL_DR_SHIFT 13
987
mx1_intctrl(struct spi_imx_data * spi_imx,int enable)988 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable)
989 {
990 unsigned int val = 0;
991
992 if (enable & MXC_INT_TE)
993 val |= MX1_INTREG_TEEN;
994 if (enable & MXC_INT_RR)
995 val |= MX1_INTREG_RREN;
996
997 writel(val, spi_imx->base + MXC_CSPIINT);
998 }
999
mx1_trigger(struct spi_imx_data * spi_imx)1000 static void mx1_trigger(struct spi_imx_data *spi_imx)
1001 {
1002 unsigned int reg;
1003
1004 reg = readl(spi_imx->base + MXC_CSPICTRL);
1005 reg |= MX1_CSPICTRL_XCH;
1006 writel(reg, spi_imx->base + MXC_CSPICTRL);
1007 }
1008
mx1_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)1009 static int mx1_prepare_message(struct spi_imx_data *spi_imx,
1010 struct spi_message *msg)
1011 {
1012 return 0;
1013 }
1014
mx1_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi,struct spi_transfer * t)1015 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx,
1016 struct spi_device *spi, struct spi_transfer *t)
1017 {
1018 unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_HOST;
1019 unsigned int clk;
1020
1021 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
1022 MX1_CSPICTRL_DR_SHIFT;
1023 spi_imx->spi_bus_clk = clk;
1024
1025 reg |= spi_imx->bits_per_word - 1;
1026
1027 if (spi->mode & SPI_CPHA)
1028 reg |= MX1_CSPICTRL_PHA;
1029 if (spi->mode & SPI_CPOL)
1030 reg |= MX1_CSPICTRL_POL;
1031
1032 writel(reg, spi_imx->base + MXC_CSPICTRL);
1033
1034 return 0;
1035 }
1036
mx1_rx_available(struct spi_imx_data * spi_imx)1037 static int mx1_rx_available(struct spi_imx_data *spi_imx)
1038 {
1039 return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR;
1040 }
1041
mx1_reset(struct spi_imx_data * spi_imx)1042 static void mx1_reset(struct spi_imx_data *spi_imx)
1043 {
1044 writel(1, spi_imx->base + MXC_RESET);
1045 }
1046
1047 static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
1048 .intctrl = mx1_intctrl,
1049 .prepare_message = mx1_prepare_message,
1050 .prepare_transfer = mx1_prepare_transfer,
1051 .trigger = mx1_trigger,
1052 .rx_available = mx1_rx_available,
1053 .reset = mx1_reset,
1054 .fifo_size = 8,
1055 .has_dmamode = false,
1056 .dynamic_burst = false,
1057 .has_targetmode = false,
1058 .devtype = IMX1_CSPI,
1059 };
1060
1061 static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
1062 .intctrl = mx21_intctrl,
1063 .prepare_message = mx21_prepare_message,
1064 .prepare_transfer = mx21_prepare_transfer,
1065 .trigger = mx21_trigger,
1066 .rx_available = mx21_rx_available,
1067 .reset = mx21_reset,
1068 .fifo_size = 8,
1069 .has_dmamode = false,
1070 .dynamic_burst = false,
1071 .has_targetmode = false,
1072 .devtype = IMX21_CSPI,
1073 };
1074
1075 static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
1076 /* i.mx27 cspi shares the functions with i.mx21 one */
1077 .intctrl = mx21_intctrl,
1078 .prepare_message = mx21_prepare_message,
1079 .prepare_transfer = mx21_prepare_transfer,
1080 .trigger = mx21_trigger,
1081 .rx_available = mx21_rx_available,
1082 .reset = mx21_reset,
1083 .fifo_size = 8,
1084 .has_dmamode = false,
1085 .dynamic_burst = false,
1086 .has_targetmode = false,
1087 .devtype = IMX27_CSPI,
1088 };
1089
1090 static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
1091 .intctrl = mx31_intctrl,
1092 .prepare_message = mx31_prepare_message,
1093 .prepare_transfer = mx31_prepare_transfer,
1094 .trigger = mx31_trigger,
1095 .rx_available = mx31_rx_available,
1096 .reset = mx31_reset,
1097 .fifo_size = 8,
1098 .has_dmamode = false,
1099 .dynamic_burst = false,
1100 .has_targetmode = false,
1101 .devtype = IMX31_CSPI,
1102 };
1103
1104 static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
1105 /* i.mx35 and later cspi shares the functions with i.mx31 one */
1106 .intctrl = mx31_intctrl,
1107 .prepare_message = mx31_prepare_message,
1108 .prepare_transfer = mx31_prepare_transfer,
1109 .trigger = mx31_trigger,
1110 .rx_available = mx31_rx_available,
1111 .reset = mx31_reset,
1112 .fifo_size = 8,
1113 .has_dmamode = false,
1114 .dynamic_burst = false,
1115 .has_targetmode = false,
1116 .devtype = IMX35_CSPI,
1117 };
1118
1119 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
1120 .intctrl = mx51_ecspi_intctrl,
1121 .prepare_message = mx51_ecspi_prepare_message,
1122 .prepare_transfer = mx51_ecspi_prepare_transfer,
1123 .trigger = mx51_ecspi_trigger,
1124 .rx_available = mx51_ecspi_rx_available,
1125 .reset = mx51_ecspi_reset,
1126 .setup_wml = mx51_setup_wml,
1127 .fifo_size = 64,
1128 .has_dmamode = true,
1129 .dynamic_burst = true,
1130 .has_targetmode = true,
1131 .disable = mx51_ecspi_disable,
1132 .devtype = IMX51_ECSPI,
1133 };
1134
1135 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = {
1136 .intctrl = mx51_ecspi_intctrl,
1137 .prepare_message = mx51_ecspi_prepare_message,
1138 .prepare_transfer = mx51_ecspi_prepare_transfer,
1139 .trigger = mx51_ecspi_trigger,
1140 .rx_available = mx51_ecspi_rx_available,
1141 .reset = mx51_ecspi_reset,
1142 .fifo_size = 64,
1143 .has_dmamode = true,
1144 .has_targetmode = true,
1145 .disable = mx51_ecspi_disable,
1146 .devtype = IMX53_ECSPI,
1147 };
1148
1149 static struct spi_imx_devtype_data imx6ul_ecspi_devtype_data = {
1150 .intctrl = mx51_ecspi_intctrl,
1151 .prepare_message = mx51_ecspi_prepare_message,
1152 .prepare_transfer = mx51_ecspi_prepare_transfer,
1153 .trigger = mx51_ecspi_trigger,
1154 .rx_available = mx51_ecspi_rx_available,
1155 .reset = mx51_ecspi_reset,
1156 .setup_wml = mx51_setup_wml,
1157 .fifo_size = 64,
1158 .has_dmamode = true,
1159 .dynamic_burst = true,
1160 .has_targetmode = true,
1161 .tx_glitch_fixed = true,
1162 .disable = mx51_ecspi_disable,
1163 .devtype = IMX51_ECSPI,
1164 };
1165
1166 static const struct of_device_id spi_imx_dt_ids[] = {
1167 { .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },
1168 { .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
1169 { .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, },
1170 { .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, },
1171 { .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, },
1172 { .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, },
1173 { .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, },
1174 { .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, },
1175 { /* sentinel */ }
1176 };
1177 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
1178
spi_imx_set_burst_len(struct spi_imx_data * spi_imx,int n_bits)1179 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits)
1180 {
1181 u32 ctrl;
1182
1183 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
1184 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
1185 ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET);
1186 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
1187 }
1188
spi_imx_push(struct spi_imx_data * spi_imx)1189 static void spi_imx_push(struct spi_imx_data *spi_imx)
1190 {
1191 unsigned int burst_len;
1192
1193 /*
1194 * Reload the FIFO when the remaining bytes to be transferred in the
1195 * current burst is 0. This only applies when bits_per_word is a
1196 * multiple of 8.
1197 */
1198 if (!spi_imx->remainder) {
1199 if (spi_imx->dynamic_burst) {
1200
1201 /* We need to deal unaligned data first */
1202 burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST;
1203
1204 if (!burst_len)
1205 burst_len = MX51_ECSPI_CTRL_MAX_BURST;
1206
1207 spi_imx_set_burst_len(spi_imx, burst_len * 8);
1208
1209 spi_imx->remainder = burst_len;
1210 } else {
1211 spi_imx->remainder = spi_imx_bytes_per_word(spi_imx->bits_per_word);
1212 }
1213 }
1214
1215 while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) {
1216 if (!spi_imx->count)
1217 break;
1218 if (spi_imx->dynamic_burst &&
1219 spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 4))
1220 break;
1221 spi_imx->tx(spi_imx);
1222 spi_imx->txfifo++;
1223 }
1224
1225 if (!spi_imx->target_mode)
1226 spi_imx->devtype_data->trigger(spi_imx);
1227 }
1228
spi_imx_isr(int irq,void * dev_id)1229 static irqreturn_t spi_imx_isr(int irq, void *dev_id)
1230 {
1231 struct spi_imx_data *spi_imx = dev_id;
1232
1233 while (spi_imx->txfifo &&
1234 spi_imx->devtype_data->rx_available(spi_imx)) {
1235 spi_imx->rx(spi_imx);
1236 spi_imx->txfifo--;
1237 }
1238
1239 if (spi_imx->count) {
1240 spi_imx_push(spi_imx);
1241 return IRQ_HANDLED;
1242 }
1243
1244 if (spi_imx->txfifo) {
1245 /* No data left to push, but still waiting for rx data,
1246 * enable receive data available interrupt.
1247 */
1248 spi_imx->devtype_data->intctrl(
1249 spi_imx, MXC_INT_RR);
1250 return IRQ_HANDLED;
1251 }
1252
1253 spi_imx->devtype_data->intctrl(spi_imx, 0);
1254 complete(&spi_imx->xfer_done);
1255
1256 return IRQ_HANDLED;
1257 }
1258
spi_imx_dma_configure(struct spi_controller * controller)1259 static int spi_imx_dma_configure(struct spi_controller *controller)
1260 {
1261 int ret;
1262 enum dma_slave_buswidth buswidth;
1263 struct dma_slave_config rx = {}, tx = {};
1264 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1265
1266 switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) {
1267 case 4:
1268 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1269 break;
1270 case 2:
1271 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1272 break;
1273 case 1:
1274 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1275 break;
1276 default:
1277 return -EINVAL;
1278 }
1279
1280 tx.direction = DMA_MEM_TO_DEV;
1281 tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA;
1282 tx.dst_addr_width = buswidth;
1283 tx.dst_maxburst = spi_imx->wml;
1284 ret = dmaengine_slave_config(controller->dma_tx, &tx);
1285 if (ret) {
1286 dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret);
1287 return ret;
1288 }
1289
1290 rx.direction = DMA_DEV_TO_MEM;
1291 rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA;
1292 rx.src_addr_width = buswidth;
1293 rx.src_maxburst = spi_imx->wml;
1294 ret = dmaengine_slave_config(controller->dma_rx, &rx);
1295 if (ret) {
1296 dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret);
1297 return ret;
1298 }
1299
1300 return 0;
1301 }
1302
spi_imx_setupxfer(struct spi_device * spi,struct spi_transfer * t)1303 static int spi_imx_setupxfer(struct spi_device *spi,
1304 struct spi_transfer *t)
1305 {
1306 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1307
1308 if (!t)
1309 return 0;
1310
1311 if (!t->speed_hz) {
1312 if (!spi->max_speed_hz) {
1313 dev_err(&spi->dev, "no speed_hz provided!\n");
1314 return -EINVAL;
1315 }
1316 dev_dbg(&spi->dev, "using spi->max_speed_hz!\n");
1317 spi_imx->spi_bus_clk = spi->max_speed_hz;
1318 } else
1319 spi_imx->spi_bus_clk = t->speed_hz;
1320
1321 spi_imx->bits_per_word = t->bits_per_word;
1322 spi_imx->count = t->len;
1323
1324 /*
1325 * Initialize the functions for transfer. To transfer non byte-aligned
1326 * words, we have to use multiple word-size bursts. To insert word
1327 * delay, the burst size has to equal the word size. We can't use
1328 * dynamic_burst in these cases.
1329 */
1330 if (spi_imx->devtype_data->dynamic_burst && !spi_imx->target_mode &&
1331 !(spi->mode & SPI_CS_WORD) &&
1332 !(t->word_delay.value) &&
1333 (spi_imx->bits_per_word == 8 ||
1334 spi_imx->bits_per_word == 16 ||
1335 spi_imx->bits_per_word == 32)) {
1336
1337 spi_imx->rx = spi_imx_buf_rx_swap;
1338 spi_imx->tx = spi_imx_buf_tx_swap;
1339 spi_imx->dynamic_burst = 1;
1340
1341 } else {
1342 if (spi_imx->bits_per_word <= 8) {
1343 spi_imx->rx = spi_imx_buf_rx_u8;
1344 spi_imx->tx = spi_imx_buf_tx_u8;
1345 } else if (spi_imx->bits_per_word <= 16) {
1346 spi_imx->rx = spi_imx_buf_rx_u16;
1347 spi_imx->tx = spi_imx_buf_tx_u16;
1348 } else {
1349 spi_imx->rx = spi_imx_buf_rx_u32;
1350 spi_imx->tx = spi_imx_buf_tx_u32;
1351 }
1352 spi_imx->dynamic_burst = 0;
1353 }
1354
1355 if (spi_imx_can_dma(spi_imx->controller, spi, t))
1356 spi_imx->usedma = true;
1357 else
1358 spi_imx->usedma = false;
1359
1360 spi_imx->rx_only = ((t->tx_buf == NULL)
1361 || (t->tx_buf == spi->controller->dummy_tx));
1362
1363 if (is_imx53_ecspi(spi_imx) && spi_imx->target_mode) {
1364 spi_imx->rx = mx53_ecspi_rx_target;
1365 spi_imx->tx = mx53_ecspi_tx_target;
1366 spi_imx->target_burst = t->len;
1367 }
1368
1369 spi_imx->devtype_data->prepare_transfer(spi_imx, spi, t);
1370
1371 return 0;
1372 }
1373
spi_imx_sdma_exit(struct spi_imx_data * spi_imx)1374 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx)
1375 {
1376 struct spi_controller *controller = spi_imx->controller;
1377
1378 if (controller->dma_rx) {
1379 dma_release_channel(controller->dma_rx);
1380 controller->dma_rx = NULL;
1381 }
1382
1383 if (controller->dma_tx) {
1384 dma_release_channel(controller->dma_tx);
1385 controller->dma_tx = NULL;
1386 }
1387 }
1388
spi_imx_sdma_init(struct device * dev,struct spi_imx_data * spi_imx,struct spi_controller * controller)1389 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx,
1390 struct spi_controller *controller)
1391 {
1392 int ret;
1393
1394 spi_imx->wml = spi_imx->devtype_data->fifo_size / 2;
1395
1396 /* Prepare for TX DMA: */
1397 controller->dma_tx = dma_request_chan(dev, "tx");
1398 if (IS_ERR(controller->dma_tx)) {
1399 ret = PTR_ERR(controller->dma_tx);
1400 dev_err_probe(dev, ret, "can't get the TX DMA channel!\n");
1401 controller->dma_tx = NULL;
1402 goto err;
1403 }
1404
1405 /* Prepare for RX : */
1406 controller->dma_rx = dma_request_chan(dev, "rx");
1407 if (IS_ERR(controller->dma_rx)) {
1408 ret = PTR_ERR(controller->dma_rx);
1409 dev_err_probe(dev, ret, "can't get the RX DMA channel!\n");
1410 controller->dma_rx = NULL;
1411 goto err;
1412 }
1413
1414 init_completion(&spi_imx->dma_rx_completion);
1415 init_completion(&spi_imx->dma_tx_completion);
1416 controller->can_dma = spi_imx_can_dma;
1417 controller->max_dma_len = MAX_SDMA_BD_BYTES;
1418 spi_imx->controller->flags = SPI_CONTROLLER_MUST_RX |
1419 SPI_CONTROLLER_MUST_TX;
1420
1421 return 0;
1422 err:
1423 spi_imx_sdma_exit(spi_imx);
1424 return ret;
1425 }
1426
spi_imx_dma_rx_callback(void * cookie)1427 static void spi_imx_dma_rx_callback(void *cookie)
1428 {
1429 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1430
1431 complete(&spi_imx->dma_rx_completion);
1432 }
1433
spi_imx_dma_tx_callback(void * cookie)1434 static void spi_imx_dma_tx_callback(void *cookie)
1435 {
1436 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1437
1438 complete(&spi_imx->dma_tx_completion);
1439 }
1440
spi_imx_calculate_timeout(struct spi_imx_data * spi_imx,int size)1441 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size)
1442 {
1443 unsigned long timeout = 0;
1444
1445 /* Time with actual data transfer and CS change delay related to HW */
1446 timeout = (8 + 4) * size / spi_imx->spi_bus_clk;
1447
1448 /* Add extra second for scheduler related activities */
1449 timeout += 1;
1450
1451 /* Double calculated timeout */
1452 return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
1453 }
1454
spi_imx_dma_transfer(struct spi_imx_data * spi_imx,struct spi_transfer * transfer)1455 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
1456 struct spi_transfer *transfer)
1457 {
1458 struct dma_async_tx_descriptor *desc_tx, *desc_rx;
1459 unsigned long transfer_timeout;
1460 unsigned long time_left;
1461 struct spi_controller *controller = spi_imx->controller;
1462 struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
1463 struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents);
1464 unsigned int bytes_per_word, i;
1465 int ret;
1466
1467 /* Get the right burst length from the last sg to ensure no tail data */
1468 bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word);
1469 for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) {
1470 if (!(sg_dma_len(last_sg) % (i * bytes_per_word)))
1471 break;
1472 }
1473 /* Use 1 as wml in case no available burst length got */
1474 if (i == 0)
1475 i = 1;
1476
1477 spi_imx->wml = i;
1478
1479 ret = spi_imx_dma_configure(controller);
1480 if (ret)
1481 goto dma_failure_no_start;
1482
1483 if (!spi_imx->devtype_data->setup_wml) {
1484 dev_err(spi_imx->dev, "No setup_wml()?\n");
1485 ret = -EINVAL;
1486 goto dma_failure_no_start;
1487 }
1488 spi_imx->devtype_data->setup_wml(spi_imx);
1489
1490 /*
1491 * The TX DMA setup starts the transfer, so make sure RX is configured
1492 * before TX.
1493 */
1494 desc_rx = dmaengine_prep_slave_sg(controller->dma_rx,
1495 rx->sgl, rx->nents, DMA_DEV_TO_MEM,
1496 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1497 if (!desc_rx) {
1498 ret = -EINVAL;
1499 goto dma_failure_no_start;
1500 }
1501
1502 desc_rx->callback = spi_imx_dma_rx_callback;
1503 desc_rx->callback_param = (void *)spi_imx;
1504 dmaengine_submit(desc_rx);
1505 reinit_completion(&spi_imx->dma_rx_completion);
1506 dma_async_issue_pending(controller->dma_rx);
1507
1508 desc_tx = dmaengine_prep_slave_sg(controller->dma_tx,
1509 tx->sgl, tx->nents, DMA_MEM_TO_DEV,
1510 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1511 if (!desc_tx) {
1512 dmaengine_terminate_all(controller->dma_tx);
1513 dmaengine_terminate_all(controller->dma_rx);
1514 return -EINVAL;
1515 }
1516
1517 desc_tx->callback = spi_imx_dma_tx_callback;
1518 desc_tx->callback_param = (void *)spi_imx;
1519 dmaengine_submit(desc_tx);
1520 reinit_completion(&spi_imx->dma_tx_completion);
1521 dma_async_issue_pending(controller->dma_tx);
1522
1523 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1524
1525 /* Wait SDMA to finish the data transfer.*/
1526 time_left = wait_for_completion_timeout(&spi_imx->dma_tx_completion,
1527 transfer_timeout);
1528 if (!time_left) {
1529 dev_err(spi_imx->dev, "I/O Error in DMA TX\n");
1530 dmaengine_terminate_all(controller->dma_tx);
1531 dmaengine_terminate_all(controller->dma_rx);
1532 return -ETIMEDOUT;
1533 }
1534
1535 time_left = wait_for_completion_timeout(&spi_imx->dma_rx_completion,
1536 transfer_timeout);
1537 if (!time_left) {
1538 dev_err(&controller->dev, "I/O Error in DMA RX\n");
1539 spi_imx->devtype_data->reset(spi_imx);
1540 dmaengine_terminate_all(controller->dma_rx);
1541 return -ETIMEDOUT;
1542 }
1543
1544 return 0;
1545 /* fallback to pio */
1546 dma_failure_no_start:
1547 transfer->error |= SPI_TRANS_FAIL_NO_START;
1548 return ret;
1549 }
1550
spi_imx_pio_transfer(struct spi_device * spi,struct spi_transfer * transfer)1551 static int spi_imx_pio_transfer(struct spi_device *spi,
1552 struct spi_transfer *transfer)
1553 {
1554 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1555 unsigned long transfer_timeout;
1556 unsigned long time_left;
1557
1558 spi_imx->tx_buf = transfer->tx_buf;
1559 spi_imx->rx_buf = transfer->rx_buf;
1560 spi_imx->count = transfer->len;
1561 spi_imx->txfifo = 0;
1562 spi_imx->remainder = 0;
1563
1564 reinit_completion(&spi_imx->xfer_done);
1565
1566 spi_imx_push(spi_imx);
1567
1568 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE);
1569
1570 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1571
1572 time_left = wait_for_completion_timeout(&spi_imx->xfer_done,
1573 transfer_timeout);
1574 if (!time_left) {
1575 dev_err(&spi->dev, "I/O Error in PIO\n");
1576 spi_imx->devtype_data->reset(spi_imx);
1577 return -ETIMEDOUT;
1578 }
1579
1580 return 0;
1581 }
1582
spi_imx_poll_transfer(struct spi_device * spi,struct spi_transfer * transfer)1583 static int spi_imx_poll_transfer(struct spi_device *spi,
1584 struct spi_transfer *transfer)
1585 {
1586 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1587 unsigned long timeout;
1588
1589 spi_imx->tx_buf = transfer->tx_buf;
1590 spi_imx->rx_buf = transfer->rx_buf;
1591 spi_imx->count = transfer->len;
1592 spi_imx->txfifo = 0;
1593 spi_imx->remainder = 0;
1594
1595 /* fill in the fifo before timeout calculations if we are
1596 * interrupted here, then the data is getting transferred by
1597 * the HW while we are interrupted
1598 */
1599 spi_imx_push(spi_imx);
1600
1601 timeout = spi_imx_calculate_timeout(spi_imx, transfer->len) + jiffies;
1602 while (spi_imx->txfifo) {
1603 /* RX */
1604 while (spi_imx->txfifo &&
1605 spi_imx->devtype_data->rx_available(spi_imx)) {
1606 spi_imx->rx(spi_imx);
1607 spi_imx->txfifo--;
1608 }
1609
1610 /* TX */
1611 if (spi_imx->count) {
1612 spi_imx_push(spi_imx);
1613 continue;
1614 }
1615
1616 if (spi_imx->txfifo &&
1617 time_after(jiffies, timeout)) {
1618
1619 dev_err_ratelimited(&spi->dev,
1620 "timeout period reached: jiffies: %lu- falling back to interrupt mode\n",
1621 jiffies - timeout);
1622
1623 /* fall back to interrupt mode */
1624 return spi_imx_pio_transfer(spi, transfer);
1625 }
1626 }
1627
1628 return 0;
1629 }
1630
spi_imx_pio_transfer_target(struct spi_device * spi,struct spi_transfer * transfer)1631 static int spi_imx_pio_transfer_target(struct spi_device *spi,
1632 struct spi_transfer *transfer)
1633 {
1634 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1635 int ret = 0;
1636
1637 if (is_imx53_ecspi(spi_imx) &&
1638 transfer->len > MX53_MAX_TRANSFER_BYTES) {
1639 dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n",
1640 MX53_MAX_TRANSFER_BYTES);
1641 return -EMSGSIZE;
1642 }
1643
1644 spi_imx->tx_buf = transfer->tx_buf;
1645 spi_imx->rx_buf = transfer->rx_buf;
1646 spi_imx->count = transfer->len;
1647 spi_imx->txfifo = 0;
1648 spi_imx->remainder = 0;
1649
1650 reinit_completion(&spi_imx->xfer_done);
1651 spi_imx->target_aborted = false;
1652
1653 spi_imx_push(spi_imx);
1654
1655 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR);
1656
1657 if (wait_for_completion_interruptible(&spi_imx->xfer_done) ||
1658 spi_imx->target_aborted) {
1659 dev_dbg(&spi->dev, "interrupted\n");
1660 ret = -EINTR;
1661 }
1662
1663 /* ecspi has a HW issue when works in Target mode,
1664 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty,
1665 * ECSPI_TXDATA keeps shift out the last word data,
1666 * so we have to disable ECSPI when in target mode after the
1667 * transfer completes
1668 */
1669 if (spi_imx->devtype_data->disable)
1670 spi_imx->devtype_data->disable(spi_imx);
1671
1672 return ret;
1673 }
1674
spi_imx_transfer_estimate_time_us(struct spi_transfer * transfer)1675 static unsigned int spi_imx_transfer_estimate_time_us(struct spi_transfer *transfer)
1676 {
1677 u64 result;
1678
1679 result = DIV_U64_ROUND_CLOSEST((u64)USEC_PER_SEC * transfer->len * BITS_PER_BYTE,
1680 transfer->effective_speed_hz);
1681 if (transfer->word_delay.value) {
1682 unsigned int word_delay_us;
1683 unsigned int words;
1684
1685 words = DIV_ROUND_UP(transfer->len * BITS_PER_BYTE, transfer->bits_per_word);
1686 word_delay_us = DIV_ROUND_CLOSEST(spi_delay_to_ns(&transfer->word_delay, transfer),
1687 NSEC_PER_USEC);
1688 result += (u64)words * word_delay_us;
1689 }
1690
1691 return min(result, U32_MAX);
1692 }
1693
spi_imx_transfer_one(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * transfer)1694 static int spi_imx_transfer_one(struct spi_controller *controller,
1695 struct spi_device *spi,
1696 struct spi_transfer *transfer)
1697 {
1698 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1699
1700 spi_imx_setupxfer(spi, transfer);
1701 transfer->effective_speed_hz = spi_imx->spi_bus_clk;
1702
1703 /* flush rxfifo before transfer */
1704 while (spi_imx->devtype_data->rx_available(spi_imx))
1705 readl(spi_imx->base + MXC_CSPIRXDATA);
1706
1707 if (spi_imx->target_mode)
1708 return spi_imx_pio_transfer_target(spi, transfer);
1709
1710 /*
1711 * If we decided in spi_imx_can_dma() that we want to do a DMA
1712 * transfer, the SPI transfer has already been mapped, so we
1713 * have to do the DMA transfer here.
1714 */
1715 if (spi_imx->usedma)
1716 return spi_imx_dma_transfer(spi_imx, transfer);
1717
1718 /* run in polling mode for short transfers */
1719 if (transfer->len == 1 || (polling_limit_us &&
1720 spi_imx_transfer_estimate_time_us(transfer) < polling_limit_us))
1721 return spi_imx_poll_transfer(spi, transfer);
1722
1723 return spi_imx_pio_transfer(spi, transfer);
1724 }
1725
spi_imx_setup(struct spi_device * spi)1726 static int spi_imx_setup(struct spi_device *spi)
1727 {
1728 dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
1729 spi->mode, spi->bits_per_word, spi->max_speed_hz);
1730
1731 return 0;
1732 }
1733
1734 static int
spi_imx_prepare_message(struct spi_controller * controller,struct spi_message * msg)1735 spi_imx_prepare_message(struct spi_controller *controller, struct spi_message *msg)
1736 {
1737 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1738 int ret;
1739
1740 ret = pm_runtime_resume_and_get(spi_imx->dev);
1741 if (ret < 0) {
1742 dev_err(spi_imx->dev, "failed to enable clock\n");
1743 return ret;
1744 }
1745
1746 ret = spi_imx->devtype_data->prepare_message(spi_imx, msg);
1747 if (ret) {
1748 pm_runtime_mark_last_busy(spi_imx->dev);
1749 pm_runtime_put_autosuspend(spi_imx->dev);
1750 }
1751
1752 return ret;
1753 }
1754
1755 static int
spi_imx_unprepare_message(struct spi_controller * controller,struct spi_message * msg)1756 spi_imx_unprepare_message(struct spi_controller *controller, struct spi_message *msg)
1757 {
1758 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1759
1760 pm_runtime_mark_last_busy(spi_imx->dev);
1761 pm_runtime_put_autosuspend(spi_imx->dev);
1762 return 0;
1763 }
1764
spi_imx_target_abort(struct spi_controller * controller)1765 static int spi_imx_target_abort(struct spi_controller *controller)
1766 {
1767 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1768
1769 spi_imx->target_aborted = true;
1770 complete(&spi_imx->xfer_done);
1771
1772 return 0;
1773 }
1774
spi_imx_probe(struct platform_device * pdev)1775 static int spi_imx_probe(struct platform_device *pdev)
1776 {
1777 struct device_node *np = pdev->dev.of_node;
1778 struct spi_controller *controller;
1779 struct spi_imx_data *spi_imx;
1780 struct resource *res;
1781 int ret, irq, spi_drctl;
1782 const struct spi_imx_devtype_data *devtype_data =
1783 of_device_get_match_data(&pdev->dev);
1784 bool target_mode;
1785 u32 val;
1786
1787 target_mode = devtype_data->has_targetmode &&
1788 of_property_read_bool(np, "spi-slave");
1789 if (target_mode)
1790 controller = spi_alloc_target(&pdev->dev,
1791 sizeof(struct spi_imx_data));
1792 else
1793 controller = spi_alloc_host(&pdev->dev,
1794 sizeof(struct spi_imx_data));
1795 if (!controller)
1796 return -ENOMEM;
1797
1798 ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl);
1799 if ((ret < 0) || (spi_drctl >= 0x3)) {
1800 /* '11' is reserved */
1801 spi_drctl = 0;
1802 }
1803
1804 platform_set_drvdata(pdev, controller);
1805
1806 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
1807 controller->bus_num = np ? -1 : pdev->id;
1808 controller->use_gpio_descriptors = true;
1809
1810 spi_imx = spi_controller_get_devdata(controller);
1811 spi_imx->controller = controller;
1812 spi_imx->dev = &pdev->dev;
1813 spi_imx->target_mode = target_mode;
1814
1815 spi_imx->devtype_data = devtype_data;
1816
1817 /*
1818 * Get number of chip selects from device properties. This can be
1819 * coming from device tree or boardfiles, if it is not defined,
1820 * a default value of 3 chip selects will be used, as all the legacy
1821 * board files have <= 3 chip selects.
1822 */
1823 if (!device_property_read_u32(&pdev->dev, "num-cs", &val))
1824 controller->num_chipselect = val;
1825 else
1826 controller->num_chipselect = 3;
1827
1828 controller->transfer_one = spi_imx_transfer_one;
1829 controller->setup = spi_imx_setup;
1830 controller->prepare_message = spi_imx_prepare_message;
1831 controller->unprepare_message = spi_imx_unprepare_message;
1832 controller->target_abort = spi_imx_target_abort;
1833 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS |
1834 SPI_MOSI_IDLE_LOW;
1835
1836 if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) ||
1837 is_imx53_ecspi(spi_imx))
1838 controller->mode_bits |= SPI_LOOP | SPI_READY;
1839
1840 if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx))
1841 controller->mode_bits |= SPI_RX_CPHA_FLIP;
1842
1843 if (is_imx51_ecspi(spi_imx) &&
1844 device_property_read_u32(&pdev->dev, "cs-gpios", NULL))
1845 /*
1846 * When using HW-CS implementing SPI_CS_WORD can be done by just
1847 * setting the burst length to the word size. This is
1848 * considerably faster than manually controlling the CS.
1849 */
1850 controller->mode_bits |= SPI_CS_WORD;
1851
1852 if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx)) {
1853 controller->max_native_cs = 4;
1854 controller->flags |= SPI_CONTROLLER_GPIO_SS;
1855 }
1856
1857 spi_imx->spi_drctl = spi_drctl;
1858
1859 init_completion(&spi_imx->xfer_done);
1860
1861 spi_imx->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1862 if (IS_ERR(spi_imx->base)) {
1863 ret = PTR_ERR(spi_imx->base);
1864 goto out_controller_put;
1865 }
1866 spi_imx->base_phys = res->start;
1867
1868 irq = platform_get_irq(pdev, 0);
1869 if (irq < 0) {
1870 ret = irq;
1871 goto out_controller_put;
1872 }
1873
1874 ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
1875 dev_name(&pdev->dev), spi_imx);
1876 if (ret) {
1877 dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
1878 goto out_controller_put;
1879 }
1880
1881 spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1882 if (IS_ERR(spi_imx->clk_ipg)) {
1883 ret = PTR_ERR(spi_imx->clk_ipg);
1884 goto out_controller_put;
1885 }
1886
1887 spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
1888 if (IS_ERR(spi_imx->clk_per)) {
1889 ret = PTR_ERR(spi_imx->clk_per);
1890 goto out_controller_put;
1891 }
1892
1893 ret = clk_prepare_enable(spi_imx->clk_per);
1894 if (ret)
1895 goto out_controller_put;
1896
1897 ret = clk_prepare_enable(spi_imx->clk_ipg);
1898 if (ret)
1899 goto out_put_per;
1900
1901 pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT);
1902 pm_runtime_use_autosuspend(spi_imx->dev);
1903 pm_runtime_get_noresume(spi_imx->dev);
1904 pm_runtime_set_active(spi_imx->dev);
1905 pm_runtime_enable(spi_imx->dev);
1906
1907 spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
1908 /*
1909 * Only validated on i.mx35 and i.mx6 now, can remove the constraint
1910 * if validated on other chips.
1911 */
1912 if (spi_imx->devtype_data->has_dmamode) {
1913 ret = spi_imx_sdma_init(&pdev->dev, spi_imx, controller);
1914 if (ret == -EPROBE_DEFER)
1915 goto out_runtime_pm_put;
1916
1917 if (ret < 0)
1918 dev_dbg(&pdev->dev, "dma setup error %d, use pio\n",
1919 ret);
1920 }
1921
1922 spi_imx->devtype_data->reset(spi_imx);
1923
1924 spi_imx->devtype_data->intctrl(spi_imx, 0);
1925
1926 controller->dev.of_node = pdev->dev.of_node;
1927 ret = spi_register_controller(controller);
1928 if (ret) {
1929 dev_err_probe(&pdev->dev, ret, "register controller failed\n");
1930 goto out_register_controller;
1931 }
1932
1933 pm_runtime_mark_last_busy(spi_imx->dev);
1934 pm_runtime_put_autosuspend(spi_imx->dev);
1935
1936 return ret;
1937
1938 out_register_controller:
1939 if (spi_imx->devtype_data->has_dmamode)
1940 spi_imx_sdma_exit(spi_imx);
1941 out_runtime_pm_put:
1942 pm_runtime_dont_use_autosuspend(spi_imx->dev);
1943 pm_runtime_disable(spi_imx->dev);
1944 pm_runtime_set_suspended(&pdev->dev);
1945
1946 clk_disable_unprepare(spi_imx->clk_ipg);
1947 out_put_per:
1948 clk_disable_unprepare(spi_imx->clk_per);
1949 out_controller_put:
1950 spi_controller_put(controller);
1951
1952 return ret;
1953 }
1954
spi_imx_remove(struct platform_device * pdev)1955 static void spi_imx_remove(struct platform_device *pdev)
1956 {
1957 struct spi_controller *controller = platform_get_drvdata(pdev);
1958 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1959 int ret;
1960
1961 spi_unregister_controller(controller);
1962
1963 ret = pm_runtime_get_sync(spi_imx->dev);
1964 if (ret >= 0)
1965 writel(0, spi_imx->base + MXC_CSPICTRL);
1966 else
1967 dev_warn(spi_imx->dev, "failed to enable clock, skip hw disable\n");
1968
1969 pm_runtime_dont_use_autosuspend(spi_imx->dev);
1970 pm_runtime_put_sync(spi_imx->dev);
1971 pm_runtime_disable(spi_imx->dev);
1972
1973 spi_imx_sdma_exit(spi_imx);
1974 }
1975
spi_imx_runtime_resume(struct device * dev)1976 static int spi_imx_runtime_resume(struct device *dev)
1977 {
1978 struct spi_controller *controller = dev_get_drvdata(dev);
1979 struct spi_imx_data *spi_imx;
1980 int ret;
1981
1982 spi_imx = spi_controller_get_devdata(controller);
1983
1984 ret = clk_prepare_enable(spi_imx->clk_per);
1985 if (ret)
1986 return ret;
1987
1988 ret = clk_prepare_enable(spi_imx->clk_ipg);
1989 if (ret) {
1990 clk_disable_unprepare(spi_imx->clk_per);
1991 return ret;
1992 }
1993
1994 return 0;
1995 }
1996
spi_imx_runtime_suspend(struct device * dev)1997 static int spi_imx_runtime_suspend(struct device *dev)
1998 {
1999 struct spi_controller *controller = dev_get_drvdata(dev);
2000 struct spi_imx_data *spi_imx;
2001
2002 spi_imx = spi_controller_get_devdata(controller);
2003
2004 clk_disable_unprepare(spi_imx->clk_per);
2005 clk_disable_unprepare(spi_imx->clk_ipg);
2006
2007 return 0;
2008 }
2009
spi_imx_suspend(struct device * dev)2010 static int spi_imx_suspend(struct device *dev)
2011 {
2012 pinctrl_pm_select_sleep_state(dev);
2013 return 0;
2014 }
2015
spi_imx_resume(struct device * dev)2016 static int spi_imx_resume(struct device *dev)
2017 {
2018 pinctrl_pm_select_default_state(dev);
2019 return 0;
2020 }
2021
2022 static const struct dev_pm_ops imx_spi_pm = {
2023 RUNTIME_PM_OPS(spi_imx_runtime_suspend, spi_imx_runtime_resume, NULL)
2024 SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume)
2025 };
2026
2027 static struct platform_driver spi_imx_driver = {
2028 .driver = {
2029 .name = DRIVER_NAME,
2030 .of_match_table = spi_imx_dt_ids,
2031 .pm = pm_ptr(&imx_spi_pm),
2032 },
2033 .probe = spi_imx_probe,
2034 .remove = spi_imx_remove,
2035 };
2036 module_platform_driver(spi_imx_driver);
2037
2038 MODULE_DESCRIPTION("i.MX SPI Controller driver");
2039 MODULE_AUTHOR("Sascha Hauer, Pengutronix");
2040 MODULE_LICENSE("GPL");
2041 MODULE_ALIAS("platform:" DRIVER_NAME);
2042