xref: /linux/arch/x86/kernel/process.c (revision 0529ef8c36d74a05e929ea4adbdecd2c3393b0bb)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/cpu.h>
9 #include <linux/prctl.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/sched/idle.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/init.h>
17 #include <linux/export.h>
18 #include <linux/pm.h>
19 #include <linux/tick.h>
20 #include <linux/random.h>
21 #include <linux/user-return-notifier.h>
22 #include <linux/dmi.h>
23 #include <linux/utsname.h>
24 #include <linux/stackprotector.h>
25 #include <linux/cpuidle.h>
26 #include <linux/acpi.h>
27 #include <linux/elf-randomize.h>
28 #include <linux/static_call.h>
29 #include <trace/events/power.h>
30 #include <linux/hw_breakpoint.h>
31 #include <linux/entry-common.h>
32 #include <asm/cpu.h>
33 #include <asm/cpuid/api.h>
34 #include <asm/apic.h>
35 #include <linux/uaccess.h>
36 #include <asm/mwait.h>
37 #include <asm/fpu/api.h>
38 #include <asm/fpu/sched.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/debugreg.h>
41 #include <asm/nmi.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mce.h>
44 #include <asm/vm86.h>
45 #include <asm/switch_to.h>
46 #include <asm/desc.h>
47 #include <asm/prctl.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/io_bitmap.h>
50 #include <asm/proto.h>
51 #include <asm/frame.h>
52 #include <asm/unwind.h>
53 #include <asm/tdx.h>
54 #include <asm/mmu_context.h>
55 #include <asm/msr.h>
56 #include <asm/shstk.h>
57 
58 #include "process.h"
59 
60 /*
61  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
62  * no more per-task TSS's. The TSS size is kept cacheline-aligned
63  * so they are allowed to end up in the .data..cacheline_aligned
64  * section. Since TSS's are completely CPU-local, we want them
65  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
66  */
67 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
68 	.x86_tss = {
69 		/*
70 		 * .sp0 is only used when entering ring 0 from a lower
71 		 * privilege level.  Since the init task never runs anything
72 		 * but ring 0 code, there is no need for a valid value here.
73 		 * Poison it.
74 		 */
75 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
76 
77 #ifdef CONFIG_X86_32
78 		.sp1 = TOP_OF_INIT_STACK,
79 
80 		.ss0 = __KERNEL_DS,
81 		.ss1 = __KERNEL_CS,
82 #endif
83 		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
84 	 },
85 };
86 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
87 
88 DEFINE_PER_CPU(bool, __tss_limit_invalid);
89 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
90 
91 /*
92  * this gets called so that we can store lazy state into memory and copy the
93  * current task into the new thread.
94  */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)95 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
96 {
97 	/* fpu_clone() will initialize the "dst_fpu" memory */
98 	memcpy_and_pad(dst, arch_task_struct_size, src, sizeof(*dst), 0);
99 
100 #ifdef CONFIG_VM86
101 	dst->thread.vm86 = NULL;
102 #endif
103 
104 	return 0;
105 }
106 
107 #ifdef CONFIG_X86_64
arch_release_task_struct(struct task_struct * tsk)108 void arch_release_task_struct(struct task_struct *tsk)
109 {
110 	if (fpu_state_size_dynamic() && !(tsk->flags & (PF_KTHREAD | PF_USER_WORKER)))
111 		fpstate_free(x86_task_fpu(tsk));
112 }
113 #endif
114 
115 /*
116  * Free thread data structures etc..
117  */
exit_thread(struct task_struct * tsk)118 void exit_thread(struct task_struct *tsk)
119 {
120 	struct thread_struct *t = &tsk->thread;
121 
122 	if (test_thread_flag(TIF_IO_BITMAP))
123 		io_bitmap_exit(tsk);
124 
125 	free_vm86(t);
126 
127 	shstk_free(tsk);
128 	fpu__drop(tsk);
129 }
130 
set_new_tls(struct task_struct * p,unsigned long tls)131 static int set_new_tls(struct task_struct *p, unsigned long tls)
132 {
133 	struct user_desc __user *utls = (struct user_desc __user *)tls;
134 
135 	if (in_ia32_syscall())
136 		return do_set_thread_area(p, -1, utls, 0);
137 	else
138 		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
139 }
140 
ret_from_fork(struct task_struct * prev,struct pt_regs * regs,int (* fn)(void *),void * fn_arg)141 __visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
142 				     int (*fn)(void *), void *fn_arg)
143 {
144 	schedule_tail(prev);
145 
146 	/* Is this a kernel thread? */
147 	if (unlikely(fn)) {
148 		fn(fn_arg);
149 		/*
150 		 * A kernel thread is allowed to return here after successfully
151 		 * calling kernel_execve().  Exit to userspace to complete the
152 		 * execve() syscall.
153 		 */
154 		regs->ax = 0;
155 	}
156 
157 	syscall_exit_to_user_mode(regs);
158 }
159 
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)160 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
161 {
162 	unsigned long clone_flags = args->flags;
163 	unsigned long sp = args->stack;
164 	unsigned long tls = args->tls;
165 	struct inactive_task_frame *frame;
166 	struct fork_frame *fork_frame;
167 	struct pt_regs *childregs;
168 	unsigned long new_ssp;
169 	int ret = 0;
170 
171 	childregs = task_pt_regs(p);
172 	fork_frame = container_of(childregs, struct fork_frame, regs);
173 	frame = &fork_frame->frame;
174 
175 	frame->bp = encode_frame_pointer(childregs);
176 	frame->ret_addr = (unsigned long) ret_from_fork_asm;
177 	p->thread.sp = (unsigned long) fork_frame;
178 	p->thread.io_bitmap = NULL;
179 	clear_tsk_thread_flag(p, TIF_IO_BITMAP);
180 	p->thread.iopl_warn = 0;
181 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
182 
183 #ifdef CONFIG_X86_64
184 	current_save_fsgs();
185 	p->thread.fsindex = current->thread.fsindex;
186 	p->thread.fsbase = current->thread.fsbase;
187 	p->thread.gsindex = current->thread.gsindex;
188 	p->thread.gsbase = current->thread.gsbase;
189 
190 	savesegment(es, p->thread.es);
191 	savesegment(ds, p->thread.ds);
192 
193 	if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
194 		set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags);
195 #else
196 	p->thread.sp0 = (unsigned long) (childregs + 1);
197 	savesegment(gs, p->thread.gs);
198 	/*
199 	 * Clear all status flags including IF and set fixed bit. 64bit
200 	 * does not have this initialization as the frame does not contain
201 	 * flags. The flags consistency (especially vs. AC) is there
202 	 * ensured via objtool, which lacks 32bit support.
203 	 */
204 	frame->flags = X86_EFLAGS_FIXED;
205 #endif
206 
207 	/*
208 	 * Allocate a new shadow stack for thread if needed. If shadow stack,
209 	 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to
210 	 * update it.
211 	 */
212 	new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size);
213 	if (IS_ERR_VALUE(new_ssp))
214 		return PTR_ERR((void *)new_ssp);
215 
216 	fpu_clone(p, clone_flags, args->fn, new_ssp);
217 
218 	/* Kernel thread ? */
219 	if (unlikely(p->flags & PF_KTHREAD)) {
220 		p->thread.pkru = pkru_get_init_value();
221 		memset(childregs, 0, sizeof(struct pt_regs));
222 		kthread_frame_init(frame, args->fn, args->fn_arg);
223 		return 0;
224 	}
225 
226 	/*
227 	 * Clone current's PKRU value from hardware. tsk->thread.pkru
228 	 * is only valid when scheduled out.
229 	 */
230 	p->thread.pkru = read_pkru();
231 
232 	frame->bx = 0;
233 	*childregs = *current_pt_regs();
234 	childregs->ax = 0;
235 	if (sp)
236 		childregs->sp = sp;
237 
238 	if (unlikely(args->fn)) {
239 		/*
240 		 * A user space thread, but it doesn't return to
241 		 * ret_after_fork().
242 		 *
243 		 * In order to indicate that to tools like gdb,
244 		 * we reset the stack and instruction pointers.
245 		 *
246 		 * It does the same kernel frame setup to return to a kernel
247 		 * function that a kernel thread does.
248 		 */
249 		childregs->sp = 0;
250 		childregs->ip = 0;
251 		kthread_frame_init(frame, args->fn, args->fn_arg);
252 		return 0;
253 	}
254 
255 	/* Set a new TLS for the child thread? */
256 	if (clone_flags & CLONE_SETTLS)
257 		ret = set_new_tls(p, tls);
258 
259 	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
260 		io_bitmap_share(p);
261 
262 	return ret;
263 }
264 
pkru_flush_thread(void)265 static void pkru_flush_thread(void)
266 {
267 	/*
268 	 * If PKRU is enabled the default PKRU value has to be loaded into
269 	 * the hardware right here (similar to context switch).
270 	 */
271 	pkru_write_default();
272 }
273 
flush_thread(void)274 void flush_thread(void)
275 {
276 	struct task_struct *tsk = current;
277 
278 	flush_ptrace_hw_breakpoint(tsk);
279 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
280 
281 	fpu_flush_thread();
282 	pkru_flush_thread();
283 }
284 
disable_TSC(void)285 void disable_TSC(void)
286 {
287 	preempt_disable();
288 	if (!test_and_set_thread_flag(TIF_NOTSC))
289 		/*
290 		 * Must flip the CPU state synchronously with
291 		 * TIF_NOTSC in the current running context.
292 		 */
293 		cr4_set_bits(X86_CR4_TSD);
294 	preempt_enable();
295 }
296 
enable_TSC(void)297 static void enable_TSC(void)
298 {
299 	preempt_disable();
300 	if (test_and_clear_thread_flag(TIF_NOTSC))
301 		/*
302 		 * Must flip the CPU state synchronously with
303 		 * TIF_NOTSC in the current running context.
304 		 */
305 		cr4_clear_bits(X86_CR4_TSD);
306 	preempt_enable();
307 }
308 
get_tsc_mode(unsigned long adr)309 int get_tsc_mode(unsigned long adr)
310 {
311 	unsigned int val;
312 
313 	if (test_thread_flag(TIF_NOTSC))
314 		val = PR_TSC_SIGSEGV;
315 	else
316 		val = PR_TSC_ENABLE;
317 
318 	return put_user(val, (unsigned int __user *)adr);
319 }
320 
set_tsc_mode(unsigned int val)321 int set_tsc_mode(unsigned int val)
322 {
323 	if (val == PR_TSC_SIGSEGV)
324 		disable_TSC();
325 	else if (val == PR_TSC_ENABLE)
326 		enable_TSC();
327 	else
328 		return -EINVAL;
329 
330 	return 0;
331 }
332 
333 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
334 
set_cpuid_faulting(bool on)335 static void set_cpuid_faulting(bool on)
336 {
337 	u64 msrval;
338 
339 	msrval = this_cpu_read(msr_misc_features_shadow);
340 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
341 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
342 	this_cpu_write(msr_misc_features_shadow, msrval);
343 	wrmsrq(MSR_MISC_FEATURES_ENABLES, msrval);
344 }
345 
disable_cpuid(void)346 static void disable_cpuid(void)
347 {
348 	preempt_disable();
349 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
350 		/*
351 		 * Must flip the CPU state synchronously with
352 		 * TIF_NOCPUID in the current running context.
353 		 */
354 		set_cpuid_faulting(true);
355 	}
356 	preempt_enable();
357 }
358 
enable_cpuid(void)359 static void enable_cpuid(void)
360 {
361 	preempt_disable();
362 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
363 		/*
364 		 * Must flip the CPU state synchronously with
365 		 * TIF_NOCPUID in the current running context.
366 		 */
367 		set_cpuid_faulting(false);
368 	}
369 	preempt_enable();
370 }
371 
get_cpuid_mode(void)372 static int get_cpuid_mode(void)
373 {
374 	return !test_thread_flag(TIF_NOCPUID);
375 }
376 
set_cpuid_mode(unsigned long cpuid_enabled)377 static int set_cpuid_mode(unsigned long cpuid_enabled)
378 {
379 	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
380 		return -ENODEV;
381 
382 	if (cpuid_enabled)
383 		enable_cpuid();
384 	else
385 		disable_cpuid();
386 
387 	return 0;
388 }
389 
390 /*
391  * Called immediately after a successful exec.
392  */
arch_setup_new_exec(void)393 void arch_setup_new_exec(void)
394 {
395 	/* If cpuid was previously disabled for this task, re-enable it. */
396 	if (test_thread_flag(TIF_NOCPUID))
397 		enable_cpuid();
398 
399 	/*
400 	 * Don't inherit TIF_SSBD across exec boundary when
401 	 * PR_SPEC_DISABLE_NOEXEC is used.
402 	 */
403 	if (test_thread_flag(TIF_SSBD) &&
404 	    task_spec_ssb_noexec(current)) {
405 		clear_thread_flag(TIF_SSBD);
406 		task_clear_spec_ssb_disable(current);
407 		task_clear_spec_ssb_noexec(current);
408 		speculation_ctrl_update(read_thread_flags());
409 	}
410 
411 	mm_reset_untag_mask(current->mm);
412 }
413 
414 #ifdef CONFIG_X86_IOPL_IOPERM
switch_to_bitmap(unsigned long tifp)415 static inline void switch_to_bitmap(unsigned long tifp)
416 {
417 	/*
418 	 * Invalidate I/O bitmap if the previous task used it. This prevents
419 	 * any possible leakage of an active I/O bitmap.
420 	 *
421 	 * If the next task has an I/O bitmap it will handle it on exit to
422 	 * user mode.
423 	 */
424 	if (tifp & _TIF_IO_BITMAP)
425 		tss_invalidate_io_bitmap();
426 }
427 
tss_copy_io_bitmap(struct tss_struct * tss,struct io_bitmap * iobm)428 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
429 {
430 	/*
431 	 * Copy at least the byte range of the incoming tasks bitmap which
432 	 * covers the permitted I/O ports.
433 	 *
434 	 * If the previous task which used an I/O bitmap had more bits
435 	 * permitted, then the copy needs to cover those as well so they
436 	 * get turned off.
437 	 */
438 	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
439 	       max(tss->io_bitmap.prev_max, iobm->max));
440 
441 	/*
442 	 * Store the new max and the sequence number of this bitmap
443 	 * and a pointer to the bitmap itself.
444 	 */
445 	tss->io_bitmap.prev_max = iobm->max;
446 	tss->io_bitmap.prev_sequence = iobm->sequence;
447 }
448 
449 /**
450  * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
451  */
native_tss_update_io_bitmap(void)452 void native_tss_update_io_bitmap(void)
453 {
454 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
455 	struct thread_struct *t = &current->thread;
456 	u16 *base = &tss->x86_tss.io_bitmap_base;
457 
458 	if (!test_thread_flag(TIF_IO_BITMAP)) {
459 		native_tss_invalidate_io_bitmap();
460 		return;
461 	}
462 
463 	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
464 		*base = IO_BITMAP_OFFSET_VALID_ALL;
465 	} else {
466 		struct io_bitmap *iobm = t->io_bitmap;
467 
468 		if (WARN_ON_ONCE(!iobm)) {
469 			clear_thread_flag(TIF_IO_BITMAP);
470 			native_tss_invalidate_io_bitmap();
471 		}
472 
473 		/*
474 		 * Only copy bitmap data when the sequence number differs. The
475 		 * update time is accounted to the incoming task.
476 		 */
477 		if (tss->io_bitmap.prev_sequence != iobm->sequence)
478 			tss_copy_io_bitmap(tss, iobm);
479 
480 		/* Enable the bitmap */
481 		*base = IO_BITMAP_OFFSET_VALID_MAP;
482 	}
483 
484 	/*
485 	 * Make sure that the TSS limit is covering the IO bitmap. It might have
486 	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
487 	 * access from user space to trigger a #GP because the bitmap is outside
488 	 * the TSS limit.
489 	 */
490 	refresh_tss_limit();
491 }
492 #else /* CONFIG_X86_IOPL_IOPERM */
switch_to_bitmap(unsigned long tifp)493 static inline void switch_to_bitmap(unsigned long tifp) { }
494 #endif
495 
496 #ifdef CONFIG_SMP
497 
498 struct ssb_state {
499 	struct ssb_state	*shared_state;
500 	raw_spinlock_t		lock;
501 	unsigned int		disable_state;
502 	unsigned long		local_state;
503 };
504 
505 #define LSTATE_SSB	0
506 
507 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
508 
speculative_store_bypass_ht_init(void)509 void speculative_store_bypass_ht_init(void)
510 {
511 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
512 	unsigned int this_cpu = smp_processor_id();
513 	unsigned int cpu;
514 
515 	st->local_state = 0;
516 
517 	/*
518 	 * Shared state setup happens once on the first bringup
519 	 * of the CPU. It's not destroyed on CPU hotunplug.
520 	 */
521 	if (st->shared_state)
522 		return;
523 
524 	raw_spin_lock_init(&st->lock);
525 
526 	/*
527 	 * Go over HT siblings and check whether one of them has set up the
528 	 * shared state pointer already.
529 	 */
530 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
531 		if (cpu == this_cpu)
532 			continue;
533 
534 		if (!per_cpu(ssb_state, cpu).shared_state)
535 			continue;
536 
537 		/* Link it to the state of the sibling: */
538 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
539 		return;
540 	}
541 
542 	/*
543 	 * First HT sibling to come up on the core.  Link shared state of
544 	 * the first HT sibling to itself. The siblings on the same core
545 	 * which come up later will see the shared state pointer and link
546 	 * themselves to the state of this CPU.
547 	 */
548 	st->shared_state = st;
549 }
550 
551 /*
552  * Logic is: First HT sibling enables SSBD for both siblings in the core
553  * and last sibling to disable it, disables it for the whole core. This how
554  * MSR_SPEC_CTRL works in "hardware":
555  *
556  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
557  */
amd_set_core_ssb_state(unsigned long tifn)558 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
559 {
560 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
561 	u64 msr = x86_amd_ls_cfg_base;
562 
563 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
564 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
565 		wrmsrq(MSR_AMD64_LS_CFG, msr);
566 		return;
567 	}
568 
569 	if (tifn & _TIF_SSBD) {
570 		/*
571 		 * Since this can race with prctl(), block reentry on the
572 		 * same CPU.
573 		 */
574 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
575 			return;
576 
577 		msr |= x86_amd_ls_cfg_ssbd_mask;
578 
579 		raw_spin_lock(&st->shared_state->lock);
580 		/* First sibling enables SSBD: */
581 		if (!st->shared_state->disable_state)
582 			wrmsrq(MSR_AMD64_LS_CFG, msr);
583 		st->shared_state->disable_state++;
584 		raw_spin_unlock(&st->shared_state->lock);
585 	} else {
586 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
587 			return;
588 
589 		raw_spin_lock(&st->shared_state->lock);
590 		st->shared_state->disable_state--;
591 		if (!st->shared_state->disable_state)
592 			wrmsrq(MSR_AMD64_LS_CFG, msr);
593 		raw_spin_unlock(&st->shared_state->lock);
594 	}
595 }
596 #else
amd_set_core_ssb_state(unsigned long tifn)597 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
598 {
599 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
600 
601 	wrmsrq(MSR_AMD64_LS_CFG, msr);
602 }
603 #endif
604 
amd_set_ssb_virt_state(unsigned long tifn)605 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
606 {
607 	/*
608 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
609 	 * so ssbd_tif_to_spec_ctrl() just works.
610 	 */
611 	wrmsrq(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
612 }
613 
614 /*
615  * Update the MSRs managing speculation control, during context switch.
616  *
617  * tifp: Previous task's thread flags
618  * tifn: Next task's thread flags
619  */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)620 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
621 						      unsigned long tifn)
622 {
623 	unsigned long tif_diff = tifp ^ tifn;
624 	u64 msr = x86_spec_ctrl_base;
625 	bool updmsr = false;
626 
627 	lockdep_assert_irqs_disabled();
628 
629 	/* Handle change of TIF_SSBD depending on the mitigation method. */
630 	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
631 		if (tif_diff & _TIF_SSBD)
632 			amd_set_ssb_virt_state(tifn);
633 	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
634 		if (tif_diff & _TIF_SSBD)
635 			amd_set_core_ssb_state(tifn);
636 	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
637 		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
638 		updmsr |= !!(tif_diff & _TIF_SSBD);
639 		msr |= ssbd_tif_to_spec_ctrl(tifn);
640 	}
641 
642 	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
643 	if (IS_ENABLED(CONFIG_SMP) &&
644 	    static_branch_unlikely(&switch_to_cond_stibp)) {
645 		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
646 		msr |= stibp_tif_to_spec_ctrl(tifn);
647 	}
648 
649 	if (updmsr)
650 		update_spec_ctrl_cond(msr);
651 }
652 
speculation_ctrl_update_tif(struct task_struct * tsk)653 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
654 {
655 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
656 		if (task_spec_ssb_disable(tsk))
657 			set_tsk_thread_flag(tsk, TIF_SSBD);
658 		else
659 			clear_tsk_thread_flag(tsk, TIF_SSBD);
660 
661 		if (task_spec_ib_disable(tsk))
662 			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
663 		else
664 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
665 	}
666 	/* Return the updated threadinfo flags*/
667 	return read_task_thread_flags(tsk);
668 }
669 
speculation_ctrl_update(unsigned long tif)670 void speculation_ctrl_update(unsigned long tif)
671 {
672 	unsigned long flags;
673 
674 	/* Forced update. Make sure all relevant TIF flags are different */
675 	local_irq_save(flags);
676 	__speculation_ctrl_update(~tif, tif);
677 	local_irq_restore(flags);
678 }
679 
680 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)681 void speculation_ctrl_update_current(void)
682 {
683 	preempt_disable();
684 	speculation_ctrl_update(speculation_ctrl_update_tif(current));
685 	preempt_enable();
686 }
687 
cr4_toggle_bits_irqsoff(unsigned long mask)688 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
689 {
690 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
691 
692 	newval = cr4 ^ mask;
693 	if (newval != cr4) {
694 		this_cpu_write(cpu_tlbstate.cr4, newval);
695 		__write_cr4(newval);
696 	}
697 }
698 
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)699 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
700 {
701 	unsigned long tifp, tifn;
702 
703 	tifn = read_task_thread_flags(next_p);
704 	tifp = read_task_thread_flags(prev_p);
705 
706 	switch_to_bitmap(tifp);
707 
708 	propagate_user_return_notify(prev_p, next_p);
709 
710 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
711 	    arch_has_block_step()) {
712 		unsigned long debugctl, msk;
713 
714 		rdmsrq(MSR_IA32_DEBUGCTLMSR, debugctl);
715 		debugctl &= ~DEBUGCTLMSR_BTF;
716 		msk = tifn & _TIF_BLOCKSTEP;
717 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
718 		wrmsrq(MSR_IA32_DEBUGCTLMSR, debugctl);
719 	}
720 
721 	if ((tifp ^ tifn) & _TIF_NOTSC)
722 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
723 
724 	if ((tifp ^ tifn) & _TIF_NOCPUID)
725 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
726 
727 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
728 		__speculation_ctrl_update(tifp, tifn);
729 	} else {
730 		speculation_ctrl_update_tif(prev_p);
731 		tifn = speculation_ctrl_update_tif(next_p);
732 
733 		/* Enforce MSR update to ensure consistent state */
734 		__speculation_ctrl_update(~tifn, tifn);
735 	}
736 }
737 
738 /*
739  * Idle related variables and functions
740  */
741 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
742 EXPORT_SYMBOL(boot_option_idle_override);
743 
744 /*
745  * We use this if we don't have any better idle routine..
746  */
default_idle(void)747 void __cpuidle default_idle(void)
748 {
749 	raw_safe_halt();
750 	raw_local_irq_disable();
751 }
752 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
753 EXPORT_SYMBOL(default_idle);
754 #endif
755 
756 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
757 
x86_idle_set(void)758 static bool x86_idle_set(void)
759 {
760 	return !!static_call_query(x86_idle);
761 }
762 
763 #ifndef CONFIG_SMP
play_dead(void)764 static inline void __noreturn play_dead(void)
765 {
766 	BUG();
767 }
768 #endif
769 
arch_cpu_idle_enter(void)770 void arch_cpu_idle_enter(void)
771 {
772 	tsc_verify_tsc_adjust(false);
773 	local_touch_nmi();
774 }
775 
arch_cpu_idle_dead(void)776 void __noreturn arch_cpu_idle_dead(void)
777 {
778 	play_dead();
779 }
780 
781 /*
782  * Called from the generic idle code.
783  */
arch_cpu_idle(void)784 void __cpuidle arch_cpu_idle(void)
785 {
786 	static_call(x86_idle)();
787 }
788 EXPORT_SYMBOL_GPL(arch_cpu_idle);
789 
790 #ifdef CONFIG_XEN
xen_set_default_idle(void)791 bool xen_set_default_idle(void)
792 {
793 	bool ret = x86_idle_set();
794 
795 	static_call_update(x86_idle, default_idle);
796 
797 	return ret;
798 }
799 #endif
800 
801 struct cpumask cpus_stop_mask;
802 
stop_this_cpu(void * dummy)803 void __noreturn stop_this_cpu(void *dummy)
804 {
805 	struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
806 	unsigned int cpu = smp_processor_id();
807 
808 	local_irq_disable();
809 
810 	/*
811 	 * Remove this CPU from the online mask and disable it
812 	 * unconditionally. This might be redundant in case that the reboot
813 	 * vector was handled late and stop_other_cpus() sent an NMI.
814 	 *
815 	 * According to SDM and APM NMIs can be accepted even after soft
816 	 * disabling the local APIC.
817 	 */
818 	set_cpu_online(cpu, false);
819 	disable_local_APIC();
820 	mcheck_cpu_clear(c);
821 
822 	/*
823 	 * Use wbinvd on processors that support SME. This provides support
824 	 * for performing a successful kexec when going from SME inactive
825 	 * to SME active (or vice-versa). The cache must be cleared so that
826 	 * if there are entries with the same physical address, both with and
827 	 * without the encryption bit, they don't race each other when flushed
828 	 * and potentially end up with the wrong entry being committed to
829 	 * memory.
830 	 *
831 	 * Test the CPUID bit directly because the machine might've cleared
832 	 * X86_FEATURE_SME due to cmdline options.
833 	 */
834 	if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0)))
835 		wbinvd();
836 
837 	/*
838 	 * This brings a cache line back and dirties it, but
839 	 * native_stop_other_cpus() will overwrite cpus_stop_mask after it
840 	 * observed that all CPUs reported stop. This write will invalidate
841 	 * the related cache line on this CPU.
842 	 */
843 	cpumask_clear_cpu(cpu, &cpus_stop_mask);
844 
845 #ifdef CONFIG_SMP
846 	if (smp_ops.stop_this_cpu) {
847 		smp_ops.stop_this_cpu();
848 		BUG();
849 	}
850 #endif
851 
852 	for (;;) {
853 		/*
854 		 * Use native_halt() so that memory contents don't change
855 		 * (stack usage and variables) after possibly issuing the
856 		 * wbinvd() above.
857 		 */
858 		native_halt();
859 	}
860 }
861 
862 /*
863  * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
864  * exists and whenever MONITOR/MWAIT extensions are present there is at
865  * least one C1 substate.
866  *
867  * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
868  * is passed to kernel commandline parameter.
869  */
prefer_mwait_c1_over_halt(void)870 static __init bool prefer_mwait_c1_over_halt(void)
871 {
872 	const struct cpuinfo_x86 *c = &boot_cpu_data;
873 	u32 eax, ebx, ecx, edx;
874 
875 	/* If override is enforced on the command line, fall back to HALT. */
876 	if (boot_option_idle_override != IDLE_NO_OVERRIDE)
877 		return false;
878 
879 	/* MWAIT is not supported on this platform. Fallback to HALT */
880 	if (!cpu_has(c, X86_FEATURE_MWAIT))
881 		return false;
882 
883 	/* Monitor has a bug or APIC stops in C1E. Fallback to HALT */
884 	if (boot_cpu_has_bug(X86_BUG_MONITOR) || boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
885 		return false;
886 
887 	cpuid(CPUID_LEAF_MWAIT, &eax, &ebx, &ecx, &edx);
888 
889 	/*
890 	 * If MWAIT extensions are not available, it is safe to use MWAIT
891 	 * with EAX=0, ECX=0.
892 	 */
893 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
894 		return true;
895 
896 	/*
897 	 * If MWAIT extensions are available, there should be at least one
898 	 * MWAIT C1 substate present.
899 	 */
900 	return !!(edx & MWAIT_C1_SUBSTATE_MASK);
901 }
902 
903 /*
904  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
905  * with interrupts enabled and no flags, which is backwards compatible with the
906  * original MWAIT implementation.
907  */
mwait_idle(void)908 static __cpuidle void mwait_idle(void)
909 {
910 	if (!current_set_polling_and_test()) {
911 		const void *addr = &current_thread_info()->flags;
912 
913 		alternative_input("", "clflush (%[addr])", X86_BUG_CLFLUSH_MONITOR, [addr] "a" (addr));
914 		__monitor(addr, 0, 0);
915 		if (!need_resched()) {
916 			__sti_mwait(0, 0);
917 			raw_local_irq_disable();
918 		}
919 	}
920 	__current_clr_polling();
921 }
922 
select_idle_routine(void)923 void __init select_idle_routine(void)
924 {
925 	if (boot_option_idle_override == IDLE_POLL) {
926 		if (IS_ENABLED(CONFIG_SMP) && __max_threads_per_core > 1)
927 			pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
928 		return;
929 	}
930 
931 	/* Required to guard against xen_set_default_idle() */
932 	if (x86_idle_set())
933 		return;
934 
935 	if (prefer_mwait_c1_over_halt()) {
936 		pr_info("using mwait in idle threads\n");
937 		static_call_update(x86_idle, mwait_idle);
938 	} else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
939 		pr_info("using TDX aware idle routine\n");
940 		static_call_update(x86_idle, tdx_halt);
941 	} else {
942 		static_call_update(x86_idle, default_idle);
943 	}
944 }
945 
amd_e400_c1e_apic_setup(void)946 void amd_e400_c1e_apic_setup(void)
947 {
948 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
949 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
950 		local_irq_disable();
951 		tick_broadcast_force();
952 		local_irq_enable();
953 	}
954 }
955 
arch_post_acpi_subsys_init(void)956 void __init arch_post_acpi_subsys_init(void)
957 {
958 	u32 lo, hi;
959 
960 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
961 		return;
962 
963 	/*
964 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
965 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
966 	 * MSR_K8_INT_PENDING_MSG.
967 	 */
968 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
969 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
970 		return;
971 
972 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
973 
974 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
975 		mark_tsc_unstable("TSC halt in AMD C1E");
976 
977 	if (IS_ENABLED(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE))
978 		static_branch_enable(&arch_needs_tick_broadcast);
979 	pr_info("System has AMD C1E erratum E400. Workaround enabled.\n");
980 }
981 
idle_setup(char * str)982 static int __init idle_setup(char *str)
983 {
984 	if (!str)
985 		return -EINVAL;
986 
987 	if (!strcmp(str, "poll")) {
988 		pr_info("using polling idle threads\n");
989 		boot_option_idle_override = IDLE_POLL;
990 		cpu_idle_poll_ctrl(true);
991 	} else if (!strcmp(str, "halt")) {
992 		/* 'idle=halt' HALT for idle. C-states are disabled. */
993 		boot_option_idle_override = IDLE_HALT;
994 	} else if (!strcmp(str, "nomwait")) {
995 		/* 'idle=nomwait' disables MWAIT for idle */
996 		boot_option_idle_override = IDLE_NOMWAIT;
997 	} else {
998 		return -EINVAL;
999 	}
1000 
1001 	return 0;
1002 }
1003 early_param("idle", idle_setup);
1004 
arch_align_stack(unsigned long sp)1005 unsigned long arch_align_stack(unsigned long sp)
1006 {
1007 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1008 		sp -= get_random_u32_below(8192);
1009 	return sp & ~0xf;
1010 }
1011 
arch_randomize_brk(struct mm_struct * mm)1012 unsigned long arch_randomize_brk(struct mm_struct *mm)
1013 {
1014 	if (mmap_is_ia32())
1015 		return randomize_page(mm->brk, SZ_32M);
1016 
1017 	return randomize_page(mm->brk, SZ_1G);
1018 }
1019 
1020 /*
1021  * Called from fs/proc with a reference on @p to find the function
1022  * which called into schedule(). This needs to be done carefully
1023  * because the task might wake up and we might look at a stack
1024  * changing under us.
1025  */
__get_wchan(struct task_struct * p)1026 unsigned long __get_wchan(struct task_struct *p)
1027 {
1028 	struct unwind_state state;
1029 	unsigned long addr = 0;
1030 
1031 	if (!try_get_task_stack(p))
1032 		return 0;
1033 
1034 	for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
1035 	     unwind_next_frame(&state)) {
1036 		addr = unwind_get_return_address(&state);
1037 		if (!addr)
1038 			break;
1039 		if (in_sched_functions(addr))
1040 			continue;
1041 		break;
1042 	}
1043 
1044 	put_task_stack(p);
1045 
1046 	return addr;
1047 }
1048 
SYSCALL_DEFINE2(arch_prctl,int,option,unsigned long,arg2)1049 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
1050 {
1051 	switch (option) {
1052 	case ARCH_GET_CPUID:
1053 		return get_cpuid_mode();
1054 	case ARCH_SET_CPUID:
1055 		return set_cpuid_mode(arg2);
1056 	case ARCH_GET_XCOMP_SUPP:
1057 	case ARCH_GET_XCOMP_PERM:
1058 	case ARCH_REQ_XCOMP_PERM:
1059 	case ARCH_GET_XCOMP_GUEST_PERM:
1060 	case ARCH_REQ_XCOMP_GUEST_PERM:
1061 		return fpu_xstate_prctl(option, arg2);
1062 	}
1063 
1064 	if (!in_ia32_syscall())
1065 		return do_arch_prctl_64(current, option, arg2);
1066 
1067 	return -EINVAL;
1068 }
1069 
SYSCALL_DEFINE0(ni_syscall)1070 SYSCALL_DEFINE0(ni_syscall)
1071 {
1072 	return -ENOSYS;
1073 }
1074