1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
31 * Copyright 2019 Joyent, Inc.
32 * Copyright (c) 2017, Intel Corporation.
33 * Copyright 2020 Joshua M. Clulow <josh@sysmgr.org>
34 * Copyright 2021 OmniOS Community Edition (OmniOSce) Association.
35 * Copyright 2022 Oxide Computer Company
36 * Copyright 2023 MNX Cloud, Inc.
37 */
38
39 /*
40 * SPA: Storage Pool Allocator
41 *
42 * This file contains all the routines used when modifying on-disk SPA state.
43 * This includes opening, importing, destroying, exporting a pool, and syncing a
44 * pool.
45 */
46
47 #include <sys/zfs_context.h>
48 #include <sys/fm/fs/zfs.h>
49 #include <sys/spa_impl.h>
50 #include <sys/zio.h>
51 #include <sys/zio_checksum.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_tx.h>
54 #include <sys/zap.h>
55 #include <sys/zil.h>
56 #include <sys/ddt.h>
57 #include <sys/vdev_impl.h>
58 #include <sys/vdev_removal.h>
59 #include <sys/vdev_indirect_mapping.h>
60 #include <sys/vdev_indirect_births.h>
61 #include <sys/vdev_initialize.h>
62 #include <sys/vdev_trim.h>
63 #include <sys/metaslab.h>
64 #include <sys/metaslab_impl.h>
65 #include <sys/mmp.h>
66 #include <sys/uberblock_impl.h>
67 #include <sys/txg.h>
68 #include <sys/avl.h>
69 #include <sys/bpobj.h>
70 #include <sys/dmu_traverse.h>
71 #include <sys/dmu_objset.h>
72 #include <sys/unique.h>
73 #include <sys/dsl_pool.h>
74 #include <sys/dsl_dataset.h>
75 #include <sys/dsl_dir.h>
76 #include <sys/dsl_prop.h>
77 #include <sys/dsl_synctask.h>
78 #include <sys/fs/zfs.h>
79 #include <sys/arc.h>
80 #include <sys/callb.h>
81 #include <sys/systeminfo.h>
82 #include <sys/spa_boot.h>
83 #include <sys/zfs_ioctl.h>
84 #include <sys/dsl_scan.h>
85 #include <sys/zfeature.h>
86 #include <sys/dsl_destroy.h>
87 #include <sys/abd.h>
88
89 #ifdef _KERNEL
90 #include <sys/bootprops.h>
91 #include <sys/callb.h>
92 #include <sys/cpupart.h>
93 #include <sys/pool.h>
94 #include <sys/sysdc.h>
95 #include <sys/zone.h>
96 #endif /* _KERNEL */
97
98 #include "zfs_prop.h"
99 #include "zfs_comutil.h"
100
101 /*
102 * The interval, in seconds, at which failed configuration cache file writes
103 * should be retried.
104 */
105 int zfs_ccw_retry_interval = 300;
106
107 typedef enum zti_modes {
108 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
109 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
110 ZTI_MODE_NULL, /* don't create a taskq */
111 ZTI_NMODES
112 } zti_modes_t;
113
114 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
115 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
116 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
117
118 #define ZTI_N(n) ZTI_P(n, 1)
119 #define ZTI_ONE ZTI_N(1)
120
121 typedef struct zio_taskq_info {
122 zti_modes_t zti_mode;
123 uint_t zti_value;
124 uint_t zti_count;
125 } zio_taskq_info_t;
126
127 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
128 "issue", "issue_high", "intr", "intr_high"
129 };
130
131 /*
132 * This table defines the taskq settings for each ZFS I/O type. When
133 * initializing a pool, we use this table to create an appropriately sized
134 * taskq. Some operations are low volume and therefore have a small, static
135 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
136 * macros. Other operations process a large amount of data; the ZTI_BATCH
137 * macro causes us to create a taskq oriented for throughput. Some operations
138 * are so high frequency and short-lived that the taskq itself can become a
139 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
140 * additional degree of parallelism specified by the number of threads per-
141 * taskq and the number of taskqs; when dispatching an event in this case, the
142 * particular taskq is chosen at random.
143 *
144 * The different taskq priorities are to handle the different contexts (issue
145 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
146 * need to be handled with minimum delay.
147 */
148 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
149 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
150 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
151 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
152 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
153 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
154 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
155 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
156 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
157 };
158
159 static void spa_sync_version(void *arg, dmu_tx_t *tx);
160 static void spa_sync_props(void *arg, dmu_tx_t *tx);
161 static boolean_t spa_has_active_shared_spare(spa_t *spa);
162 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
163 static void spa_vdev_resilver_done(spa_t *spa);
164
165 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
166 id_t zio_taskq_psrset_bind = PS_NONE;
167 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
168 uint_t zio_taskq_basedc = 80; /* base duty cycle */
169
170 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
171 extern int zfs_sync_pass_deferred_free;
172
173 /*
174 * Report any spa_load_verify errors found, but do not fail spa_load.
175 * This is used by zdb to analyze non-idle pools.
176 */
177 boolean_t spa_load_verify_dryrun = B_FALSE;
178
179 /*
180 * This (illegal) pool name is used when temporarily importing a spa_t in order
181 * to get the vdev stats associated with the imported devices.
182 */
183 #define TRYIMPORT_NAME "$import"
184
185 /*
186 * For debugging purposes: print out vdev tree during pool import.
187 */
188 boolean_t spa_load_print_vdev_tree = B_FALSE;
189
190 /*
191 * A non-zero value for zfs_max_missing_tvds means that we allow importing
192 * pools with missing top-level vdevs. This is strictly intended for advanced
193 * pool recovery cases since missing data is almost inevitable. Pools with
194 * missing devices can only be imported read-only for safety reasons, and their
195 * fail-mode will be automatically set to "continue".
196 *
197 * With 1 missing vdev we should be able to import the pool and mount all
198 * datasets. User data that was not modified after the missing device has been
199 * added should be recoverable. This means that snapshots created prior to the
200 * addition of that device should be completely intact.
201 *
202 * With 2 missing vdevs, some datasets may fail to mount since there are
203 * dataset statistics that are stored as regular metadata. Some data might be
204 * recoverable if those vdevs were added recently.
205 *
206 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
207 * may be missing entirely. Chances of data recovery are very low. Note that
208 * there are also risks of performing an inadvertent rewind as we might be
209 * missing all the vdevs with the latest uberblocks.
210 */
211 uint64_t zfs_max_missing_tvds = 0;
212
213 /*
214 * The parameters below are similar to zfs_max_missing_tvds but are only
215 * intended for a preliminary open of the pool with an untrusted config which
216 * might be incomplete or out-dated.
217 *
218 * We are more tolerant for pools opened from a cachefile since we could have
219 * an out-dated cachefile where a device removal was not registered.
220 * We could have set the limit arbitrarily high but in the case where devices
221 * are really missing we would want to return the proper error codes; we chose
222 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
223 * and we get a chance to retrieve the trusted config.
224 */
225 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
226
227 /*
228 * In the case where config was assembled by scanning device paths (/dev/dsks
229 * by default) we are less tolerant since all the existing devices should have
230 * been detected and we want spa_load to return the right error codes.
231 */
232 uint64_t zfs_max_missing_tvds_scan = 0;
233
234 /*
235 * Interval in seconds at which to poll spare vdevs for health.
236 * Setting this to zero disables spare polling.
237 * Set to three hours by default.
238 */
239 uint_t spa_spare_poll_interval_seconds = 60 * 60 * 3;
240
241 /*
242 * Debugging aid that pauses spa_sync() towards the end.
243 */
244 boolean_t zfs_pause_spa_sync = B_FALSE;
245
246 /*
247 * ==========================================================================
248 * SPA properties routines
249 * ==========================================================================
250 */
251
252 /*
253 * Add a (source=src, propname=propval) list to an nvlist.
254 */
255 static void
spa_prop_add_list(nvlist_t * nvl,zpool_prop_t prop,char * strval,uint64_t intval,zprop_source_t src)256 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
257 uint64_t intval, zprop_source_t src)
258 {
259 const char *propname = zpool_prop_to_name(prop);
260 nvlist_t *propval;
261
262 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
263 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
264
265 if (strval != NULL)
266 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
267 else
268 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
269
270 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
271 nvlist_free(propval);
272 }
273
274 /*
275 * Get property values from the spa configuration.
276 */
277 static void
spa_prop_get_config(spa_t * spa,nvlist_t ** nvp)278 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
279 {
280 vdev_t *rvd = spa->spa_root_vdev;
281 dsl_pool_t *pool = spa->spa_dsl_pool;
282 uint64_t size, alloc, cap, version;
283 zprop_source_t src = ZPROP_SRC_NONE;
284 spa_config_dirent_t *dp;
285 metaslab_class_t *mc = spa_normal_class(spa);
286
287 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
288
289 if (rvd != NULL) {
290 alloc = metaslab_class_get_alloc(mc);
291 alloc += metaslab_class_get_alloc(spa_special_class(spa));
292 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
293
294 size = metaslab_class_get_space(mc);
295 size += metaslab_class_get_space(spa_special_class(spa));
296 size += metaslab_class_get_space(spa_dedup_class(spa));
297
298 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
299 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
300 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
301 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
302 size - alloc, src);
303 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
304 spa->spa_checkpoint_info.sci_dspace, src);
305
306 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
307 metaslab_class_fragmentation(mc), src);
308 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
309 metaslab_class_expandable_space(mc), src);
310 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
311 (spa_mode(spa) == FREAD), src);
312
313 cap = (size == 0) ? 0 : (alloc * 100 / size);
314 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
315
316 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
317 ddt_get_pool_dedup_ratio(spa), src);
318
319 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
320 rvd->vdev_state, src);
321
322 version = spa_version(spa);
323 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
324 src = ZPROP_SRC_DEFAULT;
325 else
326 src = ZPROP_SRC_LOCAL;
327 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
328 }
329
330 if (pool != NULL) {
331 /*
332 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
333 * when opening pools before this version freedir will be NULL.
334 */
335 if (pool->dp_free_dir != NULL) {
336 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
337 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
338 src);
339 } else {
340 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
341 NULL, 0, src);
342 }
343
344 if (pool->dp_leak_dir != NULL) {
345 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
346 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
347 src);
348 } else {
349 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
350 NULL, 0, src);
351 }
352 }
353
354 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
355
356 if (spa->spa_comment != NULL) {
357 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
358 0, ZPROP_SRC_LOCAL);
359 }
360
361 if (spa->spa_root != NULL)
362 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
363 0, ZPROP_SRC_LOCAL);
364
365 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
366 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
367 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
368 } else {
369 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
370 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
371 }
372
373 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
374 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
375 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
376 } else {
377 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
378 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
379 }
380
381 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
382 if (dp->scd_path == NULL) {
383 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
384 "none", 0, ZPROP_SRC_LOCAL);
385 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
386 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
387 dp->scd_path, 0, ZPROP_SRC_LOCAL);
388 }
389 }
390 }
391
392 /*
393 * Get zpool property values.
394 */
395 int
spa_prop_get(spa_t * spa,nvlist_t ** nvp)396 spa_prop_get(spa_t *spa, nvlist_t **nvp)
397 {
398 objset_t *mos = spa->spa_meta_objset;
399 zap_cursor_t zc;
400 zap_attribute_t za;
401 int err;
402
403 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
404
405 mutex_enter(&spa->spa_props_lock);
406
407 /*
408 * Get properties from the spa config.
409 */
410 spa_prop_get_config(spa, nvp);
411
412 /* If no pool property object, no more prop to get. */
413 if (mos == NULL || spa->spa_pool_props_object == 0) {
414 mutex_exit(&spa->spa_props_lock);
415 return (0);
416 }
417
418 /*
419 * Get properties from the MOS pool property object.
420 */
421 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
422 (err = zap_cursor_retrieve(&zc, &za)) == 0;
423 zap_cursor_advance(&zc)) {
424 uint64_t intval = 0;
425 char *strval = NULL;
426 zprop_source_t src = ZPROP_SRC_DEFAULT;
427 zpool_prop_t prop;
428
429 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
430 continue;
431
432 switch (za.za_integer_length) {
433 case 8:
434 /* integer property */
435 if (za.za_first_integer !=
436 zpool_prop_default_numeric(prop))
437 src = ZPROP_SRC_LOCAL;
438
439 if (prop == ZPOOL_PROP_BOOTFS) {
440 dsl_pool_t *dp;
441 dsl_dataset_t *ds = NULL;
442
443 dp = spa_get_dsl(spa);
444 dsl_pool_config_enter(dp, FTAG);
445 err = dsl_dataset_hold_obj(dp,
446 za.za_first_integer, FTAG, &ds);
447 if (err != 0) {
448 dsl_pool_config_exit(dp, FTAG);
449 break;
450 }
451
452 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
453 KM_SLEEP);
454 dsl_dataset_name(ds, strval);
455 dsl_dataset_rele(ds, FTAG);
456 dsl_pool_config_exit(dp, FTAG);
457 } else {
458 strval = NULL;
459 intval = za.za_first_integer;
460 }
461
462 spa_prop_add_list(*nvp, prop, strval, intval, src);
463
464 if (strval != NULL)
465 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
466
467 break;
468
469 case 1:
470 /* string property */
471 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
472 err = zap_lookup(mos, spa->spa_pool_props_object,
473 za.za_name, 1, za.za_num_integers, strval);
474 if (err) {
475 kmem_free(strval, za.za_num_integers);
476 break;
477 }
478 spa_prop_add_list(*nvp, prop, strval, 0, src);
479 kmem_free(strval, za.za_num_integers);
480 break;
481
482 default:
483 break;
484 }
485 }
486 zap_cursor_fini(&zc);
487 mutex_exit(&spa->spa_props_lock);
488 if (err && err != ENOENT) {
489 nvlist_free(*nvp);
490 *nvp = NULL;
491 return (err);
492 }
493
494 return (0);
495 }
496
497 /*
498 * Validate the given pool properties nvlist and modify the list
499 * for the property values to be set.
500 */
501 static int
spa_prop_validate(spa_t * spa,nvlist_t * props)502 spa_prop_validate(spa_t *spa, nvlist_t *props)
503 {
504 nvpair_t *elem;
505 int error = 0, reset_bootfs = 0;
506 uint64_t objnum = 0;
507 boolean_t has_feature = B_FALSE;
508
509 elem = NULL;
510 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
511 uint64_t intval;
512 char *strval, *slash, *check, *fname;
513 const char *propname = nvpair_name(elem);
514 zpool_prop_t prop = zpool_name_to_prop(propname);
515
516 switch (prop) {
517 case ZPOOL_PROP_INVAL:
518 if (!zpool_prop_feature(propname)) {
519 error = SET_ERROR(EINVAL);
520 break;
521 }
522
523 /*
524 * Sanitize the input.
525 */
526 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
527 error = SET_ERROR(EINVAL);
528 break;
529 }
530
531 if (nvpair_value_uint64(elem, &intval) != 0) {
532 error = SET_ERROR(EINVAL);
533 break;
534 }
535
536 if (intval != 0) {
537 error = SET_ERROR(EINVAL);
538 break;
539 }
540
541 fname = strchr(propname, '@') + 1;
542 if (zfeature_lookup_name(fname, NULL) != 0) {
543 error = SET_ERROR(EINVAL);
544 break;
545 }
546
547 has_feature = B_TRUE;
548 break;
549
550 case ZPOOL_PROP_VERSION:
551 error = nvpair_value_uint64(elem, &intval);
552 if (!error &&
553 (intval < spa_version(spa) ||
554 intval > SPA_VERSION_BEFORE_FEATURES ||
555 has_feature))
556 error = SET_ERROR(EINVAL);
557 break;
558
559 case ZPOOL_PROP_DELEGATION:
560 case ZPOOL_PROP_AUTOREPLACE:
561 case ZPOOL_PROP_LISTSNAPS:
562 case ZPOOL_PROP_AUTOEXPAND:
563 case ZPOOL_PROP_AUTOTRIM:
564 error = nvpair_value_uint64(elem, &intval);
565 if (!error && intval > 1)
566 error = SET_ERROR(EINVAL);
567 break;
568
569 case ZPOOL_PROP_MULTIHOST:
570 error = nvpair_value_uint64(elem, &intval);
571 if (!error && intval > 1)
572 error = SET_ERROR(EINVAL);
573
574 if (!error && !spa_get_hostid())
575 error = SET_ERROR(ENOTSUP);
576
577 break;
578
579 case ZPOOL_PROP_BOOTFS:
580 /*
581 * If the pool version is less than SPA_VERSION_BOOTFS,
582 * or the pool is still being created (version == 0),
583 * the bootfs property cannot be set.
584 */
585 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
586 error = SET_ERROR(ENOTSUP);
587 break;
588 }
589
590 /*
591 * Make sure the vdev config is bootable
592 */
593 if (!vdev_is_bootable(spa->spa_root_vdev)) {
594 error = SET_ERROR(ENOTSUP);
595 break;
596 }
597
598 reset_bootfs = 1;
599
600 error = nvpair_value_string(elem, &strval);
601
602 if (!error) {
603 objset_t *os;
604 uint64_t propval;
605
606 if (strval == NULL || strval[0] == '\0') {
607 objnum = zpool_prop_default_numeric(
608 ZPOOL_PROP_BOOTFS);
609 break;
610 }
611
612 error = dmu_objset_hold(strval, FTAG, &os);
613 if (error != 0)
614 break;
615
616 /*
617 * Must be ZPL, and its property settings
618 * must be supported.
619 */
620
621 if (dmu_objset_type(os) != DMU_OST_ZFS) {
622 error = SET_ERROR(ENOTSUP);
623 } else if ((error =
624 dsl_prop_get_int_ds(dmu_objset_ds(os),
625 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
626 &propval)) == 0 &&
627 !BOOTFS_COMPRESS_VALID(propval)) {
628 error = SET_ERROR(ENOTSUP);
629 } else {
630 objnum = dmu_objset_id(os);
631 }
632 dmu_objset_rele(os, FTAG);
633 }
634 break;
635
636 case ZPOOL_PROP_FAILUREMODE:
637 error = nvpair_value_uint64(elem, &intval);
638 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
639 intval > ZIO_FAILURE_MODE_PANIC))
640 error = SET_ERROR(EINVAL);
641
642 /*
643 * This is a special case which only occurs when
644 * the pool has completely failed. This allows
645 * the user to change the in-core failmode property
646 * without syncing it out to disk (I/Os might
647 * currently be blocked). We do this by returning
648 * EIO to the caller (spa_prop_set) to trick it
649 * into thinking we encountered a property validation
650 * error.
651 */
652 if (!error && spa_suspended(spa)) {
653 spa->spa_failmode = intval;
654 error = SET_ERROR(EIO);
655 }
656 break;
657
658 case ZPOOL_PROP_CACHEFILE:
659 if ((error = nvpair_value_string(elem, &strval)) != 0)
660 break;
661
662 if (strval[0] == '\0')
663 break;
664
665 if (strcmp(strval, "none") == 0)
666 break;
667
668 if (strval[0] != '/') {
669 error = SET_ERROR(EINVAL);
670 break;
671 }
672
673 slash = strrchr(strval, '/');
674 ASSERT(slash != NULL);
675
676 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
677 strcmp(slash, "/..") == 0)
678 error = SET_ERROR(EINVAL);
679 break;
680
681 case ZPOOL_PROP_COMMENT:
682 if ((error = nvpair_value_string(elem, &strval)) != 0)
683 break;
684 for (check = strval; *check != '\0'; check++) {
685 /*
686 * The kernel doesn't have an easy isprint()
687 * check. For this kernel check, we merely
688 * check ASCII apart from DEL. Fix this if
689 * there is an easy-to-use kernel isprint().
690 */
691 if (*check >= 0x7f) {
692 error = SET_ERROR(EINVAL);
693 break;
694 }
695 }
696 if (strlen(strval) > ZPROP_MAX_COMMENT)
697 error = E2BIG;
698 break;
699
700 case ZPOOL_PROP_DEDUPDITTO:
701 if (spa_version(spa) < SPA_VERSION_DEDUP)
702 error = SET_ERROR(ENOTSUP);
703 else
704 error = nvpair_value_uint64(elem, &intval);
705 if (error == 0 &&
706 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
707 error = SET_ERROR(EINVAL);
708 break;
709 }
710
711 if (error)
712 break;
713 }
714
715 if (!error && reset_bootfs) {
716 error = nvlist_remove(props,
717 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
718
719 if (!error) {
720 error = nvlist_add_uint64(props,
721 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
722 }
723 }
724
725 return (error);
726 }
727
728 void
spa_configfile_set(spa_t * spa,nvlist_t * nvp,boolean_t need_sync)729 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
730 {
731 char *cachefile;
732 spa_config_dirent_t *dp;
733
734 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
735 &cachefile) != 0)
736 return;
737
738 dp = kmem_alloc(sizeof (spa_config_dirent_t),
739 KM_SLEEP);
740
741 if (cachefile[0] == '\0')
742 dp->scd_path = spa_strdup(spa_config_path);
743 else if (strcmp(cachefile, "none") == 0)
744 dp->scd_path = NULL;
745 else
746 dp->scd_path = spa_strdup(cachefile);
747
748 list_insert_head(&spa->spa_config_list, dp);
749 if (need_sync)
750 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
751 }
752
753 int
spa_prop_set(spa_t * spa,nvlist_t * nvp)754 spa_prop_set(spa_t *spa, nvlist_t *nvp)
755 {
756 int error;
757 nvpair_t *elem = NULL;
758 boolean_t need_sync = B_FALSE;
759
760 if ((error = spa_prop_validate(spa, nvp)) != 0)
761 return (error);
762
763 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
764 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
765
766 if (prop == ZPOOL_PROP_CACHEFILE ||
767 prop == ZPOOL_PROP_ALTROOT ||
768 prop == ZPOOL_PROP_READONLY)
769 continue;
770
771 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
772 uint64_t ver;
773
774 if (prop == ZPOOL_PROP_VERSION) {
775 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
776 } else {
777 ASSERT(zpool_prop_feature(nvpair_name(elem)));
778 ver = SPA_VERSION_FEATURES;
779 need_sync = B_TRUE;
780 }
781
782 /* Save time if the version is already set. */
783 if (ver == spa_version(spa))
784 continue;
785
786 /*
787 * In addition to the pool directory object, we might
788 * create the pool properties object, the features for
789 * read object, the features for write object, or the
790 * feature descriptions object.
791 */
792 error = dsl_sync_task(spa->spa_name, NULL,
793 spa_sync_version, &ver,
794 6, ZFS_SPACE_CHECK_RESERVED);
795 if (error)
796 return (error);
797 continue;
798 }
799
800 need_sync = B_TRUE;
801 break;
802 }
803
804 if (need_sync) {
805 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
806 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
807 }
808
809 return (0);
810 }
811
812 /*
813 * If the bootfs property value is dsobj, clear it.
814 */
815 void
spa_prop_clear_bootfs(spa_t * spa,uint64_t dsobj,dmu_tx_t * tx)816 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
817 {
818 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
819 VERIFY(zap_remove(spa->spa_meta_objset,
820 spa->spa_pool_props_object,
821 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
822 spa->spa_bootfs = 0;
823 }
824 }
825
826 /*ARGSUSED*/
827 static int
spa_change_guid_check(void * arg,dmu_tx_t * tx)828 spa_change_guid_check(void *arg, dmu_tx_t *tx)
829 {
830 uint64_t *newguid = arg;
831 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
832 vdev_t *rvd = spa->spa_root_vdev;
833 uint64_t vdev_state;
834
835 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
836 int error = (spa_has_checkpoint(spa)) ?
837 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
838 return (SET_ERROR(error));
839 }
840
841 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
842 vdev_state = rvd->vdev_state;
843 spa_config_exit(spa, SCL_STATE, FTAG);
844
845 if (vdev_state != VDEV_STATE_HEALTHY)
846 return (SET_ERROR(ENXIO));
847
848 ASSERT3U(spa_guid(spa), !=, *newguid);
849
850 return (0);
851 }
852
853 static void
spa_change_guid_sync(void * arg,dmu_tx_t * tx)854 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
855 {
856 uint64_t *newguid = arg;
857 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
858 uint64_t oldguid;
859 vdev_t *rvd = spa->spa_root_vdev;
860
861 oldguid = spa_guid(spa);
862
863 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
864 rvd->vdev_guid = *newguid;
865 rvd->vdev_guid_sum += (*newguid - oldguid);
866 vdev_config_dirty(rvd);
867 spa_config_exit(spa, SCL_STATE, FTAG);
868
869 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
870 oldguid, *newguid);
871 }
872
873 /*
874 * Change the GUID for the pool. This is done so that we can later
875 * re-import a pool built from a clone of our own vdevs. We will modify
876 * the root vdev's guid, our own pool guid, and then mark all of our
877 * vdevs dirty. Note that we must make sure that all our vdevs are
878 * online when we do this, or else any vdevs that weren't present
879 * would be orphaned from our pool. We are also going to issue a
880 * sysevent to update any watchers.
881 */
882 int
spa_change_guid(spa_t * spa)883 spa_change_guid(spa_t *spa)
884 {
885 int error;
886 uint64_t guid;
887
888 mutex_enter(&spa->spa_vdev_top_lock);
889 mutex_enter(&spa_namespace_lock);
890 guid = spa_generate_guid(NULL);
891
892 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
893 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
894
895 if (error == 0) {
896 spa_write_cachefile(spa, B_FALSE, B_TRUE);
897 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
898 }
899
900 mutex_exit(&spa_namespace_lock);
901 mutex_exit(&spa->spa_vdev_top_lock);
902
903 return (error);
904 }
905
906 /*
907 * ==========================================================================
908 * SPA state manipulation (open/create/destroy/import/export)
909 * ==========================================================================
910 */
911
912 static int
spa_error_entry_compare(const void * a,const void * b)913 spa_error_entry_compare(const void *a, const void *b)
914 {
915 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
916 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
917 int ret;
918
919 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
920 sizeof (zbookmark_phys_t));
921
922 return (TREE_ISIGN(ret));
923 }
924
925 /*
926 * Utility function which retrieves copies of the current logs and
927 * re-initializes them in the process.
928 */
929 void
spa_get_errlists(spa_t * spa,avl_tree_t * last,avl_tree_t * scrub)930 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
931 {
932 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
933
934 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
935 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
936
937 avl_create(&spa->spa_errlist_scrub,
938 spa_error_entry_compare, sizeof (spa_error_entry_t),
939 offsetof(spa_error_entry_t, se_avl));
940 avl_create(&spa->spa_errlist_last,
941 spa_error_entry_compare, sizeof (spa_error_entry_t),
942 offsetof(spa_error_entry_t, se_avl));
943 }
944
945 static void
spa_taskqs_init(spa_t * spa,zio_type_t t,zio_taskq_type_t q)946 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
947 {
948 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
949 enum zti_modes mode = ztip->zti_mode;
950 uint_t value = ztip->zti_value;
951 uint_t count = ztip->zti_count;
952 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
953 char name[32];
954 uint_t flags = 0;
955 boolean_t batch = B_FALSE;
956
957 if (mode == ZTI_MODE_NULL) {
958 tqs->stqs_count = 0;
959 tqs->stqs_taskq = NULL;
960 return;
961 }
962
963 ASSERT3U(count, >, 0);
964
965 tqs->stqs_count = count;
966 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
967
968 switch (mode) {
969 case ZTI_MODE_FIXED:
970 ASSERT3U(value, >=, 1);
971 value = MAX(value, 1);
972 break;
973
974 case ZTI_MODE_BATCH:
975 batch = B_TRUE;
976 flags |= TASKQ_THREADS_CPU_PCT;
977 value = zio_taskq_batch_pct;
978 break;
979
980 default:
981 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
982 "spa_activate()",
983 zio_type_name[t], zio_taskq_types[q], mode, value);
984 break;
985 }
986
987 for (uint_t i = 0; i < count; i++) {
988 taskq_t *tq;
989
990 if (count > 1) {
991 (void) snprintf(name, sizeof (name), "%s_%s_%u",
992 zio_type_name[t], zio_taskq_types[q], i);
993 } else {
994 (void) snprintf(name, sizeof (name), "%s_%s",
995 zio_type_name[t], zio_taskq_types[q]);
996 }
997
998 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
999 if (batch)
1000 flags |= TASKQ_DC_BATCH;
1001
1002 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1003 spa->spa_proc, zio_taskq_basedc, flags);
1004 } else {
1005 pri_t pri = maxclsyspri;
1006 /*
1007 * The write issue taskq can be extremely CPU
1008 * intensive. Run it at slightly lower priority
1009 * than the other taskqs.
1010 */
1011 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
1012 pri--;
1013
1014 tq = taskq_create_proc(name, value, pri, 50,
1015 INT_MAX, spa->spa_proc, flags);
1016 }
1017
1018 tqs->stqs_taskq[i] = tq;
1019 }
1020 }
1021
1022 static void
spa_taskqs_fini(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1023 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1024 {
1025 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1026
1027 if (tqs->stqs_taskq == NULL) {
1028 ASSERT0(tqs->stqs_count);
1029 return;
1030 }
1031
1032 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1033 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1034 taskq_destroy(tqs->stqs_taskq[i]);
1035 }
1036
1037 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1038 tqs->stqs_taskq = NULL;
1039 }
1040
1041 /*
1042 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1043 * Note that a type may have multiple discrete taskqs to avoid lock contention
1044 * on the taskq itself. In that case we choose which taskq at random by using
1045 * the low bits of gethrtime().
1046 */
1047 void
spa_taskq_dispatch_ent(spa_t * spa,zio_type_t t,zio_taskq_type_t q,task_func_t * func,void * arg,uint_t flags,taskq_ent_t * ent)1048 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1049 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1050 {
1051 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1052 taskq_t *tq;
1053
1054 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1055 ASSERT3U(tqs->stqs_count, !=, 0);
1056
1057 if (tqs->stqs_count == 1) {
1058 tq = tqs->stqs_taskq[0];
1059 } else {
1060 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1061 }
1062
1063 taskq_dispatch_ent(tq, func, arg, flags, ent);
1064 }
1065
1066 static void
spa_create_zio_taskqs(spa_t * spa)1067 spa_create_zio_taskqs(spa_t *spa)
1068 {
1069 for (int t = 0; t < ZIO_TYPES; t++) {
1070 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1071 spa_taskqs_init(spa, t, q);
1072 }
1073 }
1074 }
1075
1076 #ifdef _KERNEL
1077 static void
spa_thread(void * arg)1078 spa_thread(void *arg)
1079 {
1080 callb_cpr_t cprinfo;
1081 spa_t *spa = arg;
1082 char spa_id_readable[CB_MAXNAME + 1];
1083 user_t *pu = PTOU(curproc);
1084
1085 (void) snprintf(spa_id_readable, sizeof (spa_id_readable), "SPA:0x%p",
1086 spa);
1087
1088 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1089 spa_id_readable);
1090
1091 ASSERT(curproc != &p0);
1092 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1093 "zpool-%s", spa->spa_name);
1094 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1095
1096 /* bind this thread to the requested psrset */
1097 if (zio_taskq_psrset_bind != PS_NONE) {
1098 pool_lock();
1099 mutex_enter(&cpu_lock);
1100 mutex_enter(&pidlock);
1101 mutex_enter(&curproc->p_lock);
1102
1103 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1104 0, NULL, NULL) == 0) {
1105 curthread->t_bind_pset = zio_taskq_psrset_bind;
1106 } else {
1107 cmn_err(CE_WARN,
1108 "Couldn't bind process for zfs pool \"%s\" to "
1109 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1110 }
1111
1112 mutex_exit(&curproc->p_lock);
1113 mutex_exit(&pidlock);
1114 mutex_exit(&cpu_lock);
1115 pool_unlock();
1116 }
1117
1118 if (zio_taskq_sysdc) {
1119 sysdc_thread_enter(curthread, 100, 0);
1120 }
1121
1122 spa->spa_proc = curproc;
1123 spa->spa_did = curthread->t_did;
1124
1125 spa_create_zio_taskqs(spa);
1126
1127 mutex_enter(&spa->spa_proc_lock);
1128 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1129
1130 spa->spa_proc_state = SPA_PROC_ACTIVE;
1131 cv_broadcast(&spa->spa_proc_cv);
1132
1133 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1134 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1135 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1136 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1137
1138 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1139 spa->spa_proc_state = SPA_PROC_GONE;
1140 spa->spa_proc = &p0;
1141 cv_broadcast(&spa->spa_proc_cv);
1142 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1143
1144 mutex_enter(&curproc->p_lock);
1145 lwp_exit();
1146 }
1147 #endif
1148
1149 /*
1150 * Activate an uninitialized pool.
1151 */
1152 static void
spa_activate(spa_t * spa,int mode)1153 spa_activate(spa_t *spa, int mode)
1154 {
1155 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1156
1157 spa->spa_state = POOL_STATE_ACTIVE;
1158 spa->spa_mode = mode;
1159
1160 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1161 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1162 spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1163 spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1164
1165 /* Try to create a covering process */
1166 mutex_enter(&spa->spa_proc_lock);
1167 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1168 ASSERT(spa->spa_proc == &p0);
1169 spa->spa_did = 0;
1170
1171 /* Only create a process if we're going to be around a while. */
1172 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1173 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1174 NULL, 0) == 0) {
1175 spa->spa_proc_state = SPA_PROC_CREATED;
1176 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1177 cv_wait(&spa->spa_proc_cv,
1178 &spa->spa_proc_lock);
1179 }
1180 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1181 ASSERT(spa->spa_proc != &p0);
1182 ASSERT(spa->spa_did != 0);
1183 } else {
1184 #ifdef _KERNEL
1185 cmn_err(CE_WARN,
1186 "Couldn't create process for zfs pool \"%s\"\n",
1187 spa->spa_name);
1188 #endif
1189 }
1190 }
1191 mutex_exit(&spa->spa_proc_lock);
1192
1193 /* If we didn't create a process, we need to create our taskqs. */
1194 if (spa->spa_proc == &p0) {
1195 spa_create_zio_taskqs(spa);
1196 }
1197
1198 for (size_t i = 0; i < TXG_SIZE; i++) {
1199 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1200 ZIO_FLAG_CANFAIL);
1201 }
1202
1203 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1204 offsetof(vdev_t, vdev_config_dirty_node));
1205 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1206 offsetof(objset_t, os_evicting_node));
1207 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1208 offsetof(vdev_t, vdev_state_dirty_node));
1209
1210 txg_list_create(&spa->spa_vdev_txg_list, spa,
1211 offsetof(struct vdev, vdev_txg_node));
1212
1213 avl_create(&spa->spa_errlist_scrub,
1214 spa_error_entry_compare, sizeof (spa_error_entry_t),
1215 offsetof(spa_error_entry_t, se_avl));
1216 avl_create(&spa->spa_errlist_last,
1217 spa_error_entry_compare, sizeof (spa_error_entry_t),
1218 offsetof(spa_error_entry_t, se_avl));
1219
1220 spa_keystore_init(&spa->spa_keystore);
1221
1222 /*
1223 * The taskq to upgrade datasets in this pool. Currently used by
1224 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1225 */
1226 spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus,
1227 minclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1228 }
1229
1230 /*
1231 * Opposite of spa_activate().
1232 */
1233 static void
spa_deactivate(spa_t * spa)1234 spa_deactivate(spa_t *spa)
1235 {
1236 ASSERT(spa->spa_sync_on == B_FALSE);
1237 ASSERT(spa->spa_dsl_pool == NULL);
1238 ASSERT(spa->spa_root_vdev == NULL);
1239 ASSERT(spa->spa_async_zio_root == NULL);
1240 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1241
1242 spa_evicting_os_wait(spa);
1243
1244 if (spa->spa_upgrade_taskq) {
1245 taskq_destroy(spa->spa_upgrade_taskq);
1246 spa->spa_upgrade_taskq = NULL;
1247 }
1248
1249 txg_list_destroy(&spa->spa_vdev_txg_list);
1250
1251 list_destroy(&spa->spa_config_dirty_list);
1252 list_destroy(&spa->spa_evicting_os_list);
1253 list_destroy(&spa->spa_state_dirty_list);
1254
1255 for (int t = 0; t < ZIO_TYPES; t++) {
1256 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1257 spa_taskqs_fini(spa, t, q);
1258 }
1259 }
1260
1261 for (size_t i = 0; i < TXG_SIZE; i++) {
1262 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1263 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1264 spa->spa_txg_zio[i] = NULL;
1265 }
1266
1267 metaslab_class_destroy(spa->spa_normal_class);
1268 spa->spa_normal_class = NULL;
1269
1270 metaslab_class_destroy(spa->spa_log_class);
1271 spa->spa_log_class = NULL;
1272
1273 metaslab_class_destroy(spa->spa_special_class);
1274 spa->spa_special_class = NULL;
1275
1276 metaslab_class_destroy(spa->spa_dedup_class);
1277 spa->spa_dedup_class = NULL;
1278
1279 /*
1280 * If this was part of an import or the open otherwise failed, we may
1281 * still have errors left in the queues. Empty them just in case.
1282 */
1283 spa_errlog_drain(spa);
1284 avl_destroy(&spa->spa_errlist_scrub);
1285 avl_destroy(&spa->spa_errlist_last);
1286
1287 spa_keystore_fini(&spa->spa_keystore);
1288
1289 spa->spa_state = POOL_STATE_UNINITIALIZED;
1290
1291 mutex_enter(&spa->spa_proc_lock);
1292 if (spa->spa_proc_state != SPA_PROC_NONE) {
1293 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1294 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1295 cv_broadcast(&spa->spa_proc_cv);
1296 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1297 ASSERT(spa->spa_proc != &p0);
1298 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1299 }
1300 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1301 spa->spa_proc_state = SPA_PROC_NONE;
1302 }
1303 ASSERT(spa->spa_proc == &p0);
1304 mutex_exit(&spa->spa_proc_lock);
1305
1306 /*
1307 * We want to make sure spa_thread() has actually exited the ZFS
1308 * module, so that the module can't be unloaded out from underneath
1309 * it.
1310 */
1311 if (spa->spa_did != 0) {
1312 thread_join(spa->spa_did);
1313 spa->spa_did = 0;
1314 }
1315 }
1316
1317 /*
1318 * Verify a pool configuration, and construct the vdev tree appropriately. This
1319 * will create all the necessary vdevs in the appropriate layout, with each vdev
1320 * in the CLOSED state. This will prep the pool before open/creation/import.
1321 * All vdev validation is done by the vdev_alloc() routine.
1322 */
1323 static int
spa_config_parse(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int atype)1324 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1325 uint_t id, int atype)
1326 {
1327 nvlist_t **child;
1328 uint_t children;
1329 int error;
1330
1331 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1332 return (error);
1333
1334 if ((*vdp)->vdev_ops->vdev_op_leaf)
1335 return (0);
1336
1337 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1338 &child, &children);
1339
1340 if (error == ENOENT)
1341 return (0);
1342
1343 if (error) {
1344 vdev_free(*vdp);
1345 *vdp = NULL;
1346 return (SET_ERROR(EINVAL));
1347 }
1348
1349 for (int c = 0; c < children; c++) {
1350 vdev_t *vd;
1351 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1352 atype)) != 0) {
1353 vdev_free(*vdp);
1354 *vdp = NULL;
1355 return (error);
1356 }
1357 }
1358
1359 ASSERT(*vdp != NULL);
1360
1361 return (0);
1362 }
1363
1364 static boolean_t
spa_should_flush_logs_on_unload(spa_t * spa)1365 spa_should_flush_logs_on_unload(spa_t *spa)
1366 {
1367 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1368 return (B_FALSE);
1369
1370 if (!spa_writeable(spa))
1371 return (B_FALSE);
1372
1373 if (!spa->spa_sync_on)
1374 return (B_FALSE);
1375
1376 if (spa_state(spa) != POOL_STATE_EXPORTED)
1377 return (B_FALSE);
1378
1379 if (zfs_keep_log_spacemaps_at_export)
1380 return (B_FALSE);
1381
1382 return (B_TRUE);
1383 }
1384
1385 /*
1386 * Opens a transaction that will set the flag that will instruct
1387 * spa_sync to attempt to flush all the metaslabs for that txg.
1388 */
1389 static void
spa_unload_log_sm_flush_all(spa_t * spa)1390 spa_unload_log_sm_flush_all(spa_t *spa)
1391 {
1392 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1393
1394 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1395
1396 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1397 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1398
1399 dmu_tx_commit(tx);
1400 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1401 }
1402
1403 static void
spa_unload_log_sm_metadata(spa_t * spa)1404 spa_unload_log_sm_metadata(spa_t *spa)
1405 {
1406 void *cookie = NULL;
1407 spa_log_sm_t *sls;
1408
1409 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1410 &cookie)) != NULL) {
1411 VERIFY0(sls->sls_mscount);
1412 kmem_free(sls, sizeof (spa_log_sm_t));
1413 }
1414
1415 for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1416 e != NULL; e = list_head(&spa->spa_log_summary)) {
1417 VERIFY0(e->lse_mscount);
1418 list_remove(&spa->spa_log_summary, e);
1419 kmem_free(e, sizeof (log_summary_entry_t));
1420 }
1421
1422 spa->spa_unflushed_stats.sus_nblocks = 0;
1423 spa->spa_unflushed_stats.sus_memused = 0;
1424 spa->spa_unflushed_stats.sus_blocklimit = 0;
1425 }
1426
1427 /*
1428 * Opposite of spa_load().
1429 */
1430 static void
spa_unload(spa_t * spa)1431 spa_unload(spa_t *spa)
1432 {
1433 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1434 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1435
1436 spa_import_progress_remove(spa);
1437 spa_load_note(spa, "UNLOADING");
1438
1439 /*
1440 * If the log space map feature is enabled and the pool is getting
1441 * exported (but not destroyed), we want to spend some time flushing
1442 * as many metaslabs as we can in an attempt to destroy log space
1443 * maps and save import time.
1444 */
1445 if (spa_should_flush_logs_on_unload(spa))
1446 spa_unload_log_sm_flush_all(spa);
1447
1448 /*
1449 * Stop async tasks.
1450 */
1451 spa_async_suspend(spa);
1452
1453 if (spa->spa_root_vdev) {
1454 vdev_t *root_vdev = spa->spa_root_vdev;
1455 vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE);
1456 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1457 vdev_autotrim_stop_all(spa);
1458 }
1459
1460 /*
1461 * Stop syncing.
1462 */
1463 if (spa->spa_sync_on) {
1464 txg_sync_stop(spa->spa_dsl_pool);
1465 spa->spa_sync_on = B_FALSE;
1466 }
1467
1468 /*
1469 * This ensures that there is no async metaslab prefetching
1470 * while we attempt to unload the spa.
1471 */
1472 if (spa->spa_root_vdev != NULL) {
1473 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1474 vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1475 if (vc->vdev_mg != NULL)
1476 taskq_wait(vc->vdev_mg->mg_taskq);
1477 }
1478 }
1479
1480 if (spa->spa_mmp.mmp_thread)
1481 mmp_thread_stop(spa);
1482
1483 /*
1484 * Wait for any outstanding async I/O to complete.
1485 */
1486 if (spa->spa_async_zio_root != NULL) {
1487 for (int i = 0; i < max_ncpus; i++)
1488 (void) zio_wait(spa->spa_async_zio_root[i]);
1489 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1490 spa->spa_async_zio_root = NULL;
1491 }
1492
1493 if (spa->spa_vdev_removal != NULL) {
1494 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1495 spa->spa_vdev_removal = NULL;
1496 }
1497
1498 if (spa->spa_condense_zthr != NULL) {
1499 zthr_destroy(spa->spa_condense_zthr);
1500 spa->spa_condense_zthr = NULL;
1501 }
1502
1503 if (spa->spa_checkpoint_discard_zthr != NULL) {
1504 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1505 spa->spa_checkpoint_discard_zthr = NULL;
1506 }
1507
1508 spa_condense_fini(spa);
1509
1510 bpobj_close(&spa->spa_deferred_bpobj);
1511
1512 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1513
1514 /*
1515 * Close all vdevs.
1516 */
1517 if (spa->spa_root_vdev)
1518 vdev_free(spa->spa_root_vdev);
1519 ASSERT(spa->spa_root_vdev == NULL);
1520
1521 /*
1522 * Close the dsl pool.
1523 */
1524 if (spa->spa_dsl_pool) {
1525 dsl_pool_close(spa->spa_dsl_pool);
1526 spa->spa_dsl_pool = NULL;
1527 spa->spa_meta_objset = NULL;
1528 }
1529
1530 ddt_unload(spa);
1531 spa_unload_log_sm_metadata(spa);
1532
1533 /*
1534 * Drop and purge level 2 cache
1535 */
1536 spa_l2cache_drop(spa);
1537
1538 for (int i = 0; i < spa->spa_spares.sav_count; i++)
1539 vdev_free(spa->spa_spares.sav_vdevs[i]);
1540 if (spa->spa_spares.sav_vdevs) {
1541 kmem_free(spa->spa_spares.sav_vdevs,
1542 spa->spa_spares.sav_count * sizeof (void *));
1543 spa->spa_spares.sav_vdevs = NULL;
1544 }
1545 if (spa->spa_spares.sav_config) {
1546 nvlist_free(spa->spa_spares.sav_config);
1547 spa->spa_spares.sav_config = NULL;
1548 }
1549 spa->spa_spares.sav_count = 0;
1550
1551 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1552 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1553 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1554 }
1555 if (spa->spa_l2cache.sav_vdevs) {
1556 kmem_free(spa->spa_l2cache.sav_vdevs,
1557 spa->spa_l2cache.sav_count * sizeof (void *));
1558 spa->spa_l2cache.sav_vdevs = NULL;
1559 }
1560 if (spa->spa_l2cache.sav_config) {
1561 nvlist_free(spa->spa_l2cache.sav_config);
1562 spa->spa_l2cache.sav_config = NULL;
1563 }
1564 spa->spa_l2cache.sav_count = 0;
1565
1566 spa->spa_async_suspended = 0;
1567
1568 spa->spa_indirect_vdevs_loaded = B_FALSE;
1569
1570 if (spa->spa_comment != NULL) {
1571 spa_strfree(spa->spa_comment);
1572 spa->spa_comment = NULL;
1573 }
1574
1575 spa_config_exit(spa, SCL_ALL, spa);
1576 }
1577
1578 /*
1579 * Load (or re-load) the current list of vdevs describing the active spares for
1580 * this pool. When this is called, we have some form of basic information in
1581 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1582 * then re-generate a more complete list including status information.
1583 */
1584 void
spa_load_spares(spa_t * spa)1585 spa_load_spares(spa_t *spa)
1586 {
1587 nvlist_t **spares;
1588 uint_t nspares;
1589 int i;
1590 vdev_t *vd, *tvd;
1591
1592 #ifndef _KERNEL
1593 /*
1594 * zdb opens both the current state of the pool and the
1595 * checkpointed state (if present), with a different spa_t.
1596 *
1597 * As spare vdevs are shared among open pools, we skip loading
1598 * them when we load the checkpointed state of the pool.
1599 */
1600 if (!spa_writeable(spa))
1601 return;
1602 #endif
1603
1604 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1605
1606 /*
1607 * First, close and free any existing spare vdevs.
1608 */
1609 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1610 vd = spa->spa_spares.sav_vdevs[i];
1611
1612 /* Undo the call to spa_activate() below */
1613 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1614 B_FALSE)) != NULL && tvd->vdev_isspare)
1615 spa_spare_remove(tvd);
1616 vdev_close(vd);
1617 vdev_free(vd);
1618 }
1619
1620 if (spa->spa_spares.sav_vdevs)
1621 kmem_free(spa->spa_spares.sav_vdevs,
1622 spa->spa_spares.sav_count * sizeof (void *));
1623
1624 if (spa->spa_spares.sav_config == NULL)
1625 nspares = 0;
1626 else
1627 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1628 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1629
1630 spa->spa_spares.sav_count = (int)nspares;
1631 spa->spa_spares.sav_vdevs = NULL;
1632
1633 if (nspares == 0)
1634 return;
1635
1636 /*
1637 * Construct the array of vdevs, opening them to get status in the
1638 * process. For each spare, there is potentially two different vdev_t
1639 * structures associated with it: one in the list of spares (used only
1640 * for basic validation purposes) and one in the active vdev
1641 * configuration (if it's spared in). During this phase we open and
1642 * validate each vdev on the spare list. If the vdev also exists in the
1643 * active configuration, then we also mark this vdev as an active spare.
1644 */
1645 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1646 KM_SLEEP);
1647 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1648 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1649 VDEV_ALLOC_SPARE) == 0);
1650 ASSERT(vd != NULL);
1651
1652 spa->spa_spares.sav_vdevs[i] = vd;
1653
1654 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1655 B_FALSE)) != NULL) {
1656 if (!tvd->vdev_isspare)
1657 spa_spare_add(tvd);
1658
1659 /*
1660 * We only mark the spare active if we were successfully
1661 * able to load the vdev. Otherwise, importing a pool
1662 * with a bad active spare would result in strange
1663 * behavior, because multiple pool would think the spare
1664 * is actively in use.
1665 *
1666 * There is a vulnerability here to an equally bizarre
1667 * circumstance, where a dead active spare is later
1668 * brought back to life (onlined or otherwise). Given
1669 * the rarity of this scenario, and the extra complexity
1670 * it adds, we ignore the possibility.
1671 */
1672 if (!vdev_is_dead(tvd))
1673 spa_spare_activate(tvd);
1674 }
1675
1676 vd->vdev_top = vd;
1677 vd->vdev_aux = &spa->spa_spares;
1678
1679 if (vdev_open(vd) != 0)
1680 continue;
1681
1682 if (vdev_validate_aux(vd) == 0)
1683 spa_spare_add(vd);
1684 }
1685
1686 /*
1687 * Recompute the stashed list of spares, with status information
1688 * this time.
1689 */
1690 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1691 DATA_TYPE_NVLIST_ARRAY) == 0);
1692
1693 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1694 KM_SLEEP);
1695 for (i = 0; i < spa->spa_spares.sav_count; i++)
1696 spares[i] = vdev_config_generate(spa,
1697 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1698 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1699 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1700 for (i = 0; i < spa->spa_spares.sav_count; i++)
1701 nvlist_free(spares[i]);
1702 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1703 }
1704
1705 /*
1706 * Load (or re-load) the current list of vdevs describing the active l2cache for
1707 * this pool. When this is called, we have some form of basic information in
1708 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1709 * then re-generate a more complete list including status information.
1710 * Devices which are already active have their details maintained, and are
1711 * not re-opened.
1712 */
1713 void
spa_load_l2cache(spa_t * spa)1714 spa_load_l2cache(spa_t *spa)
1715 {
1716 nvlist_t **l2cache;
1717 uint_t nl2cache;
1718 int i, j, oldnvdevs;
1719 uint64_t guid;
1720 vdev_t *vd, **oldvdevs, **newvdevs;
1721 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1722
1723 #ifndef _KERNEL
1724 /*
1725 * zdb opens both the current state of the pool and the
1726 * checkpointed state (if present), with a different spa_t.
1727 *
1728 * As L2 caches are part of the ARC which is shared among open
1729 * pools, we skip loading them when we load the checkpointed
1730 * state of the pool.
1731 */
1732 if (!spa_writeable(spa))
1733 return;
1734 #endif
1735
1736 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1737
1738 nl2cache = 0;
1739 newvdevs = NULL;
1740 if (sav->sav_config != NULL) {
1741 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1742 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1743 if (nl2cache > 0) {
1744 newvdevs = kmem_alloc(
1745 nl2cache * sizeof (void *), KM_SLEEP);
1746 }
1747 }
1748
1749 oldvdevs = sav->sav_vdevs;
1750 oldnvdevs = sav->sav_count;
1751 sav->sav_vdevs = NULL;
1752 sav->sav_count = 0;
1753
1754 /*
1755 * Process new nvlist of vdevs.
1756 */
1757 for (i = 0; i < nl2cache; i++) {
1758 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1759 &guid) == 0);
1760
1761 newvdevs[i] = NULL;
1762 for (j = 0; j < oldnvdevs; j++) {
1763 vd = oldvdevs[j];
1764 if (vd != NULL && guid == vd->vdev_guid) {
1765 /*
1766 * Retain previous vdev for add/remove ops.
1767 */
1768 newvdevs[i] = vd;
1769 oldvdevs[j] = NULL;
1770 break;
1771 }
1772 }
1773
1774 if (newvdevs[i] == NULL) {
1775 /*
1776 * Create new vdev
1777 */
1778 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1779 VDEV_ALLOC_L2CACHE) == 0);
1780 ASSERT(vd != NULL);
1781 newvdevs[i] = vd;
1782
1783 /*
1784 * Commit this vdev as an l2cache device,
1785 * even if it fails to open.
1786 */
1787 spa_l2cache_add(vd);
1788
1789 vd->vdev_top = vd;
1790 vd->vdev_aux = sav;
1791
1792 spa_l2cache_activate(vd);
1793
1794 if (vdev_open(vd) != 0)
1795 continue;
1796
1797 (void) vdev_validate_aux(vd);
1798
1799 if (!vdev_is_dead(vd))
1800 l2arc_add_vdev(spa, vd);
1801 }
1802 }
1803
1804 /*
1805 * Purge vdevs that were dropped
1806 */
1807 for (i = 0; i < oldnvdevs; i++) {
1808 uint64_t pool;
1809
1810 vd = oldvdevs[i];
1811 if (vd != NULL) {
1812 ASSERT(vd->vdev_isl2cache);
1813
1814 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1815 pool != 0ULL && l2arc_vdev_present(vd))
1816 l2arc_remove_vdev(vd);
1817 vdev_clear_stats(vd);
1818 vdev_free(vd);
1819 }
1820 }
1821
1822 if (oldvdevs)
1823 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1824
1825 if (sav->sav_config == NULL)
1826 goto out;
1827
1828 sav->sav_vdevs = newvdevs;
1829 sav->sav_count = (int)nl2cache;
1830
1831 /*
1832 * Recompute the stashed list of l2cache devices, with status
1833 * information this time.
1834 */
1835 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1836 DATA_TYPE_NVLIST_ARRAY) == 0);
1837
1838 l2cache = NULL;
1839 if (sav->sav_count > 0) {
1840 l2cache = kmem_alloc(
1841 sav->sav_count * sizeof (void *), KM_SLEEP);
1842 }
1843 for (i = 0; i < sav->sav_count; i++)
1844 l2cache[i] = vdev_config_generate(spa,
1845 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1846 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1847 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1848 out:
1849 for (i = 0; i < sav->sav_count; i++)
1850 nvlist_free(l2cache[i]);
1851 if (sav->sav_count)
1852 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1853 }
1854
1855 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)1856 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1857 {
1858 dmu_buf_t *db;
1859 char *packed = NULL;
1860 size_t nvsize = 0;
1861 int error;
1862 *value = NULL;
1863
1864 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1865 if (error != 0)
1866 return (error);
1867
1868 nvsize = *(uint64_t *)db->db_data;
1869 dmu_buf_rele(db, FTAG);
1870
1871 packed = kmem_alloc(nvsize, KM_SLEEP);
1872 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1873 DMU_READ_PREFETCH);
1874 if (error == 0)
1875 error = nvlist_unpack(packed, nvsize, value, 0);
1876 kmem_free(packed, nvsize);
1877
1878 return (error);
1879 }
1880
1881 /*
1882 * Concrete top-level vdevs that are not missing and are not logs. At every
1883 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1884 */
1885 static uint64_t
spa_healthy_core_tvds(spa_t * spa)1886 spa_healthy_core_tvds(spa_t *spa)
1887 {
1888 vdev_t *rvd = spa->spa_root_vdev;
1889 uint64_t tvds = 0;
1890
1891 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1892 vdev_t *vd = rvd->vdev_child[i];
1893 if (vd->vdev_islog)
1894 continue;
1895 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1896 tvds++;
1897 }
1898
1899 return (tvds);
1900 }
1901
1902 /*
1903 * Checks to see if the given vdev could not be opened, in which case we post a
1904 * sysevent to notify the autoreplace code that the device has been removed.
1905 */
1906 static void
spa_check_removed(vdev_t * vd)1907 spa_check_removed(vdev_t *vd)
1908 {
1909 for (uint64_t c = 0; c < vd->vdev_children; c++)
1910 spa_check_removed(vd->vdev_child[c]);
1911
1912 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1913 vdev_is_concrete(vd)) {
1914 zfs_post_autoreplace(vd->vdev_spa, vd);
1915 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1916 }
1917 }
1918
1919 static int
spa_check_for_missing_logs(spa_t * spa)1920 spa_check_for_missing_logs(spa_t *spa)
1921 {
1922 vdev_t *rvd = spa->spa_root_vdev;
1923
1924 /*
1925 * If we're doing a normal import, then build up any additional
1926 * diagnostic information about missing log devices.
1927 * We'll pass this up to the user for further processing.
1928 */
1929 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1930 nvlist_t **child, *nv;
1931 uint64_t idx = 0;
1932
1933 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1934 KM_SLEEP);
1935 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1936
1937 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1938 vdev_t *tvd = rvd->vdev_child[c];
1939
1940 /*
1941 * We consider a device as missing only if it failed
1942 * to open (i.e. offline or faulted is not considered
1943 * as missing).
1944 */
1945 if (tvd->vdev_islog &&
1946 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1947 child[idx++] = vdev_config_generate(spa, tvd,
1948 B_FALSE, VDEV_CONFIG_MISSING);
1949 }
1950 }
1951
1952 if (idx > 0) {
1953 fnvlist_add_nvlist_array(nv,
1954 ZPOOL_CONFIG_CHILDREN, child, idx);
1955 fnvlist_add_nvlist(spa->spa_load_info,
1956 ZPOOL_CONFIG_MISSING_DEVICES, nv);
1957
1958 for (uint64_t i = 0; i < idx; i++)
1959 nvlist_free(child[i]);
1960 }
1961 nvlist_free(nv);
1962 kmem_free(child, rvd->vdev_children * sizeof (char **));
1963
1964 if (idx > 0) {
1965 spa_load_failed(spa, "some log devices are missing");
1966 vdev_dbgmsg_print_tree(rvd, 2);
1967 return (SET_ERROR(ENXIO));
1968 }
1969 } else {
1970 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1971 vdev_t *tvd = rvd->vdev_child[c];
1972
1973 if (tvd->vdev_islog &&
1974 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1975 spa_set_log_state(spa, SPA_LOG_CLEAR);
1976 spa_load_note(spa, "some log devices are "
1977 "missing, ZIL is dropped.");
1978 vdev_dbgmsg_print_tree(rvd, 2);
1979 break;
1980 }
1981 }
1982 }
1983
1984 return (0);
1985 }
1986
1987 /*
1988 * Check for missing log devices
1989 */
1990 static boolean_t
spa_check_logs(spa_t * spa)1991 spa_check_logs(spa_t *spa)
1992 {
1993 boolean_t rv = B_FALSE;
1994 dsl_pool_t *dp = spa_get_dsl(spa);
1995
1996 switch (spa->spa_log_state) {
1997 case SPA_LOG_MISSING:
1998 /* need to recheck in case slog has been restored */
1999 case SPA_LOG_UNKNOWN:
2000 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2001 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2002 if (rv)
2003 spa_set_log_state(spa, SPA_LOG_MISSING);
2004 break;
2005 }
2006 return (rv);
2007 }
2008
2009 static boolean_t
spa_passivate_log(spa_t * spa)2010 spa_passivate_log(spa_t *spa)
2011 {
2012 vdev_t *rvd = spa->spa_root_vdev;
2013 boolean_t slog_found = B_FALSE;
2014
2015 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2016
2017 if (!spa_has_slogs(spa))
2018 return (B_FALSE);
2019
2020 for (int c = 0; c < rvd->vdev_children; c++) {
2021 vdev_t *tvd = rvd->vdev_child[c];
2022 metaslab_group_t *mg = tvd->vdev_mg;
2023
2024 if (tvd->vdev_islog) {
2025 metaslab_group_passivate(mg);
2026 slog_found = B_TRUE;
2027 }
2028 }
2029
2030 return (slog_found);
2031 }
2032
2033 static void
spa_activate_log(spa_t * spa)2034 spa_activate_log(spa_t *spa)
2035 {
2036 vdev_t *rvd = spa->spa_root_vdev;
2037
2038 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2039
2040 for (int c = 0; c < rvd->vdev_children; c++) {
2041 vdev_t *tvd = rvd->vdev_child[c];
2042 metaslab_group_t *mg = tvd->vdev_mg;
2043
2044 if (tvd->vdev_islog)
2045 metaslab_group_activate(mg);
2046 }
2047 }
2048
2049 int
spa_reset_logs(spa_t * spa)2050 spa_reset_logs(spa_t *spa)
2051 {
2052 int error;
2053
2054 error = dmu_objset_find(spa_name(spa), zil_reset,
2055 NULL, DS_FIND_CHILDREN);
2056 if (error == 0) {
2057 /*
2058 * We successfully offlined the log device, sync out the
2059 * current txg so that the "stubby" block can be removed
2060 * by zil_sync().
2061 */
2062 txg_wait_synced(spa->spa_dsl_pool, 0);
2063 }
2064 return (error);
2065 }
2066
2067 static void
spa_aux_check_removed(spa_aux_vdev_t * sav)2068 spa_aux_check_removed(spa_aux_vdev_t *sav)
2069 {
2070 for (int i = 0; i < sav->sav_count; i++)
2071 spa_check_removed(sav->sav_vdevs[i]);
2072 }
2073
2074 void
spa_claim_notify(zio_t * zio)2075 spa_claim_notify(zio_t *zio)
2076 {
2077 spa_t *spa = zio->io_spa;
2078
2079 if (zio->io_error)
2080 return;
2081
2082 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2083 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2084 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2085 mutex_exit(&spa->spa_props_lock);
2086 }
2087
2088 typedef struct spa_load_error {
2089 uint64_t sle_meta_count;
2090 uint64_t sle_data_count;
2091 } spa_load_error_t;
2092
2093 static void
spa_load_verify_done(zio_t * zio)2094 spa_load_verify_done(zio_t *zio)
2095 {
2096 blkptr_t *bp = zio->io_bp;
2097 spa_load_error_t *sle = zio->io_private;
2098 dmu_object_type_t type = BP_GET_TYPE(bp);
2099 int error = zio->io_error;
2100 spa_t *spa = zio->io_spa;
2101
2102 abd_free(zio->io_abd);
2103 if (error) {
2104 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2105 type != DMU_OT_INTENT_LOG)
2106 atomic_inc_64(&sle->sle_meta_count);
2107 else
2108 atomic_inc_64(&sle->sle_data_count);
2109 }
2110
2111 mutex_enter(&spa->spa_scrub_lock);
2112 spa->spa_load_verify_ios--;
2113 cv_broadcast(&spa->spa_scrub_io_cv);
2114 mutex_exit(&spa->spa_scrub_lock);
2115 }
2116
2117 /*
2118 * Maximum number of concurrent scrub i/os to create while verifying
2119 * a pool while importing it.
2120 */
2121 int spa_load_verify_maxinflight = 10000;
2122 boolean_t spa_load_verify_metadata = B_TRUE;
2123 boolean_t spa_load_verify_data = B_TRUE;
2124
2125 /*ARGSUSED*/
2126 static int
spa_load_verify_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)2127 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2128 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2129 {
2130 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2131 return (0);
2132 /*
2133 * Note: normally this routine will not be called if
2134 * spa_load_verify_metadata is not set. However, it may be useful
2135 * to manually set the flag after the traversal has begun.
2136 */
2137 if (!spa_load_verify_metadata)
2138 return (0);
2139 if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2140 return (0);
2141
2142 zio_t *rio = arg;
2143 size_t size = BP_GET_PSIZE(bp);
2144
2145 mutex_enter(&spa->spa_scrub_lock);
2146 while (spa->spa_load_verify_ios >= spa_load_verify_maxinflight)
2147 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2148 spa->spa_load_verify_ios++;
2149 mutex_exit(&spa->spa_scrub_lock);
2150
2151 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2152 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2153 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2154 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2155 return (0);
2156 }
2157
2158 /* ARGSUSED */
2159 int
verify_dataset_name_len(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)2160 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2161 {
2162 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2163 return (SET_ERROR(ENAMETOOLONG));
2164
2165 return (0);
2166 }
2167
2168 static int
spa_load_verify(spa_t * spa)2169 spa_load_verify(spa_t *spa)
2170 {
2171 zio_t *rio;
2172 spa_load_error_t sle = { 0 };
2173 zpool_load_policy_t policy;
2174 boolean_t verify_ok = B_FALSE;
2175 int error = 0;
2176
2177 zpool_get_load_policy(spa->spa_config, &policy);
2178
2179 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2180 return (0);
2181
2182 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2183 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2184 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2185 DS_FIND_CHILDREN);
2186 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2187 if (error != 0)
2188 return (error);
2189
2190 rio = zio_root(spa, NULL, &sle,
2191 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2192
2193 if (spa_load_verify_metadata) {
2194 if (spa->spa_extreme_rewind) {
2195 spa_load_note(spa, "performing a complete scan of the "
2196 "pool since extreme rewind is on. This may take "
2197 "a very long time.\n (spa_load_verify_data=%u, "
2198 "spa_load_verify_metadata=%u)",
2199 spa_load_verify_data, spa_load_verify_metadata);
2200 }
2201 error = traverse_pool(spa, spa->spa_verify_min_txg,
2202 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2203 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2204 }
2205
2206 (void) zio_wait(rio);
2207
2208 spa->spa_load_meta_errors = sle.sle_meta_count;
2209 spa->spa_load_data_errors = sle.sle_data_count;
2210
2211 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2212 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2213 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2214 (u_longlong_t)sle.sle_data_count);
2215 }
2216
2217 if (spa_load_verify_dryrun ||
2218 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2219 sle.sle_data_count <= policy.zlp_maxdata)) {
2220 int64_t loss = 0;
2221
2222 verify_ok = B_TRUE;
2223 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2224 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2225
2226 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2227 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2228 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2229 VERIFY(nvlist_add_int64(spa->spa_load_info,
2230 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2231 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2232 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2233 } else {
2234 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2235 }
2236
2237 if (spa_load_verify_dryrun)
2238 return (0);
2239
2240 if (error) {
2241 if (error != ENXIO && error != EIO)
2242 error = SET_ERROR(EIO);
2243 return (error);
2244 }
2245
2246 return (verify_ok ? 0 : EIO);
2247 }
2248
2249 /*
2250 * Find a value in the pool props object.
2251 */
2252 static void
spa_prop_find(spa_t * spa,zpool_prop_t prop,uint64_t * val)2253 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2254 {
2255 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2256 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2257 }
2258
2259 /*
2260 * Find a value in the pool directory object.
2261 */
2262 static int
spa_dir_prop(spa_t * spa,const char * name,uint64_t * val,boolean_t log_enoent)2263 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2264 {
2265 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2266 name, sizeof (uint64_t), 1, val);
2267
2268 if (error != 0 && (error != ENOENT || log_enoent)) {
2269 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2270 "[error=%d]", name, error);
2271 }
2272
2273 return (error);
2274 }
2275
2276 static int
spa_vdev_err(vdev_t * vdev,vdev_aux_t aux,int err)2277 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2278 {
2279 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2280 return (SET_ERROR(err));
2281 }
2282
2283 static void
spa_spawn_aux_threads(spa_t * spa)2284 spa_spawn_aux_threads(spa_t *spa)
2285 {
2286 ASSERT(spa_writeable(spa));
2287
2288 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2289
2290 spa_start_indirect_condensing_thread(spa);
2291
2292 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2293 spa->spa_checkpoint_discard_zthr =
2294 zthr_create(spa_checkpoint_discard_thread_check,
2295 spa_checkpoint_discard_thread, spa);
2296 }
2297
2298 /*
2299 * Fix up config after a partly-completed split. This is done with the
2300 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2301 * pool have that entry in their config, but only the splitting one contains
2302 * a list of all the guids of the vdevs that are being split off.
2303 *
2304 * This function determines what to do with that list: either rejoin
2305 * all the disks to the pool, or complete the splitting process. To attempt
2306 * the rejoin, each disk that is offlined is marked online again, and
2307 * we do a reopen() call. If the vdev label for every disk that was
2308 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2309 * then we call vdev_split() on each disk, and complete the split.
2310 *
2311 * Otherwise we leave the config alone, with all the vdevs in place in
2312 * the original pool.
2313 */
2314 static void
spa_try_repair(spa_t * spa,nvlist_t * config)2315 spa_try_repair(spa_t *spa, nvlist_t *config)
2316 {
2317 uint_t extracted;
2318 uint64_t *glist;
2319 uint_t i, gcount;
2320 nvlist_t *nvl;
2321 vdev_t **vd;
2322 boolean_t attempt_reopen;
2323
2324 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2325 return;
2326
2327 /* check that the config is complete */
2328 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2329 &glist, &gcount) != 0)
2330 return;
2331
2332 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2333
2334 /* attempt to online all the vdevs & validate */
2335 attempt_reopen = B_TRUE;
2336 for (i = 0; i < gcount; i++) {
2337 if (glist[i] == 0) /* vdev is hole */
2338 continue;
2339
2340 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2341 if (vd[i] == NULL) {
2342 /*
2343 * Don't bother attempting to reopen the disks;
2344 * just do the split.
2345 */
2346 attempt_reopen = B_FALSE;
2347 } else {
2348 /* attempt to re-online it */
2349 vd[i]->vdev_offline = B_FALSE;
2350 }
2351 }
2352
2353 if (attempt_reopen) {
2354 vdev_reopen(spa->spa_root_vdev);
2355
2356 /* check each device to see what state it's in */
2357 for (extracted = 0, i = 0; i < gcount; i++) {
2358 if (vd[i] != NULL &&
2359 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2360 break;
2361 ++extracted;
2362 }
2363 }
2364
2365 /*
2366 * If every disk has been moved to the new pool, or if we never
2367 * even attempted to look at them, then we split them off for
2368 * good.
2369 */
2370 if (!attempt_reopen || gcount == extracted) {
2371 for (i = 0; i < gcount; i++)
2372 if (vd[i] != NULL)
2373 vdev_split(vd[i]);
2374 vdev_reopen(spa->spa_root_vdev);
2375 }
2376
2377 kmem_free(vd, gcount * sizeof (vdev_t *));
2378 }
2379
2380 static int
spa_load(spa_t * spa,spa_load_state_t state,spa_import_type_t type)2381 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2382 {
2383 char *ereport = FM_EREPORT_ZFS_POOL;
2384 int error;
2385
2386 spa->spa_load_state = state;
2387 (void) spa_import_progress_set_state(spa, spa_load_state(spa));
2388
2389 gethrestime(&spa->spa_loaded_ts);
2390 error = spa_load_impl(spa, type, &ereport);
2391
2392 /*
2393 * Don't count references from objsets that are already closed
2394 * and are making their way through the eviction process.
2395 */
2396 spa_evicting_os_wait(spa);
2397 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2398 if (error) {
2399 if (error != EEXIST) {
2400 spa->spa_loaded_ts.tv_sec = 0;
2401 spa->spa_loaded_ts.tv_nsec = 0;
2402 }
2403 if (error != EBADF) {
2404 (void) zfs_ereport_post(ereport, spa,
2405 NULL, NULL, NULL, 0, 0);
2406 }
2407 }
2408 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2409 spa->spa_ena = 0;
2410
2411 (void) spa_import_progress_set_state(spa, spa_load_state(spa));
2412
2413 return (error);
2414 }
2415
2416 /*
2417 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2418 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2419 * spa's per-vdev ZAP list.
2420 */
2421 static uint64_t
vdev_count_verify_zaps(vdev_t * vd)2422 vdev_count_verify_zaps(vdev_t *vd)
2423 {
2424 spa_t *spa = vd->vdev_spa;
2425 uint64_t total = 0;
2426 if (vd->vdev_top_zap != 0) {
2427 total++;
2428 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2429 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2430 }
2431 if (vd->vdev_leaf_zap != 0) {
2432 total++;
2433 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2434 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2435 }
2436
2437 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2438 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2439 }
2440
2441 return (total);
2442 }
2443
2444 /*
2445 * Determine whether the activity check is required.
2446 */
2447 static boolean_t
spa_activity_check_required(spa_t * spa,uberblock_t * ub,nvlist_t * label,nvlist_t * config)2448 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2449 nvlist_t *config)
2450 {
2451 uint64_t state = 0;
2452 uint64_t hostid = 0;
2453 uint64_t tryconfig_txg = 0;
2454 uint64_t tryconfig_timestamp = 0;
2455 uint16_t tryconfig_mmp_seq = 0;
2456 nvlist_t *nvinfo;
2457
2458 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2459 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2460 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2461 &tryconfig_txg);
2462 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2463 &tryconfig_timestamp);
2464 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
2465 &tryconfig_mmp_seq);
2466 }
2467
2468 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2469
2470 /*
2471 * Disable the MMP activity check - This is used by zdb which
2472 * is intended to be used on potentially active pools.
2473 */
2474 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2475 return (B_FALSE);
2476
2477 /*
2478 * Skip the activity check when the MMP feature is disabled.
2479 */
2480 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2481 return (B_FALSE);
2482
2483 /*
2484 * If the tryconfig_ values are nonzero, they are the results of an
2485 * earlier tryimport. If they all match the uberblock we just found,
2486 * then the pool has not changed and we return false so we do not test
2487 * a second time.
2488 */
2489 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2490 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
2491 tryconfig_mmp_seq && tryconfig_mmp_seq ==
2492 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
2493 return (B_FALSE);
2494
2495 /*
2496 * Allow the activity check to be skipped when importing the pool
2497 * on the same host which last imported it. Since the hostid from
2498 * configuration may be stale use the one read from the label.
2499 */
2500 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2501 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2502
2503 if (hostid == spa_get_hostid())
2504 return (B_FALSE);
2505
2506 /*
2507 * Skip the activity test when the pool was cleanly exported.
2508 */
2509 if (state != POOL_STATE_ACTIVE)
2510 return (B_FALSE);
2511
2512 return (B_TRUE);
2513 }
2514
2515 /*
2516 * Nanoseconds the activity check must watch for changes on-disk.
2517 */
2518 static uint64_t
spa_activity_check_duration(spa_t * spa,uberblock_t * ub)2519 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
2520 {
2521 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
2522 uint64_t multihost_interval = MSEC2NSEC(
2523 MMP_INTERVAL_OK(zfs_multihost_interval));
2524 uint64_t import_delay = MAX(NANOSEC, import_intervals *
2525 multihost_interval);
2526
2527 /*
2528 * Local tunables determine a minimum duration except for the case
2529 * where we know when the remote host will suspend the pool if MMP
2530 * writes do not land.
2531 *
2532 * See Big Theory comment at the top of mmp.c for the reasoning behind
2533 * these cases and times.
2534 */
2535
2536 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
2537
2538 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
2539 MMP_FAIL_INT(ub) > 0) {
2540
2541 /* MMP on remote host will suspend pool after failed writes */
2542 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
2543 MMP_IMPORT_SAFETY_FACTOR / 100;
2544
2545 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
2546 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
2547 "import_intervals=%u", import_delay, MMP_FAIL_INT(ub),
2548 MMP_INTERVAL(ub), import_intervals);
2549
2550 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
2551 MMP_FAIL_INT(ub) == 0) {
2552
2553 /* MMP on remote host will never suspend pool */
2554 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
2555 ub->ub_mmp_delay) * import_intervals);
2556
2557 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
2558 "mmp_interval=%llu ub_mmp_delay=%llu "
2559 "import_intervals=%u", import_delay, MMP_INTERVAL(ub),
2560 ub->ub_mmp_delay, import_intervals);
2561
2562 } else if (MMP_VALID(ub)) {
2563 /*
2564 * zfs-0.7 compatability case
2565 */
2566
2567 import_delay = MAX(import_delay, (multihost_interval +
2568 ub->ub_mmp_delay) * import_intervals);
2569
2570 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
2571 "import_intervals=%u leaves=%u", import_delay,
2572 ub->ub_mmp_delay, import_intervals,
2573 vdev_count_leaves(spa));
2574 } else {
2575 /* Using local tunings is the only reasonable option */
2576 zfs_dbgmsg("pool last imported on non-MMP aware "
2577 "host using import_delay=%llu multihost_interval=%llu "
2578 "import_intervals=%u", import_delay, multihost_interval,
2579 import_intervals);
2580 }
2581
2582 return (import_delay);
2583 }
2584
2585 /*
2586 * Perform the import activity check. If the user canceled the import or
2587 * we detected activity then fail.
2588 */
2589 static int
spa_activity_check(spa_t * spa,uberblock_t * ub,nvlist_t * config)2590 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
2591 {
2592 uint64_t txg = ub->ub_txg;
2593 uint64_t timestamp = ub->ub_timestamp;
2594 uint64_t mmp_config = ub->ub_mmp_config;
2595 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
2596 uint64_t import_delay;
2597 hrtime_t import_expire;
2598 nvlist_t *mmp_label = NULL;
2599 vdev_t *rvd = spa->spa_root_vdev;
2600 kcondvar_t cv;
2601 kmutex_t mtx;
2602 int error = 0;
2603
2604 cv_init(&cv, NULL, CV_DEFAULT, NULL);
2605 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
2606 mutex_enter(&mtx);
2607
2608 /*
2609 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
2610 * during the earlier tryimport. If the txg recorded there is 0 then
2611 * the pool is known to be active on another host.
2612 *
2613 * Otherwise, the pool might be in use on another host. Check for
2614 * changes in the uberblocks on disk if necessary.
2615 */
2616 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2617 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
2618 ZPOOL_CONFIG_LOAD_INFO);
2619
2620 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
2621 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
2622 vdev_uberblock_load(rvd, ub, &mmp_label);
2623 error = SET_ERROR(EREMOTEIO);
2624 goto out;
2625 }
2626 }
2627
2628 import_delay = spa_activity_check_duration(spa, ub);
2629
2630 /* Add a small random factor in case of simultaneous imports (0-25%) */
2631 import_delay += import_delay * spa_get_random(250) / 1000;
2632
2633 import_expire = gethrtime() + import_delay;
2634
2635 while (gethrtime() < import_expire) {
2636 (void) spa_import_progress_set_mmp_check(spa,
2637 NSEC2SEC(import_expire - gethrtime()));
2638
2639 vdev_uberblock_load(rvd, ub, &mmp_label);
2640
2641 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
2642 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
2643 zfs_dbgmsg("multihost activity detected "
2644 "txg %llu ub_txg %llu "
2645 "timestamp %llu ub_timestamp %llu "
2646 "mmp_config %#llx ub_mmp_config %#llx",
2647 txg, ub->ub_txg, timestamp, ub->ub_timestamp,
2648 mmp_config, ub->ub_mmp_config);
2649
2650 error = SET_ERROR(EREMOTEIO);
2651 break;
2652 }
2653
2654 if (mmp_label) {
2655 nvlist_free(mmp_label);
2656 mmp_label = NULL;
2657 }
2658
2659 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
2660 if (error != -1) {
2661 error = SET_ERROR(EINTR);
2662 break;
2663 }
2664 error = 0;
2665 }
2666
2667 out:
2668 mutex_exit(&mtx);
2669 mutex_destroy(&mtx);
2670 cv_destroy(&cv);
2671
2672 /*
2673 * If the pool is determined to be active store the status in the
2674 * spa->spa_load_info nvlist. If the remote hostname or hostid are
2675 * available from configuration read from disk store them as well.
2676 * This allows 'zpool import' to generate a more useful message.
2677 *
2678 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
2679 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
2680 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
2681 */
2682 if (error == EREMOTEIO) {
2683 char *hostname = "<unknown>";
2684 uint64_t hostid = 0;
2685
2686 if (mmp_label) {
2687 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
2688 hostname = fnvlist_lookup_string(mmp_label,
2689 ZPOOL_CONFIG_HOSTNAME);
2690 fnvlist_add_string(spa->spa_load_info,
2691 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
2692 }
2693
2694 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
2695 hostid = fnvlist_lookup_uint64(mmp_label,
2696 ZPOOL_CONFIG_HOSTID);
2697 fnvlist_add_uint64(spa->spa_load_info,
2698 ZPOOL_CONFIG_MMP_HOSTID, hostid);
2699 }
2700 }
2701
2702 fnvlist_add_uint64(spa->spa_load_info,
2703 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
2704 fnvlist_add_uint64(spa->spa_load_info,
2705 ZPOOL_CONFIG_MMP_TXG, 0);
2706
2707 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
2708 }
2709
2710 if (mmp_label)
2711 nvlist_free(mmp_label);
2712
2713 return (error);
2714 }
2715
2716 static int
spa_verify_host(spa_t * spa,nvlist_t * mos_config)2717 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2718 {
2719 uint64_t hostid;
2720 char *hostname;
2721 uint64_t myhostid = 0;
2722
2723 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2724 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2725 hostname = fnvlist_lookup_string(mos_config,
2726 ZPOOL_CONFIG_HOSTNAME);
2727
2728 myhostid = zone_get_hostid(NULL);
2729
2730 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2731 cmn_err(CE_WARN, "pool '%s' could not be "
2732 "loaded as it was last accessed by "
2733 "another system (host: %s hostid: 0x%llx). "
2734 "See: http://illumos.org/msg/ZFS-8000-EY",
2735 spa_name(spa), hostname, (u_longlong_t)hostid);
2736 spa_load_failed(spa, "hostid verification failed: pool "
2737 "last accessed by host: %s (hostid: 0x%llx)",
2738 hostname, (u_longlong_t)hostid);
2739 return (SET_ERROR(EBADF));
2740 }
2741 }
2742
2743 return (0);
2744 }
2745
2746 static int
spa_ld_parse_config(spa_t * spa,spa_import_type_t type)2747 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2748 {
2749 int error = 0;
2750 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2751 int parse;
2752 vdev_t *rvd;
2753 uint64_t pool_guid;
2754 char *comment;
2755
2756 /*
2757 * Versioning wasn't explicitly added to the label until later, so if
2758 * it's not present treat it as the initial version.
2759 */
2760 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2761 &spa->spa_ubsync.ub_version) != 0)
2762 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2763
2764 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2765 spa_load_failed(spa, "invalid config provided: '%s' missing",
2766 ZPOOL_CONFIG_POOL_GUID);
2767 return (SET_ERROR(EINVAL));
2768 }
2769
2770 /*
2771 * If we are doing an import, ensure that the pool is not already
2772 * imported by checking if its pool guid already exists in the
2773 * spa namespace.
2774 *
2775 * The only case that we allow an already imported pool to be
2776 * imported again, is when the pool is checkpointed and we want to
2777 * look at its checkpointed state from userland tools like zdb.
2778 */
2779 #ifdef _KERNEL
2780 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2781 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2782 spa_guid_exists(pool_guid, 0)) {
2783 #else
2784 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2785 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2786 spa_guid_exists(pool_guid, 0) &&
2787 !spa_importing_readonly_checkpoint(spa)) {
2788 #endif
2789 spa_load_failed(spa, "a pool with guid %llu is already open",
2790 (u_longlong_t)pool_guid);
2791 return (SET_ERROR(EEXIST));
2792 }
2793
2794 spa->spa_config_guid = pool_guid;
2795
2796 nvlist_free(spa->spa_load_info);
2797 spa->spa_load_info = fnvlist_alloc();
2798
2799 ASSERT(spa->spa_comment == NULL);
2800 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2801 spa->spa_comment = spa_strdup(comment);
2802
2803 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2804 &spa->spa_config_txg);
2805
2806 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2807 spa->spa_config_splitting = fnvlist_dup(nvl);
2808
2809 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2810 spa_load_failed(spa, "invalid config provided: '%s' missing",
2811 ZPOOL_CONFIG_VDEV_TREE);
2812 return (SET_ERROR(EINVAL));
2813 }
2814
2815 /*
2816 * Create "The Godfather" zio to hold all async IOs
2817 */
2818 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2819 KM_SLEEP);
2820 for (int i = 0; i < max_ncpus; i++) {
2821 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2822 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2823 ZIO_FLAG_GODFATHER);
2824 }
2825
2826 /*
2827 * Parse the configuration into a vdev tree. We explicitly set the
2828 * value that will be returned by spa_version() since parsing the
2829 * configuration requires knowing the version number.
2830 */
2831 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2832 parse = (type == SPA_IMPORT_EXISTING ?
2833 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2834 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2835 spa_config_exit(spa, SCL_ALL, FTAG);
2836
2837 if (error != 0) {
2838 spa_load_failed(spa, "unable to parse config [error=%d]",
2839 error);
2840 return (error);
2841 }
2842
2843 ASSERT(spa->spa_root_vdev == rvd);
2844 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2845 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2846
2847 if (type != SPA_IMPORT_ASSEMBLE) {
2848 ASSERT(spa_guid(spa) == pool_guid);
2849 }
2850
2851 return (0);
2852 }
2853
2854 /*
2855 * Recursively open all vdevs in the vdev tree. This function is called twice:
2856 * first with the untrusted config, then with the trusted config.
2857 */
2858 static int
2859 spa_ld_open_vdevs(spa_t *spa)
2860 {
2861 int error = 0;
2862
2863 /*
2864 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2865 * missing/unopenable for the root vdev to be still considered openable.
2866 */
2867 if (spa->spa_trust_config) {
2868 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2869 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2870 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2871 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2872 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2873 } else {
2874 spa->spa_missing_tvds_allowed = 0;
2875 }
2876
2877 spa->spa_missing_tvds_allowed =
2878 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2879
2880 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2881 error = vdev_open(spa->spa_root_vdev);
2882 spa_config_exit(spa, SCL_ALL, FTAG);
2883
2884 if (spa->spa_missing_tvds != 0) {
2885 spa_load_note(spa, "vdev tree has %lld missing top-level "
2886 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2887 if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2888 /*
2889 * Although theoretically we could allow users to open
2890 * incomplete pools in RW mode, we'd need to add a lot
2891 * of extra logic (e.g. adjust pool space to account
2892 * for missing vdevs).
2893 * This limitation also prevents users from accidentally
2894 * opening the pool in RW mode during data recovery and
2895 * damaging it further.
2896 */
2897 spa_load_note(spa, "pools with missing top-level "
2898 "vdevs can only be opened in read-only mode.");
2899 error = SET_ERROR(ENXIO);
2900 } else {
2901 spa_load_note(spa, "current settings allow for maximum "
2902 "%lld missing top-level vdevs at this stage.",
2903 (u_longlong_t)spa->spa_missing_tvds_allowed);
2904 }
2905 }
2906 if (error != 0) {
2907 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2908 error);
2909 }
2910 if (spa->spa_missing_tvds != 0 || error != 0)
2911 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2912
2913 return (error);
2914 }
2915
2916 /*
2917 * We need to validate the vdev labels against the configuration that
2918 * we have in hand. This function is called twice: first with an untrusted
2919 * config, then with a trusted config. The validation is more strict when the
2920 * config is trusted.
2921 */
2922 static int
2923 spa_ld_validate_vdevs(spa_t *spa)
2924 {
2925 int error = 0;
2926 vdev_t *rvd = spa->spa_root_vdev;
2927
2928 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2929 error = vdev_validate(rvd);
2930 spa_config_exit(spa, SCL_ALL, FTAG);
2931
2932 if (error != 0) {
2933 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2934 return (error);
2935 }
2936
2937 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2938 spa_load_failed(spa, "cannot open vdev tree after invalidating "
2939 "some vdevs");
2940 vdev_dbgmsg_print_tree(rvd, 2);
2941 return (SET_ERROR(ENXIO));
2942 }
2943
2944 return (0);
2945 }
2946
2947 static void
2948 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
2949 {
2950 spa->spa_state = POOL_STATE_ACTIVE;
2951 spa->spa_ubsync = spa->spa_uberblock;
2952 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2953 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2954 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2955 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2956 spa->spa_claim_max_txg = spa->spa_first_txg;
2957 spa->spa_prev_software_version = ub->ub_software_version;
2958 }
2959
2960 static int
2961 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2962 {
2963 vdev_t *rvd = spa->spa_root_vdev;
2964 nvlist_t *label;
2965 uberblock_t *ub = &spa->spa_uberblock;
2966 boolean_t activity_check = B_FALSE;
2967
2968 /*
2969 * If we are opening the checkpointed state of the pool by
2970 * rewinding to it, at this point we will have written the
2971 * checkpointed uberblock to the vdev labels, so searching
2972 * the labels will find the right uberblock. However, if
2973 * we are opening the checkpointed state read-only, we have
2974 * not modified the labels. Therefore, we must ignore the
2975 * labels and continue using the spa_uberblock that was set
2976 * by spa_ld_checkpoint_rewind.
2977 *
2978 * Note that it would be fine to ignore the labels when
2979 * rewinding (opening writeable) as well. However, if we
2980 * crash just after writing the labels, we will end up
2981 * searching the labels. Doing so in the common case means
2982 * that this code path gets exercised normally, rather than
2983 * just in the edge case.
2984 */
2985 if (ub->ub_checkpoint_txg != 0 &&
2986 spa_importing_readonly_checkpoint(spa)) {
2987 spa_ld_select_uberblock_done(spa, ub);
2988 return (0);
2989 }
2990
2991 /*
2992 * Find the best uberblock.
2993 */
2994 vdev_uberblock_load(rvd, ub, &label);
2995
2996 /*
2997 * If we weren't able to find a single valid uberblock, return failure.
2998 */
2999 if (ub->ub_txg == 0) {
3000 nvlist_free(label);
3001 spa_load_failed(spa, "no valid uberblock found");
3002 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3003 }
3004
3005 if (spa->spa_load_max_txg != UINT64_MAX) {
3006 (void) spa_import_progress_set_max_txg(spa,
3007 (u_longlong_t)spa->spa_load_max_txg);
3008 }
3009 spa_load_note(spa, "using uberblock with txg=%llu",
3010 (u_longlong_t)ub->ub_txg);
3011
3012 /*
3013 * For pools which have the multihost property on determine if the
3014 * pool is truly inactive and can be safely imported. Prevent
3015 * hosts which don't have a hostid set from importing the pool.
3016 */
3017 activity_check = spa_activity_check_required(spa, ub, label,
3018 spa->spa_config);
3019 if (activity_check) {
3020 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3021 spa_get_hostid() == 0) {
3022 nvlist_free(label);
3023 fnvlist_add_uint64(spa->spa_load_info,
3024 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3025 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3026 }
3027
3028 int error = spa_activity_check(spa, ub, spa->spa_config);
3029 if (error) {
3030 nvlist_free(label);
3031 return (error);
3032 }
3033
3034 fnvlist_add_uint64(spa->spa_load_info,
3035 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3036 fnvlist_add_uint64(spa->spa_load_info,
3037 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3038 fnvlist_add_uint16(spa->spa_load_info,
3039 ZPOOL_CONFIG_MMP_SEQ,
3040 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3041 }
3042
3043 /*
3044 * If the pool has an unsupported version we can't open it.
3045 */
3046 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3047 nvlist_free(label);
3048 spa_load_failed(spa, "version %llu is not supported",
3049 (u_longlong_t)ub->ub_version);
3050 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3051 }
3052
3053 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3054 nvlist_t *features;
3055
3056 /*
3057 * If we weren't able to find what's necessary for reading the
3058 * MOS in the label, return failure.
3059 */
3060 if (label == NULL) {
3061 spa_load_failed(spa, "label config unavailable");
3062 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3063 ENXIO));
3064 }
3065
3066 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3067 &features) != 0) {
3068 nvlist_free(label);
3069 spa_load_failed(spa, "invalid label: '%s' missing",
3070 ZPOOL_CONFIG_FEATURES_FOR_READ);
3071 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3072 ENXIO));
3073 }
3074
3075 /*
3076 * Update our in-core representation with the definitive values
3077 * from the label.
3078 */
3079 nvlist_free(spa->spa_label_features);
3080 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
3081 }
3082
3083 nvlist_free(label);
3084
3085 /*
3086 * Look through entries in the label nvlist's features_for_read. If
3087 * there is a feature listed there which we don't understand then we
3088 * cannot open a pool.
3089 */
3090 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3091 nvlist_t *unsup_feat;
3092
3093 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
3094 0);
3095
3096 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3097 NULL); nvp != NULL;
3098 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3099 if (!zfeature_is_supported(nvpair_name(nvp))) {
3100 VERIFY(nvlist_add_string(unsup_feat,
3101 nvpair_name(nvp), "") == 0);
3102 }
3103 }
3104
3105 if (!nvlist_empty(unsup_feat)) {
3106 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
3107 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
3108 nvlist_free(unsup_feat);
3109 spa_load_failed(spa, "some features are unsupported");
3110 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3111 ENOTSUP));
3112 }
3113
3114 nvlist_free(unsup_feat);
3115 }
3116
3117 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3118 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3119 spa_try_repair(spa, spa->spa_config);
3120 spa_config_exit(spa, SCL_ALL, FTAG);
3121 nvlist_free(spa->spa_config_splitting);
3122 spa->spa_config_splitting = NULL;
3123 }
3124
3125 /*
3126 * Initialize internal SPA structures.
3127 */
3128 spa_ld_select_uberblock_done(spa, ub);
3129
3130 return (0);
3131 }
3132
3133 static int
3134 spa_ld_open_rootbp(spa_t *spa)
3135 {
3136 int error = 0;
3137 vdev_t *rvd = spa->spa_root_vdev;
3138
3139 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3140 if (error != 0) {
3141 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3142 "[error=%d]", error);
3143 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3144 }
3145 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3146
3147 return (0);
3148 }
3149
3150 static int
3151 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3152 boolean_t reloading)
3153 {
3154 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3155 nvlist_t *nv, *mos_config, *policy;
3156 int error = 0, copy_error;
3157 uint64_t healthy_tvds, healthy_tvds_mos;
3158 uint64_t mos_config_txg;
3159
3160 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3161 != 0)
3162 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3163
3164 /*
3165 * If we're assembling a pool from a split, the config provided is
3166 * already trusted so there is nothing to do.
3167 */
3168 if (type == SPA_IMPORT_ASSEMBLE)
3169 return (0);
3170
3171 healthy_tvds = spa_healthy_core_tvds(spa);
3172
3173 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3174 != 0) {
3175 spa_load_failed(spa, "unable to retrieve MOS config");
3176 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3177 }
3178
3179 /*
3180 * If we are doing an open, pool owner wasn't verified yet, thus do
3181 * the verification here.
3182 */
3183 if (spa->spa_load_state == SPA_LOAD_OPEN) {
3184 error = spa_verify_host(spa, mos_config);
3185 if (error != 0) {
3186 nvlist_free(mos_config);
3187 return (error);
3188 }
3189 }
3190
3191 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3192
3193 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3194
3195 /*
3196 * Build a new vdev tree from the trusted config
3197 */
3198 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
3199
3200 /*
3201 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3202 * obtained by scanning /dev/dsk, then it will have the right vdev
3203 * paths. We update the trusted MOS config with this information.
3204 * We first try to copy the paths with vdev_copy_path_strict, which
3205 * succeeds only when both configs have exactly the same vdev tree.
3206 * If that fails, we fall back to a more flexible method that has a
3207 * best effort policy.
3208 */
3209 copy_error = vdev_copy_path_strict(rvd, mrvd);
3210 if (copy_error != 0 || spa_load_print_vdev_tree) {
3211 spa_load_note(spa, "provided vdev tree:");
3212 vdev_dbgmsg_print_tree(rvd, 2);
3213 spa_load_note(spa, "MOS vdev tree:");
3214 vdev_dbgmsg_print_tree(mrvd, 2);
3215 }
3216 if (copy_error != 0) {
3217 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3218 "back to vdev_copy_path_relaxed");
3219 vdev_copy_path_relaxed(rvd, mrvd);
3220 }
3221
3222 vdev_close(rvd);
3223 vdev_free(rvd);
3224 spa->spa_root_vdev = mrvd;
3225 rvd = mrvd;
3226 spa_config_exit(spa, SCL_ALL, FTAG);
3227
3228 /*
3229 * We will use spa_config if we decide to reload the spa or if spa_load
3230 * fails and we rewind. We must thus regenerate the config using the
3231 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3232 * pass settings on how to load the pool and is not stored in the MOS.
3233 * We copy it over to our new, trusted config.
3234 */
3235 mos_config_txg = fnvlist_lookup_uint64(mos_config,
3236 ZPOOL_CONFIG_POOL_TXG);
3237 nvlist_free(mos_config);
3238 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3239 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3240 &policy) == 0)
3241 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3242 spa_config_set(spa, mos_config);
3243 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3244
3245 /*
3246 * Now that we got the config from the MOS, we should be more strict
3247 * in checking blkptrs and can make assumptions about the consistency
3248 * of the vdev tree. spa_trust_config must be set to true before opening
3249 * vdevs in order for them to be writeable.
3250 */
3251 spa->spa_trust_config = B_TRUE;
3252
3253 /*
3254 * Open and validate the new vdev tree
3255 */
3256 error = spa_ld_open_vdevs(spa);
3257 if (error != 0)
3258 return (error);
3259
3260 error = spa_ld_validate_vdevs(spa);
3261 if (error != 0)
3262 return (error);
3263
3264 if (copy_error != 0 || spa_load_print_vdev_tree) {
3265 spa_load_note(spa, "final vdev tree:");
3266 vdev_dbgmsg_print_tree(rvd, 2);
3267 }
3268
3269 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3270 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3271 /*
3272 * Sanity check to make sure that we are indeed loading the
3273 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3274 * in the config provided and they happened to be the only ones
3275 * to have the latest uberblock, we could involuntarily perform
3276 * an extreme rewind.
3277 */
3278 healthy_tvds_mos = spa_healthy_core_tvds(spa);
3279 if (healthy_tvds_mos - healthy_tvds >=
3280 SPA_SYNC_MIN_VDEVS) {
3281 spa_load_note(spa, "config provided misses too many "
3282 "top-level vdevs compared to MOS (%lld vs %lld). ",
3283 (u_longlong_t)healthy_tvds,
3284 (u_longlong_t)healthy_tvds_mos);
3285 spa_load_note(spa, "vdev tree:");
3286 vdev_dbgmsg_print_tree(rvd, 2);
3287 if (reloading) {
3288 spa_load_failed(spa, "config was already "
3289 "provided from MOS. Aborting.");
3290 return (spa_vdev_err(rvd,
3291 VDEV_AUX_CORRUPT_DATA, EIO));
3292 }
3293 spa_load_note(spa, "spa must be reloaded using MOS "
3294 "config");
3295 return (SET_ERROR(EAGAIN));
3296 }
3297 }
3298
3299 error = spa_check_for_missing_logs(spa);
3300 if (error != 0)
3301 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3302
3303 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3304 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3305 "guid sum (%llu != %llu)",
3306 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3307 (u_longlong_t)rvd->vdev_guid_sum);
3308 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3309 ENXIO));
3310 }
3311
3312 return (0);
3313 }
3314
3315 static int
3316 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3317 {
3318 int error = 0;
3319 vdev_t *rvd = spa->spa_root_vdev;
3320
3321 /*
3322 * Everything that we read before spa_remove_init() must be stored
3323 * on concreted vdevs. Therefore we do this as early as possible.
3324 */
3325 error = spa_remove_init(spa);
3326 if (error != 0) {
3327 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3328 error);
3329 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3330 }
3331
3332 /*
3333 * Retrieve information needed to condense indirect vdev mappings.
3334 */
3335 error = spa_condense_init(spa);
3336 if (error != 0) {
3337 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3338 error);
3339 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3340 }
3341
3342 return (0);
3343 }
3344
3345 static int
3346 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3347 {
3348 int error = 0;
3349 vdev_t *rvd = spa->spa_root_vdev;
3350
3351 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3352 boolean_t missing_feat_read = B_FALSE;
3353 nvlist_t *unsup_feat, *enabled_feat;
3354
3355 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3356 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3357 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3358 }
3359
3360 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3361 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3362 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3363 }
3364
3365 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3366 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3367 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3368 }
3369
3370 enabled_feat = fnvlist_alloc();
3371 unsup_feat = fnvlist_alloc();
3372
3373 if (!spa_features_check(spa, B_FALSE,
3374 unsup_feat, enabled_feat))
3375 missing_feat_read = B_TRUE;
3376
3377 if (spa_writeable(spa) ||
3378 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3379 if (!spa_features_check(spa, B_TRUE,
3380 unsup_feat, enabled_feat)) {
3381 *missing_feat_writep = B_TRUE;
3382 }
3383 }
3384
3385 fnvlist_add_nvlist(spa->spa_load_info,
3386 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3387
3388 if (!nvlist_empty(unsup_feat)) {
3389 fnvlist_add_nvlist(spa->spa_load_info,
3390 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3391 }
3392
3393 fnvlist_free(enabled_feat);
3394 fnvlist_free(unsup_feat);
3395
3396 if (!missing_feat_read) {
3397 fnvlist_add_boolean(spa->spa_load_info,
3398 ZPOOL_CONFIG_CAN_RDONLY);
3399 }
3400
3401 /*
3402 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3403 * twofold: to determine whether the pool is available for
3404 * import in read-write mode and (if it is not) whether the
3405 * pool is available for import in read-only mode. If the pool
3406 * is available for import in read-write mode, it is displayed
3407 * as available in userland; if it is not available for import
3408 * in read-only mode, it is displayed as unavailable in
3409 * userland. If the pool is available for import in read-only
3410 * mode but not read-write mode, it is displayed as unavailable
3411 * in userland with a special note that the pool is actually
3412 * available for open in read-only mode.
3413 *
3414 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3415 * missing a feature for write, we must first determine whether
3416 * the pool can be opened read-only before returning to
3417 * userland in order to know whether to display the
3418 * abovementioned note.
3419 */
3420 if (missing_feat_read || (*missing_feat_writep &&
3421 spa_writeable(spa))) {
3422 spa_load_failed(spa, "pool uses unsupported features");
3423 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3424 ENOTSUP));
3425 }
3426
3427 /*
3428 * Load refcounts for ZFS features from disk into an in-memory
3429 * cache during SPA initialization.
3430 */
3431 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3432 uint64_t refcount;
3433
3434 error = feature_get_refcount_from_disk(spa,
3435 &spa_feature_table[i], &refcount);
3436 if (error == 0) {
3437 spa->spa_feat_refcount_cache[i] = refcount;
3438 } else if (error == ENOTSUP) {
3439 spa->spa_feat_refcount_cache[i] =
3440 SPA_FEATURE_DISABLED;
3441 } else {
3442 spa_load_failed(spa, "error getting refcount "
3443 "for feature %s [error=%d]",
3444 spa_feature_table[i].fi_guid, error);
3445 return (spa_vdev_err(rvd,
3446 VDEV_AUX_CORRUPT_DATA, EIO));
3447 }
3448 }
3449 }
3450
3451 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3452 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3453 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3454 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3455 }
3456
3457 /*
3458 * Encryption was added before bookmark_v2, even though bookmark_v2
3459 * is now a dependency. If this pool has encryption enabled without
3460 * bookmark_v2, trigger an errata message.
3461 */
3462 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
3463 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
3464 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
3465 }
3466
3467 return (0);
3468 }
3469
3470 static int
3471 spa_ld_load_special_directories(spa_t *spa)
3472 {
3473 int error = 0;
3474 vdev_t *rvd = spa->spa_root_vdev;
3475
3476 spa->spa_is_initializing = B_TRUE;
3477 error = dsl_pool_open(spa->spa_dsl_pool);
3478 spa->spa_is_initializing = B_FALSE;
3479 if (error != 0) {
3480 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3481 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3482 }
3483
3484 return (0);
3485 }
3486
3487 static int
3488 spa_ld_get_props(spa_t *spa)
3489 {
3490 int error = 0;
3491 uint64_t obj;
3492 vdev_t *rvd = spa->spa_root_vdev;
3493
3494 /* Grab the secret checksum salt from the MOS. */
3495 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3496 DMU_POOL_CHECKSUM_SALT, 1,
3497 sizeof (spa->spa_cksum_salt.zcs_bytes),
3498 spa->spa_cksum_salt.zcs_bytes);
3499 if (error == ENOENT) {
3500 /* Generate a new salt for subsequent use */
3501 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3502 sizeof (spa->spa_cksum_salt.zcs_bytes));
3503 } else if (error != 0) {
3504 spa_load_failed(spa, "unable to retrieve checksum salt from "
3505 "MOS [error=%d]", error);
3506 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3507 }
3508
3509 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3510 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3511 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3512 if (error != 0) {
3513 spa_load_failed(spa, "error opening deferred-frees bpobj "
3514 "[error=%d]", error);
3515 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3516 }
3517
3518 /*
3519 * Load the bit that tells us to use the new accounting function
3520 * (raid-z deflation). If we have an older pool, this will not
3521 * be present.
3522 */
3523 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3524 if (error != 0 && error != ENOENT)
3525 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3526
3527 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3528 &spa->spa_creation_version, B_FALSE);
3529 if (error != 0 && error != ENOENT)
3530 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3531
3532 /*
3533 * Load the persistent error log. If we have an older pool, this will
3534 * not be present.
3535 */
3536 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3537 B_FALSE);
3538 if (error != 0 && error != ENOENT)
3539 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3540
3541 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3542 &spa->spa_errlog_scrub, B_FALSE);
3543 if (error != 0 && error != ENOENT)
3544 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3545
3546 /*
3547 * Load the history object. If we have an older pool, this
3548 * will not be present.
3549 */
3550 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3551 if (error != 0 && error != ENOENT)
3552 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3553
3554 /*
3555 * Load the per-vdev ZAP map. If we have an older pool, this will not
3556 * be present; in this case, defer its creation to a later time to
3557 * avoid dirtying the MOS this early / out of sync context. See
3558 * spa_sync_config_object.
3559 */
3560
3561 /* The sentinel is only available in the MOS config. */
3562 nvlist_t *mos_config;
3563 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3564 spa_load_failed(spa, "unable to retrieve MOS config");
3565 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3566 }
3567
3568 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3569 &spa->spa_all_vdev_zaps, B_FALSE);
3570
3571 if (error == ENOENT) {
3572 VERIFY(!nvlist_exists(mos_config,
3573 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3574 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3575 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3576 } else if (error != 0) {
3577 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3578 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3579 /*
3580 * An older version of ZFS overwrote the sentinel value, so
3581 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3582 * destruction to later; see spa_sync_config_object.
3583 */
3584 spa->spa_avz_action = AVZ_ACTION_DESTROY;
3585 /*
3586 * We're assuming that no vdevs have had their ZAPs created
3587 * before this. Better be sure of it.
3588 */
3589 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3590 }
3591 nvlist_free(mos_config);
3592
3593 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3594
3595 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3596 B_FALSE);
3597 if (error && error != ENOENT)
3598 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3599
3600 if (error == 0) {
3601 uint64_t autoreplace;
3602
3603 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3604 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3605 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3606 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3607 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3608 spa_prop_find(spa, ZPOOL_PROP_BOOTSIZE, &spa->spa_bootsize);
3609 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
3610 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3611 &spa->spa_dedup_ditto);
3612 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
3613 spa->spa_autoreplace = (autoreplace != 0);
3614 }
3615
3616 /*
3617 * If we are importing a pool with missing top-level vdevs,
3618 * we enforce that the pool doesn't panic or get suspended on
3619 * error since the likelihood of missing data is extremely high.
3620 */
3621 if (spa->spa_missing_tvds > 0 &&
3622 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3623 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3624 spa_load_note(spa, "forcing failmode to 'continue' "
3625 "as some top level vdevs are missing");
3626 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3627 }
3628
3629 return (0);
3630 }
3631
3632 static int
3633 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3634 {
3635 int error = 0;
3636 vdev_t *rvd = spa->spa_root_vdev;
3637
3638 /*
3639 * If we're assembling the pool from the split-off vdevs of
3640 * an existing pool, we don't want to attach the spares & cache
3641 * devices.
3642 */
3643
3644 /*
3645 * Load any hot spares for this pool.
3646 */
3647 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3648 B_FALSE);
3649 if (error != 0 && error != ENOENT)
3650 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3651 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3652 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3653 if (load_nvlist(spa, spa->spa_spares.sav_object,
3654 &spa->spa_spares.sav_config) != 0) {
3655 spa_load_failed(spa, "error loading spares nvlist");
3656 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3657 }
3658
3659 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3660 spa_load_spares(spa);
3661 spa_config_exit(spa, SCL_ALL, FTAG);
3662 } else if (error == 0) {
3663 spa->spa_spares.sav_sync = B_TRUE;
3664 }
3665
3666 /*
3667 * Load any level 2 ARC devices for this pool.
3668 */
3669 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3670 &spa->spa_l2cache.sav_object, B_FALSE);
3671 if (error != 0 && error != ENOENT)
3672 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3673 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3674 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3675 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3676 &spa->spa_l2cache.sav_config) != 0) {
3677 spa_load_failed(spa, "error loading l2cache nvlist");
3678 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3679 }
3680
3681 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3682 spa_load_l2cache(spa);
3683 spa_config_exit(spa, SCL_ALL, FTAG);
3684 } else if (error == 0) {
3685 spa->spa_l2cache.sav_sync = B_TRUE;
3686 }
3687
3688 return (0);
3689 }
3690
3691 static int
3692 spa_ld_load_vdev_metadata(spa_t *spa)
3693 {
3694 int error = 0;
3695 vdev_t *rvd = spa->spa_root_vdev;
3696
3697 /*
3698 * If the 'multihost' property is set, then never allow a pool to
3699 * be imported when the system hostid is zero. The exception to
3700 * this rule is zdb which is always allowed to access pools.
3701 */
3702 if (spa_multihost(spa) && spa_get_hostid() == 0 &&
3703 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
3704 fnvlist_add_uint64(spa->spa_load_info,
3705 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3706 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3707 }
3708
3709 /*
3710 * If the 'autoreplace' property is set, then post a resource notifying
3711 * the ZFS DE that it should not issue any faults for unopenable
3712 * devices. We also iterate over the vdevs, and post a sysevent for any
3713 * unopenable vdevs so that the normal autoreplace handler can take
3714 * over.
3715 */
3716 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3717 spa_check_removed(spa->spa_root_vdev);
3718 /*
3719 * For the import case, this is done in spa_import(), because
3720 * at this point we're using the spare definitions from
3721 * the MOS config, not necessarily from the userland config.
3722 */
3723 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3724 spa_aux_check_removed(&spa->spa_spares);
3725 spa_aux_check_removed(&spa->spa_l2cache);
3726 }
3727 }
3728
3729 /*
3730 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3731 */
3732 error = vdev_load(rvd);
3733 if (error != 0) {
3734 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3735 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3736 }
3737
3738 error = spa_ld_log_spacemaps(spa);
3739 if (error != 0) {
3740 spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]",
3741 error);
3742 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3743 }
3744
3745 /*
3746 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3747 */
3748 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3749 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3750 spa_config_exit(spa, SCL_ALL, FTAG);
3751
3752 return (0);
3753 }
3754
3755 static int
3756 spa_ld_load_dedup_tables(spa_t *spa)
3757 {
3758 int error = 0;
3759 vdev_t *rvd = spa->spa_root_vdev;
3760
3761 error = ddt_load(spa);
3762 if (error != 0) {
3763 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3764 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3765 }
3766
3767 return (0);
3768 }
3769
3770 static int
3771 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3772 {
3773 vdev_t *rvd = spa->spa_root_vdev;
3774
3775 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3776 boolean_t missing = spa_check_logs(spa);
3777 if (missing) {
3778 if (spa->spa_missing_tvds != 0) {
3779 spa_load_note(spa, "spa_check_logs failed "
3780 "so dropping the logs");
3781 } else {
3782 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3783 spa_load_failed(spa, "spa_check_logs failed");
3784 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3785 ENXIO));
3786 }
3787 }
3788 }
3789
3790 return (0);
3791 }
3792
3793 static int
3794 spa_ld_verify_pool_data(spa_t *spa)
3795 {
3796 int error = 0;
3797 vdev_t *rvd = spa->spa_root_vdev;
3798
3799 /*
3800 * We've successfully opened the pool, verify that we're ready
3801 * to start pushing transactions.
3802 */
3803 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3804 error = spa_load_verify(spa);
3805 if (error != 0) {
3806 spa_load_failed(spa, "spa_load_verify failed "
3807 "[error=%d]", error);
3808 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3809 error));
3810 }
3811 }
3812
3813 return (0);
3814 }
3815
3816 static void
3817 spa_ld_claim_log_blocks(spa_t *spa)
3818 {
3819 dmu_tx_t *tx;
3820 dsl_pool_t *dp = spa_get_dsl(spa);
3821
3822 /*
3823 * Claim log blocks that haven't been committed yet.
3824 * This must all happen in a single txg.
3825 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3826 * invoked from zil_claim_log_block()'s i/o done callback.
3827 * Price of rollback is that we abandon the log.
3828 */
3829 spa->spa_claiming = B_TRUE;
3830
3831 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3832 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3833 zil_claim, tx, DS_FIND_CHILDREN);
3834 dmu_tx_commit(tx);
3835
3836 spa->spa_claiming = B_FALSE;
3837
3838 spa_set_log_state(spa, SPA_LOG_GOOD);
3839 }
3840
3841 static void
3842 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3843 boolean_t update_config_cache)
3844 {
3845 vdev_t *rvd = spa->spa_root_vdev;
3846 int need_update = B_FALSE;
3847
3848 /*
3849 * If the config cache is stale, or we have uninitialized
3850 * metaslabs (see spa_vdev_add()), then update the config.
3851 *
3852 * If this is a verbatim import, trust the current
3853 * in-core spa_config and update the disk labels.
3854 */
3855 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
3856 spa->spa_load_state == SPA_LOAD_IMPORT ||
3857 spa->spa_load_state == SPA_LOAD_RECOVER ||
3858 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3859 need_update = B_TRUE;
3860
3861 for (int c = 0; c < rvd->vdev_children; c++)
3862 if (rvd->vdev_child[c]->vdev_ms_array == 0)
3863 need_update = B_TRUE;
3864
3865 /*
3866 * Update the config cache asychronously in case we're the
3867 * root pool, in which case the config cache isn't writable yet.
3868 */
3869 if (need_update)
3870 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3871 }
3872
3873 static void
3874 spa_ld_prepare_for_reload(spa_t *spa)
3875 {
3876 int mode = spa->spa_mode;
3877 int async_suspended = spa->spa_async_suspended;
3878
3879 spa_unload(spa);
3880 spa_deactivate(spa);
3881 spa_activate(spa, mode);
3882
3883 /*
3884 * We save the value of spa_async_suspended as it gets reset to 0 by
3885 * spa_unload(). We want to restore it back to the original value before
3886 * returning as we might be calling spa_async_resume() later.
3887 */
3888 spa->spa_async_suspended = async_suspended;
3889 }
3890
3891 static int
3892 spa_ld_read_checkpoint_txg(spa_t *spa)
3893 {
3894 uberblock_t checkpoint;
3895 int error = 0;
3896
3897 ASSERT0(spa->spa_checkpoint_txg);
3898 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3899
3900 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3901 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3902 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3903
3904 if (error == ENOENT)
3905 return (0);
3906
3907 if (error != 0)
3908 return (error);
3909
3910 ASSERT3U(checkpoint.ub_txg, !=, 0);
3911 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
3912 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
3913 spa->spa_checkpoint_txg = checkpoint.ub_txg;
3914 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
3915
3916 return (0);
3917 }
3918
3919 static int
3920 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
3921 {
3922 int error = 0;
3923
3924 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3925 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3926
3927 /*
3928 * Never trust the config that is provided unless we are assembling
3929 * a pool following a split.
3930 * This means don't trust blkptrs and the vdev tree in general. This
3931 * also effectively puts the spa in read-only mode since
3932 * spa_writeable() checks for spa_trust_config to be true.
3933 * We will later load a trusted config from the MOS.
3934 */
3935 if (type != SPA_IMPORT_ASSEMBLE)
3936 spa->spa_trust_config = B_FALSE;
3937
3938 /*
3939 * Parse the config provided to create a vdev tree.
3940 */
3941 error = spa_ld_parse_config(spa, type);
3942 if (error != 0)
3943 return (error);
3944
3945 spa_import_progress_add(spa);
3946
3947 /*
3948 * Now that we have the vdev tree, try to open each vdev. This involves
3949 * opening the underlying physical device, retrieving its geometry and
3950 * probing the vdev with a dummy I/O. The state of each vdev will be set
3951 * based on the success of those operations. After this we'll be ready
3952 * to read from the vdevs.
3953 */
3954 error = spa_ld_open_vdevs(spa);
3955 if (error != 0)
3956 return (error);
3957
3958 /*
3959 * Read the label of each vdev and make sure that the GUIDs stored
3960 * there match the GUIDs in the config provided.
3961 * If we're assembling a new pool that's been split off from an
3962 * existing pool, the labels haven't yet been updated so we skip
3963 * validation for now.
3964 */
3965 if (type != SPA_IMPORT_ASSEMBLE) {
3966 error = spa_ld_validate_vdevs(spa);
3967 if (error != 0)
3968 return (error);
3969 }
3970
3971 /*
3972 * Read all vdev labels to find the best uberblock (i.e. latest,
3973 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
3974 * get the list of features required to read blkptrs in the MOS from
3975 * the vdev label with the best uberblock and verify that our version
3976 * of zfs supports them all.
3977 */
3978 error = spa_ld_select_uberblock(spa, type);
3979 if (error != 0)
3980 return (error);
3981
3982 /*
3983 * Pass that uberblock to the dsl_pool layer which will open the root
3984 * blkptr. This blkptr points to the latest version of the MOS and will
3985 * allow us to read its contents.
3986 */
3987 error = spa_ld_open_rootbp(spa);
3988 if (error != 0)
3989 return (error);
3990
3991 return (0);
3992 }
3993
3994 static int
3995 spa_ld_checkpoint_rewind(spa_t *spa)
3996 {
3997 uberblock_t checkpoint;
3998 int error = 0;
3999
4000 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4001 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4002
4003 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4004 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4005 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4006
4007 if (error != 0) {
4008 spa_load_failed(spa, "unable to retrieve checkpointed "
4009 "uberblock from the MOS config [error=%d]", error);
4010
4011 if (error == ENOENT)
4012 error = ZFS_ERR_NO_CHECKPOINT;
4013
4014 return (error);
4015 }
4016
4017 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4018 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4019
4020 /*
4021 * We need to update the txg and timestamp of the checkpointed
4022 * uberblock to be higher than the latest one. This ensures that
4023 * the checkpointed uberblock is selected if we were to close and
4024 * reopen the pool right after we've written it in the vdev labels.
4025 * (also see block comment in vdev_uberblock_compare)
4026 */
4027 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4028 checkpoint.ub_timestamp = gethrestime_sec();
4029
4030 /*
4031 * Set current uberblock to be the checkpointed uberblock.
4032 */
4033 spa->spa_uberblock = checkpoint;
4034
4035 /*
4036 * If we are doing a normal rewind, then the pool is open for
4037 * writing and we sync the "updated" checkpointed uberblock to
4038 * disk. Once this is done, we've basically rewound the whole
4039 * pool and there is no way back.
4040 *
4041 * There are cases when we don't want to attempt and sync the
4042 * checkpointed uberblock to disk because we are opening a
4043 * pool as read-only. Specifically, verifying the checkpointed
4044 * state with zdb, and importing the checkpointed state to get
4045 * a "preview" of its content.
4046 */
4047 if (spa_writeable(spa)) {
4048 vdev_t *rvd = spa->spa_root_vdev;
4049
4050 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4051 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4052 int svdcount = 0;
4053 int children = rvd->vdev_children;
4054 int c0 = spa_get_random(children);
4055
4056 for (int c = 0; c < children; c++) {
4057 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4058
4059 /* Stop when revisiting the first vdev */
4060 if (c > 0 && svd[0] == vd)
4061 break;
4062
4063 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4064 !vdev_is_concrete(vd))
4065 continue;
4066
4067 svd[svdcount++] = vd;
4068 if (svdcount == SPA_SYNC_MIN_VDEVS)
4069 break;
4070 }
4071 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4072 if (error == 0)
4073 spa->spa_last_synced_guid = rvd->vdev_guid;
4074 spa_config_exit(spa, SCL_ALL, FTAG);
4075
4076 if (error != 0) {
4077 spa_load_failed(spa, "failed to write checkpointed "
4078 "uberblock to the vdev labels [error=%d]", error);
4079 return (error);
4080 }
4081 }
4082
4083 return (0);
4084 }
4085
4086 static int
4087 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4088 boolean_t *update_config_cache)
4089 {
4090 int error;
4091
4092 /*
4093 * Parse the config for pool, open and validate vdevs,
4094 * select an uberblock, and use that uberblock to open
4095 * the MOS.
4096 */
4097 error = spa_ld_mos_init(spa, type);
4098 if (error != 0)
4099 return (error);
4100
4101 /*
4102 * Retrieve the trusted config stored in the MOS and use it to create
4103 * a new, exact version of the vdev tree, then reopen all vdevs.
4104 */
4105 error = spa_ld_trusted_config(spa, type, B_FALSE);
4106 if (error == EAGAIN) {
4107 if (update_config_cache != NULL)
4108 *update_config_cache = B_TRUE;
4109
4110 /*
4111 * Redo the loading process with the trusted config if it is
4112 * too different from the untrusted config.
4113 */
4114 spa_ld_prepare_for_reload(spa);
4115 spa_load_note(spa, "RELOADING");
4116 error = spa_ld_mos_init(spa, type);
4117 if (error != 0)
4118 return (error);
4119
4120 error = spa_ld_trusted_config(spa, type, B_TRUE);
4121 if (error != 0)
4122 return (error);
4123
4124 } else if (error != 0) {
4125 return (error);
4126 }
4127
4128 return (0);
4129 }
4130
4131 /*
4132 * Load an existing storage pool, using the config provided. This config
4133 * describes which vdevs are part of the pool and is later validated against
4134 * partial configs present in each vdev's label and an entire copy of the
4135 * config stored in the MOS.
4136 */
4137 static int
4138 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4139 {
4140 int error = 0;
4141 boolean_t missing_feat_write = B_FALSE;
4142 boolean_t checkpoint_rewind =
4143 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4144 boolean_t update_config_cache = B_FALSE;
4145
4146 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4147 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4148
4149 spa_load_note(spa, "LOADING");
4150
4151 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4152 if (error != 0)
4153 return (error);
4154
4155 /*
4156 * If we are rewinding to the checkpoint then we need to repeat
4157 * everything we've done so far in this function but this time
4158 * selecting the checkpointed uberblock and using that to open
4159 * the MOS.
4160 */
4161 if (checkpoint_rewind) {
4162 /*
4163 * If we are rewinding to the checkpoint update config cache
4164 * anyway.
4165 */
4166 update_config_cache = B_TRUE;
4167
4168 /*
4169 * Extract the checkpointed uberblock from the current MOS
4170 * and use this as the pool's uberblock from now on. If the
4171 * pool is imported as writeable we also write the checkpoint
4172 * uberblock to the labels, making the rewind permanent.
4173 */
4174 error = spa_ld_checkpoint_rewind(spa);
4175 if (error != 0)
4176 return (error);
4177
4178 /*
4179 * Redo the loading process process again with the
4180 * checkpointed uberblock.
4181 */
4182 spa_ld_prepare_for_reload(spa);
4183 spa_load_note(spa, "LOADING checkpointed uberblock");
4184 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4185 if (error != 0)
4186 return (error);
4187 }
4188
4189 /*
4190 * Retrieve the checkpoint txg if the pool has a checkpoint.
4191 */
4192 error = spa_ld_read_checkpoint_txg(spa);
4193 if (error != 0)
4194 return (error);
4195
4196 /*
4197 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4198 * from the pool and their contents were re-mapped to other vdevs. Note
4199 * that everything that we read before this step must have been
4200 * rewritten on concrete vdevs after the last device removal was
4201 * initiated. Otherwise we could be reading from indirect vdevs before
4202 * we have loaded their mappings.
4203 */
4204 error = spa_ld_open_indirect_vdev_metadata(spa);
4205 if (error != 0)
4206 return (error);
4207
4208 /*
4209 * Retrieve the full list of active features from the MOS and check if
4210 * they are all supported.
4211 */
4212 error = spa_ld_check_features(spa, &missing_feat_write);
4213 if (error != 0)
4214 return (error);
4215
4216 /*
4217 * Load several special directories from the MOS needed by the dsl_pool
4218 * layer.
4219 */
4220 error = spa_ld_load_special_directories(spa);
4221 if (error != 0)
4222 return (error);
4223
4224 /*
4225 * Retrieve pool properties from the MOS.
4226 */
4227 error = spa_ld_get_props(spa);
4228 if (error != 0)
4229 return (error);
4230
4231 /*
4232 * Retrieve the list of auxiliary devices - cache devices and spares -
4233 * and open them.
4234 */
4235 error = spa_ld_open_aux_vdevs(spa, type);
4236 if (error != 0)
4237 return (error);
4238
4239 /*
4240 * Load the metadata for all vdevs. Also check if unopenable devices
4241 * should be autoreplaced.
4242 */
4243 error = spa_ld_load_vdev_metadata(spa);
4244 if (error != 0)
4245 return (error);
4246
4247 error = spa_ld_load_dedup_tables(spa);
4248 if (error != 0)
4249 return (error);
4250
4251 /*
4252 * Verify the logs now to make sure we don't have any unexpected errors
4253 * when we claim log blocks later.
4254 */
4255 error = spa_ld_verify_logs(spa, type, ereport);
4256 if (error != 0)
4257 return (error);
4258
4259 if (missing_feat_write) {
4260 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4261
4262 /*
4263 * At this point, we know that we can open the pool in
4264 * read-only mode but not read-write mode. We now have enough
4265 * information and can return to userland.
4266 */
4267 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4268 ENOTSUP));
4269 }
4270
4271 /*
4272 * Traverse the last txgs to make sure the pool was left off in a safe
4273 * state. When performing an extreme rewind, we verify the whole pool,
4274 * which can take a very long time.
4275 */
4276 error = spa_ld_verify_pool_data(spa);
4277 if (error != 0)
4278 return (error);
4279
4280 /*
4281 * Calculate the deflated space for the pool. This must be done before
4282 * we write anything to the pool because we'd need to update the space
4283 * accounting using the deflated sizes.
4284 */
4285 spa_update_dspace(spa);
4286
4287 /*
4288 * We have now retrieved all the information we needed to open the
4289 * pool. If we are importing the pool in read-write mode, a few
4290 * additional steps must be performed to finish the import.
4291 */
4292 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4293 spa->spa_load_max_txg == UINT64_MAX)) {
4294 uint64_t config_cache_txg = spa->spa_config_txg;
4295
4296 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4297
4298 /*
4299 * In case of a checkpoint rewind, log the original txg
4300 * of the checkpointed uberblock.
4301 */
4302 if (checkpoint_rewind) {
4303 spa_history_log_internal(spa, "checkpoint rewind",
4304 NULL, "rewound state to txg=%llu",
4305 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4306 }
4307
4308 /*
4309 * Traverse the ZIL and claim all blocks.
4310 */
4311 spa_ld_claim_log_blocks(spa);
4312
4313 /*
4314 * Kick-off the syncing thread.
4315 */
4316 spa->spa_sync_on = B_TRUE;
4317 txg_sync_start(spa->spa_dsl_pool);
4318 mmp_thread_start(spa);
4319
4320 /*
4321 * Wait for all claims to sync. We sync up to the highest
4322 * claimed log block birth time so that claimed log blocks
4323 * don't appear to be from the future. spa_claim_max_txg
4324 * will have been set for us by ZIL traversal operations
4325 * performed above.
4326 */
4327 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4328
4329 /*
4330 * Check if we need to request an update of the config. On the
4331 * next sync, we would update the config stored in vdev labels
4332 * and the cachefile (by default /etc/zfs/zpool.cache).
4333 */
4334 spa_ld_check_for_config_update(spa, config_cache_txg,
4335 update_config_cache);
4336
4337 /*
4338 * Check all DTLs to see if anything needs resilvering.
4339 */
4340 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4341 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4342 spa_async_request(spa, SPA_ASYNC_RESILVER);
4343
4344 /*
4345 * Log the fact that we booted up (so that we can detect if
4346 * we rebooted in the middle of an operation).
4347 */
4348 spa_history_log_version(spa, "open");
4349
4350 spa_restart_removal(spa);
4351 spa_spawn_aux_threads(spa);
4352
4353 /*
4354 * Delete any inconsistent datasets.
4355 *
4356 * Note:
4357 * Since we may be issuing deletes for clones here,
4358 * we make sure to do so after we've spawned all the
4359 * auxiliary threads above (from which the livelist
4360 * deletion zthr is part of).
4361 */
4362 (void) dmu_objset_find(spa_name(spa),
4363 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4364
4365 /*
4366 * Clean up any stale temporary dataset userrefs.
4367 */
4368 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4369
4370 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4371 vdev_initialize_restart(spa->spa_root_vdev);
4372 vdev_trim_restart(spa->spa_root_vdev);
4373 vdev_autotrim_restart(spa);
4374 spa_config_exit(spa, SCL_CONFIG, FTAG);
4375 }
4376
4377 spa_import_progress_remove(spa);
4378 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
4379
4380 spa_load_note(spa, "LOADED");
4381
4382 return (0);
4383 }
4384
4385 static int
4386 spa_load_retry(spa_t *spa, spa_load_state_t state)
4387 {
4388 int mode = spa->spa_mode;
4389
4390 spa_unload(spa);
4391 spa_deactivate(spa);
4392
4393 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4394
4395 spa_activate(spa, mode);
4396 spa_async_suspend(spa);
4397
4398 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4399 (u_longlong_t)spa->spa_load_max_txg);
4400
4401 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4402 }
4403
4404 /*
4405 * If spa_load() fails this function will try loading prior txg's. If
4406 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4407 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4408 * function will not rewind the pool and will return the same error as
4409 * spa_load().
4410 */
4411 static int
4412 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
4413 int rewind_flags)
4414 {
4415 nvlist_t *loadinfo = NULL;
4416 nvlist_t *config = NULL;
4417 int load_error, rewind_error;
4418 uint64_t safe_rewind_txg;
4419 uint64_t min_txg;
4420
4421 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
4422 spa->spa_load_max_txg = spa->spa_load_txg;
4423 spa_set_log_state(spa, SPA_LOG_CLEAR);
4424 } else {
4425 spa->spa_load_max_txg = max_request;
4426 if (max_request != UINT64_MAX)
4427 spa->spa_extreme_rewind = B_TRUE;
4428 }
4429
4430 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
4431 if (load_error == 0)
4432 return (0);
4433 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
4434 /*
4435 * When attempting checkpoint-rewind on a pool with no
4436 * checkpoint, we should not attempt to load uberblocks
4437 * from previous txgs when spa_load fails.
4438 */
4439 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4440 spa_import_progress_remove(spa);
4441 return (load_error);
4442 }
4443
4444 if (spa->spa_root_vdev != NULL)
4445 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4446
4447 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
4448 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
4449
4450 if (rewind_flags & ZPOOL_NEVER_REWIND) {
4451 nvlist_free(config);
4452 spa_import_progress_remove(spa);
4453 return (load_error);
4454 }
4455
4456 if (state == SPA_LOAD_RECOVER) {
4457 /* Price of rolling back is discarding txgs, including log */
4458 spa_set_log_state(spa, SPA_LOG_CLEAR);
4459 } else {
4460 /*
4461 * If we aren't rolling back save the load info from our first
4462 * import attempt so that we can restore it after attempting
4463 * to rewind.
4464 */
4465 loadinfo = spa->spa_load_info;
4466 spa->spa_load_info = fnvlist_alloc();
4467 }
4468
4469 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4470 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4471 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4472 TXG_INITIAL : safe_rewind_txg;
4473
4474 /*
4475 * Continue as long as we're finding errors, we're still within
4476 * the acceptable rewind range, and we're still finding uberblocks
4477 */
4478 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4479 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4480 if (spa->spa_load_max_txg < safe_rewind_txg)
4481 spa->spa_extreme_rewind = B_TRUE;
4482 rewind_error = spa_load_retry(spa, state);
4483 }
4484
4485 spa->spa_extreme_rewind = B_FALSE;
4486 spa->spa_load_max_txg = UINT64_MAX;
4487
4488 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4489 spa_config_set(spa, config);
4490 else
4491 nvlist_free(config);
4492
4493 if (state == SPA_LOAD_RECOVER) {
4494 ASSERT3P(loadinfo, ==, NULL);
4495 spa_import_progress_remove(spa);
4496 return (rewind_error);
4497 } else {
4498 /* Store the rewind info as part of the initial load info */
4499 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4500 spa->spa_load_info);
4501
4502 /* Restore the initial load info */
4503 fnvlist_free(spa->spa_load_info);
4504 spa->spa_load_info = loadinfo;
4505
4506 spa_import_progress_remove(spa);
4507 return (load_error);
4508 }
4509 }
4510
4511 /*
4512 * Pool Open/Import
4513 *
4514 * The import case is identical to an open except that the configuration is sent
4515 * down from userland, instead of grabbed from the configuration cache. For the
4516 * case of an open, the pool configuration will exist in the
4517 * POOL_STATE_UNINITIALIZED state.
4518 *
4519 * The stats information (gen/count/ustats) is used to gather vdev statistics at
4520 * the same time open the pool, without having to keep around the spa_t in some
4521 * ambiguous state.
4522 */
4523 static int
4524 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4525 nvlist_t **config)
4526 {
4527 spa_t *spa;
4528 spa_load_state_t state = SPA_LOAD_OPEN;
4529 int error;
4530 int locked = B_FALSE;
4531
4532 *spapp = NULL;
4533
4534 /*
4535 * As disgusting as this is, we need to support recursive calls to this
4536 * function because dsl_dir_open() is called during spa_load(), and ends
4537 * up calling spa_open() again. The real fix is to figure out how to
4538 * avoid dsl_dir_open() calling this in the first place.
4539 */
4540 if (mutex_owner(&spa_namespace_lock) != curthread) {
4541 mutex_enter(&spa_namespace_lock);
4542 locked = B_TRUE;
4543 }
4544
4545 if ((spa = spa_lookup(pool)) == NULL) {
4546 if (locked)
4547 mutex_exit(&spa_namespace_lock);
4548 return (SET_ERROR(ENOENT));
4549 }
4550
4551 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4552 zpool_load_policy_t policy;
4553
4554 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
4555 &policy);
4556 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
4557 state = SPA_LOAD_RECOVER;
4558
4559 spa_activate(spa, spa_mode_global);
4560
4561 if (state != SPA_LOAD_RECOVER)
4562 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4563 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4564
4565 zfs_dbgmsg("spa_open_common: opening %s", pool);
4566 error = spa_load_best(spa, state, policy.zlp_txg,
4567 policy.zlp_rewind);
4568
4569 if (error == EBADF) {
4570 /*
4571 * If vdev_validate() returns failure (indicated by
4572 * EBADF), it indicates that one of the vdevs indicates
4573 * that the pool has been exported or destroyed. If
4574 * this is the case, the config cache is out of sync and
4575 * we should remove the pool from the namespace.
4576 */
4577 spa_unload(spa);
4578 spa_deactivate(spa);
4579 spa_write_cachefile(spa, B_TRUE, B_TRUE);
4580 spa_remove(spa);
4581 if (locked)
4582 mutex_exit(&spa_namespace_lock);
4583 return (SET_ERROR(ENOENT));
4584 }
4585
4586 if (error) {
4587 /*
4588 * We can't open the pool, but we still have useful
4589 * information: the state of each vdev after the
4590 * attempted vdev_open(). Return this to the user.
4591 */
4592 if (config != NULL && spa->spa_config) {
4593 VERIFY(nvlist_dup(spa->spa_config, config,
4594 KM_SLEEP) == 0);
4595 VERIFY(nvlist_add_nvlist(*config,
4596 ZPOOL_CONFIG_LOAD_INFO,
4597 spa->spa_load_info) == 0);
4598 }
4599 spa_unload(spa);
4600 spa_deactivate(spa);
4601 spa->spa_last_open_failed = error;
4602 if (locked)
4603 mutex_exit(&spa_namespace_lock);
4604 *spapp = NULL;
4605 return (error);
4606 }
4607 }
4608
4609 spa_open_ref(spa, tag);
4610
4611 if (config != NULL)
4612 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4613
4614 /*
4615 * If we've recovered the pool, pass back any information we
4616 * gathered while doing the load.
4617 */
4618 if (state == SPA_LOAD_RECOVER) {
4619 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4620 spa->spa_load_info) == 0);
4621 }
4622
4623 if (locked) {
4624 spa->spa_last_open_failed = 0;
4625 spa->spa_last_ubsync_txg = 0;
4626 spa->spa_load_txg = 0;
4627 mutex_exit(&spa_namespace_lock);
4628 }
4629
4630 *spapp = spa;
4631
4632 return (0);
4633 }
4634
4635 int
4636 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4637 nvlist_t **config)
4638 {
4639 return (spa_open_common(name, spapp, tag, policy, config));
4640 }
4641
4642 int
4643 spa_open(const char *name, spa_t **spapp, void *tag)
4644 {
4645 return (spa_open_common(name, spapp, tag, NULL, NULL));
4646 }
4647
4648 /*
4649 * Lookup the given spa_t, incrementing the inject count in the process,
4650 * preventing it from being exported or destroyed.
4651 */
4652 spa_t *
4653 spa_inject_addref(char *name)
4654 {
4655 spa_t *spa;
4656
4657 mutex_enter(&spa_namespace_lock);
4658 if ((spa = spa_lookup(name)) == NULL) {
4659 mutex_exit(&spa_namespace_lock);
4660 return (NULL);
4661 }
4662 spa->spa_inject_ref++;
4663 mutex_exit(&spa_namespace_lock);
4664
4665 return (spa);
4666 }
4667
4668 void
4669 spa_inject_delref(spa_t *spa)
4670 {
4671 mutex_enter(&spa_namespace_lock);
4672 spa->spa_inject_ref--;
4673 mutex_exit(&spa_namespace_lock);
4674 }
4675
4676 /*
4677 * Add spares device information to the nvlist.
4678 */
4679 static void
4680 spa_add_spares(spa_t *spa, nvlist_t *config)
4681 {
4682 nvlist_t **spares;
4683 uint_t i, nspares;
4684 nvlist_t *nvroot;
4685 uint64_t guid;
4686 vdev_stat_t *vs;
4687 uint_t vsc;
4688 uint64_t pool;
4689
4690 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4691
4692 if (spa->spa_spares.sav_count == 0)
4693 return;
4694
4695 VERIFY(nvlist_lookup_nvlist(config,
4696 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4697 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4698 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4699 if (nspares != 0) {
4700 VERIFY(nvlist_add_nvlist_array(nvroot,
4701 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4702 VERIFY(nvlist_lookup_nvlist_array(nvroot,
4703 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4704
4705 /*
4706 * Go through and find any spares which have since been
4707 * repurposed as an active spare. If this is the case, update
4708 * their status appropriately.
4709 */
4710 for (i = 0; i < nspares; i++) {
4711 VERIFY(nvlist_lookup_uint64(spares[i],
4712 ZPOOL_CONFIG_GUID, &guid) == 0);
4713 if (spa_spare_exists(guid, &pool, NULL) &&
4714 pool != 0ULL) {
4715 VERIFY(nvlist_lookup_uint64_array(
4716 spares[i], ZPOOL_CONFIG_VDEV_STATS,
4717 (uint64_t **)&vs, &vsc) == 0);
4718 vs->vs_state = VDEV_STATE_CANT_OPEN;
4719 vs->vs_aux = VDEV_AUX_SPARED;
4720 }
4721 }
4722 }
4723 }
4724
4725 /*
4726 * Add l2cache device information to the nvlist, including vdev stats.
4727 */
4728 static void
4729 spa_add_l2cache(spa_t *spa, nvlist_t *config)
4730 {
4731 nvlist_t **l2cache;
4732 uint_t i, j, nl2cache;
4733 nvlist_t *nvroot;
4734 uint64_t guid;
4735 vdev_t *vd;
4736 vdev_stat_t *vs;
4737 uint_t vsc;
4738
4739 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4740
4741 if (spa->spa_l2cache.sav_count == 0)
4742 return;
4743
4744 VERIFY(nvlist_lookup_nvlist(config,
4745 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4746 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4747 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4748 if (nl2cache != 0) {
4749 VERIFY(nvlist_add_nvlist_array(nvroot,
4750 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4751 VERIFY(nvlist_lookup_nvlist_array(nvroot,
4752 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4753
4754 /*
4755 * Update level 2 cache device stats.
4756 */
4757
4758 for (i = 0; i < nl2cache; i++) {
4759 VERIFY(nvlist_lookup_uint64(l2cache[i],
4760 ZPOOL_CONFIG_GUID, &guid) == 0);
4761
4762 vd = NULL;
4763 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4764 if (guid ==
4765 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4766 vd = spa->spa_l2cache.sav_vdevs[j];
4767 break;
4768 }
4769 }
4770 ASSERT(vd != NULL);
4771
4772 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4773 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4774 == 0);
4775 vdev_get_stats(vd, vs);
4776 vdev_config_generate_stats(vd, l2cache[i]);
4777
4778 }
4779 }
4780 }
4781
4782 static void
4783 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4784 {
4785 nvlist_t *features;
4786 zap_cursor_t zc;
4787 zap_attribute_t za;
4788
4789 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4790 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4791
4792 if (spa->spa_feat_for_read_obj != 0) {
4793 for (zap_cursor_init(&zc, spa->spa_meta_objset,
4794 spa->spa_feat_for_read_obj);
4795 zap_cursor_retrieve(&zc, &za) == 0;
4796 zap_cursor_advance(&zc)) {
4797 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4798 za.za_num_integers == 1);
4799 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4800 za.za_first_integer));
4801 }
4802 zap_cursor_fini(&zc);
4803 }
4804
4805 if (spa->spa_feat_for_write_obj != 0) {
4806 for (zap_cursor_init(&zc, spa->spa_meta_objset,
4807 spa->spa_feat_for_write_obj);
4808 zap_cursor_retrieve(&zc, &za) == 0;
4809 zap_cursor_advance(&zc)) {
4810 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4811 za.za_num_integers == 1);
4812 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4813 za.za_first_integer));
4814 }
4815 zap_cursor_fini(&zc);
4816 }
4817
4818 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4819 features) == 0);
4820 nvlist_free(features);
4821 }
4822
4823 int
4824 spa_get_stats(const char *name, nvlist_t **config,
4825 char *altroot, size_t buflen)
4826 {
4827 int error;
4828 spa_t *spa;
4829
4830 *config = NULL;
4831 error = spa_open_common(name, &spa, FTAG, NULL, config);
4832
4833 if (spa != NULL) {
4834 /*
4835 * This still leaves a window of inconsistency where the spares
4836 * or l2cache devices could change and the config would be
4837 * self-inconsistent.
4838 */
4839 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4840
4841 if (*config != NULL) {
4842 uint64_t loadtimes[2];
4843
4844 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4845 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4846 VERIFY(nvlist_add_uint64_array(*config,
4847 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4848
4849 VERIFY(nvlist_add_uint64(*config,
4850 ZPOOL_CONFIG_ERRCOUNT,
4851 spa_get_errlog_size(spa)) == 0);
4852
4853 if (spa_suspended(spa)) {
4854 VERIFY(nvlist_add_uint64(*config,
4855 ZPOOL_CONFIG_SUSPENDED,
4856 spa->spa_failmode) == 0);
4857 VERIFY(nvlist_add_uint64(*config,
4858 ZPOOL_CONFIG_SUSPENDED_REASON,
4859 spa->spa_suspended) == 0);
4860 }
4861
4862 spa_add_spares(spa, *config);
4863 spa_add_l2cache(spa, *config);
4864 spa_add_feature_stats(spa, *config);
4865 }
4866 }
4867
4868 /*
4869 * We want to get the alternate root even for faulted pools, so we cheat
4870 * and call spa_lookup() directly.
4871 */
4872 if (altroot) {
4873 if (spa == NULL) {
4874 mutex_enter(&spa_namespace_lock);
4875 spa = spa_lookup(name);
4876 if (spa)
4877 spa_altroot(spa, altroot, buflen);
4878 else
4879 altroot[0] = '\0';
4880 spa = NULL;
4881 mutex_exit(&spa_namespace_lock);
4882 } else {
4883 spa_altroot(spa, altroot, buflen);
4884 }
4885 }
4886
4887 if (spa != NULL) {
4888 spa_config_exit(spa, SCL_CONFIG, FTAG);
4889 spa_close(spa, FTAG);
4890 }
4891
4892 return (error);
4893 }
4894
4895 /*
4896 * Validate that the auxiliary device array is well formed. We must have an
4897 * array of nvlists, each which describes a valid leaf vdev. If this is an
4898 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4899 * specified, as long as they are well-formed.
4900 */
4901 static int
4902 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4903 spa_aux_vdev_t *sav, const char *config, uint64_t version,
4904 vdev_labeltype_t label)
4905 {
4906 nvlist_t **dev;
4907 uint_t i, ndev;
4908 vdev_t *vd;
4909 int error;
4910
4911 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4912
4913 /*
4914 * It's acceptable to have no devs specified.
4915 */
4916 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4917 return (0);
4918
4919 if (ndev == 0)
4920 return (SET_ERROR(EINVAL));
4921
4922 /*
4923 * Make sure the pool is formatted with a version that supports this
4924 * device type.
4925 */
4926 if (spa_version(spa) < version)
4927 return (SET_ERROR(ENOTSUP));
4928
4929 /*
4930 * Set the pending device list so we correctly handle device in-use
4931 * checking.
4932 */
4933 sav->sav_pending = dev;
4934 sav->sav_npending = ndev;
4935
4936 for (i = 0; i < ndev; i++) {
4937 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4938 mode)) != 0)
4939 goto out;
4940
4941 if (!vd->vdev_ops->vdev_op_leaf) {
4942 vdev_free(vd);
4943 error = SET_ERROR(EINVAL);
4944 goto out;
4945 }
4946
4947 vd->vdev_top = vd;
4948
4949 if ((error = vdev_open(vd)) == 0 &&
4950 (error = vdev_label_init(vd, crtxg, label)) == 0) {
4951 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4952 vd->vdev_guid) == 0);
4953 }
4954
4955 vdev_free(vd);
4956
4957 if (error &&
4958 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4959 goto out;
4960 else
4961 error = 0;
4962 }
4963
4964 out:
4965 sav->sav_pending = NULL;
4966 sav->sav_npending = 0;
4967 return (error);
4968 }
4969
4970 static int
4971 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4972 {
4973 int error;
4974
4975 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4976
4977 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4978 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4979 VDEV_LABEL_SPARE)) != 0) {
4980 return (error);
4981 }
4982
4983 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4984 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4985 VDEV_LABEL_L2CACHE));
4986 }
4987
4988 static void
4989 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4990 const char *config)
4991 {
4992 int i;
4993
4994 if (sav->sav_config != NULL) {
4995 nvlist_t **olddevs;
4996 uint_t oldndevs;
4997 nvlist_t **newdevs;
4998
4999 /*
5000 * Generate new dev list by concatentating with the
5001 * current dev list.
5002 */
5003 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
5004 &olddevs, &oldndevs) == 0);
5005
5006 newdevs = kmem_alloc(sizeof (void *) *
5007 (ndevs + oldndevs), KM_SLEEP);
5008 for (i = 0; i < oldndevs; i++)
5009 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
5010 KM_SLEEP) == 0);
5011 for (i = 0; i < ndevs; i++)
5012 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
5013 KM_SLEEP) == 0);
5014
5015 VERIFY(nvlist_remove(sav->sav_config, config,
5016 DATA_TYPE_NVLIST_ARRAY) == 0);
5017
5018 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
5019 config, newdevs, ndevs + oldndevs) == 0);
5020 for (i = 0; i < oldndevs + ndevs; i++)
5021 nvlist_free(newdevs[i]);
5022 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5023 } else {
5024 /*
5025 * Generate a new dev list.
5026 */
5027 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
5028 KM_SLEEP) == 0);
5029 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
5030 devs, ndevs) == 0);
5031 }
5032 }
5033
5034 /*
5035 * Stop and drop level 2 ARC devices
5036 */
5037 void
5038 spa_l2cache_drop(spa_t *spa)
5039 {
5040 vdev_t *vd;
5041 int i;
5042 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5043
5044 for (i = 0; i < sav->sav_count; i++) {
5045 uint64_t pool;
5046
5047 vd = sav->sav_vdevs[i];
5048 ASSERT(vd != NULL);
5049
5050 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5051 pool != 0ULL && l2arc_vdev_present(vd))
5052 l2arc_remove_vdev(vd);
5053 }
5054 }
5055
5056 /*
5057 * Verify encryption parameters for spa creation. If we are encrypting, we must
5058 * have the encryption feature flag enabled.
5059 */
5060 static int
5061 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5062 boolean_t has_encryption)
5063 {
5064 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5065 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5066 !has_encryption)
5067 return (SET_ERROR(ENOTSUP));
5068
5069 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5070 }
5071
5072 /*
5073 * Pool Creation
5074 */
5075 int
5076 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5077 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5078 {
5079 spa_t *spa;
5080 char *altroot = NULL;
5081 vdev_t *rvd;
5082 dsl_pool_t *dp;
5083 dmu_tx_t *tx;
5084 int error = 0;
5085 uint64_t txg = TXG_INITIAL;
5086 nvlist_t **spares, **l2cache;
5087 uint_t nspares, nl2cache;
5088 uint64_t version, obj;
5089 boolean_t has_features;
5090 char *poolname;
5091 nvlist_t *nvl;
5092 boolean_t has_encryption;
5093 spa_feature_t feat;
5094 char *feat_name;
5095
5096 if (props == NULL ||
5097 nvlist_lookup_string(props,
5098 zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
5099 poolname = (char *)pool;
5100
5101 /*
5102 * If this pool already exists, return failure.
5103 */
5104 mutex_enter(&spa_namespace_lock);
5105 if (spa_lookup(poolname) != NULL) {
5106 mutex_exit(&spa_namespace_lock);
5107 return (SET_ERROR(EEXIST));
5108 }
5109
5110 /*
5111 * Allocate a new spa_t structure.
5112 */
5113 nvl = fnvlist_alloc();
5114 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5115 (void) nvlist_lookup_string(props,
5116 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5117 spa = spa_add(poolname, nvl, altroot);
5118 fnvlist_free(nvl);
5119 spa_activate(spa, spa_mode_global);
5120
5121 if (props && (error = spa_prop_validate(spa, props))) {
5122 spa_deactivate(spa);
5123 spa_remove(spa);
5124 mutex_exit(&spa_namespace_lock);
5125 return (error);
5126 }
5127
5128 /*
5129 * Temporary pool names should never be written to disk.
5130 */
5131 if (poolname != pool)
5132 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5133
5134 has_features = B_FALSE;
5135 has_encryption = B_FALSE;
5136 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5137 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5138 if (zpool_prop_feature(nvpair_name(elem))) {
5139 has_features = B_TRUE;
5140 feat_name = strchr(nvpair_name(elem), '@') + 1;
5141 VERIFY0(zfeature_lookup_name(feat_name, &feat));
5142 if (feat == SPA_FEATURE_ENCRYPTION)
5143 has_encryption = B_TRUE;
5144 }
5145 }
5146
5147 /* verify encryption params, if they were provided */
5148 if (dcp != NULL) {
5149 error = spa_create_check_encryption_params(dcp, has_encryption);
5150 if (error != 0) {
5151 spa_deactivate(spa);
5152 spa_remove(spa);
5153 mutex_exit(&spa_namespace_lock);
5154 return (error);
5155 }
5156 }
5157
5158 if (has_features || nvlist_lookup_uint64(props,
5159 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5160 version = SPA_VERSION;
5161 }
5162 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5163
5164 spa->spa_first_txg = txg;
5165 spa->spa_uberblock.ub_txg = txg - 1;
5166 spa->spa_uberblock.ub_version = version;
5167 spa->spa_ubsync = spa->spa_uberblock;
5168 spa->spa_load_state = SPA_LOAD_CREATE;
5169 spa->spa_removing_phys.sr_state = DSS_NONE;
5170 spa->spa_removing_phys.sr_removing_vdev = -1;
5171 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5172 spa->spa_indirect_vdevs_loaded = B_TRUE;
5173
5174 /*
5175 * Create "The Godfather" zio to hold all async IOs
5176 */
5177 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5178 KM_SLEEP);
5179 for (int i = 0; i < max_ncpus; i++) {
5180 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5181 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5182 ZIO_FLAG_GODFATHER);
5183 }
5184
5185 /*
5186 * Create the root vdev.
5187 */
5188 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5189
5190 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5191
5192 ASSERT(error != 0 || rvd != NULL);
5193 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5194
5195 if (error == 0 && !zfs_allocatable_devs(nvroot))
5196 error = SET_ERROR(EINVAL);
5197
5198 if (error == 0 &&
5199 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5200 (error = spa_validate_aux(spa, nvroot, txg,
5201 VDEV_ALLOC_ADD)) == 0) {
5202 /*
5203 * instantiate the metaslab groups (this will dirty the vdevs)
5204 * we can no longer error exit past this point
5205 */
5206 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5207 vdev_t *vd = rvd->vdev_child[c];
5208
5209 vdev_metaslab_set_size(vd);
5210 vdev_expand(vd, txg);
5211 }
5212 }
5213
5214 spa_config_exit(spa, SCL_ALL, FTAG);
5215
5216 if (error != 0) {
5217 spa_unload(spa);
5218 spa_deactivate(spa);
5219 spa_remove(spa);
5220 mutex_exit(&spa_namespace_lock);
5221 return (error);
5222 }
5223
5224 /*
5225 * Get the list of spares, if specified.
5226 */
5227 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5228 &spares, &nspares) == 0) {
5229 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
5230 KM_SLEEP) == 0);
5231 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5232 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5233 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5234 spa_load_spares(spa);
5235 spa_config_exit(spa, SCL_ALL, FTAG);
5236 spa->spa_spares.sav_sync = B_TRUE;
5237 }
5238
5239 /*
5240 * Get the list of level 2 cache devices, if specified.
5241 */
5242 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5243 &l2cache, &nl2cache) == 0) {
5244 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5245 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5246 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5247 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5248 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5249 spa_load_l2cache(spa);
5250 spa_config_exit(spa, SCL_ALL, FTAG);
5251 spa->spa_l2cache.sav_sync = B_TRUE;
5252 }
5253
5254 spa->spa_is_initializing = B_TRUE;
5255 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5256 spa->spa_is_initializing = B_FALSE;
5257
5258 /*
5259 * Create DDTs (dedup tables).
5260 */
5261 ddt_create(spa);
5262
5263 spa_update_dspace(spa);
5264
5265 tx = dmu_tx_create_assigned(dp, txg);
5266
5267 /*
5268 * Create the pool config object.
5269 */
5270 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5271 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5272 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5273
5274 if (zap_add(spa->spa_meta_objset,
5275 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5276 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5277 cmn_err(CE_PANIC, "failed to add pool config");
5278 }
5279
5280 if (zap_add(spa->spa_meta_objset,
5281 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5282 sizeof (uint64_t), 1, &version, tx) != 0) {
5283 cmn_err(CE_PANIC, "failed to add pool version");
5284 }
5285
5286 /* Newly created pools with the right version are always deflated. */
5287 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5288 spa->spa_deflate = TRUE;
5289 if (zap_add(spa->spa_meta_objset,
5290 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5291 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5292 cmn_err(CE_PANIC, "failed to add deflate");
5293 }
5294 }
5295
5296 /*
5297 * Create the deferred-free bpobj. Turn off compression
5298 * because sync-to-convergence takes longer if the blocksize
5299 * keeps changing.
5300 */
5301 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5302 dmu_object_set_compress(spa->spa_meta_objset, obj,
5303 ZIO_COMPRESS_OFF, tx);
5304 if (zap_add(spa->spa_meta_objset,
5305 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5306 sizeof (uint64_t), 1, &obj, tx) != 0) {
5307 cmn_err(CE_PANIC, "failed to add bpobj");
5308 }
5309 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5310 spa->spa_meta_objset, obj));
5311
5312 /*
5313 * Create the pool's history object.
5314 */
5315 if (version >= SPA_VERSION_ZPOOL_HISTORY)
5316 spa_history_create_obj(spa, tx);
5317
5318 /*
5319 * Generate some random noise for salted checksums to operate on.
5320 */
5321 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5322 sizeof (spa->spa_cksum_salt.zcs_bytes));
5323
5324 /*
5325 * Set pool properties.
5326 */
5327 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5328 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5329 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5330 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5331 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5332 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
5333
5334 if (props != NULL) {
5335 spa_configfile_set(spa, props, B_FALSE);
5336 spa_sync_props(props, tx);
5337 }
5338
5339 dmu_tx_commit(tx);
5340
5341 spa->spa_sync_on = B_TRUE;
5342 txg_sync_start(spa->spa_dsl_pool);
5343 mmp_thread_start(spa);
5344
5345 /*
5346 * We explicitly wait for the first transaction to complete so that our
5347 * bean counters are appropriately updated.
5348 */
5349 txg_wait_synced(spa->spa_dsl_pool, txg);
5350
5351 spa_spawn_aux_threads(spa);
5352
5353 spa_write_cachefile(spa, B_FALSE, B_TRUE);
5354 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5355
5356 spa_history_log_version(spa, "create");
5357
5358 /*
5359 * Don't count references from objsets that are already closed
5360 * and are making their way through the eviction process.
5361 */
5362 spa_evicting_os_wait(spa);
5363 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
5364 spa->spa_load_state = SPA_LOAD_NONE;
5365
5366 mutex_exit(&spa_namespace_lock);
5367
5368 return (0);
5369 }
5370
5371 #ifdef _KERNEL
5372 /*
5373 * Get the root pool information from the root disk, then import the root pool
5374 * during the system boot up time.
5375 */
5376 static nvlist_t *
5377 spa_generate_rootconf(const char *devpath, const char *devid, uint64_t *guid,
5378 uint64_t pool_guid)
5379 {
5380 nvlist_t *config;
5381 nvlist_t *nvtop, *nvroot;
5382 uint64_t pgid;
5383
5384 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
5385 return (NULL);
5386
5387 /*
5388 * Add this top-level vdev to the child array.
5389 */
5390 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5391 &nvtop) == 0);
5392 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5393 &pgid) == 0);
5394 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
5395
5396 if (pool_guid != 0 && pool_guid != pgid) {
5397 /*
5398 * The boot loader provided a pool GUID, but it does not match
5399 * the one we found in the label. Return failure so that we
5400 * can fall back to the full device scan.
5401 */
5402 zfs_dbgmsg("spa_generate_rootconf: loader pool guid %llu != "
5403 "label pool guid %llu", (u_longlong_t)pool_guid,
5404 (u_longlong_t)pgid);
5405 nvlist_free(config);
5406 return (NULL);
5407 }
5408
5409 /*
5410 * Put this pool's top-level vdevs into a root vdev.
5411 */
5412 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5413 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
5414 VDEV_TYPE_ROOT) == 0);
5415 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
5416 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
5417 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
5418 &nvtop, 1) == 0);
5419
5420 /*
5421 * Replace the existing vdev_tree with the new root vdev in
5422 * this pool's configuration (remove the old, add the new).
5423 */
5424 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
5425 nvlist_free(nvroot);
5426 return (config);
5427 }
5428
5429 /*
5430 * Walk the vdev tree and see if we can find a device with "better"
5431 * configuration. A configuration is "better" if the label on that
5432 * device has a more recent txg.
5433 */
5434 static void
5435 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
5436 {
5437 for (int c = 0; c < vd->vdev_children; c++)
5438 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
5439
5440 if (vd->vdev_ops->vdev_op_leaf) {
5441 nvlist_t *label;
5442 uint64_t label_txg;
5443
5444 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
5445 &label) != 0)
5446 return;
5447
5448 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
5449 &label_txg) == 0);
5450
5451 /*
5452 * Do we have a better boot device?
5453 */
5454 if (label_txg > *txg) {
5455 *txg = label_txg;
5456 *avd = vd;
5457 }
5458 nvlist_free(label);
5459 }
5460 }
5461
5462 /*
5463 * Import a root pool.
5464 *
5465 * For x86. devpath_list will consist of devid and/or physpath name of
5466 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
5467 * The GRUB "findroot" command will return the vdev we should boot.
5468 *
5469 * For Sparc, devpath_list consists the physpath name of the booting device
5470 * no matter the rootpool is a single device pool or a mirrored pool.
5471 * e.g.
5472 * "/pci@1f,0/ide@d/disk@0,0:a"
5473 */
5474 int
5475 spa_import_rootpool(char *devpath, char *devid, uint64_t pool_guid,
5476 uint64_t vdev_guid)
5477 {
5478 spa_t *spa;
5479 vdev_t *rvd, *bvd, *avd = NULL;
5480 nvlist_t *config, *nvtop;
5481 uint64_t guid, txg;
5482 char *pname;
5483 int error;
5484 const char *altdevpath = NULL;
5485 const char *rdpath = NULL;
5486
5487 if ((rdpath = vdev_disk_preroot_force_path()) != NULL) {
5488 /*
5489 * We expect to import a single-vdev pool from a specific
5490 * device such as a ramdisk device. We don't care what the
5491 * pool label says.
5492 */
5493 config = spa_generate_rootconf(rdpath, NULL, &guid, 0);
5494 if (config != NULL) {
5495 goto configok;
5496 }
5497 cmn_err(CE_NOTE, "Cannot use root disk device '%s'", rdpath);
5498 return (SET_ERROR(EIO));
5499 }
5500
5501 /*
5502 * Read the label from the boot device and generate a configuration.
5503 */
5504 config = spa_generate_rootconf(devpath, devid, &guid, pool_guid);
5505 #if defined(_OBP) && defined(_KERNEL)
5506 if (config == NULL) {
5507 if (strstr(devpath, "/iscsi/ssd") != NULL) {
5508 /* iscsi boot */
5509 get_iscsi_bootpath_phy(devpath);
5510 config = spa_generate_rootconf(devpath, devid, &guid,
5511 pool_guid);
5512 }
5513 }
5514 #endif
5515
5516 /*
5517 * We were unable to import the pool using the /devices path or devid
5518 * provided by the boot loader. This may be the case if the boot
5519 * device has been connected to a different location in the system, or
5520 * if a new boot environment has changed the driver used to access the
5521 * boot device.
5522 *
5523 * Attempt an exhaustive scan of all visible block devices to see if we
5524 * can locate an alternative /devices path with a label that matches
5525 * the expected pool and vdev GUID.
5526 */
5527 if (config == NULL && (altdevpath =
5528 vdev_disk_preroot_lookup(pool_guid, vdev_guid)) != NULL) {
5529 cmn_err(CE_NOTE, "Original /devices path (%s) not available; "
5530 "ZFS is trying an alternate path (%s)", devpath,
5531 altdevpath);
5532 config = spa_generate_rootconf(altdevpath, NULL, &guid,
5533 pool_guid);
5534 }
5535
5536 if (config == NULL) {
5537 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
5538 devpath);
5539 return (SET_ERROR(EIO));
5540 }
5541
5542 configok:
5543 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
5544 &pname) == 0);
5545 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
5546
5547 mutex_enter(&spa_namespace_lock);
5548 if ((spa = spa_lookup(pname)) != NULL) {
5549 /*
5550 * Remove the existing root pool from the namespace so that we
5551 * can replace it with the correct config we just read in.
5552 */
5553 spa_remove(spa);
5554 }
5555
5556 spa = spa_add(pname, config, NULL);
5557 spa->spa_is_root = B_TRUE;
5558 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
5559 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
5560 &spa->spa_ubsync.ub_version) != 0)
5561 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
5562
5563 /*
5564 * Build up a vdev tree based on the boot device's label config.
5565 */
5566 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5567 &nvtop) == 0);
5568 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5569 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
5570 VDEV_ALLOC_ROOTPOOL);
5571 spa_config_exit(spa, SCL_ALL, FTAG);
5572 if (error) {
5573 mutex_exit(&spa_namespace_lock);
5574 nvlist_free(config);
5575 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
5576 pname);
5577 return (error);
5578 }
5579
5580 /*
5581 * Get the boot vdev.
5582 */
5583 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
5584 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
5585 (u_longlong_t)guid);
5586 error = SET_ERROR(ENOENT);
5587 goto out;
5588 }
5589
5590 /*
5591 * Determine if there is a better boot device.
5592 */
5593 avd = bvd;
5594 spa_alt_rootvdev(rvd, &avd, &txg);
5595 if (avd != bvd) {
5596 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
5597 "try booting from '%s'", avd->vdev_path);
5598 error = SET_ERROR(EINVAL);
5599 goto out;
5600 }
5601
5602 /*
5603 * If the boot device is part of a spare vdev then ensure that
5604 * we're booting off the active spare.
5605 */
5606 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
5607 !bvd->vdev_isspare) {
5608 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
5609 "try booting from '%s'",
5610 bvd->vdev_parent->
5611 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
5612 error = SET_ERROR(EINVAL);
5613 goto out;
5614 }
5615
5616 /*
5617 * The root disk may have been expanded while the system was offline.
5618 * Kick off an async task to check for and handle expansion.
5619 */
5620 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5621
5622 error = 0;
5623 out:
5624 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5625 vdev_free(rvd);
5626 spa_config_exit(spa, SCL_ALL, FTAG);
5627 mutex_exit(&spa_namespace_lock);
5628
5629 nvlist_free(config);
5630 return (error);
5631 }
5632
5633 #endif
5634
5635 /*
5636 * Import a non-root pool into the system.
5637 */
5638 int
5639 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5640 {
5641 spa_t *spa;
5642 char *altroot = NULL;
5643 spa_load_state_t state = SPA_LOAD_IMPORT;
5644 zpool_load_policy_t policy;
5645 uint64_t mode = spa_mode_global;
5646 uint64_t readonly = B_FALSE;
5647 int error;
5648 nvlist_t *nvroot;
5649 nvlist_t **spares, **l2cache;
5650 uint_t nspares, nl2cache;
5651
5652 /*
5653 * If a pool with this name exists, return failure.
5654 */
5655 mutex_enter(&spa_namespace_lock);
5656 if (spa_lookup(pool) != NULL) {
5657 mutex_exit(&spa_namespace_lock);
5658 return (SET_ERROR(EEXIST));
5659 }
5660
5661 /*
5662 * Create and initialize the spa structure.
5663 */
5664 (void) nvlist_lookup_string(props,
5665 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5666 (void) nvlist_lookup_uint64(props,
5667 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5668 if (readonly)
5669 mode = FREAD;
5670 spa = spa_add(pool, config, altroot);
5671 spa->spa_import_flags = flags;
5672
5673 /*
5674 * Verbatim import - Take a pool and insert it into the namespace
5675 * as if it had been loaded at boot.
5676 */
5677 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5678 if (props != NULL)
5679 spa_configfile_set(spa, props, B_FALSE);
5680
5681 spa_write_cachefile(spa, B_FALSE, B_TRUE);
5682 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5683 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5684 mutex_exit(&spa_namespace_lock);
5685 return (0);
5686 }
5687
5688 spa_activate(spa, mode);
5689
5690 /*
5691 * Don't start async tasks until we know everything is healthy.
5692 */
5693 spa_async_suspend(spa);
5694
5695 zpool_get_load_policy(config, &policy);
5696 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5697 state = SPA_LOAD_RECOVER;
5698
5699 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5700
5701 if (state != SPA_LOAD_RECOVER) {
5702 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5703 zfs_dbgmsg("spa_import: importing %s", pool);
5704 } else {
5705 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5706 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5707 }
5708 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5709
5710 /*
5711 * Propagate anything learned while loading the pool and pass it
5712 * back to caller (i.e. rewind info, missing devices, etc).
5713 */
5714 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5715 spa->spa_load_info) == 0);
5716
5717 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5718 /*
5719 * Toss any existing sparelist, as it doesn't have any validity
5720 * anymore, and conflicts with spa_has_spare().
5721 */
5722 if (spa->spa_spares.sav_config) {
5723 nvlist_free(spa->spa_spares.sav_config);
5724 spa->spa_spares.sav_config = NULL;
5725 spa_load_spares(spa);
5726 }
5727 if (spa->spa_l2cache.sav_config) {
5728 nvlist_free(spa->spa_l2cache.sav_config);
5729 spa->spa_l2cache.sav_config = NULL;
5730 spa_load_l2cache(spa);
5731 }
5732
5733 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5734 &nvroot) == 0);
5735 if (error == 0)
5736 error = spa_validate_aux(spa, nvroot, -1ULL,
5737 VDEV_ALLOC_SPARE);
5738 if (error == 0)
5739 error = spa_validate_aux(spa, nvroot, -1ULL,
5740 VDEV_ALLOC_L2CACHE);
5741 spa_config_exit(spa, SCL_ALL, FTAG);
5742
5743 if (props != NULL)
5744 spa_configfile_set(spa, props, B_FALSE);
5745
5746 if (error != 0 || (props && spa_writeable(spa) &&
5747 (error = spa_prop_set(spa, props)))) {
5748 spa_unload(spa);
5749 spa_deactivate(spa);
5750 spa_remove(spa);
5751 mutex_exit(&spa_namespace_lock);
5752 return (error);
5753 }
5754
5755 spa_async_resume(spa);
5756
5757 /*
5758 * Override any spares and level 2 cache devices as specified by
5759 * the user, as these may have correct device names/devids, etc.
5760 */
5761 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5762 &spares, &nspares) == 0) {
5763 if (spa->spa_spares.sav_config)
5764 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5765 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5766 else
5767 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5768 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5769 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5770 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5771 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5772 spa_load_spares(spa);
5773 spa_config_exit(spa, SCL_ALL, FTAG);
5774 spa->spa_spares.sav_sync = B_TRUE;
5775 }
5776 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5777 &l2cache, &nl2cache) == 0) {
5778 if (spa->spa_l2cache.sav_config)
5779 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5780 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5781 else
5782 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5783 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5784 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5785 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5786 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5787 spa_load_l2cache(spa);
5788 spa_config_exit(spa, SCL_ALL, FTAG);
5789 spa->spa_l2cache.sav_sync = B_TRUE;
5790 }
5791
5792 /*
5793 * Check for any removed devices.
5794 */
5795 if (spa->spa_autoreplace) {
5796 spa_aux_check_removed(&spa->spa_spares);
5797 spa_aux_check_removed(&spa->spa_l2cache);
5798 }
5799
5800 if (spa_writeable(spa)) {
5801 /*
5802 * Update the config cache to include the newly-imported pool.
5803 */
5804 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5805 }
5806
5807 /*
5808 * It's possible that the pool was expanded while it was exported.
5809 * We kick off an async task to handle this for us.
5810 */
5811 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5812
5813 spa_history_log_version(spa, "import");
5814
5815 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5816
5817 mutex_exit(&spa_namespace_lock);
5818
5819 return (0);
5820 }
5821
5822 nvlist_t *
5823 spa_tryimport(nvlist_t *tryconfig)
5824 {
5825 nvlist_t *config = NULL;
5826 char *poolname, *cachefile;
5827 spa_t *spa;
5828 uint64_t state;
5829 int error;
5830 zpool_load_policy_t policy;
5831
5832 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5833 return (NULL);
5834
5835 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5836 return (NULL);
5837
5838 /*
5839 * Create and initialize the spa structure.
5840 */
5841 mutex_enter(&spa_namespace_lock);
5842 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5843 spa_activate(spa, FREAD);
5844
5845 /*
5846 * Rewind pool if a max txg was provided.
5847 */
5848 zpool_get_load_policy(spa->spa_config, &policy);
5849 if (policy.zlp_txg != UINT64_MAX) {
5850 spa->spa_load_max_txg = policy.zlp_txg;
5851 spa->spa_extreme_rewind = B_TRUE;
5852 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5853 poolname, (longlong_t)policy.zlp_txg);
5854 } else {
5855 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5856 }
5857
5858 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5859 == 0) {
5860 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5861 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5862 } else {
5863 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5864 }
5865
5866 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5867
5868 /*
5869 * If 'tryconfig' was at least parsable, return the current config.
5870 */
5871 if (spa->spa_root_vdev != NULL) {
5872 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5873 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5874 poolname) == 0);
5875 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5876 state) == 0);
5877 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5878 spa->spa_uberblock.ub_timestamp) == 0);
5879 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5880 spa->spa_load_info) == 0);
5881
5882 /*
5883 * If the bootfs property exists on this pool then we
5884 * copy it out so that external consumers can tell which
5885 * pools are bootable.
5886 */
5887 if ((!error || error == EEXIST) && spa->spa_bootfs) {
5888 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5889
5890 /*
5891 * We have to play games with the name since the
5892 * pool was opened as TRYIMPORT_NAME.
5893 */
5894 if (dsl_dsobj_to_dsname(spa_name(spa),
5895 spa->spa_bootfs, tmpname) == 0) {
5896 char *cp;
5897 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5898
5899 cp = strchr(tmpname, '/');
5900 if (cp == NULL) {
5901 (void) strlcpy(dsname, tmpname,
5902 MAXPATHLEN);
5903 } else {
5904 (void) snprintf(dsname, MAXPATHLEN,
5905 "%s/%s", poolname, ++cp);
5906 }
5907 VERIFY(nvlist_add_string(config,
5908 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5909 kmem_free(dsname, MAXPATHLEN);
5910 }
5911 kmem_free(tmpname, MAXPATHLEN);
5912 }
5913
5914 /*
5915 * Add the list of hot spares and level 2 cache devices.
5916 */
5917 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5918 spa_add_spares(spa, config);
5919 spa_add_l2cache(spa, config);
5920 spa_config_exit(spa, SCL_CONFIG, FTAG);
5921 }
5922
5923 spa_unload(spa);
5924 spa_deactivate(spa);
5925 spa_remove(spa);
5926 mutex_exit(&spa_namespace_lock);
5927
5928 return (config);
5929 }
5930
5931 /*
5932 * Pool export/destroy
5933 *
5934 * The act of destroying or exporting a pool is very simple. We make sure there
5935 * is no more pending I/O and any references to the pool are gone. Then, we
5936 * update the pool state and sync all the labels to disk, removing the
5937 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5938 * we don't sync the labels or remove the configuration cache.
5939 */
5940 static int
5941 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5942 boolean_t force, boolean_t hardforce)
5943 {
5944 spa_t *spa;
5945
5946 if (oldconfig)
5947 *oldconfig = NULL;
5948
5949 if (!(spa_mode_global & FWRITE))
5950 return (SET_ERROR(EROFS));
5951
5952 mutex_enter(&spa_namespace_lock);
5953 if ((spa = spa_lookup(pool)) == NULL) {
5954 mutex_exit(&spa_namespace_lock);
5955 return (SET_ERROR(ENOENT));
5956 }
5957
5958 /*
5959 * Put a hold on the pool, drop the namespace lock, stop async tasks,
5960 * reacquire the namespace lock, and see if we can export.
5961 */
5962 spa_open_ref(spa, FTAG);
5963 mutex_exit(&spa_namespace_lock);
5964 spa_async_suspend(spa);
5965 mutex_enter(&spa_namespace_lock);
5966 spa_close(spa, FTAG);
5967
5968 /*
5969 * The pool will be in core if it's openable,
5970 * in which case we can modify its state.
5971 */
5972 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
5973
5974 /*
5975 * Objsets may be open only because they're dirty, so we
5976 * have to force it to sync before checking spa_refcnt.
5977 */
5978 txg_wait_synced(spa->spa_dsl_pool, 0);
5979 spa_evicting_os_wait(spa);
5980
5981 /*
5982 * A pool cannot be exported or destroyed if there are active
5983 * references. If we are resetting a pool, allow references by
5984 * fault injection handlers.
5985 */
5986 if (!spa_refcount_zero(spa) ||
5987 (spa->spa_inject_ref != 0 &&
5988 new_state != POOL_STATE_UNINITIALIZED)) {
5989 spa_async_resume(spa);
5990 mutex_exit(&spa_namespace_lock);
5991 return (SET_ERROR(EBUSY));
5992 }
5993
5994 /*
5995 * A pool cannot be exported if it has an active shared spare.
5996 * This is to prevent other pools stealing the active spare
5997 * from an exported pool. At user's own will, such pool can
5998 * be forcedly exported.
5999 */
6000 if (!force && new_state == POOL_STATE_EXPORTED &&
6001 spa_has_active_shared_spare(spa)) {
6002 spa_async_resume(spa);
6003 mutex_exit(&spa_namespace_lock);
6004 return (SET_ERROR(EXDEV));
6005 }
6006
6007 /*
6008 * We're about to export or destroy this pool. Make sure
6009 * we stop all initialization and trim activity here before
6010 * we set the spa_final_txg. This will ensure that all
6011 * dirty data resulting from the initialization is
6012 * committed to disk before we unload the pool.
6013 */
6014 if (spa->spa_root_vdev != NULL) {
6015 vdev_t *rvd = spa->spa_root_vdev;
6016 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6017 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6018 vdev_autotrim_stop_all(spa);
6019 }
6020
6021 /*
6022 * We want this to be reflected on every label,
6023 * so mark them all dirty. spa_unload() will do the
6024 * final sync that pushes these changes out.
6025 */
6026 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6027 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6028 spa->spa_state = new_state;
6029 spa->spa_final_txg = spa_last_synced_txg(spa) +
6030 TXG_DEFER_SIZE + 1;
6031 vdev_config_dirty(spa->spa_root_vdev);
6032 spa_config_exit(spa, SCL_ALL, FTAG);
6033 }
6034 }
6035
6036 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6037
6038 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6039 spa_unload(spa);
6040 spa_deactivate(spa);
6041 }
6042
6043 if (oldconfig && spa->spa_config)
6044 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
6045
6046 if (new_state != POOL_STATE_UNINITIALIZED) {
6047 if (!hardforce)
6048 spa_write_cachefile(spa, B_TRUE, B_TRUE);
6049 spa_remove(spa);
6050 }
6051 mutex_exit(&spa_namespace_lock);
6052
6053 return (0);
6054 }
6055
6056 /*
6057 * Destroy a storage pool.
6058 */
6059 int
6060 spa_destroy(char *pool)
6061 {
6062 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6063 B_FALSE, B_FALSE));
6064 }
6065
6066 /*
6067 * Export a storage pool.
6068 */
6069 int
6070 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
6071 boolean_t hardforce)
6072 {
6073 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6074 force, hardforce));
6075 }
6076
6077 /*
6078 * Similar to spa_export(), this unloads the spa_t without actually removing it
6079 * from the namespace in any way.
6080 */
6081 int
6082 spa_reset(char *pool)
6083 {
6084 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6085 B_FALSE, B_FALSE));
6086 }
6087
6088 /*
6089 * ==========================================================================
6090 * Device manipulation
6091 * ==========================================================================
6092 */
6093
6094 /*
6095 * Add a device to a storage pool.
6096 */
6097 int
6098 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6099 {
6100 uint64_t txg;
6101 int error;
6102 vdev_t *rvd = spa->spa_root_vdev;
6103 vdev_t *vd, *tvd;
6104 nvlist_t **spares, **l2cache;
6105 uint_t nspares, nl2cache;
6106
6107 ASSERT(spa_writeable(spa));
6108
6109 txg = spa_vdev_enter(spa);
6110
6111 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6112 VDEV_ALLOC_ADD)) != 0)
6113 return (spa_vdev_exit(spa, NULL, txg, error));
6114
6115 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
6116
6117 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6118 &nspares) != 0)
6119 nspares = 0;
6120
6121 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6122 &nl2cache) != 0)
6123 nl2cache = 0;
6124
6125 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6126 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6127
6128 if (vd->vdev_children != 0 &&
6129 (error = vdev_create(vd, txg, B_FALSE)) != 0)
6130 return (spa_vdev_exit(spa, vd, txg, error));
6131
6132 /*
6133 * We must validate the spares and l2cache devices after checking the
6134 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
6135 */
6136 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6137 return (spa_vdev_exit(spa, vd, txg, error));
6138
6139 /*
6140 * If we are in the middle of a device removal, we can only add
6141 * devices which match the existing devices in the pool.
6142 * If we are in the middle of a removal, or have some indirect
6143 * vdevs, we can not add raidz toplevels.
6144 */
6145 if (spa->spa_vdev_removal != NULL ||
6146 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6147 for (int c = 0; c < vd->vdev_children; c++) {
6148 tvd = vd->vdev_child[c];
6149 if (spa->spa_vdev_removal != NULL &&
6150 tvd->vdev_ashift != spa->spa_max_ashift) {
6151 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6152 }
6153 /* Fail if top level vdev is raidz */
6154 if (tvd->vdev_ops == &vdev_raidz_ops) {
6155 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6156 }
6157 /*
6158 * Need the top level mirror to be
6159 * a mirror of leaf vdevs only
6160 */
6161 if (tvd->vdev_ops == &vdev_mirror_ops) {
6162 for (uint64_t cid = 0;
6163 cid < tvd->vdev_children; cid++) {
6164 vdev_t *cvd = tvd->vdev_child[cid];
6165 if (!cvd->vdev_ops->vdev_op_leaf) {
6166 return (spa_vdev_exit(spa, vd,
6167 txg, EINVAL));
6168 }
6169 }
6170 }
6171 }
6172 }
6173
6174 for (int c = 0; c < vd->vdev_children; c++) {
6175 tvd = vd->vdev_child[c];
6176 vdev_remove_child(vd, tvd);
6177 tvd->vdev_id = rvd->vdev_children;
6178 vdev_add_child(rvd, tvd);
6179 vdev_config_dirty(tvd);
6180 }
6181
6182 if (nspares != 0) {
6183 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6184 ZPOOL_CONFIG_SPARES);
6185 spa_load_spares(spa);
6186 spa->spa_spares.sav_sync = B_TRUE;
6187 }
6188
6189 if (nl2cache != 0) {
6190 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6191 ZPOOL_CONFIG_L2CACHE);
6192 spa_load_l2cache(spa);
6193 spa->spa_l2cache.sav_sync = B_TRUE;
6194 }
6195
6196 /*
6197 * We have to be careful when adding new vdevs to an existing pool.
6198 * If other threads start allocating from these vdevs before we
6199 * sync the config cache, and we lose power, then upon reboot we may
6200 * fail to open the pool because there are DVAs that the config cache
6201 * can't translate. Therefore, we first add the vdevs without
6202 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6203 * and then let spa_config_update() initialize the new metaslabs.
6204 *
6205 * spa_load() checks for added-but-not-initialized vdevs, so that
6206 * if we lose power at any point in this sequence, the remaining
6207 * steps will be completed the next time we load the pool.
6208 */
6209 (void) spa_vdev_exit(spa, vd, txg, 0);
6210
6211 mutex_enter(&spa_namespace_lock);
6212 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6213 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6214 mutex_exit(&spa_namespace_lock);
6215
6216 return (0);
6217 }
6218
6219 /*
6220 * Attach a device to a mirror. The arguments are the path to any device
6221 * in the mirror, and the nvroot for the new device. If the path specifies
6222 * a device that is not mirrored, we automatically insert the mirror vdev.
6223 *
6224 * If 'replacing' is specified, the new device is intended to replace the
6225 * existing device; in this case the two devices are made into their own
6226 * mirror using the 'replacing' vdev, which is functionally identical to
6227 * the mirror vdev (it actually reuses all the same ops) but has a few
6228 * extra rules: you can't attach to it after it's been created, and upon
6229 * completion of resilvering, the first disk (the one being replaced)
6230 * is automatically detached.
6231 */
6232 int
6233 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
6234 {
6235 uint64_t txg, dtl_max_txg;
6236 vdev_t *rvd = spa->spa_root_vdev;
6237 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6238 vdev_ops_t *pvops;
6239 char *oldvdpath, *newvdpath;
6240 int newvd_isspare;
6241 int error;
6242
6243 ASSERT(spa_writeable(spa));
6244
6245 txg = spa_vdev_enter(spa);
6246
6247 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6248
6249 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6250 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6251 error = (spa_has_checkpoint(spa)) ?
6252 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6253 return (spa_vdev_exit(spa, NULL, txg, error));
6254 }
6255
6256 if (spa->spa_vdev_removal != NULL)
6257 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6258
6259 if (oldvd == NULL)
6260 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6261
6262 if (!oldvd->vdev_ops->vdev_op_leaf)
6263 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6264
6265 pvd = oldvd->vdev_parent;
6266
6267 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6268 VDEV_ALLOC_ATTACH)) != 0)
6269 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6270
6271 if (newrootvd->vdev_children != 1)
6272 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6273
6274 newvd = newrootvd->vdev_child[0];
6275
6276 if (!newvd->vdev_ops->vdev_op_leaf)
6277 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6278
6279 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6280 return (spa_vdev_exit(spa, newrootvd, txg, error));
6281
6282 /*
6283 * Spares can't replace logs
6284 */
6285 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6286 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6287
6288 if (!replacing) {
6289 /*
6290 * For attach, the only allowable parent is a mirror or the root
6291 * vdev.
6292 */
6293 if (pvd->vdev_ops != &vdev_mirror_ops &&
6294 pvd->vdev_ops != &vdev_root_ops)
6295 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6296
6297 pvops = &vdev_mirror_ops;
6298 } else {
6299 /*
6300 * Active hot spares can only be replaced by inactive hot
6301 * spares.
6302 */
6303 if (pvd->vdev_ops == &vdev_spare_ops &&
6304 oldvd->vdev_isspare &&
6305 !spa_has_spare(spa, newvd->vdev_guid))
6306 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6307
6308 /*
6309 * If the source is a hot spare, and the parent isn't already a
6310 * spare, then we want to create a new hot spare. Otherwise, we
6311 * want to create a replacing vdev. The user is not allowed to
6312 * attach to a spared vdev child unless the 'isspare' state is
6313 * the same (spare replaces spare, non-spare replaces
6314 * non-spare).
6315 */
6316 if (pvd->vdev_ops == &vdev_replacing_ops &&
6317 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6318 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6319 } else if (pvd->vdev_ops == &vdev_spare_ops &&
6320 newvd->vdev_isspare != oldvd->vdev_isspare) {
6321 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6322 }
6323
6324 if (newvd->vdev_isspare)
6325 pvops = &vdev_spare_ops;
6326 else
6327 pvops = &vdev_replacing_ops;
6328 }
6329
6330 /*
6331 * Make sure the new device is big enough.
6332 */
6333 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6334 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6335
6336 /*
6337 * The new device cannot have a higher alignment requirement
6338 * than the top-level vdev.
6339 */
6340 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6341 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
6342
6343 /*
6344 * If this is an in-place replacement, update oldvd's path and devid
6345 * to make it distinguishable from newvd, and unopenable from now on.
6346 */
6347 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6348 spa_strfree(oldvd->vdev_path);
6349 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6350 KM_SLEEP);
6351 (void) sprintf(oldvd->vdev_path, "%s/%s",
6352 newvd->vdev_path, "old");
6353 if (oldvd->vdev_devid != NULL) {
6354 spa_strfree(oldvd->vdev_devid);
6355 oldvd->vdev_devid = NULL;
6356 }
6357 }
6358
6359 /* mark the device being resilvered */
6360 newvd->vdev_resilver_txg = txg;
6361
6362 /*
6363 * If the parent is not a mirror, or if we're replacing, insert the new
6364 * mirror/replacing/spare vdev above oldvd.
6365 */
6366 if (pvd->vdev_ops != pvops)
6367 pvd = vdev_add_parent(oldvd, pvops);
6368
6369 ASSERT(pvd->vdev_top->vdev_parent == rvd);
6370 ASSERT(pvd->vdev_ops == pvops);
6371 ASSERT(oldvd->vdev_parent == pvd);
6372
6373 /*
6374 * Extract the new device from its root and add it to pvd.
6375 */
6376 vdev_remove_child(newrootvd, newvd);
6377 newvd->vdev_id = pvd->vdev_children;
6378 newvd->vdev_crtxg = oldvd->vdev_crtxg;
6379 vdev_add_child(pvd, newvd);
6380
6381 tvd = newvd->vdev_top;
6382 ASSERT(pvd->vdev_top == tvd);
6383 ASSERT(tvd->vdev_parent == rvd);
6384
6385 vdev_config_dirty(tvd);
6386
6387 /*
6388 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6389 * for any dmu_sync-ed blocks. It will propagate upward when
6390 * spa_vdev_exit() calls vdev_dtl_reassess().
6391 */
6392 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6393
6394 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
6395 dtl_max_txg - TXG_INITIAL);
6396
6397 if (newvd->vdev_isspare) {
6398 spa_spare_activate(newvd);
6399 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6400 }
6401
6402 oldvdpath = spa_strdup(oldvd->vdev_path);
6403 newvdpath = spa_strdup(newvd->vdev_path);
6404 newvd_isspare = newvd->vdev_isspare;
6405
6406 /*
6407 * Mark newvd's DTL dirty in this txg.
6408 */
6409 vdev_dirty(tvd, VDD_DTL, newvd, txg);
6410
6411 /*
6412 * Schedule the resilver to restart in the future. We do this to
6413 * ensure that dmu_sync-ed blocks have been stitched into the
6414 * respective datasets. We do not do this if resilvers have been
6415 * deferred.
6416 */
6417 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6418 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
6419 vdev_defer_resilver(newvd);
6420 else
6421 dsl_scan_restart_resilver(spa->spa_dsl_pool, dtl_max_txg);
6422
6423 if (spa->spa_bootfs)
6424 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6425
6426 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6427
6428 /*
6429 * Commit the config
6430 */
6431 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6432
6433 spa_history_log_internal(spa, "vdev attach", NULL,
6434 "%s vdev=%s %s vdev=%s",
6435 replacing && newvd_isspare ? "spare in" :
6436 replacing ? "replace" : "attach", newvdpath,
6437 replacing ? "for" : "to", oldvdpath);
6438
6439 spa_strfree(oldvdpath);
6440 spa_strfree(newvdpath);
6441
6442 return (0);
6443 }
6444
6445 /*
6446 * Detach a device from a mirror or replacing vdev.
6447 *
6448 * If 'replace_done' is specified, only detach if the parent
6449 * is a replacing vdev.
6450 */
6451 int
6452 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6453 {
6454 uint64_t txg;
6455 int error;
6456 vdev_t *rvd = spa->spa_root_vdev;
6457 vdev_t *vd, *pvd, *cvd, *tvd;
6458 boolean_t unspare = B_FALSE;
6459 uint64_t unspare_guid = 0;
6460 char *vdpath;
6461
6462 ASSERT(spa_writeable(spa));
6463
6464 txg = spa_vdev_enter(spa);
6465
6466 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6467
6468 /*
6469 * Besides being called directly from the userland through the
6470 * ioctl interface, spa_vdev_detach() can be potentially called
6471 * at the end of spa_vdev_resilver_done().
6472 *
6473 * In the regular case, when we have a checkpoint this shouldn't
6474 * happen as we never empty the DTLs of a vdev during the scrub
6475 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6476 * should never get here when we have a checkpoint.
6477 *
6478 * That said, even in a case when we checkpoint the pool exactly
6479 * as spa_vdev_resilver_done() calls this function everything
6480 * should be fine as the resilver will return right away.
6481 */
6482 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6483 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6484 error = (spa_has_checkpoint(spa)) ?
6485 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6486 return (spa_vdev_exit(spa, NULL, txg, error));
6487 }
6488
6489 if (vd == NULL)
6490 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6491
6492 if (!vd->vdev_ops->vdev_op_leaf)
6493 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6494
6495 pvd = vd->vdev_parent;
6496
6497 /*
6498 * If the parent/child relationship is not as expected, don't do it.
6499 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6500 * vdev that's replacing B with C. The user's intent in replacing
6501 * is to go from M(A,B) to M(A,C). If the user decides to cancel
6502 * the replace by detaching C, the expected behavior is to end up
6503 * M(A,B). But suppose that right after deciding to detach C,
6504 * the replacement of B completes. We would have M(A,C), and then
6505 * ask to detach C, which would leave us with just A -- not what
6506 * the user wanted. To prevent this, we make sure that the
6507 * parent/child relationship hasn't changed -- in this example,
6508 * that C's parent is still the replacing vdev R.
6509 */
6510 if (pvd->vdev_guid != pguid && pguid != 0)
6511 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6512
6513 /*
6514 * Only 'replacing' or 'spare' vdevs can be replaced.
6515 */
6516 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
6517 pvd->vdev_ops != &vdev_spare_ops)
6518 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6519
6520 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
6521 spa_version(spa) >= SPA_VERSION_SPARES);
6522
6523 /*
6524 * Only mirror, replacing, and spare vdevs support detach.
6525 */
6526 if (pvd->vdev_ops != &vdev_replacing_ops &&
6527 pvd->vdev_ops != &vdev_mirror_ops &&
6528 pvd->vdev_ops != &vdev_spare_ops)
6529 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6530
6531 /*
6532 * If this device has the only valid copy of some data,
6533 * we cannot safely detach it.
6534 */
6535 if (vdev_dtl_required(vd))
6536 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6537
6538 ASSERT(pvd->vdev_children >= 2);
6539
6540 /*
6541 * If we are detaching the second disk from a replacing vdev, then
6542 * check to see if we changed the original vdev's path to have "/old"
6543 * at the end in spa_vdev_attach(). If so, undo that change now.
6544 */
6545 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
6546 vd->vdev_path != NULL) {
6547 size_t len = strlen(vd->vdev_path);
6548
6549 for (int c = 0; c < pvd->vdev_children; c++) {
6550 cvd = pvd->vdev_child[c];
6551
6552 if (cvd == vd || cvd->vdev_path == NULL)
6553 continue;
6554
6555 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
6556 strcmp(cvd->vdev_path + len, "/old") == 0) {
6557 spa_strfree(cvd->vdev_path);
6558 cvd->vdev_path = spa_strdup(vd->vdev_path);
6559 break;
6560 }
6561 }
6562 }
6563
6564 /*
6565 * If we are detaching the original disk from a spare, then it implies
6566 * that the spare should become a real disk, and be removed from the
6567 * active spare list for the pool.
6568 */
6569 if (pvd->vdev_ops == &vdev_spare_ops &&
6570 vd->vdev_id == 0 &&
6571 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
6572 unspare = B_TRUE;
6573
6574 /*
6575 * Erase the disk labels so the disk can be used for other things.
6576 * This must be done after all other error cases are handled,
6577 * but before we disembowel vd (so we can still do I/O to it).
6578 * But if we can't do it, don't treat the error as fatal --
6579 * it may be that the unwritability of the disk is the reason
6580 * it's being detached!
6581 */
6582 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
6583
6584 /*
6585 * Remove vd from its parent and compact the parent's children.
6586 */
6587 vdev_remove_child(pvd, vd);
6588 vdev_compact_children(pvd);
6589
6590 /*
6591 * Remember one of the remaining children so we can get tvd below.
6592 */
6593 cvd = pvd->vdev_child[pvd->vdev_children - 1];
6594
6595 /*
6596 * If we need to remove the remaining child from the list of hot spares,
6597 * do it now, marking the vdev as no longer a spare in the process.
6598 * We must do this before vdev_remove_parent(), because that can
6599 * change the GUID if it creates a new toplevel GUID. For a similar
6600 * reason, we must remove the spare now, in the same txg as the detach;
6601 * otherwise someone could attach a new sibling, change the GUID, and
6602 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6603 */
6604 if (unspare) {
6605 ASSERT(cvd->vdev_isspare);
6606 spa_spare_remove(cvd);
6607 unspare_guid = cvd->vdev_guid;
6608 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6609 cvd->vdev_unspare = B_TRUE;
6610 }
6611
6612 /*
6613 * If the parent mirror/replacing vdev only has one child,
6614 * the parent is no longer needed. Remove it from the tree.
6615 */
6616 if (pvd->vdev_children == 1) {
6617 if (pvd->vdev_ops == &vdev_spare_ops)
6618 cvd->vdev_unspare = B_FALSE;
6619 vdev_remove_parent(cvd);
6620 }
6621
6622 /*
6623 * We don't set tvd until now because the parent we just removed
6624 * may have been the previous top-level vdev.
6625 */
6626 tvd = cvd->vdev_top;
6627 ASSERT(tvd->vdev_parent == rvd);
6628
6629 /*
6630 * Reevaluate the parent vdev state.
6631 */
6632 vdev_propagate_state(cvd);
6633
6634 /*
6635 * If the 'autoexpand' property is set on the pool then automatically
6636 * try to expand the size of the pool. For example if the device we
6637 * just detached was smaller than the others, it may be possible to
6638 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6639 * first so that we can obtain the updated sizes of the leaf vdevs.
6640 */
6641 if (spa->spa_autoexpand) {
6642 vdev_reopen(tvd);
6643 vdev_expand(tvd, txg);
6644 }
6645
6646 vdev_config_dirty(tvd);
6647
6648 /*
6649 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
6650 * vd->vdev_detached is set and free vd's DTL object in syncing context.
6651 * But first make sure we're not on any *other* txg's DTL list, to
6652 * prevent vd from being accessed after it's freed.
6653 */
6654 vdpath = spa_strdup(vd->vdev_path);
6655 for (int t = 0; t < TXG_SIZE; t++)
6656 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6657 vd->vdev_detached = B_TRUE;
6658 vdev_dirty(tvd, VDD_DTL, vd, txg);
6659
6660 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
6661
6662 /* hang on to the spa before we release the lock */
6663 spa_open_ref(spa, FTAG);
6664
6665 error = spa_vdev_exit(spa, vd, txg, 0);
6666
6667 spa_history_log_internal(spa, "detach", NULL,
6668 "vdev=%s", vdpath);
6669 spa_strfree(vdpath);
6670
6671 /*
6672 * If this was the removal of the original device in a hot spare vdev,
6673 * then we want to go through and remove the device from the hot spare
6674 * list of every other pool.
6675 */
6676 if (unspare) {
6677 spa_t *altspa = NULL;
6678
6679 mutex_enter(&spa_namespace_lock);
6680 while ((altspa = spa_next(altspa)) != NULL) {
6681 if (altspa->spa_state != POOL_STATE_ACTIVE ||
6682 altspa == spa)
6683 continue;
6684
6685 spa_open_ref(altspa, FTAG);
6686 mutex_exit(&spa_namespace_lock);
6687 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
6688 mutex_enter(&spa_namespace_lock);
6689 spa_close(altspa, FTAG);
6690 }
6691 mutex_exit(&spa_namespace_lock);
6692
6693 /* search the rest of the vdevs for spares to remove */
6694 spa_vdev_resilver_done(spa);
6695 }
6696
6697 /* all done with the spa; OK to release */
6698 mutex_enter(&spa_namespace_lock);
6699 spa_close(spa, FTAG);
6700 mutex_exit(&spa_namespace_lock);
6701
6702 return (error);
6703 }
6704
6705 static int
6706 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
6707 list_t *vd_list)
6708 {
6709 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6710
6711 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6712
6713 /* Look up vdev and ensure it's a leaf. */
6714 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6715 if (vd == NULL || vd->vdev_detached) {
6716 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6717 return (SET_ERROR(ENODEV));
6718 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6719 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6720 return (SET_ERROR(EINVAL));
6721 } else if (!vdev_writeable(vd)) {
6722 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6723 return (SET_ERROR(EROFS));
6724 }
6725 mutex_enter(&vd->vdev_initialize_lock);
6726 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6727
6728 /*
6729 * When we activate an initialize action we check to see
6730 * if the vdev_initialize_thread is NULL. We do this instead
6731 * of using the vdev_initialize_state since there might be
6732 * a previous initialization process which has completed but
6733 * the thread is not exited.
6734 */
6735 if (cmd_type == POOL_INITIALIZE_START &&
6736 (vd->vdev_initialize_thread != NULL ||
6737 vd->vdev_top->vdev_removing)) {
6738 mutex_exit(&vd->vdev_initialize_lock);
6739 return (SET_ERROR(EBUSY));
6740 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
6741 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
6742 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
6743 mutex_exit(&vd->vdev_initialize_lock);
6744 return (SET_ERROR(ESRCH));
6745 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
6746 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
6747 mutex_exit(&vd->vdev_initialize_lock);
6748 return (SET_ERROR(ESRCH));
6749 }
6750
6751 switch (cmd_type) {
6752 case POOL_INITIALIZE_START:
6753 vdev_initialize(vd);
6754 break;
6755 case POOL_INITIALIZE_CANCEL:
6756 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
6757 break;
6758 case POOL_INITIALIZE_SUSPEND:
6759 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
6760 break;
6761 default:
6762 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6763 }
6764 mutex_exit(&vd->vdev_initialize_lock);
6765
6766 return (0);
6767 }
6768
6769 int
6770 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
6771 nvlist_t *vdev_errlist)
6772 {
6773 int total_errors = 0;
6774 list_t vd_list;
6775
6776 list_create(&vd_list, sizeof (vdev_t),
6777 offsetof(vdev_t, vdev_initialize_node));
6778
6779 /*
6780 * We hold the namespace lock through the whole function
6781 * to prevent any changes to the pool while we're starting or
6782 * stopping initialization. The config and state locks are held so that
6783 * we can properly assess the vdev state before we commit to
6784 * the initializing operation.
6785 */
6786 mutex_enter(&spa_namespace_lock);
6787
6788 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
6789 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
6790 uint64_t vdev_guid = fnvpair_value_uint64(pair);
6791
6792 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
6793 &vd_list);
6794 if (error != 0) {
6795 char guid_as_str[MAXNAMELEN];
6796
6797 (void) snprintf(guid_as_str, sizeof (guid_as_str),
6798 "%llu", (unsigned long long)vdev_guid);
6799 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
6800 total_errors++;
6801 }
6802 }
6803
6804 /* Wait for all initialize threads to stop. */
6805 vdev_initialize_stop_wait(spa, &vd_list);
6806
6807 /* Sync out the initializing state */
6808 txg_wait_synced(spa->spa_dsl_pool, 0);
6809 mutex_exit(&spa_namespace_lock);
6810
6811 list_destroy(&vd_list);
6812
6813 return (total_errors);
6814 }
6815
6816 static int
6817 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
6818 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
6819 {
6820 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6821
6822 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6823
6824 /* Look up vdev and ensure it's a leaf. */
6825 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6826 if (vd == NULL || vd->vdev_detached) {
6827 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6828 return (SET_ERROR(ENODEV));
6829 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6830 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6831 return (SET_ERROR(EINVAL));
6832 } else if (!vdev_writeable(vd)) {
6833 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6834 return (SET_ERROR(EROFS));
6835 } else if (!vd->vdev_has_trim) {
6836 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6837 return (SET_ERROR(EOPNOTSUPP));
6838 } else if (secure && !vd->vdev_has_securetrim) {
6839 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6840 return (SET_ERROR(EOPNOTSUPP));
6841 }
6842 mutex_enter(&vd->vdev_trim_lock);
6843 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6844
6845 /*
6846 * When we activate a TRIM action we check to see if the
6847 * vdev_trim_thread is NULL. We do this instead of using the
6848 * vdev_trim_state since there might be a previous TRIM process
6849 * which has completed but the thread is not exited.
6850 */
6851 if (cmd_type == POOL_TRIM_START &&
6852 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
6853 mutex_exit(&vd->vdev_trim_lock);
6854 return (SET_ERROR(EBUSY));
6855 } else if (cmd_type == POOL_TRIM_CANCEL &&
6856 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
6857 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
6858 mutex_exit(&vd->vdev_trim_lock);
6859 return (SET_ERROR(ESRCH));
6860 } else if (cmd_type == POOL_TRIM_SUSPEND &&
6861 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
6862 mutex_exit(&vd->vdev_trim_lock);
6863 return (SET_ERROR(ESRCH));
6864 }
6865
6866 switch (cmd_type) {
6867 case POOL_TRIM_START:
6868 vdev_trim(vd, rate, partial, secure);
6869 break;
6870 case POOL_TRIM_CANCEL:
6871 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
6872 break;
6873 case POOL_TRIM_SUSPEND:
6874 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
6875 break;
6876 default:
6877 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6878 }
6879 mutex_exit(&vd->vdev_trim_lock);
6880
6881 return (0);
6882 }
6883
6884 /*
6885 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
6886 * TRIM threads for each child vdev. These threads pass over all of the free
6887 * space in the vdev's metaslabs and issues TRIM commands for that space.
6888 */
6889 int
6890 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
6891 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
6892 {
6893 int total_errors = 0;
6894 list_t vd_list;
6895
6896 list_create(&vd_list, sizeof (vdev_t),
6897 offsetof(vdev_t, vdev_trim_node));
6898
6899 /*
6900 * We hold the namespace lock through the whole function
6901 * to prevent any changes to the pool while we're starting or
6902 * stopping TRIM. The config and state locks are held so that
6903 * we can properly assess the vdev state before we commit to
6904 * the TRIM operation.
6905 */
6906 mutex_enter(&spa_namespace_lock);
6907
6908 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
6909 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
6910 uint64_t vdev_guid = fnvpair_value_uint64(pair);
6911
6912 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
6913 rate, partial, secure, &vd_list);
6914 if (error != 0) {
6915 char guid_as_str[MAXNAMELEN];
6916
6917 (void) snprintf(guid_as_str, sizeof (guid_as_str),
6918 "%llu", (unsigned long long)vdev_guid);
6919 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
6920 total_errors++;
6921 }
6922 }
6923
6924 /* Wait for all TRIM threads to stop. */
6925 vdev_trim_stop_wait(spa, &vd_list);
6926
6927 /* Sync out the TRIM state */
6928 txg_wait_synced(spa->spa_dsl_pool, 0);
6929 mutex_exit(&spa_namespace_lock);
6930
6931 list_destroy(&vd_list);
6932
6933 return (total_errors);
6934 }
6935
6936 /*
6937 * Split a set of devices from their mirrors, and create a new pool from them.
6938 */
6939 int
6940 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6941 nvlist_t *props, boolean_t exp)
6942 {
6943 int error = 0;
6944 uint64_t txg, *glist;
6945 spa_t *newspa;
6946 uint_t c, children, lastlog;
6947 nvlist_t **child, *nvl, *tmp;
6948 dmu_tx_t *tx;
6949 char *altroot = NULL;
6950 vdev_t *rvd, **vml = NULL; /* vdev modify list */
6951 boolean_t activate_slog;
6952
6953 ASSERT(spa_writeable(spa));
6954
6955 txg = spa_vdev_enter(spa);
6956
6957 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6958 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6959 error = (spa_has_checkpoint(spa)) ?
6960 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6961 return (spa_vdev_exit(spa, NULL, txg, error));
6962 }
6963
6964 /* clear the log and flush everything up to now */
6965 activate_slog = spa_passivate_log(spa);
6966 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6967 error = spa_reset_logs(spa);
6968 txg = spa_vdev_config_enter(spa);
6969
6970 if (activate_slog)
6971 spa_activate_log(spa);
6972
6973 if (error != 0)
6974 return (spa_vdev_exit(spa, NULL, txg, error));
6975
6976 /* check new spa name before going any further */
6977 if (spa_lookup(newname) != NULL)
6978 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6979
6980 /*
6981 * scan through all the children to ensure they're all mirrors
6982 */
6983 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6984 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6985 &children) != 0)
6986 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6987
6988 /* first, check to ensure we've got the right child count */
6989 rvd = spa->spa_root_vdev;
6990 lastlog = 0;
6991 for (c = 0; c < rvd->vdev_children; c++) {
6992 vdev_t *vd = rvd->vdev_child[c];
6993
6994 /* don't count the holes & logs as children */
6995 if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6996 if (lastlog == 0)
6997 lastlog = c;
6998 continue;
6999 }
7000
7001 lastlog = 0;
7002 }
7003 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7004 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7005
7006 /* next, ensure no spare or cache devices are part of the split */
7007 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7008 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7009 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7010
7011 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7012 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7013
7014 /* then, loop over each vdev and validate it */
7015 for (c = 0; c < children; c++) {
7016 uint64_t is_hole = 0;
7017
7018 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7019 &is_hole);
7020
7021 if (is_hole != 0) {
7022 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7023 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7024 continue;
7025 } else {
7026 error = SET_ERROR(EINVAL);
7027 break;
7028 }
7029 }
7030
7031 /* which disk is going to be split? */
7032 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7033 &glist[c]) != 0) {
7034 error = SET_ERROR(EINVAL);
7035 break;
7036 }
7037
7038 /* look it up in the spa */
7039 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7040 if (vml[c] == NULL) {
7041 error = SET_ERROR(ENODEV);
7042 break;
7043 }
7044
7045 /* make sure there's nothing stopping the split */
7046 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7047 vml[c]->vdev_islog ||
7048 !vdev_is_concrete(vml[c]) ||
7049 vml[c]->vdev_isspare ||
7050 vml[c]->vdev_isl2cache ||
7051 !vdev_writeable(vml[c]) ||
7052 vml[c]->vdev_children != 0 ||
7053 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7054 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7055 error = SET_ERROR(EINVAL);
7056 break;
7057 }
7058
7059 if (vdev_dtl_required(vml[c])) {
7060 error = SET_ERROR(EBUSY);
7061 break;
7062 }
7063
7064 /* we need certain info from the top level */
7065 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7066 vml[c]->vdev_top->vdev_ms_array) == 0);
7067 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7068 vml[c]->vdev_top->vdev_ms_shift) == 0);
7069 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7070 vml[c]->vdev_top->vdev_asize) == 0);
7071 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7072 vml[c]->vdev_top->vdev_ashift) == 0);
7073
7074 /* transfer per-vdev ZAPs */
7075 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7076 VERIFY0(nvlist_add_uint64(child[c],
7077 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7078
7079 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7080 VERIFY0(nvlist_add_uint64(child[c],
7081 ZPOOL_CONFIG_VDEV_TOP_ZAP,
7082 vml[c]->vdev_parent->vdev_top_zap));
7083 }
7084
7085 if (error != 0) {
7086 kmem_free(vml, children * sizeof (vdev_t *));
7087 kmem_free(glist, children * sizeof (uint64_t));
7088 return (spa_vdev_exit(spa, NULL, txg, error));
7089 }
7090
7091 /* stop writers from using the disks */
7092 for (c = 0; c < children; c++) {
7093 if (vml[c] != NULL)
7094 vml[c]->vdev_offline = B_TRUE;
7095 }
7096 vdev_reopen(spa->spa_root_vdev);
7097
7098 /*
7099 * Temporarily record the splitting vdevs in the spa config. This
7100 * will disappear once the config is regenerated.
7101 */
7102 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7103 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
7104 glist, children) == 0);
7105 kmem_free(glist, children * sizeof (uint64_t));
7106
7107 mutex_enter(&spa->spa_props_lock);
7108 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
7109 nvl) == 0);
7110 mutex_exit(&spa->spa_props_lock);
7111 spa->spa_config_splitting = nvl;
7112 vdev_config_dirty(spa->spa_root_vdev);
7113
7114 /* configure and create the new pool */
7115 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
7116 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7117 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
7118 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7119 spa_version(spa)) == 0);
7120 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
7121 spa->spa_config_txg) == 0);
7122 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7123 spa_generate_guid(NULL)) == 0);
7124 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7125 (void) nvlist_lookup_string(props,
7126 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7127
7128 /* add the new pool to the namespace */
7129 newspa = spa_add(newname, config, altroot);
7130 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7131 newspa->spa_config_txg = spa->spa_config_txg;
7132 spa_set_log_state(newspa, SPA_LOG_CLEAR);
7133
7134 /* release the spa config lock, retaining the namespace lock */
7135 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7136
7137 if (zio_injection_enabled)
7138 zio_handle_panic_injection(spa, FTAG, 1);
7139
7140 spa_activate(newspa, spa_mode_global);
7141 spa_async_suspend(newspa);
7142
7143 /*
7144 * Temporarily stop the initializing and TRIM activity. We set the
7145 * state to ACTIVE so that we know to resume initializing or TRIM
7146 * once the split has completed.
7147 */
7148 list_t vd_initialize_list;
7149 list_create(&vd_initialize_list, sizeof (vdev_t),
7150 offsetof(vdev_t, vdev_initialize_node));
7151
7152 list_t vd_trim_list;
7153 list_create(&vd_trim_list, sizeof (vdev_t),
7154 offsetof(vdev_t, vdev_trim_node));
7155
7156 for (c = 0; c < children; c++) {
7157 if (vml[c] != NULL) {
7158 mutex_enter(&vml[c]->vdev_initialize_lock);
7159 vdev_initialize_stop(vml[c],
7160 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7161 mutex_exit(&vml[c]->vdev_initialize_lock);
7162
7163 mutex_enter(&vml[c]->vdev_trim_lock);
7164 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7165 mutex_exit(&vml[c]->vdev_trim_lock);
7166 }
7167 }
7168
7169 vdev_initialize_stop_wait(spa, &vd_initialize_list);
7170 vdev_trim_stop_wait(spa, &vd_trim_list);
7171
7172 list_destroy(&vd_initialize_list);
7173 list_destroy(&vd_trim_list);
7174
7175 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7176
7177 /* create the new pool from the disks of the original pool */
7178 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7179 if (error)
7180 goto out;
7181
7182 /* if that worked, generate a real config for the new pool */
7183 if (newspa->spa_root_vdev != NULL) {
7184 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
7185 NV_UNIQUE_NAME, KM_SLEEP) == 0);
7186 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
7187 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
7188 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7189 B_TRUE));
7190 }
7191
7192 /* set the props */
7193 if (props != NULL) {
7194 spa_configfile_set(newspa, props, B_FALSE);
7195 error = spa_prop_set(newspa, props);
7196 if (error)
7197 goto out;
7198 }
7199
7200 /* flush everything */
7201 txg = spa_vdev_config_enter(newspa);
7202 vdev_config_dirty(newspa->spa_root_vdev);
7203 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7204
7205 if (zio_injection_enabled)
7206 zio_handle_panic_injection(spa, FTAG, 2);
7207
7208 spa_async_resume(newspa);
7209
7210 /* finally, update the original pool's config */
7211 txg = spa_vdev_config_enter(spa);
7212 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7213 error = dmu_tx_assign(tx, TXG_WAIT);
7214 if (error != 0)
7215 dmu_tx_abort(tx);
7216 for (c = 0; c < children; c++) {
7217 if (vml[c] != NULL) {
7218 vdev_split(vml[c]);
7219 if (error == 0)
7220 spa_history_log_internal(spa, "detach", tx,
7221 "vdev=%s", vml[c]->vdev_path);
7222
7223 vdev_free(vml[c]);
7224 }
7225 }
7226 spa->spa_avz_action = AVZ_ACTION_REBUILD;
7227 vdev_config_dirty(spa->spa_root_vdev);
7228 spa->spa_config_splitting = NULL;
7229 nvlist_free(nvl);
7230 if (error == 0)
7231 dmu_tx_commit(tx);
7232 (void) spa_vdev_exit(spa, NULL, txg, 0);
7233
7234 if (zio_injection_enabled)
7235 zio_handle_panic_injection(spa, FTAG, 3);
7236
7237 /* split is complete; log a history record */
7238 spa_history_log_internal(newspa, "split", NULL,
7239 "from pool %s", spa_name(spa));
7240
7241 kmem_free(vml, children * sizeof (vdev_t *));
7242
7243 /* if we're not going to mount the filesystems in userland, export */
7244 if (exp)
7245 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7246 B_FALSE, B_FALSE);
7247
7248 return (error);
7249
7250 out:
7251 spa_unload(newspa);
7252 spa_deactivate(newspa);
7253 spa_remove(newspa);
7254
7255 txg = spa_vdev_config_enter(spa);
7256
7257 /* re-online all offlined disks */
7258 for (c = 0; c < children; c++) {
7259 if (vml[c] != NULL)
7260 vml[c]->vdev_offline = B_FALSE;
7261 }
7262
7263 /* restart initializing or trimming disks as necessary */
7264 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7265 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7266 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7267
7268 vdev_reopen(spa->spa_root_vdev);
7269
7270 nvlist_free(spa->spa_config_splitting);
7271 spa->spa_config_splitting = NULL;
7272 (void) spa_vdev_exit(spa, NULL, txg, error);
7273
7274 kmem_free(vml, children * sizeof (vdev_t *));
7275 return (error);
7276 }
7277
7278 /*
7279 * Find any device that's done replacing, or a vdev marked 'unspare' that's
7280 * currently spared, so we can detach it.
7281 */
7282 static vdev_t *
7283 spa_vdev_resilver_done_hunt(vdev_t *vd)
7284 {
7285 vdev_t *newvd, *oldvd;
7286
7287 for (int c = 0; c < vd->vdev_children; c++) {
7288 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7289 if (oldvd != NULL)
7290 return (oldvd);
7291 }
7292
7293 /*
7294 * Check for a completed replacement. We always consider the first
7295 * vdev in the list to be the oldest vdev, and the last one to be
7296 * the newest (see spa_vdev_attach() for how that works). In
7297 * the case where the newest vdev is faulted, we will not automatically
7298 * remove it after a resilver completes. This is OK as it will require
7299 * user intervention to determine which disk the admin wishes to keep.
7300 */
7301 if (vd->vdev_ops == &vdev_replacing_ops) {
7302 ASSERT(vd->vdev_children > 1);
7303
7304 newvd = vd->vdev_child[vd->vdev_children - 1];
7305 oldvd = vd->vdev_child[0];
7306
7307 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7308 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7309 !vdev_dtl_required(oldvd))
7310 return (oldvd);
7311 }
7312
7313 /*
7314 * Check for a completed resilver with the 'unspare' flag set.
7315 * Also potentially update faulted state.
7316 */
7317 if (vd->vdev_ops == &vdev_spare_ops) {
7318 vdev_t *first = vd->vdev_child[0];
7319 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7320
7321 if (last->vdev_unspare) {
7322 oldvd = first;
7323 newvd = last;
7324 } else if (first->vdev_unspare) {
7325 oldvd = last;
7326 newvd = first;
7327 } else {
7328 oldvd = NULL;
7329 }
7330
7331 if (oldvd != NULL &&
7332 vdev_dtl_empty(newvd, DTL_MISSING) &&
7333 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7334 !vdev_dtl_required(oldvd))
7335 return (oldvd);
7336
7337 vdev_propagate_state(vd);
7338
7339 /*
7340 * If there are more than two spares attached to a disk,
7341 * and those spares are not required, then we want to
7342 * attempt to free them up now so that they can be used
7343 * by other pools. Once we're back down to a single
7344 * disk+spare, we stop removing them.
7345 */
7346 if (vd->vdev_children > 2) {
7347 newvd = vd->vdev_child[1];
7348
7349 if (newvd->vdev_isspare && last->vdev_isspare &&
7350 vdev_dtl_empty(last, DTL_MISSING) &&
7351 vdev_dtl_empty(last, DTL_OUTAGE) &&
7352 !vdev_dtl_required(newvd))
7353 return (newvd);
7354 }
7355 }
7356
7357 return (NULL);
7358 }
7359
7360 static void
7361 spa_vdev_resilver_done(spa_t *spa)
7362 {
7363 vdev_t *vd, *pvd, *ppvd;
7364 uint64_t guid, sguid, pguid, ppguid;
7365
7366 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7367
7368 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7369 pvd = vd->vdev_parent;
7370 ppvd = pvd->vdev_parent;
7371 guid = vd->vdev_guid;
7372 pguid = pvd->vdev_guid;
7373 ppguid = ppvd->vdev_guid;
7374 sguid = 0;
7375 /*
7376 * If we have just finished replacing a hot spared device, then
7377 * we need to detach the parent's first child (the original hot
7378 * spare) as well.
7379 */
7380 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7381 ppvd->vdev_children == 2) {
7382 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7383 sguid = ppvd->vdev_child[1]->vdev_guid;
7384 }
7385 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7386
7387 spa_config_exit(spa, SCL_ALL, FTAG);
7388 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7389 return;
7390 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7391 return;
7392 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7393 }
7394
7395 spa_config_exit(spa, SCL_ALL, FTAG);
7396 }
7397
7398 /*
7399 * Update the stored path or FRU for this vdev.
7400 */
7401 int
7402 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7403 boolean_t ispath)
7404 {
7405 vdev_t *vd;
7406 boolean_t sync = B_FALSE;
7407
7408 ASSERT(spa_writeable(spa));
7409
7410 spa_vdev_state_enter(spa, SCL_ALL);
7411
7412 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7413 return (spa_vdev_state_exit(spa, NULL, ENOENT));
7414
7415 if (!vd->vdev_ops->vdev_op_leaf)
7416 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7417
7418 if (ispath) {
7419 if (strcmp(value, vd->vdev_path) != 0) {
7420 spa_strfree(vd->vdev_path);
7421 vd->vdev_path = spa_strdup(value);
7422 sync = B_TRUE;
7423 }
7424 } else {
7425 if (vd->vdev_fru == NULL) {
7426 vd->vdev_fru = spa_strdup(value);
7427 sync = B_TRUE;
7428 } else if (strcmp(value, vd->vdev_fru) != 0) {
7429 spa_strfree(vd->vdev_fru);
7430 vd->vdev_fru = spa_strdup(value);
7431 sync = B_TRUE;
7432 }
7433 }
7434
7435 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
7436 }
7437
7438 int
7439 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
7440 {
7441 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
7442 }
7443
7444 int
7445 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
7446 {
7447 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
7448 }
7449
7450 /*
7451 * ==========================================================================
7452 * SPA Scanning
7453 * ==========================================================================
7454 */
7455 int
7456 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7457 {
7458 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7459
7460 if (dsl_scan_resilvering(spa->spa_dsl_pool))
7461 return (SET_ERROR(EBUSY));
7462
7463 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
7464 }
7465
7466 int
7467 spa_scan_stop(spa_t *spa)
7468 {
7469 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7470 if (dsl_scan_resilvering(spa->spa_dsl_pool))
7471 return (SET_ERROR(EBUSY));
7472 return (dsl_scan_cancel(spa->spa_dsl_pool));
7473 }
7474
7475 int
7476 spa_scan(spa_t *spa, pool_scan_func_t func)
7477 {
7478 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7479
7480 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
7481 return (SET_ERROR(ENOTSUP));
7482
7483 if (func == POOL_SCAN_RESILVER &&
7484 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
7485 return (SET_ERROR(ENOTSUP));
7486
7487 /*
7488 * If a resilver was requested, but there is no DTL on a
7489 * writeable leaf device, we have nothing to do.
7490 */
7491 if (func == POOL_SCAN_RESILVER &&
7492 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
7493 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
7494 return (0);
7495 }
7496
7497 return (dsl_scan(spa->spa_dsl_pool, func));
7498 }
7499
7500 /*
7501 * ==========================================================================
7502 * SPA async task processing
7503 * ==========================================================================
7504 */
7505
7506 static void
7507 spa_async_remove(spa_t *spa, vdev_t *vd)
7508 {
7509 if (vd->vdev_remove_wanted) {
7510 vd->vdev_remove_wanted = B_FALSE;
7511 vd->vdev_delayed_close = B_FALSE;
7512 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
7513
7514 /*
7515 * We want to clear the stats, but we don't want to do a full
7516 * vdev_clear() as that will cause us to throw away
7517 * degraded/faulted state as well as attempt to reopen the
7518 * device, all of which is a waste.
7519 */
7520 vd->vdev_stat.vs_read_errors = 0;
7521 vd->vdev_stat.vs_write_errors = 0;
7522 vd->vdev_stat.vs_checksum_errors = 0;
7523
7524 vdev_state_dirty(vd->vdev_top);
7525 }
7526
7527 for (int c = 0; c < vd->vdev_children; c++)
7528 spa_async_remove(spa, vd->vdev_child[c]);
7529 }
7530
7531 static void
7532 spa_async_probe(spa_t *spa, vdev_t *vd)
7533 {
7534 if (vd->vdev_probe_wanted) {
7535 vd->vdev_probe_wanted = B_FALSE;
7536 vdev_reopen(vd); /* vdev_open() does the actual probe */
7537 }
7538
7539 for (int c = 0; c < vd->vdev_children; c++)
7540 spa_async_probe(spa, vd->vdev_child[c]);
7541 }
7542
7543 static void
7544 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
7545 {
7546 char *physpath;
7547
7548 if (!spa->spa_autoexpand)
7549 return;
7550
7551 for (int c = 0; c < vd->vdev_children; c++) {
7552 vdev_t *cvd = vd->vdev_child[c];
7553 spa_async_autoexpand(spa, cvd);
7554 }
7555
7556 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
7557 return;
7558
7559 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
7560 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
7561
7562 zfs_post_dle_sysevent(physpath);
7563
7564 kmem_free(physpath, MAXPATHLEN);
7565 }
7566
7567 static void
7568 spa_async_thread(void *arg)
7569 {
7570 spa_t *spa = (spa_t *)arg;
7571 dsl_pool_t *dp = spa->spa_dsl_pool;
7572 int tasks;
7573
7574 ASSERT(spa->spa_sync_on);
7575
7576 mutex_enter(&spa->spa_async_lock);
7577 tasks = spa->spa_async_tasks;
7578 spa->spa_async_tasks = 0;
7579 mutex_exit(&spa->spa_async_lock);
7580
7581 /*
7582 * See if the config needs to be updated.
7583 */
7584 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
7585 uint64_t old_space, new_space;
7586
7587 mutex_enter(&spa_namespace_lock);
7588 old_space = metaslab_class_get_space(spa_normal_class(spa));
7589 old_space += metaslab_class_get_space(spa_special_class(spa));
7590 old_space += metaslab_class_get_space(spa_dedup_class(spa));
7591
7592 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7593
7594 new_space = metaslab_class_get_space(spa_normal_class(spa));
7595 new_space += metaslab_class_get_space(spa_special_class(spa));
7596 new_space += metaslab_class_get_space(spa_dedup_class(spa));
7597 mutex_exit(&spa_namespace_lock);
7598
7599 /*
7600 * If the pool grew as a result of the config update,
7601 * then log an internal history event.
7602 */
7603 if (new_space != old_space) {
7604 spa_history_log_internal(spa, "vdev online", NULL,
7605 "pool '%s' size: %llu(+%llu)",
7606 spa_name(spa), new_space, new_space - old_space);
7607 }
7608 }
7609
7610 /*
7611 * See if any devices need to be marked REMOVED.
7612 */
7613 if (tasks & SPA_ASYNC_REMOVE) {
7614 spa_vdev_state_enter(spa, SCL_NONE);
7615 spa_async_remove(spa, spa->spa_root_vdev);
7616 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
7617 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
7618 for (int i = 0; i < spa->spa_spares.sav_count; i++)
7619 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
7620 (void) spa_vdev_state_exit(spa, NULL, 0);
7621 }
7622
7623 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
7624 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7625 spa_async_autoexpand(spa, spa->spa_root_vdev);
7626 spa_config_exit(spa, SCL_CONFIG, FTAG);
7627 }
7628
7629 /*
7630 * See if any devices need to be probed.
7631 */
7632 if (tasks & SPA_ASYNC_PROBE) {
7633 spa_vdev_state_enter(spa, SCL_NONE);
7634 spa_async_probe(spa, spa->spa_root_vdev);
7635 for (int i = 0; i < spa->spa_spares.sav_count; i++)
7636 spa_async_probe(spa, spa->spa_spares.sav_vdevs[i]);
7637 (void) spa_vdev_state_exit(spa, NULL, 0);
7638 }
7639
7640 /*
7641 * If any devices are done replacing, detach them.
7642 */
7643 if (tasks & SPA_ASYNC_RESILVER_DONE)
7644 spa_vdev_resilver_done(spa);
7645
7646 /*
7647 * Kick off a resilver.
7648 */
7649 if (tasks & SPA_ASYNC_RESILVER &&
7650 (!dsl_scan_resilvering(dp) ||
7651 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
7652 dsl_scan_restart_resilver(dp, 0);
7653
7654 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
7655 mutex_enter(&spa_namespace_lock);
7656 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7657 vdev_initialize_restart(spa->spa_root_vdev);
7658 spa_config_exit(spa, SCL_CONFIG, FTAG);
7659 mutex_exit(&spa_namespace_lock);
7660 }
7661
7662 if (tasks & SPA_ASYNC_TRIM_RESTART) {
7663 mutex_enter(&spa_namespace_lock);
7664 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7665 vdev_trim_restart(spa->spa_root_vdev);
7666 spa_config_exit(spa, SCL_CONFIG, FTAG);
7667 mutex_exit(&spa_namespace_lock);
7668 }
7669
7670 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
7671 mutex_enter(&spa_namespace_lock);
7672 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7673 vdev_autotrim_restart(spa);
7674 spa_config_exit(spa, SCL_CONFIG, FTAG);
7675 mutex_exit(&spa_namespace_lock);
7676 }
7677
7678 /*
7679 * Kick off L2 cache rebuilding.
7680 */
7681 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
7682 mutex_enter(&spa_namespace_lock);
7683 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
7684 l2arc_spa_rebuild_start(spa);
7685 spa_config_exit(spa, SCL_L2ARC, FTAG);
7686 mutex_exit(&spa_namespace_lock);
7687 }
7688
7689 /*
7690 * Let the world know that we're done.
7691 */
7692 mutex_enter(&spa->spa_async_lock);
7693 spa->spa_async_thread = NULL;
7694 cv_broadcast(&spa->spa_async_cv);
7695 mutex_exit(&spa->spa_async_lock);
7696 thread_exit();
7697 }
7698
7699 void
7700 spa_async_suspend(spa_t *spa)
7701 {
7702 mutex_enter(&spa->spa_async_lock);
7703 spa->spa_async_suspended++;
7704 while (spa->spa_async_thread != NULL)
7705 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
7706 mutex_exit(&spa->spa_async_lock);
7707
7708 spa_vdev_remove_suspend(spa);
7709
7710 zthr_t *condense_thread = spa->spa_condense_zthr;
7711 if (condense_thread != NULL)
7712 zthr_cancel(condense_thread);
7713
7714 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7715 if (discard_thread != NULL)
7716 zthr_cancel(discard_thread);
7717 }
7718
7719 void
7720 spa_async_resume(spa_t *spa)
7721 {
7722 mutex_enter(&spa->spa_async_lock);
7723 ASSERT(spa->spa_async_suspended != 0);
7724 spa->spa_async_suspended--;
7725 mutex_exit(&spa->spa_async_lock);
7726 spa_restart_removal(spa);
7727
7728 zthr_t *condense_thread = spa->spa_condense_zthr;
7729 if (condense_thread != NULL)
7730 zthr_resume(condense_thread);
7731
7732 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7733 if (discard_thread != NULL)
7734 zthr_resume(discard_thread);
7735 }
7736
7737 static boolean_t
7738 spa_async_tasks_pending(spa_t *spa)
7739 {
7740 uint_t non_config_tasks;
7741 uint_t config_task;
7742 boolean_t config_task_suspended;
7743
7744 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
7745 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
7746 if (spa->spa_ccw_fail_time == 0) {
7747 config_task_suspended = B_FALSE;
7748 } else {
7749 config_task_suspended =
7750 (gethrtime() - spa->spa_ccw_fail_time) <
7751 (zfs_ccw_retry_interval * NANOSEC);
7752 }
7753
7754 return (non_config_tasks || (config_task && !config_task_suspended));
7755 }
7756
7757 static void
7758 spa_async_dispatch(spa_t *spa)
7759 {
7760 mutex_enter(&spa->spa_async_lock);
7761 if (spa_async_tasks_pending(spa) &&
7762 !spa->spa_async_suspended &&
7763 spa->spa_async_thread == NULL &&
7764 rootdir != NULL)
7765 spa->spa_async_thread = thread_create(NULL, 0,
7766 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
7767 mutex_exit(&spa->spa_async_lock);
7768 }
7769
7770 void
7771 spa_async_request(spa_t *spa, int task)
7772 {
7773 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
7774 mutex_enter(&spa->spa_async_lock);
7775 spa->spa_async_tasks |= task;
7776 mutex_exit(&spa->spa_async_lock);
7777 }
7778
7779 int
7780 spa_async_tasks(spa_t *spa)
7781 {
7782 return (spa->spa_async_tasks);
7783 }
7784
7785 /*
7786 * ==========================================================================
7787 * SPA syncing routines
7788 * ==========================================================================
7789 */
7790
7791 static int
7792 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7793 {
7794 bpobj_t *bpo = arg;
7795 bpobj_enqueue(bpo, bp, tx);
7796 return (0);
7797 }
7798
7799 static int
7800 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7801 {
7802 zio_t *zio = arg;
7803
7804 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
7805 zio->io_flags));
7806 return (0);
7807 }
7808
7809 /*
7810 * Note: this simple function is not inlined to make it easier to dtrace the
7811 * amount of time spent syncing frees.
7812 */
7813 static void
7814 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
7815 {
7816 zio_t *zio = zio_root(spa, NULL, NULL, 0);
7817 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
7818 VERIFY(zio_wait(zio) == 0);
7819 }
7820
7821 /*
7822 * Note: this simple function is not inlined to make it easier to dtrace the
7823 * amount of time spent syncing deferred frees.
7824 */
7825 static void
7826 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
7827 {
7828 if (spa_sync_pass(spa) != 1)
7829 return;
7830
7831 /*
7832 * Note:
7833 * If the log space map feature is active, we stop deferring
7834 * frees to the next TXG and therefore running this function
7835 * would be considered a no-op as spa_deferred_bpobj should
7836 * not have any entries.
7837 *
7838 * That said we run this function anyway (instead of returning
7839 * immediately) for the edge-case scenario where we just
7840 * activated the log space map feature in this TXG but we have
7841 * deferred frees from the previous TXG.
7842 */
7843 zio_t *zio = zio_root(spa, NULL, NULL, 0);
7844 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
7845 spa_free_sync_cb, zio, tx), ==, 0);
7846 VERIFY0(zio_wait(zio));
7847 }
7848
7849
7850 static void
7851 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
7852 {
7853 char *packed = NULL;
7854 size_t bufsize;
7855 size_t nvsize = 0;
7856 dmu_buf_t *db;
7857
7858 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
7859
7860 /*
7861 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
7862 * information. This avoids the dmu_buf_will_dirty() path and
7863 * saves us a pre-read to get data we don't actually care about.
7864 */
7865 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
7866 packed = kmem_alloc(bufsize, KM_SLEEP);
7867
7868 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
7869 KM_SLEEP) == 0);
7870 bzero(packed + nvsize, bufsize - nvsize);
7871
7872 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
7873
7874 kmem_free(packed, bufsize);
7875
7876 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
7877 dmu_buf_will_dirty(db, tx);
7878 *(uint64_t *)db->db_data = nvsize;
7879 dmu_buf_rele(db, FTAG);
7880 }
7881
7882 static void
7883 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
7884 const char *config, const char *entry)
7885 {
7886 nvlist_t *nvroot;
7887 nvlist_t **list;
7888 int i;
7889
7890 if (!sav->sav_sync)
7891 return;
7892
7893 /*
7894 * Update the MOS nvlist describing the list of available devices.
7895 * spa_validate_aux() will have already made sure this nvlist is
7896 * valid and the vdevs are labeled appropriately.
7897 */
7898 if (sav->sav_object == 0) {
7899 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
7900 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
7901 sizeof (uint64_t), tx);
7902 VERIFY(zap_update(spa->spa_meta_objset,
7903 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
7904 &sav->sav_object, tx) == 0);
7905 }
7906
7907 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7908 if (sav->sav_count == 0) {
7909 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
7910 } else {
7911 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
7912 for (i = 0; i < sav->sav_count; i++)
7913 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
7914 B_FALSE, VDEV_CONFIG_L2CACHE);
7915 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
7916 sav->sav_count) == 0);
7917 for (i = 0; i < sav->sav_count; i++)
7918 nvlist_free(list[i]);
7919 kmem_free(list, sav->sav_count * sizeof (void *));
7920 }
7921
7922 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
7923 nvlist_free(nvroot);
7924
7925 sav->sav_sync = B_FALSE;
7926 }
7927
7928 /*
7929 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
7930 * The all-vdev ZAP must be empty.
7931 */
7932 static void
7933 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
7934 {
7935 spa_t *spa = vd->vdev_spa;
7936 if (vd->vdev_top_zap != 0) {
7937 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7938 vd->vdev_top_zap, tx));
7939 }
7940 if (vd->vdev_leaf_zap != 0) {
7941 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7942 vd->vdev_leaf_zap, tx));
7943 }
7944 for (uint64_t i = 0; i < vd->vdev_children; i++) {
7945 spa_avz_build(vd->vdev_child[i], avz, tx);
7946 }
7947 }
7948
7949 static void
7950 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
7951 {
7952 nvlist_t *config;
7953
7954 /*
7955 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
7956 * its config may not be dirty but we still need to build per-vdev ZAPs.
7957 * Similarly, if the pool is being assembled (e.g. after a split), we
7958 * need to rebuild the AVZ although the config may not be dirty.
7959 */
7960 if (list_is_empty(&spa->spa_config_dirty_list) &&
7961 spa->spa_avz_action == AVZ_ACTION_NONE)
7962 return;
7963
7964 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7965
7966 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
7967 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
7968 spa->spa_all_vdev_zaps != 0);
7969
7970 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
7971 /* Make and build the new AVZ */
7972 uint64_t new_avz = zap_create(spa->spa_meta_objset,
7973 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
7974 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
7975
7976 /* Diff old AVZ with new one */
7977 zap_cursor_t zc;
7978 zap_attribute_t za;
7979
7980 for (zap_cursor_init(&zc, spa->spa_meta_objset,
7981 spa->spa_all_vdev_zaps);
7982 zap_cursor_retrieve(&zc, &za) == 0;
7983 zap_cursor_advance(&zc)) {
7984 uint64_t vdzap = za.za_first_integer;
7985 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
7986 vdzap) == ENOENT) {
7987 /*
7988 * ZAP is listed in old AVZ but not in new one;
7989 * destroy it
7990 */
7991 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
7992 tx));
7993 }
7994 }
7995
7996 zap_cursor_fini(&zc);
7997
7998 /* Destroy the old AVZ */
7999 VERIFY0(zap_destroy(spa->spa_meta_objset,
8000 spa->spa_all_vdev_zaps, tx));
8001
8002 /* Replace the old AVZ in the dir obj with the new one */
8003 VERIFY0(zap_update(spa->spa_meta_objset,
8004 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8005 sizeof (new_avz), 1, &new_avz, tx));
8006
8007 spa->spa_all_vdev_zaps = new_avz;
8008 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8009 zap_cursor_t zc;
8010 zap_attribute_t za;
8011
8012 /* Walk through the AVZ and destroy all listed ZAPs */
8013 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8014 spa->spa_all_vdev_zaps);
8015 zap_cursor_retrieve(&zc, &za) == 0;
8016 zap_cursor_advance(&zc)) {
8017 uint64_t zap = za.za_first_integer;
8018 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8019 }
8020
8021 zap_cursor_fini(&zc);
8022
8023 /* Destroy and unlink the AVZ itself */
8024 VERIFY0(zap_destroy(spa->spa_meta_objset,
8025 spa->spa_all_vdev_zaps, tx));
8026 VERIFY0(zap_remove(spa->spa_meta_objset,
8027 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8028 spa->spa_all_vdev_zaps = 0;
8029 }
8030
8031 if (spa->spa_all_vdev_zaps == 0) {
8032 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8033 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8034 DMU_POOL_VDEV_ZAP_MAP, tx);
8035 }
8036 spa->spa_avz_action = AVZ_ACTION_NONE;
8037
8038 /* Create ZAPs for vdevs that don't have them. */
8039 vdev_construct_zaps(spa->spa_root_vdev, tx);
8040
8041 config = spa_config_generate(spa, spa->spa_root_vdev,
8042 dmu_tx_get_txg(tx), B_FALSE);
8043
8044 /*
8045 * If we're upgrading the spa version then make sure that
8046 * the config object gets updated with the correct version.
8047 */
8048 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8049 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8050 spa->spa_uberblock.ub_version);
8051
8052 spa_config_exit(spa, SCL_STATE, FTAG);
8053
8054 nvlist_free(spa->spa_config_syncing);
8055 spa->spa_config_syncing = config;
8056
8057 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8058 }
8059
8060 static void
8061 spa_sync_version(void *arg, dmu_tx_t *tx)
8062 {
8063 uint64_t *versionp = arg;
8064 uint64_t version = *versionp;
8065 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8066
8067 /*
8068 * Setting the version is special cased when first creating the pool.
8069 */
8070 ASSERT(tx->tx_txg != TXG_INITIAL);
8071
8072 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8073 ASSERT(version >= spa_version(spa));
8074
8075 spa->spa_uberblock.ub_version = version;
8076 vdev_config_dirty(spa->spa_root_vdev);
8077 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
8078 }
8079
8080 /*
8081 * Set zpool properties.
8082 */
8083 static void
8084 spa_sync_props(void *arg, dmu_tx_t *tx)
8085 {
8086 nvlist_t *nvp = arg;
8087 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8088 objset_t *mos = spa->spa_meta_objset;
8089 nvpair_t *elem = NULL;
8090
8091 mutex_enter(&spa->spa_props_lock);
8092
8093 while ((elem = nvlist_next_nvpair(nvp, elem))) {
8094 uint64_t intval;
8095 char *strval, *fname;
8096 zpool_prop_t prop;
8097 const char *propname;
8098 zprop_type_t proptype;
8099 spa_feature_t fid;
8100
8101 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8102 case ZPOOL_PROP_INVAL:
8103 /*
8104 * We checked this earlier in spa_prop_validate().
8105 */
8106 ASSERT(zpool_prop_feature(nvpair_name(elem)));
8107
8108 fname = strchr(nvpair_name(elem), '@') + 1;
8109 VERIFY0(zfeature_lookup_name(fname, &fid));
8110
8111 spa_feature_enable(spa, fid, tx);
8112 spa_history_log_internal(spa, "set", tx,
8113 "%s=enabled", nvpair_name(elem));
8114 break;
8115
8116 case ZPOOL_PROP_VERSION:
8117 intval = fnvpair_value_uint64(elem);
8118 /*
8119 * The version is synced seperatly before other
8120 * properties and should be correct by now.
8121 */
8122 ASSERT3U(spa_version(spa), >=, intval);
8123 break;
8124
8125 case ZPOOL_PROP_ALTROOT:
8126 /*
8127 * 'altroot' is a non-persistent property. It should
8128 * have been set temporarily at creation or import time.
8129 */
8130 ASSERT(spa->spa_root != NULL);
8131 break;
8132
8133 case ZPOOL_PROP_READONLY:
8134 case ZPOOL_PROP_CACHEFILE:
8135 /*
8136 * 'readonly' and 'cachefile' are also non-persisitent
8137 * properties.
8138 */
8139 break;
8140 case ZPOOL_PROP_COMMENT:
8141 strval = fnvpair_value_string(elem);
8142 if (spa->spa_comment != NULL)
8143 spa_strfree(spa->spa_comment);
8144 spa->spa_comment = spa_strdup(strval);
8145 /*
8146 * We need to dirty the configuration on all the vdevs
8147 * so that their labels get updated. It's unnecessary
8148 * to do this for pool creation since the vdev's
8149 * configuratoin has already been dirtied.
8150 */
8151 if (tx->tx_txg != TXG_INITIAL)
8152 vdev_config_dirty(spa->spa_root_vdev);
8153 spa_history_log_internal(spa, "set", tx,
8154 "%s=%s", nvpair_name(elem), strval);
8155 break;
8156 default:
8157 /*
8158 * Set pool property values in the poolprops mos object.
8159 */
8160 if (spa->spa_pool_props_object == 0) {
8161 spa->spa_pool_props_object =
8162 zap_create_link(mos, DMU_OT_POOL_PROPS,
8163 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8164 tx);
8165 }
8166
8167 /* normalize the property name */
8168 propname = zpool_prop_to_name(prop);
8169 proptype = zpool_prop_get_type(prop);
8170
8171 if (nvpair_type(elem) == DATA_TYPE_STRING) {
8172 ASSERT(proptype == PROP_TYPE_STRING);
8173 strval = fnvpair_value_string(elem);
8174 VERIFY0(zap_update(mos,
8175 spa->spa_pool_props_object, propname,
8176 1, strlen(strval) + 1, strval, tx));
8177 spa_history_log_internal(spa, "set", tx,
8178 "%s=%s", nvpair_name(elem), strval);
8179 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8180 intval = fnvpair_value_uint64(elem);
8181
8182 if (proptype == PROP_TYPE_INDEX) {
8183 const char *unused;
8184 VERIFY0(zpool_prop_index_to_string(
8185 prop, intval, &unused));
8186 }
8187 VERIFY0(zap_update(mos,
8188 spa->spa_pool_props_object, propname,
8189 8, 1, &intval, tx));
8190 spa_history_log_internal(spa, "set", tx,
8191 "%s=%lld", nvpair_name(elem), intval);
8192 } else {
8193 ASSERT(0); /* not allowed */
8194 }
8195
8196 switch (prop) {
8197 case ZPOOL_PROP_DELEGATION:
8198 spa->spa_delegation = intval;
8199 break;
8200 case ZPOOL_PROP_BOOTFS:
8201 spa->spa_bootfs = intval;
8202 break;
8203 case ZPOOL_PROP_FAILUREMODE:
8204 spa->spa_failmode = intval;
8205 break;
8206 case ZPOOL_PROP_AUTOTRIM:
8207 spa->spa_autotrim = intval;
8208 spa_async_request(spa,
8209 SPA_ASYNC_AUTOTRIM_RESTART);
8210 break;
8211 case ZPOOL_PROP_AUTOEXPAND:
8212 spa->spa_autoexpand = intval;
8213 if (tx->tx_txg != TXG_INITIAL)
8214 spa_async_request(spa,
8215 SPA_ASYNC_AUTOEXPAND);
8216 break;
8217 case ZPOOL_PROP_MULTIHOST:
8218 spa->spa_multihost = intval;
8219 break;
8220 case ZPOOL_PROP_DEDUPDITTO:
8221 spa->spa_dedup_ditto = intval;
8222 break;
8223 default:
8224 break;
8225 }
8226 }
8227
8228 }
8229
8230 mutex_exit(&spa->spa_props_lock);
8231 }
8232
8233 /*
8234 * Perform one-time upgrade on-disk changes. spa_version() does not
8235 * reflect the new version this txg, so there must be no changes this
8236 * txg to anything that the upgrade code depends on after it executes.
8237 * Therefore this must be called after dsl_pool_sync() does the sync
8238 * tasks.
8239 */
8240 static void
8241 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8242 {
8243 if (spa_sync_pass(spa) != 1)
8244 return;
8245
8246 dsl_pool_t *dp = spa->spa_dsl_pool;
8247 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8248
8249 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8250 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8251 dsl_pool_create_origin(dp, tx);
8252
8253 /* Keeping the origin open increases spa_minref */
8254 spa->spa_minref += 3;
8255 }
8256
8257 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8258 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8259 dsl_pool_upgrade_clones(dp, tx);
8260 }
8261
8262 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8263 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8264 dsl_pool_upgrade_dir_clones(dp, tx);
8265
8266 /* Keeping the freedir open increases spa_minref */
8267 spa->spa_minref += 3;
8268 }
8269
8270 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8271 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8272 spa_feature_create_zap_objects(spa, tx);
8273 }
8274
8275 /*
8276 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8277 * when possibility to use lz4 compression for metadata was added
8278 * Old pools that have this feature enabled must be upgraded to have
8279 * this feature active
8280 */
8281 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8282 boolean_t lz4_en = spa_feature_is_enabled(spa,
8283 SPA_FEATURE_LZ4_COMPRESS);
8284 boolean_t lz4_ac = spa_feature_is_active(spa,
8285 SPA_FEATURE_LZ4_COMPRESS);
8286
8287 if (lz4_en && !lz4_ac)
8288 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8289 }
8290
8291 /*
8292 * If we haven't written the salt, do so now. Note that the
8293 * feature may not be activated yet, but that's fine since
8294 * the presence of this ZAP entry is backwards compatible.
8295 */
8296 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8297 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8298 VERIFY0(zap_add(spa->spa_meta_objset,
8299 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8300 sizeof (spa->spa_cksum_salt.zcs_bytes),
8301 spa->spa_cksum_salt.zcs_bytes, tx));
8302 }
8303
8304 rrw_exit(&dp->dp_config_rwlock, FTAG);
8305 }
8306
8307 static void
8308 vdev_indirect_state_sync_verify(vdev_t *vd)
8309 {
8310 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
8311 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
8312
8313 if (vd->vdev_ops == &vdev_indirect_ops) {
8314 ASSERT(vim != NULL);
8315 ASSERT(vib != NULL);
8316 }
8317
8318 if (vdev_obsolete_sm_object(vd) != 0) {
8319 ASSERT(vd->vdev_obsolete_sm != NULL);
8320 ASSERT(vd->vdev_removing ||
8321 vd->vdev_ops == &vdev_indirect_ops);
8322 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8323 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8324
8325 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
8326 space_map_object(vd->vdev_obsolete_sm));
8327 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8328 space_map_allocated(vd->vdev_obsolete_sm));
8329 }
8330 ASSERT(vd->vdev_obsolete_segments != NULL);
8331
8332 /*
8333 * Since frees / remaps to an indirect vdev can only
8334 * happen in syncing context, the obsolete segments
8335 * tree must be empty when we start syncing.
8336 */
8337 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
8338 }
8339
8340 /*
8341 * Set the top-level vdev's max queue depth. Evaluate each top-level's
8342 * async write queue depth in case it changed. The max queue depth will
8343 * not change in the middle of syncing out this txg.
8344 */
8345 static void
8346 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
8347 {
8348 ASSERT(spa_writeable(spa));
8349
8350 vdev_t *rvd = spa->spa_root_vdev;
8351 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
8352 zfs_vdev_queue_depth_pct / 100;
8353 metaslab_class_t *normal = spa_normal_class(spa);
8354 metaslab_class_t *special = spa_special_class(spa);
8355 metaslab_class_t *dedup = spa_dedup_class(spa);
8356
8357 uint64_t slots_per_allocator = 0;
8358 for (int c = 0; c < rvd->vdev_children; c++) {
8359 vdev_t *tvd = rvd->vdev_child[c];
8360
8361 metaslab_group_t *mg = tvd->vdev_mg;
8362 if (mg == NULL || !metaslab_group_initialized(mg))
8363 continue;
8364
8365 metaslab_class_t *mc = mg->mg_class;
8366 if (mc != normal && mc != special && mc != dedup)
8367 continue;
8368
8369 /*
8370 * It is safe to do a lock-free check here because only async
8371 * allocations look at mg_max_alloc_queue_depth, and async
8372 * allocations all happen from spa_sync().
8373 */
8374 for (int i = 0; i < spa->spa_alloc_count; i++)
8375 ASSERT0(zfs_refcount_count(
8376 &(mg->mg_alloc_queue_depth[i])));
8377 mg->mg_max_alloc_queue_depth = max_queue_depth;
8378
8379 for (int i = 0; i < spa->spa_alloc_count; i++) {
8380 mg->mg_cur_max_alloc_queue_depth[i] =
8381 zfs_vdev_def_queue_depth;
8382 }
8383 slots_per_allocator += zfs_vdev_def_queue_depth;
8384 }
8385
8386 for (int i = 0; i < spa->spa_alloc_count; i++) {
8387 ASSERT0(zfs_refcount_count(&normal->mc_alloc_slots[i]));
8388 ASSERT0(zfs_refcount_count(&special->mc_alloc_slots[i]));
8389 ASSERT0(zfs_refcount_count(&dedup->mc_alloc_slots[i]));
8390 normal->mc_alloc_max_slots[i] = slots_per_allocator;
8391 special->mc_alloc_max_slots[i] = slots_per_allocator;
8392 dedup->mc_alloc_max_slots[i] = slots_per_allocator;
8393 }
8394 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8395 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8396 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8397 }
8398
8399 static void
8400 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
8401 {
8402 ASSERT(spa_writeable(spa));
8403
8404 vdev_t *rvd = spa->spa_root_vdev;
8405 for (int c = 0; c < rvd->vdev_children; c++) {
8406 vdev_t *vd = rvd->vdev_child[c];
8407 vdev_indirect_state_sync_verify(vd);
8408
8409 if (vdev_indirect_should_condense(vd)) {
8410 spa_condense_indirect_start_sync(vd, tx);
8411 break;
8412 }
8413 }
8414 }
8415
8416 static void
8417 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
8418 {
8419 objset_t *mos = spa->spa_meta_objset;
8420 dsl_pool_t *dp = spa->spa_dsl_pool;
8421 uint64_t txg = tx->tx_txg;
8422 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
8423
8424 do {
8425 int pass = ++spa->spa_sync_pass;
8426
8427 spa_sync_config_object(spa, tx);
8428 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
8429 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
8430 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
8431 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
8432 spa_errlog_sync(spa, txg);
8433 dsl_pool_sync(dp, txg);
8434
8435 if (pass < zfs_sync_pass_deferred_free ||
8436 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
8437 /*
8438 * If the log space map feature is active we don't
8439 * care about deferred frees and the deferred bpobj
8440 * as the log space map should effectively have the
8441 * same results (i.e. appending only to one object).
8442 */
8443 spa_sync_frees(spa, free_bpl, tx);
8444 } else {
8445 /*
8446 * We can not defer frees in pass 1, because
8447 * we sync the deferred frees later in pass 1.
8448 */
8449 ASSERT3U(pass, >, 1);
8450 bplist_iterate(free_bpl, bpobj_enqueue_cb,
8451 &spa->spa_deferred_bpobj, tx);
8452 }
8453
8454 ddt_sync(spa, txg);
8455 dsl_scan_sync(dp, tx);
8456 svr_sync(spa, tx);
8457 spa_sync_upgrades(spa, tx);
8458
8459 spa_flush_metaslabs(spa, tx);
8460
8461 vdev_t *vd = NULL;
8462 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
8463 != NULL)
8464 vdev_sync(vd, txg);
8465
8466 /*
8467 * Note: We need to check if the MOS is dirty because we could
8468 * have marked the MOS dirty without updating the uberblock
8469 * (e.g. if we have sync tasks but no dirty user data). We need
8470 * to check the uberblock's rootbp because it is updated if we
8471 * have synced out dirty data (though in this case the MOS will
8472 * most likely also be dirty due to second order effects, we
8473 * don't want to rely on that here).
8474 */
8475 if (pass == 1 &&
8476 spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
8477 !dmu_objset_is_dirty(mos, txg)) {
8478 /*
8479 * Nothing changed on the first pass, therefore this
8480 * TXG is a no-op. Avoid syncing deferred frees, so
8481 * that we can keep this TXG as a no-op.
8482 */
8483 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8484 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8485 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
8486 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
8487 break;
8488 }
8489
8490 spa_sync_deferred_frees(spa, tx);
8491 } while (dmu_objset_is_dirty(mos, txg));
8492 }
8493
8494 /*
8495 * Rewrite the vdev configuration (which includes the uberblock) to
8496 * commit the transaction group.
8497 *
8498 * If there are no dirty vdevs, we sync the uberblock to a few random
8499 * top-level vdevs that are known to be visible in the config cache
8500 * (see spa_vdev_add() for a complete description). If there *are* dirty
8501 * vdevs, sync the uberblock to all vdevs.
8502 */
8503 static void
8504 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
8505 {
8506 vdev_t *rvd = spa->spa_root_vdev;
8507 uint64_t txg = tx->tx_txg;
8508
8509 for (;;) {
8510 int error = 0;
8511
8512 /*
8513 * We hold SCL_STATE to prevent vdev open/close/etc.
8514 * while we're attempting to write the vdev labels.
8515 */
8516 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8517
8518 if (list_is_empty(&spa->spa_config_dirty_list)) {
8519 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
8520 int svdcount = 0;
8521 int children = rvd->vdev_children;
8522 int c0 = spa_get_random(children);
8523
8524 for (int c = 0; c < children; c++) {
8525 vdev_t *vd =
8526 rvd->vdev_child[(c0 + c) % children];
8527
8528 /* Stop when revisiting the first vdev */
8529 if (c > 0 && svd[0] == vd)
8530 break;
8531
8532 if (vd->vdev_ms_array == 0 ||
8533 vd->vdev_islog ||
8534 !vdev_is_concrete(vd))
8535 continue;
8536
8537 svd[svdcount++] = vd;
8538 if (svdcount == SPA_SYNC_MIN_VDEVS)
8539 break;
8540 }
8541 error = vdev_config_sync(svd, svdcount, txg);
8542 } else {
8543 error = vdev_config_sync(rvd->vdev_child,
8544 rvd->vdev_children, txg);
8545 }
8546
8547 if (error == 0)
8548 spa->spa_last_synced_guid = rvd->vdev_guid;
8549
8550 spa_config_exit(spa, SCL_STATE, FTAG);
8551
8552 if (error == 0)
8553 break;
8554 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
8555 zio_resume_wait(spa);
8556 }
8557 }
8558
8559 /*
8560 * Sync the specified transaction group. New blocks may be dirtied as
8561 * part of the process, so we iterate until it converges.
8562 */
8563 void
8564 spa_sync(spa_t *spa, uint64_t txg)
8565 {
8566 vdev_t *vd = NULL;
8567
8568 VERIFY(spa_writeable(spa));
8569
8570 /*
8571 * Wait for i/os issued in open context that need to complete
8572 * before this txg syncs.
8573 */
8574 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
8575 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
8576 ZIO_FLAG_CANFAIL);
8577
8578 /*
8579 * Lock out configuration changes.
8580 */
8581 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8582
8583 spa->spa_syncing_txg = txg;
8584 spa->spa_sync_pass = 0;
8585
8586 for (int i = 0; i < spa->spa_alloc_count; i++) {
8587 mutex_enter(&spa->spa_alloc_locks[i]);
8588 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8589 mutex_exit(&spa->spa_alloc_locks[i]);
8590 }
8591
8592 /*
8593 * If there are any pending vdev state changes, convert them
8594 * into config changes that go out with this transaction group.
8595 */
8596 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8597 while (list_head(&spa->spa_state_dirty_list) != NULL) {
8598 /*
8599 * We need the write lock here because, for aux vdevs,
8600 * calling vdev_config_dirty() modifies sav_config.
8601 * This is ugly and will become unnecessary when we
8602 * eliminate the aux vdev wart by integrating all vdevs
8603 * into the root vdev tree.
8604 */
8605 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8606 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
8607 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
8608 vdev_state_clean(vd);
8609 vdev_config_dirty(vd);
8610 }
8611 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8612 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8613 }
8614 spa_config_exit(spa, SCL_STATE, FTAG);
8615
8616 dsl_pool_t *dp = spa->spa_dsl_pool;
8617 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
8618
8619 spa->spa_sync_starttime = gethrtime();
8620 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
8621 spa->spa_sync_starttime + spa->spa_deadman_synctime));
8622
8623 /*
8624 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
8625 * set spa_deflate if we have no raid-z vdevs.
8626 */
8627 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
8628 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
8629 vdev_t *rvd = spa->spa_root_vdev;
8630
8631 int i;
8632 for (i = 0; i < rvd->vdev_children; i++) {
8633 vd = rvd->vdev_child[i];
8634 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
8635 break;
8636 }
8637 if (i == rvd->vdev_children) {
8638 spa->spa_deflate = TRUE;
8639 VERIFY0(zap_add(spa->spa_meta_objset,
8640 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
8641 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
8642 }
8643 }
8644
8645 spa_sync_adjust_vdev_max_queue_depth(spa);
8646
8647 spa_sync_condense_indirect(spa, tx);
8648
8649 spa_sync_iterate_to_convergence(spa, tx);
8650
8651 #ifdef ZFS_DEBUG
8652 if (!list_is_empty(&spa->spa_config_dirty_list)) {
8653 /*
8654 * Make sure that the number of ZAPs for all the vdevs matches
8655 * the number of ZAPs in the per-vdev ZAP list. This only gets
8656 * called if the config is dirty; otherwise there may be
8657 * outstanding AVZ operations that weren't completed in
8658 * spa_sync_config_object.
8659 */
8660 uint64_t all_vdev_zap_entry_count;
8661 ASSERT0(zap_count(spa->spa_meta_objset,
8662 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
8663 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
8664 all_vdev_zap_entry_count);
8665 }
8666 #endif
8667
8668 if (spa->spa_vdev_removal != NULL) {
8669 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
8670 }
8671
8672 spa_sync_rewrite_vdev_config(spa, tx);
8673 dmu_tx_commit(tx);
8674
8675 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
8676
8677 /*
8678 * Clear the dirty config list.
8679 */
8680 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
8681 vdev_config_clean(vd);
8682
8683 /*
8684 * Now that the new config has synced transactionally,
8685 * let it become visible to the config cache.
8686 */
8687 if (spa->spa_config_syncing != NULL) {
8688 spa_config_set(spa, spa->spa_config_syncing);
8689 spa->spa_config_txg = txg;
8690 spa->spa_config_syncing = NULL;
8691 }
8692
8693 dsl_pool_sync_done(dp, txg);
8694
8695 for (int i = 0; i < spa->spa_alloc_count; i++) {
8696 mutex_enter(&spa->spa_alloc_locks[i]);
8697 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8698 mutex_exit(&spa->spa_alloc_locks[i]);
8699 }
8700
8701 /*
8702 * Update usable space statistics.
8703 */
8704 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
8705 != NULL)
8706 vdev_sync_done(vd, txg);
8707
8708 metaslab_class_evict_old(spa->spa_normal_class, txg);
8709 metaslab_class_evict_old(spa->spa_log_class, txg);
8710
8711 spa_sync_close_syncing_log_sm(spa);
8712
8713 spa_update_dspace(spa);
8714
8715 /*
8716 * It had better be the case that we didn't dirty anything
8717 * since vdev_config_sync().
8718 */
8719 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8720 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8721 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
8722
8723 while (zfs_pause_spa_sync)
8724 delay(1);
8725
8726 spa->spa_sync_pass = 0;
8727
8728 /*
8729 * Update the last synced uberblock here. We want to do this at
8730 * the end of spa_sync() so that consumers of spa_last_synced_txg()
8731 * will be guaranteed that all the processing associated with
8732 * that txg has been completed.
8733 */
8734 spa->spa_ubsync = spa->spa_uberblock;
8735 spa_config_exit(spa, SCL_CONFIG, FTAG);
8736
8737 spa_handle_ignored_writes(spa);
8738
8739 /* Mark unused spares as needing a health check. */
8740 if (spa_spare_poll_interval_seconds != 0 &&
8741 NSEC2SEC(gethrtime() - spa->spa_spares_last_polled) >
8742 spa_spare_poll_interval_seconds) {
8743 spa_spare_poll(spa);
8744 spa->spa_spares_last_polled = gethrtime();
8745 }
8746
8747 /*
8748 * If any async tasks have been requested, kick them off.
8749 */
8750 spa_async_dispatch(spa);
8751 }
8752
8753 /*
8754 * Sync all pools. We don't want to hold the namespace lock across these
8755 * operations, so we take a reference on the spa_t and drop the lock during the
8756 * sync.
8757 */
8758 void
8759 spa_sync_allpools(void)
8760 {
8761 spa_t *spa = NULL;
8762 mutex_enter(&spa_namespace_lock);
8763 while ((spa = spa_next(spa)) != NULL) {
8764 if (spa_state(spa) != POOL_STATE_ACTIVE ||
8765 !spa_writeable(spa) || spa_suspended(spa))
8766 continue;
8767 spa_open_ref(spa, FTAG);
8768 mutex_exit(&spa_namespace_lock);
8769 txg_wait_synced(spa_get_dsl(spa), 0);
8770 mutex_enter(&spa_namespace_lock);
8771 spa_close(spa, FTAG);
8772 }
8773 mutex_exit(&spa_namespace_lock);
8774 }
8775
8776 /*
8777 * ==========================================================================
8778 * Miscellaneous routines
8779 * ==========================================================================
8780 */
8781
8782 /*
8783 * Remove all pools in the system.
8784 */
8785 void
8786 spa_evict_all(void)
8787 {
8788 spa_t *spa;
8789
8790 /*
8791 * Remove all cached state. All pools should be closed now,
8792 * so every spa in the AVL tree should be unreferenced.
8793 */
8794 mutex_enter(&spa_namespace_lock);
8795 while ((spa = spa_next(NULL)) != NULL) {
8796 /*
8797 * Stop async tasks. The async thread may need to detach
8798 * a device that's been replaced, which requires grabbing
8799 * spa_namespace_lock, so we must drop it here.
8800 */
8801 spa_open_ref(spa, FTAG);
8802 mutex_exit(&spa_namespace_lock);
8803 spa_async_suspend(spa);
8804 mutex_enter(&spa_namespace_lock);
8805 spa_close(spa, FTAG);
8806
8807 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
8808 spa_unload(spa);
8809 spa_deactivate(spa);
8810 }
8811 spa_remove(spa);
8812 }
8813 mutex_exit(&spa_namespace_lock);
8814 }
8815
8816 vdev_t *
8817 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
8818 {
8819 vdev_t *vd;
8820 int i;
8821
8822 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
8823 return (vd);
8824
8825 if (aux) {
8826 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
8827 vd = spa->spa_l2cache.sav_vdevs[i];
8828 if (vd->vdev_guid == guid)
8829 return (vd);
8830 }
8831
8832 for (i = 0; i < spa->spa_spares.sav_count; i++) {
8833 vd = spa->spa_spares.sav_vdevs[i];
8834 if (vd->vdev_guid == guid)
8835 return (vd);
8836 }
8837 }
8838
8839 return (NULL);
8840 }
8841
8842 void
8843 spa_upgrade(spa_t *spa, uint64_t version)
8844 {
8845 ASSERT(spa_writeable(spa));
8846
8847 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8848
8849 /*
8850 * This should only be called for a non-faulted pool, and since a
8851 * future version would result in an unopenable pool, this shouldn't be
8852 * possible.
8853 */
8854 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
8855 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
8856
8857 spa->spa_uberblock.ub_version = version;
8858 vdev_config_dirty(spa->spa_root_vdev);
8859
8860 spa_config_exit(spa, SCL_ALL, FTAG);
8861
8862 txg_wait_synced(spa_get_dsl(spa), 0);
8863 }
8864
8865 boolean_t
8866 spa_has_spare(spa_t *spa, uint64_t guid)
8867 {
8868 int i;
8869 uint64_t spareguid;
8870 spa_aux_vdev_t *sav = &spa->spa_spares;
8871
8872 for (i = 0; i < sav->sav_count; i++)
8873 if (sav->sav_vdevs[i]->vdev_guid == guid)
8874 return (B_TRUE);
8875
8876 for (i = 0; i < sav->sav_npending; i++) {
8877 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
8878 &spareguid) == 0 && spareguid == guid)
8879 return (B_TRUE);
8880 }
8881
8882 return (B_FALSE);
8883 }
8884
8885 /*
8886 * Check if a pool has an active shared spare device.
8887 * Note: reference count of an active spare is 2, as a spare and as a replace
8888 */
8889 static boolean_t
8890 spa_has_active_shared_spare(spa_t *spa)
8891 {
8892 int i, refcnt;
8893 uint64_t pool;
8894 spa_aux_vdev_t *sav = &spa->spa_spares;
8895
8896 for (i = 0; i < sav->sav_count; i++) {
8897 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
8898 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
8899 refcnt > 2)
8900 return (B_TRUE);
8901 }
8902
8903 return (B_FALSE);
8904 }
8905
8906 uint64_t
8907 spa_total_metaslabs(spa_t *spa)
8908 {
8909 vdev_t *rvd = spa->spa_root_vdev;
8910 uint64_t m = 0;
8911
8912 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
8913 vdev_t *vd = rvd->vdev_child[c];
8914 if (!vdev_is_concrete(vd))
8915 continue;
8916 m += vd->vdev_ms_count;
8917 }
8918 return (m);
8919 }
8920
8921 sysevent_t *
8922 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8923 {
8924 sysevent_t *ev = NULL;
8925 #ifdef _KERNEL
8926 sysevent_attr_list_t *attr = NULL;
8927 sysevent_value_t value;
8928
8929 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
8930 SE_SLEEP);
8931 ASSERT(ev != NULL);
8932
8933 value.value_type = SE_DATA_TYPE_STRING;
8934 value.value.sv_string = spa_name(spa);
8935 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
8936 goto done;
8937
8938 value.value_type = SE_DATA_TYPE_UINT64;
8939 value.value.sv_uint64 = spa_guid(spa);
8940 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
8941 goto done;
8942
8943 if (vd) {
8944 value.value_type = SE_DATA_TYPE_UINT64;
8945 value.value.sv_uint64 = vd->vdev_guid;
8946 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
8947 SE_SLEEP) != 0)
8948 goto done;
8949
8950 if (vd->vdev_path) {
8951 value.value_type = SE_DATA_TYPE_STRING;
8952 value.value.sv_string = vd->vdev_path;
8953 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
8954 &value, SE_SLEEP) != 0)
8955 goto done;
8956 }
8957 }
8958
8959 if (hist_nvl != NULL) {
8960 fnvlist_merge((nvlist_t *)attr, hist_nvl);
8961 }
8962
8963 if (sysevent_attach_attributes(ev, attr) != 0)
8964 goto done;
8965 attr = NULL;
8966
8967 done:
8968 if (attr)
8969 sysevent_free_attr(attr);
8970
8971 #endif
8972 return (ev);
8973 }
8974
8975 void
8976 spa_event_post(sysevent_t *ev)
8977 {
8978 #ifdef _KERNEL
8979 sysevent_id_t eid;
8980
8981 (void) log_sysevent(ev, SE_SLEEP, &eid);
8982 sysevent_free(ev);
8983 #endif
8984 }
8985
8986 void
8987 spa_event_discard(sysevent_t *ev)
8988 {
8989 #ifdef _KERNEL
8990 sysevent_free(ev);
8991 #endif
8992 }
8993
8994 /*
8995 * Post a sysevent corresponding to the given event. The 'name' must be one of
8996 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
8997 * filled in from the spa and (optionally) the vdev and history nvl. This
8998 * doesn't do anything in the userland libzpool, as we don't want consumers to
8999 * misinterpret ztest or zdb as real changes.
9000 */
9001 void
9002 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9003 {
9004 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9005 }
9006