xref: /linux/arch/x86/kernel/cpu/bugs.c (revision 7a7e0197133d18cfd9931e7d3a842d0f5730223f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1994  Linus Torvalds
4  *
5  *  Cyrix stuff, June 1998 by:
6  *	- Rafael R. Reilova (moved everything from head.S),
7  *        <rreilova@ececs.uc.edu>
8  *	- Channing Corn (tests & fixes),
9  *	- Andrew D. Balsa (code cleanup).
10  */
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/nospec.h>
15 #include <linux/prctl.h>
16 #include <linux/sched/smt.h>
17 #include <linux/pgtable.h>
18 #include <linux/bpf.h>
19 
20 #include <asm/spec-ctrl.h>
21 #include <asm/cmdline.h>
22 #include <asm/bugs.h>
23 #include <asm/processor.h>
24 #include <asm/processor-flags.h>
25 #include <asm/fpu/api.h>
26 #include <asm/msr.h>
27 #include <asm/vmx.h>
28 #include <asm/paravirt.h>
29 #include <asm/cpu_device_id.h>
30 #include <asm/e820/api.h>
31 #include <asm/hypervisor.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cpu.h>
34 
35 #include "cpu.h"
36 
37 static void __init spectre_v1_select_mitigation(void);
38 static void __init spectre_v2_select_mitigation(void);
39 static void __init retbleed_select_mitigation(void);
40 static void __init spectre_v2_user_select_mitigation(void);
41 static void __init ssb_select_mitigation(void);
42 static void __init l1tf_select_mitigation(void);
43 static void __init mds_select_mitigation(void);
44 static void __init md_clear_update_mitigation(void);
45 static void __init md_clear_select_mitigation(void);
46 static void __init taa_select_mitigation(void);
47 static void __init mmio_select_mitigation(void);
48 static void __init srbds_select_mitigation(void);
49 static void __init l1d_flush_select_mitigation(void);
50 static void __init srso_select_mitigation(void);
51 static void __init gds_select_mitigation(void);
52 
53 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
54 u64 x86_spec_ctrl_base;
55 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
56 
57 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
58 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
59 EXPORT_PER_CPU_SYMBOL_GPL(x86_spec_ctrl_current);
60 
61 u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
62 EXPORT_SYMBOL_GPL(x86_pred_cmd);
63 
64 static u64 __ro_after_init x86_arch_cap_msr;
65 
66 static DEFINE_MUTEX(spec_ctrl_mutex);
67 
68 void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
69 
70 /* Update SPEC_CTRL MSR and its cached copy unconditionally */
update_spec_ctrl(u64 val)71 static void update_spec_ctrl(u64 val)
72 {
73 	this_cpu_write(x86_spec_ctrl_current, val);
74 	wrmsrl(MSR_IA32_SPEC_CTRL, val);
75 }
76 
77 /*
78  * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
79  * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
80  */
update_spec_ctrl_cond(u64 val)81 void update_spec_ctrl_cond(u64 val)
82 {
83 	if (this_cpu_read(x86_spec_ctrl_current) == val)
84 		return;
85 
86 	this_cpu_write(x86_spec_ctrl_current, val);
87 
88 	/*
89 	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
90 	 * forced the update can be delayed until that time.
91 	 */
92 	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
93 		wrmsrl(MSR_IA32_SPEC_CTRL, val);
94 }
95 
spec_ctrl_current(void)96 noinstr u64 spec_ctrl_current(void)
97 {
98 	return this_cpu_read(x86_spec_ctrl_current);
99 }
100 EXPORT_SYMBOL_GPL(spec_ctrl_current);
101 
102 /*
103  * AMD specific MSR info for Speculative Store Bypass control.
104  * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
105  */
106 u64 __ro_after_init x86_amd_ls_cfg_base;
107 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
108 
109 /* Control conditional STIBP in switch_to() */
110 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
111 /* Control conditional IBPB in switch_mm() */
112 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
113 /* Control unconditional IBPB in switch_mm() */
114 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
115 
116 /* Control IBPB on vCPU load */
117 DEFINE_STATIC_KEY_FALSE(switch_vcpu_ibpb);
118 EXPORT_SYMBOL_GPL(switch_vcpu_ibpb);
119 
120 /* Control MDS CPU buffer clear before idling (halt, mwait) */
121 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
122 EXPORT_SYMBOL_GPL(mds_idle_clear);
123 
124 /*
125  * Controls whether l1d flush based mitigations are enabled,
126  * based on hw features and admin setting via boot parameter
127  * defaults to false
128  */
129 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
130 
131 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
132 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
133 EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
134 
cpu_select_mitigations(void)135 void __init cpu_select_mitigations(void)
136 {
137 	/*
138 	 * Read the SPEC_CTRL MSR to account for reserved bits which may
139 	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
140 	 * init code as it is not enumerated and depends on the family.
141 	 */
142 	if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
143 		rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
144 
145 		/*
146 		 * Previously running kernel (kexec), may have some controls
147 		 * turned ON. Clear them and let the mitigations setup below
148 		 * rediscover them based on configuration.
149 		 */
150 		x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
151 	}
152 
153 	x86_arch_cap_msr = x86_read_arch_cap_msr();
154 
155 	/* Select the proper CPU mitigations before patching alternatives: */
156 	spectre_v1_select_mitigation();
157 	spectre_v2_select_mitigation();
158 	/*
159 	 * retbleed_select_mitigation() relies on the state set by
160 	 * spectre_v2_select_mitigation(); specifically it wants to know about
161 	 * spectre_v2=ibrs.
162 	 */
163 	retbleed_select_mitigation();
164 	/*
165 	 * spectre_v2_user_select_mitigation() relies on the state set by
166 	 * retbleed_select_mitigation(); specifically the STIBP selection is
167 	 * forced for UNRET or IBPB.
168 	 */
169 	spectre_v2_user_select_mitigation();
170 	ssb_select_mitigation();
171 	l1tf_select_mitigation();
172 	md_clear_select_mitigation();
173 	srbds_select_mitigation();
174 	l1d_flush_select_mitigation();
175 
176 	/*
177 	 * srso_select_mitigation() depends and must run after
178 	 * retbleed_select_mitigation().
179 	 */
180 	srso_select_mitigation();
181 	gds_select_mitigation();
182 }
183 
184 /*
185  * NOTE: This function is *only* called for SVM, since Intel uses
186  * MSR_IA32_SPEC_CTRL for SSBD.
187  */
188 void
x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl,bool setguest)189 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
190 {
191 	u64 guestval, hostval;
192 	struct thread_info *ti = current_thread_info();
193 
194 	/*
195 	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
196 	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
197 	 */
198 	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
199 	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
200 		return;
201 
202 	/*
203 	 * If the host has SSBD mitigation enabled, force it in the host's
204 	 * virtual MSR value. If its not permanently enabled, evaluate
205 	 * current's TIF_SSBD thread flag.
206 	 */
207 	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
208 		hostval = SPEC_CTRL_SSBD;
209 	else
210 		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
211 
212 	/* Sanitize the guest value */
213 	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
214 
215 	if (hostval != guestval) {
216 		unsigned long tif;
217 
218 		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
219 				 ssbd_spec_ctrl_to_tif(hostval);
220 
221 		speculation_ctrl_update(tif);
222 	}
223 }
224 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
225 
x86_amd_ssb_disable(void)226 static void x86_amd_ssb_disable(void)
227 {
228 	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
229 
230 	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
231 		wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
232 	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
233 		wrmsrl(MSR_AMD64_LS_CFG, msrval);
234 }
235 
236 #undef pr_fmt
237 #define pr_fmt(fmt)	"MDS: " fmt
238 
239 /* Default mitigation for MDS-affected CPUs */
240 static enum mds_mitigations mds_mitigation __ro_after_init =
241 	IS_ENABLED(CONFIG_MITIGATION_MDS) ? MDS_MITIGATION_AUTO : MDS_MITIGATION_OFF;
242 static bool mds_nosmt __ro_after_init = false;
243 
244 static const char * const mds_strings[] = {
245 	[MDS_MITIGATION_OFF]	= "Vulnerable",
246 	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
247 	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
248 };
249 
250 enum taa_mitigations {
251 	TAA_MITIGATION_OFF,
252 	TAA_MITIGATION_AUTO,
253 	TAA_MITIGATION_UCODE_NEEDED,
254 	TAA_MITIGATION_VERW,
255 	TAA_MITIGATION_TSX_DISABLED,
256 };
257 
258 /* Default mitigation for TAA-affected CPUs */
259 static enum taa_mitigations taa_mitigation __ro_after_init =
260 	IS_ENABLED(CONFIG_MITIGATION_TAA) ? TAA_MITIGATION_AUTO : TAA_MITIGATION_OFF;
261 
262 enum mmio_mitigations {
263 	MMIO_MITIGATION_OFF,
264 	MMIO_MITIGATION_AUTO,
265 	MMIO_MITIGATION_UCODE_NEEDED,
266 	MMIO_MITIGATION_VERW,
267 };
268 
269 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
270 static enum mmio_mitigations mmio_mitigation __ro_after_init =
271 	IS_ENABLED(CONFIG_MITIGATION_MMIO_STALE_DATA) ?	MMIO_MITIGATION_AUTO : MMIO_MITIGATION_OFF;
272 
273 enum rfds_mitigations {
274 	RFDS_MITIGATION_OFF,
275 	RFDS_MITIGATION_AUTO,
276 	RFDS_MITIGATION_VERW,
277 	RFDS_MITIGATION_UCODE_NEEDED,
278 };
279 
280 /* Default mitigation for Register File Data Sampling */
281 static enum rfds_mitigations rfds_mitigation __ro_after_init =
282 	IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_AUTO : RFDS_MITIGATION_OFF;
283 
mds_select_mitigation(void)284 static void __init mds_select_mitigation(void)
285 {
286 	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
287 		mds_mitigation = MDS_MITIGATION_OFF;
288 		return;
289 	}
290 
291 	if (mds_mitigation == MDS_MITIGATION_AUTO)
292 		mds_mitigation = MDS_MITIGATION_FULL;
293 
294 	if (mds_mitigation == MDS_MITIGATION_FULL) {
295 		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
296 			mds_mitigation = MDS_MITIGATION_VMWERV;
297 
298 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
299 
300 		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
301 		    (mds_nosmt || cpu_mitigations_auto_nosmt()))
302 			cpu_smt_disable(false);
303 	}
304 }
305 
mds_cmdline(char * str)306 static int __init mds_cmdline(char *str)
307 {
308 	if (!boot_cpu_has_bug(X86_BUG_MDS))
309 		return 0;
310 
311 	if (!str)
312 		return -EINVAL;
313 
314 	if (!strcmp(str, "off"))
315 		mds_mitigation = MDS_MITIGATION_OFF;
316 	else if (!strcmp(str, "full"))
317 		mds_mitigation = MDS_MITIGATION_FULL;
318 	else if (!strcmp(str, "full,nosmt")) {
319 		mds_mitigation = MDS_MITIGATION_FULL;
320 		mds_nosmt = true;
321 	}
322 
323 	return 0;
324 }
325 early_param("mds", mds_cmdline);
326 
327 #undef pr_fmt
328 #define pr_fmt(fmt)	"TAA: " fmt
329 
330 static bool taa_nosmt __ro_after_init;
331 
332 static const char * const taa_strings[] = {
333 	[TAA_MITIGATION_OFF]		= "Vulnerable",
334 	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
335 	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
336 	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
337 };
338 
taa_select_mitigation(void)339 static void __init taa_select_mitigation(void)
340 {
341 	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
342 		taa_mitigation = TAA_MITIGATION_OFF;
343 		return;
344 	}
345 
346 	/* TSX previously disabled by tsx=off */
347 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
348 		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
349 		return;
350 	}
351 
352 	if (cpu_mitigations_off()) {
353 		taa_mitigation = TAA_MITIGATION_OFF;
354 		return;
355 	}
356 
357 	/*
358 	 * TAA mitigation via VERW is turned off if both
359 	 * tsx_async_abort=off and mds=off are specified.
360 	 */
361 	if (taa_mitigation == TAA_MITIGATION_OFF &&
362 	    mds_mitigation == MDS_MITIGATION_OFF)
363 		return;
364 
365 	if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
366 		taa_mitigation = TAA_MITIGATION_VERW;
367 	else
368 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
369 
370 	/*
371 	 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
372 	 * A microcode update fixes this behavior to clear CPU buffers. It also
373 	 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
374 	 * ARCH_CAP_TSX_CTRL_MSR bit.
375 	 *
376 	 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
377 	 * update is required.
378 	 */
379 	if ( (x86_arch_cap_msr & ARCH_CAP_MDS_NO) &&
380 	    !(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))
381 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
382 
383 	/*
384 	 * TSX is enabled, select alternate mitigation for TAA which is
385 	 * the same as MDS. Enable MDS static branch to clear CPU buffers.
386 	 *
387 	 * For guests that can't determine whether the correct microcode is
388 	 * present on host, enable the mitigation for UCODE_NEEDED as well.
389 	 */
390 	setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
391 
392 	if (taa_nosmt || cpu_mitigations_auto_nosmt())
393 		cpu_smt_disable(false);
394 }
395 
tsx_async_abort_parse_cmdline(char * str)396 static int __init tsx_async_abort_parse_cmdline(char *str)
397 {
398 	if (!boot_cpu_has_bug(X86_BUG_TAA))
399 		return 0;
400 
401 	if (!str)
402 		return -EINVAL;
403 
404 	if (!strcmp(str, "off")) {
405 		taa_mitigation = TAA_MITIGATION_OFF;
406 	} else if (!strcmp(str, "full")) {
407 		taa_mitigation = TAA_MITIGATION_VERW;
408 	} else if (!strcmp(str, "full,nosmt")) {
409 		taa_mitigation = TAA_MITIGATION_VERW;
410 		taa_nosmt = true;
411 	}
412 
413 	return 0;
414 }
415 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
416 
417 #undef pr_fmt
418 #define pr_fmt(fmt)	"MMIO Stale Data: " fmt
419 
420 static bool mmio_nosmt __ro_after_init = false;
421 
422 static const char * const mmio_strings[] = {
423 	[MMIO_MITIGATION_OFF]		= "Vulnerable",
424 	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
425 	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
426 };
427 
mmio_select_mitigation(void)428 static void __init mmio_select_mitigation(void)
429 {
430 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
431 	     boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
432 	     cpu_mitigations_off()) {
433 		mmio_mitigation = MMIO_MITIGATION_OFF;
434 		return;
435 	}
436 
437 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
438 		return;
439 
440 	/*
441 	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
442 	 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
443 	 */
444 	if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
445 					      boot_cpu_has(X86_FEATURE_RTM)))
446 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
447 
448 	/*
449 	 * X86_FEATURE_CLEAR_CPU_BUF could be enabled by other VERW based
450 	 * mitigations, disable KVM-only mitigation in that case.
451 	 */
452 	if (boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
453 		static_branch_disable(&mmio_stale_data_clear);
454 	else
455 		static_branch_enable(&mmio_stale_data_clear);
456 
457 	/*
458 	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
459 	 * be propagated to uncore buffers, clearing the Fill buffers on idle
460 	 * is required irrespective of SMT state.
461 	 */
462 	if (!(x86_arch_cap_msr & ARCH_CAP_FBSDP_NO))
463 		static_branch_enable(&mds_idle_clear);
464 
465 	/*
466 	 * Check if the system has the right microcode.
467 	 *
468 	 * CPU Fill buffer clear mitigation is enumerated by either an explicit
469 	 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
470 	 * affected systems.
471 	 */
472 	if ((x86_arch_cap_msr & ARCH_CAP_FB_CLEAR) ||
473 	    (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
474 	     boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
475 	     !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)))
476 		mmio_mitigation = MMIO_MITIGATION_VERW;
477 	else
478 		mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
479 
480 	if (mmio_nosmt || cpu_mitigations_auto_nosmt())
481 		cpu_smt_disable(false);
482 }
483 
mmio_stale_data_parse_cmdline(char * str)484 static int __init mmio_stale_data_parse_cmdline(char *str)
485 {
486 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
487 		return 0;
488 
489 	if (!str)
490 		return -EINVAL;
491 
492 	if (!strcmp(str, "off")) {
493 		mmio_mitigation = MMIO_MITIGATION_OFF;
494 	} else if (!strcmp(str, "full")) {
495 		mmio_mitigation = MMIO_MITIGATION_VERW;
496 	} else if (!strcmp(str, "full,nosmt")) {
497 		mmio_mitigation = MMIO_MITIGATION_VERW;
498 		mmio_nosmt = true;
499 	}
500 
501 	return 0;
502 }
503 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
504 
505 #undef pr_fmt
506 #define pr_fmt(fmt)	"Register File Data Sampling: " fmt
507 
508 static const char * const rfds_strings[] = {
509 	[RFDS_MITIGATION_OFF]			= "Vulnerable",
510 	[RFDS_MITIGATION_VERW]			= "Mitigation: Clear Register File",
511 	[RFDS_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
512 };
513 
rfds_select_mitigation(void)514 static void __init rfds_select_mitigation(void)
515 {
516 	if (!boot_cpu_has_bug(X86_BUG_RFDS) || cpu_mitigations_off()) {
517 		rfds_mitigation = RFDS_MITIGATION_OFF;
518 		return;
519 	}
520 	if (rfds_mitigation == RFDS_MITIGATION_OFF)
521 		return;
522 
523 	if (rfds_mitigation == RFDS_MITIGATION_AUTO)
524 		rfds_mitigation = RFDS_MITIGATION_VERW;
525 
526 	if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
527 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
528 	else
529 		rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED;
530 }
531 
rfds_parse_cmdline(char * str)532 static __init int rfds_parse_cmdline(char *str)
533 {
534 	if (!str)
535 		return -EINVAL;
536 
537 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
538 		return 0;
539 
540 	if (!strcmp(str, "off"))
541 		rfds_mitigation = RFDS_MITIGATION_OFF;
542 	else if (!strcmp(str, "on"))
543 		rfds_mitigation = RFDS_MITIGATION_VERW;
544 
545 	return 0;
546 }
547 early_param("reg_file_data_sampling", rfds_parse_cmdline);
548 
549 #undef pr_fmt
550 #define pr_fmt(fmt)     "" fmt
551 
md_clear_update_mitigation(void)552 static void __init md_clear_update_mitigation(void)
553 {
554 	if (cpu_mitigations_off())
555 		return;
556 
557 	if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
558 		goto out;
559 
560 	/*
561 	 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO
562 	 * Stale Data mitigation, if necessary.
563 	 */
564 	if (mds_mitigation == MDS_MITIGATION_OFF &&
565 	    boot_cpu_has_bug(X86_BUG_MDS)) {
566 		mds_mitigation = MDS_MITIGATION_FULL;
567 		mds_select_mitigation();
568 	}
569 	if (taa_mitigation == TAA_MITIGATION_OFF &&
570 	    boot_cpu_has_bug(X86_BUG_TAA)) {
571 		taa_mitigation = TAA_MITIGATION_VERW;
572 		taa_select_mitigation();
573 	}
574 	/*
575 	 * MMIO_MITIGATION_OFF is not checked here so that mmio_stale_data_clear
576 	 * gets updated correctly as per X86_FEATURE_CLEAR_CPU_BUF state.
577 	 */
578 	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
579 		mmio_mitigation = MMIO_MITIGATION_VERW;
580 		mmio_select_mitigation();
581 	}
582 	if (rfds_mitigation == RFDS_MITIGATION_OFF &&
583 	    boot_cpu_has_bug(X86_BUG_RFDS)) {
584 		rfds_mitigation = RFDS_MITIGATION_VERW;
585 		rfds_select_mitigation();
586 	}
587 out:
588 	if (boot_cpu_has_bug(X86_BUG_MDS))
589 		pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
590 	if (boot_cpu_has_bug(X86_BUG_TAA))
591 		pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
592 	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
593 		pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
594 	else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
595 		pr_info("MMIO Stale Data: Unknown: No mitigations\n");
596 	if (boot_cpu_has_bug(X86_BUG_RFDS))
597 		pr_info("Register File Data Sampling: %s\n", rfds_strings[rfds_mitigation]);
598 }
599 
md_clear_select_mitigation(void)600 static void __init md_clear_select_mitigation(void)
601 {
602 	mds_select_mitigation();
603 	taa_select_mitigation();
604 	mmio_select_mitigation();
605 	rfds_select_mitigation();
606 
607 	/*
608 	 * As these mitigations are inter-related and rely on VERW instruction
609 	 * to clear the microarchitural buffers, update and print their status
610 	 * after mitigation selection is done for each of these vulnerabilities.
611 	 */
612 	md_clear_update_mitigation();
613 }
614 
615 #undef pr_fmt
616 #define pr_fmt(fmt)	"SRBDS: " fmt
617 
618 enum srbds_mitigations {
619 	SRBDS_MITIGATION_OFF,
620 	SRBDS_MITIGATION_UCODE_NEEDED,
621 	SRBDS_MITIGATION_FULL,
622 	SRBDS_MITIGATION_TSX_OFF,
623 	SRBDS_MITIGATION_HYPERVISOR,
624 };
625 
626 static enum srbds_mitigations srbds_mitigation __ro_after_init =
627 	IS_ENABLED(CONFIG_MITIGATION_SRBDS) ? SRBDS_MITIGATION_FULL : SRBDS_MITIGATION_OFF;
628 
629 static const char * const srbds_strings[] = {
630 	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
631 	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
632 	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
633 	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
634 	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
635 };
636 
637 static bool srbds_off;
638 
update_srbds_msr(void)639 void update_srbds_msr(void)
640 {
641 	u64 mcu_ctrl;
642 
643 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
644 		return;
645 
646 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
647 		return;
648 
649 	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
650 		return;
651 
652 	/*
653 	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
654 	 * being disabled and it hasn't received the SRBDS MSR microcode.
655 	 */
656 	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
657 		return;
658 
659 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
660 
661 	switch (srbds_mitigation) {
662 	case SRBDS_MITIGATION_OFF:
663 	case SRBDS_MITIGATION_TSX_OFF:
664 		mcu_ctrl |= RNGDS_MITG_DIS;
665 		break;
666 	case SRBDS_MITIGATION_FULL:
667 		mcu_ctrl &= ~RNGDS_MITG_DIS;
668 		break;
669 	default:
670 		break;
671 	}
672 
673 	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
674 }
675 
srbds_select_mitigation(void)676 static void __init srbds_select_mitigation(void)
677 {
678 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
679 		return;
680 
681 	/*
682 	 * Check to see if this is one of the MDS_NO systems supporting TSX that
683 	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
684 	 * by Processor MMIO Stale Data vulnerability.
685 	 */
686 	if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
687 	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
688 		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
689 	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
690 		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
691 	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
692 		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
693 	else if (cpu_mitigations_off() || srbds_off)
694 		srbds_mitigation = SRBDS_MITIGATION_OFF;
695 
696 	update_srbds_msr();
697 	pr_info("%s\n", srbds_strings[srbds_mitigation]);
698 }
699 
srbds_parse_cmdline(char * str)700 static int __init srbds_parse_cmdline(char *str)
701 {
702 	if (!str)
703 		return -EINVAL;
704 
705 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
706 		return 0;
707 
708 	srbds_off = !strcmp(str, "off");
709 	return 0;
710 }
711 early_param("srbds", srbds_parse_cmdline);
712 
713 #undef pr_fmt
714 #define pr_fmt(fmt)     "L1D Flush : " fmt
715 
716 enum l1d_flush_mitigations {
717 	L1D_FLUSH_OFF = 0,
718 	L1D_FLUSH_ON,
719 };
720 
721 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
722 
l1d_flush_select_mitigation(void)723 static void __init l1d_flush_select_mitigation(void)
724 {
725 	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
726 		return;
727 
728 	static_branch_enable(&switch_mm_cond_l1d_flush);
729 	pr_info("Conditional flush on switch_mm() enabled\n");
730 }
731 
l1d_flush_parse_cmdline(char * str)732 static int __init l1d_flush_parse_cmdline(char *str)
733 {
734 	if (!strcmp(str, "on"))
735 		l1d_flush_mitigation = L1D_FLUSH_ON;
736 
737 	return 0;
738 }
739 early_param("l1d_flush", l1d_flush_parse_cmdline);
740 
741 #undef pr_fmt
742 #define pr_fmt(fmt)	"GDS: " fmt
743 
744 enum gds_mitigations {
745 	GDS_MITIGATION_OFF,
746 	GDS_MITIGATION_UCODE_NEEDED,
747 	GDS_MITIGATION_FORCE,
748 	GDS_MITIGATION_FULL,
749 	GDS_MITIGATION_FULL_LOCKED,
750 	GDS_MITIGATION_HYPERVISOR,
751 };
752 
753 static enum gds_mitigations gds_mitigation __ro_after_init =
754 	IS_ENABLED(CONFIG_MITIGATION_GDS) ? GDS_MITIGATION_FULL : GDS_MITIGATION_OFF;
755 
756 static const char * const gds_strings[] = {
757 	[GDS_MITIGATION_OFF]		= "Vulnerable",
758 	[GDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
759 	[GDS_MITIGATION_FORCE]		= "Mitigation: AVX disabled, no microcode",
760 	[GDS_MITIGATION_FULL]		= "Mitigation: Microcode",
761 	[GDS_MITIGATION_FULL_LOCKED]	= "Mitigation: Microcode (locked)",
762 	[GDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
763 };
764 
gds_ucode_mitigated(void)765 bool gds_ucode_mitigated(void)
766 {
767 	return (gds_mitigation == GDS_MITIGATION_FULL ||
768 		gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
769 }
770 EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
771 
update_gds_msr(void)772 void update_gds_msr(void)
773 {
774 	u64 mcu_ctrl_after;
775 	u64 mcu_ctrl;
776 
777 	switch (gds_mitigation) {
778 	case GDS_MITIGATION_OFF:
779 		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
780 		mcu_ctrl |= GDS_MITG_DIS;
781 		break;
782 	case GDS_MITIGATION_FULL_LOCKED:
783 		/*
784 		 * The LOCKED state comes from the boot CPU. APs might not have
785 		 * the same state. Make sure the mitigation is enabled on all
786 		 * CPUs.
787 		 */
788 	case GDS_MITIGATION_FULL:
789 		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
790 		mcu_ctrl &= ~GDS_MITG_DIS;
791 		break;
792 	case GDS_MITIGATION_FORCE:
793 	case GDS_MITIGATION_UCODE_NEEDED:
794 	case GDS_MITIGATION_HYPERVISOR:
795 		return;
796 	}
797 
798 	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
799 
800 	/*
801 	 * Check to make sure that the WRMSR value was not ignored. Writes to
802 	 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
803 	 * processor was not.
804 	 */
805 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
806 	WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
807 }
808 
gds_select_mitigation(void)809 static void __init gds_select_mitigation(void)
810 {
811 	u64 mcu_ctrl;
812 
813 	if (!boot_cpu_has_bug(X86_BUG_GDS))
814 		return;
815 
816 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
817 		gds_mitigation = GDS_MITIGATION_HYPERVISOR;
818 		goto out;
819 	}
820 
821 	if (cpu_mitigations_off())
822 		gds_mitigation = GDS_MITIGATION_OFF;
823 	/* Will verify below that mitigation _can_ be disabled */
824 
825 	/* No microcode */
826 	if (!(x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)) {
827 		if (gds_mitigation == GDS_MITIGATION_FORCE) {
828 			/*
829 			 * This only needs to be done on the boot CPU so do it
830 			 * here rather than in update_gds_msr()
831 			 */
832 			setup_clear_cpu_cap(X86_FEATURE_AVX);
833 			pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
834 		} else {
835 			gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
836 		}
837 		goto out;
838 	}
839 
840 	/* Microcode has mitigation, use it */
841 	if (gds_mitigation == GDS_MITIGATION_FORCE)
842 		gds_mitigation = GDS_MITIGATION_FULL;
843 
844 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
845 	if (mcu_ctrl & GDS_MITG_LOCKED) {
846 		if (gds_mitigation == GDS_MITIGATION_OFF)
847 			pr_warn("Mitigation locked. Disable failed.\n");
848 
849 		/*
850 		 * The mitigation is selected from the boot CPU. All other CPUs
851 		 * _should_ have the same state. If the boot CPU isn't locked
852 		 * but others are then update_gds_msr() will WARN() of the state
853 		 * mismatch. If the boot CPU is locked update_gds_msr() will
854 		 * ensure the other CPUs have the mitigation enabled.
855 		 */
856 		gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
857 	}
858 
859 	update_gds_msr();
860 out:
861 	pr_info("%s\n", gds_strings[gds_mitigation]);
862 }
863 
gds_parse_cmdline(char * str)864 static int __init gds_parse_cmdline(char *str)
865 {
866 	if (!str)
867 		return -EINVAL;
868 
869 	if (!boot_cpu_has_bug(X86_BUG_GDS))
870 		return 0;
871 
872 	if (!strcmp(str, "off"))
873 		gds_mitigation = GDS_MITIGATION_OFF;
874 	else if (!strcmp(str, "force"))
875 		gds_mitigation = GDS_MITIGATION_FORCE;
876 
877 	return 0;
878 }
879 early_param("gather_data_sampling", gds_parse_cmdline);
880 
881 #undef pr_fmt
882 #define pr_fmt(fmt)     "Spectre V1 : " fmt
883 
884 enum spectre_v1_mitigation {
885 	SPECTRE_V1_MITIGATION_NONE,
886 	SPECTRE_V1_MITIGATION_AUTO,
887 };
888 
889 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
890 	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V1) ?
891 		SPECTRE_V1_MITIGATION_AUTO : SPECTRE_V1_MITIGATION_NONE;
892 
893 static const char * const spectre_v1_strings[] = {
894 	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
895 	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
896 };
897 
898 /*
899  * Does SMAP provide full mitigation against speculative kernel access to
900  * userspace?
901  */
smap_works_speculatively(void)902 static bool smap_works_speculatively(void)
903 {
904 	if (!boot_cpu_has(X86_FEATURE_SMAP))
905 		return false;
906 
907 	/*
908 	 * On CPUs which are vulnerable to Meltdown, SMAP does not
909 	 * prevent speculative access to user data in the L1 cache.
910 	 * Consider SMAP to be non-functional as a mitigation on these
911 	 * CPUs.
912 	 */
913 	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
914 		return false;
915 
916 	return true;
917 }
918 
spectre_v1_select_mitigation(void)919 static void __init spectre_v1_select_mitigation(void)
920 {
921 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
922 		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
923 		return;
924 	}
925 
926 	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
927 		/*
928 		 * With Spectre v1, a user can speculatively control either
929 		 * path of a conditional swapgs with a user-controlled GS
930 		 * value.  The mitigation is to add lfences to both code paths.
931 		 *
932 		 * If FSGSBASE is enabled, the user can put a kernel address in
933 		 * GS, in which case SMAP provides no protection.
934 		 *
935 		 * If FSGSBASE is disabled, the user can only put a user space
936 		 * address in GS.  That makes an attack harder, but still
937 		 * possible if there's no SMAP protection.
938 		 */
939 		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
940 		    !smap_works_speculatively()) {
941 			/*
942 			 * Mitigation can be provided from SWAPGS itself or
943 			 * PTI as the CR3 write in the Meltdown mitigation
944 			 * is serializing.
945 			 *
946 			 * If neither is there, mitigate with an LFENCE to
947 			 * stop speculation through swapgs.
948 			 */
949 			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
950 			    !boot_cpu_has(X86_FEATURE_PTI))
951 				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
952 
953 			/*
954 			 * Enable lfences in the kernel entry (non-swapgs)
955 			 * paths, to prevent user entry from speculatively
956 			 * skipping swapgs.
957 			 */
958 			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
959 		}
960 	}
961 
962 	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
963 }
964 
nospectre_v1_cmdline(char * str)965 static int __init nospectre_v1_cmdline(char *str)
966 {
967 	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
968 	return 0;
969 }
970 early_param("nospectre_v1", nospectre_v1_cmdline);
971 
972 enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
973 
974 #undef pr_fmt
975 #define pr_fmt(fmt)     "RETBleed: " fmt
976 
977 enum retbleed_mitigation {
978 	RETBLEED_MITIGATION_NONE,
979 	RETBLEED_MITIGATION_UNRET,
980 	RETBLEED_MITIGATION_IBPB,
981 	RETBLEED_MITIGATION_IBRS,
982 	RETBLEED_MITIGATION_EIBRS,
983 	RETBLEED_MITIGATION_STUFF,
984 };
985 
986 enum retbleed_mitigation_cmd {
987 	RETBLEED_CMD_OFF,
988 	RETBLEED_CMD_AUTO,
989 	RETBLEED_CMD_UNRET,
990 	RETBLEED_CMD_IBPB,
991 	RETBLEED_CMD_STUFF,
992 };
993 
994 static const char * const retbleed_strings[] = {
995 	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
996 	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
997 	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
998 	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
999 	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
1000 	[RETBLEED_MITIGATION_STUFF]	= "Mitigation: Stuffing",
1001 };
1002 
1003 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
1004 	RETBLEED_MITIGATION_NONE;
1005 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
1006 	IS_ENABLED(CONFIG_MITIGATION_RETBLEED) ? RETBLEED_CMD_AUTO : RETBLEED_CMD_OFF;
1007 
1008 static int __ro_after_init retbleed_nosmt = false;
1009 
retbleed_parse_cmdline(char * str)1010 static int __init retbleed_parse_cmdline(char *str)
1011 {
1012 	if (!str)
1013 		return -EINVAL;
1014 
1015 	while (str) {
1016 		char *next = strchr(str, ',');
1017 		if (next) {
1018 			*next = 0;
1019 			next++;
1020 		}
1021 
1022 		if (!strcmp(str, "off")) {
1023 			retbleed_cmd = RETBLEED_CMD_OFF;
1024 		} else if (!strcmp(str, "auto")) {
1025 			retbleed_cmd = RETBLEED_CMD_AUTO;
1026 		} else if (!strcmp(str, "unret")) {
1027 			retbleed_cmd = RETBLEED_CMD_UNRET;
1028 		} else if (!strcmp(str, "ibpb")) {
1029 			retbleed_cmd = RETBLEED_CMD_IBPB;
1030 		} else if (!strcmp(str, "stuff")) {
1031 			retbleed_cmd = RETBLEED_CMD_STUFF;
1032 		} else if (!strcmp(str, "nosmt")) {
1033 			retbleed_nosmt = true;
1034 		} else if (!strcmp(str, "force")) {
1035 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1036 		} else {
1037 			pr_err("Ignoring unknown retbleed option (%s).", str);
1038 		}
1039 
1040 		str = next;
1041 	}
1042 
1043 	return 0;
1044 }
1045 early_param("retbleed", retbleed_parse_cmdline);
1046 
1047 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
1048 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
1049 
retbleed_select_mitigation(void)1050 static void __init retbleed_select_mitigation(void)
1051 {
1052 	bool mitigate_smt = false;
1053 
1054 	if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
1055 		return;
1056 
1057 	switch (retbleed_cmd) {
1058 	case RETBLEED_CMD_OFF:
1059 		return;
1060 
1061 	case RETBLEED_CMD_UNRET:
1062 		if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) {
1063 			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1064 		} else {
1065 			pr_err("WARNING: kernel not compiled with MITIGATION_UNRET_ENTRY.\n");
1066 			goto do_cmd_auto;
1067 		}
1068 		break;
1069 
1070 	case RETBLEED_CMD_IBPB:
1071 		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
1072 			pr_err("WARNING: CPU does not support IBPB.\n");
1073 			goto do_cmd_auto;
1074 		} else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
1075 			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1076 		} else {
1077 			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
1078 			goto do_cmd_auto;
1079 		}
1080 		break;
1081 
1082 	case RETBLEED_CMD_STUFF:
1083 		if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING) &&
1084 		    spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
1085 			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1086 
1087 		} else {
1088 			if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING))
1089 				pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
1090 			else
1091 				pr_err("WARNING: kernel not compiled with MITIGATION_CALL_DEPTH_TRACKING.\n");
1092 
1093 			goto do_cmd_auto;
1094 		}
1095 		break;
1096 
1097 do_cmd_auto:
1098 	case RETBLEED_CMD_AUTO:
1099 		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1100 		    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1101 			if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY))
1102 				retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1103 			else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY) &&
1104 				 boot_cpu_has(X86_FEATURE_IBPB))
1105 				retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1106 		}
1107 
1108 		/*
1109 		 * The Intel mitigation (IBRS or eIBRS) was already selected in
1110 		 * spectre_v2_select_mitigation().  'retbleed_mitigation' will
1111 		 * be set accordingly below.
1112 		 */
1113 
1114 		break;
1115 	}
1116 
1117 	switch (retbleed_mitigation) {
1118 	case RETBLEED_MITIGATION_UNRET:
1119 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1120 		setup_force_cpu_cap(X86_FEATURE_UNRET);
1121 
1122 		x86_return_thunk = retbleed_return_thunk;
1123 
1124 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1125 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1126 			pr_err(RETBLEED_UNTRAIN_MSG);
1127 
1128 		mitigate_smt = true;
1129 		break;
1130 
1131 	case RETBLEED_MITIGATION_IBPB:
1132 		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1133 		setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1134 		mitigate_smt = true;
1135 
1136 		/*
1137 		 * IBPB on entry already obviates the need for
1138 		 * software-based untraining so clear those in case some
1139 		 * other mitigation like SRSO has selected them.
1140 		 */
1141 		setup_clear_cpu_cap(X86_FEATURE_UNRET);
1142 		setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
1143 
1144 		/*
1145 		 * There is no need for RSB filling: entry_ibpb() ensures
1146 		 * all predictions, including the RSB, are invalidated,
1147 		 * regardless of IBPB implementation.
1148 		 */
1149 		setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1150 
1151 		break;
1152 
1153 	case RETBLEED_MITIGATION_STUFF:
1154 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1155 		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1156 
1157 		x86_return_thunk = call_depth_return_thunk;
1158 		break;
1159 
1160 	default:
1161 		break;
1162 	}
1163 
1164 	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1165 	    (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1166 		cpu_smt_disable(false);
1167 
1168 	/*
1169 	 * Let IBRS trump all on Intel without affecting the effects of the
1170 	 * retbleed= cmdline option except for call depth based stuffing
1171 	 */
1172 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1173 		switch (spectre_v2_enabled) {
1174 		case SPECTRE_V2_IBRS:
1175 			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1176 			break;
1177 		case SPECTRE_V2_EIBRS:
1178 		case SPECTRE_V2_EIBRS_RETPOLINE:
1179 		case SPECTRE_V2_EIBRS_LFENCE:
1180 			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1181 			break;
1182 		default:
1183 			if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1184 				pr_err(RETBLEED_INTEL_MSG);
1185 		}
1186 	}
1187 
1188 	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1189 }
1190 
1191 #undef pr_fmt
1192 #define pr_fmt(fmt)     "Spectre V2 : " fmt
1193 
1194 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1195 	SPECTRE_V2_USER_NONE;
1196 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1197 	SPECTRE_V2_USER_NONE;
1198 
1199 #ifdef CONFIG_MITIGATION_RETPOLINE
1200 static bool spectre_v2_bad_module;
1201 
retpoline_module_ok(bool has_retpoline)1202 bool retpoline_module_ok(bool has_retpoline)
1203 {
1204 	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1205 		return true;
1206 
1207 	pr_err("System may be vulnerable to spectre v2\n");
1208 	spectre_v2_bad_module = true;
1209 	return false;
1210 }
1211 
spectre_v2_module_string(void)1212 static inline const char *spectre_v2_module_string(void)
1213 {
1214 	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1215 }
1216 #else
spectre_v2_module_string(void)1217 static inline const char *spectre_v2_module_string(void) { return ""; }
1218 #endif
1219 
1220 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1221 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1222 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1223 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1224 
1225 #ifdef CONFIG_BPF_SYSCALL
unpriv_ebpf_notify(int new_state)1226 void unpriv_ebpf_notify(int new_state)
1227 {
1228 	if (new_state)
1229 		return;
1230 
1231 	/* Unprivileged eBPF is enabled */
1232 
1233 	switch (spectre_v2_enabled) {
1234 	case SPECTRE_V2_EIBRS:
1235 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1236 		break;
1237 	case SPECTRE_V2_EIBRS_LFENCE:
1238 		if (sched_smt_active())
1239 			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1240 		break;
1241 	default:
1242 		break;
1243 	}
1244 }
1245 #endif
1246 
match_option(const char * arg,int arglen,const char * opt)1247 static inline bool match_option(const char *arg, int arglen, const char *opt)
1248 {
1249 	int len = strlen(opt);
1250 
1251 	return len == arglen && !strncmp(arg, opt, len);
1252 }
1253 
1254 /* The kernel command line selection for spectre v2 */
1255 enum spectre_v2_mitigation_cmd {
1256 	SPECTRE_V2_CMD_NONE,
1257 	SPECTRE_V2_CMD_AUTO,
1258 	SPECTRE_V2_CMD_FORCE,
1259 	SPECTRE_V2_CMD_RETPOLINE,
1260 	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1261 	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1262 	SPECTRE_V2_CMD_EIBRS,
1263 	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1264 	SPECTRE_V2_CMD_EIBRS_LFENCE,
1265 	SPECTRE_V2_CMD_IBRS,
1266 };
1267 
1268 enum spectre_v2_user_cmd {
1269 	SPECTRE_V2_USER_CMD_NONE,
1270 	SPECTRE_V2_USER_CMD_AUTO,
1271 	SPECTRE_V2_USER_CMD_FORCE,
1272 	SPECTRE_V2_USER_CMD_PRCTL,
1273 	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1274 	SPECTRE_V2_USER_CMD_SECCOMP,
1275 	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1276 };
1277 
1278 static const char * const spectre_v2_user_strings[] = {
1279 	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1280 	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1281 	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1282 	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1283 	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1284 };
1285 
1286 static const struct {
1287 	const char			*option;
1288 	enum spectre_v2_user_cmd	cmd;
1289 	bool				secure;
1290 } v2_user_options[] __initconst = {
1291 	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
1292 	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
1293 	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
1294 	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
1295 	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
1296 	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
1297 	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
1298 };
1299 
spec_v2_user_print_cond(const char * reason,bool secure)1300 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1301 {
1302 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1303 		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1304 }
1305 
1306 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1307 
1308 static enum spectre_v2_user_cmd __init
spectre_v2_parse_user_cmdline(void)1309 spectre_v2_parse_user_cmdline(void)
1310 {
1311 	enum spectre_v2_user_cmd mode;
1312 	char arg[20];
1313 	int ret, i;
1314 
1315 	mode = IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2) ?
1316 		SPECTRE_V2_USER_CMD_AUTO : SPECTRE_V2_USER_CMD_NONE;
1317 
1318 	switch (spectre_v2_cmd) {
1319 	case SPECTRE_V2_CMD_NONE:
1320 		return SPECTRE_V2_USER_CMD_NONE;
1321 	case SPECTRE_V2_CMD_FORCE:
1322 		return SPECTRE_V2_USER_CMD_FORCE;
1323 	default:
1324 		break;
1325 	}
1326 
1327 	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1328 				  arg, sizeof(arg));
1329 	if (ret < 0)
1330 		return mode;
1331 
1332 	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1333 		if (match_option(arg, ret, v2_user_options[i].option)) {
1334 			spec_v2_user_print_cond(v2_user_options[i].option,
1335 						v2_user_options[i].secure);
1336 			return v2_user_options[i].cmd;
1337 		}
1338 	}
1339 
1340 	pr_err("Unknown user space protection option (%s). Switching to default\n", arg);
1341 	return mode;
1342 }
1343 
spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)1344 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1345 {
1346 	return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1347 }
1348 
1349 static void __init
spectre_v2_user_select_mitigation(void)1350 spectre_v2_user_select_mitigation(void)
1351 {
1352 	enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1353 	enum spectre_v2_user_cmd cmd;
1354 
1355 	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1356 		return;
1357 
1358 	cmd = spectre_v2_parse_user_cmdline();
1359 	switch (cmd) {
1360 	case SPECTRE_V2_USER_CMD_NONE:
1361 		goto set_mode;
1362 	case SPECTRE_V2_USER_CMD_FORCE:
1363 		mode = SPECTRE_V2_USER_STRICT;
1364 		break;
1365 	case SPECTRE_V2_USER_CMD_AUTO:
1366 	case SPECTRE_V2_USER_CMD_PRCTL:
1367 	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1368 		mode = SPECTRE_V2_USER_PRCTL;
1369 		break;
1370 	case SPECTRE_V2_USER_CMD_SECCOMP:
1371 	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1372 		if (IS_ENABLED(CONFIG_SECCOMP))
1373 			mode = SPECTRE_V2_USER_SECCOMP;
1374 		else
1375 			mode = SPECTRE_V2_USER_PRCTL;
1376 		break;
1377 	}
1378 
1379 	/* Initialize Indirect Branch Prediction Barrier */
1380 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
1381 		static_branch_enable(&switch_vcpu_ibpb);
1382 
1383 		spectre_v2_user_ibpb = mode;
1384 		switch (cmd) {
1385 		case SPECTRE_V2_USER_CMD_NONE:
1386 			break;
1387 		case SPECTRE_V2_USER_CMD_FORCE:
1388 		case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1389 		case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1390 			static_branch_enable(&switch_mm_always_ibpb);
1391 			spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1392 			break;
1393 		case SPECTRE_V2_USER_CMD_PRCTL:
1394 		case SPECTRE_V2_USER_CMD_AUTO:
1395 		case SPECTRE_V2_USER_CMD_SECCOMP:
1396 			static_branch_enable(&switch_mm_cond_ibpb);
1397 			break;
1398 		}
1399 
1400 		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1401 			static_key_enabled(&switch_mm_always_ibpb) ?
1402 			"always-on" : "conditional");
1403 	}
1404 
1405 	/*
1406 	 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1407 	 * is not required.
1408 	 *
1409 	 * Intel's Enhanced IBRS also protects against cross-thread branch target
1410 	 * injection in user-mode as the IBRS bit remains always set which
1411 	 * implicitly enables cross-thread protections.  However, in legacy IBRS
1412 	 * mode, the IBRS bit is set only on kernel entry and cleared on return
1413 	 * to userspace.  AMD Automatic IBRS also does not protect userspace.
1414 	 * These modes therefore disable the implicit cross-thread protection,
1415 	 * so allow for STIBP to be selected in those cases.
1416 	 */
1417 	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1418 	    !cpu_smt_possible() ||
1419 	    (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1420 	     !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
1421 		return;
1422 
1423 	/*
1424 	 * At this point, an STIBP mode other than "off" has been set.
1425 	 * If STIBP support is not being forced, check if STIBP always-on
1426 	 * is preferred.
1427 	 */
1428 	if (mode != SPECTRE_V2_USER_STRICT &&
1429 	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1430 		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1431 
1432 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1433 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1434 		if (mode != SPECTRE_V2_USER_STRICT &&
1435 		    mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1436 			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1437 		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1438 	}
1439 
1440 	spectre_v2_user_stibp = mode;
1441 
1442 set_mode:
1443 	pr_info("%s\n", spectre_v2_user_strings[mode]);
1444 }
1445 
1446 static const char * const spectre_v2_strings[] = {
1447 	[SPECTRE_V2_NONE]			= "Vulnerable",
1448 	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
1449 	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
1450 	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced / Automatic IBRS",
1451 	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1452 	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1453 	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
1454 };
1455 
1456 static const struct {
1457 	const char *option;
1458 	enum spectre_v2_mitigation_cmd cmd;
1459 	bool secure;
1460 } mitigation_options[] __initconst = {
1461 	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
1462 	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
1463 	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
1464 	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1465 	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1466 	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1467 	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
1468 	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
1469 	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
1470 	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
1471 	{ "ibrs",		SPECTRE_V2_CMD_IBRS,              false },
1472 };
1473 
spec_v2_print_cond(const char * reason,bool secure)1474 static void __init spec_v2_print_cond(const char *reason, bool secure)
1475 {
1476 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1477 		pr_info("%s selected on command line.\n", reason);
1478 }
1479 
spectre_v2_parse_cmdline(void)1480 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1481 {
1482 	enum spectre_v2_mitigation_cmd cmd;
1483 	char arg[20];
1484 	int ret, i;
1485 
1486 	cmd = IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2) ?  SPECTRE_V2_CMD_AUTO : SPECTRE_V2_CMD_NONE;
1487 	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1488 	    cpu_mitigations_off())
1489 		return SPECTRE_V2_CMD_NONE;
1490 
1491 	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1492 	if (ret < 0)
1493 		return cmd;
1494 
1495 	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1496 		if (!match_option(arg, ret, mitigation_options[i].option))
1497 			continue;
1498 		cmd = mitigation_options[i].cmd;
1499 		break;
1500 	}
1501 
1502 	if (i >= ARRAY_SIZE(mitigation_options)) {
1503 		pr_err("unknown option (%s). Switching to default mode\n", arg);
1504 		return cmd;
1505 	}
1506 
1507 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1508 	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1509 	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1510 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1511 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1512 	    !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1513 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1514 		       mitigation_options[i].option);
1515 		return SPECTRE_V2_CMD_AUTO;
1516 	}
1517 
1518 	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1519 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1520 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1521 	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1522 		pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1523 		       mitigation_options[i].option);
1524 		return SPECTRE_V2_CMD_AUTO;
1525 	}
1526 
1527 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1528 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1529 	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1530 		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1531 		       mitigation_options[i].option);
1532 		return SPECTRE_V2_CMD_AUTO;
1533 	}
1534 
1535 	if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY)) {
1536 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1537 		       mitigation_options[i].option);
1538 		return SPECTRE_V2_CMD_AUTO;
1539 	}
1540 
1541 	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1542 		pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1543 		       mitigation_options[i].option);
1544 		return SPECTRE_V2_CMD_AUTO;
1545 	}
1546 
1547 	if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1548 		pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1549 		       mitigation_options[i].option);
1550 		return SPECTRE_V2_CMD_AUTO;
1551 	}
1552 
1553 	if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1554 		pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1555 		       mitigation_options[i].option);
1556 		return SPECTRE_V2_CMD_AUTO;
1557 	}
1558 
1559 	spec_v2_print_cond(mitigation_options[i].option,
1560 			   mitigation_options[i].secure);
1561 	return cmd;
1562 }
1563 
spectre_v2_select_retpoline(void)1564 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1565 {
1566 	if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1567 		pr_err("Kernel not compiled with retpoline; no mitigation available!");
1568 		return SPECTRE_V2_NONE;
1569 	}
1570 
1571 	return SPECTRE_V2_RETPOLINE;
1572 }
1573 
1574 static bool __ro_after_init rrsba_disabled;
1575 
1576 /* Disable in-kernel use of non-RSB RET predictors */
spec_ctrl_disable_kernel_rrsba(void)1577 static void __init spec_ctrl_disable_kernel_rrsba(void)
1578 {
1579 	if (rrsba_disabled)
1580 		return;
1581 
1582 	if (!(x86_arch_cap_msr & ARCH_CAP_RRSBA)) {
1583 		rrsba_disabled = true;
1584 		return;
1585 	}
1586 
1587 	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1588 		return;
1589 
1590 	x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1591 	update_spec_ctrl(x86_spec_ctrl_base);
1592 	rrsba_disabled = true;
1593 }
1594 
spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)1595 static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1596 {
1597 	/*
1598 	 * Similar to context switches, there are two types of RSB attacks
1599 	 * after VM exit:
1600 	 *
1601 	 * 1) RSB underflow
1602 	 *
1603 	 * 2) Poisoned RSB entry
1604 	 *
1605 	 * When retpoline is enabled, both are mitigated by filling/clearing
1606 	 * the RSB.
1607 	 *
1608 	 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1609 	 * prediction isolation protections, RSB still needs to be cleared
1610 	 * because of #2.  Note that SMEP provides no protection here, unlike
1611 	 * user-space-poisoned RSB entries.
1612 	 *
1613 	 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1614 	 * bug is present then a LITE version of RSB protection is required,
1615 	 * just a single call needs to retire before a RET is executed.
1616 	 */
1617 	switch (mode) {
1618 	case SPECTRE_V2_NONE:
1619 		return;
1620 
1621 	case SPECTRE_V2_EIBRS_LFENCE:
1622 	case SPECTRE_V2_EIBRS:
1623 		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1624 			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1625 			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1626 		}
1627 		return;
1628 
1629 	case SPECTRE_V2_EIBRS_RETPOLINE:
1630 	case SPECTRE_V2_RETPOLINE:
1631 	case SPECTRE_V2_LFENCE:
1632 	case SPECTRE_V2_IBRS:
1633 		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1634 		pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1635 		return;
1636 	}
1637 
1638 	pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1639 	dump_stack();
1640 }
1641 
1642 /*
1643  * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by
1644  * branch history in userspace. Not needed if BHI_NO is set.
1645  */
spec_ctrl_bhi_dis(void)1646 static bool __init spec_ctrl_bhi_dis(void)
1647 {
1648 	if (!boot_cpu_has(X86_FEATURE_BHI_CTRL))
1649 		return false;
1650 
1651 	x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S;
1652 	update_spec_ctrl(x86_spec_ctrl_base);
1653 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW);
1654 
1655 	return true;
1656 }
1657 
1658 enum bhi_mitigations {
1659 	BHI_MITIGATION_OFF,
1660 	BHI_MITIGATION_ON,
1661 	BHI_MITIGATION_VMEXIT_ONLY,
1662 };
1663 
1664 static enum bhi_mitigations bhi_mitigation __ro_after_init =
1665 	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_BHI) ? BHI_MITIGATION_ON : BHI_MITIGATION_OFF;
1666 
spectre_bhi_parse_cmdline(char * str)1667 static int __init spectre_bhi_parse_cmdline(char *str)
1668 {
1669 	if (!str)
1670 		return -EINVAL;
1671 
1672 	if (!strcmp(str, "off"))
1673 		bhi_mitigation = BHI_MITIGATION_OFF;
1674 	else if (!strcmp(str, "on"))
1675 		bhi_mitigation = BHI_MITIGATION_ON;
1676 	else if (!strcmp(str, "vmexit"))
1677 		bhi_mitigation = BHI_MITIGATION_VMEXIT_ONLY;
1678 	else
1679 		pr_err("Ignoring unknown spectre_bhi option (%s)", str);
1680 
1681 	return 0;
1682 }
1683 early_param("spectre_bhi", spectre_bhi_parse_cmdline);
1684 
bhi_select_mitigation(void)1685 static void __init bhi_select_mitigation(void)
1686 {
1687 	if (bhi_mitigation == BHI_MITIGATION_OFF)
1688 		return;
1689 
1690 	/* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */
1691 	if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
1692 	    !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) {
1693 		spec_ctrl_disable_kernel_rrsba();
1694 		if (rrsba_disabled)
1695 			return;
1696 	}
1697 
1698 	/* Mitigate in hardware if supported */
1699 	if (spec_ctrl_bhi_dis())
1700 		return;
1701 
1702 	if (!IS_ENABLED(CONFIG_X86_64))
1703 		return;
1704 
1705 	if (bhi_mitigation == BHI_MITIGATION_VMEXIT_ONLY) {
1706 		pr_info("Spectre BHI mitigation: SW BHB clearing on VM exit only\n");
1707 		setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT);
1708 		return;
1709 	}
1710 
1711 	pr_info("Spectre BHI mitigation: SW BHB clearing on syscall and VM exit\n");
1712 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP);
1713 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT);
1714 }
1715 
spectre_v2_select_mitigation(void)1716 static void __init spectre_v2_select_mitigation(void)
1717 {
1718 	enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1719 	enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1720 
1721 	/*
1722 	 * If the CPU is not affected and the command line mode is NONE or AUTO
1723 	 * then nothing to do.
1724 	 */
1725 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1726 	    (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1727 		return;
1728 
1729 	switch (cmd) {
1730 	case SPECTRE_V2_CMD_NONE:
1731 		return;
1732 
1733 	case SPECTRE_V2_CMD_FORCE:
1734 	case SPECTRE_V2_CMD_AUTO:
1735 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1736 			mode = SPECTRE_V2_EIBRS;
1737 			break;
1738 		}
1739 
1740 		if (IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY) &&
1741 		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1742 		    retbleed_cmd != RETBLEED_CMD_OFF &&
1743 		    retbleed_cmd != RETBLEED_CMD_STUFF &&
1744 		    boot_cpu_has(X86_FEATURE_IBRS) &&
1745 		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1746 			mode = SPECTRE_V2_IBRS;
1747 			break;
1748 		}
1749 
1750 		mode = spectre_v2_select_retpoline();
1751 		break;
1752 
1753 	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1754 		pr_err(SPECTRE_V2_LFENCE_MSG);
1755 		mode = SPECTRE_V2_LFENCE;
1756 		break;
1757 
1758 	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1759 		mode = SPECTRE_V2_RETPOLINE;
1760 		break;
1761 
1762 	case SPECTRE_V2_CMD_RETPOLINE:
1763 		mode = spectre_v2_select_retpoline();
1764 		break;
1765 
1766 	case SPECTRE_V2_CMD_IBRS:
1767 		mode = SPECTRE_V2_IBRS;
1768 		break;
1769 
1770 	case SPECTRE_V2_CMD_EIBRS:
1771 		mode = SPECTRE_V2_EIBRS;
1772 		break;
1773 
1774 	case SPECTRE_V2_CMD_EIBRS_LFENCE:
1775 		mode = SPECTRE_V2_EIBRS_LFENCE;
1776 		break;
1777 
1778 	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1779 		mode = SPECTRE_V2_EIBRS_RETPOLINE;
1780 		break;
1781 	}
1782 
1783 	if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1784 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1785 
1786 	if (spectre_v2_in_ibrs_mode(mode)) {
1787 		if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1788 			msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1789 		} else {
1790 			x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1791 			update_spec_ctrl(x86_spec_ctrl_base);
1792 		}
1793 	}
1794 
1795 	switch (mode) {
1796 	case SPECTRE_V2_NONE:
1797 	case SPECTRE_V2_EIBRS:
1798 		break;
1799 
1800 	case SPECTRE_V2_IBRS:
1801 		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1802 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1803 			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1804 		break;
1805 
1806 	case SPECTRE_V2_LFENCE:
1807 	case SPECTRE_V2_EIBRS_LFENCE:
1808 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1809 		fallthrough;
1810 
1811 	case SPECTRE_V2_RETPOLINE:
1812 	case SPECTRE_V2_EIBRS_RETPOLINE:
1813 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1814 		break;
1815 	}
1816 
1817 	/*
1818 	 * Disable alternate RSB predictions in kernel when indirect CALLs and
1819 	 * JMPs gets protection against BHI and Intramode-BTI, but RET
1820 	 * prediction from a non-RSB predictor is still a risk.
1821 	 */
1822 	if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1823 	    mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1824 	    mode == SPECTRE_V2_RETPOLINE)
1825 		spec_ctrl_disable_kernel_rrsba();
1826 
1827 	if (boot_cpu_has(X86_BUG_BHI))
1828 		bhi_select_mitigation();
1829 
1830 	spectre_v2_enabled = mode;
1831 	pr_info("%s\n", spectre_v2_strings[mode]);
1832 
1833 	/*
1834 	 * If Spectre v2 protection has been enabled, fill the RSB during a
1835 	 * context switch.  In general there are two types of RSB attacks
1836 	 * across context switches, for which the CALLs/RETs may be unbalanced.
1837 	 *
1838 	 * 1) RSB underflow
1839 	 *
1840 	 *    Some Intel parts have "bottomless RSB".  When the RSB is empty,
1841 	 *    speculated return targets may come from the branch predictor,
1842 	 *    which could have a user-poisoned BTB or BHB entry.
1843 	 *
1844 	 *    AMD has it even worse: *all* returns are speculated from the BTB,
1845 	 *    regardless of the state of the RSB.
1846 	 *
1847 	 *    When IBRS or eIBRS is enabled, the "user -> kernel" attack
1848 	 *    scenario is mitigated by the IBRS branch prediction isolation
1849 	 *    properties, so the RSB buffer filling wouldn't be necessary to
1850 	 *    protect against this type of attack.
1851 	 *
1852 	 *    The "user -> user" attack scenario is mitigated by RSB filling.
1853 	 *
1854 	 * 2) Poisoned RSB entry
1855 	 *
1856 	 *    If the 'next' in-kernel return stack is shorter than 'prev',
1857 	 *    'next' could be tricked into speculating with a user-poisoned RSB
1858 	 *    entry.
1859 	 *
1860 	 *    The "user -> kernel" attack scenario is mitigated by SMEP and
1861 	 *    eIBRS.
1862 	 *
1863 	 *    The "user -> user" scenario, also known as SpectreBHB, requires
1864 	 *    RSB clearing.
1865 	 *
1866 	 * So to mitigate all cases, unconditionally fill RSB on context
1867 	 * switches.
1868 	 *
1869 	 * FIXME: Is this pointless for retbleed-affected AMD?
1870 	 */
1871 	setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1872 	pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1873 
1874 	spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1875 
1876 	/*
1877 	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
1878 	 * and Enhanced IBRS protect firmware too, so enable IBRS around
1879 	 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
1880 	 * otherwise enabled.
1881 	 *
1882 	 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1883 	 * the user might select retpoline on the kernel command line and if
1884 	 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1885 	 * enable IBRS around firmware calls.
1886 	 */
1887 	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1888 	    boot_cpu_has(X86_FEATURE_IBPB) &&
1889 	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1890 	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1891 
1892 		if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1893 			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1894 			pr_info("Enabling Speculation Barrier for firmware calls\n");
1895 		}
1896 
1897 	} else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1898 		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1899 		pr_info("Enabling Restricted Speculation for firmware calls\n");
1900 	}
1901 
1902 	/* Set up IBPB and STIBP depending on the general spectre V2 command */
1903 	spectre_v2_cmd = cmd;
1904 }
1905 
update_stibp_msr(void * __unused)1906 static void update_stibp_msr(void * __unused)
1907 {
1908 	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1909 	update_spec_ctrl(val);
1910 }
1911 
1912 /* Update x86_spec_ctrl_base in case SMT state changed. */
update_stibp_strict(void)1913 static void update_stibp_strict(void)
1914 {
1915 	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1916 
1917 	if (sched_smt_active())
1918 		mask |= SPEC_CTRL_STIBP;
1919 
1920 	if (mask == x86_spec_ctrl_base)
1921 		return;
1922 
1923 	pr_info("Update user space SMT mitigation: STIBP %s\n",
1924 		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1925 	x86_spec_ctrl_base = mask;
1926 	on_each_cpu(update_stibp_msr, NULL, 1);
1927 }
1928 
1929 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
update_indir_branch_cond(void)1930 static void update_indir_branch_cond(void)
1931 {
1932 	if (sched_smt_active())
1933 		static_branch_enable(&switch_to_cond_stibp);
1934 	else
1935 		static_branch_disable(&switch_to_cond_stibp);
1936 }
1937 
1938 #undef pr_fmt
1939 #define pr_fmt(fmt) fmt
1940 
1941 /* Update the static key controlling the MDS CPU buffer clear in idle */
update_mds_branch_idle(void)1942 static void update_mds_branch_idle(void)
1943 {
1944 	/*
1945 	 * Enable the idle clearing if SMT is active on CPUs which are
1946 	 * affected only by MSBDS and not any other MDS variant.
1947 	 *
1948 	 * The other variants cannot be mitigated when SMT is enabled, so
1949 	 * clearing the buffers on idle just to prevent the Store Buffer
1950 	 * repartitioning leak would be a window dressing exercise.
1951 	 */
1952 	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1953 		return;
1954 
1955 	if (sched_smt_active()) {
1956 		static_branch_enable(&mds_idle_clear);
1957 	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1958 		   (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) {
1959 		static_branch_disable(&mds_idle_clear);
1960 	}
1961 }
1962 
1963 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1964 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1965 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1966 
cpu_bugs_smt_update(void)1967 void cpu_bugs_smt_update(void)
1968 {
1969 	mutex_lock(&spec_ctrl_mutex);
1970 
1971 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1972 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1973 		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1974 
1975 	switch (spectre_v2_user_stibp) {
1976 	case SPECTRE_V2_USER_NONE:
1977 		break;
1978 	case SPECTRE_V2_USER_STRICT:
1979 	case SPECTRE_V2_USER_STRICT_PREFERRED:
1980 		update_stibp_strict();
1981 		break;
1982 	case SPECTRE_V2_USER_PRCTL:
1983 	case SPECTRE_V2_USER_SECCOMP:
1984 		update_indir_branch_cond();
1985 		break;
1986 	}
1987 
1988 	switch (mds_mitigation) {
1989 	case MDS_MITIGATION_FULL:
1990 	case MDS_MITIGATION_AUTO:
1991 	case MDS_MITIGATION_VMWERV:
1992 		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1993 			pr_warn_once(MDS_MSG_SMT);
1994 		update_mds_branch_idle();
1995 		break;
1996 	case MDS_MITIGATION_OFF:
1997 		break;
1998 	}
1999 
2000 	switch (taa_mitigation) {
2001 	case TAA_MITIGATION_VERW:
2002 	case TAA_MITIGATION_AUTO:
2003 	case TAA_MITIGATION_UCODE_NEEDED:
2004 		if (sched_smt_active())
2005 			pr_warn_once(TAA_MSG_SMT);
2006 		break;
2007 	case TAA_MITIGATION_TSX_DISABLED:
2008 	case TAA_MITIGATION_OFF:
2009 		break;
2010 	}
2011 
2012 	switch (mmio_mitigation) {
2013 	case MMIO_MITIGATION_VERW:
2014 	case MMIO_MITIGATION_AUTO:
2015 	case MMIO_MITIGATION_UCODE_NEEDED:
2016 		if (sched_smt_active())
2017 			pr_warn_once(MMIO_MSG_SMT);
2018 		break;
2019 	case MMIO_MITIGATION_OFF:
2020 		break;
2021 	}
2022 
2023 	mutex_unlock(&spec_ctrl_mutex);
2024 }
2025 
2026 #undef pr_fmt
2027 #define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
2028 
2029 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
2030 
2031 /* The kernel command line selection */
2032 enum ssb_mitigation_cmd {
2033 	SPEC_STORE_BYPASS_CMD_NONE,
2034 	SPEC_STORE_BYPASS_CMD_AUTO,
2035 	SPEC_STORE_BYPASS_CMD_ON,
2036 	SPEC_STORE_BYPASS_CMD_PRCTL,
2037 	SPEC_STORE_BYPASS_CMD_SECCOMP,
2038 };
2039 
2040 static const char * const ssb_strings[] = {
2041 	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
2042 	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
2043 	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
2044 	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
2045 };
2046 
2047 static const struct {
2048 	const char *option;
2049 	enum ssb_mitigation_cmd cmd;
2050 } ssb_mitigation_options[]  __initconst = {
2051 	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
2052 	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
2053 	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
2054 	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
2055 	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
2056 };
2057 
ssb_parse_cmdline(void)2058 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
2059 {
2060 	enum ssb_mitigation_cmd cmd;
2061 	char arg[20];
2062 	int ret, i;
2063 
2064 	cmd = IS_ENABLED(CONFIG_MITIGATION_SSB) ?
2065 		SPEC_STORE_BYPASS_CMD_AUTO : SPEC_STORE_BYPASS_CMD_NONE;
2066 	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
2067 	    cpu_mitigations_off()) {
2068 		return SPEC_STORE_BYPASS_CMD_NONE;
2069 	} else {
2070 		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
2071 					  arg, sizeof(arg));
2072 		if (ret < 0)
2073 			return cmd;
2074 
2075 		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
2076 			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
2077 				continue;
2078 
2079 			cmd = ssb_mitigation_options[i].cmd;
2080 			break;
2081 		}
2082 
2083 		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
2084 			pr_err("unknown option (%s). Switching to default mode\n", arg);
2085 			return cmd;
2086 		}
2087 	}
2088 
2089 	return cmd;
2090 }
2091 
__ssb_select_mitigation(void)2092 static enum ssb_mitigation __init __ssb_select_mitigation(void)
2093 {
2094 	enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
2095 	enum ssb_mitigation_cmd cmd;
2096 
2097 	if (!boot_cpu_has(X86_FEATURE_SSBD))
2098 		return mode;
2099 
2100 	cmd = ssb_parse_cmdline();
2101 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
2102 	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
2103 	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
2104 		return mode;
2105 
2106 	switch (cmd) {
2107 	case SPEC_STORE_BYPASS_CMD_SECCOMP:
2108 		/*
2109 		 * Choose prctl+seccomp as the default mode if seccomp is
2110 		 * enabled.
2111 		 */
2112 		if (IS_ENABLED(CONFIG_SECCOMP))
2113 			mode = SPEC_STORE_BYPASS_SECCOMP;
2114 		else
2115 			mode = SPEC_STORE_BYPASS_PRCTL;
2116 		break;
2117 	case SPEC_STORE_BYPASS_CMD_ON:
2118 		mode = SPEC_STORE_BYPASS_DISABLE;
2119 		break;
2120 	case SPEC_STORE_BYPASS_CMD_AUTO:
2121 	case SPEC_STORE_BYPASS_CMD_PRCTL:
2122 		mode = SPEC_STORE_BYPASS_PRCTL;
2123 		break;
2124 	case SPEC_STORE_BYPASS_CMD_NONE:
2125 		break;
2126 	}
2127 
2128 	/*
2129 	 * We have three CPU feature flags that are in play here:
2130 	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
2131 	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
2132 	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
2133 	 */
2134 	if (mode == SPEC_STORE_BYPASS_DISABLE) {
2135 		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
2136 		/*
2137 		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
2138 		 * use a completely different MSR and bit dependent on family.
2139 		 */
2140 		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
2141 		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
2142 			x86_amd_ssb_disable();
2143 		} else {
2144 			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
2145 			update_spec_ctrl(x86_spec_ctrl_base);
2146 		}
2147 	}
2148 
2149 	return mode;
2150 }
2151 
ssb_select_mitigation(void)2152 static void ssb_select_mitigation(void)
2153 {
2154 	ssb_mode = __ssb_select_mitigation();
2155 
2156 	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2157 		pr_info("%s\n", ssb_strings[ssb_mode]);
2158 }
2159 
2160 #undef pr_fmt
2161 #define pr_fmt(fmt)     "Speculation prctl: " fmt
2162 
task_update_spec_tif(struct task_struct * tsk)2163 static void task_update_spec_tif(struct task_struct *tsk)
2164 {
2165 	/* Force the update of the real TIF bits */
2166 	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
2167 
2168 	/*
2169 	 * Immediately update the speculation control MSRs for the current
2170 	 * task, but for a non-current task delay setting the CPU
2171 	 * mitigation until it is scheduled next.
2172 	 *
2173 	 * This can only happen for SECCOMP mitigation. For PRCTL it's
2174 	 * always the current task.
2175 	 */
2176 	if (tsk == current)
2177 		speculation_ctrl_update_current();
2178 }
2179 
l1d_flush_prctl_set(struct task_struct * task,unsigned long ctrl)2180 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2181 {
2182 
2183 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2184 		return -EPERM;
2185 
2186 	switch (ctrl) {
2187 	case PR_SPEC_ENABLE:
2188 		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2189 		return 0;
2190 	case PR_SPEC_DISABLE:
2191 		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2192 		return 0;
2193 	default:
2194 		return -ERANGE;
2195 	}
2196 }
2197 
ssb_prctl_set(struct task_struct * task,unsigned long ctrl)2198 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2199 {
2200 	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2201 	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2202 		return -ENXIO;
2203 
2204 	switch (ctrl) {
2205 	case PR_SPEC_ENABLE:
2206 		/* If speculation is force disabled, enable is not allowed */
2207 		if (task_spec_ssb_force_disable(task))
2208 			return -EPERM;
2209 		task_clear_spec_ssb_disable(task);
2210 		task_clear_spec_ssb_noexec(task);
2211 		task_update_spec_tif(task);
2212 		break;
2213 	case PR_SPEC_DISABLE:
2214 		task_set_spec_ssb_disable(task);
2215 		task_clear_spec_ssb_noexec(task);
2216 		task_update_spec_tif(task);
2217 		break;
2218 	case PR_SPEC_FORCE_DISABLE:
2219 		task_set_spec_ssb_disable(task);
2220 		task_set_spec_ssb_force_disable(task);
2221 		task_clear_spec_ssb_noexec(task);
2222 		task_update_spec_tif(task);
2223 		break;
2224 	case PR_SPEC_DISABLE_NOEXEC:
2225 		if (task_spec_ssb_force_disable(task))
2226 			return -EPERM;
2227 		task_set_spec_ssb_disable(task);
2228 		task_set_spec_ssb_noexec(task);
2229 		task_update_spec_tif(task);
2230 		break;
2231 	default:
2232 		return -ERANGE;
2233 	}
2234 	return 0;
2235 }
2236 
is_spec_ib_user_controlled(void)2237 static bool is_spec_ib_user_controlled(void)
2238 {
2239 	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2240 		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2241 		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2242 		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2243 }
2244 
ib_prctl_set(struct task_struct * task,unsigned long ctrl)2245 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2246 {
2247 	switch (ctrl) {
2248 	case PR_SPEC_ENABLE:
2249 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2250 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2251 			return 0;
2252 
2253 		/*
2254 		 * With strict mode for both IBPB and STIBP, the instruction
2255 		 * code paths avoid checking this task flag and instead,
2256 		 * unconditionally run the instruction. However, STIBP and IBPB
2257 		 * are independent and either can be set to conditionally
2258 		 * enabled regardless of the mode of the other.
2259 		 *
2260 		 * If either is set to conditional, allow the task flag to be
2261 		 * updated, unless it was force-disabled by a previous prctl
2262 		 * call. Currently, this is possible on an AMD CPU which has the
2263 		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2264 		 * kernel is booted with 'spectre_v2_user=seccomp', then
2265 		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2266 		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2267 		 */
2268 		if (!is_spec_ib_user_controlled() ||
2269 		    task_spec_ib_force_disable(task))
2270 			return -EPERM;
2271 
2272 		task_clear_spec_ib_disable(task);
2273 		task_update_spec_tif(task);
2274 		break;
2275 	case PR_SPEC_DISABLE:
2276 	case PR_SPEC_FORCE_DISABLE:
2277 		/*
2278 		 * Indirect branch speculation is always allowed when
2279 		 * mitigation is force disabled.
2280 		 */
2281 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2282 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2283 			return -EPERM;
2284 
2285 		if (!is_spec_ib_user_controlled())
2286 			return 0;
2287 
2288 		task_set_spec_ib_disable(task);
2289 		if (ctrl == PR_SPEC_FORCE_DISABLE)
2290 			task_set_spec_ib_force_disable(task);
2291 		task_update_spec_tif(task);
2292 		if (task == current)
2293 			indirect_branch_prediction_barrier();
2294 		break;
2295 	default:
2296 		return -ERANGE;
2297 	}
2298 	return 0;
2299 }
2300 
arch_prctl_spec_ctrl_set(struct task_struct * task,unsigned long which,unsigned long ctrl)2301 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2302 			     unsigned long ctrl)
2303 {
2304 	switch (which) {
2305 	case PR_SPEC_STORE_BYPASS:
2306 		return ssb_prctl_set(task, ctrl);
2307 	case PR_SPEC_INDIRECT_BRANCH:
2308 		return ib_prctl_set(task, ctrl);
2309 	case PR_SPEC_L1D_FLUSH:
2310 		return l1d_flush_prctl_set(task, ctrl);
2311 	default:
2312 		return -ENODEV;
2313 	}
2314 }
2315 
2316 #ifdef CONFIG_SECCOMP
arch_seccomp_spec_mitigate(struct task_struct * task)2317 void arch_seccomp_spec_mitigate(struct task_struct *task)
2318 {
2319 	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2320 		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2321 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2322 	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2323 		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2324 }
2325 #endif
2326 
l1d_flush_prctl_get(struct task_struct * task)2327 static int l1d_flush_prctl_get(struct task_struct *task)
2328 {
2329 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2330 		return PR_SPEC_FORCE_DISABLE;
2331 
2332 	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2333 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2334 	else
2335 		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2336 }
2337 
ssb_prctl_get(struct task_struct * task)2338 static int ssb_prctl_get(struct task_struct *task)
2339 {
2340 	switch (ssb_mode) {
2341 	case SPEC_STORE_BYPASS_NONE:
2342 		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2343 			return PR_SPEC_ENABLE;
2344 		return PR_SPEC_NOT_AFFECTED;
2345 	case SPEC_STORE_BYPASS_DISABLE:
2346 		return PR_SPEC_DISABLE;
2347 	case SPEC_STORE_BYPASS_SECCOMP:
2348 	case SPEC_STORE_BYPASS_PRCTL:
2349 		if (task_spec_ssb_force_disable(task))
2350 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2351 		if (task_spec_ssb_noexec(task))
2352 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2353 		if (task_spec_ssb_disable(task))
2354 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2355 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2356 	}
2357 	BUG();
2358 }
2359 
ib_prctl_get(struct task_struct * task)2360 static int ib_prctl_get(struct task_struct *task)
2361 {
2362 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2363 		return PR_SPEC_NOT_AFFECTED;
2364 
2365 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2366 	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2367 		return PR_SPEC_ENABLE;
2368 	else if (is_spec_ib_user_controlled()) {
2369 		if (task_spec_ib_force_disable(task))
2370 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2371 		if (task_spec_ib_disable(task))
2372 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2373 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2374 	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2375 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2376 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2377 		return PR_SPEC_DISABLE;
2378 	else
2379 		return PR_SPEC_NOT_AFFECTED;
2380 }
2381 
arch_prctl_spec_ctrl_get(struct task_struct * task,unsigned long which)2382 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2383 {
2384 	switch (which) {
2385 	case PR_SPEC_STORE_BYPASS:
2386 		return ssb_prctl_get(task);
2387 	case PR_SPEC_INDIRECT_BRANCH:
2388 		return ib_prctl_get(task);
2389 	case PR_SPEC_L1D_FLUSH:
2390 		return l1d_flush_prctl_get(task);
2391 	default:
2392 		return -ENODEV;
2393 	}
2394 }
2395 
x86_spec_ctrl_setup_ap(void)2396 void x86_spec_ctrl_setup_ap(void)
2397 {
2398 	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2399 		update_spec_ctrl(x86_spec_ctrl_base);
2400 
2401 	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2402 		x86_amd_ssb_disable();
2403 }
2404 
2405 bool itlb_multihit_kvm_mitigation;
2406 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2407 
2408 #undef pr_fmt
2409 #define pr_fmt(fmt)	"L1TF: " fmt
2410 
2411 /* Default mitigation for L1TF-affected CPUs */
2412 enum l1tf_mitigations l1tf_mitigation __ro_after_init =
2413 	IS_ENABLED(CONFIG_MITIGATION_L1TF) ? L1TF_MITIGATION_FLUSH : L1TF_MITIGATION_OFF;
2414 #if IS_ENABLED(CONFIG_KVM_INTEL)
2415 EXPORT_SYMBOL_GPL(l1tf_mitigation);
2416 #endif
2417 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2418 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2419 
2420 /*
2421  * These CPUs all support 44bits physical address space internally in the
2422  * cache but CPUID can report a smaller number of physical address bits.
2423  *
2424  * The L1TF mitigation uses the top most address bit for the inversion of
2425  * non present PTEs. When the installed memory reaches into the top most
2426  * address bit due to memory holes, which has been observed on machines
2427  * which report 36bits physical address bits and have 32G RAM installed,
2428  * then the mitigation range check in l1tf_select_mitigation() triggers.
2429  * This is a false positive because the mitigation is still possible due to
2430  * the fact that the cache uses 44bit internally. Use the cache bits
2431  * instead of the reported physical bits and adjust them on the affected
2432  * machines to 44bit if the reported bits are less than 44.
2433  */
override_cache_bits(struct cpuinfo_x86 * c)2434 static void override_cache_bits(struct cpuinfo_x86 *c)
2435 {
2436 	if (c->x86 != 6)
2437 		return;
2438 
2439 	switch (c->x86_vfm) {
2440 	case INTEL_NEHALEM:
2441 	case INTEL_WESTMERE:
2442 	case INTEL_SANDYBRIDGE:
2443 	case INTEL_IVYBRIDGE:
2444 	case INTEL_HASWELL:
2445 	case INTEL_HASWELL_L:
2446 	case INTEL_HASWELL_G:
2447 	case INTEL_BROADWELL:
2448 	case INTEL_BROADWELL_G:
2449 	case INTEL_SKYLAKE_L:
2450 	case INTEL_SKYLAKE:
2451 	case INTEL_KABYLAKE_L:
2452 	case INTEL_KABYLAKE:
2453 		if (c->x86_cache_bits < 44)
2454 			c->x86_cache_bits = 44;
2455 		break;
2456 	}
2457 }
2458 
l1tf_select_mitigation(void)2459 static void __init l1tf_select_mitigation(void)
2460 {
2461 	u64 half_pa;
2462 
2463 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2464 		return;
2465 
2466 	if (cpu_mitigations_off())
2467 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2468 	else if (cpu_mitigations_auto_nosmt())
2469 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2470 
2471 	override_cache_bits(&boot_cpu_data);
2472 
2473 	switch (l1tf_mitigation) {
2474 	case L1TF_MITIGATION_OFF:
2475 	case L1TF_MITIGATION_FLUSH_NOWARN:
2476 	case L1TF_MITIGATION_FLUSH:
2477 		break;
2478 	case L1TF_MITIGATION_FLUSH_NOSMT:
2479 	case L1TF_MITIGATION_FULL:
2480 		cpu_smt_disable(false);
2481 		break;
2482 	case L1TF_MITIGATION_FULL_FORCE:
2483 		cpu_smt_disable(true);
2484 		break;
2485 	}
2486 
2487 #if CONFIG_PGTABLE_LEVELS == 2
2488 	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2489 	return;
2490 #endif
2491 
2492 	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2493 	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2494 			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2495 		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2496 		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2497 				half_pa);
2498 		pr_info("However, doing so will make a part of your RAM unusable.\n");
2499 		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2500 		return;
2501 	}
2502 
2503 	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2504 }
2505 
l1tf_cmdline(char * str)2506 static int __init l1tf_cmdline(char *str)
2507 {
2508 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2509 		return 0;
2510 
2511 	if (!str)
2512 		return -EINVAL;
2513 
2514 	if (!strcmp(str, "off"))
2515 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2516 	else if (!strcmp(str, "flush,nowarn"))
2517 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2518 	else if (!strcmp(str, "flush"))
2519 		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2520 	else if (!strcmp(str, "flush,nosmt"))
2521 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2522 	else if (!strcmp(str, "full"))
2523 		l1tf_mitigation = L1TF_MITIGATION_FULL;
2524 	else if (!strcmp(str, "full,force"))
2525 		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2526 
2527 	return 0;
2528 }
2529 early_param("l1tf", l1tf_cmdline);
2530 
2531 #undef pr_fmt
2532 #define pr_fmt(fmt)	"Speculative Return Stack Overflow: " fmt
2533 
2534 enum srso_mitigation {
2535 	SRSO_MITIGATION_NONE,
2536 	SRSO_MITIGATION_UCODE_NEEDED,
2537 	SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
2538 	SRSO_MITIGATION_MICROCODE,
2539 	SRSO_MITIGATION_SAFE_RET,
2540 	SRSO_MITIGATION_IBPB,
2541 	SRSO_MITIGATION_IBPB_ON_VMEXIT,
2542 	SRSO_MITIGATION_BP_SPEC_REDUCE,
2543 };
2544 
2545 enum srso_mitigation_cmd {
2546 	SRSO_CMD_OFF,
2547 	SRSO_CMD_MICROCODE,
2548 	SRSO_CMD_SAFE_RET,
2549 	SRSO_CMD_IBPB,
2550 	SRSO_CMD_IBPB_ON_VMEXIT,
2551 };
2552 
2553 static const char * const srso_strings[] = {
2554 	[SRSO_MITIGATION_NONE]			= "Vulnerable",
2555 	[SRSO_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
2556 	[SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED]	= "Vulnerable: Safe RET, no microcode",
2557 	[SRSO_MITIGATION_MICROCODE]		= "Vulnerable: Microcode, no safe RET",
2558 	[SRSO_MITIGATION_SAFE_RET]		= "Mitigation: Safe RET",
2559 	[SRSO_MITIGATION_IBPB]			= "Mitigation: IBPB",
2560 	[SRSO_MITIGATION_IBPB_ON_VMEXIT]	= "Mitigation: IBPB on VMEXIT only",
2561 	[SRSO_MITIGATION_BP_SPEC_REDUCE]	= "Mitigation: Reduced Speculation"
2562 };
2563 
2564 static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE;
2565 static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET;
2566 
srso_parse_cmdline(char * str)2567 static int __init srso_parse_cmdline(char *str)
2568 {
2569 	if (!str)
2570 		return -EINVAL;
2571 
2572 	if (!strcmp(str, "off"))
2573 		srso_cmd = SRSO_CMD_OFF;
2574 	else if (!strcmp(str, "microcode"))
2575 		srso_cmd = SRSO_CMD_MICROCODE;
2576 	else if (!strcmp(str, "safe-ret"))
2577 		srso_cmd = SRSO_CMD_SAFE_RET;
2578 	else if (!strcmp(str, "ibpb"))
2579 		srso_cmd = SRSO_CMD_IBPB;
2580 	else if (!strcmp(str, "ibpb-vmexit"))
2581 		srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT;
2582 	else
2583 		pr_err("Ignoring unknown SRSO option (%s).", str);
2584 
2585 	return 0;
2586 }
2587 early_param("spec_rstack_overflow", srso_parse_cmdline);
2588 
2589 #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2590 
srso_select_mitigation(void)2591 static void __init srso_select_mitigation(void)
2592 {
2593 	bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE);
2594 
2595 	if (!boot_cpu_has_bug(X86_BUG_SRSO) ||
2596 	    cpu_mitigations_off() ||
2597 	    srso_cmd == SRSO_CMD_OFF) {
2598 		if (boot_cpu_has(X86_FEATURE_SBPB))
2599 			x86_pred_cmd = PRED_CMD_SBPB;
2600 		goto out;
2601 	}
2602 
2603 	if (has_microcode) {
2604 		/*
2605 		 * Zen1/2 with SMT off aren't vulnerable after the right
2606 		 * IBPB microcode has been applied.
2607 		 *
2608 		 * Zen1/2 don't have SBPB, no need to try to enable it here.
2609 		 */
2610 		if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2611 			setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2612 			goto out;
2613 		}
2614 
2615 		if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2616 			srso_mitigation = SRSO_MITIGATION_IBPB;
2617 			goto out;
2618 		}
2619 	} else {
2620 		pr_warn("IBPB-extending microcode not applied!\n");
2621 		pr_warn(SRSO_NOTICE);
2622 
2623 		/* may be overwritten by SRSO_CMD_SAFE_RET below */
2624 		srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
2625 	}
2626 
2627 	switch (srso_cmd) {
2628 	case SRSO_CMD_MICROCODE:
2629 		if (has_microcode) {
2630 			srso_mitigation = SRSO_MITIGATION_MICROCODE;
2631 			pr_warn(SRSO_NOTICE);
2632 		}
2633 		break;
2634 
2635 	case SRSO_CMD_SAFE_RET:
2636 		if (boot_cpu_has(X86_FEATURE_SRSO_USER_KERNEL_NO))
2637 			goto ibpb_on_vmexit;
2638 
2639 		if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
2640 			/*
2641 			 * Enable the return thunk for generated code
2642 			 * like ftrace, static_call, etc.
2643 			 */
2644 			setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2645 			setup_force_cpu_cap(X86_FEATURE_UNRET);
2646 
2647 			if (boot_cpu_data.x86 == 0x19) {
2648 				setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2649 				x86_return_thunk = srso_alias_return_thunk;
2650 			} else {
2651 				setup_force_cpu_cap(X86_FEATURE_SRSO);
2652 				x86_return_thunk = srso_return_thunk;
2653 			}
2654 			if (has_microcode)
2655 				srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2656 			else
2657 				srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
2658 		} else {
2659 			pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
2660 		}
2661 		break;
2662 
2663 	case SRSO_CMD_IBPB:
2664 		if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
2665 			if (has_microcode) {
2666 				setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
2667 				setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2668 				srso_mitigation = SRSO_MITIGATION_IBPB;
2669 
2670 				/*
2671 				 * IBPB on entry already obviates the need for
2672 				 * software-based untraining so clear those in case some
2673 				 * other mitigation like Retbleed has selected them.
2674 				 */
2675 				setup_clear_cpu_cap(X86_FEATURE_UNRET);
2676 				setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
2677 
2678 				/*
2679 				 * There is no need for RSB filling: entry_ibpb() ensures
2680 				 * all predictions, including the RSB, are invalidated,
2681 				 * regardless of IBPB implementation.
2682 				 */
2683 				setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
2684 			}
2685 		} else {
2686 			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
2687 		}
2688 		break;
2689 
2690 ibpb_on_vmexit:
2691 	case SRSO_CMD_IBPB_ON_VMEXIT:
2692 		if (boot_cpu_has(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) {
2693 			pr_notice("Reducing speculation to address VM/HV SRSO attack vector.\n");
2694 			srso_mitigation = SRSO_MITIGATION_BP_SPEC_REDUCE;
2695 			break;
2696 		}
2697 
2698 		if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
2699 			if (has_microcode) {
2700 				setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2701 				srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2702 
2703 				/*
2704 				 * There is no need for RSB filling: entry_ibpb() ensures
2705 				 * all predictions, including the RSB, are invalidated,
2706 				 * regardless of IBPB implementation.
2707 				 */
2708 				setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
2709 			}
2710 		} else {
2711 			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
2712 		}
2713 		break;
2714 	default:
2715 		break;
2716 	}
2717 
2718 out:
2719 	/*
2720 	 * Clear the feature flag if this mitigation is not selected as that
2721 	 * feature flag controls the BpSpecReduce MSR bit toggling in KVM.
2722 	 */
2723 	if (srso_mitigation != SRSO_MITIGATION_BP_SPEC_REDUCE)
2724 		setup_clear_cpu_cap(X86_FEATURE_SRSO_BP_SPEC_REDUCE);
2725 
2726 	if (srso_mitigation != SRSO_MITIGATION_NONE)
2727 		pr_info("%s\n", srso_strings[srso_mitigation]);
2728 }
2729 
2730 #undef pr_fmt
2731 #define pr_fmt(fmt) fmt
2732 
2733 #ifdef CONFIG_SYSFS
2734 
2735 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2736 
2737 #if IS_ENABLED(CONFIG_KVM_INTEL)
2738 static const char * const l1tf_vmx_states[] = {
2739 	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
2740 	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
2741 	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
2742 	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
2743 	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
2744 	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
2745 };
2746 
l1tf_show_state(char * buf)2747 static ssize_t l1tf_show_state(char *buf)
2748 {
2749 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2750 		return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2751 
2752 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2753 	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2754 	     sched_smt_active())) {
2755 		return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2756 				  l1tf_vmx_states[l1tf_vmx_mitigation]);
2757 	}
2758 
2759 	return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2760 			  l1tf_vmx_states[l1tf_vmx_mitigation],
2761 			  sched_smt_active() ? "vulnerable" : "disabled");
2762 }
2763 
itlb_multihit_show_state(char * buf)2764 static ssize_t itlb_multihit_show_state(char *buf)
2765 {
2766 	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2767 	    !boot_cpu_has(X86_FEATURE_VMX))
2768 		return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2769 	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2770 		return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2771 	else if (itlb_multihit_kvm_mitigation)
2772 		return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2773 	else
2774 		return sysfs_emit(buf, "KVM: Vulnerable\n");
2775 }
2776 #else
l1tf_show_state(char * buf)2777 static ssize_t l1tf_show_state(char *buf)
2778 {
2779 	return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2780 }
2781 
itlb_multihit_show_state(char * buf)2782 static ssize_t itlb_multihit_show_state(char *buf)
2783 {
2784 	return sysfs_emit(buf, "Processor vulnerable\n");
2785 }
2786 #endif
2787 
mds_show_state(char * buf)2788 static ssize_t mds_show_state(char *buf)
2789 {
2790 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2791 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2792 				  mds_strings[mds_mitigation]);
2793 	}
2794 
2795 	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2796 		return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2797 				  (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2798 				   sched_smt_active() ? "mitigated" : "disabled"));
2799 	}
2800 
2801 	return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2802 			  sched_smt_active() ? "vulnerable" : "disabled");
2803 }
2804 
tsx_async_abort_show_state(char * buf)2805 static ssize_t tsx_async_abort_show_state(char *buf)
2806 {
2807 	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2808 	    (taa_mitigation == TAA_MITIGATION_OFF))
2809 		return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2810 
2811 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2812 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2813 				  taa_strings[taa_mitigation]);
2814 	}
2815 
2816 	return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2817 			  sched_smt_active() ? "vulnerable" : "disabled");
2818 }
2819 
mmio_stale_data_show_state(char * buf)2820 static ssize_t mmio_stale_data_show_state(char *buf)
2821 {
2822 	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2823 		return sysfs_emit(buf, "Unknown: No mitigations\n");
2824 
2825 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
2826 		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2827 
2828 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2829 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2830 				  mmio_strings[mmio_mitigation]);
2831 	}
2832 
2833 	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2834 			  sched_smt_active() ? "vulnerable" : "disabled");
2835 }
2836 
rfds_show_state(char * buf)2837 static ssize_t rfds_show_state(char *buf)
2838 {
2839 	return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]);
2840 }
2841 
stibp_state(void)2842 static char *stibp_state(void)
2843 {
2844 	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
2845 	    !boot_cpu_has(X86_FEATURE_AUTOIBRS))
2846 		return "";
2847 
2848 	switch (spectre_v2_user_stibp) {
2849 	case SPECTRE_V2_USER_NONE:
2850 		return "; STIBP: disabled";
2851 	case SPECTRE_V2_USER_STRICT:
2852 		return "; STIBP: forced";
2853 	case SPECTRE_V2_USER_STRICT_PREFERRED:
2854 		return "; STIBP: always-on";
2855 	case SPECTRE_V2_USER_PRCTL:
2856 	case SPECTRE_V2_USER_SECCOMP:
2857 		if (static_key_enabled(&switch_to_cond_stibp))
2858 			return "; STIBP: conditional";
2859 	}
2860 	return "";
2861 }
2862 
ibpb_state(void)2863 static char *ibpb_state(void)
2864 {
2865 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
2866 		if (static_key_enabled(&switch_mm_always_ibpb))
2867 			return "; IBPB: always-on";
2868 		if (static_key_enabled(&switch_mm_cond_ibpb))
2869 			return "; IBPB: conditional";
2870 		return "; IBPB: disabled";
2871 	}
2872 	return "";
2873 }
2874 
pbrsb_eibrs_state(void)2875 static char *pbrsb_eibrs_state(void)
2876 {
2877 	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2878 		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2879 		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2880 			return "; PBRSB-eIBRS: SW sequence";
2881 		else
2882 			return "; PBRSB-eIBRS: Vulnerable";
2883 	} else {
2884 		return "; PBRSB-eIBRS: Not affected";
2885 	}
2886 }
2887 
spectre_bhi_state(void)2888 static const char *spectre_bhi_state(void)
2889 {
2890 	if (!boot_cpu_has_bug(X86_BUG_BHI))
2891 		return "; BHI: Not affected";
2892 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW))
2893 		return "; BHI: BHI_DIS_S";
2894 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP))
2895 		return "; BHI: SW loop, KVM: SW loop";
2896 	else if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
2897 		 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE) &&
2898 		 rrsba_disabled)
2899 		return "; BHI: Retpoline";
2900 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT))
2901 		return "; BHI: Vulnerable, KVM: SW loop";
2902 
2903 	return "; BHI: Vulnerable";
2904 }
2905 
spectre_v2_show_state(char * buf)2906 static ssize_t spectre_v2_show_state(char *buf)
2907 {
2908 	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2909 		return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2910 
2911 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2912 		return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2913 
2914 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2915 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2916 		return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2917 
2918 	return sysfs_emit(buf, "%s%s%s%s%s%s%s%s\n",
2919 			  spectre_v2_strings[spectre_v2_enabled],
2920 			  ibpb_state(),
2921 			  boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "",
2922 			  stibp_state(),
2923 			  boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "",
2924 			  pbrsb_eibrs_state(),
2925 			  spectre_bhi_state(),
2926 			  /* this should always be at the end */
2927 			  spectre_v2_module_string());
2928 }
2929 
srbds_show_state(char * buf)2930 static ssize_t srbds_show_state(char *buf)
2931 {
2932 	return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2933 }
2934 
retbleed_show_state(char * buf)2935 static ssize_t retbleed_show_state(char *buf)
2936 {
2937 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2938 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2939 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2940 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2941 			return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2942 
2943 		return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2944 				  !sched_smt_active() ? "disabled" :
2945 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2946 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2947 				  "enabled with STIBP protection" : "vulnerable");
2948 	}
2949 
2950 	return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2951 }
2952 
srso_show_state(char * buf)2953 static ssize_t srso_show_state(char *buf)
2954 {
2955 	if (boot_cpu_has(X86_FEATURE_SRSO_NO))
2956 		return sysfs_emit(buf, "Mitigation: SMT disabled\n");
2957 
2958 	return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
2959 }
2960 
gds_show_state(char * buf)2961 static ssize_t gds_show_state(char *buf)
2962 {
2963 	return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
2964 }
2965 
cpu_show_common(struct device * dev,struct device_attribute * attr,char * buf,unsigned int bug)2966 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2967 			       char *buf, unsigned int bug)
2968 {
2969 	if (!boot_cpu_has_bug(bug))
2970 		return sysfs_emit(buf, "Not affected\n");
2971 
2972 	switch (bug) {
2973 	case X86_BUG_CPU_MELTDOWN:
2974 		if (boot_cpu_has(X86_FEATURE_PTI))
2975 			return sysfs_emit(buf, "Mitigation: PTI\n");
2976 
2977 		if (hypervisor_is_type(X86_HYPER_XEN_PV))
2978 			return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2979 
2980 		break;
2981 
2982 	case X86_BUG_SPECTRE_V1:
2983 		return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2984 
2985 	case X86_BUG_SPECTRE_V2:
2986 		return spectre_v2_show_state(buf);
2987 
2988 	case X86_BUG_SPEC_STORE_BYPASS:
2989 		return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2990 
2991 	case X86_BUG_L1TF:
2992 		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2993 			return l1tf_show_state(buf);
2994 		break;
2995 
2996 	case X86_BUG_MDS:
2997 		return mds_show_state(buf);
2998 
2999 	case X86_BUG_TAA:
3000 		return tsx_async_abort_show_state(buf);
3001 
3002 	case X86_BUG_ITLB_MULTIHIT:
3003 		return itlb_multihit_show_state(buf);
3004 
3005 	case X86_BUG_SRBDS:
3006 		return srbds_show_state(buf);
3007 
3008 	case X86_BUG_MMIO_STALE_DATA:
3009 	case X86_BUG_MMIO_UNKNOWN:
3010 		return mmio_stale_data_show_state(buf);
3011 
3012 	case X86_BUG_RETBLEED:
3013 		return retbleed_show_state(buf);
3014 
3015 	case X86_BUG_SRSO:
3016 		return srso_show_state(buf);
3017 
3018 	case X86_BUG_GDS:
3019 		return gds_show_state(buf);
3020 
3021 	case X86_BUG_RFDS:
3022 		return rfds_show_state(buf);
3023 
3024 	default:
3025 		break;
3026 	}
3027 
3028 	return sysfs_emit(buf, "Vulnerable\n");
3029 }
3030 
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)3031 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
3032 {
3033 	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
3034 }
3035 
cpu_show_spectre_v1(struct device * dev,struct device_attribute * attr,char * buf)3036 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
3037 {
3038 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
3039 }
3040 
cpu_show_spectre_v2(struct device * dev,struct device_attribute * attr,char * buf)3041 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
3042 {
3043 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
3044 }
3045 
cpu_show_spec_store_bypass(struct device * dev,struct device_attribute * attr,char * buf)3046 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
3047 {
3048 	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
3049 }
3050 
cpu_show_l1tf(struct device * dev,struct device_attribute * attr,char * buf)3051 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
3052 {
3053 	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
3054 }
3055 
cpu_show_mds(struct device * dev,struct device_attribute * attr,char * buf)3056 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
3057 {
3058 	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
3059 }
3060 
cpu_show_tsx_async_abort(struct device * dev,struct device_attribute * attr,char * buf)3061 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
3062 {
3063 	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
3064 }
3065 
cpu_show_itlb_multihit(struct device * dev,struct device_attribute * attr,char * buf)3066 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
3067 {
3068 	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
3069 }
3070 
cpu_show_srbds(struct device * dev,struct device_attribute * attr,char * buf)3071 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
3072 {
3073 	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
3074 }
3075 
cpu_show_mmio_stale_data(struct device * dev,struct device_attribute * attr,char * buf)3076 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
3077 {
3078 	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
3079 		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
3080 	else
3081 		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
3082 }
3083 
cpu_show_retbleed(struct device * dev,struct device_attribute * attr,char * buf)3084 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
3085 {
3086 	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
3087 }
3088 
cpu_show_spec_rstack_overflow(struct device * dev,struct device_attribute * attr,char * buf)3089 ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
3090 {
3091 	return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
3092 }
3093 
cpu_show_gds(struct device * dev,struct device_attribute * attr,char * buf)3094 ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
3095 {
3096 	return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
3097 }
3098 
cpu_show_reg_file_data_sampling(struct device * dev,struct device_attribute * attr,char * buf)3099 ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf)
3100 {
3101 	return cpu_show_common(dev, attr, buf, X86_BUG_RFDS);
3102 }
3103 #endif
3104 
__warn_thunk(void)3105 void __warn_thunk(void)
3106 {
3107 	WARN_ONCE(1, "Unpatched return thunk in use. This should not happen!\n");
3108 }
3109