1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dnode.h>
34 #include <sys/dsl_pool.h>
35 #include <sys/zio.h>
36 #include <sys/space_map.h>
37 #include <sys/zfeature.h>
38
39 /*
40 * Note on space map block size:
41 *
42 * The data for a given space map can be kept on blocks of any size.
43 * Larger blocks entail fewer I/O operations, but they also cause the
44 * DMU to keep more data in-core, and also to waste more I/O bandwidth
45 * when only a few blocks have changed since the last transaction group.
46 */
47
48 /*
49 * Enabled whenever we want to stress test the use of double-word
50 * space map entries.
51 */
52 boolean_t zfs_force_some_double_word_sm_entries = B_FALSE;
53
54 /*
55 * Override the default indirect block size of 128K, instead use 16K for
56 * spacemaps (2^14 bytes). This dramatically reduces write inflation since
57 * appending to a spacemap typically has to write one data block (4KB) and one
58 * or two indirect blocks (16K-32K, rather than 128K).
59 */
60 int space_map_ibs = 14;
61
62 boolean_t
sm_entry_is_debug(uint64_t e)63 sm_entry_is_debug(uint64_t e)
64 {
65 return (SM_PREFIX_DECODE(e) == SM_DEBUG_PREFIX);
66 }
67
68 boolean_t
sm_entry_is_single_word(uint64_t e)69 sm_entry_is_single_word(uint64_t e)
70 {
71 uint8_t prefix = SM_PREFIX_DECODE(e);
72 return (prefix != SM_DEBUG_PREFIX && prefix != SM2_PREFIX);
73 }
74
75 boolean_t
sm_entry_is_double_word(uint64_t e)76 sm_entry_is_double_word(uint64_t e)
77 {
78 return (SM_PREFIX_DECODE(e) == SM2_PREFIX);
79 }
80
81 /*
82 * Iterate through the space map, invoking the callback on each (non-debug)
83 * space map entry. Stop after reading 'end' bytes of the space map.
84 */
85 int
space_map_iterate(space_map_t * sm,uint64_t end,sm_cb_t callback,void * arg)86 space_map_iterate(space_map_t *sm, uint64_t end, sm_cb_t callback, void *arg)
87 {
88 uint64_t blksz = sm->sm_blksz;
89
90 ASSERT3U(blksz, !=, 0);
91 ASSERT3U(end, <=, space_map_length(sm));
92 ASSERT0(P2PHASE(end, sizeof (uint64_t)));
93
94 dmu_prefetch(sm->sm_os, space_map_object(sm), 0, 0, end,
95 ZIO_PRIORITY_SYNC_READ);
96
97 int error = 0;
98 uint64_t txg = 0, sync_pass = 0;
99 for (uint64_t block_base = 0; block_base < end && error == 0;
100 block_base += blksz) {
101 dmu_buf_t *db;
102 error = dmu_buf_hold(sm->sm_os, space_map_object(sm),
103 block_base, FTAG, &db, DMU_READ_PREFETCH);
104 if (error != 0)
105 return (error);
106
107 uint64_t *block_start = db->db_data;
108 uint64_t block_length = MIN(end - block_base, blksz);
109 uint64_t *block_end = block_start +
110 (block_length / sizeof (uint64_t));
111
112 VERIFY0(P2PHASE(block_length, sizeof (uint64_t)));
113 VERIFY3U(block_length, !=, 0);
114 ASSERT3U(blksz, ==, db->db_size);
115
116 for (uint64_t *block_cursor = block_start;
117 block_cursor < block_end && error == 0; block_cursor++) {
118 uint64_t e = *block_cursor;
119
120 if (sm_entry_is_debug(e)) {
121 /*
122 * Debug entries are only needed to record the
123 * current TXG and sync pass if available.
124 *
125 * Note though that sometimes there can be
126 * debug entries that are used as padding
127 * at the end of space map blocks in-order
128 * to not split a double-word entry in the
129 * middle between two blocks. These entries
130 * have their TXG field set to 0 and we
131 * skip them without recording the TXG.
132 * [see comment in space_map_write_seg()]
133 */
134 uint64_t e_txg = SM_DEBUG_TXG_DECODE(e);
135 if (e_txg != 0) {
136 txg = e_txg;
137 sync_pass = SM_DEBUG_SYNCPASS_DECODE(e);
138 } else {
139 ASSERT0(SM_DEBUG_SYNCPASS_DECODE(e));
140 }
141 continue;
142 }
143
144 uint64_t raw_offset, raw_run, vdev_id;
145 maptype_t type;
146 if (sm_entry_is_single_word(e)) {
147 type = SM_TYPE_DECODE(e);
148 vdev_id = SM_NO_VDEVID;
149 raw_offset = SM_OFFSET_DECODE(e);
150 raw_run = SM_RUN_DECODE(e);
151 } else {
152 /* it is a two-word entry */
153 ASSERT(sm_entry_is_double_word(e));
154 raw_run = SM2_RUN_DECODE(e);
155 vdev_id = SM2_VDEV_DECODE(e);
156
157 /* move on to the second word */
158 block_cursor++;
159 e = *block_cursor;
160 VERIFY3P(block_cursor, <=, block_end);
161
162 type = SM2_TYPE_DECODE(e);
163 raw_offset = SM2_OFFSET_DECODE(e);
164 }
165
166 uint64_t entry_offset = (raw_offset << sm->sm_shift) +
167 sm->sm_start;
168 uint64_t entry_run = raw_run << sm->sm_shift;
169
170 VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
171 VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
172 ASSERT3U(entry_offset, >=, sm->sm_start);
173 ASSERT3U(entry_offset, <, sm->sm_start + sm->sm_size);
174 ASSERT3U(entry_run, <=, sm->sm_size);
175 ASSERT3U(entry_offset + entry_run, <=,
176 sm->sm_start + sm->sm_size);
177
178 space_map_entry_t sme = {
179 .sme_type = type,
180 .sme_vdev = vdev_id,
181 .sme_offset = entry_offset,
182 .sme_run = entry_run,
183 .sme_txg = txg,
184 .sme_sync_pass = sync_pass
185 };
186 error = callback(&sme, arg);
187 }
188 dmu_buf_rele(db, FTAG);
189 }
190 return (error);
191 }
192
193 /*
194 * Reads the entries from the last block of the space map into
195 * buf in reverse order. Populates nwords with number of words
196 * in the last block.
197 *
198 * Refer to block comment within space_map_incremental_destroy()
199 * to understand why this function is needed.
200 */
201 static int
space_map_reversed_last_block_entries(space_map_t * sm,uint64_t * buf,uint64_t bufsz,uint64_t * nwords)202 space_map_reversed_last_block_entries(space_map_t *sm, uint64_t *buf,
203 uint64_t bufsz, uint64_t *nwords)
204 {
205 int error = 0;
206 dmu_buf_t *db;
207
208 /*
209 * Find the offset of the last word in the space map and use
210 * that to read the last block of the space map with
211 * dmu_buf_hold().
212 */
213 uint64_t last_word_offset =
214 sm->sm_phys->smp_length - sizeof (uint64_t);
215 error = dmu_buf_hold(sm->sm_os, space_map_object(sm), last_word_offset,
216 FTAG, &db, DMU_READ_NO_PREFETCH);
217 if (error != 0)
218 return (error);
219
220 ASSERT3U(sm->sm_object, ==, db->db_object);
221 ASSERT3U(sm->sm_blksz, ==, db->db_size);
222 ASSERT3U(bufsz, >=, db->db_size);
223 ASSERT(nwords != NULL);
224
225 uint64_t *words = db->db_data;
226 *nwords =
227 (sm->sm_phys->smp_length - db->db_offset) / sizeof (uint64_t);
228
229 ASSERT3U(*nwords, <=, bufsz / sizeof (uint64_t));
230
231 uint64_t n = *nwords;
232 uint64_t j = n - 1;
233 for (uint64_t i = 0; i < n; i++) {
234 uint64_t entry = words[i];
235 if (sm_entry_is_double_word(entry)) {
236 /*
237 * Since we are populating the buffer backwards
238 * we have to be extra careful and add the two
239 * words of the double-word entry in the right
240 * order.
241 */
242 ASSERT3U(j, >, 0);
243 buf[j - 1] = entry;
244
245 i++;
246 ASSERT3U(i, <, n);
247 entry = words[i];
248 buf[j] = entry;
249 j -= 2;
250 } else {
251 ASSERT(sm_entry_is_debug(entry) ||
252 sm_entry_is_single_word(entry));
253 buf[j] = entry;
254 j--;
255 }
256 }
257
258 /*
259 * Assert that we wrote backwards all the
260 * way to the beginning of the buffer.
261 */
262 ASSERT3S(j, ==, -1);
263
264 dmu_buf_rele(db, FTAG);
265 return (error);
266 }
267
268 /*
269 * Note: This function performs destructive actions - specifically
270 * it deletes entries from the end of the space map. Thus, callers
271 * should ensure that they are holding the appropriate locks for
272 * the space map that they provide.
273 */
274 int
space_map_incremental_destroy(space_map_t * sm,sm_cb_t callback,void * arg,dmu_tx_t * tx)275 space_map_incremental_destroy(space_map_t *sm, sm_cb_t callback, void *arg,
276 dmu_tx_t *tx)
277 {
278 uint64_t bufsz = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
279 uint64_t *buf = zio_buf_alloc(bufsz);
280
281 dmu_buf_will_dirty(sm->sm_dbuf, tx);
282
283 /*
284 * Ideally we would want to iterate from the beginning of the
285 * space map to the end in incremental steps. The issue with this
286 * approach is that we don't have any field on-disk that points
287 * us where to start between each step. We could try zeroing out
288 * entries that we've destroyed, but this doesn't work either as
289 * an entry that is 0 is a valid one (ALLOC for range [0x0:0x200]).
290 *
291 * As a result, we destroy its entries incrementally starting from
292 * the end after applying the callback to each of them.
293 *
294 * The problem with this approach is that we cannot literally
295 * iterate through the words in the space map backwards as we
296 * can't distinguish two-word space map entries from their second
297 * word. Thus we do the following:
298 *
299 * 1] We get all the entries from the last block of the space map
300 * and put them into a buffer in reverse order. This way the
301 * last entry comes first in the buffer, the second to last is
302 * second, etc.
303 * 2] We iterate through the entries in the buffer and we apply
304 * the callback to each one. As we move from entry to entry we
305 * we decrease the size of the space map, deleting effectively
306 * each entry.
307 * 3] If there are no more entries in the space map or the callback
308 * returns a value other than 0, we stop iterating over the
309 * space map. If there are entries remaining and the callback
310 * returned 0, we go back to step [1].
311 */
312 int error = 0;
313 while (space_map_length(sm) > 0 && error == 0) {
314 uint64_t nwords = 0;
315 error = space_map_reversed_last_block_entries(sm, buf, bufsz,
316 &nwords);
317 if (error != 0)
318 break;
319
320 ASSERT3U(nwords, <=, bufsz / sizeof (uint64_t));
321
322 for (uint64_t i = 0; i < nwords; i++) {
323 uint64_t e = buf[i];
324
325 if (sm_entry_is_debug(e)) {
326 sm->sm_phys->smp_length -= sizeof (uint64_t);
327 continue;
328 }
329
330 int words = 1;
331 uint64_t raw_offset, raw_run, vdev_id;
332 maptype_t type;
333 if (sm_entry_is_single_word(e)) {
334 type = SM_TYPE_DECODE(e);
335 vdev_id = SM_NO_VDEVID;
336 raw_offset = SM_OFFSET_DECODE(e);
337 raw_run = SM_RUN_DECODE(e);
338 } else {
339 ASSERT(sm_entry_is_double_word(e));
340 words = 2;
341
342 raw_run = SM2_RUN_DECODE(e);
343 vdev_id = SM2_VDEV_DECODE(e);
344
345 /* move to the second word */
346 i++;
347 e = buf[i];
348
349 ASSERT3P(i, <=, nwords);
350
351 type = SM2_TYPE_DECODE(e);
352 raw_offset = SM2_OFFSET_DECODE(e);
353 }
354
355 uint64_t entry_offset =
356 (raw_offset << sm->sm_shift) + sm->sm_start;
357 uint64_t entry_run = raw_run << sm->sm_shift;
358
359 VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
360 VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
361 VERIFY3U(entry_offset, >=, sm->sm_start);
362 VERIFY3U(entry_offset, <, sm->sm_start + sm->sm_size);
363 VERIFY3U(entry_run, <=, sm->sm_size);
364 VERIFY3U(entry_offset + entry_run, <=,
365 sm->sm_start + sm->sm_size);
366
367 space_map_entry_t sme = {
368 .sme_type = type,
369 .sme_vdev = vdev_id,
370 .sme_offset = entry_offset,
371 .sme_run = entry_run
372 };
373 error = callback(&sme, arg);
374 if (error != 0)
375 break;
376
377 if (type == SM_ALLOC)
378 sm->sm_phys->smp_alloc -= entry_run;
379 else
380 sm->sm_phys->smp_alloc += entry_run;
381 sm->sm_phys->smp_length -= words * sizeof (uint64_t);
382 }
383 }
384
385 if (space_map_length(sm) == 0) {
386 ASSERT0(error);
387 ASSERT0(space_map_allocated(sm));
388 }
389
390 zio_buf_free(buf, bufsz);
391 return (error);
392 }
393
394 typedef struct space_map_load_arg {
395 space_map_t *smla_sm;
396 zfs_range_tree_t *smla_rt;
397 maptype_t smla_type;
398 } space_map_load_arg_t;
399
400 static int
space_map_load_callback(space_map_entry_t * sme,void * arg)401 space_map_load_callback(space_map_entry_t *sme, void *arg)
402 {
403 space_map_load_arg_t *smla = arg;
404 if (sme->sme_type == smla->smla_type) {
405 VERIFY3U(zfs_range_tree_space(smla->smla_rt) + sme->sme_run, <=,
406 smla->smla_sm->sm_size);
407 zfs_range_tree_add(smla->smla_rt, sme->sme_offset,
408 sme->sme_run);
409 } else {
410 zfs_range_tree_remove(smla->smla_rt, sme->sme_offset,
411 sme->sme_run);
412 }
413
414 return (0);
415 }
416
417 /*
418 * Load the spacemap into the rangetree, like space_map_load. But only
419 * read the first 'length' bytes of the spacemap.
420 */
421 int
space_map_load_length(space_map_t * sm,zfs_range_tree_t * rt,maptype_t maptype,uint64_t length)422 space_map_load_length(space_map_t *sm, zfs_range_tree_t *rt, maptype_t maptype,
423 uint64_t length)
424 {
425 space_map_load_arg_t smla;
426
427 VERIFY0(zfs_range_tree_space(rt));
428
429 if (maptype == SM_FREE)
430 zfs_range_tree_add(rt, sm->sm_start, sm->sm_size);
431
432 smla.smla_rt = rt;
433 smla.smla_sm = sm;
434 smla.smla_type = maptype;
435 int err = space_map_iterate(sm, length,
436 space_map_load_callback, &smla);
437
438 if (err != 0)
439 zfs_range_tree_vacate(rt, NULL, NULL);
440
441 return (err);
442 }
443
444 /*
445 * Load the space map disk into the specified range tree. Segments of maptype
446 * are added to the range tree, other segment types are removed.
447 */
448 int
space_map_load(space_map_t * sm,zfs_range_tree_t * rt,maptype_t maptype)449 space_map_load(space_map_t *sm, zfs_range_tree_t *rt, maptype_t maptype)
450 {
451 return (space_map_load_length(sm, rt, maptype, space_map_length(sm)));
452 }
453
454 void
space_map_histogram_clear(space_map_t * sm)455 space_map_histogram_clear(space_map_t *sm)
456 {
457 if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
458 return;
459
460 memset(sm->sm_phys->smp_histogram, 0,
461 sizeof (sm->sm_phys->smp_histogram));
462 }
463
464 boolean_t
space_map_histogram_verify(space_map_t * sm,zfs_range_tree_t * rt)465 space_map_histogram_verify(space_map_t *sm, zfs_range_tree_t *rt)
466 {
467 /*
468 * Verify that the in-core range tree does not have any
469 * ranges smaller than our sm_shift size.
470 */
471 for (int i = 0; i < sm->sm_shift; i++) {
472 if (rt->rt_histogram[i] != 0)
473 return (B_FALSE);
474 }
475 return (B_TRUE);
476 }
477
478 void
space_map_histogram_add(space_map_t * sm,zfs_range_tree_t * rt,dmu_tx_t * tx)479 space_map_histogram_add(space_map_t *sm, zfs_range_tree_t *rt, dmu_tx_t *tx)
480 {
481 int idx = 0;
482
483 ASSERT(dmu_tx_is_syncing(tx));
484 VERIFY3U(space_map_object(sm), !=, 0);
485
486 if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
487 return;
488
489 dmu_buf_will_dirty(sm->sm_dbuf, tx);
490
491 ASSERT(space_map_histogram_verify(sm, rt));
492 /*
493 * Transfer the content of the range tree histogram to the space
494 * map histogram. The space map histogram contains 32 buckets ranging
495 * between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
496 * however, can represent ranges from 2^0 to 2^63. Since the space
497 * map only cares about allocatable blocks (minimum of sm_shift) we
498 * can safely ignore all ranges in the range tree smaller than sm_shift.
499 */
500 for (int i = sm->sm_shift; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) {
501
502 /*
503 * Since the largest histogram bucket in the space map is
504 * 2^(32+sm_shift-1), we need to normalize the values in
505 * the range tree for any bucket larger than that size. For
506 * example given an sm_shift of 9, ranges larger than 2^40
507 * would get normalized as if they were 1TB ranges. Assume
508 * the range tree had a count of 5 in the 2^44 (16TB) bucket,
509 * the calculation below would normalize this to 5 * 2^4 (16).
510 */
511 ASSERT3U(i, >=, idx + sm->sm_shift);
512 sm->sm_phys->smp_histogram[idx] +=
513 rt->rt_histogram[i] << (i - idx - sm->sm_shift);
514
515 /*
516 * Increment the space map's index as long as we haven't
517 * reached the maximum bucket size. Accumulate all ranges
518 * larger than the max bucket size into the last bucket.
519 */
520 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
521 ASSERT3U(idx + sm->sm_shift, ==, i);
522 idx++;
523 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
524 }
525 }
526 }
527
528 static void
space_map_write_intro_debug(space_map_t * sm,maptype_t maptype,dmu_tx_t * tx)529 space_map_write_intro_debug(space_map_t *sm, maptype_t maptype, dmu_tx_t *tx)
530 {
531 dmu_buf_will_dirty(sm->sm_dbuf, tx);
532
533 uint64_t dentry = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
534 SM_DEBUG_ACTION_ENCODE(maptype) |
535 SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(tx->tx_pool->dp_spa)) |
536 SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
537
538 dmu_write(sm->sm_os, space_map_object(sm), sm->sm_phys->smp_length,
539 sizeof (dentry), &dentry, tx);
540
541 sm->sm_phys->smp_length += sizeof (dentry);
542 }
543
544 /*
545 * Writes one or more entries given a segment.
546 *
547 * Note: The function may release the dbuf from the pointer initially
548 * passed to it, and return a different dbuf. Also, the space map's
549 * dbuf must be dirty for the changes in sm_phys to take effect.
550 */
551 static void
space_map_write_seg(space_map_t * sm,uint64_t rstart,uint64_t rend,maptype_t maptype,uint64_t vdev_id,uint8_t words,dmu_buf_t ** dbp,const void * tag,dmu_tx_t * tx)552 space_map_write_seg(space_map_t *sm, uint64_t rstart, uint64_t rend,
553 maptype_t maptype, uint64_t vdev_id, uint8_t words, dmu_buf_t **dbp,
554 const void *tag, dmu_tx_t *tx)
555 {
556 ASSERT3U(words, !=, 0);
557 ASSERT3U(words, <=, 2);
558
559 /* ensure the vdev_id can be represented by the space map */
560 ASSERT3U(vdev_id, <=, SM_NO_VDEVID);
561
562 /*
563 * if this is a single word entry, ensure that no vdev was
564 * specified.
565 */
566 IMPLY(words == 1, vdev_id == SM_NO_VDEVID);
567
568 dmu_buf_t *db = *dbp;
569 ASSERT3U(db->db_size, ==, sm->sm_blksz);
570
571 uint64_t *block_base = db->db_data;
572 uint64_t *block_end = block_base + (sm->sm_blksz / sizeof (uint64_t));
573 uint64_t *block_cursor = block_base +
574 (sm->sm_phys->smp_length - db->db_offset) / sizeof (uint64_t);
575
576 ASSERT3P(block_cursor, <=, block_end);
577
578 uint64_t size = (rend - rstart) >> sm->sm_shift;
579 uint64_t start = (rstart - sm->sm_start) >> sm->sm_shift;
580 uint64_t run_max = (words == 2) ? SM2_RUN_MAX : SM_RUN_MAX;
581
582 ASSERT3U(rstart, >=, sm->sm_start);
583 ASSERT3U(rstart, <, sm->sm_start + sm->sm_size);
584 ASSERT3U(rend - rstart, <=, sm->sm_size);
585 ASSERT3U(rend, <=, sm->sm_start + sm->sm_size);
586
587 while (size != 0) {
588 ASSERT3P(block_cursor, <=, block_end);
589
590 /*
591 * If we are at the end of this block, flush it and start
592 * writing again from the beginning.
593 */
594 if (block_cursor == block_end) {
595 dmu_buf_rele(db, tag);
596
597 uint64_t next_word_offset = sm->sm_phys->smp_length;
598 VERIFY0(dmu_buf_hold(sm->sm_os,
599 space_map_object(sm), next_word_offset,
600 tag, &db, DMU_READ_PREFETCH));
601 dmu_buf_will_dirty(db, tx);
602
603 /* update caller's dbuf */
604 *dbp = db;
605
606 ASSERT3U(db->db_size, ==, sm->sm_blksz);
607
608 block_base = db->db_data;
609 block_cursor = block_base;
610 block_end = block_base +
611 (db->db_size / sizeof (uint64_t));
612 }
613
614 /*
615 * If we are writing a two-word entry and we only have one
616 * word left on this block, just pad it with an empty debug
617 * entry and write the two-word entry in the next block.
618 */
619 uint64_t *next_entry = block_cursor + 1;
620 if (next_entry == block_end && words > 1) {
621 ASSERT3U(words, ==, 2);
622 *block_cursor = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
623 SM_DEBUG_ACTION_ENCODE(0) |
624 SM_DEBUG_SYNCPASS_ENCODE(0) |
625 SM_DEBUG_TXG_ENCODE(0);
626 block_cursor++;
627 sm->sm_phys->smp_length += sizeof (uint64_t);
628 ASSERT3P(block_cursor, ==, block_end);
629 continue;
630 }
631
632 uint64_t run_len = MIN(size, run_max);
633 switch (words) {
634 case 1:
635 *block_cursor = SM_OFFSET_ENCODE(start) |
636 SM_TYPE_ENCODE(maptype) |
637 SM_RUN_ENCODE(run_len);
638 block_cursor++;
639 break;
640 case 2:
641 /* write the first word of the entry */
642 *block_cursor = SM_PREFIX_ENCODE(SM2_PREFIX) |
643 SM2_RUN_ENCODE(run_len) |
644 SM2_VDEV_ENCODE(vdev_id);
645 block_cursor++;
646
647 /* move on to the second word of the entry */
648 ASSERT3P(block_cursor, <, block_end);
649 *block_cursor = SM2_TYPE_ENCODE(maptype) |
650 SM2_OFFSET_ENCODE(start);
651 block_cursor++;
652 break;
653 default:
654 panic("%d-word space map entries are not supported",
655 words);
656 break;
657 }
658 sm->sm_phys->smp_length += words * sizeof (uint64_t);
659
660 start += run_len;
661 size -= run_len;
662 }
663 ASSERT0(size);
664
665 }
666
667 /*
668 * Note: The space map's dbuf must be dirty for the changes in sm_phys to
669 * take effect.
670 */
671 static void
space_map_write_impl(space_map_t * sm,zfs_range_tree_t * rt,maptype_t maptype,uint64_t vdev_id,dmu_tx_t * tx)672 space_map_write_impl(space_map_t *sm, zfs_range_tree_t *rt, maptype_t maptype,
673 uint64_t vdev_id, dmu_tx_t *tx)
674 {
675 spa_t *spa = tx->tx_pool->dp_spa;
676 dmu_buf_t *db;
677
678 space_map_write_intro_debug(sm, maptype, tx);
679
680 #ifdef ZFS_DEBUG
681 /*
682 * We do this right after we write the intro debug entry
683 * because the estimate does not take it into account.
684 */
685 uint64_t initial_objsize = sm->sm_phys->smp_length;
686 uint64_t estimated_growth =
687 space_map_estimate_optimal_size(sm, rt, SM_NO_VDEVID);
688 uint64_t estimated_final_objsize = initial_objsize + estimated_growth;
689 #endif
690
691 /*
692 * Find the offset right after the last word in the space map
693 * and use that to get a hold of the last block, so we can
694 * start appending to it.
695 */
696 uint64_t next_word_offset = sm->sm_phys->smp_length;
697 VERIFY0(dmu_buf_hold(sm->sm_os, space_map_object(sm),
698 next_word_offset, FTAG, &db, DMU_READ_PREFETCH));
699 ASSERT3U(db->db_size, ==, sm->sm_blksz);
700
701 dmu_buf_will_dirty(db, tx);
702
703 zfs_btree_t *t = &rt->rt_root;
704 zfs_btree_index_t where;
705 for (zfs_range_seg_t *rs = zfs_btree_first(t, &where); rs != NULL;
706 rs = zfs_btree_next(t, &where, &where)) {
707 uint64_t offset = (zfs_rs_get_start(rs, rt) - sm->sm_start) >>
708 sm->sm_shift;
709 uint64_t length = (zfs_rs_get_end(rs, rt) -
710 zfs_rs_get_start(rs, rt)) >> sm->sm_shift;
711 uint8_t words = 1;
712
713 /*
714 * We only write two-word entries when both of the following
715 * are true:
716 *
717 * [1] The feature is enabled.
718 * [2] The offset or run is too big for a single-word entry,
719 * or the vdev_id is set (meaning not equal to
720 * SM_NO_VDEVID).
721 *
722 * Note that for purposes of testing we've added the case that
723 * we write two-word entries occasionally when the feature is
724 * enabled and zfs_force_some_double_word_sm_entries has been
725 * set.
726 */
727 if (spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_V2) &&
728 (offset >= (1ULL << SM_OFFSET_BITS) ||
729 length > SM_RUN_MAX ||
730 vdev_id != SM_NO_VDEVID ||
731 (zfs_force_some_double_word_sm_entries &&
732 random_in_range(100) == 0)))
733 words = 2;
734
735 space_map_write_seg(sm, zfs_rs_get_start(rs, rt),
736 zfs_rs_get_end(rs, rt), maptype, vdev_id, words, &db,
737 FTAG, tx);
738 }
739
740 dmu_buf_rele(db, FTAG);
741
742 #ifdef ZFS_DEBUG
743 /*
744 * We expect our estimation to be based on the worst case
745 * scenario [see comment in space_map_estimate_optimal_size()].
746 * Therefore we expect the actual objsize to be equal or less
747 * than whatever we estimated it to be.
748 */
749 ASSERT3U(estimated_final_objsize, >=, sm->sm_phys->smp_length);
750 #endif
751 }
752
753 /*
754 * Note: This function manipulates the state of the given space map but
755 * does not hold any locks implicitly. Thus the caller is responsible
756 * for synchronizing writes to the space map.
757 */
758 void
space_map_write(space_map_t * sm,zfs_range_tree_t * rt,maptype_t maptype,uint64_t vdev_id,dmu_tx_t * tx)759 space_map_write(space_map_t *sm, zfs_range_tree_t *rt, maptype_t maptype,
760 uint64_t vdev_id, dmu_tx_t *tx)
761 {
762 ASSERT(dsl_pool_sync_context(dmu_objset_pool(sm->sm_os)));
763 VERIFY3U(space_map_object(sm), !=, 0);
764
765 dmu_buf_will_dirty(sm->sm_dbuf, tx);
766
767 /*
768 * This field is no longer necessary since the in-core space map
769 * now contains the object number but is maintained for backwards
770 * compatibility.
771 */
772 sm->sm_phys->smp_object = sm->sm_object;
773
774 if (zfs_range_tree_is_empty(rt)) {
775 VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
776 return;
777 }
778
779 if (maptype == SM_ALLOC)
780 sm->sm_phys->smp_alloc += zfs_range_tree_space(rt);
781 else
782 sm->sm_phys->smp_alloc -= zfs_range_tree_space(rt);
783
784 uint64_t nodes = zfs_btree_numnodes(&rt->rt_root);
785 uint64_t rt_space = zfs_range_tree_space(rt);
786
787 space_map_write_impl(sm, rt, maptype, vdev_id, tx);
788
789 /*
790 * Ensure that the space_map's accounting wasn't changed
791 * while we were in the middle of writing it out.
792 */
793 VERIFY3U(nodes, ==, zfs_btree_numnodes(&rt->rt_root));
794 VERIFY3U(zfs_range_tree_space(rt), ==, rt_space);
795 }
796
797 static int
space_map_open_impl(space_map_t * sm)798 space_map_open_impl(space_map_t *sm)
799 {
800 int error;
801 u_longlong_t blocks;
802
803 error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
804 if (error)
805 return (error);
806
807 dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
808 sm->sm_phys = sm->sm_dbuf->db_data;
809 return (0);
810 }
811
812 int
space_map_open(space_map_t ** smp,objset_t * os,uint64_t object,uint64_t start,uint64_t size,uint8_t shift)813 space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
814 uint64_t start, uint64_t size, uint8_t shift)
815 {
816 space_map_t *sm;
817 int error;
818
819 ASSERT(*smp == NULL);
820 ASSERT(os != NULL);
821 ASSERT(object != 0);
822
823 sm = kmem_alloc(sizeof (space_map_t), KM_SLEEP);
824
825 sm->sm_start = start;
826 sm->sm_size = size;
827 sm->sm_shift = shift;
828 sm->sm_os = os;
829 sm->sm_object = object;
830 sm->sm_blksz = 0;
831 sm->sm_dbuf = NULL;
832 sm->sm_phys = NULL;
833
834 error = space_map_open_impl(sm);
835 if (error != 0) {
836 space_map_close(sm);
837 return (error);
838 }
839 *smp = sm;
840
841 return (0);
842 }
843
844 void
space_map_close(space_map_t * sm)845 space_map_close(space_map_t *sm)
846 {
847 if (sm == NULL)
848 return;
849
850 if (sm->sm_dbuf != NULL)
851 dmu_buf_rele(sm->sm_dbuf, sm);
852 sm->sm_dbuf = NULL;
853 sm->sm_phys = NULL;
854
855 kmem_free(sm, sizeof (*sm));
856 }
857
858 void
space_map_truncate(space_map_t * sm,int blocksize,dmu_tx_t * tx)859 space_map_truncate(space_map_t *sm, int blocksize, dmu_tx_t *tx)
860 {
861 objset_t *os = sm->sm_os;
862 spa_t *spa = dmu_objset_spa(os);
863 dmu_object_info_t doi;
864
865 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
866 ASSERT(dmu_tx_is_syncing(tx));
867 VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa));
868
869 dmu_object_info_from_db(sm->sm_dbuf, &doi);
870
871 /*
872 * If the space map has the wrong bonus size (because
873 * SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or
874 * the wrong block size (because space_map_blksz has changed),
875 * free and re-allocate its object with the updated sizes.
876 *
877 * Otherwise, just truncate the current object.
878 */
879 if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
880 doi.doi_bonus_size != sizeof (space_map_phys_t)) ||
881 doi.doi_data_block_size != blocksize ||
882 doi.doi_metadata_block_size != 1 << space_map_ibs) {
883 zfs_dbgmsg("txg %llu, spa %s, sm %px, reallocating "
884 "object[%llu]: old bonus %llu, old blocksz %u",
885 (u_longlong_t)dmu_tx_get_txg(tx), spa_name(spa), sm,
886 (u_longlong_t)sm->sm_object,
887 (u_longlong_t)doi.doi_bonus_size,
888 doi.doi_data_block_size);
889
890 space_map_free(sm, tx);
891 dmu_buf_rele(sm->sm_dbuf, sm);
892
893 sm->sm_object = space_map_alloc(sm->sm_os, blocksize, tx);
894 VERIFY0(space_map_open_impl(sm));
895 } else {
896 VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
897
898 /*
899 * If the spacemap is reallocated, its histogram
900 * will be reset. Do the same in the common case so that
901 * bugs related to the uncommon case do not go unnoticed.
902 */
903 memset(sm->sm_phys->smp_histogram, 0,
904 sizeof (sm->sm_phys->smp_histogram));
905 }
906
907 dmu_buf_will_dirty(sm->sm_dbuf, tx);
908 sm->sm_phys->smp_length = 0;
909 sm->sm_phys->smp_alloc = 0;
910 }
911
912 uint64_t
space_map_alloc(objset_t * os,int blocksize,dmu_tx_t * tx)913 space_map_alloc(objset_t *os, int blocksize, dmu_tx_t *tx)
914 {
915 spa_t *spa = dmu_objset_spa(os);
916 uint64_t object;
917 int bonuslen;
918
919 if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
920 spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
921 bonuslen = sizeof (space_map_phys_t);
922 ASSERT3U(bonuslen, <=, dmu_bonus_max());
923 } else {
924 bonuslen = SPACE_MAP_SIZE_V0;
925 }
926
927 object = dmu_object_alloc_ibs(os, DMU_OT_SPACE_MAP, blocksize,
928 space_map_ibs, DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
929
930 return (object);
931 }
932
933 void
space_map_free_obj(objset_t * os,uint64_t smobj,dmu_tx_t * tx)934 space_map_free_obj(objset_t *os, uint64_t smobj, dmu_tx_t *tx)
935 {
936 spa_t *spa = dmu_objset_spa(os);
937 if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
938 dmu_object_info_t doi;
939
940 VERIFY0(dmu_object_info(os, smobj, &doi));
941 if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
942 spa_feature_decr(spa,
943 SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
944 }
945 }
946
947 VERIFY0(dmu_object_free(os, smobj, tx));
948 }
949
950 void
space_map_free(space_map_t * sm,dmu_tx_t * tx)951 space_map_free(space_map_t *sm, dmu_tx_t *tx)
952 {
953 if (sm == NULL)
954 return;
955
956 space_map_free_obj(sm->sm_os, space_map_object(sm), tx);
957 sm->sm_object = 0;
958 }
959
960 /*
961 * Given a range tree, it makes a worst-case estimate of how much
962 * space would the tree's segments take if they were written to
963 * the given space map.
964 */
965 uint64_t
space_map_estimate_optimal_size(space_map_t * sm,zfs_range_tree_t * rt,uint64_t vdev_id)966 space_map_estimate_optimal_size(space_map_t *sm, zfs_range_tree_t *rt,
967 uint64_t vdev_id)
968 {
969 spa_t *spa = dmu_objset_spa(sm->sm_os);
970 uint64_t shift = sm->sm_shift;
971 uint64_t *histogram = rt->rt_histogram;
972 uint64_t entries_for_seg = 0;
973
974 /*
975 * In order to get a quick estimate of the optimal size that this
976 * range tree would have on-disk as a space map, we iterate through
977 * its histogram buckets instead of iterating through its nodes.
978 *
979 * Note that this is a highest-bound/worst-case estimate for the
980 * following reasons:
981 *
982 * 1] We assume that we always add a debug padding for each block
983 * we write and we also assume that we start at the last word
984 * of a block attempting to write a two-word entry.
985 * 2] Rounding up errors due to the way segments are distributed
986 * in the buckets of the range tree's histogram.
987 * 3] The activation of zfs_force_some_double_word_sm_entries
988 * (tunable) when testing.
989 *
990 * = Math and Rounding Errors =
991 *
992 * rt_histogram[i] bucket of a range tree represents the number
993 * of entries in [2^i, (2^(i+1))-1] of that range_tree. Given
994 * that, we want to divide the buckets into groups: Buckets that
995 * can be represented using a single-word entry, ones that can
996 * be represented with a double-word entry, and ones that can
997 * only be represented with multiple two-word entries.
998 *
999 * [Note that if the new encoding feature is not enabled there
1000 * are only two groups: single-word entry buckets and multiple
1001 * single-word entry buckets. The information below assumes
1002 * two-word entries enabled, but it can easily applied when
1003 * the feature is not enabled]
1004 *
1005 * To find the highest bucket that can be represented with a
1006 * single-word entry we look at the maximum run that such entry
1007 * can have, which is 2^(SM_RUN_BITS + sm_shift) [remember that
1008 * the run of a space map entry is shifted by sm_shift, thus we
1009 * add it to the exponent]. This way, excluding the value of the
1010 * maximum run that can be represented by a single-word entry,
1011 * all runs that are smaller exist in buckets 0 to
1012 * SM_RUN_BITS + shift - 1.
1013 *
1014 * To find the highest bucket that can be represented with a
1015 * double-word entry, we follow the same approach. Finally, any
1016 * bucket higher than that are represented with multiple two-word
1017 * entries. To be more specific, if the highest bucket whose
1018 * segments can be represented with a single two-word entry is X,
1019 * then bucket X+1 will need 2 two-word entries for each of its
1020 * segments, X+2 will need 4, X+3 will need 8, ...etc.
1021 *
1022 * With all of the above we make our estimation based on bucket
1023 * groups. There is a rounding error though. As we mentioned in
1024 * the example with the one-word entry, the maximum run that can
1025 * be represented in a one-word entry 2^(SM_RUN_BITS + shift) is
1026 * not part of bucket SM_RUN_BITS + shift - 1. Thus, segments of
1027 * that length fall into the next bucket (and bucket group) where
1028 * we start counting two-word entries and this is one more reason
1029 * why the estimated size may end up being bigger than the actual
1030 * size written.
1031 */
1032 uint64_t size = 0;
1033 uint64_t idx = 0;
1034
1035 if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) ||
1036 (vdev_id == SM_NO_VDEVID && sm->sm_size < SM_OFFSET_MAX)) {
1037
1038 /*
1039 * If we are trying to force some double word entries just
1040 * assume the worst-case of every single word entry being
1041 * written as a double word entry.
1042 */
1043 uint64_t entry_size =
1044 (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) &&
1045 zfs_force_some_double_word_sm_entries) ?
1046 (2 * sizeof (uint64_t)) : sizeof (uint64_t);
1047
1048 uint64_t single_entry_max_bucket = SM_RUN_BITS + shift - 1;
1049 for (; idx <= single_entry_max_bucket; idx++)
1050 size += histogram[idx] * entry_size;
1051
1052 if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2)) {
1053 for (; idx < ZFS_RANGE_TREE_HISTOGRAM_SIZE; idx++) {
1054 ASSERT3U(idx, >=, single_entry_max_bucket);
1055 entries_for_seg =
1056 1ULL << (idx - single_entry_max_bucket);
1057 size += histogram[idx] *
1058 entries_for_seg * entry_size;
1059 }
1060 return (size);
1061 }
1062 }
1063
1064 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2));
1065
1066 uint64_t double_entry_max_bucket = SM2_RUN_BITS + shift - 1;
1067 for (; idx <= double_entry_max_bucket; idx++)
1068 size += histogram[idx] * 2 * sizeof (uint64_t);
1069
1070 for (; idx < ZFS_RANGE_TREE_HISTOGRAM_SIZE; idx++) {
1071 ASSERT3U(idx, >=, double_entry_max_bucket);
1072 entries_for_seg = 1ULL << (idx - double_entry_max_bucket);
1073 size += histogram[idx] *
1074 entries_for_seg * 2 * sizeof (uint64_t);
1075 }
1076
1077 /*
1078 * Assume the worst case where we start with the padding at the end
1079 * of the current block and we add an extra padding entry at the end
1080 * of all subsequent blocks.
1081 */
1082 size += ((size / sm->sm_blksz) + 1) * sizeof (uint64_t);
1083
1084 return (size);
1085 }
1086
1087 uint64_t
space_map_object(space_map_t * sm)1088 space_map_object(space_map_t *sm)
1089 {
1090 return (sm != NULL ? sm->sm_object : 0);
1091 }
1092
1093 int64_t
space_map_allocated(space_map_t * sm)1094 space_map_allocated(space_map_t *sm)
1095 {
1096 return (sm != NULL ? sm->sm_phys->smp_alloc : 0);
1097 }
1098
1099 uint64_t
space_map_length(space_map_t * sm)1100 space_map_length(space_map_t *sm)
1101 {
1102 return (sm != NULL ? sm->sm_phys->smp_length : 0);
1103 }
1104
1105 uint64_t
space_map_nblocks(space_map_t * sm)1106 space_map_nblocks(space_map_t *sm)
1107 {
1108 if (sm == NULL)
1109 return (0);
1110 return (DIV_ROUND_UP(space_map_length(sm), sm->sm_blksz));
1111 }
1112