1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
26 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/zap.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/txg.h>
39 #include <sys/avl.h>
40 #include <sys/bpobj.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_synctask.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/arc.h>
45 #include <sys/zfeature.h>
46 #include <sys/vdev_indirect_births.h>
47 #include <sys/vdev_indirect_mapping.h>
48 #include <sys/abd.h>
49 #include <sys/vdev_initialize.h>
50 #include <sys/vdev_trim.h>
51 #include <sys/trace_zfs.h>
52
53 /*
54 * This file contains the necessary logic to remove vdevs from a storage
55 * pool. Note that members of a mirror can be removed by the detach
56 * operation. Currently, the only devices that can be removed are:
57 *
58 * 1) Traditional hot spare and cache vdevs. Note that draid distributed
59 * spares are fixed at creation time and cannot be removed.
60 *
61 * 2) Log vdevs are removed by evacuating them and then turning the vdev
62 * into a hole vdev while holding spa config locks.
63 *
64 * 3) Top-level singleton and mirror vdevs, including dedup and special
65 * vdevs, are removed and converted into an indirect vdev via a
66 * multi-step process:
67 *
68 * - Disable allocations from this device (spa_vdev_remove_top).
69 *
70 * - From a new thread (spa_vdev_remove_thread), copy data from the
71 * removing vdev to a different vdev. The copy happens in open context
72 * (spa_vdev_copy_impl) and issues a sync task (vdev_mapping_sync) so
73 * the sync thread can update the partial indirect mappings in core
74 * and on disk.
75 *
76 * - If a free happens during a removal, it is freed from the removing
77 * vdev, and if it has already been copied, from the new location as
78 * well (free_from_removing_vdev).
79 *
80 * - After the removal is completed, the copy thread converts the vdev
81 * into an indirect vdev (vdev_remove_complete) before instructing
82 * the sync thread to destroy the space maps and finish the removal
83 * (spa_finish_removal).
84 *
85 * The following constraints currently apply primary device removal:
86 *
87 * - All vdevs must be online, healthy, and not be missing any data
88 * according to the DTLs.
89 *
90 * - When removing a singleton or mirror vdev, regardless of it's a
91 * special, dedup, or primary device, it must have the same ashift
92 * as the devices in the normal allocation class. Furthermore, all
93 * vdevs in the normal allocation class must have the same ashift to
94 * ensure the new allocations never includes additional padding.
95 *
96 * - The normal allocation class cannot contain any raidz or draid
97 * top-level vdevs since segments are copied without regard for block
98 * boundaries. This makes it impossible to calculate the required
99 * parity columns when using these vdev types as the destination.
100 *
101 * - The encryption keys must be loaded so the ZIL logs can be reset
102 * in order to prevent writing to the device being removed.
103 *
104 * N.B. ashift and raidz/draid constraints for primary top-level device
105 * removal could be slightly relaxed if it were possible to request that
106 * DVAs from a mirror or singleton in the specified allocation class be
107 * used (metaslab_alloc_dva).
108 *
109 * This flexibility would be particularly useful for raidz/draid pools which
110 * often include a mirrored special device. If a mistakenly added top-level
111 * singleton were added it could then still be removed at the cost of some
112 * special device capacity. This may be a worthwhile tradeoff depending on
113 * the pool capacity and expense (cost, complexity, time) of creating a new
114 * pool and copying all of the data to correct the configuration.
115 *
116 * Furthermore, while not currently supported it should be possible to allow
117 * vdevs of any type to be removed as long as they've never been written to.
118 */
119
120 typedef struct vdev_copy_arg {
121 metaslab_t *vca_msp;
122 uint64_t vca_outstanding_bytes;
123 uint64_t vca_read_error_bytes;
124 uint64_t vca_write_error_bytes;
125 kcondvar_t vca_cv;
126 kmutex_t vca_lock;
127 } vdev_copy_arg_t;
128
129 /*
130 * The maximum amount of memory we can use for outstanding i/o while
131 * doing a device removal. This determines how much i/o we can have
132 * in flight concurrently.
133 */
134 static const uint_t zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
135
136 /*
137 * The largest contiguous segment that we will attempt to allocate when
138 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If
139 * there is a performance problem with attempting to allocate large blocks,
140 * consider decreasing this.
141 *
142 * See also the accessor function spa_remove_max_segment().
143 */
144 uint_t zfs_remove_max_segment = SPA_MAXBLOCKSIZE;
145
146 /*
147 * Ignore hard IO errors during device removal. When set if a device
148 * encounters hard IO error during the removal process the removal will
149 * not be cancelled. This can result in a normally recoverable block
150 * becoming permanently damaged and is not recommended.
151 */
152 static int zfs_removal_ignore_errors = 0;
153
154 /*
155 * Allow a remap segment to span free chunks of at most this size. The main
156 * impact of a larger span is that we will read and write larger, more
157 * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
158 * for iops. The value here was chosen to align with
159 * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
160 * reads (but there's no reason it has to be the same).
161 *
162 * Additionally, a higher span will have the following relatively minor
163 * effects:
164 * - the mapping will be smaller, since one entry can cover more allocated
165 * segments
166 * - more of the fragmentation in the removing device will be preserved
167 * - we'll do larger allocations, which may fail and fall back on smaller
168 * allocations
169 */
170 uint_t vdev_removal_max_span = 32 * 1024;
171
172 /*
173 * This is used by the test suite so that it can ensure that certain
174 * actions happen while in the middle of a removal.
175 */
176 int zfs_removal_suspend_progress = 0;
177
178 #define VDEV_REMOVAL_ZAP_OBJS "lzap"
179
180 static __attribute__((noreturn)) void spa_vdev_remove_thread(void *arg);
181 static int spa_vdev_remove_cancel_impl(spa_t *spa);
182
183 static void
spa_sync_removing_state(spa_t * spa,dmu_tx_t * tx)184 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
185 {
186 VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
187 DMU_POOL_DIRECTORY_OBJECT,
188 DMU_POOL_REMOVING, sizeof (uint64_t),
189 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
190 &spa->spa_removing_phys, tx));
191 }
192
193 static nvlist_t *
spa_nvlist_lookup_by_guid(nvlist_t ** nvpp,int count,uint64_t target_guid)194 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
195 {
196 for (int i = 0; i < count; i++) {
197 uint64_t guid =
198 fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
199
200 if (guid == target_guid)
201 return (nvpp[i]);
202 }
203
204 return (NULL);
205 }
206
207 static void
vdev_activate(vdev_t * vd)208 vdev_activate(vdev_t *vd)
209 {
210 metaslab_group_t *mg = vd->vdev_mg;
211
212 ASSERT(!vd->vdev_islog);
213 ASSERT(vd->vdev_noalloc);
214
215 metaslab_group_activate(mg);
216 metaslab_group_activate(vd->vdev_log_mg);
217
218 vdev_update_nonallocating_space(vd, B_FALSE);
219
220 vd->vdev_noalloc = B_FALSE;
221 }
222
223 static int
vdev_passivate(vdev_t * vd,uint64_t * txg)224 vdev_passivate(vdev_t *vd, uint64_t *txg)
225 {
226 spa_t *spa = vd->vdev_spa;
227 int error;
228
229 ASSERT(!vd->vdev_noalloc);
230
231 vdev_t *rvd = spa->spa_root_vdev;
232 metaslab_group_t *mg = vd->vdev_mg;
233 metaslab_class_t *normal = spa_normal_class(spa);
234 if (mg->mg_class == normal) {
235 /*
236 * We must check that this is not the only allocating device in
237 * the pool before passivating, otherwise we will not be able
238 * to make progress because we can't allocate from any vdevs.
239 */
240 boolean_t last = B_TRUE;
241 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
242 vdev_t *cvd = rvd->vdev_child[id];
243
244 if (cvd == vd || !vdev_is_concrete(cvd) ||
245 vdev_is_dead(cvd))
246 continue;
247
248 metaslab_class_t *mc = cvd->vdev_mg->mg_class;
249 if (mc != normal)
250 continue;
251
252 if (!cvd->vdev_noalloc) {
253 last = B_FALSE;
254 break;
255 }
256 }
257 if (last)
258 return (SET_ERROR(EINVAL));
259 }
260
261 metaslab_group_passivate(mg);
262 ASSERT(!vd->vdev_islog);
263 metaslab_group_passivate(vd->vdev_log_mg);
264
265 /*
266 * Wait for the youngest allocations and frees to sync,
267 * and then wait for the deferral of those frees to finish.
268 */
269 spa_vdev_config_exit(spa, NULL,
270 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
271
272 /*
273 * We must ensure that no "stubby" log blocks are allocated
274 * on the device to be removed. These blocks could be
275 * written at any time, including while we are in the middle
276 * of copying them.
277 */
278 error = spa_reset_logs(spa);
279
280 *txg = spa_vdev_config_enter(spa);
281
282 if (error != 0) {
283 metaslab_group_activate(mg);
284 ASSERT(!vd->vdev_islog);
285 if (vd->vdev_log_mg != NULL)
286 metaslab_group_activate(vd->vdev_log_mg);
287 return (error);
288 }
289
290 vdev_update_nonallocating_space(vd, B_TRUE);
291 vd->vdev_noalloc = B_TRUE;
292
293 return (0);
294 }
295
296 /*
297 * Turn off allocations for a top-level device from the pool.
298 *
299 * Turning off allocations for a top-level device can take a significant
300 * amount of time. As a result we use the spa_vdev_config_[enter/exit]
301 * functions which allow us to grab and release the spa_config_lock while
302 * still holding the namespace lock. During each step the configuration
303 * is synced out.
304 */
305 int
spa_vdev_noalloc(spa_t * spa,uint64_t guid)306 spa_vdev_noalloc(spa_t *spa, uint64_t guid)
307 {
308 vdev_t *vd;
309 uint64_t txg;
310 int error = 0;
311
312 ASSERT(!MUTEX_HELD(&spa_namespace_lock));
313 ASSERT(spa_writeable(spa));
314
315 txg = spa_vdev_enter(spa);
316
317 ASSERT(MUTEX_HELD(&spa_namespace_lock));
318
319 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
320
321 if (vd == NULL)
322 error = SET_ERROR(ENOENT);
323 else if (vd->vdev_mg == NULL)
324 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
325 else if (!vd->vdev_noalloc)
326 error = vdev_passivate(vd, &txg);
327
328 if (error == 0) {
329 vdev_dirty_leaves(vd, VDD_DTL, txg);
330 vdev_config_dirty(vd);
331 }
332
333 error = spa_vdev_exit(spa, NULL, txg, error);
334
335 return (error);
336 }
337
338 int
spa_vdev_alloc(spa_t * spa,uint64_t guid)339 spa_vdev_alloc(spa_t *spa, uint64_t guid)
340 {
341 vdev_t *vd;
342 uint64_t txg;
343 int error = 0;
344
345 ASSERT(!MUTEX_HELD(&spa_namespace_lock));
346 ASSERT(spa_writeable(spa));
347
348 txg = spa_vdev_enter(spa);
349
350 ASSERT(MUTEX_HELD(&spa_namespace_lock));
351
352 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
353
354 if (vd == NULL)
355 error = SET_ERROR(ENOENT);
356 else if (vd->vdev_mg == NULL)
357 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
358 else if (!vd->vdev_removing)
359 vdev_activate(vd);
360
361 if (error == 0) {
362 vdev_dirty_leaves(vd, VDD_DTL, txg);
363 vdev_config_dirty(vd);
364 }
365
366 (void) spa_vdev_exit(spa, NULL, txg, error);
367
368 return (error);
369 }
370
371 static void
spa_vdev_remove_aux(nvlist_t * config,const char * name,nvlist_t ** dev,int count,nvlist_t * dev_to_remove)372 spa_vdev_remove_aux(nvlist_t *config, const char *name, nvlist_t **dev,
373 int count, nvlist_t *dev_to_remove)
374 {
375 nvlist_t **newdev = NULL;
376
377 if (count > 1)
378 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
379
380 for (int i = 0, j = 0; i < count; i++) {
381 if (dev[i] == dev_to_remove)
382 continue;
383 VERIFY0(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP));
384 }
385
386 VERIFY0(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY));
387 fnvlist_add_nvlist_array(config, name, (const nvlist_t * const *)newdev,
388 count - 1);
389
390 for (int i = 0; i < count - 1; i++)
391 nvlist_free(newdev[i]);
392
393 if (count > 1)
394 kmem_free(newdev, (count - 1) * sizeof (void *));
395 }
396
397 static spa_vdev_removal_t *
spa_vdev_removal_create(vdev_t * vd)398 spa_vdev_removal_create(vdev_t *vd)
399 {
400 spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
401 mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
402 cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
403 svr->svr_allocd_segs = zfs_range_tree_create_flags(
404 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
405 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "svr_allocd_segs"));
406 svr->svr_vdev_id = vd->vdev_id;
407
408 for (int i = 0; i < TXG_SIZE; i++) {
409 svr->svr_frees[i] = zfs_range_tree_create_flags(
410 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
411 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "svr_frees"));
412 list_create(&svr->svr_new_segments[i],
413 sizeof (vdev_indirect_mapping_entry_t),
414 offsetof(vdev_indirect_mapping_entry_t, vime_node));
415 }
416
417 return (svr);
418 }
419
420 void
spa_vdev_removal_destroy(spa_vdev_removal_t * svr)421 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
422 {
423 for (int i = 0; i < TXG_SIZE; i++) {
424 ASSERT0(svr->svr_bytes_done[i]);
425 ASSERT0(svr->svr_max_offset_to_sync[i]);
426 zfs_range_tree_destroy(svr->svr_frees[i]);
427 list_destroy(&svr->svr_new_segments[i]);
428 }
429
430 zfs_range_tree_destroy(svr->svr_allocd_segs);
431 mutex_destroy(&svr->svr_lock);
432 cv_destroy(&svr->svr_cv);
433 kmem_free(svr, sizeof (*svr));
434 }
435
436 /*
437 * This is called as a synctask in the txg in which we will mark this vdev
438 * as removing (in the config stored in the MOS).
439 *
440 * It begins the evacuation of a toplevel vdev by:
441 * - initializing the spa_removing_phys which tracks this removal
442 * - computing the amount of space to remove for accounting purposes
443 * - dirtying all dbufs in the spa_config_object
444 * - creating the spa_vdev_removal
445 * - starting the spa_vdev_remove_thread
446 */
447 static void
vdev_remove_initiate_sync(void * arg,dmu_tx_t * tx)448 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
449 {
450 int vdev_id = (uintptr_t)arg;
451 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
452 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
453 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
454 objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
455 spa_vdev_removal_t *svr = NULL;
456 uint64_t txg __maybe_unused = dmu_tx_get_txg(tx);
457
458 ASSERT0(vdev_get_nparity(vd));
459 svr = spa_vdev_removal_create(vd);
460
461 ASSERT(vd->vdev_removing);
462 ASSERT0P(vd->vdev_indirect_mapping);
463
464 spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
465 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
466 /*
467 * By activating the OBSOLETE_COUNTS feature, we prevent
468 * the pool from being downgraded and ensure that the
469 * refcounts are precise.
470 */
471 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
472 uint64_t one = 1;
473 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
474 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
475 &one, tx));
476 boolean_t are_precise __maybe_unused;
477 ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise));
478 ASSERT3B(are_precise, ==, B_TRUE);
479 }
480
481 vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
482 vd->vdev_indirect_mapping =
483 vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
484 vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
485 vd->vdev_indirect_births =
486 vdev_indirect_births_open(mos, vic->vic_births_object);
487 spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
488 spa->spa_removing_phys.sr_start_time = gethrestime_sec();
489 spa->spa_removing_phys.sr_end_time = 0;
490 spa->spa_removing_phys.sr_state = DSS_SCANNING;
491 spa->spa_removing_phys.sr_to_copy = 0;
492 spa->spa_removing_phys.sr_copied = 0;
493
494 /*
495 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
496 * there may be space in the defer tree, which is free, but still
497 * counted in vs_alloc.
498 */
499 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
500 metaslab_t *ms = vd->vdev_ms[i];
501 if (ms->ms_sm == NULL)
502 continue;
503
504 spa->spa_removing_phys.sr_to_copy +=
505 metaslab_allocated_space(ms);
506
507 /*
508 * Space which we are freeing this txg does not need to
509 * be copied.
510 */
511 spa->spa_removing_phys.sr_to_copy -=
512 zfs_range_tree_space(ms->ms_freeing);
513
514 ASSERT0(zfs_range_tree_space(ms->ms_freed));
515 for (int t = 0; t < TXG_SIZE; t++)
516 ASSERT0(zfs_range_tree_space(ms->ms_allocating[t]));
517 }
518
519 /*
520 * Sync tasks are called before metaslab_sync(), so there should
521 * be no already-synced metaslabs in the TXG_CLEAN list.
522 */
523 ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
524
525 spa_sync_removing_state(spa, tx);
526
527 /*
528 * All blocks that we need to read the most recent mapping must be
529 * stored on concrete vdevs. Therefore, we must dirty anything that
530 * is read before spa_remove_init(). Specifically, the
531 * spa_config_object. (Note that although we already modified the
532 * spa_config_object in spa_sync_removing_state, that may not have
533 * modified all blocks of the object.)
534 */
535 dmu_object_info_t doi;
536 VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
537 for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
538 dmu_buf_t *dbuf;
539 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
540 offset, FTAG, &dbuf, 0));
541 dmu_buf_will_dirty(dbuf, tx);
542 offset += dbuf->db_size;
543 dmu_buf_rele(dbuf, FTAG);
544 }
545
546 /*
547 * Now that we've allocated the im_object, dirty the vdev to ensure
548 * that the object gets written to the config on disk.
549 */
550 vdev_config_dirty(vd);
551
552 zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu "
553 "im_obj=%llu", (u_longlong_t)vd->vdev_id, vd,
554 (u_longlong_t)dmu_tx_get_txg(tx),
555 (u_longlong_t)vic->vic_mapping_object);
556
557 spa_history_log_internal(spa, "vdev remove started", tx,
558 "%s vdev %llu %s", spa_name(spa), (u_longlong_t)vd->vdev_id,
559 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
560 /*
561 * Setting spa_vdev_removal causes subsequent frees to call
562 * free_from_removing_vdev(). Note that we don't need any locking
563 * because we are the sync thread, and metaslab_free_impl() is only
564 * called from syncing context (potentially from a zio taskq thread,
565 * but in any case only when there are outstanding free i/os, which
566 * there are not).
567 */
568 ASSERT0P(spa->spa_vdev_removal);
569 spa->spa_vdev_removal = svr;
570 svr->svr_thread = thread_create(NULL, 0,
571 spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
572 }
573
574 /*
575 * When we are opening a pool, we must read the mapping for each
576 * indirect vdev in order from most recently removed to least
577 * recently removed. We do this because the blocks for the mapping
578 * of older indirect vdevs may be stored on more recently removed vdevs.
579 * In order to read each indirect mapping object, we must have
580 * initialized all more recently removed vdevs.
581 */
582 int
spa_remove_init(spa_t * spa)583 spa_remove_init(spa_t *spa)
584 {
585 int error;
586
587 error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
588 DMU_POOL_DIRECTORY_OBJECT,
589 DMU_POOL_REMOVING, sizeof (uint64_t),
590 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
591 &spa->spa_removing_phys);
592
593 if (error == ENOENT) {
594 spa->spa_removing_phys.sr_state = DSS_NONE;
595 spa->spa_removing_phys.sr_removing_vdev = -1;
596 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
597 spa->spa_indirect_vdevs_loaded = B_TRUE;
598 return (0);
599 } else if (error != 0) {
600 return (error);
601 }
602
603 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
604 /*
605 * We are currently removing a vdev. Create and
606 * initialize a spa_vdev_removal_t from the bonus
607 * buffer of the removing vdevs vdev_im_object, and
608 * initialize its partial mapping.
609 */
610 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
611 vdev_t *vd = vdev_lookup_top(spa,
612 spa->spa_removing_phys.sr_removing_vdev);
613
614 if (vd == NULL) {
615 spa_config_exit(spa, SCL_STATE, FTAG);
616 return (EINVAL);
617 }
618
619 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
620
621 ASSERT(vdev_is_concrete(vd));
622 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
623 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
624 ASSERT(vd->vdev_removing);
625
626 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
627 spa->spa_meta_objset, vic->vic_mapping_object);
628 vd->vdev_indirect_births = vdev_indirect_births_open(
629 spa->spa_meta_objset, vic->vic_births_object);
630 spa_config_exit(spa, SCL_STATE, FTAG);
631
632 spa->spa_vdev_removal = svr;
633 }
634
635 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
636 uint64_t indirect_vdev_id =
637 spa->spa_removing_phys.sr_prev_indirect_vdev;
638 while (indirect_vdev_id != UINT64_MAX) {
639 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
640 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
641
642 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
643 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
644 spa->spa_meta_objset, vic->vic_mapping_object);
645 vd->vdev_indirect_births = vdev_indirect_births_open(
646 spa->spa_meta_objset, vic->vic_births_object);
647
648 indirect_vdev_id = vic->vic_prev_indirect_vdev;
649 }
650 spa_config_exit(spa, SCL_STATE, FTAG);
651
652 /*
653 * Now that we've loaded all the indirect mappings, we can allow
654 * reads from other blocks (e.g. via predictive prefetch).
655 */
656 spa->spa_indirect_vdevs_loaded = B_TRUE;
657 return (0);
658 }
659
660 void
spa_restart_removal(spa_t * spa)661 spa_restart_removal(spa_t *spa)
662 {
663 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
664
665 if (svr == NULL)
666 return;
667
668 /*
669 * In general when this function is called there is no
670 * removal thread running. The only scenario where this
671 * is not true is during spa_import() where this function
672 * is called twice [once from spa_import_impl() and
673 * spa_async_resume()]. Thus, in the scenario where we
674 * import a pool that has an ongoing removal we don't
675 * want to spawn a second thread.
676 */
677 if (svr->svr_thread != NULL)
678 return;
679
680 if (!spa_writeable(spa))
681 return;
682
683 zfs_dbgmsg("restarting removal of %llu",
684 (u_longlong_t)svr->svr_vdev_id);
685 svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
686 0, &p0, TS_RUN, minclsyspri);
687 }
688
689 /*
690 * Process freeing from a device which is in the middle of being removed.
691 * We must handle this carefully so that we attempt to copy freed data,
692 * and we correctly free already-copied data.
693 */
694 void
free_from_removing_vdev(vdev_t * vd,uint64_t offset,uint64_t size)695 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
696 {
697 spa_t *spa = vd->vdev_spa;
698 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
699 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
700 uint64_t txg = spa_syncing_txg(spa);
701 uint64_t max_offset_yet = 0;
702
703 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
704 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
705 vdev_indirect_mapping_object(vim));
706 ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
707
708 mutex_enter(&svr->svr_lock);
709
710 /*
711 * Remove the segment from the removing vdev's spacemap. This
712 * ensures that we will not attempt to copy this space (if the
713 * removal thread has not yet visited it), and also ensures
714 * that we know what is actually allocated on the new vdevs
715 * (needed if we cancel the removal).
716 *
717 * Note: we must do the metaslab_free_concrete() with the svr_lock
718 * held, so that the remove_thread can not load this metaslab and then
719 * visit this offset between the time that we metaslab_free_concrete()
720 * and when we check to see if it has been visited.
721 *
722 * Note: The checkpoint flag is set to false as having/taking
723 * a checkpoint and removing a device can't happen at the same
724 * time.
725 */
726 ASSERT(!spa_has_checkpoint(spa));
727 metaslab_free_concrete(vd, offset, size, B_FALSE);
728
729 uint64_t synced_size = 0;
730 uint64_t synced_offset = 0;
731 uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
732 if (offset < max_offset_synced) {
733 /*
734 * The mapping for this offset is already on disk.
735 * Free from the new location.
736 *
737 * Note that we use svr_max_synced_offset because it is
738 * updated atomically with respect to the in-core mapping.
739 * By contrast, vim_max_offset is not.
740 *
741 * This block may be split between a synced entry and an
742 * in-flight or unvisited entry. Only process the synced
743 * portion of it here.
744 */
745 synced_size = MIN(size, max_offset_synced - offset);
746 synced_offset = offset;
747
748 ASSERT3U(max_offset_yet, <=, max_offset_synced);
749 max_offset_yet = max_offset_synced;
750
751 DTRACE_PROBE3(remove__free__synced,
752 spa_t *, spa,
753 uint64_t, offset,
754 uint64_t, synced_size);
755
756 size -= synced_size;
757 offset += synced_size;
758 }
759
760 /*
761 * Look at all in-flight txgs starting from the currently syncing one
762 * and see if a section of this free is being copied. By starting from
763 * this txg and iterating forward, we might find that this region
764 * was copied in two different txgs and handle it appropriately.
765 */
766 for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
767 int txgoff = (txg + i) & TXG_MASK;
768 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
769 /*
770 * The mapping for this offset is in flight, and
771 * will be synced in txg+i.
772 */
773 uint64_t inflight_size = MIN(size,
774 svr->svr_max_offset_to_sync[txgoff] - offset);
775
776 DTRACE_PROBE4(remove__free__inflight,
777 spa_t *, spa,
778 uint64_t, offset,
779 uint64_t, inflight_size,
780 uint64_t, txg + i);
781
782 /*
783 * We copy data in order of increasing offset.
784 * Therefore the max_offset_to_sync[] must increase
785 * (or be zero, indicating that nothing is being
786 * copied in that txg).
787 */
788 if (svr->svr_max_offset_to_sync[txgoff] != 0) {
789 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
790 >=, max_offset_yet);
791 max_offset_yet =
792 svr->svr_max_offset_to_sync[txgoff];
793 }
794
795 /*
796 * We've already committed to copying this segment:
797 * we have allocated space elsewhere in the pool for
798 * it and have an IO outstanding to copy the data. We
799 * cannot free the space before the copy has
800 * completed, or else the copy IO might overwrite any
801 * new data. To free that space, we record the
802 * segment in the appropriate svr_frees tree and free
803 * the mapped space later, in the txg where we have
804 * completed the copy and synced the mapping (see
805 * vdev_mapping_sync).
806 */
807 zfs_range_tree_add(svr->svr_frees[txgoff],
808 offset, inflight_size);
809 size -= inflight_size;
810 offset += inflight_size;
811
812 /*
813 * This space is already accounted for as being
814 * done, because it is being copied in txg+i.
815 * However, if i!=0, then it is being copied in
816 * a future txg. If we crash after this txg
817 * syncs but before txg+i syncs, then the space
818 * will be free. Therefore we must account
819 * for the space being done in *this* txg
820 * (when it is freed) rather than the future txg
821 * (when it will be copied).
822 */
823 ASSERT3U(svr->svr_bytes_done[txgoff], >=,
824 inflight_size);
825 svr->svr_bytes_done[txgoff] -= inflight_size;
826 svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
827 }
828 }
829 ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
830
831 if (size > 0) {
832 /*
833 * The copy thread has not yet visited this offset. Ensure
834 * that it doesn't.
835 */
836
837 DTRACE_PROBE3(remove__free__unvisited,
838 spa_t *, spa,
839 uint64_t, offset,
840 uint64_t, size);
841
842 if (svr->svr_allocd_segs != NULL)
843 zfs_range_tree_clear(svr->svr_allocd_segs, offset,
844 size);
845
846 /*
847 * Since we now do not need to copy this data, for
848 * accounting purposes we have done our job and can count
849 * it as completed.
850 */
851 svr->svr_bytes_done[txg & TXG_MASK] += size;
852 }
853 mutex_exit(&svr->svr_lock);
854
855 /*
856 * Now that we have dropped svr_lock, process the synced portion
857 * of this free.
858 */
859 if (synced_size > 0) {
860 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
861
862 /*
863 * Note: this can only be called from syncing context,
864 * and the vdev_indirect_mapping is only changed from the
865 * sync thread, so we don't need svr_lock while doing
866 * metaslab_free_impl_cb.
867 */
868 boolean_t checkpoint = B_FALSE;
869 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
870 metaslab_free_impl_cb, &checkpoint);
871 }
872 }
873
874 /*
875 * Stop an active removal and update the spa_removing phys.
876 */
877 static void
spa_finish_removal(spa_t * spa,dsl_scan_state_t state,dmu_tx_t * tx)878 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
879 {
880 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
881 ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
882
883 /* Ensure the removal thread has completed before we free the svr. */
884 spa_vdev_remove_suspend(spa);
885
886 ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
887
888 if (state == DSS_FINISHED) {
889 spa_removing_phys_t *srp = &spa->spa_removing_phys;
890 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
891 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
892
893 if (srp->sr_prev_indirect_vdev != -1) {
894 vdev_t *pvd;
895 pvd = vdev_lookup_top(spa,
896 srp->sr_prev_indirect_vdev);
897 ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
898 }
899
900 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
901 srp->sr_prev_indirect_vdev = vd->vdev_id;
902 }
903 spa->spa_removing_phys.sr_state = state;
904 spa->spa_removing_phys.sr_end_time = gethrestime_sec();
905
906 spa->spa_vdev_removal = NULL;
907 spa_vdev_removal_destroy(svr);
908
909 spa_sync_removing_state(spa, tx);
910 spa_notify_waiters(spa);
911
912 vdev_config_dirty(spa->spa_root_vdev);
913 }
914
915 static void
free_mapped_segment_cb(void * arg,uint64_t offset,uint64_t size)916 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
917 {
918 vdev_t *vd = arg;
919 vdev_indirect_mark_obsolete(vd, offset, size);
920 boolean_t checkpoint = B_FALSE;
921 vdev_indirect_ops.vdev_op_remap(vd, offset, size,
922 metaslab_free_impl_cb, &checkpoint);
923 }
924
925 /*
926 * On behalf of the removal thread, syncs an incremental bit more of
927 * the indirect mapping to disk and updates the in-memory mapping.
928 * Called as a sync task in every txg that the removal thread makes progress.
929 */
930 static void
vdev_mapping_sync(void * arg,dmu_tx_t * tx)931 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
932 {
933 spa_vdev_removal_t *svr = arg;
934 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
935 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
936 vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config;
937 uint64_t txg = dmu_tx_get_txg(tx);
938 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
939
940 ASSERT(vic->vic_mapping_object != 0);
941 ASSERT3U(txg, ==, spa_syncing_txg(spa));
942
943 vdev_indirect_mapping_add_entries(vim,
944 &svr->svr_new_segments[txg & TXG_MASK], tx);
945 vdev_indirect_births_add_entry(vd->vdev_indirect_births,
946 vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
947
948 /*
949 * Free the copied data for anything that was freed while the
950 * mapping entries were in flight.
951 */
952 mutex_enter(&svr->svr_lock);
953 zfs_range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
954 free_mapped_segment_cb, vd);
955 ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
956 vdev_indirect_mapping_max_offset(vim));
957 svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
958 mutex_exit(&svr->svr_lock);
959
960 spa_sync_removing_state(spa, tx);
961 }
962
963 typedef struct vdev_copy_segment_arg {
964 spa_t *vcsa_spa;
965 dva_t *vcsa_dest_dva;
966 uint64_t vcsa_txg;
967 zfs_range_tree_t *vcsa_obsolete_segs;
968 } vdev_copy_segment_arg_t;
969
970 static void
unalloc_seg(void * arg,uint64_t start,uint64_t size)971 unalloc_seg(void *arg, uint64_t start, uint64_t size)
972 {
973 vdev_copy_segment_arg_t *vcsa = arg;
974 spa_t *spa = vcsa->vcsa_spa;
975 blkptr_t bp = { { { {0} } } };
976
977 BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
978 BP_SET_LSIZE(&bp, size);
979 BP_SET_PSIZE(&bp, size);
980 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
981 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
982 BP_SET_TYPE(&bp, DMU_OT_NONE);
983 BP_SET_LEVEL(&bp, 0);
984 BP_SET_DEDUP(&bp, 0);
985 BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
986
987 DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
988 DVA_SET_OFFSET(&bp.blk_dva[0],
989 DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
990 DVA_SET_ASIZE(&bp.blk_dva[0], size);
991
992 zio_free(spa, vcsa->vcsa_txg, &bp);
993 }
994
995 /*
996 * All reads and writes associated with a call to spa_vdev_copy_segment()
997 * are done.
998 */
999 static void
spa_vdev_copy_segment_done(zio_t * zio)1000 spa_vdev_copy_segment_done(zio_t *zio)
1001 {
1002 vdev_copy_segment_arg_t *vcsa = zio->io_private;
1003
1004 zfs_range_tree_vacate(vcsa->vcsa_obsolete_segs,
1005 unalloc_seg, vcsa);
1006 zfs_range_tree_destroy(vcsa->vcsa_obsolete_segs);
1007 kmem_free(vcsa, sizeof (*vcsa));
1008
1009 spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
1010 }
1011
1012 /*
1013 * The write of the new location is done.
1014 */
1015 static void
spa_vdev_copy_segment_write_done(zio_t * zio)1016 spa_vdev_copy_segment_write_done(zio_t *zio)
1017 {
1018 vdev_copy_arg_t *vca = zio->io_private;
1019
1020 abd_free(zio->io_abd);
1021
1022 mutex_enter(&vca->vca_lock);
1023 vca->vca_outstanding_bytes -= zio->io_size;
1024
1025 if (zio->io_error != 0)
1026 vca->vca_write_error_bytes += zio->io_size;
1027
1028 cv_signal(&vca->vca_cv);
1029 mutex_exit(&vca->vca_lock);
1030 }
1031
1032 /*
1033 * The read of the old location is done. The parent zio is the write to
1034 * the new location. Allow it to start.
1035 */
1036 static void
spa_vdev_copy_segment_read_done(zio_t * zio)1037 spa_vdev_copy_segment_read_done(zio_t *zio)
1038 {
1039 vdev_copy_arg_t *vca = zio->io_private;
1040
1041 if (zio->io_error != 0) {
1042 mutex_enter(&vca->vca_lock);
1043 vca->vca_read_error_bytes += zio->io_size;
1044 mutex_exit(&vca->vca_lock);
1045 }
1046
1047 zio_nowait(zio_unique_parent(zio));
1048 }
1049
1050 /*
1051 * If the old and new vdevs are mirrors, we will read both sides of the old
1052 * mirror, and write each copy to the corresponding side of the new mirror.
1053 * If the old and new vdevs have a different number of children, we will do
1054 * this as best as possible. Since we aren't verifying checksums, this
1055 * ensures that as long as there's a good copy of the data, we'll have a
1056 * good copy after the removal, even if there's silent damage to one side
1057 * of the mirror. If we're removing a mirror that has some silent damage,
1058 * we'll have exactly the same damage in the new location (assuming that
1059 * the new location is also a mirror).
1060 *
1061 * We accomplish this by creating a tree of zio_t's, with as many writes as
1062 * there are "children" of the new vdev (a non-redundant vdev counts as one
1063 * child, a 2-way mirror has 2 children, etc). Each write has an associated
1064 * read from a child of the old vdev. Typically there will be the same
1065 * number of children of the old and new vdevs. However, if there are more
1066 * children of the new vdev, some child(ren) of the old vdev will be issued
1067 * multiple reads. If there are more children of the old vdev, some copies
1068 * will be dropped.
1069 *
1070 * For example, the tree of zio_t's for a 2-way mirror is:
1071 *
1072 * null
1073 * / \
1074 * write(new vdev, child 0) write(new vdev, child 1)
1075 * | |
1076 * read(old vdev, child 0) read(old vdev, child 1)
1077 *
1078 * Child zio's complete before their parents complete. However, zio's
1079 * created with zio_vdev_child_io() may be issued before their children
1080 * complete. In this case we need to make sure that the children (reads)
1081 * complete before the parents (writes) are *issued*. We do this by not
1082 * calling zio_nowait() on each write until its corresponding read has
1083 * completed.
1084 *
1085 * The spa_config_lock must be held while zio's created by
1086 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
1087 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
1088 * zio is needed to release the spa_config_lock after all the reads and
1089 * writes complete. (Note that we can't grab the config lock for each read,
1090 * because it is not reentrant - we could deadlock with a thread waiting
1091 * for a write lock.)
1092 */
1093 static void
spa_vdev_copy_one_child(vdev_copy_arg_t * vca,zio_t * nzio,vdev_t * source_vd,uint64_t source_offset,vdev_t * dest_child_vd,uint64_t dest_offset,int dest_id,uint64_t size)1094 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
1095 vdev_t *source_vd, uint64_t source_offset,
1096 vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
1097 {
1098 ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
1099
1100 /*
1101 * If the destination child in unwritable then there is no point
1102 * in issuing the source reads which cannot be written.
1103 */
1104 if (!vdev_writeable(dest_child_vd))
1105 return;
1106
1107 mutex_enter(&vca->vca_lock);
1108 vca->vca_outstanding_bytes += size;
1109 mutex_exit(&vca->vca_lock);
1110
1111 abd_t *abd = abd_alloc_for_io(size, B_FALSE);
1112
1113 vdev_t *source_child_vd = NULL;
1114 if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
1115 /*
1116 * Source and dest are both mirrors. Copy from the same
1117 * child id as we are copying to (wrapping around if there
1118 * are more dest children than source children). If the
1119 * preferred source child is unreadable select another.
1120 */
1121 for (int i = 0; i < source_vd->vdev_children; i++) {
1122 source_child_vd = source_vd->vdev_child[
1123 (dest_id + i) % source_vd->vdev_children];
1124 if (vdev_readable(source_child_vd))
1125 break;
1126 }
1127 } else {
1128 source_child_vd = source_vd;
1129 }
1130
1131 /*
1132 * There should always be at least one readable source child or
1133 * the pool would be in a suspended state. Somehow selecting an
1134 * unreadable child would result in IO errors, the removal process
1135 * being cancelled, and the pool reverting to its pre-removal state.
1136 */
1137 ASSERT3P(source_child_vd, !=, NULL);
1138
1139 zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
1140 dest_child_vd, dest_offset, abd, size,
1141 ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
1142 ZIO_FLAG_CANFAIL,
1143 spa_vdev_copy_segment_write_done, vca);
1144
1145 zio_nowait(zio_vdev_child_io(write_zio, NULL,
1146 source_child_vd, source_offset, abd, size,
1147 ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
1148 ZIO_FLAG_CANFAIL,
1149 spa_vdev_copy_segment_read_done, vca));
1150 }
1151
1152 /*
1153 * Allocate a new location for this segment, and create the zio_t's to
1154 * read from the old location and write to the new location.
1155 */
1156 static int
spa_vdev_copy_segment(vdev_t * vd,zfs_range_tree_t * segs,uint64_t maxalloc,uint64_t txg,vdev_copy_arg_t * vca,zio_alloc_list_t * zal)1157 spa_vdev_copy_segment(vdev_t *vd, zfs_range_tree_t *segs,
1158 uint64_t maxalloc, uint64_t txg,
1159 vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
1160 {
1161 metaslab_group_t *mg = vd->vdev_mg;
1162 spa_t *spa = vd->vdev_spa;
1163 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1164 vdev_indirect_mapping_entry_t *entry;
1165 dva_t dst = {{ 0 }};
1166 uint64_t start = zfs_range_tree_min(segs);
1167 ASSERT0(P2PHASE(start, 1 << spa->spa_min_ashift));
1168
1169 ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
1170 ASSERT0(P2PHASE(maxalloc, 1 << spa->spa_min_ashift));
1171
1172 uint64_t size = zfs_range_tree_span(segs);
1173 if (zfs_range_tree_span(segs) > maxalloc) {
1174 /*
1175 * We can't allocate all the segments. Prefer to end
1176 * the allocation at the end of a segment, thus avoiding
1177 * additional split blocks.
1178 */
1179 zfs_range_seg_max_t search;
1180 zfs_btree_index_t where;
1181 zfs_rs_set_start(&search, segs, start + maxalloc);
1182 zfs_rs_set_end(&search, segs, start + maxalloc);
1183 (void) zfs_btree_find(&segs->rt_root, &search, &where);
1184 zfs_range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where,
1185 &where);
1186 if (rs != NULL) {
1187 size = zfs_rs_get_end(rs, segs) - start;
1188 } else {
1189 /*
1190 * There are no segments that end before maxalloc.
1191 * I.e. the first segment is larger than maxalloc,
1192 * so we must split it.
1193 */
1194 size = maxalloc;
1195 }
1196 }
1197 ASSERT3U(size, <=, maxalloc);
1198 ASSERT0(P2PHASE(size, 1 << spa->spa_min_ashift));
1199
1200 /*
1201 * An allocation class might not have any remaining vdevs or space
1202 */
1203 metaslab_class_t *mc = mg->mg_class;
1204 if (mc->mc_groups == 0)
1205 mc = spa_normal_class(spa);
1206 int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg,
1207 0, zal, 0);
1208 if (error == ENOSPC && mc != spa_normal_class(spa)) {
1209 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
1210 &dst, 0, NULL, txg, 0, zal, 0);
1211 }
1212 if (error != 0)
1213 return (error);
1214
1215 /*
1216 * Determine the ranges that are not actually needed. Offsets are
1217 * relative to the start of the range to be copied (i.e. relative to the
1218 * local variable "start").
1219 */
1220 zfs_range_tree_t *obsolete_segs = zfs_range_tree_create_flags(
1221 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
1222 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "obsolete_segs"));
1223
1224 zfs_btree_index_t where;
1225 zfs_range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where);
1226 ASSERT3U(zfs_rs_get_start(rs, segs), ==, start);
1227 uint64_t prev_seg_end = zfs_rs_get_end(rs, segs);
1228 while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) {
1229 if (zfs_rs_get_start(rs, segs) >= start + size) {
1230 break;
1231 } else {
1232 zfs_range_tree_add(obsolete_segs,
1233 prev_seg_end - start,
1234 zfs_rs_get_start(rs, segs) - prev_seg_end);
1235 }
1236 prev_seg_end = zfs_rs_get_end(rs, segs);
1237 }
1238 /* We don't end in the middle of an obsolete range */
1239 ASSERT3U(start + size, <=, prev_seg_end);
1240
1241 zfs_range_tree_clear(segs, start, size);
1242
1243 /*
1244 * We can't have any padding of the allocated size, otherwise we will
1245 * misunderstand what's allocated, and the size of the mapping. We
1246 * prevent padding by ensuring that all devices in the pool have the
1247 * same ashift, and the allocation size is a multiple of the ashift.
1248 */
1249 VERIFY3U(DVA_GET_ASIZE(&dst), ==, size);
1250
1251 entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
1252 DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
1253 entry->vime_mapping.vimep_dst = dst;
1254 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1255 entry->vime_obsolete_count =
1256 zfs_range_tree_space(obsolete_segs);
1257 }
1258
1259 vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1260 vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1261 vcsa->vcsa_obsolete_segs = obsolete_segs;
1262 vcsa->vcsa_spa = spa;
1263 vcsa->vcsa_txg = txg;
1264
1265 /*
1266 * See comment before spa_vdev_copy_one_child().
1267 */
1268 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1269 zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1270 spa_vdev_copy_segment_done, vcsa, 0);
1271 vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1272 if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1273 for (int i = 0; i < dest_vd->vdev_children; i++) {
1274 vdev_t *child = dest_vd->vdev_child[i];
1275 spa_vdev_copy_one_child(vca, nzio, vd, start,
1276 child, DVA_GET_OFFSET(&dst), i, size);
1277 }
1278 } else {
1279 spa_vdev_copy_one_child(vca, nzio, vd, start,
1280 dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1281 }
1282 zio_nowait(nzio);
1283
1284 list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1285 ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1286 vdev_dirty(vd, 0, NULL, txg);
1287
1288 return (0);
1289 }
1290
1291 /*
1292 * Complete the removal of a toplevel vdev. This is called as a
1293 * synctask in the same txg that we will sync out the new config (to the
1294 * MOS object) which indicates that this vdev is indirect.
1295 */
1296 static void
vdev_remove_complete_sync(void * arg,dmu_tx_t * tx)1297 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1298 {
1299 spa_vdev_removal_t *svr = arg;
1300 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1301 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1302
1303 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1304
1305 for (int i = 0; i < TXG_SIZE; i++) {
1306 ASSERT0(svr->svr_bytes_done[i]);
1307 }
1308
1309 ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1310 spa->spa_removing_phys.sr_to_copy);
1311
1312 vdev_destroy_spacemaps(vd, tx);
1313
1314 /* destroy leaf zaps, if any */
1315 ASSERT3P(svr->svr_zaplist, !=, NULL);
1316 for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1317 pair != NULL;
1318 pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1319 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1320 }
1321 fnvlist_free(svr->svr_zaplist);
1322
1323 spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1324 /* vd->vdev_path is not available here */
1325 spa_history_log_internal(spa, "vdev remove completed", tx,
1326 "%s vdev %llu", spa_name(spa), (u_longlong_t)vd->vdev_id);
1327 }
1328
1329 static void
vdev_remove_enlist_zaps(vdev_t * vd,nvlist_t * zlist)1330 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1331 {
1332 ASSERT3P(zlist, !=, NULL);
1333 ASSERT0(vdev_get_nparity(vd));
1334
1335 if (vd->vdev_leaf_zap != 0) {
1336 char zkey[32];
1337 (void) snprintf(zkey, sizeof (zkey), "%s-%llu",
1338 VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap);
1339 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1340 }
1341
1342 for (uint64_t id = 0; id < vd->vdev_children; id++) {
1343 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1344 }
1345 }
1346
1347 static void
vdev_remove_replace_with_indirect(vdev_t * vd,uint64_t txg)1348 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1349 {
1350 vdev_t *ivd;
1351 dmu_tx_t *tx;
1352 spa_t *spa = vd->vdev_spa;
1353 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1354
1355 /*
1356 * First, build a list of leaf zaps to be destroyed.
1357 * This is passed to the sync context thread,
1358 * which does the actual unlinking.
1359 */
1360 svr->svr_zaplist = fnvlist_alloc();
1361 vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1362
1363 ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1364 ivd->vdev_removing = 0;
1365
1366 vd->vdev_leaf_zap = 0;
1367
1368 vdev_remove_child(ivd, vd);
1369 vdev_compact_children(ivd);
1370
1371 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1372
1373 mutex_enter(&svr->svr_lock);
1374 svr->svr_thread = NULL;
1375 cv_broadcast(&svr->svr_cv);
1376 mutex_exit(&svr->svr_lock);
1377
1378 /* After this, we can not use svr. */
1379 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1380 dsl_sync_task_nowait(spa->spa_dsl_pool,
1381 vdev_remove_complete_sync, svr, tx);
1382 dmu_tx_commit(tx);
1383 }
1384
1385 /*
1386 * Complete the removal of a toplevel vdev. This is called in open
1387 * context by the removal thread after we have copied all vdev's data.
1388 */
1389 static void
vdev_remove_complete(spa_t * spa)1390 vdev_remove_complete(spa_t *spa)
1391 {
1392 uint64_t txg;
1393
1394 /*
1395 * Wait for any deferred frees to be synced before we call
1396 * vdev_metaslab_fini()
1397 */
1398 txg_wait_synced(spa->spa_dsl_pool, 0);
1399 txg = spa_vdev_enter(spa);
1400 vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1401 ASSERT0P(vd->vdev_initialize_thread);
1402 ASSERT0P(vd->vdev_trim_thread);
1403 ASSERT0P(vd->vdev_autotrim_thread);
1404 vdev_rebuild_stop_wait(vd);
1405 ASSERT0P(vd->vdev_rebuild_thread);
1406
1407 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1408 ESC_ZFS_VDEV_REMOVE_DEV);
1409
1410 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1411 (u_longlong_t)vd->vdev_id, (u_longlong_t)txg);
1412
1413 /* the vdev is no longer part of the dspace */
1414 vdev_update_nonallocating_space(vd, B_FALSE);
1415
1416 /*
1417 * Discard allocation state.
1418 */
1419 if (vd->vdev_mg != NULL) {
1420 vdev_metaslab_fini(vd);
1421 metaslab_group_destroy(vd->vdev_mg);
1422 vd->vdev_mg = NULL;
1423 }
1424 if (vd->vdev_log_mg != NULL) {
1425 ASSERT0(vd->vdev_ms_count);
1426 metaslab_group_destroy(vd->vdev_log_mg);
1427 vd->vdev_log_mg = NULL;
1428 }
1429 ASSERT0(vd->vdev_stat.vs_space);
1430 ASSERT0(vd->vdev_stat.vs_dspace);
1431
1432 vdev_remove_replace_with_indirect(vd, txg);
1433
1434 /*
1435 * We now release the locks, allowing spa_sync to run and finish the
1436 * removal via vdev_remove_complete_sync in syncing context.
1437 *
1438 * Note that we hold on to the vdev_t that has been replaced. Since
1439 * it isn't part of the vdev tree any longer, it can't be concurrently
1440 * manipulated, even while we don't have the config lock.
1441 */
1442 (void) spa_vdev_exit(spa, NULL, txg, 0);
1443
1444 /*
1445 * Top ZAP should have been transferred to the indirect vdev in
1446 * vdev_remove_replace_with_indirect.
1447 */
1448 ASSERT0(vd->vdev_top_zap);
1449
1450 /*
1451 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1452 */
1453 ASSERT0(vd->vdev_leaf_zap);
1454
1455 txg = spa_vdev_enter(spa);
1456 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1457 /*
1458 * Request to update the config and the config cachefile.
1459 */
1460 vdev_config_dirty(spa->spa_root_vdev);
1461 (void) spa_vdev_exit(spa, vd, txg, 0);
1462
1463 if (ev != NULL)
1464 spa_event_post(ev);
1465 }
1466
1467 /*
1468 * Evacuates a segment of size at most max_alloc from the vdev
1469 * via repeated calls to spa_vdev_copy_segment. If an allocation
1470 * fails, the pool is probably too fragmented to handle such a
1471 * large size, so decrease max_alloc so that the caller will not try
1472 * this size again this txg.
1473 */
1474 static void
spa_vdev_copy_impl(vdev_t * vd,spa_vdev_removal_t * svr,vdev_copy_arg_t * vca,uint64_t * max_alloc,dmu_tx_t * tx)1475 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1476 uint64_t *max_alloc, dmu_tx_t *tx)
1477 {
1478 uint64_t txg = dmu_tx_get_txg(tx);
1479 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1480
1481 mutex_enter(&svr->svr_lock);
1482
1483 /*
1484 * Determine how big of a chunk to copy. We can allocate up
1485 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1486 * bytes of unallocated space at a time. "segs" will track the
1487 * allocated segments that we are copying. We may also be copying
1488 * free segments (of up to vdev_removal_max_span bytes).
1489 */
1490 zfs_range_tree_t *segs = zfs_range_tree_create_flags(
1491 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
1492 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "spa_vdev_copy_impl:segs"));
1493 for (;;) {
1494 zfs_range_tree_t *rt = svr->svr_allocd_segs;
1495 zfs_range_seg_t *rs = zfs_range_tree_first(rt);
1496
1497 if (rs == NULL)
1498 break;
1499
1500 uint64_t seg_length;
1501
1502 if (zfs_range_tree_is_empty(segs)) {
1503 /* need to truncate the first seg based on max_alloc */
1504 seg_length = MIN(zfs_rs_get_end(rs, rt) -
1505 zfs_rs_get_start(rs, rt), *max_alloc);
1506 } else {
1507 if (zfs_rs_get_start(rs, rt) - zfs_range_tree_max(segs)
1508 > vdev_removal_max_span) {
1509 /*
1510 * Including this segment would cause us to
1511 * copy a larger unneeded chunk than is allowed.
1512 */
1513 break;
1514 } else if (zfs_rs_get_end(rs, rt) -
1515 zfs_range_tree_min(segs) > *max_alloc) {
1516 /*
1517 * This additional segment would extend past
1518 * max_alloc. Rather than splitting this
1519 * segment, leave it for the next mapping.
1520 */
1521 break;
1522 } else {
1523 seg_length = zfs_rs_get_end(rs, rt) -
1524 zfs_rs_get_start(rs, rt);
1525 }
1526 }
1527
1528 zfs_range_tree_add(segs, zfs_rs_get_start(rs, rt), seg_length);
1529 zfs_range_tree_remove(svr->svr_allocd_segs,
1530 zfs_rs_get_start(rs, rt), seg_length);
1531 }
1532
1533 if (zfs_range_tree_is_empty(segs)) {
1534 mutex_exit(&svr->svr_lock);
1535 zfs_range_tree_destroy(segs);
1536 return;
1537 }
1538
1539 if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1540 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1541 svr, tx);
1542 }
1543
1544 svr->svr_max_offset_to_sync[txg & TXG_MASK] = zfs_range_tree_max(segs);
1545
1546 /*
1547 * Note: this is the amount of *allocated* space
1548 * that we are taking care of each txg.
1549 */
1550 svr->svr_bytes_done[txg & TXG_MASK] += zfs_range_tree_space(segs);
1551
1552 mutex_exit(&svr->svr_lock);
1553
1554 zio_alloc_list_t zal;
1555 metaslab_trace_init(&zal);
1556 uint64_t thismax = SPA_MAXBLOCKSIZE;
1557 while (!zfs_range_tree_is_empty(segs)) {
1558 int error = spa_vdev_copy_segment(vd,
1559 segs, thismax, txg, vca, &zal);
1560
1561 if (error == ENOSPC) {
1562 /*
1563 * Cut our segment in half, and don't try this
1564 * segment size again this txg. Note that the
1565 * allocation size must be aligned to the highest
1566 * ashift in the pool, so that the allocation will
1567 * not be padded out to a multiple of the ashift,
1568 * which could cause us to think that this mapping
1569 * is larger than we intended.
1570 */
1571 ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1572 ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1573 uint64_t attempted =
1574 MIN(zfs_range_tree_span(segs), thismax);
1575 thismax = P2ROUNDUP(attempted / 2,
1576 1 << spa->spa_max_ashift);
1577 /*
1578 * The minimum-size allocation can not fail.
1579 */
1580 ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1581 *max_alloc = attempted - (1 << spa->spa_max_ashift);
1582 } else {
1583 ASSERT0(error);
1584
1585 /*
1586 * We've performed an allocation, so reset the
1587 * alloc trace list.
1588 */
1589 metaslab_trace_fini(&zal);
1590 metaslab_trace_init(&zal);
1591 }
1592 }
1593 metaslab_trace_fini(&zal);
1594 zfs_range_tree_destroy(segs);
1595 }
1596
1597 /*
1598 * The size of each removal mapping is limited by the tunable
1599 * zfs_remove_max_segment, but we must adjust this to be a multiple of the
1600 * pool's ashift, so that we don't try to split individual sectors regardless
1601 * of the tunable value. (Note that device removal requires that all devices
1602 * have the same ashift, so there's no difference between spa_min_ashift and
1603 * spa_max_ashift.) The raw tunable should not be used elsewhere.
1604 */
1605 uint64_t
spa_remove_max_segment(spa_t * spa)1606 spa_remove_max_segment(spa_t *spa)
1607 {
1608 return (P2ROUNDUP(zfs_remove_max_segment, 1 << spa->spa_max_ashift));
1609 }
1610
1611 /*
1612 * The removal thread operates in open context. It iterates over all
1613 * allocated space in the vdev, by loading each metaslab's spacemap.
1614 * For each contiguous segment of allocated space (capping the segment
1615 * size at SPA_MAXBLOCKSIZE), we:
1616 * - Allocate space for it on another vdev.
1617 * - Create a new mapping from the old location to the new location
1618 * (as a record in svr_new_segments).
1619 * - Initiate a physical read zio to get the data off the removing disk.
1620 * - In the read zio's done callback, initiate a physical write zio to
1621 * write it to the new vdev.
1622 * Note that all of this will take effect when a particular TXG syncs.
1623 * The sync thread ensures that all the phys reads and writes for the syncing
1624 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1625 * (see vdev_mapping_sync()).
1626 */
1627 static __attribute__((noreturn)) void
spa_vdev_remove_thread(void * arg)1628 spa_vdev_remove_thread(void *arg)
1629 {
1630 spa_t *spa = arg;
1631 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1632 vdev_copy_arg_t vca;
1633 uint64_t max_alloc = spa_remove_max_segment(spa);
1634 uint64_t last_txg = 0;
1635
1636 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1637 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1638 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1639 uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1640
1641 ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1642 ASSERT(vdev_is_concrete(vd));
1643 ASSERT(vd->vdev_removing);
1644 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1645 ASSERT(vim != NULL);
1646
1647 mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1648 cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1649 vca.vca_outstanding_bytes = 0;
1650 vca.vca_read_error_bytes = 0;
1651 vca.vca_write_error_bytes = 0;
1652
1653 zfs_range_tree_t *segs = zfs_range_tree_create_flags(
1654 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
1655 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "spa_vdev_remove_thread:segs"));
1656
1657 mutex_enter(&svr->svr_lock);
1658
1659 /*
1660 * Start from vim_max_offset so we pick up where we left off
1661 * if we are restarting the removal after opening the pool.
1662 */
1663 uint64_t msi;
1664 for (msi = start_offset >> vd->vdev_ms_shift;
1665 msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1666 metaslab_t *msp = vd->vdev_ms[msi];
1667 ASSERT3U(msi, <=, vd->vdev_ms_count);
1668
1669 again:
1670 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
1671 mutex_exit(&svr->svr_lock);
1672
1673 mutex_enter(&msp->ms_sync_lock);
1674 mutex_enter(&msp->ms_lock);
1675
1676 /*
1677 * Assert nothing in flight -- ms_*tree is empty.
1678 */
1679 for (int i = 0; i < TXG_SIZE; i++) {
1680 ASSERT0(zfs_range_tree_space(msp->ms_allocating[i]));
1681 }
1682
1683 /*
1684 * If the metaslab has ever been synced (ms_sm != NULL),
1685 * read the allocated segments from the space map object
1686 * into svr_allocd_segs. Since we do this while holding
1687 * ms_lock and ms_sync_lock, concurrent frees (which
1688 * would have modified the space map) will wait for us
1689 * to finish loading the spacemap, and then take the
1690 * appropriate action (see free_from_removing_vdev()).
1691 */
1692 if (msp->ms_sm != NULL)
1693 VERIFY0(space_map_load(msp->ms_sm, segs, SM_ALLOC));
1694
1695 /*
1696 * We could not hold svr_lock while loading space map, or we
1697 * could hit deadlock in a ZIO pipeline, having to wait for
1698 * it. But we can not block for it here under metaslab locks,
1699 * or it would be a lock ordering violation.
1700 */
1701 if (!mutex_tryenter(&svr->svr_lock)) {
1702 mutex_exit(&msp->ms_lock);
1703 mutex_exit(&msp->ms_sync_lock);
1704 zfs_range_tree_vacate(segs, NULL, NULL);
1705 mutex_enter(&svr->svr_lock);
1706 goto again;
1707 }
1708
1709 zfs_range_tree_swap(&segs, &svr->svr_allocd_segs);
1710 zfs_range_tree_walk(msp->ms_unflushed_allocs,
1711 zfs_range_tree_add, svr->svr_allocd_segs);
1712 zfs_range_tree_walk(msp->ms_unflushed_frees,
1713 zfs_range_tree_remove, svr->svr_allocd_segs);
1714 zfs_range_tree_walk(msp->ms_freeing,
1715 zfs_range_tree_remove, svr->svr_allocd_segs);
1716
1717 mutex_exit(&msp->ms_lock);
1718 mutex_exit(&msp->ms_sync_lock);
1719
1720 /*
1721 * When we are resuming from a paused removal (i.e.
1722 * when importing a pool with a removal in progress),
1723 * discard any state that we have already processed.
1724 */
1725 zfs_range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1726
1727 vca.vca_msp = msp;
1728 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1729 (u_longlong_t)zfs_btree_numnodes(
1730 &svr->svr_allocd_segs->rt_root),
1731 (u_longlong_t)msp->ms_id);
1732
1733 while (!svr->svr_thread_exit &&
1734 !zfs_range_tree_is_empty(svr->svr_allocd_segs)) {
1735
1736 mutex_exit(&svr->svr_lock);
1737
1738 /*
1739 * We need to periodically drop the config lock so that
1740 * writers can get in. Additionally, we can't wait
1741 * for a txg to sync while holding a config lock
1742 * (since a waiting writer could cause a 3-way deadlock
1743 * with the sync thread, which also gets a config
1744 * lock for reader). So we can't hold the config lock
1745 * while calling dmu_tx_assign().
1746 */
1747 spa_config_exit(spa, SCL_CONFIG, FTAG);
1748
1749 /*
1750 * This delay will pause the removal around the point
1751 * specified by zfs_removal_suspend_progress. We do this
1752 * solely from the test suite or during debugging.
1753 */
1754 while (zfs_removal_suspend_progress &&
1755 !svr->svr_thread_exit)
1756 delay(hz);
1757
1758 mutex_enter(&vca.vca_lock);
1759 while (vca.vca_outstanding_bytes >
1760 zfs_remove_max_copy_bytes) {
1761 cv_wait(&vca.vca_cv, &vca.vca_lock);
1762 }
1763 mutex_exit(&vca.vca_lock);
1764
1765 dmu_tx_t *tx =
1766 dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1767
1768 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT |
1769 DMU_TX_SUSPEND));
1770 uint64_t txg = dmu_tx_get_txg(tx);
1771
1772 /*
1773 * Reacquire the vdev_config lock. The vdev_t
1774 * that we're removing may have changed, e.g. due
1775 * to a vdev_attach or vdev_detach.
1776 */
1777 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1778 vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1779
1780 if (txg != last_txg)
1781 max_alloc = spa_remove_max_segment(spa);
1782 last_txg = txg;
1783
1784 spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1785
1786 dmu_tx_commit(tx);
1787 mutex_enter(&svr->svr_lock);
1788 }
1789
1790 mutex_enter(&vca.vca_lock);
1791 if (zfs_removal_ignore_errors == 0 &&
1792 (vca.vca_read_error_bytes > 0 ||
1793 vca.vca_write_error_bytes > 0)) {
1794 svr->svr_thread_exit = B_TRUE;
1795 }
1796 mutex_exit(&vca.vca_lock);
1797 }
1798
1799 mutex_exit(&svr->svr_lock);
1800
1801 spa_config_exit(spa, SCL_CONFIG, FTAG);
1802
1803 zfs_range_tree_destroy(segs);
1804
1805 /*
1806 * Wait for all copies to finish before cleaning up the vca.
1807 */
1808 txg_wait_synced(spa->spa_dsl_pool, 0);
1809 ASSERT0(vca.vca_outstanding_bytes);
1810
1811 mutex_destroy(&vca.vca_lock);
1812 cv_destroy(&vca.vca_cv);
1813
1814 if (svr->svr_thread_exit) {
1815 mutex_enter(&svr->svr_lock);
1816 zfs_range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1817 svr->svr_thread = NULL;
1818 cv_broadcast(&svr->svr_cv);
1819 mutex_exit(&svr->svr_lock);
1820
1821 /*
1822 * During the removal process an unrecoverable read or write
1823 * error was encountered. The removal process must be
1824 * cancelled or this damage may become permanent.
1825 */
1826 if (zfs_removal_ignore_errors == 0 &&
1827 (vca.vca_read_error_bytes > 0 ||
1828 vca.vca_write_error_bytes > 0)) {
1829 zfs_dbgmsg("canceling removal due to IO errors: "
1830 "[read_error_bytes=%llu] [write_error_bytes=%llu]",
1831 (u_longlong_t)vca.vca_read_error_bytes,
1832 (u_longlong_t)vca.vca_write_error_bytes);
1833 spa_vdev_remove_cancel_impl(spa);
1834 }
1835 } else {
1836 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
1837 vdev_remove_complete(spa);
1838 }
1839
1840 thread_exit();
1841 }
1842
1843 void
spa_vdev_remove_suspend(spa_t * spa)1844 spa_vdev_remove_suspend(spa_t *spa)
1845 {
1846 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1847
1848 if (svr == NULL)
1849 return;
1850
1851 mutex_enter(&svr->svr_lock);
1852 svr->svr_thread_exit = B_TRUE;
1853 while (svr->svr_thread != NULL)
1854 cv_wait(&svr->svr_cv, &svr->svr_lock);
1855 svr->svr_thread_exit = B_FALSE;
1856 mutex_exit(&svr->svr_lock);
1857 }
1858
1859 /*
1860 * Return true if the "allocating" property has been set to "off"
1861 */
1862 static boolean_t
vdev_prop_allocating_off(vdev_t * vd)1863 vdev_prop_allocating_off(vdev_t *vd)
1864 {
1865 uint64_t objid = vd->vdev_top_zap;
1866 uint64_t allocating = 1;
1867
1868 /* no vdev property object => no props */
1869 if (objid != 0) {
1870 spa_t *spa = vd->vdev_spa;
1871 objset_t *mos = spa->spa_meta_objset;
1872
1873 mutex_enter(&spa->spa_props_lock);
1874 (void) zap_lookup(mos, objid, "allocating", sizeof (uint64_t),
1875 1, &allocating);
1876 mutex_exit(&spa->spa_props_lock);
1877 }
1878 return (allocating == 0);
1879 }
1880
1881 static int
spa_vdev_remove_cancel_check(void * arg,dmu_tx_t * tx)1882 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1883 {
1884 (void) arg;
1885 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1886
1887 if (spa->spa_vdev_removal == NULL)
1888 return (ENOTACTIVE);
1889 return (0);
1890 }
1891
1892 /*
1893 * Cancel a removal by freeing all entries from the partial mapping
1894 * and marking the vdev as no longer being removing.
1895 */
1896 static void
spa_vdev_remove_cancel_sync(void * arg,dmu_tx_t * tx)1897 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1898 {
1899 (void) arg;
1900 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1901 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1902 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1903 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1904 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1905 objset_t *mos = spa->spa_meta_objset;
1906
1907 ASSERT0P(svr->svr_thread);
1908
1909 spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1910
1911 boolean_t are_precise;
1912 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
1913 if (are_precise) {
1914 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1915 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1916 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1917 }
1918
1919 uint64_t obsolete_sm_object;
1920 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1921 if (obsolete_sm_object != 0) {
1922 ASSERT(vd->vdev_obsolete_sm != NULL);
1923 ASSERT3U(obsolete_sm_object, ==,
1924 space_map_object(vd->vdev_obsolete_sm));
1925
1926 space_map_free(vd->vdev_obsolete_sm, tx);
1927 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1928 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1929 space_map_close(vd->vdev_obsolete_sm);
1930 vd->vdev_obsolete_sm = NULL;
1931 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1932 }
1933 for (int i = 0; i < TXG_SIZE; i++) {
1934 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1935 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1936 vdev_indirect_mapping_max_offset(vim));
1937 }
1938
1939 zfs_range_tree_t *segs = zfs_range_tree_create_flags(
1940 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, ZFS_RT_F_DYN_NAME,
1941 vdev_rt_name(vd, "spa_vdev_remove_cancel_sync:segs"));
1942 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1943 metaslab_t *msp = vd->vdev_ms[msi];
1944
1945 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1946 break;
1947
1948 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
1949
1950 mutex_enter(&msp->ms_lock);
1951
1952 /*
1953 * Assert nothing in flight -- ms_*tree is empty.
1954 */
1955 for (int i = 0; i < TXG_SIZE; i++)
1956 ASSERT0(zfs_range_tree_space(msp->ms_allocating[i]));
1957 for (int i = 0; i < TXG_DEFER_SIZE; i++)
1958 ASSERT0(zfs_range_tree_space(msp->ms_defer[i]));
1959 ASSERT0(zfs_range_tree_space(msp->ms_freed));
1960
1961 if (msp->ms_sm != NULL)
1962 VERIFY0(space_map_load(msp->ms_sm, segs, SM_ALLOC));
1963
1964 zfs_range_tree_walk(msp->ms_unflushed_allocs,
1965 zfs_range_tree_add, segs);
1966 zfs_range_tree_walk(msp->ms_unflushed_frees,
1967 zfs_range_tree_remove, segs);
1968 zfs_range_tree_walk(msp->ms_freeing,
1969 zfs_range_tree_remove, segs);
1970 mutex_exit(&msp->ms_lock);
1971
1972 /*
1973 * Clear everything past what has been synced,
1974 * because we have not allocated mappings for it yet.
1975 */
1976 uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1977 uint64_t ms_end = msp->ms_start + msp->ms_size;
1978 if (ms_end > syncd)
1979 zfs_range_tree_clear(segs, syncd, ms_end - syncd);
1980
1981 zfs_range_tree_vacate(segs, free_mapped_segment_cb, vd);
1982 }
1983 zfs_range_tree_destroy(segs);
1984
1985 /*
1986 * Note: this must happen after we invoke free_mapped_segment_cb,
1987 * because it adds to the obsolete_segments.
1988 */
1989 zfs_range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1990
1991 ASSERT3U(vic->vic_mapping_object, ==,
1992 vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1993 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1994 vd->vdev_indirect_mapping = NULL;
1995 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1996 vic->vic_mapping_object = 0;
1997
1998 ASSERT3U(vic->vic_births_object, ==,
1999 vdev_indirect_births_object(vd->vdev_indirect_births));
2000 vdev_indirect_births_close(vd->vdev_indirect_births);
2001 vd->vdev_indirect_births = NULL;
2002 vdev_indirect_births_free(mos, vic->vic_births_object, tx);
2003 vic->vic_births_object = 0;
2004
2005 /*
2006 * We may have processed some frees from the removing vdev in this
2007 * txg, thus increasing svr_bytes_done; discard that here to
2008 * satisfy the assertions in spa_vdev_removal_destroy().
2009 * Note that future txg's can not have any bytes_done, because
2010 * future TXG's are only modified from open context, and we have
2011 * already shut down the copying thread.
2012 */
2013 svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
2014 spa_finish_removal(spa, DSS_CANCELED, tx);
2015
2016 vd->vdev_removing = B_FALSE;
2017
2018 if (!vdev_prop_allocating_off(vd)) {
2019 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
2020 vdev_activate(vd);
2021 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
2022 }
2023
2024 vdev_config_dirty(vd);
2025
2026 zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
2027 (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx));
2028 spa_history_log_internal(spa, "vdev remove canceled", tx,
2029 "%s vdev %llu %s", spa_name(spa),
2030 (u_longlong_t)vd->vdev_id,
2031 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
2032 }
2033
2034 static int
spa_vdev_remove_cancel_impl(spa_t * spa)2035 spa_vdev_remove_cancel_impl(spa_t *spa)
2036 {
2037 int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
2038 spa_vdev_remove_cancel_sync, NULL, 0,
2039 ZFS_SPACE_CHECK_EXTRA_RESERVED);
2040 return (error);
2041 }
2042
2043 int
spa_vdev_remove_cancel(spa_t * spa)2044 spa_vdev_remove_cancel(spa_t *spa)
2045 {
2046 spa_vdev_remove_suspend(spa);
2047
2048 if (spa->spa_vdev_removal == NULL)
2049 return (ENOTACTIVE);
2050
2051 return (spa_vdev_remove_cancel_impl(spa));
2052 }
2053
2054 void
svr_sync(spa_t * spa,dmu_tx_t * tx)2055 svr_sync(spa_t *spa, dmu_tx_t *tx)
2056 {
2057 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
2058 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
2059
2060 if (svr == NULL)
2061 return;
2062
2063 /*
2064 * This check is necessary so that we do not dirty the
2065 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
2066 * is nothing to do. Dirtying it every time would prevent us
2067 * from syncing-to-convergence.
2068 */
2069 if (svr->svr_bytes_done[txgoff] == 0)
2070 return;
2071
2072 /*
2073 * Update progress accounting.
2074 */
2075 spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
2076 svr->svr_bytes_done[txgoff] = 0;
2077
2078 spa_sync_removing_state(spa, tx);
2079 }
2080
2081 static void
vdev_remove_make_hole_and_free(vdev_t * vd)2082 vdev_remove_make_hole_and_free(vdev_t *vd)
2083 {
2084 uint64_t id = vd->vdev_id;
2085 spa_t *spa = vd->vdev_spa;
2086 vdev_t *rvd = spa->spa_root_vdev;
2087
2088 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2089 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2090
2091 vdev_free(vd);
2092
2093 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
2094 vdev_add_child(rvd, vd);
2095 vdev_config_dirty(rvd);
2096
2097 /*
2098 * Reassess the health of our root vdev.
2099 */
2100 vdev_reopen(rvd);
2101 }
2102
2103 /*
2104 * Remove a log device. The config lock is held for the specified TXG.
2105 */
2106 static int
spa_vdev_remove_log(vdev_t * vd,uint64_t * txg)2107 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
2108 {
2109 metaslab_group_t *mg = vd->vdev_mg;
2110 spa_t *spa = vd->vdev_spa;
2111 int error = 0;
2112
2113 ASSERT(vd->vdev_islog);
2114 ASSERT(vd == vd->vdev_top);
2115 ASSERT0P(vd->vdev_log_mg);
2116 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2117
2118 /*
2119 * Stop allocating from this vdev.
2120 */
2121 metaslab_group_passivate(mg);
2122
2123 /*
2124 * Wait for the youngest allocations and frees to sync,
2125 * and then wait for the deferral of those frees to finish.
2126 */
2127 spa_vdev_config_exit(spa, NULL,
2128 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2129
2130 /*
2131 * Cancel any initialize or TRIM which was in progress.
2132 */
2133 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
2134 vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED);
2135 vdev_autotrim_stop_wait(vd);
2136
2137 /*
2138 * Evacuate the device. We don't hold the config lock as
2139 * writer since we need to do I/O but we do keep the
2140 * spa_namespace_lock held. Once this completes the device
2141 * should no longer have any blocks allocated on it.
2142 */
2143 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2144 if (vd->vdev_stat.vs_alloc != 0)
2145 error = spa_reset_logs(spa);
2146
2147 *txg = spa_vdev_config_enter(spa);
2148
2149 if (error != 0) {
2150 metaslab_group_activate(mg);
2151 ASSERT0P(vd->vdev_log_mg);
2152 return (error);
2153 }
2154 ASSERT0(vd->vdev_stat.vs_alloc);
2155
2156 /*
2157 * The evacuation succeeded. Remove any remaining MOS metadata
2158 * associated with this vdev, and wait for these changes to sync.
2159 */
2160 vd->vdev_removing = B_TRUE;
2161
2162 vdev_dirty_leaves(vd, VDD_DTL, *txg);
2163 vdev_config_dirty(vd);
2164
2165 /*
2166 * When the log space map feature is enabled we look at
2167 * the vdev's top_zap to find the on-disk flush data of
2168 * the metaslab we just flushed. Thus, while removing a
2169 * log vdev we make sure to call vdev_metaslab_fini()
2170 * first, which removes all metaslabs of this vdev from
2171 * spa_metaslabs_by_flushed before vdev_remove_empty()
2172 * destroys the top_zap of this log vdev.
2173 *
2174 * This avoids the scenario where we flush a metaslab
2175 * from the log vdev being removed that doesn't have a
2176 * top_zap and end up failing to lookup its on-disk flush
2177 * data.
2178 *
2179 * We don't call metaslab_group_destroy() right away
2180 * though (it will be called in vdev_free() later) as
2181 * during metaslab_sync() of metaslabs from other vdevs
2182 * we may touch the metaslab group of this vdev through
2183 * metaslab_class_histogram_verify()
2184 */
2185 vdev_metaslab_fini(vd);
2186
2187 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
2188 *txg = spa_vdev_config_enter(spa);
2189
2190 sysevent_t *ev = spa_event_create(spa, vd, NULL,
2191 ESC_ZFS_VDEV_REMOVE_DEV);
2192 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2193 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2194
2195 /* The top ZAP should have been destroyed by vdev_remove_empty. */
2196 ASSERT0(vd->vdev_top_zap);
2197 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
2198 ASSERT0(vd->vdev_leaf_zap);
2199
2200 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
2201
2202 if (list_link_active(&vd->vdev_state_dirty_node))
2203 vdev_state_clean(vd);
2204 if (list_link_active(&vd->vdev_config_dirty_node))
2205 vdev_config_clean(vd);
2206
2207 ASSERT0(vd->vdev_stat.vs_alloc);
2208
2209 /*
2210 * Clean up the vdev namespace.
2211 */
2212 vdev_remove_make_hole_and_free(vd);
2213
2214 if (ev != NULL)
2215 spa_event_post(ev);
2216
2217 return (0);
2218 }
2219
2220 static int
spa_vdev_remove_top_check(vdev_t * vd)2221 spa_vdev_remove_top_check(vdev_t *vd)
2222 {
2223 spa_t *spa = vd->vdev_spa;
2224
2225 if (vd != vd->vdev_top)
2226 return (SET_ERROR(ENOTSUP));
2227
2228 if (!vdev_is_concrete(vd))
2229 return (SET_ERROR(ENOTSUP));
2230
2231 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
2232 return (SET_ERROR(ENOTSUP));
2233
2234 /*
2235 * This device is already being removed
2236 */
2237 if (vd->vdev_removing)
2238 return (SET_ERROR(EALREADY));
2239
2240 metaslab_class_t *mc = vd->vdev_mg->mg_class;
2241 metaslab_class_t *normal = spa_normal_class(spa);
2242 if (mc != normal) {
2243 /*
2244 * Space allocated from the special (or dedup) class is
2245 * included in the DMU's space usage, but it's not included
2246 * in spa_dspace (or dsl_pool_adjustedsize()). Therefore
2247 * there is always at least as much free space in the normal
2248 * class, as is allocated from the special (and dedup) class.
2249 * As a backup check, we will return ENOSPC if this is
2250 * violated. See also spa_update_dspace().
2251 */
2252 uint64_t available = metaslab_class_get_space(normal) -
2253 metaslab_class_get_alloc(normal);
2254 ASSERT3U(available, >=, vd->vdev_stat.vs_alloc);
2255 if (available < vd->vdev_stat.vs_alloc)
2256 return (SET_ERROR(ENOSPC));
2257 } else if (!vd->vdev_noalloc) {
2258 /* available space in the pool's normal class */
2259 uint64_t available = dsl_dir_space_available(
2260 spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
2261 if (available < vd->vdev_stat.vs_dspace)
2262 return (SET_ERROR(ENOSPC));
2263 }
2264
2265 /*
2266 * There can not be a removal in progress.
2267 */
2268 if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
2269 return (SET_ERROR(EBUSY));
2270
2271 /*
2272 * The device must have all its data.
2273 */
2274 if (!vdev_dtl_empty(vd, DTL_MISSING) ||
2275 !vdev_dtl_empty(vd, DTL_OUTAGE))
2276 return (SET_ERROR(EBUSY));
2277
2278 /*
2279 * The device must be healthy.
2280 */
2281 if (!vdev_readable(vd))
2282 return (SET_ERROR(EIO));
2283
2284 /*
2285 * All vdevs in normal class must have the same ashift.
2286 */
2287 if (spa->spa_max_ashift != spa->spa_min_ashift) {
2288 return (SET_ERROR(EINVAL));
2289 }
2290
2291 /*
2292 * A removed special/dedup vdev must have same ashift as normal class.
2293 */
2294 ASSERT(!vd->vdev_islog);
2295 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2296 vd->vdev_ashift != spa->spa_max_ashift) {
2297 return (SET_ERROR(EINVAL));
2298 }
2299
2300 /*
2301 * All vdevs in normal class must have the same ashift
2302 * and not be raidz or draid.
2303 */
2304 vdev_t *rvd = spa->spa_root_vdev;
2305 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
2306 vdev_t *cvd = rvd->vdev_child[id];
2307
2308 /*
2309 * A removed special/dedup vdev must have the same ashift
2310 * across all vdevs in its class.
2311 */
2312 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2313 cvd->vdev_alloc_bias == vd->vdev_alloc_bias &&
2314 cvd->vdev_ashift != vd->vdev_ashift) {
2315 return (SET_ERROR(EINVAL));
2316 }
2317 if (cvd->vdev_ashift != 0 &&
2318 cvd->vdev_alloc_bias == VDEV_BIAS_NONE)
2319 ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
2320 if (!vdev_is_concrete(cvd))
2321 continue;
2322 if (vdev_get_nparity(cvd) != 0)
2323 return (SET_ERROR(EINVAL));
2324 /*
2325 * Need the mirror to be mirror of leaf vdevs only
2326 */
2327 if (cvd->vdev_ops == &vdev_mirror_ops) {
2328 for (uint64_t cid = 0;
2329 cid < cvd->vdev_children; cid++) {
2330 if (!cvd->vdev_child[cid]->vdev_ops->
2331 vdev_op_leaf)
2332 return (SET_ERROR(EINVAL));
2333 }
2334 }
2335 }
2336
2337 return (0);
2338 }
2339
2340 /*
2341 * Initiate removal of a top-level vdev, reducing the total space in the pool.
2342 * The config lock is held for the specified TXG. Once initiated,
2343 * evacuation of all allocated space (copying it to other vdevs) happens
2344 * in the background (see spa_vdev_remove_thread()), and can be canceled
2345 * (see spa_vdev_remove_cancel()). If successful, the vdev will
2346 * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
2347 */
2348 static int
spa_vdev_remove_top(vdev_t * vd,uint64_t * txg)2349 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
2350 {
2351 spa_t *spa = vd->vdev_spa;
2352 boolean_t set_noalloc = B_FALSE;
2353 int error;
2354
2355 /*
2356 * Check for errors up-front, so that we don't waste time
2357 * passivating the metaslab group and clearing the ZIL if there
2358 * are errors.
2359 */
2360 error = spa_vdev_remove_top_check(vd);
2361
2362 /*
2363 * Stop allocating from this vdev. Note that we must check
2364 * that this is not the only device in the pool before
2365 * passivating, otherwise we will not be able to make
2366 * progress because we can't allocate from any vdevs.
2367 * The above check for sufficient free space serves this
2368 * purpose.
2369 */
2370 if (error == 0 && !vd->vdev_noalloc) {
2371 set_noalloc = B_TRUE;
2372 error = vdev_passivate(vd, txg);
2373 }
2374
2375 if (error != 0)
2376 return (error);
2377
2378 /*
2379 * We stop any initializing and TRIM that is currently in progress
2380 * but leave the state as "active". This will allow the process to
2381 * resume if the removal is canceled sometime later.
2382 */
2383
2384 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
2385
2386 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
2387 vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE);
2388 vdev_autotrim_stop_wait(vd);
2389
2390 *txg = spa_vdev_config_enter(spa);
2391
2392 /*
2393 * Things might have changed while the config lock was dropped
2394 * (e.g. space usage). Check for errors again.
2395 */
2396 error = spa_vdev_remove_top_check(vd);
2397
2398 if (error != 0) {
2399 if (set_noalloc)
2400 vdev_activate(vd);
2401 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2402 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
2403 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
2404 return (error);
2405 }
2406
2407 vd->vdev_removing = B_TRUE;
2408
2409 vdev_dirty_leaves(vd, VDD_DTL, *txg);
2410 vdev_config_dirty(vd);
2411 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2412 dsl_sync_task_nowait(spa->spa_dsl_pool,
2413 vdev_remove_initiate_sync, (void *)(uintptr_t)vd->vdev_id, tx);
2414 dmu_tx_commit(tx);
2415
2416 return (0);
2417 }
2418
2419 /*
2420 * Remove a device from the pool.
2421 *
2422 * Removing a device from the vdev namespace requires several steps
2423 * and can take a significant amount of time. As a result we use
2424 * the spa_vdev_config_[enter/exit] functions which allow us to
2425 * grab and release the spa_config_lock while still holding the namespace
2426 * lock. During each step the configuration is synced out.
2427 */
2428 int
spa_vdev_remove(spa_t * spa,uint64_t guid,boolean_t unspare)2429 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2430 {
2431 vdev_t *vd;
2432 nvlist_t **spares, **l2cache, *nv;
2433 uint64_t txg = 0;
2434 uint_t nspares, nl2cache;
2435 int error = 0, error_log;
2436 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2437 sysevent_t *ev = NULL;
2438 const char *vd_type = NULL;
2439 char *vd_path = NULL;
2440
2441 ASSERT(spa_writeable(spa));
2442
2443 if (!locked)
2444 txg = spa_vdev_enter(spa);
2445
2446 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2447 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2448 error = (spa_has_checkpoint(spa)) ?
2449 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2450
2451 if (!locked)
2452 return (spa_vdev_exit(spa, NULL, txg, error));
2453
2454 return (error);
2455 }
2456
2457 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2458
2459 if (spa->spa_spares.sav_vdevs != NULL &&
2460 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2461 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2462 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2463 /*
2464 * Only remove the hot spare if it's not currently in use
2465 * in this pool.
2466 */
2467 if (vd == NULL || unspare) {
2468 const char *type;
2469 boolean_t draid_spare = B_FALSE;
2470
2471 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type)
2472 == 0 && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0)
2473 draid_spare = B_TRUE;
2474
2475 if (vd == NULL && draid_spare) {
2476 error = SET_ERROR(ENOTSUP);
2477 } else {
2478 if (vd == NULL)
2479 vd = spa_lookup_by_guid(spa,
2480 guid, B_TRUE);
2481 ev = spa_event_create(spa, vd, NULL,
2482 ESC_ZFS_VDEV_REMOVE_AUX);
2483
2484 vd_type = VDEV_TYPE_SPARE;
2485 vd_path = spa_strdup(fnvlist_lookup_string(
2486 nv, ZPOOL_CONFIG_PATH));
2487 spa_vdev_remove_aux(spa->spa_spares.sav_config,
2488 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2489 spa_load_spares(spa);
2490 spa->spa_spares.sav_sync = B_TRUE;
2491 }
2492 } else {
2493 error = SET_ERROR(EBUSY);
2494 }
2495 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
2496 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2497 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2498 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2499 vd_type = VDEV_TYPE_L2CACHE;
2500 vd_path = spa_strdup(fnvlist_lookup_string(
2501 nv, ZPOOL_CONFIG_PATH));
2502 /*
2503 * Cache devices can always be removed.
2504 */
2505 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2506
2507 /*
2508 * Stop trimming the cache device. We need to release the
2509 * config lock to allow the syncing of TRIM transactions
2510 * without releasing the spa_namespace_lock. The same
2511 * strategy is employed in spa_vdev_remove_top().
2512 */
2513 spa_vdev_config_exit(spa, NULL,
2514 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2515 mutex_enter(&vd->vdev_trim_lock);
2516 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
2517 mutex_exit(&vd->vdev_trim_lock);
2518 txg = spa_vdev_config_enter(spa);
2519
2520 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2521 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2522 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2523 spa_load_l2cache(spa);
2524 spa->spa_l2cache.sav_sync = B_TRUE;
2525 } else if (vd != NULL && vd->vdev_islog) {
2526 ASSERT(!locked);
2527 vd_type = VDEV_TYPE_LOG;
2528 vd_path = spa_strdup((vd->vdev_path != NULL) ?
2529 vd->vdev_path : "-");
2530 error = spa_vdev_remove_log(vd, &txg);
2531 } else if (vd != NULL) {
2532 ASSERT(!locked);
2533 error = spa_vdev_remove_top(vd, &txg);
2534 } else {
2535 /*
2536 * There is no vdev of any kind with the specified guid.
2537 */
2538 error = SET_ERROR(ENOENT);
2539 }
2540
2541 error_log = error;
2542
2543 if (!locked)
2544 error = spa_vdev_exit(spa, NULL, txg, error);
2545
2546 /*
2547 * Logging must be done outside the spa config lock. Otherwise,
2548 * this code path could end up holding the spa config lock while
2549 * waiting for a txg_sync so it can write to the internal log.
2550 * Doing that would prevent the txg sync from actually happening,
2551 * causing a deadlock.
2552 */
2553 if (error_log == 0 && vd_type != NULL && vd_path != NULL) {
2554 spa_history_log_internal(spa, "vdev remove", NULL,
2555 "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path);
2556 }
2557 if (vd_path != NULL)
2558 spa_strfree(vd_path);
2559
2560 if (ev != NULL)
2561 spa_event_post(ev);
2562
2563 return (error);
2564 }
2565
2566 int
spa_removal_get_stats(spa_t * spa,pool_removal_stat_t * prs)2567 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2568 {
2569 prs->prs_state = spa->spa_removing_phys.sr_state;
2570
2571 if (prs->prs_state == DSS_NONE)
2572 return (SET_ERROR(ENOENT));
2573
2574 prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2575 prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2576 prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2577 prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2578 prs->prs_copied = spa->spa_removing_phys.sr_copied;
2579
2580 prs->prs_mapping_memory = 0;
2581 uint64_t indirect_vdev_id =
2582 spa->spa_removing_phys.sr_prev_indirect_vdev;
2583 while (indirect_vdev_id != -1) {
2584 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2585 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2586 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2587
2588 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2589 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2590 indirect_vdev_id = vic->vic_prev_indirect_vdev;
2591 }
2592
2593 return (0);
2594 }
2595
2596 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_ignore_errors, INT, ZMOD_RW,
2597 "Ignore hard IO errors when removing device");
2598
2599 ZFS_MODULE_PARAM(zfs_vdev, zfs_, remove_max_segment, UINT, ZMOD_RW,
2600 "Largest contiguous segment to allocate when removing device");
2601
2602 ZFS_MODULE_PARAM(zfs_vdev, vdev_, removal_max_span, UINT, ZMOD_RW,
2603 "Largest span of free chunks a remap segment can span");
2604
2605 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_suspend_progress, UINT, ZMOD_RW,
2606 "Pause device removal after this many bytes are copied "
2607 "(debug use only - causes removal to hang)");
2608
2609 EXPORT_SYMBOL(free_from_removing_vdev);
2610 EXPORT_SYMBOL(spa_removal_get_stats);
2611 EXPORT_SYMBOL(spa_remove_init);
2612 EXPORT_SYMBOL(spa_restart_removal);
2613 EXPORT_SYMBOL(spa_vdev_removal_destroy);
2614 EXPORT_SYMBOL(spa_vdev_remove);
2615 EXPORT_SYMBOL(spa_vdev_remove_cancel);
2616 EXPORT_SYMBOL(spa_vdev_remove_suspend);
2617 EXPORT_SYMBOL(svr_sync);
2618