1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
26 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2014 Integros [integros.com]
30 * Copyright 2016 Toomas Soome <tsoome@me.com>
31 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
32 * Copyright 2018 Joyent, Inc.
33 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
34 * Copyright 2017 Joyent, Inc.
35 * Copyright (c) 2017, Intel Corporation.
36 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
37 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
38 * Copyright (c) 2023, 2024, Klara Inc.
39 */
40
41 /*
42 * SPA: Storage Pool Allocator
43 *
44 * This file contains all the routines used when modifying on-disk SPA state.
45 * This includes opening, importing, destroying, exporting a pool, and syncing a
46 * pool.
47 */
48
49 #include <sys/zfs_context.h>
50 #include <sys/fm/fs/zfs.h>
51 #include <sys/spa_impl.h>
52 #include <sys/zio.h>
53 #include <sys/zio_checksum.h>
54 #include <sys/dmu.h>
55 #include <sys/dmu_tx.h>
56 #include <sys/zap.h>
57 #include <sys/zil.h>
58 #include <sys/brt.h>
59 #include <sys/ddt.h>
60 #include <sys/vdev_impl.h>
61 #include <sys/vdev_removal.h>
62 #include <sys/vdev_indirect_mapping.h>
63 #include <sys/vdev_indirect_births.h>
64 #include <sys/vdev_initialize.h>
65 #include <sys/vdev_rebuild.h>
66 #include <sys/vdev_trim.h>
67 #include <sys/vdev_disk.h>
68 #include <sys/vdev_raidz.h>
69 #include <sys/vdev_draid.h>
70 #include <sys/metaslab.h>
71 #include <sys/metaslab_impl.h>
72 #include <sys/mmp.h>
73 #include <sys/uberblock_impl.h>
74 #include <sys/txg.h>
75 #include <sys/avl.h>
76 #include <sys/bpobj.h>
77 #include <sys/dmu_traverse.h>
78 #include <sys/dmu_objset.h>
79 #include <sys/unique.h>
80 #include <sys/dsl_pool.h>
81 #include <sys/dsl_dataset.h>
82 #include <sys/dsl_dir.h>
83 #include <sys/dsl_prop.h>
84 #include <sys/dsl_synctask.h>
85 #include <sys/fs/zfs.h>
86 #include <sys/arc.h>
87 #include <sys/callb.h>
88 #include <sys/systeminfo.h>
89 #include <sys/zfs_ioctl.h>
90 #include <sys/dsl_scan.h>
91 #include <sys/zfeature.h>
92 #include <sys/dsl_destroy.h>
93 #include <sys/zvol.h>
94
95 #ifdef _KERNEL
96 #include <sys/fm/protocol.h>
97 #include <sys/fm/util.h>
98 #include <sys/callb.h>
99 #include <sys/zone.h>
100 #include <sys/vmsystm.h>
101 #endif /* _KERNEL */
102
103 #include "zfs_crrd.h"
104 #include "zfs_prop.h"
105 #include "zfs_comutil.h"
106 #include <cityhash.h>
107
108 /*
109 * spa_thread() existed on Illumos as a parent thread for the various worker
110 * threads that actually run the pool, as a way to both reference the entire
111 * pool work as a single object, and to share properties like scheduling
112 * options. It has not yet been adapted to Linux or FreeBSD. This define is
113 * used to mark related parts of the code to make things easier for the reader,
114 * and to compile this code out. It can be removed when someone implements it,
115 * moves it to some Illumos-specific place, or removes it entirely.
116 */
117 #undef HAVE_SPA_THREAD
118
119 /*
120 * The "System Duty Cycle" scheduling class is an Illumos feature to help
121 * prevent CPU-intensive kernel threads from affecting latency on interactive
122 * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is
123 * gated behind a define. On Illumos SDC depends on spa_thread(), but
124 * spa_thread() also has other uses, so this is a separate define.
125 */
126 #undef HAVE_SYSDC
127
128 /*
129 * The interval, in seconds, at which failed configuration cache file writes
130 * should be retried.
131 */
132 int zfs_ccw_retry_interval = 300;
133
134 typedef enum zti_modes {
135 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
136 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */
137 ZTI_MODE_SYNC, /* sync thread assigned */
138 ZTI_MODE_NULL, /* don't create a taskq */
139 ZTI_NMODES
140 } zti_modes_t;
141
142 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
143 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
144 #define ZTI_SCALE(min) { ZTI_MODE_SCALE, (min), 1 }
145 #define ZTI_SYNC { ZTI_MODE_SYNC, 0, 1 }
146 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
147
148 #define ZTI_N(n) ZTI_P(n, 1)
149 #define ZTI_ONE ZTI_N(1)
150
151 typedef struct zio_taskq_info {
152 zti_modes_t zti_mode;
153 uint_t zti_value;
154 uint_t zti_count;
155 } zio_taskq_info_t;
156
157 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
158 "iss", "iss_h", "int", "int_h"
159 };
160
161 /*
162 * This table defines the taskq settings for each ZFS I/O type. When
163 * initializing a pool, we use this table to create an appropriately sized
164 * taskq. Some operations are low volume and therefore have a small, static
165 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
166 * macros. Other operations process a large amount of data; the ZTI_SCALE
167 * macro causes us to create a taskq oriented for throughput. Some operations
168 * are so high frequency and short-lived that the taskq itself can become a
169 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
170 * additional degree of parallelism specified by the number of threads per-
171 * taskq and the number of taskqs; when dispatching an event in this case, the
172 * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs
173 * that scales with the number of CPUs.
174 *
175 * The different taskq priorities are to handle the different contexts (issue
176 * and interrupt) and then to reserve threads for high priority I/Os that
177 * need to be handled with minimum delay. Illumos taskq has unfair TQ_FRONT
178 * implementation, so separate high priority threads are used there.
179 */
180 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
181 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
182 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
183 { ZTI_N(8), ZTI_NULL, ZTI_SCALE(0), ZTI_NULL }, /* READ */
184 #ifdef illumos
185 { ZTI_SYNC, ZTI_N(5), ZTI_SCALE(0), ZTI_N(5) }, /* WRITE */
186 #else
187 { ZTI_SYNC, ZTI_NULL, ZTI_SCALE(0), ZTI_NULL }, /* WRITE */
188 #endif
189 { ZTI_SCALE(32), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
190 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
191 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FLUSH */
192 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
193 };
194
195 static void spa_sync_version(void *arg, dmu_tx_t *tx);
196 static void spa_sync_props(void *arg, dmu_tx_t *tx);
197 static boolean_t spa_has_active_shared_spare(spa_t *spa);
198 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
199 const char **ereport);
200 static void spa_vdev_resilver_done(spa_t *spa);
201
202 /*
203 * Percentage of all CPUs that can be used by the metaslab preload taskq.
204 */
205 static uint_t metaslab_preload_pct = 50;
206
207 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */
208 static uint_t zio_taskq_batch_tpq; /* threads per taskq */
209
210 #ifdef HAVE_SYSDC
211 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
212 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */
213 #endif
214
215 #ifdef HAVE_SPA_THREAD
216 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
217 #endif
218
219 static uint_t zio_taskq_write_tpq = 16;
220
221 /*
222 * Report any spa_load_verify errors found, but do not fail spa_load.
223 * This is used by zdb to analyze non-idle pools.
224 */
225 boolean_t spa_load_verify_dryrun = B_FALSE;
226
227 /*
228 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
229 * This is used by zdb for spacemaps verification.
230 */
231 boolean_t spa_mode_readable_spacemaps = B_FALSE;
232
233 /*
234 * This (illegal) pool name is used when temporarily importing a spa_t in order
235 * to get the vdev stats associated with the imported devices.
236 */
237 #define TRYIMPORT_NAME "$import"
238
239 /*
240 * For debugging purposes: print out vdev tree during pool import.
241 */
242 static int spa_load_print_vdev_tree = B_FALSE;
243
244 /*
245 * A non-zero value for zfs_max_missing_tvds means that we allow importing
246 * pools with missing top-level vdevs. This is strictly intended for advanced
247 * pool recovery cases since missing data is almost inevitable. Pools with
248 * missing devices can only be imported read-only for safety reasons, and their
249 * fail-mode will be automatically set to "continue".
250 *
251 * With 1 missing vdev we should be able to import the pool and mount all
252 * datasets. User data that was not modified after the missing device has been
253 * added should be recoverable. This means that snapshots created prior to the
254 * addition of that device should be completely intact.
255 *
256 * With 2 missing vdevs, some datasets may fail to mount since there are
257 * dataset statistics that are stored as regular metadata. Some data might be
258 * recoverable if those vdevs were added recently.
259 *
260 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
261 * may be missing entirely. Chances of data recovery are very low. Note that
262 * there are also risks of performing an inadvertent rewind as we might be
263 * missing all the vdevs with the latest uberblocks.
264 */
265 uint64_t zfs_max_missing_tvds = 0;
266
267 /*
268 * The parameters below are similar to zfs_max_missing_tvds but are only
269 * intended for a preliminary open of the pool with an untrusted config which
270 * might be incomplete or out-dated.
271 *
272 * We are more tolerant for pools opened from a cachefile since we could have
273 * an out-dated cachefile where a device removal was not registered.
274 * We could have set the limit arbitrarily high but in the case where devices
275 * are really missing we would want to return the proper error codes; we chose
276 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
277 * and we get a chance to retrieve the trusted config.
278 */
279 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
280
281 /*
282 * In the case where config was assembled by scanning device paths (/dev/dsks
283 * by default) we are less tolerant since all the existing devices should have
284 * been detected and we want spa_load to return the right error codes.
285 */
286 uint64_t zfs_max_missing_tvds_scan = 0;
287
288 /*
289 * Debugging aid that pauses spa_sync() towards the end.
290 */
291 static const boolean_t zfs_pause_spa_sync = B_FALSE;
292
293 /*
294 * Variables to indicate the livelist condense zthr func should wait at certain
295 * points for the livelist to be removed - used to test condense/destroy races
296 */
297 static int zfs_livelist_condense_zthr_pause = 0;
298 static int zfs_livelist_condense_sync_pause = 0;
299
300 /*
301 * Variables to track whether or not condense cancellation has been
302 * triggered in testing.
303 */
304 static int zfs_livelist_condense_sync_cancel = 0;
305 static int zfs_livelist_condense_zthr_cancel = 0;
306
307 /*
308 * Variable to track whether or not extra ALLOC blkptrs were added to a
309 * livelist entry while it was being condensed (caused by the way we track
310 * remapped blkptrs in dbuf_remap_impl)
311 */
312 static int zfs_livelist_condense_new_alloc = 0;
313
314 /*
315 * Time variable to decide how often the txg should be added into the
316 * database (in seconds).
317 * The smallest available resolution is in minutes, which means an update occurs
318 * each time we reach `spa_note_txg_time` and the txg has changed. We provide
319 * a 256-slot ring buffer for minute-level resolution. The number is limited by
320 * the size of the structure we use and the maximum amount of bytes we can write
321 * into ZAP. Setting `spa_note_txg_time` to 10 minutes results in approximately
322 * 144 records per day. Given the 256 slots, this provides roughly 1.5 days of
323 * high-resolution data.
324 *
325 * The user can decrease `spa_note_txg_time` to increase resolution within
326 * a day, at the cost of retaining fewer days of data. Alternatively, increasing
327 * the interval allows storing data over a longer period, but with lower
328 * frequency.
329 *
330 * This parameter does not affect the daily or monthly databases, as those only
331 * store one record per day and per month, respectively.
332 */
333 static uint_t spa_note_txg_time = 10 * 60;
334
335 /*
336 * How often flush txg database to a disk (in seconds).
337 * We flush data every time we write to it, making it the most reliable option.
338 * Since this happens every 10 minutes, it shouldn't introduce any noticeable
339 * overhead for the system. In case of failure, we will always have an
340 * up-to-date version of the database.
341 *
342 * The user can adjust the flush interval to a lower value, but it probably
343 * doesn't make sense to flush more often than the database is updated.
344 * The user can also increase the interval if they're concerned about the
345 * performance of writing the entire database to disk.
346 */
347 static uint_t spa_flush_txg_time = 10 * 60;
348
349 /*
350 * ==========================================================================
351 * SPA properties routines
352 * ==========================================================================
353 */
354
355 /*
356 * Add a (source=src, propname=propval) list to an nvlist.
357 */
358 static void
spa_prop_add_list(nvlist_t * nvl,zpool_prop_t prop,const char * strval,uint64_t intval,zprop_source_t src)359 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
360 uint64_t intval, zprop_source_t src)
361 {
362 const char *propname = zpool_prop_to_name(prop);
363 nvlist_t *propval;
364
365 propval = fnvlist_alloc();
366 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
367
368 if (strval != NULL)
369 fnvlist_add_string(propval, ZPROP_VALUE, strval);
370 else
371 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
372
373 fnvlist_add_nvlist(nvl, propname, propval);
374 nvlist_free(propval);
375 }
376
377 static int
spa_prop_add(spa_t * spa,const char * propname,nvlist_t * outnvl)378 spa_prop_add(spa_t *spa, const char *propname, nvlist_t *outnvl)
379 {
380 zpool_prop_t prop = zpool_name_to_prop(propname);
381 zprop_source_t src = ZPROP_SRC_NONE;
382 uint64_t intval;
383 int err;
384
385 /*
386 * NB: Not all properties lookups via this API require
387 * the spa props lock, so they must explicitly grab it here.
388 */
389 switch (prop) {
390 case ZPOOL_PROP_DEDUPCACHED:
391 err = ddt_get_pool_dedup_cached(spa, &intval);
392 if (err != 0)
393 return (SET_ERROR(err));
394 break;
395 default:
396 return (SET_ERROR(EINVAL));
397 }
398
399 spa_prop_add_list(outnvl, prop, NULL, intval, src);
400
401 return (0);
402 }
403
404 int
spa_prop_get_nvlist(spa_t * spa,char ** props,unsigned int n_props,nvlist_t * outnvl)405 spa_prop_get_nvlist(spa_t *spa, char **props, unsigned int n_props,
406 nvlist_t *outnvl)
407 {
408 int err = 0;
409
410 if (props == NULL)
411 return (0);
412
413 for (unsigned int i = 0; i < n_props && err == 0; i++) {
414 err = spa_prop_add(spa, props[i], outnvl);
415 }
416
417 return (err);
418 }
419
420 /*
421 * Add a user property (source=src, propname=propval) to an nvlist.
422 */
423 static void
spa_prop_add_user(nvlist_t * nvl,const char * propname,char * strval,zprop_source_t src)424 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
425 zprop_source_t src)
426 {
427 nvlist_t *propval;
428
429 VERIFY0(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP));
430 VERIFY0(nvlist_add_uint64(propval, ZPROP_SOURCE, src));
431 VERIFY0(nvlist_add_string(propval, ZPROP_VALUE, strval));
432 VERIFY0(nvlist_add_nvlist(nvl, propname, propval));
433 nvlist_free(propval);
434 }
435
436 /*
437 * Get property values from the spa configuration.
438 */
439 static void
spa_prop_get_config(spa_t * spa,nvlist_t * nv)440 spa_prop_get_config(spa_t *spa, nvlist_t *nv)
441 {
442 vdev_t *rvd = spa->spa_root_vdev;
443 dsl_pool_t *pool = spa->spa_dsl_pool;
444 uint64_t size, alloc, cap, version;
445 const zprop_source_t src = ZPROP_SRC_NONE;
446 spa_config_dirent_t *dp;
447 metaslab_class_t *mc = spa_normal_class(spa);
448
449 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
450
451 if (rvd != NULL) {
452 alloc = metaslab_class_get_alloc(mc);
453 alloc += metaslab_class_get_alloc(spa_special_class(spa));
454 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
455 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
456 alloc += metaslab_class_get_alloc(
457 spa_special_embedded_log_class(spa));
458
459 size = metaslab_class_get_space(mc);
460 size += metaslab_class_get_space(spa_special_class(spa));
461 size += metaslab_class_get_space(spa_dedup_class(spa));
462 size += metaslab_class_get_space(spa_embedded_log_class(spa));
463 size += metaslab_class_get_space(
464 spa_special_embedded_log_class(spa));
465
466 spa_prop_add_list(nv, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
467 spa_prop_add_list(nv, ZPOOL_PROP_SIZE, NULL, size, src);
468 spa_prop_add_list(nv, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
469 spa_prop_add_list(nv, ZPOOL_PROP_FREE, NULL,
470 size - alloc, src);
471 spa_prop_add_list(nv, ZPOOL_PROP_CHECKPOINT, NULL,
472 spa->spa_checkpoint_info.sci_dspace, src);
473
474 spa_prop_add_list(nv, ZPOOL_PROP_FRAGMENTATION, NULL,
475 metaslab_class_fragmentation(mc), src);
476 spa_prop_add_list(nv, ZPOOL_PROP_EXPANDSZ, NULL,
477 metaslab_class_expandable_space(mc), src);
478 spa_prop_add_list(nv, ZPOOL_PROP_READONLY, NULL,
479 (spa_mode(spa) == SPA_MODE_READ), src);
480
481 cap = (size == 0) ? 0 : (alloc * 100 / size);
482 spa_prop_add_list(nv, ZPOOL_PROP_CAPACITY, NULL, cap, src);
483
484 spa_prop_add_list(nv, ZPOOL_PROP_DEDUPRATIO, NULL,
485 ddt_get_pool_dedup_ratio(spa), src);
486 spa_prop_add_list(nv, ZPOOL_PROP_BCLONEUSED, NULL,
487 brt_get_used(spa), src);
488 spa_prop_add_list(nv, ZPOOL_PROP_BCLONESAVED, NULL,
489 brt_get_saved(spa), src);
490 spa_prop_add_list(nv, ZPOOL_PROP_BCLONERATIO, NULL,
491 brt_get_ratio(spa), src);
492
493 spa_prop_add_list(nv, ZPOOL_PROP_DEDUP_TABLE_SIZE, NULL,
494 ddt_get_ddt_dsize(spa), src);
495 spa_prop_add_list(nv, ZPOOL_PROP_HEALTH, NULL,
496 rvd->vdev_state, src);
497 spa_prop_add_list(nv, ZPOOL_PROP_LAST_SCRUBBED_TXG, NULL,
498 spa_get_last_scrubbed_txg(spa), src);
499
500 version = spa_version(spa);
501 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
502 spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
503 version, ZPROP_SRC_DEFAULT);
504 } else {
505 spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
506 version, ZPROP_SRC_LOCAL);
507 }
508 spa_prop_add_list(nv, ZPOOL_PROP_LOAD_GUID,
509 NULL, spa_load_guid(spa), src);
510 }
511
512 if (pool != NULL) {
513 /*
514 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
515 * when opening pools before this version freedir will be NULL.
516 */
517 if (pool->dp_free_dir != NULL) {
518 spa_prop_add_list(nv, ZPOOL_PROP_FREEING, NULL,
519 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
520 src);
521 } else {
522 spa_prop_add_list(nv, ZPOOL_PROP_FREEING,
523 NULL, 0, src);
524 }
525
526 if (pool->dp_leak_dir != NULL) {
527 spa_prop_add_list(nv, ZPOOL_PROP_LEAKED, NULL,
528 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
529 src);
530 } else {
531 spa_prop_add_list(nv, ZPOOL_PROP_LEAKED,
532 NULL, 0, src);
533 }
534 }
535
536 spa_prop_add_list(nv, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
537
538 if (spa->spa_comment != NULL) {
539 spa_prop_add_list(nv, ZPOOL_PROP_COMMENT, spa->spa_comment,
540 0, ZPROP_SRC_LOCAL);
541 }
542
543 if (spa->spa_compatibility != NULL) {
544 spa_prop_add_list(nv, ZPOOL_PROP_COMPATIBILITY,
545 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
546 }
547
548 if (spa->spa_root != NULL)
549 spa_prop_add_list(nv, ZPOOL_PROP_ALTROOT, spa->spa_root,
550 0, ZPROP_SRC_LOCAL);
551
552 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
553 spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
554 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
555 } else {
556 spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
557 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
558 }
559
560 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
561 spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
562 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
563 } else {
564 spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
565 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
566 }
567
568 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
569 if (dp->scd_path == NULL) {
570 spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
571 "none", 0, ZPROP_SRC_LOCAL);
572 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
573 spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
574 dp->scd_path, 0, ZPROP_SRC_LOCAL);
575 }
576 }
577 }
578
579 /*
580 * Get zpool property values.
581 */
582 int
spa_prop_get(spa_t * spa,nvlist_t * nv)583 spa_prop_get(spa_t *spa, nvlist_t *nv)
584 {
585 objset_t *mos = spa->spa_meta_objset;
586 zap_cursor_t zc;
587 zap_attribute_t *za;
588 dsl_pool_t *dp;
589 int err = 0;
590
591 dp = spa_get_dsl(spa);
592 dsl_pool_config_enter(dp, FTAG);
593 za = zap_attribute_alloc();
594 mutex_enter(&spa->spa_props_lock);
595
596 /*
597 * Get properties from the spa config.
598 */
599 spa_prop_get_config(spa, nv);
600
601 /* If no pool property object, no more prop to get. */
602 if (mos == NULL || spa->spa_pool_props_object == 0)
603 goto out;
604
605 /*
606 * Get properties from the MOS pool property object.
607 */
608 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
609 (err = zap_cursor_retrieve(&zc, za)) == 0;
610 zap_cursor_advance(&zc)) {
611 uint64_t intval = 0;
612 char *strval = NULL;
613 zprop_source_t src = ZPROP_SRC_DEFAULT;
614 zpool_prop_t prop;
615
616 if ((prop = zpool_name_to_prop(za->za_name)) ==
617 ZPOOL_PROP_INVAL && !zfs_prop_user(za->za_name))
618 continue;
619
620 switch (za->za_integer_length) {
621 case 8:
622 /* integer property */
623 if (za->za_first_integer !=
624 zpool_prop_default_numeric(prop))
625 src = ZPROP_SRC_LOCAL;
626
627 if (prop == ZPOOL_PROP_BOOTFS) {
628 dsl_dataset_t *ds = NULL;
629
630 err = dsl_dataset_hold_obj(dp,
631 za->za_first_integer, FTAG, &ds);
632 if (err != 0)
633 break;
634
635 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
636 KM_SLEEP);
637 dsl_dataset_name(ds, strval);
638 dsl_dataset_rele(ds, FTAG);
639 } else {
640 strval = NULL;
641 intval = za->za_first_integer;
642 }
643
644 spa_prop_add_list(nv, prop, strval, intval, src);
645
646 if (strval != NULL)
647 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
648
649 break;
650
651 case 1:
652 /* string property */
653 strval = kmem_alloc(za->za_num_integers, KM_SLEEP);
654 err = zap_lookup(mos, spa->spa_pool_props_object,
655 za->za_name, 1, za->za_num_integers, strval);
656 if (err) {
657 kmem_free(strval, za->za_num_integers);
658 break;
659 }
660 if (prop != ZPOOL_PROP_INVAL) {
661 spa_prop_add_list(nv, prop, strval, 0, src);
662 } else {
663 src = ZPROP_SRC_LOCAL;
664 spa_prop_add_user(nv, za->za_name, strval,
665 src);
666 }
667 kmem_free(strval, za->za_num_integers);
668 break;
669
670 default:
671 break;
672 }
673 }
674 zap_cursor_fini(&zc);
675 out:
676 mutex_exit(&spa->spa_props_lock);
677 dsl_pool_config_exit(dp, FTAG);
678 zap_attribute_free(za);
679
680 if (err && err != ENOENT)
681 return (err);
682
683 return (0);
684 }
685
686 /*
687 * Validate the given pool properties nvlist and modify the list
688 * for the property values to be set.
689 */
690 static int
spa_prop_validate(spa_t * spa,nvlist_t * props)691 spa_prop_validate(spa_t *spa, nvlist_t *props)
692 {
693 nvpair_t *elem;
694 int error = 0, reset_bootfs = 0;
695 uint64_t objnum = 0;
696 boolean_t has_feature = B_FALSE;
697
698 elem = NULL;
699 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
700 uint64_t intval;
701 const char *strval, *slash, *check, *fname;
702 const char *propname = nvpair_name(elem);
703 zpool_prop_t prop = zpool_name_to_prop(propname);
704
705 switch (prop) {
706 case ZPOOL_PROP_INVAL:
707 /*
708 * Sanitize the input.
709 */
710 if (zfs_prop_user(propname)) {
711 if (strlen(propname) >= ZAP_MAXNAMELEN) {
712 error = SET_ERROR(ENAMETOOLONG);
713 break;
714 }
715
716 if (strlen(fnvpair_value_string(elem)) >=
717 ZAP_MAXVALUELEN) {
718 error = SET_ERROR(E2BIG);
719 break;
720 }
721 } else if (zpool_prop_feature(propname)) {
722 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
723 error = SET_ERROR(EINVAL);
724 break;
725 }
726
727 if (nvpair_value_uint64(elem, &intval) != 0) {
728 error = SET_ERROR(EINVAL);
729 break;
730 }
731
732 if (intval != 0) {
733 error = SET_ERROR(EINVAL);
734 break;
735 }
736
737 fname = strchr(propname, '@') + 1;
738 if (zfeature_lookup_name(fname, NULL) != 0) {
739 error = SET_ERROR(EINVAL);
740 break;
741 }
742
743 has_feature = B_TRUE;
744 } else {
745 error = SET_ERROR(EINVAL);
746 break;
747 }
748 break;
749
750 case ZPOOL_PROP_VERSION:
751 error = nvpair_value_uint64(elem, &intval);
752 if (!error &&
753 (intval < spa_version(spa) ||
754 intval > SPA_VERSION_BEFORE_FEATURES ||
755 has_feature))
756 error = SET_ERROR(EINVAL);
757 break;
758
759 case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
760 error = nvpair_value_uint64(elem, &intval);
761 break;
762
763 case ZPOOL_PROP_DELEGATION:
764 case ZPOOL_PROP_AUTOREPLACE:
765 case ZPOOL_PROP_LISTSNAPS:
766 case ZPOOL_PROP_AUTOEXPAND:
767 case ZPOOL_PROP_AUTOTRIM:
768 error = nvpair_value_uint64(elem, &intval);
769 if (!error && intval > 1)
770 error = SET_ERROR(EINVAL);
771 break;
772
773 case ZPOOL_PROP_MULTIHOST:
774 error = nvpair_value_uint64(elem, &intval);
775 if (!error && intval > 1)
776 error = SET_ERROR(EINVAL);
777
778 if (!error) {
779 uint32_t hostid = zone_get_hostid(NULL);
780 if (hostid)
781 spa->spa_hostid = hostid;
782 else
783 error = SET_ERROR(ENOTSUP);
784 }
785
786 break;
787
788 case ZPOOL_PROP_BOOTFS:
789 /*
790 * If the pool version is less than SPA_VERSION_BOOTFS,
791 * or the pool is still being created (version == 0),
792 * the bootfs property cannot be set.
793 */
794 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
795 error = SET_ERROR(ENOTSUP);
796 break;
797 }
798
799 /*
800 * Make sure the vdev config is bootable
801 */
802 if (!vdev_is_bootable(spa->spa_root_vdev)) {
803 error = SET_ERROR(ENOTSUP);
804 break;
805 }
806
807 reset_bootfs = 1;
808
809 error = nvpair_value_string(elem, &strval);
810
811 if (!error) {
812 objset_t *os;
813
814 if (strval == NULL || strval[0] == '\0') {
815 objnum = zpool_prop_default_numeric(
816 ZPOOL_PROP_BOOTFS);
817 break;
818 }
819
820 error = dmu_objset_hold(strval, FTAG, &os);
821 if (error != 0)
822 break;
823
824 /* Must be ZPL. */
825 if (dmu_objset_type(os) != DMU_OST_ZFS) {
826 error = SET_ERROR(ENOTSUP);
827 } else {
828 objnum = dmu_objset_id(os);
829 }
830 dmu_objset_rele(os, FTAG);
831 }
832 break;
833
834 case ZPOOL_PROP_FAILUREMODE:
835 error = nvpair_value_uint64(elem, &intval);
836 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
837 error = SET_ERROR(EINVAL);
838
839 /*
840 * This is a special case which only occurs when
841 * the pool has completely failed. This allows
842 * the user to change the in-core failmode property
843 * without syncing it out to disk (I/Os might
844 * currently be blocked). We do this by returning
845 * EIO to the caller (spa_prop_set) to trick it
846 * into thinking we encountered a property validation
847 * error.
848 */
849 if (!error && spa_suspended(spa)) {
850 spa->spa_failmode = intval;
851 error = SET_ERROR(EIO);
852 }
853 break;
854
855 case ZPOOL_PROP_CACHEFILE:
856 if ((error = nvpair_value_string(elem, &strval)) != 0)
857 break;
858
859 if (strval[0] == '\0')
860 break;
861
862 if (strcmp(strval, "none") == 0)
863 break;
864
865 if (strval[0] != '/') {
866 error = SET_ERROR(EINVAL);
867 break;
868 }
869
870 slash = strrchr(strval, '/');
871 ASSERT(slash != NULL);
872
873 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
874 strcmp(slash, "/..") == 0)
875 error = SET_ERROR(EINVAL);
876 break;
877
878 case ZPOOL_PROP_COMMENT:
879 if ((error = nvpair_value_string(elem, &strval)) != 0)
880 break;
881 for (check = strval; *check != '\0'; check++) {
882 if (!isprint(*check)) {
883 error = SET_ERROR(EINVAL);
884 break;
885 }
886 }
887 if (strlen(strval) > ZPROP_MAX_COMMENT)
888 error = SET_ERROR(E2BIG);
889 break;
890
891 default:
892 break;
893 }
894
895 if (error)
896 break;
897 }
898
899 (void) nvlist_remove_all(props,
900 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
901
902 if (!error && reset_bootfs) {
903 error = nvlist_remove(props,
904 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
905
906 if (!error) {
907 error = nvlist_add_uint64(props,
908 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
909 }
910 }
911
912 return (error);
913 }
914
915 void
spa_configfile_set(spa_t * spa,nvlist_t * nvp,boolean_t need_sync)916 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
917 {
918 const char *cachefile;
919 spa_config_dirent_t *dp;
920
921 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
922 &cachefile) != 0)
923 return;
924
925 dp = kmem_alloc(sizeof (spa_config_dirent_t),
926 KM_SLEEP);
927
928 if (cachefile[0] == '\0')
929 dp->scd_path = spa_strdup(spa_config_path);
930 else if (strcmp(cachefile, "none") == 0)
931 dp->scd_path = NULL;
932 else
933 dp->scd_path = spa_strdup(cachefile);
934
935 list_insert_head(&spa->spa_config_list, dp);
936 if (need_sync)
937 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
938 }
939
940 int
spa_prop_set(spa_t * spa,nvlist_t * nvp)941 spa_prop_set(spa_t *spa, nvlist_t *nvp)
942 {
943 int error;
944 nvpair_t *elem = NULL;
945 boolean_t need_sync = B_FALSE;
946
947 if ((error = spa_prop_validate(spa, nvp)) != 0)
948 return (error);
949
950 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
951 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
952
953 if (prop == ZPOOL_PROP_CACHEFILE ||
954 prop == ZPOOL_PROP_ALTROOT ||
955 prop == ZPOOL_PROP_READONLY)
956 continue;
957
958 if (prop == ZPOOL_PROP_INVAL &&
959 zfs_prop_user(nvpair_name(elem))) {
960 need_sync = B_TRUE;
961 break;
962 }
963
964 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
965 uint64_t ver = 0;
966
967 if (prop == ZPOOL_PROP_VERSION) {
968 VERIFY0(nvpair_value_uint64(elem, &ver));
969 } else {
970 ASSERT(zpool_prop_feature(nvpair_name(elem)));
971 ver = SPA_VERSION_FEATURES;
972 need_sync = B_TRUE;
973 }
974
975 /* Save time if the version is already set. */
976 if (ver == spa_version(spa))
977 continue;
978
979 /*
980 * In addition to the pool directory object, we might
981 * create the pool properties object, the features for
982 * read object, the features for write object, or the
983 * feature descriptions object.
984 */
985 error = dsl_sync_task(spa->spa_name, NULL,
986 spa_sync_version, &ver,
987 6, ZFS_SPACE_CHECK_RESERVED);
988 if (error)
989 return (error);
990 continue;
991 }
992
993 need_sync = B_TRUE;
994 break;
995 }
996
997 if (need_sync) {
998 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
999 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
1000 }
1001
1002 return (0);
1003 }
1004
1005 /*
1006 * If the bootfs property value is dsobj, clear it.
1007 */
1008 void
spa_prop_clear_bootfs(spa_t * spa,uint64_t dsobj,dmu_tx_t * tx)1009 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
1010 {
1011 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
1012 VERIFY(zap_remove(spa->spa_meta_objset,
1013 spa->spa_pool_props_object,
1014 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
1015 spa->spa_bootfs = 0;
1016 }
1017 }
1018
1019 static int
spa_change_guid_check(void * arg,dmu_tx_t * tx)1020 spa_change_guid_check(void *arg, dmu_tx_t *tx)
1021 {
1022 uint64_t *newguid __maybe_unused = arg;
1023 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1024 vdev_t *rvd = spa->spa_root_vdev;
1025 uint64_t vdev_state;
1026
1027 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1028 int error = (spa_has_checkpoint(spa)) ?
1029 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
1030 return (SET_ERROR(error));
1031 }
1032
1033 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1034 vdev_state = rvd->vdev_state;
1035 spa_config_exit(spa, SCL_STATE, FTAG);
1036
1037 if (vdev_state != VDEV_STATE_HEALTHY)
1038 return (SET_ERROR(ENXIO));
1039
1040 ASSERT3U(spa_guid(spa), !=, *newguid);
1041
1042 return (0);
1043 }
1044
1045 static void
spa_change_guid_sync(void * arg,dmu_tx_t * tx)1046 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
1047 {
1048 uint64_t *newguid = arg;
1049 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1050 uint64_t oldguid;
1051 vdev_t *rvd = spa->spa_root_vdev;
1052
1053 oldguid = spa_guid(spa);
1054
1055 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1056 rvd->vdev_guid = *newguid;
1057 rvd->vdev_guid_sum += (*newguid - oldguid);
1058 vdev_config_dirty(rvd);
1059 spa_config_exit(spa, SCL_STATE, FTAG);
1060
1061 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
1062 (u_longlong_t)oldguid, (u_longlong_t)*newguid);
1063 }
1064
1065 /*
1066 * Change the GUID for the pool. This is done so that we can later
1067 * re-import a pool built from a clone of our own vdevs. We will modify
1068 * the root vdev's guid, our own pool guid, and then mark all of our
1069 * vdevs dirty. Note that we must make sure that all our vdevs are
1070 * online when we do this, or else any vdevs that weren't present
1071 * would be orphaned from our pool. We are also going to issue a
1072 * sysevent to update any watchers.
1073 *
1074 * The GUID of the pool will be changed to the value pointed to by guidp.
1075 * The GUID may not be set to the reserverd value of 0.
1076 * The new GUID will be generated if guidp is NULL.
1077 */
1078 int
spa_change_guid(spa_t * spa,const uint64_t * guidp)1079 spa_change_guid(spa_t *spa, const uint64_t *guidp)
1080 {
1081 uint64_t guid;
1082 int error;
1083
1084 mutex_enter(&spa->spa_vdev_top_lock);
1085 spa_namespace_enter(FTAG);
1086
1087 if (guidp != NULL) {
1088 guid = *guidp;
1089 if (guid == 0) {
1090 error = SET_ERROR(EINVAL);
1091 goto out;
1092 }
1093
1094 if (spa_guid_exists(guid, 0)) {
1095 error = SET_ERROR(EEXIST);
1096 goto out;
1097 }
1098 } else {
1099 guid = spa_generate_guid(NULL);
1100 }
1101
1102 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
1103 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
1104
1105 if (error == 0) {
1106 /*
1107 * Clear the kobj flag from all the vdevs to allow
1108 * vdev_cache_process_kobj_evt() to post events to all the
1109 * vdevs since GUID is updated.
1110 */
1111 vdev_clear_kobj_evt(spa->spa_root_vdev);
1112 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
1113 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
1114
1115 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1116 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
1117 }
1118
1119 out:
1120 spa_namespace_exit(FTAG);
1121 mutex_exit(&spa->spa_vdev_top_lock);
1122
1123 return (error);
1124 }
1125
1126 /*
1127 * ==========================================================================
1128 * SPA state manipulation (open/create/destroy/import/export)
1129 * ==========================================================================
1130 */
1131
1132 static int
spa_error_entry_compare(const void * a,const void * b)1133 spa_error_entry_compare(const void *a, const void *b)
1134 {
1135 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
1136 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
1137 int ret;
1138
1139 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
1140 sizeof (zbookmark_phys_t));
1141
1142 return (TREE_ISIGN(ret));
1143 }
1144
1145 /*
1146 * Utility function which retrieves copies of the current logs and
1147 * re-initializes them in the process.
1148 */
1149 void
spa_get_errlists(spa_t * spa,avl_tree_t * last,avl_tree_t * scrub)1150 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1151 {
1152 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1153
1154 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1155 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1156
1157 avl_create(&spa->spa_errlist_scrub,
1158 spa_error_entry_compare, sizeof (spa_error_entry_t),
1159 offsetof(spa_error_entry_t, se_avl));
1160 avl_create(&spa->spa_errlist_last,
1161 spa_error_entry_compare, sizeof (spa_error_entry_t),
1162 offsetof(spa_error_entry_t, se_avl));
1163 }
1164
1165 static void
spa_taskqs_init(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1166 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1167 {
1168 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1169 enum zti_modes mode = ztip->zti_mode;
1170 uint_t value = ztip->zti_value;
1171 uint_t count = ztip->zti_count;
1172 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1173 uint_t cpus, threads, flags = TASKQ_DYNAMIC;
1174
1175 switch (mode) {
1176 case ZTI_MODE_FIXED:
1177 ASSERT3U(value, >, 0);
1178 break;
1179
1180 case ZTI_MODE_SYNC:
1181
1182 /*
1183 * Create one wr_iss taskq for every 'zio_taskq_write_tpq' CPUs,
1184 * not to exceed the number of spa allocators, and align to it.
1185 */
1186 threads = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1187 count = MAX(1, threads / MAX(1, zio_taskq_write_tpq));
1188 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1189 count = MIN(count, spa->spa_alloc_count);
1190 while (spa->spa_alloc_count % count != 0 &&
1191 spa->spa_alloc_count < count * 2)
1192 count--;
1193
1194 /*
1195 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no
1196 * single taskq may have more threads than 100% of online cpus.
1197 */
1198 value = (zio_taskq_batch_pct + count / 2) / count;
1199 value = MIN(value, 100);
1200 flags |= TASKQ_THREADS_CPU_PCT;
1201 break;
1202
1203 case ZTI_MODE_SCALE:
1204 /*
1205 * We want more taskqs to reduce lock contention, but we want
1206 * less for better request ordering and CPU utilization.
1207 */
1208 threads = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1209 threads = MAX(threads, value);
1210 if (zio_taskq_batch_tpq > 0) {
1211 count = MAX(1, (threads + zio_taskq_batch_tpq / 2) /
1212 zio_taskq_batch_tpq);
1213 } else {
1214 /*
1215 * Prefer 6 threads per taskq, but no more taskqs
1216 * than threads in them on large systems. For 80%:
1217 *
1218 * taskq taskq total
1219 * cpus taskqs percent threads threads
1220 * ------- ------- ------- ------- -------
1221 * 1 1 80% 1 1
1222 * 2 1 80% 1 1
1223 * 4 1 80% 3 3
1224 * 8 2 40% 3 6
1225 * 16 3 27% 4 12
1226 * 32 5 16% 5 25
1227 * 64 7 11% 7 49
1228 * 128 10 8% 10 100
1229 * 256 14 6% 15 210
1230 */
1231 cpus = MIN(threads, boot_ncpus);
1232 count = 1 + threads / 6;
1233 while (count * count > cpus)
1234 count--;
1235 }
1236
1237 /*
1238 * Try to represent the number of threads per taskq as percent
1239 * of online CPUs to allow scaling with later online/offline.
1240 * Fall back to absolute numbers if can't.
1241 */
1242 value = (threads * 100 + boot_ncpus * count / 2) /
1243 (boot_ncpus * count);
1244 if (value < 5 || value > 100)
1245 value = MAX(1, (threads + count / 2) / count);
1246 else
1247 flags |= TASKQ_THREADS_CPU_PCT;
1248 break;
1249
1250 case ZTI_MODE_NULL:
1251 tqs->stqs_count = 0;
1252 tqs->stqs_taskq = NULL;
1253 return;
1254
1255 default:
1256 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1257 "spa_taskqs_init()",
1258 zio_type_name[t], zio_taskq_types[q], mode, value);
1259 break;
1260 }
1261
1262 ASSERT3U(count, >, 0);
1263 tqs->stqs_count = count;
1264 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1265
1266 for (uint_t i = 0; i < count; i++) {
1267 taskq_t *tq;
1268 char name[32];
1269
1270 if (count > 1)
1271 (void) snprintf(name, sizeof (name), "%s_%s_%u",
1272 zio_type_name[t], zio_taskq_types[q], i);
1273 else
1274 (void) snprintf(name, sizeof (name), "%s_%s",
1275 zio_type_name[t], zio_taskq_types[q]);
1276
1277 #ifdef HAVE_SYSDC
1278 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1279 (void) zio_taskq_basedc;
1280 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1281 spa->spa_proc, zio_taskq_basedc, flags);
1282 } else {
1283 #endif
1284 /*
1285 * The write issue taskq can be extremely CPU
1286 * intensive. Run it at slightly less important
1287 * priority than the other taskqs.
1288 */
1289 const pri_t pri = (t == ZIO_TYPE_WRITE &&
1290 q == ZIO_TASKQ_ISSUE) ?
1291 wtqclsyspri : maxclsyspri;
1292 tq = taskq_create_proc(name, value, pri, 50,
1293 INT_MAX, spa->spa_proc, flags);
1294 #ifdef HAVE_SYSDC
1295 }
1296 #endif
1297
1298 tqs->stqs_taskq[i] = tq;
1299 }
1300 }
1301
1302 static void
spa_taskqs_fini(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1303 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1304 {
1305 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1306
1307 if (tqs->stqs_taskq == NULL) {
1308 ASSERT0(tqs->stqs_count);
1309 return;
1310 }
1311
1312 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1313 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1314 taskq_destroy(tqs->stqs_taskq[i]);
1315 }
1316
1317 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1318 tqs->stqs_taskq = NULL;
1319 }
1320
1321 #ifdef _KERNEL
1322 /*
1323 * The READ and WRITE rows of zio_taskqs are configurable at module load time
1324 * by setting zio_taskq_read or zio_taskq_write.
1325 *
1326 * Example (the defaults for READ and WRITE)
1327 * zio_taskq_read='fixed,1,8 null scale null'
1328 * zio_taskq_write='sync null scale null'
1329 *
1330 * Each sets the entire row at a time.
1331 *
1332 * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number
1333 * of threads per taskq.
1334 *
1335 * 'null' can only be set on the high-priority queues (queue selection for
1336 * high-priority queues will fall back to the regular queue if the high-pri
1337 * is NULL.
1338 */
1339 static const char *const modes[ZTI_NMODES] = {
1340 "fixed", "scale", "sync", "null"
1341 };
1342
1343 /* Parse the incoming config string. Modifies cfg */
1344 static int
spa_taskq_param_set(zio_type_t t,char * cfg)1345 spa_taskq_param_set(zio_type_t t, char *cfg)
1346 {
1347 int err = 0;
1348
1349 zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}};
1350
1351 char *next = cfg, *tok, *c;
1352
1353 /*
1354 * Parse out each element from the string and fill `row`. The entire
1355 * row has to be set at once, so any errors are flagged by just
1356 * breaking out of this loop early.
1357 */
1358 uint_t q;
1359 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1360 /* `next` is the start of the config */
1361 if (next == NULL)
1362 break;
1363
1364 /* Eat up leading space */
1365 while (isspace(*next))
1366 next++;
1367 if (*next == '\0')
1368 break;
1369
1370 /* Mode ends at space or end of string */
1371 tok = next;
1372 next = strchr(tok, ' ');
1373 if (next != NULL) *next++ = '\0';
1374
1375 /* Parameters start after a comma */
1376 c = strchr(tok, ',');
1377 if (c != NULL) *c++ = '\0';
1378
1379 /* Match mode string */
1380 uint_t mode;
1381 for (mode = 0; mode < ZTI_NMODES; mode++)
1382 if (strcmp(tok, modes[mode]) == 0)
1383 break;
1384 if (mode == ZTI_NMODES)
1385 break;
1386
1387 /* Invalid canary */
1388 row[q].zti_mode = ZTI_NMODES;
1389
1390 /* Per-mode setup */
1391 switch (mode) {
1392
1393 /*
1394 * FIXED is parameterised: number of queues, and number of
1395 * threads per queue.
1396 */
1397 case ZTI_MODE_FIXED: {
1398 /* No parameters? */
1399 if (c == NULL || *c == '\0')
1400 break;
1401
1402 /* Find next parameter */
1403 tok = c;
1404 c = strchr(tok, ',');
1405 if (c == NULL)
1406 break;
1407
1408 /* Take digits and convert */
1409 unsigned long long nq;
1410 if (!(isdigit(*tok)))
1411 break;
1412 err = ddi_strtoull(tok, &tok, 10, &nq);
1413 /* Must succeed and also end at the next param sep */
1414 if (err != 0 || tok != c)
1415 break;
1416
1417 /* Move past the comma */
1418 tok++;
1419 /* Need another number */
1420 if (!(isdigit(*tok)))
1421 break;
1422 /* Remember start to make sure we moved */
1423 c = tok;
1424
1425 /* Take digits */
1426 unsigned long long ntpq;
1427 err = ddi_strtoull(tok, &tok, 10, &ntpq);
1428 /* Must succeed, and moved forward */
1429 if (err != 0 || tok == c || *tok != '\0')
1430 break;
1431
1432 /*
1433 * sanity; zero queues/threads make no sense, and
1434 * 16K is almost certainly more than anyone will ever
1435 * need and avoids silly numbers like UINT32_MAX
1436 */
1437 if (nq == 0 || nq >= 16384 ||
1438 ntpq == 0 || ntpq >= 16384)
1439 break;
1440
1441 const zio_taskq_info_t zti = ZTI_P(ntpq, nq);
1442 row[q] = zti;
1443 break;
1444 }
1445
1446 /*
1447 * SCALE is optionally parameterised by minimum number of
1448 * threads.
1449 */
1450 case ZTI_MODE_SCALE: {
1451 unsigned long long mint = 0;
1452 if (c != NULL && *c != '\0') {
1453 /* Need a number */
1454 if (!(isdigit(*c)))
1455 break;
1456 tok = c;
1457
1458 /* Take digits */
1459 err = ddi_strtoull(tok, &tok, 10, &mint);
1460 /* Must succeed, and moved forward */
1461 if (err != 0 || tok == c || *tok != '\0')
1462 break;
1463
1464 /* Sanity check */
1465 if (mint >= 16384)
1466 break;
1467 }
1468
1469 const zio_taskq_info_t zti = ZTI_SCALE(mint);
1470 row[q] = zti;
1471 break;
1472 }
1473
1474 case ZTI_MODE_SYNC: {
1475 const zio_taskq_info_t zti = ZTI_SYNC;
1476 row[q] = zti;
1477 break;
1478 }
1479
1480 case ZTI_MODE_NULL: {
1481 /*
1482 * Can only null the high-priority queues; the general-
1483 * purpose ones have to exist.
1484 */
1485 if (q != ZIO_TASKQ_ISSUE_HIGH &&
1486 q != ZIO_TASKQ_INTERRUPT_HIGH)
1487 break;
1488
1489 const zio_taskq_info_t zti = ZTI_NULL;
1490 row[q] = zti;
1491 break;
1492 }
1493
1494 default:
1495 break;
1496 }
1497
1498 /* Ensure we set a mode */
1499 if (row[q].zti_mode == ZTI_NMODES)
1500 break;
1501 }
1502
1503 /* Didn't get a full row, fail */
1504 if (q < ZIO_TASKQ_TYPES)
1505 return (SET_ERROR(EINVAL));
1506
1507 /* Eat trailing space */
1508 if (next != NULL)
1509 while (isspace(*next))
1510 next++;
1511
1512 /* If there's anything left over then fail */
1513 if (next != NULL && *next != '\0')
1514 return (SET_ERROR(EINVAL));
1515
1516 /* Success! Copy it into the real config */
1517 for (q = 0; q < ZIO_TASKQ_TYPES; q++)
1518 zio_taskqs[t][q] = row[q];
1519
1520 return (0);
1521 }
1522
1523 static int
spa_taskq_param_get(zio_type_t t,char * buf,boolean_t add_newline)1524 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline)
1525 {
1526 int pos = 0;
1527
1528 /* Build paramater string from live config */
1529 const char *sep = "";
1530 for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) {
1531 const zio_taskq_info_t *zti = &zio_taskqs[t][q];
1532 if (zti->zti_mode == ZTI_MODE_FIXED)
1533 pos += sprintf(&buf[pos], "%s%s,%u,%u", sep,
1534 modes[zti->zti_mode], zti->zti_count,
1535 zti->zti_value);
1536 else if (zti->zti_mode == ZTI_MODE_SCALE && zti->zti_value > 0)
1537 pos += sprintf(&buf[pos], "%s%s,%u", sep,
1538 modes[zti->zti_mode], zti->zti_value);
1539 else
1540 pos += sprintf(&buf[pos], "%s%s", sep,
1541 modes[zti->zti_mode]);
1542 sep = " ";
1543 }
1544
1545 if (add_newline)
1546 buf[pos++] = '\n';
1547 buf[pos] = '\0';
1548
1549 return (pos);
1550 }
1551
1552 #ifdef __linux__
1553 static int
spa_taskq_read_param_set(const char * val,zfs_kernel_param_t * kp)1554 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp)
1555 {
1556 char *cfg = kmem_strdup(val);
1557 int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg);
1558 kmem_strfree(cfg);
1559 return (-err);
1560 }
1561
1562 static int
spa_taskq_read_param_get(char * buf,zfs_kernel_param_t * kp)1563 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp)
1564 {
1565 return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE));
1566 }
1567
1568 static int
spa_taskq_write_param_set(const char * val,zfs_kernel_param_t * kp)1569 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp)
1570 {
1571 char *cfg = kmem_strdup(val);
1572 int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg);
1573 kmem_strfree(cfg);
1574 return (-err);
1575 }
1576
1577 static int
spa_taskq_write_param_get(char * buf,zfs_kernel_param_t * kp)1578 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp)
1579 {
1580 return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE));
1581 }
1582
1583 static int
spa_taskq_free_param_set(const char * val,zfs_kernel_param_t * kp)1584 spa_taskq_free_param_set(const char *val, zfs_kernel_param_t *kp)
1585 {
1586 char *cfg = kmem_strdup(val);
1587 int err = spa_taskq_param_set(ZIO_TYPE_FREE, cfg);
1588 kmem_strfree(cfg);
1589 return (-err);
1590 }
1591
1592 static int
spa_taskq_free_param_get(char * buf,zfs_kernel_param_t * kp)1593 spa_taskq_free_param_get(char *buf, zfs_kernel_param_t *kp)
1594 {
1595 return (spa_taskq_param_get(ZIO_TYPE_FREE, buf, TRUE));
1596 }
1597 #else
1598 /*
1599 * On FreeBSD load-time parameters can be set up before malloc() is available,
1600 * so we have to do all the parsing work on the stack.
1601 */
1602 #define SPA_TASKQ_PARAM_MAX (128)
1603
1604 static int
spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)1605 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)
1606 {
1607 char buf[SPA_TASKQ_PARAM_MAX];
1608 int err;
1609
1610 (void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE);
1611 err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1612 if (err || req->newptr == NULL)
1613 return (err);
1614 return (spa_taskq_param_set(ZIO_TYPE_READ, buf));
1615 }
1616
1617 static int
spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)1618 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)
1619 {
1620 char buf[SPA_TASKQ_PARAM_MAX];
1621 int err;
1622
1623 (void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE);
1624 err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1625 if (err || req->newptr == NULL)
1626 return (err);
1627 return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf));
1628 }
1629
1630 static int
spa_taskq_free_param(ZFS_MODULE_PARAM_ARGS)1631 spa_taskq_free_param(ZFS_MODULE_PARAM_ARGS)
1632 {
1633 char buf[SPA_TASKQ_PARAM_MAX];
1634 int err;
1635
1636 (void) spa_taskq_param_get(ZIO_TYPE_FREE, buf, FALSE);
1637 err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1638 if (err || req->newptr == NULL)
1639 return (err);
1640 return (spa_taskq_param_set(ZIO_TYPE_FREE, buf));
1641 }
1642 #endif
1643 #endif /* _KERNEL */
1644
1645 /*
1646 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1647 * Note that a type may have multiple discrete taskqs to avoid lock contention
1648 * on the taskq itself.
1649 */
1650 void
spa_taskq_dispatch(spa_t * spa,zio_type_t t,zio_taskq_type_t q,task_func_t * func,zio_t * zio,boolean_t cutinline)1651 spa_taskq_dispatch(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1652 task_func_t *func, zio_t *zio, boolean_t cutinline)
1653 {
1654 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1655 taskq_t *tq;
1656
1657 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1658 ASSERT3U(tqs->stqs_count, !=, 0);
1659
1660 /*
1661 * NB: We are assuming that the zio can only be dispatched
1662 * to a single taskq at a time. It would be a grievous error
1663 * to dispatch the zio to another taskq at the same time.
1664 */
1665 ASSERT(zio);
1666 ASSERT(taskq_empty_ent(&zio->io_tqent));
1667
1668 if (tqs->stqs_count == 1) {
1669 tq = tqs->stqs_taskq[0];
1670 } else if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) &&
1671 ZIO_HAS_ALLOCATOR(zio)) {
1672 tq = tqs->stqs_taskq[zio->io_allocator % tqs->stqs_count];
1673 } else {
1674 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1675 }
1676
1677 taskq_dispatch_ent(tq, func, zio, cutinline ? TQ_FRONT : 0,
1678 &zio->io_tqent);
1679 }
1680
1681 static void
spa_create_zio_taskqs(spa_t * spa)1682 spa_create_zio_taskqs(spa_t *spa)
1683 {
1684 for (int t = 0; t < ZIO_TYPES; t++) {
1685 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1686 spa_taskqs_init(spa, t, q);
1687 }
1688 }
1689 }
1690
1691 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1692 static void
spa_thread(void * arg)1693 spa_thread(void *arg)
1694 {
1695 psetid_t zio_taskq_psrset_bind = PS_NONE;
1696 callb_cpr_t cprinfo;
1697
1698 spa_t *spa = arg;
1699 user_t *pu = PTOU(curproc);
1700
1701 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1702 spa->spa_name);
1703
1704 ASSERT(curproc != &p0);
1705 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1706 "zpool-%s", spa->spa_name);
1707 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1708
1709 /* bind this thread to the requested psrset */
1710 if (zio_taskq_psrset_bind != PS_NONE) {
1711 pool_lock();
1712 mutex_enter(&cpu_lock);
1713 mutex_enter(&pidlock);
1714 mutex_enter(&curproc->p_lock);
1715
1716 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1717 0, NULL, NULL) == 0) {
1718 curthread->t_bind_pset = zio_taskq_psrset_bind;
1719 } else {
1720 cmn_err(CE_WARN,
1721 "Couldn't bind process for zfs pool \"%s\" to "
1722 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1723 }
1724
1725 mutex_exit(&curproc->p_lock);
1726 mutex_exit(&pidlock);
1727 mutex_exit(&cpu_lock);
1728 pool_unlock();
1729 }
1730
1731 #ifdef HAVE_SYSDC
1732 if (zio_taskq_sysdc) {
1733 sysdc_thread_enter(curthread, 100, 0);
1734 }
1735 #endif
1736
1737 spa->spa_proc = curproc;
1738 spa->spa_did = curthread->t_did;
1739
1740 spa_create_zio_taskqs(spa);
1741
1742 mutex_enter(&spa->spa_proc_lock);
1743 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1744
1745 spa->spa_proc_state = SPA_PROC_ACTIVE;
1746 cv_broadcast(&spa->spa_proc_cv);
1747
1748 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1749 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1750 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1751 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1752
1753 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1754 spa->spa_proc_state = SPA_PROC_GONE;
1755 spa->spa_proc = &p0;
1756 cv_broadcast(&spa->spa_proc_cv);
1757 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1758
1759 mutex_enter(&curproc->p_lock);
1760 lwp_exit();
1761 }
1762 #endif
1763
1764 extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1765
1766 /*
1767 * Activate an uninitialized pool.
1768 */
1769 static void
spa_activate(spa_t * spa,spa_mode_t mode)1770 spa_activate(spa_t *spa, spa_mode_t mode)
1771 {
1772 metaslab_ops_t *msp = metaslab_allocator(spa);
1773 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1774
1775 spa->spa_state = POOL_STATE_ACTIVE;
1776 spa->spa_final_txg = UINT64_MAX;
1777 spa->spa_mode = mode;
1778 spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1779
1780 spa->spa_normal_class = metaslab_class_create(spa, "normal",
1781 msp, B_FALSE);
1782 spa->spa_log_class = metaslab_class_create(spa, "log", msp, B_TRUE);
1783 spa->spa_embedded_log_class = metaslab_class_create(spa,
1784 "embedded_log", msp, B_TRUE);
1785 spa->spa_special_class = metaslab_class_create(spa, "special",
1786 msp, B_FALSE);
1787 spa->spa_special_embedded_log_class = metaslab_class_create(spa,
1788 "special_embedded_log", msp, B_TRUE);
1789 spa->spa_dedup_class = metaslab_class_create(spa, "dedup",
1790 msp, B_FALSE);
1791
1792 /* Try to create a covering process */
1793 mutex_enter(&spa->spa_proc_lock);
1794 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1795 ASSERT(spa->spa_proc == &p0);
1796 spa->spa_did = 0;
1797
1798 #ifdef HAVE_SPA_THREAD
1799 /* Only create a process if we're going to be around a while. */
1800 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1801 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1802 NULL, 0) == 0) {
1803 spa->spa_proc_state = SPA_PROC_CREATED;
1804 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1805 cv_wait(&spa->spa_proc_cv,
1806 &spa->spa_proc_lock);
1807 }
1808 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1809 ASSERT(spa->spa_proc != &p0);
1810 ASSERT(spa->spa_did != 0);
1811 } else {
1812 #ifdef _KERNEL
1813 cmn_err(CE_WARN,
1814 "Couldn't create process for zfs pool \"%s\"\n",
1815 spa->spa_name);
1816 #endif
1817 }
1818 }
1819 #endif /* HAVE_SPA_THREAD */
1820 mutex_exit(&spa->spa_proc_lock);
1821
1822 /* If we didn't create a process, we need to create our taskqs. */
1823 if (spa->spa_proc == &p0) {
1824 spa_create_zio_taskqs(spa);
1825 }
1826
1827 for (size_t i = 0; i < TXG_SIZE; i++) {
1828 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1829 ZIO_FLAG_CANFAIL);
1830 }
1831
1832 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1833 offsetof(vdev_t, vdev_config_dirty_node));
1834 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1835 offsetof(objset_t, os_evicting_node));
1836 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1837 offsetof(vdev_t, vdev_state_dirty_node));
1838
1839 txg_list_create(&spa->spa_vdev_txg_list, spa,
1840 offsetof(struct vdev, vdev_txg_node));
1841
1842 avl_create(&spa->spa_errlist_scrub,
1843 spa_error_entry_compare, sizeof (spa_error_entry_t),
1844 offsetof(spa_error_entry_t, se_avl));
1845 avl_create(&spa->spa_errlist_last,
1846 spa_error_entry_compare, sizeof (spa_error_entry_t),
1847 offsetof(spa_error_entry_t, se_avl));
1848 avl_create(&spa->spa_errlist_healed,
1849 spa_error_entry_compare, sizeof (spa_error_entry_t),
1850 offsetof(spa_error_entry_t, se_avl));
1851
1852 spa_activate_os(spa);
1853
1854 spa_keystore_init(&spa->spa_keystore);
1855
1856 /*
1857 * This taskq is used to perform zvol-minor-related tasks
1858 * asynchronously. This has several advantages, including easy
1859 * resolution of various deadlocks.
1860 *
1861 * The taskq must be single threaded to ensure tasks are always
1862 * processed in the order in which they were dispatched.
1863 *
1864 * A taskq per pool allows one to keep the pools independent.
1865 * This way if one pool is suspended, it will not impact another.
1866 *
1867 * The preferred location to dispatch a zvol minor task is a sync
1868 * task. In this context, there is easy access to the spa_t and minimal
1869 * error handling is required because the sync task must succeed.
1870 */
1871 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1872 1, INT_MAX, 0);
1873
1874 /*
1875 * The taskq to preload metaslabs.
1876 */
1877 spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1878 metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1879 TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1880
1881 /*
1882 * Taskq dedicated to prefetcher threads: this is used to prevent the
1883 * pool traverse code from monopolizing the global (and limited)
1884 * system_taskq by inappropriately scheduling long running tasks on it.
1885 */
1886 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1887 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1888
1889 /*
1890 * The taskq to upgrade datasets in this pool. Currently used by
1891 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1892 */
1893 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1894 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1895 }
1896
1897 /*
1898 * Opposite of spa_activate().
1899 */
1900 static void
spa_deactivate(spa_t * spa)1901 spa_deactivate(spa_t *spa)
1902 {
1903 ASSERT(spa->spa_sync_on == B_FALSE);
1904 ASSERT0P(spa->spa_dsl_pool);
1905 ASSERT0P(spa->spa_root_vdev);
1906 ASSERT0P(spa->spa_async_zio_root);
1907 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1908
1909 spa_evicting_os_wait(spa);
1910
1911 if (spa->spa_zvol_taskq) {
1912 taskq_destroy(spa->spa_zvol_taskq);
1913 spa->spa_zvol_taskq = NULL;
1914 }
1915
1916 if (spa->spa_metaslab_taskq) {
1917 taskq_destroy(spa->spa_metaslab_taskq);
1918 spa->spa_metaslab_taskq = NULL;
1919 }
1920
1921 if (spa->spa_prefetch_taskq) {
1922 taskq_destroy(spa->spa_prefetch_taskq);
1923 spa->spa_prefetch_taskq = NULL;
1924 }
1925
1926 if (spa->spa_upgrade_taskq) {
1927 taskq_destroy(spa->spa_upgrade_taskq);
1928 spa->spa_upgrade_taskq = NULL;
1929 }
1930
1931 txg_list_destroy(&spa->spa_vdev_txg_list);
1932
1933 list_destroy(&spa->spa_config_dirty_list);
1934 list_destroy(&spa->spa_evicting_os_list);
1935 list_destroy(&spa->spa_state_dirty_list);
1936
1937 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1938
1939 for (int t = 0; t < ZIO_TYPES; t++) {
1940 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1941 spa_taskqs_fini(spa, t, q);
1942 }
1943 }
1944
1945 for (size_t i = 0; i < TXG_SIZE; i++) {
1946 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1947 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1948 spa->spa_txg_zio[i] = NULL;
1949 }
1950
1951 metaslab_class_destroy(spa->spa_normal_class);
1952 spa->spa_normal_class = NULL;
1953
1954 metaslab_class_destroy(spa->spa_log_class);
1955 spa->spa_log_class = NULL;
1956
1957 metaslab_class_destroy(spa->spa_embedded_log_class);
1958 spa->spa_embedded_log_class = NULL;
1959
1960 metaslab_class_destroy(spa->spa_special_class);
1961 spa->spa_special_class = NULL;
1962
1963 metaslab_class_destroy(spa->spa_special_embedded_log_class);
1964 spa->spa_special_embedded_log_class = NULL;
1965
1966 metaslab_class_destroy(spa->spa_dedup_class);
1967 spa->spa_dedup_class = NULL;
1968
1969 /*
1970 * If this was part of an import or the open otherwise failed, we may
1971 * still have errors left in the queues. Empty them just in case.
1972 */
1973 spa_errlog_drain(spa);
1974 avl_destroy(&spa->spa_errlist_scrub);
1975 avl_destroy(&spa->spa_errlist_last);
1976 avl_destroy(&spa->spa_errlist_healed);
1977
1978 spa_keystore_fini(&spa->spa_keystore);
1979
1980 spa->spa_state = POOL_STATE_UNINITIALIZED;
1981
1982 mutex_enter(&spa->spa_proc_lock);
1983 if (spa->spa_proc_state != SPA_PROC_NONE) {
1984 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1985 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1986 cv_broadcast(&spa->spa_proc_cv);
1987 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1988 ASSERT(spa->spa_proc != &p0);
1989 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1990 }
1991 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1992 spa->spa_proc_state = SPA_PROC_NONE;
1993 }
1994 ASSERT(spa->spa_proc == &p0);
1995 mutex_exit(&spa->spa_proc_lock);
1996
1997 /*
1998 * We want to make sure spa_thread() has actually exited the ZFS
1999 * module, so that the module can't be unloaded out from underneath
2000 * it.
2001 */
2002 if (spa->spa_did != 0) {
2003 thread_join(spa->spa_did);
2004 spa->spa_did = 0;
2005 }
2006
2007 spa_deactivate_os(spa);
2008
2009 }
2010
2011 /*
2012 * Verify a pool configuration, and construct the vdev tree appropriately. This
2013 * will create all the necessary vdevs in the appropriate layout, with each vdev
2014 * in the CLOSED state. This will prep the pool before open/creation/import.
2015 * All vdev validation is done by the vdev_alloc() routine.
2016 */
2017 int
spa_config_parse(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int atype)2018 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
2019 uint_t id, int atype)
2020 {
2021 nvlist_t **child;
2022 uint_t children;
2023 int error;
2024
2025 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
2026 return (error);
2027
2028 if ((*vdp)->vdev_ops->vdev_op_leaf)
2029 return (0);
2030
2031 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2032 &child, &children);
2033
2034 if (error == ENOENT)
2035 return (0);
2036
2037 if (error) {
2038 vdev_free(*vdp);
2039 *vdp = NULL;
2040 return (SET_ERROR(EINVAL));
2041 }
2042
2043 for (int c = 0; c < children; c++) {
2044 vdev_t *vd;
2045 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
2046 atype)) != 0) {
2047 vdev_free(*vdp);
2048 *vdp = NULL;
2049 return (error);
2050 }
2051 }
2052
2053 ASSERT(*vdp != NULL);
2054
2055 return (0);
2056 }
2057
2058 static boolean_t
spa_should_flush_logs_on_unload(spa_t * spa)2059 spa_should_flush_logs_on_unload(spa_t *spa)
2060 {
2061 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
2062 return (B_FALSE);
2063
2064 if (!spa_writeable(spa))
2065 return (B_FALSE);
2066
2067 if (!spa->spa_sync_on)
2068 return (B_FALSE);
2069
2070 if (spa_state(spa) != POOL_STATE_EXPORTED)
2071 return (B_FALSE);
2072
2073 if (zfs_keep_log_spacemaps_at_export)
2074 return (B_FALSE);
2075
2076 return (B_TRUE);
2077 }
2078
2079 /*
2080 * Opens a transaction that will set the flag that will instruct
2081 * spa_sync to attempt to flush all the metaslabs for that txg.
2082 */
2083 static void
spa_unload_log_sm_flush_all(spa_t * spa)2084 spa_unload_log_sm_flush_all(spa_t *spa)
2085 {
2086 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2087 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
2088
2089 ASSERT0(spa->spa_log_flushall_txg);
2090 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
2091
2092 dmu_tx_commit(tx);
2093 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
2094 }
2095
2096 static void
spa_unload_log_sm_metadata(spa_t * spa)2097 spa_unload_log_sm_metadata(spa_t *spa)
2098 {
2099 void *cookie = NULL;
2100 spa_log_sm_t *sls;
2101 log_summary_entry_t *e;
2102
2103 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
2104 &cookie)) != NULL) {
2105 VERIFY0(sls->sls_mscount);
2106 kmem_free(sls, sizeof (spa_log_sm_t));
2107 }
2108
2109 while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
2110 VERIFY0(e->lse_mscount);
2111 kmem_free(e, sizeof (log_summary_entry_t));
2112 }
2113
2114 spa->spa_unflushed_stats.sus_nblocks = 0;
2115 spa->spa_unflushed_stats.sus_memused = 0;
2116 spa->spa_unflushed_stats.sus_blocklimit = 0;
2117 }
2118
2119 static void
spa_destroy_aux_threads(spa_t * spa)2120 spa_destroy_aux_threads(spa_t *spa)
2121 {
2122 if (spa->spa_condense_zthr != NULL) {
2123 zthr_destroy(spa->spa_condense_zthr);
2124 spa->spa_condense_zthr = NULL;
2125 }
2126 if (spa->spa_checkpoint_discard_zthr != NULL) {
2127 zthr_destroy(spa->spa_checkpoint_discard_zthr);
2128 spa->spa_checkpoint_discard_zthr = NULL;
2129 }
2130 if (spa->spa_livelist_delete_zthr != NULL) {
2131 zthr_destroy(spa->spa_livelist_delete_zthr);
2132 spa->spa_livelist_delete_zthr = NULL;
2133 }
2134 if (spa->spa_livelist_condense_zthr != NULL) {
2135 zthr_destroy(spa->spa_livelist_condense_zthr);
2136 spa->spa_livelist_condense_zthr = NULL;
2137 }
2138 if (spa->spa_raidz_expand_zthr != NULL) {
2139 zthr_destroy(spa->spa_raidz_expand_zthr);
2140 spa->spa_raidz_expand_zthr = NULL;
2141 }
2142 }
2143
2144 static void
spa_sync_time_logger(spa_t * spa,uint64_t txg)2145 spa_sync_time_logger(spa_t *spa, uint64_t txg)
2146 {
2147 uint64_t curtime;
2148 dmu_tx_t *tx;
2149
2150 if (!spa_writeable(spa)) {
2151 return;
2152 }
2153 curtime = gethrestime_sec();
2154 if (curtime < spa->spa_last_noted_txg_time + spa_note_txg_time) {
2155 return;
2156 }
2157
2158 if (txg > spa->spa_last_noted_txg) {
2159 spa->spa_last_noted_txg_time = curtime;
2160 spa->spa_last_noted_txg = txg;
2161
2162 mutex_enter(&spa->spa_txg_log_time_lock);
2163 dbrrd_add(&spa->spa_txg_log_time, curtime, txg);
2164 mutex_exit(&spa->spa_txg_log_time_lock);
2165 }
2166
2167 if (curtime < spa->spa_last_flush_txg_time + spa_flush_txg_time) {
2168 return;
2169 }
2170 spa->spa_last_flush_txg_time = curtime;
2171
2172 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2173
2174 VERIFY0(zap_update(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
2175 DMU_POOL_TXG_LOG_TIME_MINUTES, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2176 &spa->spa_txg_log_time.dbr_minutes, tx));
2177 VERIFY0(zap_update(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
2178 DMU_POOL_TXG_LOG_TIME_DAYS, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2179 &spa->spa_txg_log_time.dbr_days, tx));
2180 VERIFY0(zap_update(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
2181 DMU_POOL_TXG_LOG_TIME_MONTHS, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2182 &spa->spa_txg_log_time.dbr_months, tx));
2183 dmu_tx_commit(tx);
2184 }
2185
2186 static void
spa_unload_sync_time_logger(spa_t * spa)2187 spa_unload_sync_time_logger(spa_t *spa)
2188 {
2189 uint64_t txg;
2190 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2191 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT));
2192
2193 txg = dmu_tx_get_txg(tx);
2194 spa->spa_last_noted_txg_time = 0;
2195 spa->spa_last_flush_txg_time = 0;
2196 spa_sync_time_logger(spa, txg);
2197
2198 dmu_tx_commit(tx);
2199 }
2200
2201 static void
spa_load_txg_log_time(spa_t * spa)2202 spa_load_txg_log_time(spa_t *spa)
2203 {
2204 int error;
2205
2206 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2207 DMU_POOL_TXG_LOG_TIME_MINUTES, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2208 &spa->spa_txg_log_time.dbr_minutes);
2209 if (error != 0 && error != ENOENT) {
2210 spa_load_note(spa, "unable to load a txg time database with "
2211 "minute resolution [error=%d]", error);
2212 }
2213 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2214 DMU_POOL_TXG_LOG_TIME_DAYS, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2215 &spa->spa_txg_log_time.dbr_days);
2216 if (error != 0 && error != ENOENT) {
2217 spa_load_note(spa, "unable to load a txg time database with "
2218 "day resolution [error=%d]", error);
2219 }
2220 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2221 DMU_POOL_TXG_LOG_TIME_MONTHS, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2222 &spa->spa_txg_log_time.dbr_months);
2223 if (error != 0 && error != ENOENT) {
2224 spa_load_note(spa, "unable to load a txg time database with "
2225 "month resolution [error=%d]", error);
2226 }
2227 }
2228
2229 static boolean_t
spa_should_sync_time_logger_on_unload(spa_t * spa)2230 spa_should_sync_time_logger_on_unload(spa_t *spa)
2231 {
2232
2233 if (!spa_writeable(spa))
2234 return (B_FALSE);
2235
2236 if (!spa->spa_sync_on)
2237 return (B_FALSE);
2238
2239 if (spa_state(spa) != POOL_STATE_EXPORTED)
2240 return (B_FALSE);
2241
2242 if (spa->spa_last_noted_txg == 0)
2243 return (B_FALSE);
2244
2245 return (B_TRUE);
2246 }
2247
2248
2249 /*
2250 * Opposite of spa_load().
2251 */
2252 static void
spa_unload(spa_t * spa)2253 spa_unload(spa_t *spa)
2254 {
2255 ASSERT(spa_namespace_held() ||
2256 spa->spa_export_thread == curthread);
2257 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
2258
2259 spa_import_progress_remove(spa_guid(spa));
2260 spa_load_note(spa, "UNLOADING");
2261
2262 spa_wake_waiters(spa);
2263
2264 /*
2265 * If we have set the spa_final_txg, we have already performed the
2266 * tasks below in spa_export_common(). We should not redo it here since
2267 * we delay the final TXGs beyond what spa_final_txg is set at.
2268 */
2269 if (spa->spa_final_txg == UINT64_MAX) {
2270 if (spa_should_sync_time_logger_on_unload(spa))
2271 spa_unload_sync_time_logger(spa);
2272
2273 /*
2274 * If the log space map feature is enabled and the pool is
2275 * getting exported (but not destroyed), we want to spend some
2276 * time flushing as many metaslabs as we can in an attempt to
2277 * destroy log space maps and save import time.
2278 */
2279 if (spa_should_flush_logs_on_unload(spa))
2280 spa_unload_log_sm_flush_all(spa);
2281
2282 /*
2283 * Stop async tasks.
2284 */
2285 spa_async_suspend(spa);
2286
2287 if (spa->spa_root_vdev) {
2288 vdev_t *root_vdev = spa->spa_root_vdev;
2289 vdev_initialize_stop_all(root_vdev,
2290 VDEV_INITIALIZE_ACTIVE);
2291 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
2292 vdev_autotrim_stop_all(spa);
2293 vdev_rebuild_stop_all(spa);
2294 l2arc_spa_rebuild_stop(spa);
2295 }
2296
2297 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2298 spa->spa_final_txg = spa_last_synced_txg(spa) +
2299 TXG_DEFER_SIZE + 1;
2300 spa_config_exit(spa, SCL_ALL, FTAG);
2301 }
2302
2303 /*
2304 * Stop syncing.
2305 */
2306 if (spa->spa_sync_on) {
2307 txg_sync_stop(spa->spa_dsl_pool);
2308 spa->spa_sync_on = B_FALSE;
2309 }
2310
2311 /*
2312 * This ensures that there is no async metaslab prefetching
2313 * while we attempt to unload the spa.
2314 */
2315 taskq_wait(spa->spa_metaslab_taskq);
2316
2317 if (spa->spa_mmp.mmp_thread)
2318 mmp_thread_stop(spa);
2319
2320 /*
2321 * Wait for any outstanding async I/O to complete.
2322 */
2323 if (spa->spa_async_zio_root != NULL) {
2324 for (int i = 0; i < max_ncpus; i++)
2325 (void) zio_wait(spa->spa_async_zio_root[i]);
2326 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
2327 spa->spa_async_zio_root = NULL;
2328 }
2329
2330 if (spa->spa_vdev_removal != NULL) {
2331 spa_vdev_removal_destroy(spa->spa_vdev_removal);
2332 spa->spa_vdev_removal = NULL;
2333 }
2334
2335 spa_destroy_aux_threads(spa);
2336
2337 spa_condense_fini(spa);
2338
2339 bpobj_close(&spa->spa_deferred_bpobj);
2340
2341 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
2342
2343 /*
2344 * Close all vdevs.
2345 */
2346 if (spa->spa_root_vdev)
2347 vdev_free(spa->spa_root_vdev);
2348 ASSERT0P(spa->spa_root_vdev);
2349
2350 /*
2351 * Close the dsl pool.
2352 */
2353 if (spa->spa_dsl_pool) {
2354 dsl_pool_close(spa->spa_dsl_pool);
2355 spa->spa_dsl_pool = NULL;
2356 spa->spa_meta_objset = NULL;
2357 }
2358
2359 ddt_unload(spa);
2360 brt_unload(spa);
2361 spa_unload_log_sm_metadata(spa);
2362
2363 /*
2364 * Drop and purge level 2 cache
2365 */
2366 spa_l2cache_drop(spa);
2367
2368 if (spa->spa_spares.sav_vdevs) {
2369 for (int i = 0; i < spa->spa_spares.sav_count; i++)
2370 vdev_free(spa->spa_spares.sav_vdevs[i]);
2371 kmem_free(spa->spa_spares.sav_vdevs,
2372 spa->spa_spares.sav_count * sizeof (void *));
2373 spa->spa_spares.sav_vdevs = NULL;
2374 }
2375 if (spa->spa_spares.sav_config) {
2376 nvlist_free(spa->spa_spares.sav_config);
2377 spa->spa_spares.sav_config = NULL;
2378 }
2379 spa->spa_spares.sav_count = 0;
2380
2381 if (spa->spa_l2cache.sav_vdevs) {
2382 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
2383 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
2384 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
2385 }
2386 kmem_free(spa->spa_l2cache.sav_vdevs,
2387 spa->spa_l2cache.sav_count * sizeof (void *));
2388 spa->spa_l2cache.sav_vdevs = NULL;
2389 }
2390 if (spa->spa_l2cache.sav_config) {
2391 nvlist_free(spa->spa_l2cache.sav_config);
2392 spa->spa_l2cache.sav_config = NULL;
2393 }
2394 spa->spa_l2cache.sav_count = 0;
2395
2396 spa->spa_async_suspended = 0;
2397
2398 spa->spa_indirect_vdevs_loaded = B_FALSE;
2399
2400 if (spa->spa_comment != NULL) {
2401 spa_strfree(spa->spa_comment);
2402 spa->spa_comment = NULL;
2403 }
2404 if (spa->spa_compatibility != NULL) {
2405 spa_strfree(spa->spa_compatibility);
2406 spa->spa_compatibility = NULL;
2407 }
2408
2409 spa->spa_raidz_expand = NULL;
2410 spa->spa_checkpoint_txg = 0;
2411
2412 spa_config_exit(spa, SCL_ALL, spa);
2413 }
2414
2415 /*
2416 * Load (or re-load) the current list of vdevs describing the active spares for
2417 * this pool. When this is called, we have some form of basic information in
2418 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
2419 * then re-generate a more complete list including status information.
2420 */
2421 void
spa_load_spares(spa_t * spa)2422 spa_load_spares(spa_t *spa)
2423 {
2424 nvlist_t **spares;
2425 uint_t nspares;
2426 int i;
2427 vdev_t *vd, *tvd;
2428
2429 #ifndef _KERNEL
2430 /*
2431 * zdb opens both the current state of the pool and the
2432 * checkpointed state (if present), with a different spa_t.
2433 *
2434 * As spare vdevs are shared among open pools, we skip loading
2435 * them when we load the checkpointed state of the pool.
2436 */
2437 if (!spa_writeable(spa))
2438 return;
2439 #endif
2440
2441 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2442
2443 /*
2444 * First, close and free any existing spare vdevs.
2445 */
2446 if (spa->spa_spares.sav_vdevs) {
2447 for (i = 0; i < spa->spa_spares.sav_count; i++) {
2448 vd = spa->spa_spares.sav_vdevs[i];
2449
2450 /* Undo the call to spa_activate() below */
2451 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2452 B_FALSE)) != NULL && tvd->vdev_isspare)
2453 spa_spare_remove(tvd);
2454 vdev_close(vd);
2455 vdev_free(vd);
2456 }
2457
2458 kmem_free(spa->spa_spares.sav_vdevs,
2459 spa->spa_spares.sav_count * sizeof (void *));
2460 }
2461
2462 if (spa->spa_spares.sav_config == NULL)
2463 nspares = 0;
2464 else
2465 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2466 ZPOOL_CONFIG_SPARES, &spares, &nspares));
2467
2468 spa->spa_spares.sav_count = (int)nspares;
2469 spa->spa_spares.sav_vdevs = NULL;
2470
2471 if (nspares == 0)
2472 return;
2473
2474 /*
2475 * Construct the array of vdevs, opening them to get status in the
2476 * process. For each spare, there is potentially two different vdev_t
2477 * structures associated with it: one in the list of spares (used only
2478 * for basic validation purposes) and one in the active vdev
2479 * configuration (if it's spared in). During this phase we open and
2480 * validate each vdev on the spare list. If the vdev also exists in the
2481 * active configuration, then we also mark this vdev as an active spare.
2482 */
2483 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
2484 KM_SLEEP);
2485 for (i = 0; i < spa->spa_spares.sav_count; i++) {
2486 VERIFY0(spa_config_parse(spa, &vd, spares[i], NULL, 0,
2487 VDEV_ALLOC_SPARE));
2488 ASSERT(vd != NULL);
2489
2490 spa->spa_spares.sav_vdevs[i] = vd;
2491
2492 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2493 B_FALSE)) != NULL) {
2494 if (!tvd->vdev_isspare)
2495 spa_spare_add(tvd);
2496
2497 /*
2498 * We only mark the spare active if we were successfully
2499 * able to load the vdev. Otherwise, importing a pool
2500 * with a bad active spare would result in strange
2501 * behavior, because multiple pool would think the spare
2502 * is actively in use.
2503 *
2504 * There is a vulnerability here to an equally bizarre
2505 * circumstance, where a dead active spare is later
2506 * brought back to life (onlined or otherwise). Given
2507 * the rarity of this scenario, and the extra complexity
2508 * it adds, we ignore the possibility.
2509 */
2510 if (!vdev_is_dead(tvd))
2511 spa_spare_activate(tvd);
2512 }
2513
2514 vd->vdev_top = vd;
2515 vd->vdev_aux = &spa->spa_spares;
2516
2517 if (vdev_open(vd) != 0)
2518 continue;
2519
2520 if (vdev_validate_aux(vd) == 0)
2521 spa_spare_add(vd);
2522 }
2523
2524 /*
2525 * Recompute the stashed list of spares, with status information
2526 * this time.
2527 */
2528 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
2529
2530 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
2531 KM_SLEEP);
2532 for (i = 0; i < spa->spa_spares.sav_count; i++)
2533 spares[i] = vdev_config_generate(spa,
2534 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
2535 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
2536 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
2537 spa->spa_spares.sav_count);
2538 for (i = 0; i < spa->spa_spares.sav_count; i++)
2539 nvlist_free(spares[i]);
2540 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
2541 }
2542
2543 /*
2544 * Load (or re-load) the current list of vdevs describing the active l2cache for
2545 * this pool. When this is called, we have some form of basic information in
2546 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
2547 * then re-generate a more complete list including status information.
2548 * Devices which are already active have their details maintained, and are
2549 * not re-opened.
2550 */
2551 void
spa_load_l2cache(spa_t * spa)2552 spa_load_l2cache(spa_t *spa)
2553 {
2554 nvlist_t **l2cache = NULL;
2555 uint_t nl2cache;
2556 int i, j, oldnvdevs;
2557 uint64_t guid;
2558 vdev_t *vd, **oldvdevs, **newvdevs;
2559 spa_aux_vdev_t *sav = &spa->spa_l2cache;
2560
2561 #ifndef _KERNEL
2562 /*
2563 * zdb opens both the current state of the pool and the
2564 * checkpointed state (if present), with a different spa_t.
2565 *
2566 * As L2 caches are part of the ARC which is shared among open
2567 * pools, we skip loading them when we load the checkpointed
2568 * state of the pool.
2569 */
2570 if (!spa_writeable(spa))
2571 return;
2572 #endif
2573
2574 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2575
2576 oldvdevs = sav->sav_vdevs;
2577 oldnvdevs = sav->sav_count;
2578 sav->sav_vdevs = NULL;
2579 sav->sav_count = 0;
2580
2581 if (sav->sav_config == NULL) {
2582 nl2cache = 0;
2583 newvdevs = NULL;
2584 goto out;
2585 }
2586
2587 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
2588 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
2589 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
2590
2591 /*
2592 * Process new nvlist of vdevs.
2593 */
2594 for (i = 0; i < nl2cache; i++) {
2595 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2596
2597 newvdevs[i] = NULL;
2598 for (j = 0; j < oldnvdevs; j++) {
2599 vd = oldvdevs[j];
2600 if (vd != NULL && guid == vd->vdev_guid) {
2601 /*
2602 * Retain previous vdev for add/remove ops.
2603 */
2604 newvdevs[i] = vd;
2605 oldvdevs[j] = NULL;
2606 break;
2607 }
2608 }
2609
2610 if (newvdevs[i] == NULL) {
2611 /*
2612 * Create new vdev
2613 */
2614 VERIFY0(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2615 VDEV_ALLOC_L2CACHE));
2616 ASSERT(vd != NULL);
2617 newvdevs[i] = vd;
2618
2619 /*
2620 * Commit this vdev as an l2cache device,
2621 * even if it fails to open.
2622 */
2623 spa_l2cache_add(vd);
2624
2625 vd->vdev_top = vd;
2626 vd->vdev_aux = sav;
2627
2628 spa_l2cache_activate(vd);
2629
2630 if (vdev_open(vd) != 0)
2631 continue;
2632
2633 (void) vdev_validate_aux(vd);
2634
2635 if (!vdev_is_dead(vd))
2636 l2arc_add_vdev(spa, vd);
2637
2638 /*
2639 * Upon cache device addition to a pool or pool
2640 * creation with a cache device or if the header
2641 * of the device is invalid we issue an async
2642 * TRIM command for the whole device which will
2643 * execute if l2arc_trim_ahead > 0.
2644 */
2645 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2646 }
2647 }
2648
2649 sav->sav_vdevs = newvdevs;
2650 sav->sav_count = (int)nl2cache;
2651
2652 /*
2653 * Recompute the stashed list of l2cache devices, with status
2654 * information this time.
2655 */
2656 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2657
2658 if (sav->sav_count > 0)
2659 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2660 KM_SLEEP);
2661 for (i = 0; i < sav->sav_count; i++)
2662 l2cache[i] = vdev_config_generate(spa,
2663 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2664 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2665 (const nvlist_t * const *)l2cache, sav->sav_count);
2666
2667 out:
2668 /*
2669 * Purge vdevs that were dropped
2670 */
2671 if (oldvdevs) {
2672 for (i = 0; i < oldnvdevs; i++) {
2673 uint64_t pool;
2674
2675 vd = oldvdevs[i];
2676 if (vd != NULL) {
2677 ASSERT(vd->vdev_isl2cache);
2678
2679 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2680 pool != 0ULL && l2arc_vdev_present(vd))
2681 l2arc_remove_vdev(vd);
2682 vdev_clear_stats(vd);
2683 vdev_free(vd);
2684 }
2685 }
2686
2687 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2688 }
2689
2690 for (i = 0; i < sav->sav_count; i++)
2691 nvlist_free(l2cache[i]);
2692 if (sav->sav_count)
2693 kmem_free(l2cache, sav->sav_count * sizeof (void *));
2694 }
2695
2696 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)2697 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2698 {
2699 dmu_buf_t *db;
2700 char *packed = NULL;
2701 size_t nvsize = 0;
2702 int error;
2703 *value = NULL;
2704
2705 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2706 if (error)
2707 return (error);
2708
2709 nvsize = *(uint64_t *)db->db_data;
2710 dmu_buf_rele(db, FTAG);
2711
2712 packed = vmem_alloc(nvsize, KM_SLEEP);
2713 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2714 DMU_READ_PREFETCH);
2715 if (error == 0)
2716 error = nvlist_unpack(packed, nvsize, value, 0);
2717 vmem_free(packed, nvsize);
2718
2719 return (error);
2720 }
2721
2722 /*
2723 * Concrete top-level vdevs that are not missing and are not logs. At every
2724 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2725 */
2726 static uint64_t
spa_healthy_core_tvds(spa_t * spa)2727 spa_healthy_core_tvds(spa_t *spa)
2728 {
2729 vdev_t *rvd = spa->spa_root_vdev;
2730 uint64_t tvds = 0;
2731
2732 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2733 vdev_t *vd = rvd->vdev_child[i];
2734 if (vd->vdev_islog)
2735 continue;
2736 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2737 tvds++;
2738 }
2739
2740 return (tvds);
2741 }
2742
2743 /*
2744 * Checks to see if the given vdev could not be opened, in which case we post a
2745 * sysevent to notify the autoreplace code that the device has been removed.
2746 */
2747 static void
spa_check_removed(vdev_t * vd)2748 spa_check_removed(vdev_t *vd)
2749 {
2750 for (uint64_t c = 0; c < vd->vdev_children; c++)
2751 spa_check_removed(vd->vdev_child[c]);
2752
2753 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2754 vdev_is_concrete(vd)) {
2755 zfs_post_autoreplace(vd->vdev_spa, vd);
2756 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2757 }
2758 }
2759
2760 static int
spa_check_for_missing_logs(spa_t * spa)2761 spa_check_for_missing_logs(spa_t *spa)
2762 {
2763 vdev_t *rvd = spa->spa_root_vdev;
2764
2765 /*
2766 * If we're doing a normal import, then build up any additional
2767 * diagnostic information about missing log devices.
2768 * We'll pass this up to the user for further processing.
2769 */
2770 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2771 nvlist_t **child, *nv;
2772 uint64_t idx = 0;
2773
2774 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2775 KM_SLEEP);
2776 nv = fnvlist_alloc();
2777
2778 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2779 vdev_t *tvd = rvd->vdev_child[c];
2780
2781 /*
2782 * We consider a device as missing only if it failed
2783 * to open (i.e. offline or faulted is not considered
2784 * as missing).
2785 */
2786 if (tvd->vdev_islog &&
2787 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2788 child[idx++] = vdev_config_generate(spa, tvd,
2789 B_FALSE, VDEV_CONFIG_MISSING);
2790 }
2791 }
2792
2793 if (idx > 0) {
2794 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2795 (const nvlist_t * const *)child, idx);
2796 fnvlist_add_nvlist(spa->spa_load_info,
2797 ZPOOL_CONFIG_MISSING_DEVICES, nv);
2798
2799 for (uint64_t i = 0; i < idx; i++)
2800 nvlist_free(child[i]);
2801 }
2802 nvlist_free(nv);
2803 kmem_free(child, rvd->vdev_children * sizeof (char **));
2804
2805 if (idx > 0) {
2806 spa_load_failed(spa, "some log devices are missing");
2807 vdev_dbgmsg_print_tree(rvd, 2);
2808 return (SET_ERROR(ENXIO));
2809 }
2810 } else {
2811 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2812 vdev_t *tvd = rvd->vdev_child[c];
2813
2814 if (tvd->vdev_islog &&
2815 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2816 spa_set_log_state(spa, SPA_LOG_CLEAR);
2817 spa_load_note(spa, "some log devices are "
2818 "missing, ZIL is dropped.");
2819 vdev_dbgmsg_print_tree(rvd, 2);
2820 break;
2821 }
2822 }
2823 }
2824
2825 return (0);
2826 }
2827
2828 /*
2829 * Check for missing log devices
2830 */
2831 static boolean_t
spa_check_logs(spa_t * spa)2832 spa_check_logs(spa_t *spa)
2833 {
2834 boolean_t rv = B_FALSE;
2835 dsl_pool_t *dp = spa_get_dsl(spa);
2836
2837 switch (spa->spa_log_state) {
2838 default:
2839 break;
2840 case SPA_LOG_MISSING:
2841 /* need to recheck in case slog has been restored */
2842 case SPA_LOG_UNKNOWN:
2843 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2844 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2845 if (rv)
2846 spa_set_log_state(spa, SPA_LOG_MISSING);
2847 break;
2848 }
2849 return (rv);
2850 }
2851
2852 /*
2853 * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2854 */
2855 static boolean_t
spa_passivate_log(spa_t * spa)2856 spa_passivate_log(spa_t *spa)
2857 {
2858 vdev_t *rvd = spa->spa_root_vdev;
2859 boolean_t slog_found = B_FALSE;
2860
2861 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2862
2863 for (int c = 0; c < rvd->vdev_children; c++) {
2864 vdev_t *tvd = rvd->vdev_child[c];
2865
2866 if (tvd->vdev_islog) {
2867 ASSERT0P(tvd->vdev_log_mg);
2868 metaslab_group_passivate(tvd->vdev_mg);
2869 slog_found = B_TRUE;
2870 }
2871 }
2872
2873 return (slog_found);
2874 }
2875
2876 /*
2877 * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2878 */
2879 static void
spa_activate_log(spa_t * spa)2880 spa_activate_log(spa_t *spa)
2881 {
2882 vdev_t *rvd = spa->spa_root_vdev;
2883
2884 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2885
2886 for (int c = 0; c < rvd->vdev_children; c++) {
2887 vdev_t *tvd = rvd->vdev_child[c];
2888
2889 if (tvd->vdev_islog) {
2890 ASSERT0P(tvd->vdev_log_mg);
2891 metaslab_group_activate(tvd->vdev_mg);
2892 }
2893 }
2894 }
2895
2896 int
spa_reset_logs(spa_t * spa)2897 spa_reset_logs(spa_t *spa)
2898 {
2899 int error;
2900
2901 error = dmu_objset_find(spa_name(spa), zil_reset,
2902 NULL, DS_FIND_CHILDREN);
2903 if (error == 0) {
2904 /*
2905 * We successfully offlined the log device, sync out the
2906 * current txg so that the "stubby" block can be removed
2907 * by zil_sync().
2908 */
2909 txg_wait_synced(spa->spa_dsl_pool, 0);
2910 }
2911 return (error);
2912 }
2913
2914 static void
spa_aux_check_removed(spa_aux_vdev_t * sav)2915 spa_aux_check_removed(spa_aux_vdev_t *sav)
2916 {
2917 for (int i = 0; i < sav->sav_count; i++)
2918 spa_check_removed(sav->sav_vdevs[i]);
2919 }
2920
2921 void
spa_claim_notify(zio_t * zio)2922 spa_claim_notify(zio_t *zio)
2923 {
2924 spa_t *spa = zio->io_spa;
2925
2926 if (zio->io_error)
2927 return;
2928
2929 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2930 if (spa->spa_claim_max_txg < BP_GET_BIRTH(zio->io_bp))
2931 spa->spa_claim_max_txg = BP_GET_BIRTH(zio->io_bp);
2932 mutex_exit(&spa->spa_props_lock);
2933 }
2934
2935 typedef struct spa_load_error {
2936 boolean_t sle_verify_data;
2937 uint64_t sle_meta_count;
2938 uint64_t sle_data_count;
2939 } spa_load_error_t;
2940
2941 static void
spa_load_verify_done(zio_t * zio)2942 spa_load_verify_done(zio_t *zio)
2943 {
2944 blkptr_t *bp = zio->io_bp;
2945 spa_load_error_t *sle = zio->io_private;
2946 dmu_object_type_t type = BP_GET_TYPE(bp);
2947 int error = zio->io_error;
2948 spa_t *spa = zio->io_spa;
2949
2950 abd_free(zio->io_abd);
2951 if (error) {
2952 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2953 type != DMU_OT_INTENT_LOG)
2954 atomic_inc_64(&sle->sle_meta_count);
2955 else
2956 atomic_inc_64(&sle->sle_data_count);
2957 }
2958
2959 mutex_enter(&spa->spa_scrub_lock);
2960 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2961 cv_broadcast(&spa->spa_scrub_io_cv);
2962 mutex_exit(&spa->spa_scrub_lock);
2963 }
2964
2965 /*
2966 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2967 * By default, we set it to 1/16th of the arc.
2968 */
2969 static uint_t spa_load_verify_shift = 4;
2970 static int spa_load_verify_metadata = B_TRUE;
2971 static int spa_load_verify_data = B_TRUE;
2972
2973 static int
spa_load_verify_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)2974 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2975 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2976 {
2977 zio_t *rio = arg;
2978 spa_load_error_t *sle = rio->io_private;
2979
2980 (void) zilog, (void) dnp;
2981
2982 /*
2983 * Note: normally this routine will not be called if
2984 * spa_load_verify_metadata is not set. However, it may be useful
2985 * to manually set the flag after the traversal has begun.
2986 */
2987 if (!spa_load_verify_metadata)
2988 return (0);
2989
2990 /*
2991 * Sanity check the block pointer in order to detect obvious damage
2992 * before using the contents in subsequent checks or in zio_read().
2993 * When damaged consider it to be a metadata error since we cannot
2994 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2995 */
2996 if (zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2997 atomic_inc_64(&sle->sle_meta_count);
2998 return (0);
2999 }
3000
3001 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
3002 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
3003 return (0);
3004
3005 if (!BP_IS_METADATA(bp) &&
3006 (!spa_load_verify_data || !sle->sle_verify_data))
3007 return (0);
3008
3009 uint64_t maxinflight_bytes =
3010 arc_target_bytes() >> spa_load_verify_shift;
3011 size_t size = BP_GET_PSIZE(bp);
3012
3013 mutex_enter(&spa->spa_scrub_lock);
3014 while (spa->spa_load_verify_bytes >= maxinflight_bytes)
3015 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
3016 spa->spa_load_verify_bytes += size;
3017 mutex_exit(&spa->spa_scrub_lock);
3018
3019 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
3020 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
3021 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
3022 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
3023 return (0);
3024 }
3025
3026 static int
verify_dataset_name_len(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)3027 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
3028 {
3029 (void) dp, (void) arg;
3030
3031 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
3032 return (SET_ERROR(ENAMETOOLONG));
3033
3034 return (0);
3035 }
3036
3037 static int
spa_load_verify(spa_t * spa)3038 spa_load_verify(spa_t *spa)
3039 {
3040 zio_t *rio;
3041 spa_load_error_t sle = { 0 };
3042 zpool_load_policy_t policy;
3043 boolean_t verify_ok = B_FALSE;
3044 int error = 0;
3045
3046 zpool_get_load_policy(spa->spa_config, &policy);
3047
3048 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
3049 policy.zlp_maxmeta == UINT64_MAX)
3050 return (0);
3051
3052 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
3053 error = dmu_objset_find_dp(spa->spa_dsl_pool,
3054 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
3055 DS_FIND_CHILDREN);
3056 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
3057 if (error != 0)
3058 return (error);
3059
3060 /*
3061 * Verify data only if we are rewinding or error limit was set.
3062 * Otherwise nothing except dbgmsg care about it to waste time.
3063 */
3064 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
3065 (policy.zlp_maxdata < UINT64_MAX);
3066
3067 rio = zio_root(spa, NULL, &sle,
3068 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
3069
3070 if (spa_load_verify_metadata) {
3071 if (spa->spa_extreme_rewind) {
3072 spa_load_note(spa, "performing a complete scan of the "
3073 "pool since extreme rewind is on. This may take "
3074 "a very long time.\n (spa_load_verify_data=%u, "
3075 "spa_load_verify_metadata=%u)",
3076 spa_load_verify_data, spa_load_verify_metadata);
3077 }
3078
3079 error = traverse_pool(spa, spa->spa_verify_min_txg,
3080 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
3081 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
3082 }
3083
3084 (void) zio_wait(rio);
3085 ASSERT0(spa->spa_load_verify_bytes);
3086
3087 spa->spa_load_meta_errors = sle.sle_meta_count;
3088 spa->spa_load_data_errors = sle.sle_data_count;
3089
3090 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
3091 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
3092 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
3093 (u_longlong_t)sle.sle_data_count);
3094 }
3095
3096 if (spa_load_verify_dryrun ||
3097 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
3098 sle.sle_data_count <= policy.zlp_maxdata)) {
3099 int64_t loss = 0;
3100
3101 verify_ok = B_TRUE;
3102 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
3103 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
3104
3105 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
3106 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
3107 spa->spa_load_txg_ts);
3108 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
3109 loss);
3110 fnvlist_add_uint64(spa->spa_load_info,
3111 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
3112 fnvlist_add_uint64(spa->spa_load_info,
3113 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
3114 } else {
3115 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
3116 }
3117
3118 if (spa_load_verify_dryrun)
3119 return (0);
3120
3121 if (error) {
3122 if (error != ENXIO && error != EIO)
3123 error = SET_ERROR(EIO);
3124 return (error);
3125 }
3126
3127 return (verify_ok ? 0 : EIO);
3128 }
3129
3130 /*
3131 * Find a value in the pool props object.
3132 */
3133 static void
spa_prop_find(spa_t * spa,zpool_prop_t prop,uint64_t * val)3134 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
3135 {
3136 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
3137 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
3138 }
3139
3140 /*
3141 * Find a value in the pool directory object.
3142 */
3143 static int
spa_dir_prop(spa_t * spa,const char * name,uint64_t * val,boolean_t log_enoent)3144 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
3145 {
3146 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3147 name, sizeof (uint64_t), 1, val);
3148
3149 if (error != 0 && (error != ENOENT || log_enoent)) {
3150 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
3151 "[error=%d]", name, error);
3152 }
3153
3154 return (error);
3155 }
3156
3157 static int
spa_vdev_err(vdev_t * vdev,vdev_aux_t aux,int err)3158 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
3159 {
3160 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
3161 return (SET_ERROR(err));
3162 }
3163
3164 boolean_t
spa_livelist_delete_check(spa_t * spa)3165 spa_livelist_delete_check(spa_t *spa)
3166 {
3167 return (spa->spa_livelists_to_delete != 0);
3168 }
3169
3170 static boolean_t
spa_livelist_delete_cb_check(void * arg,zthr_t * z)3171 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
3172 {
3173 (void) z;
3174 spa_t *spa = arg;
3175 return (spa_livelist_delete_check(spa));
3176 }
3177
3178 static int
delete_blkptr_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)3179 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3180 {
3181 spa_t *spa = arg;
3182 zio_free(spa, tx->tx_txg, bp);
3183 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3184 -bp_get_dsize_sync(spa, bp),
3185 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3186 return (0);
3187 }
3188
3189 static int
dsl_get_next_livelist_obj(objset_t * os,uint64_t zap_obj,uint64_t * llp)3190 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
3191 {
3192 int err;
3193 zap_cursor_t zc;
3194 zap_attribute_t *za = zap_attribute_alloc();
3195 zap_cursor_init(&zc, os, zap_obj);
3196 err = zap_cursor_retrieve(&zc, za);
3197 zap_cursor_fini(&zc);
3198 if (err == 0)
3199 *llp = za->za_first_integer;
3200 zap_attribute_free(za);
3201 return (err);
3202 }
3203
3204 /*
3205 * Components of livelist deletion that must be performed in syncing
3206 * context: freeing block pointers and updating the pool-wide data
3207 * structures to indicate how much work is left to do
3208 */
3209 typedef struct sublist_delete_arg {
3210 spa_t *spa;
3211 dsl_deadlist_t *ll;
3212 uint64_t key;
3213 bplist_t *to_free;
3214 } sublist_delete_arg_t;
3215
3216 static void
sublist_delete_sync(void * arg,dmu_tx_t * tx)3217 sublist_delete_sync(void *arg, dmu_tx_t *tx)
3218 {
3219 sublist_delete_arg_t *sda = arg;
3220 spa_t *spa = sda->spa;
3221 dsl_deadlist_t *ll = sda->ll;
3222 uint64_t key = sda->key;
3223 bplist_t *to_free = sda->to_free;
3224
3225 bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
3226 dsl_deadlist_remove_entry(ll, key, tx);
3227 }
3228
3229 typedef struct livelist_delete_arg {
3230 spa_t *spa;
3231 uint64_t ll_obj;
3232 uint64_t zap_obj;
3233 } livelist_delete_arg_t;
3234
3235 static void
livelist_delete_sync(void * arg,dmu_tx_t * tx)3236 livelist_delete_sync(void *arg, dmu_tx_t *tx)
3237 {
3238 livelist_delete_arg_t *lda = arg;
3239 spa_t *spa = lda->spa;
3240 uint64_t ll_obj = lda->ll_obj;
3241 uint64_t zap_obj = lda->zap_obj;
3242 objset_t *mos = spa->spa_meta_objset;
3243 uint64_t count;
3244
3245 /* free the livelist and decrement the feature count */
3246 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
3247 dsl_deadlist_free(mos, ll_obj, tx);
3248 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
3249 VERIFY0(zap_count(mos, zap_obj, &count));
3250 if (count == 0) {
3251 /* no more livelists to delete */
3252 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
3253 DMU_POOL_DELETED_CLONES, tx));
3254 VERIFY0(zap_destroy(mos, zap_obj, tx));
3255 spa->spa_livelists_to_delete = 0;
3256 spa_notify_waiters(spa);
3257 }
3258 }
3259
3260 /*
3261 * Load in the value for the livelist to be removed and open it. Then,
3262 * load its first sublist and determine which block pointers should actually
3263 * be freed. Then, call a synctask which performs the actual frees and updates
3264 * the pool-wide livelist data.
3265 */
3266 static void
spa_livelist_delete_cb(void * arg,zthr_t * z)3267 spa_livelist_delete_cb(void *arg, zthr_t *z)
3268 {
3269 spa_t *spa = arg;
3270 uint64_t ll_obj = 0, count;
3271 objset_t *mos = spa->spa_meta_objset;
3272 uint64_t zap_obj = spa->spa_livelists_to_delete;
3273 /*
3274 * Determine the next livelist to delete. This function should only
3275 * be called if there is at least one deleted clone.
3276 */
3277 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
3278 VERIFY0(zap_count(mos, ll_obj, &count));
3279 if (count > 0) {
3280 dsl_deadlist_t *ll;
3281 dsl_deadlist_entry_t *dle;
3282 bplist_t to_free;
3283 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
3284 VERIFY0(dsl_deadlist_open(ll, mos, ll_obj));
3285 dle = dsl_deadlist_first(ll);
3286 ASSERT3P(dle, !=, NULL);
3287 bplist_create(&to_free);
3288 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
3289 z, NULL);
3290 if (err == 0) {
3291 sublist_delete_arg_t sync_arg = {
3292 .spa = spa,
3293 .ll = ll,
3294 .key = dle->dle_mintxg,
3295 .to_free = &to_free
3296 };
3297 zfs_dbgmsg("deleting sublist (id %llu) from"
3298 " livelist %llu, %lld remaining",
3299 (u_longlong_t)dle->dle_bpobj.bpo_object,
3300 (u_longlong_t)ll_obj, (longlong_t)count - 1);
3301 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
3302 sublist_delete_sync, &sync_arg, 0,
3303 ZFS_SPACE_CHECK_DESTROY));
3304 } else {
3305 VERIFY3U(err, ==, EINTR);
3306 }
3307 bplist_clear(&to_free);
3308 bplist_destroy(&to_free);
3309 dsl_deadlist_close(ll);
3310 kmem_free(ll, sizeof (dsl_deadlist_t));
3311 } else {
3312 livelist_delete_arg_t sync_arg = {
3313 .spa = spa,
3314 .ll_obj = ll_obj,
3315 .zap_obj = zap_obj
3316 };
3317 zfs_dbgmsg("deletion of livelist %llu completed",
3318 (u_longlong_t)ll_obj);
3319 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
3320 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
3321 }
3322 }
3323
3324 static void
spa_start_livelist_destroy_thread(spa_t * spa)3325 spa_start_livelist_destroy_thread(spa_t *spa)
3326 {
3327 ASSERT0P(spa->spa_livelist_delete_zthr);
3328 spa->spa_livelist_delete_zthr =
3329 zthr_create("z_livelist_destroy",
3330 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
3331 minclsyspri);
3332 }
3333
3334 typedef struct livelist_new_arg {
3335 bplist_t *allocs;
3336 bplist_t *frees;
3337 } livelist_new_arg_t;
3338
3339 static int
livelist_track_new_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3340 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3341 dmu_tx_t *tx)
3342 {
3343 ASSERT0P(tx);
3344 livelist_new_arg_t *lna = arg;
3345 if (bp_freed) {
3346 bplist_append(lna->frees, bp);
3347 } else {
3348 bplist_append(lna->allocs, bp);
3349 zfs_livelist_condense_new_alloc++;
3350 }
3351 return (0);
3352 }
3353
3354 typedef struct livelist_condense_arg {
3355 spa_t *spa;
3356 bplist_t to_keep;
3357 uint64_t first_size;
3358 uint64_t next_size;
3359 } livelist_condense_arg_t;
3360
3361 static void
spa_livelist_condense_sync(void * arg,dmu_tx_t * tx)3362 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
3363 {
3364 livelist_condense_arg_t *lca = arg;
3365 spa_t *spa = lca->spa;
3366 bplist_t new_frees;
3367 dsl_dataset_t *ds = spa->spa_to_condense.ds;
3368
3369 /* Have we been cancelled? */
3370 if (spa->spa_to_condense.cancelled) {
3371 zfs_livelist_condense_sync_cancel++;
3372 goto out;
3373 }
3374
3375 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3376 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3377 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
3378
3379 /*
3380 * It's possible that the livelist was changed while the zthr was
3381 * running. Therefore, we need to check for new blkptrs in the two
3382 * entries being condensed and continue to track them in the livelist.
3383 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
3384 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
3385 * we need to sort them into two different bplists.
3386 */
3387 uint64_t first_obj = first->dle_bpobj.bpo_object;
3388 uint64_t next_obj = next->dle_bpobj.bpo_object;
3389 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3390 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3391
3392 bplist_create(&new_frees);
3393 livelist_new_arg_t new_bps = {
3394 .allocs = &lca->to_keep,
3395 .frees = &new_frees,
3396 };
3397
3398 if (cur_first_size > lca->first_size) {
3399 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
3400 livelist_track_new_cb, &new_bps, lca->first_size));
3401 }
3402 if (cur_next_size > lca->next_size) {
3403 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
3404 livelist_track_new_cb, &new_bps, lca->next_size));
3405 }
3406
3407 dsl_deadlist_clear_entry(first, ll, tx);
3408 ASSERT(bpobj_is_empty(&first->dle_bpobj));
3409 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
3410
3411 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
3412 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
3413 bplist_destroy(&new_frees);
3414
3415 char dsname[ZFS_MAX_DATASET_NAME_LEN];
3416 dsl_dataset_name(ds, dsname);
3417 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
3418 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
3419 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
3420 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
3421 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
3422 (u_longlong_t)cur_next_size,
3423 (u_longlong_t)first->dle_bpobj.bpo_object,
3424 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
3425 out:
3426 dmu_buf_rele(ds->ds_dbuf, spa);
3427 spa->spa_to_condense.ds = NULL;
3428 bplist_clear(&lca->to_keep);
3429 bplist_destroy(&lca->to_keep);
3430 kmem_free(lca, sizeof (livelist_condense_arg_t));
3431 spa->spa_to_condense.syncing = B_FALSE;
3432 }
3433
3434 static void
spa_livelist_condense_cb(void * arg,zthr_t * t)3435 spa_livelist_condense_cb(void *arg, zthr_t *t)
3436 {
3437 while (zfs_livelist_condense_zthr_pause &&
3438 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3439 delay(1);
3440
3441 spa_t *spa = arg;
3442 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3443 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3444 uint64_t first_size, next_size;
3445
3446 livelist_condense_arg_t *lca =
3447 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
3448 bplist_create(&lca->to_keep);
3449
3450 /*
3451 * Process the livelists (matching FREEs and ALLOCs) in open context
3452 * so we have minimal work in syncing context to condense.
3453 *
3454 * We save bpobj sizes (first_size and next_size) to use later in
3455 * syncing context to determine if entries were added to these sublists
3456 * while in open context. This is possible because the clone is still
3457 * active and open for normal writes and we want to make sure the new,
3458 * unprocessed blockpointers are inserted into the livelist normally.
3459 *
3460 * Note that dsl_process_sub_livelist() both stores the size number of
3461 * blockpointers and iterates over them while the bpobj's lock held, so
3462 * the sizes returned to us are consistent which what was actually
3463 * processed.
3464 */
3465 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
3466 &first_size);
3467 if (err == 0)
3468 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
3469 t, &next_size);
3470
3471 if (err == 0) {
3472 while (zfs_livelist_condense_sync_pause &&
3473 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3474 delay(1);
3475
3476 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3477 dmu_tx_mark_netfree(tx);
3478 dmu_tx_hold_space(tx, 1);
3479 err = dmu_tx_assign(tx, DMU_TX_NOWAIT | DMU_TX_NOTHROTTLE);
3480 if (err == 0) {
3481 /*
3482 * Prevent the condense zthr restarting before
3483 * the synctask completes.
3484 */
3485 spa->spa_to_condense.syncing = B_TRUE;
3486 lca->spa = spa;
3487 lca->first_size = first_size;
3488 lca->next_size = next_size;
3489 dsl_sync_task_nowait(spa_get_dsl(spa),
3490 spa_livelist_condense_sync, lca, tx);
3491 dmu_tx_commit(tx);
3492 return;
3493 }
3494 }
3495 /*
3496 * Condensing can not continue: either it was externally stopped or
3497 * we were unable to assign to a tx because the pool has run out of
3498 * space. In the second case, we'll just end up trying to condense
3499 * again in a later txg.
3500 */
3501 ASSERT(err != 0);
3502 bplist_clear(&lca->to_keep);
3503 bplist_destroy(&lca->to_keep);
3504 kmem_free(lca, sizeof (livelist_condense_arg_t));
3505 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
3506 spa->spa_to_condense.ds = NULL;
3507 if (err == EINTR)
3508 zfs_livelist_condense_zthr_cancel++;
3509 }
3510
3511 /*
3512 * Check that there is something to condense but that a condense is not
3513 * already in progress and that condensing has not been cancelled.
3514 */
3515 static boolean_t
spa_livelist_condense_cb_check(void * arg,zthr_t * z)3516 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
3517 {
3518 (void) z;
3519 spa_t *spa = arg;
3520 if ((spa->spa_to_condense.ds != NULL) &&
3521 (spa->spa_to_condense.syncing == B_FALSE) &&
3522 (spa->spa_to_condense.cancelled == B_FALSE)) {
3523 return (B_TRUE);
3524 }
3525 return (B_FALSE);
3526 }
3527
3528 static void
spa_start_livelist_condensing_thread(spa_t * spa)3529 spa_start_livelist_condensing_thread(spa_t *spa)
3530 {
3531 spa->spa_to_condense.ds = NULL;
3532 spa->spa_to_condense.first = NULL;
3533 spa->spa_to_condense.next = NULL;
3534 spa->spa_to_condense.syncing = B_FALSE;
3535 spa->spa_to_condense.cancelled = B_FALSE;
3536
3537 ASSERT0P(spa->spa_livelist_condense_zthr);
3538 spa->spa_livelist_condense_zthr =
3539 zthr_create("z_livelist_condense",
3540 spa_livelist_condense_cb_check,
3541 spa_livelist_condense_cb, spa, minclsyspri);
3542 }
3543
3544 static void
spa_spawn_aux_threads(spa_t * spa)3545 spa_spawn_aux_threads(spa_t *spa)
3546 {
3547 ASSERT(spa_writeable(spa));
3548
3549 spa_start_raidz_expansion_thread(spa);
3550 spa_start_indirect_condensing_thread(spa);
3551 spa_start_livelist_destroy_thread(spa);
3552 spa_start_livelist_condensing_thread(spa);
3553
3554 ASSERT0P(spa->spa_checkpoint_discard_zthr);
3555 spa->spa_checkpoint_discard_zthr =
3556 zthr_create("z_checkpoint_discard",
3557 spa_checkpoint_discard_thread_check,
3558 spa_checkpoint_discard_thread, spa, minclsyspri);
3559 }
3560
3561 /*
3562 * Fix up config after a partly-completed split. This is done with the
3563 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
3564 * pool have that entry in their config, but only the splitting one contains
3565 * a list of all the guids of the vdevs that are being split off.
3566 *
3567 * This function determines what to do with that list: either rejoin
3568 * all the disks to the pool, or complete the splitting process. To attempt
3569 * the rejoin, each disk that is offlined is marked online again, and
3570 * we do a reopen() call. If the vdev label for every disk that was
3571 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
3572 * then we call vdev_split() on each disk, and complete the split.
3573 *
3574 * Otherwise we leave the config alone, with all the vdevs in place in
3575 * the original pool.
3576 */
3577 static void
spa_try_repair(spa_t * spa,nvlist_t * config)3578 spa_try_repair(spa_t *spa, nvlist_t *config)
3579 {
3580 uint_t extracted;
3581 uint64_t *glist;
3582 uint_t i, gcount;
3583 nvlist_t *nvl;
3584 vdev_t **vd;
3585 boolean_t attempt_reopen;
3586
3587 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
3588 return;
3589
3590 /* check that the config is complete */
3591 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3592 &glist, &gcount) != 0)
3593 return;
3594
3595 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3596
3597 /* attempt to online all the vdevs & validate */
3598 attempt_reopen = B_TRUE;
3599 for (i = 0; i < gcount; i++) {
3600 if (glist[i] == 0) /* vdev is hole */
3601 continue;
3602
3603 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3604 if (vd[i] == NULL) {
3605 /*
3606 * Don't bother attempting to reopen the disks;
3607 * just do the split.
3608 */
3609 attempt_reopen = B_FALSE;
3610 } else {
3611 /* attempt to re-online it */
3612 vd[i]->vdev_offline = B_FALSE;
3613 }
3614 }
3615
3616 if (attempt_reopen) {
3617 vdev_reopen(spa->spa_root_vdev);
3618
3619 /* check each device to see what state it's in */
3620 for (extracted = 0, i = 0; i < gcount; i++) {
3621 if (vd[i] != NULL &&
3622 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3623 break;
3624 ++extracted;
3625 }
3626 }
3627
3628 /*
3629 * If every disk has been moved to the new pool, or if we never
3630 * even attempted to look at them, then we split them off for
3631 * good.
3632 */
3633 if (!attempt_reopen || gcount == extracted) {
3634 for (i = 0; i < gcount; i++)
3635 if (vd[i] != NULL)
3636 vdev_split(vd[i]);
3637 vdev_reopen(spa->spa_root_vdev);
3638 }
3639
3640 kmem_free(vd, gcount * sizeof (vdev_t *));
3641 }
3642
3643 static int
spa_load(spa_t * spa,spa_load_state_t state,spa_import_type_t type)3644 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3645 {
3646 const char *ereport = FM_EREPORT_ZFS_POOL;
3647 int error;
3648
3649 spa->spa_load_state = state;
3650 (void) spa_import_progress_set_state(spa_guid(spa),
3651 spa_load_state(spa));
3652 spa_import_progress_set_notes(spa, "spa_load()");
3653
3654 gethrestime(&spa->spa_loaded_ts);
3655 error = spa_load_impl(spa, type, &ereport);
3656
3657 /*
3658 * Don't count references from objsets that are already closed
3659 * and are making their way through the eviction process.
3660 */
3661 spa_evicting_os_wait(spa);
3662 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3663 if (error) {
3664 if (error != EEXIST) {
3665 spa->spa_loaded_ts.tv_sec = 0;
3666 spa->spa_loaded_ts.tv_nsec = 0;
3667 }
3668 if (error != EBADF) {
3669 (void) zfs_ereport_post(ereport, spa,
3670 NULL, NULL, NULL, 0);
3671 }
3672 }
3673 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3674 spa->spa_ena = 0;
3675
3676 (void) spa_import_progress_set_state(spa_guid(spa),
3677 spa_load_state(spa));
3678
3679 return (error);
3680 }
3681
3682 #ifdef ZFS_DEBUG
3683 /*
3684 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3685 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3686 * spa's per-vdev ZAP list.
3687 */
3688 static uint64_t
vdev_count_verify_zaps(vdev_t * vd)3689 vdev_count_verify_zaps(vdev_t *vd)
3690 {
3691 spa_t *spa = vd->vdev_spa;
3692 uint64_t total = 0;
3693
3694 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3695 vd->vdev_root_zap != 0) {
3696 total++;
3697 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3698 spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3699 }
3700 if (vd->vdev_top_zap != 0) {
3701 total++;
3702 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3703 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3704 }
3705 if (vd->vdev_leaf_zap != 0) {
3706 total++;
3707 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3708 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3709 }
3710
3711 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3712 total += vdev_count_verify_zaps(vd->vdev_child[i]);
3713 }
3714
3715 return (total);
3716 }
3717 #else
3718 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3719 #endif
3720
3721 /*
3722 * Determine whether the activity check is required.
3723 */
3724 static boolean_t
spa_activity_check_required(spa_t * spa,uberblock_t * ub,nvlist_t * label,nvlist_t * config)3725 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3726 nvlist_t *config)
3727 {
3728 uint64_t state = 0;
3729 uint64_t hostid = 0;
3730 uint64_t tryconfig_txg = 0;
3731 uint64_t tryconfig_timestamp = 0;
3732 uint16_t tryconfig_mmp_seq = 0;
3733 nvlist_t *nvinfo;
3734
3735 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3736 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3737 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3738 &tryconfig_txg);
3739 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3740 &tryconfig_timestamp);
3741 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3742 &tryconfig_mmp_seq);
3743 }
3744
3745 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3746
3747 /*
3748 * Disable the MMP activity check - This is used by zdb which
3749 * is intended to be used on potentially active pools.
3750 */
3751 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3752 return (B_FALSE);
3753
3754 /*
3755 * Skip the activity check when the MMP feature is disabled.
3756 */
3757 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3758 return (B_FALSE);
3759
3760 /*
3761 * If the tryconfig_ values are nonzero, they are the results of an
3762 * earlier tryimport. If they all match the uberblock we just found,
3763 * then the pool has not changed and we return false so we do not test
3764 * a second time.
3765 */
3766 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3767 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3768 tryconfig_mmp_seq && tryconfig_mmp_seq ==
3769 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3770 return (B_FALSE);
3771
3772 /*
3773 * Allow the activity check to be skipped when importing the pool
3774 * on the same host which last imported it. Since the hostid from
3775 * configuration may be stale use the one read from the label.
3776 */
3777 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3778 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3779
3780 if (hostid == spa_get_hostid(spa))
3781 return (B_FALSE);
3782
3783 /*
3784 * Skip the activity test when the pool was cleanly exported.
3785 */
3786 if (state != POOL_STATE_ACTIVE)
3787 return (B_FALSE);
3788
3789 return (B_TRUE);
3790 }
3791
3792 /*
3793 * Nanoseconds the activity check must watch for changes on-disk.
3794 */
3795 static uint64_t
spa_activity_check_duration(spa_t * spa,uberblock_t * ub)3796 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3797 {
3798 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3799 uint64_t multihost_interval = MSEC2NSEC(
3800 MMP_INTERVAL_OK(zfs_multihost_interval));
3801 uint64_t import_delay = MAX(NANOSEC, import_intervals *
3802 multihost_interval);
3803
3804 /*
3805 * Local tunables determine a minimum duration except for the case
3806 * where we know when the remote host will suspend the pool if MMP
3807 * writes do not land.
3808 *
3809 * See Big Theory comment at the top of mmp.c for the reasoning behind
3810 * these cases and times.
3811 */
3812
3813 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3814
3815 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3816 MMP_FAIL_INT(ub) > 0) {
3817
3818 /* MMP on remote host will suspend pool after failed writes */
3819 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3820 MMP_IMPORT_SAFETY_FACTOR / 100;
3821
3822 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3823 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3824 "import_intervals=%llu", (u_longlong_t)import_delay,
3825 (u_longlong_t)MMP_FAIL_INT(ub),
3826 (u_longlong_t)MMP_INTERVAL(ub),
3827 (u_longlong_t)import_intervals);
3828
3829 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3830 MMP_FAIL_INT(ub) == 0) {
3831
3832 /* MMP on remote host will never suspend pool */
3833 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3834 ub->ub_mmp_delay) * import_intervals);
3835
3836 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3837 "mmp_interval=%llu ub_mmp_delay=%llu "
3838 "import_intervals=%llu", (u_longlong_t)import_delay,
3839 (u_longlong_t)MMP_INTERVAL(ub),
3840 (u_longlong_t)ub->ub_mmp_delay,
3841 (u_longlong_t)import_intervals);
3842
3843 } else if (MMP_VALID(ub)) {
3844 /*
3845 * zfs-0.7 compatibility case
3846 */
3847
3848 import_delay = MAX(import_delay, (multihost_interval +
3849 ub->ub_mmp_delay) * import_intervals);
3850
3851 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3852 "import_intervals=%llu leaves=%u",
3853 (u_longlong_t)import_delay,
3854 (u_longlong_t)ub->ub_mmp_delay,
3855 (u_longlong_t)import_intervals,
3856 vdev_count_leaves(spa));
3857 } else {
3858 /* Using local tunings is the only reasonable option */
3859 zfs_dbgmsg("pool last imported on non-MMP aware "
3860 "host using import_delay=%llu multihost_interval=%llu "
3861 "import_intervals=%llu", (u_longlong_t)import_delay,
3862 (u_longlong_t)multihost_interval,
3863 (u_longlong_t)import_intervals);
3864 }
3865
3866 return (import_delay);
3867 }
3868
3869 /*
3870 * Remote host activity check.
3871 *
3872 * error results:
3873 * 0 - no activity detected
3874 * EREMOTEIO - remote activity detected
3875 * EINTR - user canceled the operation
3876 */
3877 static int
spa_activity_check(spa_t * spa,uberblock_t * ub,nvlist_t * config,boolean_t importing)3878 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config,
3879 boolean_t importing)
3880 {
3881 uint64_t txg = ub->ub_txg;
3882 uint64_t timestamp = ub->ub_timestamp;
3883 uint64_t mmp_config = ub->ub_mmp_config;
3884 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3885 uint64_t import_delay;
3886 hrtime_t import_expire, now;
3887 nvlist_t *mmp_label = NULL;
3888 vdev_t *rvd = spa->spa_root_vdev;
3889 kcondvar_t cv;
3890 kmutex_t mtx;
3891 int error = 0;
3892
3893 cv_init(&cv, NULL, CV_DEFAULT, NULL);
3894 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3895 mutex_enter(&mtx);
3896
3897 /*
3898 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3899 * during the earlier tryimport. If the txg recorded there is 0 then
3900 * the pool is known to be active on another host.
3901 *
3902 * Otherwise, the pool might be in use on another host. Check for
3903 * changes in the uberblocks on disk if necessary.
3904 */
3905 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3906 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3907 ZPOOL_CONFIG_LOAD_INFO);
3908
3909 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3910 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3911 vdev_uberblock_load(rvd, ub, &mmp_label);
3912 error = SET_ERROR(EREMOTEIO);
3913 goto out;
3914 }
3915 }
3916
3917 import_delay = spa_activity_check_duration(spa, ub);
3918
3919 /* Add a small random factor in case of simultaneous imports (0-25%) */
3920 import_delay += import_delay * random_in_range(250) / 1000;
3921
3922 import_expire = gethrtime() + import_delay;
3923
3924 if (importing) {
3925 spa_import_progress_set_notes(spa, "Checking MMP activity, "
3926 "waiting %llu ms", (u_longlong_t)NSEC2MSEC(import_delay));
3927 }
3928
3929 int iterations = 0;
3930 while ((now = gethrtime()) < import_expire) {
3931 if (importing && iterations++ % 30 == 0) {
3932 spa_import_progress_set_notes(spa, "Checking MMP "
3933 "activity, %llu ms remaining",
3934 (u_longlong_t)NSEC2MSEC(import_expire - now));
3935 }
3936
3937 if (importing) {
3938 (void) spa_import_progress_set_mmp_check(spa_guid(spa),
3939 NSEC2SEC(import_expire - gethrtime()));
3940 }
3941
3942 vdev_uberblock_load(rvd, ub, &mmp_label);
3943
3944 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3945 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3946 zfs_dbgmsg("multihost activity detected "
3947 "txg %llu ub_txg %llu "
3948 "timestamp %llu ub_timestamp %llu "
3949 "mmp_config %#llx ub_mmp_config %#llx",
3950 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3951 (u_longlong_t)timestamp,
3952 (u_longlong_t)ub->ub_timestamp,
3953 (u_longlong_t)mmp_config,
3954 (u_longlong_t)ub->ub_mmp_config);
3955
3956 error = SET_ERROR(EREMOTEIO);
3957 break;
3958 }
3959
3960 if (mmp_label) {
3961 nvlist_free(mmp_label);
3962 mmp_label = NULL;
3963 }
3964
3965 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3966 if (error != -1) {
3967 error = SET_ERROR(EINTR);
3968 break;
3969 }
3970 error = 0;
3971 }
3972
3973 out:
3974 mutex_exit(&mtx);
3975 mutex_destroy(&mtx);
3976 cv_destroy(&cv);
3977
3978 /*
3979 * If the pool is determined to be active store the status in the
3980 * spa->spa_load_info nvlist. If the remote hostname or hostid are
3981 * available from configuration read from disk store them as well.
3982 * This allows 'zpool import' to generate a more useful message.
3983 *
3984 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
3985 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3986 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
3987 */
3988 if (error == EREMOTEIO) {
3989 if (mmp_label) {
3990 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3991 const char *hostname = fnvlist_lookup_string(
3992 mmp_label, ZPOOL_CONFIG_HOSTNAME);
3993 fnvlist_add_string(spa->spa_load_info,
3994 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3995 }
3996
3997 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3998 uint64_t hostid = fnvlist_lookup_uint64(
3999 mmp_label, ZPOOL_CONFIG_HOSTID);
4000 fnvlist_add_uint64(spa->spa_load_info,
4001 ZPOOL_CONFIG_MMP_HOSTID, hostid);
4002 }
4003 }
4004
4005 fnvlist_add_uint64(spa->spa_load_info,
4006 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
4007 fnvlist_add_uint64(spa->spa_load_info,
4008 ZPOOL_CONFIG_MMP_TXG, 0);
4009
4010 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
4011 }
4012
4013 if (mmp_label)
4014 nvlist_free(mmp_label);
4015
4016 return (error);
4017 }
4018
4019 /*
4020 * Called from zfs_ioc_clear for a pool that was suspended
4021 * after failing mmp write checks.
4022 */
4023 boolean_t
spa_mmp_remote_host_activity(spa_t * spa)4024 spa_mmp_remote_host_activity(spa_t *spa)
4025 {
4026 ASSERT(spa_multihost(spa) && spa_suspended(spa));
4027
4028 nvlist_t *best_label;
4029 uberblock_t best_ub;
4030
4031 /*
4032 * Locate the best uberblock on disk
4033 */
4034 vdev_uberblock_load(spa->spa_root_vdev, &best_ub, &best_label);
4035 if (best_label) {
4036 /*
4037 * confirm that the best hostid matches our hostid
4038 */
4039 if (nvlist_exists(best_label, ZPOOL_CONFIG_HOSTID) &&
4040 spa_get_hostid(spa) !=
4041 fnvlist_lookup_uint64(best_label, ZPOOL_CONFIG_HOSTID)) {
4042 nvlist_free(best_label);
4043 return (B_TRUE);
4044 }
4045 nvlist_free(best_label);
4046 } else {
4047 return (B_TRUE);
4048 }
4049
4050 if (!MMP_VALID(&best_ub) ||
4051 !MMP_FAIL_INT_VALID(&best_ub) ||
4052 MMP_FAIL_INT(&best_ub) == 0) {
4053 return (B_TRUE);
4054 }
4055
4056 if (best_ub.ub_txg != spa->spa_uberblock.ub_txg ||
4057 best_ub.ub_timestamp != spa->spa_uberblock.ub_timestamp) {
4058 zfs_dbgmsg("txg mismatch detected during pool clear "
4059 "txg %llu ub_txg %llu timestamp %llu ub_timestamp %llu",
4060 (u_longlong_t)spa->spa_uberblock.ub_txg,
4061 (u_longlong_t)best_ub.ub_txg,
4062 (u_longlong_t)spa->spa_uberblock.ub_timestamp,
4063 (u_longlong_t)best_ub.ub_timestamp);
4064 return (B_TRUE);
4065 }
4066
4067 /*
4068 * Perform an activity check looking for any remote writer
4069 */
4070 return (spa_activity_check(spa, &spa->spa_uberblock, spa->spa_config,
4071 B_FALSE) != 0);
4072 }
4073
4074 static int
spa_verify_host(spa_t * spa,nvlist_t * mos_config)4075 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
4076 {
4077 uint64_t hostid;
4078 const char *hostname;
4079 uint64_t myhostid = 0;
4080
4081 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
4082 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
4083 hostname = fnvlist_lookup_string(mos_config,
4084 ZPOOL_CONFIG_HOSTNAME);
4085
4086 myhostid = zone_get_hostid(NULL);
4087
4088 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
4089 cmn_err(CE_WARN, "pool '%s' could not be "
4090 "loaded as it was last accessed by "
4091 "another system (host: %s hostid: 0x%llx). "
4092 "See: https://openzfs.github.io/openzfs-docs/msg/"
4093 "ZFS-8000-EY",
4094 spa_name(spa), hostname, (u_longlong_t)hostid);
4095 spa_load_failed(spa, "hostid verification failed: pool "
4096 "last accessed by host: %s (hostid: 0x%llx)",
4097 hostname, (u_longlong_t)hostid);
4098 return (SET_ERROR(EBADF));
4099 }
4100 }
4101
4102 return (0);
4103 }
4104
4105 static int
spa_ld_parse_config(spa_t * spa,spa_import_type_t type)4106 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
4107 {
4108 int error = 0;
4109 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
4110 int parse;
4111 vdev_t *rvd;
4112 uint64_t pool_guid;
4113 const char *comment;
4114 const char *compatibility;
4115
4116 /*
4117 * Versioning wasn't explicitly added to the label until later, so if
4118 * it's not present treat it as the initial version.
4119 */
4120 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4121 &spa->spa_ubsync.ub_version) != 0)
4122 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4123
4124 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
4125 spa_load_failed(spa, "invalid config provided: '%s' missing",
4126 ZPOOL_CONFIG_POOL_GUID);
4127 return (SET_ERROR(EINVAL));
4128 }
4129
4130 /*
4131 * If we are doing an import, ensure that the pool is not already
4132 * imported by checking if its pool guid already exists in the
4133 * spa namespace.
4134 *
4135 * The only case that we allow an already imported pool to be
4136 * imported again, is when the pool is checkpointed and we want to
4137 * look at its checkpointed state from userland tools like zdb.
4138 */
4139 #ifdef _KERNEL
4140 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
4141 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
4142 spa_guid_exists(pool_guid, 0)) {
4143 #else
4144 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
4145 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
4146 spa_guid_exists(pool_guid, 0) &&
4147 !spa_importing_readonly_checkpoint(spa)) {
4148 #endif
4149 spa_load_failed(spa, "a pool with guid %llu is already open",
4150 (u_longlong_t)pool_guid);
4151 return (SET_ERROR(EEXIST));
4152 }
4153
4154 spa->spa_config_guid = pool_guid;
4155
4156 nvlist_free(spa->spa_load_info);
4157 spa->spa_load_info = fnvlist_alloc();
4158
4159 ASSERT0P(spa->spa_comment);
4160 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
4161 spa->spa_comment = spa_strdup(comment);
4162
4163 ASSERT0P(spa->spa_compatibility);
4164 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
4165 &compatibility) == 0)
4166 spa->spa_compatibility = spa_strdup(compatibility);
4167
4168 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4169 &spa->spa_config_txg);
4170
4171 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
4172 spa->spa_config_splitting = fnvlist_dup(nvl);
4173
4174 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
4175 spa_load_failed(spa, "invalid config provided: '%s' missing",
4176 ZPOOL_CONFIG_VDEV_TREE);
4177 return (SET_ERROR(EINVAL));
4178 }
4179
4180 /*
4181 * Create "The Godfather" zio to hold all async IOs
4182 */
4183 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4184 KM_SLEEP);
4185 for (int i = 0; i < max_ncpus; i++) {
4186 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4187 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4188 ZIO_FLAG_GODFATHER);
4189 }
4190
4191 /*
4192 * Parse the configuration into a vdev tree. We explicitly set the
4193 * value that will be returned by spa_version() since parsing the
4194 * configuration requires knowing the version number.
4195 */
4196 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4197 parse = (type == SPA_IMPORT_EXISTING ?
4198 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
4199 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
4200 spa_config_exit(spa, SCL_ALL, FTAG);
4201
4202 if (error != 0) {
4203 spa_load_failed(spa, "unable to parse config [error=%d]",
4204 error);
4205 return (error);
4206 }
4207
4208 ASSERT(spa->spa_root_vdev == rvd);
4209 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
4210 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
4211
4212 if (type != SPA_IMPORT_ASSEMBLE) {
4213 ASSERT(spa_guid(spa) == pool_guid);
4214 }
4215
4216 return (0);
4217 }
4218
4219 /*
4220 * Recursively open all vdevs in the vdev tree. This function is called twice:
4221 * first with the untrusted config, then with the trusted config.
4222 */
4223 static int
4224 spa_ld_open_vdevs(spa_t *spa)
4225 {
4226 int error = 0;
4227
4228 /*
4229 * spa_missing_tvds_allowed defines how many top-level vdevs can be
4230 * missing/unopenable for the root vdev to be still considered openable.
4231 */
4232 if (spa->spa_trust_config) {
4233 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
4234 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
4235 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
4236 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
4237 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
4238 } else {
4239 spa->spa_missing_tvds_allowed = 0;
4240 }
4241
4242 spa->spa_missing_tvds_allowed =
4243 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
4244
4245 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4246 error = vdev_open(spa->spa_root_vdev);
4247 spa_config_exit(spa, SCL_ALL, FTAG);
4248
4249 if (spa->spa_missing_tvds != 0) {
4250 spa_load_note(spa, "vdev tree has %lld missing top-level "
4251 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
4252 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
4253 /*
4254 * Although theoretically we could allow users to open
4255 * incomplete pools in RW mode, we'd need to add a lot
4256 * of extra logic (e.g. adjust pool space to account
4257 * for missing vdevs).
4258 * This limitation also prevents users from accidentally
4259 * opening the pool in RW mode during data recovery and
4260 * damaging it further.
4261 */
4262 spa_load_note(spa, "pools with missing top-level "
4263 "vdevs can only be opened in read-only mode.");
4264 error = SET_ERROR(ENXIO);
4265 } else {
4266 spa_load_note(spa, "current settings allow for maximum "
4267 "%lld missing top-level vdevs at this stage.",
4268 (u_longlong_t)spa->spa_missing_tvds_allowed);
4269 }
4270 }
4271 if (error != 0) {
4272 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
4273 error);
4274 }
4275 if (spa->spa_missing_tvds != 0 || error != 0)
4276 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
4277
4278 return (error);
4279 }
4280
4281 /*
4282 * We need to validate the vdev labels against the configuration that
4283 * we have in hand. This function is called twice: first with an untrusted
4284 * config, then with a trusted config. The validation is more strict when the
4285 * config is trusted.
4286 */
4287 static int
4288 spa_ld_validate_vdevs(spa_t *spa)
4289 {
4290 int error = 0;
4291 vdev_t *rvd = spa->spa_root_vdev;
4292
4293 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4294 error = vdev_validate(rvd);
4295 spa_config_exit(spa, SCL_ALL, FTAG);
4296
4297 if (error != 0) {
4298 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
4299 return (error);
4300 }
4301
4302 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
4303 spa_load_failed(spa, "cannot open vdev tree after invalidating "
4304 "some vdevs");
4305 vdev_dbgmsg_print_tree(rvd, 2);
4306 return (SET_ERROR(ENXIO));
4307 }
4308
4309 return (0);
4310 }
4311
4312 static void
4313 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
4314 {
4315 spa->spa_state = POOL_STATE_ACTIVE;
4316 spa->spa_ubsync = spa->spa_uberblock;
4317 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
4318 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
4319 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
4320 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
4321 spa->spa_claim_max_txg = spa->spa_first_txg;
4322 spa->spa_prev_software_version = ub->ub_software_version;
4323 }
4324
4325 static int
4326 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
4327 {
4328 vdev_t *rvd = spa->spa_root_vdev;
4329 nvlist_t *label;
4330 uberblock_t *ub = &spa->spa_uberblock;
4331 boolean_t activity_check = B_FALSE;
4332
4333 /*
4334 * If we are opening the checkpointed state of the pool by
4335 * rewinding to it, at this point we will have written the
4336 * checkpointed uberblock to the vdev labels, so searching
4337 * the labels will find the right uberblock. However, if
4338 * we are opening the checkpointed state read-only, we have
4339 * not modified the labels. Therefore, we must ignore the
4340 * labels and continue using the spa_uberblock that was set
4341 * by spa_ld_checkpoint_rewind.
4342 *
4343 * Note that it would be fine to ignore the labels when
4344 * rewinding (opening writeable) as well. However, if we
4345 * crash just after writing the labels, we will end up
4346 * searching the labels. Doing so in the common case means
4347 * that this code path gets exercised normally, rather than
4348 * just in the edge case.
4349 */
4350 if (ub->ub_checkpoint_txg != 0 &&
4351 spa_importing_readonly_checkpoint(spa)) {
4352 spa_ld_select_uberblock_done(spa, ub);
4353 return (0);
4354 }
4355
4356 /*
4357 * Find the best uberblock.
4358 */
4359 vdev_uberblock_load(rvd, ub, &label);
4360
4361 /*
4362 * If we weren't able to find a single valid uberblock, return failure.
4363 */
4364 if (ub->ub_txg == 0) {
4365 nvlist_free(label);
4366 spa_load_failed(spa, "no valid uberblock found");
4367 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
4368 }
4369
4370 if (spa->spa_load_max_txg != UINT64_MAX) {
4371 (void) spa_import_progress_set_max_txg(spa_guid(spa),
4372 (u_longlong_t)spa->spa_load_max_txg);
4373 }
4374 spa_load_note(spa, "using uberblock with txg=%llu",
4375 (u_longlong_t)ub->ub_txg);
4376 if (ub->ub_raidz_reflow_info != 0) {
4377 spa_load_note(spa, "uberblock raidz_reflow_info: "
4378 "state=%u offset=%llu",
4379 (int)RRSS_GET_STATE(ub),
4380 (u_longlong_t)RRSS_GET_OFFSET(ub));
4381 }
4382
4383
4384 /*
4385 * For pools which have the multihost property on determine if the
4386 * pool is truly inactive and can be safely imported. Prevent
4387 * hosts which don't have a hostid set from importing the pool.
4388 */
4389 activity_check = spa_activity_check_required(spa, ub, label,
4390 spa->spa_config);
4391 if (activity_check) {
4392 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
4393 spa_get_hostid(spa) == 0) {
4394 nvlist_free(label);
4395 fnvlist_add_uint64(spa->spa_load_info,
4396 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4397 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4398 }
4399
4400 int error =
4401 spa_activity_check(spa, ub, spa->spa_config, B_TRUE);
4402 if (error) {
4403 nvlist_free(label);
4404 return (error);
4405 }
4406
4407 fnvlist_add_uint64(spa->spa_load_info,
4408 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
4409 fnvlist_add_uint64(spa->spa_load_info,
4410 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
4411 fnvlist_add_uint16(spa->spa_load_info,
4412 ZPOOL_CONFIG_MMP_SEQ,
4413 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
4414 }
4415
4416 /*
4417 * If the pool has an unsupported version we can't open it.
4418 */
4419 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
4420 nvlist_free(label);
4421 spa_load_failed(spa, "version %llu is not supported",
4422 (u_longlong_t)ub->ub_version);
4423 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
4424 }
4425
4426 if (ub->ub_version >= SPA_VERSION_FEATURES) {
4427 nvlist_t *features;
4428
4429 /*
4430 * If we weren't able to find what's necessary for reading the
4431 * MOS in the label, return failure.
4432 */
4433 if (label == NULL) {
4434 spa_load_failed(spa, "label config unavailable");
4435 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4436 ENXIO));
4437 }
4438
4439 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
4440 &features) != 0) {
4441 nvlist_free(label);
4442 spa_load_failed(spa, "invalid label: '%s' missing",
4443 ZPOOL_CONFIG_FEATURES_FOR_READ);
4444 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4445 ENXIO));
4446 }
4447
4448 /*
4449 * Update our in-core representation with the definitive values
4450 * from the label.
4451 */
4452 nvlist_free(spa->spa_label_features);
4453 spa->spa_label_features = fnvlist_dup(features);
4454 }
4455
4456 nvlist_free(label);
4457
4458 /*
4459 * Look through entries in the label nvlist's features_for_read. If
4460 * there is a feature listed there which we don't understand then we
4461 * cannot open a pool.
4462 */
4463 if (ub->ub_version >= SPA_VERSION_FEATURES) {
4464 nvlist_t *unsup_feat;
4465
4466 unsup_feat = fnvlist_alloc();
4467
4468 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
4469 NULL); nvp != NULL;
4470 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
4471 if (!zfeature_is_supported(nvpair_name(nvp))) {
4472 fnvlist_add_string(unsup_feat,
4473 nvpair_name(nvp), "");
4474 }
4475 }
4476
4477 if (!nvlist_empty(unsup_feat)) {
4478 fnvlist_add_nvlist(spa->spa_load_info,
4479 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4480 nvlist_free(unsup_feat);
4481 spa_load_failed(spa, "some features are unsupported");
4482 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4483 ENOTSUP));
4484 }
4485
4486 nvlist_free(unsup_feat);
4487 }
4488
4489 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
4490 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4491 spa_try_repair(spa, spa->spa_config);
4492 spa_config_exit(spa, SCL_ALL, FTAG);
4493 nvlist_free(spa->spa_config_splitting);
4494 spa->spa_config_splitting = NULL;
4495 }
4496
4497 /*
4498 * Initialize internal SPA structures.
4499 */
4500 spa_ld_select_uberblock_done(spa, ub);
4501
4502 return (0);
4503 }
4504
4505 static int
4506 spa_ld_open_rootbp(spa_t *spa)
4507 {
4508 int error = 0;
4509 vdev_t *rvd = spa->spa_root_vdev;
4510
4511 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
4512 if (error != 0) {
4513 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
4514 "[error=%d]", error);
4515 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4516 }
4517 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
4518
4519 return (0);
4520 }
4521
4522 static int
4523 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
4524 boolean_t reloading)
4525 {
4526 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
4527 nvlist_t *nv, *mos_config, *policy;
4528 int error = 0, copy_error;
4529 uint64_t healthy_tvds, healthy_tvds_mos;
4530 uint64_t mos_config_txg;
4531
4532 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
4533 != 0)
4534 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4535
4536 /*
4537 * If we're assembling a pool from a split, the config provided is
4538 * already trusted so there is nothing to do.
4539 */
4540 if (type == SPA_IMPORT_ASSEMBLE)
4541 return (0);
4542
4543 healthy_tvds = spa_healthy_core_tvds(spa);
4544
4545 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
4546 != 0) {
4547 spa_load_failed(spa, "unable to retrieve MOS config");
4548 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4549 }
4550
4551 /*
4552 * If we are doing an open, pool owner wasn't verified yet, thus do
4553 * the verification here.
4554 */
4555 if (spa->spa_load_state == SPA_LOAD_OPEN) {
4556 error = spa_verify_host(spa, mos_config);
4557 if (error != 0) {
4558 nvlist_free(mos_config);
4559 return (error);
4560 }
4561 }
4562
4563 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
4564
4565 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4566
4567 /*
4568 * Build a new vdev tree from the trusted config
4569 */
4570 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
4571 if (error != 0) {
4572 nvlist_free(mos_config);
4573 spa_config_exit(spa, SCL_ALL, FTAG);
4574 spa_load_failed(spa, "spa_config_parse failed [error=%d]",
4575 error);
4576 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4577 }
4578
4579 /*
4580 * Vdev paths in the MOS may be obsolete. If the untrusted config was
4581 * obtained by scanning /dev/dsk, then it will have the right vdev
4582 * paths. We update the trusted MOS config with this information.
4583 * We first try to copy the paths with vdev_copy_path_strict, which
4584 * succeeds only when both configs have exactly the same vdev tree.
4585 * If that fails, we fall back to a more flexible method that has a
4586 * best effort policy.
4587 */
4588 copy_error = vdev_copy_path_strict(rvd, mrvd);
4589 if (copy_error != 0 || spa_load_print_vdev_tree) {
4590 spa_load_note(spa, "provided vdev tree:");
4591 vdev_dbgmsg_print_tree(rvd, 2);
4592 spa_load_note(spa, "MOS vdev tree:");
4593 vdev_dbgmsg_print_tree(mrvd, 2);
4594 }
4595 if (copy_error != 0) {
4596 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
4597 "back to vdev_copy_path_relaxed");
4598 vdev_copy_path_relaxed(rvd, mrvd);
4599 }
4600
4601 vdev_close(rvd);
4602 vdev_free(rvd);
4603 spa->spa_root_vdev = mrvd;
4604 rvd = mrvd;
4605 spa_config_exit(spa, SCL_ALL, FTAG);
4606
4607 /*
4608 * If 'zpool import' used a cached config, then the on-disk hostid and
4609 * hostname may be different to the cached config in ways that should
4610 * prevent import. Userspace can't discover this without a scan, but
4611 * we know, so we add these values to LOAD_INFO so the caller can know
4612 * the difference.
4613 *
4614 * Note that we have to do this before the config is regenerated,
4615 * because the new config will have the hostid and hostname for this
4616 * host, in readiness for import.
4617 */
4618 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
4619 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
4620 fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
4621 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
4622 fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
4623 fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
4624
4625 /*
4626 * We will use spa_config if we decide to reload the spa or if spa_load
4627 * fails and we rewind. We must thus regenerate the config using the
4628 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
4629 * pass settings on how to load the pool and is not stored in the MOS.
4630 * We copy it over to our new, trusted config.
4631 */
4632 mos_config_txg = fnvlist_lookup_uint64(mos_config,
4633 ZPOOL_CONFIG_POOL_TXG);
4634 nvlist_free(mos_config);
4635 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
4636 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
4637 &policy) == 0)
4638 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
4639 spa_config_set(spa, mos_config);
4640 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
4641
4642 /*
4643 * Now that we got the config from the MOS, we should be more strict
4644 * in checking blkptrs and can make assumptions about the consistency
4645 * of the vdev tree. spa_trust_config must be set to true before opening
4646 * vdevs in order for them to be writeable.
4647 */
4648 spa->spa_trust_config = B_TRUE;
4649
4650 /*
4651 * Open and validate the new vdev tree
4652 */
4653 error = spa_ld_open_vdevs(spa);
4654 if (error != 0)
4655 return (error);
4656
4657 error = spa_ld_validate_vdevs(spa);
4658 if (error != 0)
4659 return (error);
4660
4661 if (copy_error != 0 || spa_load_print_vdev_tree) {
4662 spa_load_note(spa, "final vdev tree:");
4663 vdev_dbgmsg_print_tree(rvd, 2);
4664 }
4665
4666 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
4667 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
4668 /*
4669 * Sanity check to make sure that we are indeed loading the
4670 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4671 * in the config provided and they happened to be the only ones
4672 * to have the latest uberblock, we could involuntarily perform
4673 * an extreme rewind.
4674 */
4675 healthy_tvds_mos = spa_healthy_core_tvds(spa);
4676 if (healthy_tvds_mos - healthy_tvds >=
4677 SPA_SYNC_MIN_VDEVS) {
4678 spa_load_note(spa, "config provided misses too many "
4679 "top-level vdevs compared to MOS (%lld vs %lld). ",
4680 (u_longlong_t)healthy_tvds,
4681 (u_longlong_t)healthy_tvds_mos);
4682 spa_load_note(spa, "vdev tree:");
4683 vdev_dbgmsg_print_tree(rvd, 2);
4684 if (reloading) {
4685 spa_load_failed(spa, "config was already "
4686 "provided from MOS. Aborting.");
4687 return (spa_vdev_err(rvd,
4688 VDEV_AUX_CORRUPT_DATA, EIO));
4689 }
4690 spa_load_note(spa, "spa must be reloaded using MOS "
4691 "config");
4692 return (SET_ERROR(EAGAIN));
4693 }
4694 }
4695
4696 error = spa_check_for_missing_logs(spa);
4697 if (error != 0)
4698 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4699
4700 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4701 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4702 "guid sum (%llu != %llu)",
4703 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4704 (u_longlong_t)rvd->vdev_guid_sum);
4705 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4706 ENXIO));
4707 }
4708
4709 return (0);
4710 }
4711
4712 static int
4713 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4714 {
4715 int error = 0;
4716 vdev_t *rvd = spa->spa_root_vdev;
4717
4718 /*
4719 * Everything that we read before spa_remove_init() must be stored
4720 * on concreted vdevs. Therefore we do this as early as possible.
4721 */
4722 error = spa_remove_init(spa);
4723 if (error != 0) {
4724 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4725 error);
4726 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4727 }
4728
4729 /*
4730 * Retrieve information needed to condense indirect vdev mappings.
4731 */
4732 error = spa_condense_init(spa);
4733 if (error != 0) {
4734 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4735 error);
4736 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4737 }
4738
4739 return (0);
4740 }
4741
4742 static int
4743 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4744 {
4745 int error = 0;
4746 vdev_t *rvd = spa->spa_root_vdev;
4747
4748 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4749 boolean_t missing_feat_read = B_FALSE;
4750 nvlist_t *unsup_feat, *enabled_feat;
4751
4752 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4753 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4754 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4755 }
4756
4757 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4758 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4759 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4760 }
4761
4762 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4763 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4764 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4765 }
4766
4767 enabled_feat = fnvlist_alloc();
4768 unsup_feat = fnvlist_alloc();
4769
4770 if (!spa_features_check(spa, B_FALSE,
4771 unsup_feat, enabled_feat))
4772 missing_feat_read = B_TRUE;
4773
4774 if (spa_writeable(spa) ||
4775 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4776 if (!spa_features_check(spa, B_TRUE,
4777 unsup_feat, enabled_feat)) {
4778 *missing_feat_writep = B_TRUE;
4779 }
4780 }
4781
4782 fnvlist_add_nvlist(spa->spa_load_info,
4783 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4784
4785 if (!nvlist_empty(unsup_feat)) {
4786 fnvlist_add_nvlist(spa->spa_load_info,
4787 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4788 }
4789
4790 fnvlist_free(enabled_feat);
4791 fnvlist_free(unsup_feat);
4792
4793 if (!missing_feat_read) {
4794 fnvlist_add_boolean(spa->spa_load_info,
4795 ZPOOL_CONFIG_CAN_RDONLY);
4796 }
4797
4798 /*
4799 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4800 * twofold: to determine whether the pool is available for
4801 * import in read-write mode and (if it is not) whether the
4802 * pool is available for import in read-only mode. If the pool
4803 * is available for import in read-write mode, it is displayed
4804 * as available in userland; if it is not available for import
4805 * in read-only mode, it is displayed as unavailable in
4806 * userland. If the pool is available for import in read-only
4807 * mode but not read-write mode, it is displayed as unavailable
4808 * in userland with a special note that the pool is actually
4809 * available for open in read-only mode.
4810 *
4811 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4812 * missing a feature for write, we must first determine whether
4813 * the pool can be opened read-only before returning to
4814 * userland in order to know whether to display the
4815 * abovementioned note.
4816 */
4817 if (missing_feat_read || (*missing_feat_writep &&
4818 spa_writeable(spa))) {
4819 spa_load_failed(spa, "pool uses unsupported features");
4820 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4821 ENOTSUP));
4822 }
4823
4824 /*
4825 * Load refcounts for ZFS features from disk into an in-memory
4826 * cache during SPA initialization.
4827 */
4828 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4829 uint64_t refcount;
4830
4831 error = feature_get_refcount_from_disk(spa,
4832 &spa_feature_table[i], &refcount);
4833 if (error == 0) {
4834 spa->spa_feat_refcount_cache[i] = refcount;
4835 } else if (error == ENOTSUP) {
4836 spa->spa_feat_refcount_cache[i] =
4837 SPA_FEATURE_DISABLED;
4838 } else {
4839 spa_load_failed(spa, "error getting refcount "
4840 "for feature %s [error=%d]",
4841 spa_feature_table[i].fi_guid, error);
4842 return (spa_vdev_err(rvd,
4843 VDEV_AUX_CORRUPT_DATA, EIO));
4844 }
4845 }
4846 }
4847
4848 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4849 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4850 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4851 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4852 }
4853
4854 /*
4855 * Encryption was added before bookmark_v2, even though bookmark_v2
4856 * is now a dependency. If this pool has encryption enabled without
4857 * bookmark_v2, trigger an errata message.
4858 */
4859 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4860 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4861 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4862 }
4863
4864 return (0);
4865 }
4866
4867 static int
4868 spa_ld_load_special_directories(spa_t *spa)
4869 {
4870 int error = 0;
4871 vdev_t *rvd = spa->spa_root_vdev;
4872
4873 spa->spa_is_initializing = B_TRUE;
4874 error = dsl_pool_open(spa->spa_dsl_pool);
4875 spa->spa_is_initializing = B_FALSE;
4876 if (error != 0) {
4877 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4878 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4879 }
4880
4881 return (0);
4882 }
4883
4884 static int
4885 spa_ld_get_props(spa_t *spa)
4886 {
4887 int error = 0;
4888 uint64_t obj;
4889 vdev_t *rvd = spa->spa_root_vdev;
4890
4891 /* Grab the checksum salt from the MOS. */
4892 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4893 DMU_POOL_CHECKSUM_SALT, 1,
4894 sizeof (spa->spa_cksum_salt.zcs_bytes),
4895 spa->spa_cksum_salt.zcs_bytes);
4896 if (error == ENOENT) {
4897 /* Generate a new salt for subsequent use */
4898 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4899 sizeof (spa->spa_cksum_salt.zcs_bytes));
4900 } else if (error != 0) {
4901 spa_load_failed(spa, "unable to retrieve checksum salt from "
4902 "MOS [error=%d]", error);
4903 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4904 }
4905
4906 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4907 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4908 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4909 if (error != 0) {
4910 spa_load_failed(spa, "error opening deferred-frees bpobj "
4911 "[error=%d]", error);
4912 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4913 }
4914
4915 /*
4916 * Load the bit that tells us to use the new accounting function
4917 * (raid-z deflation). If we have an older pool, this will not
4918 * be present.
4919 */
4920 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4921 if (error != 0 && error != ENOENT)
4922 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4923
4924 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4925 &spa->spa_creation_version, B_FALSE);
4926 if (error != 0 && error != ENOENT)
4927 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4928
4929 /* Load time log */
4930 spa_load_txg_log_time(spa);
4931
4932 /*
4933 * Load the persistent error log. If we have an older pool, this will
4934 * not be present.
4935 */
4936 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4937 B_FALSE);
4938 if (error != 0 && error != ENOENT)
4939 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4940
4941 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4942 &spa->spa_errlog_scrub, B_FALSE);
4943 if (error != 0 && error != ENOENT)
4944 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4945
4946 /* Load the last scrubbed txg. */
4947 error = spa_dir_prop(spa, DMU_POOL_LAST_SCRUBBED_TXG,
4948 &spa->spa_scrubbed_last_txg, B_FALSE);
4949 if (error != 0 && error != ENOENT)
4950 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4951
4952 /*
4953 * Load the livelist deletion field. If a livelist is queued for
4954 * deletion, indicate that in the spa
4955 */
4956 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4957 &spa->spa_livelists_to_delete, B_FALSE);
4958 if (error != 0 && error != ENOENT)
4959 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4960
4961 /*
4962 * Load the history object. If we have an older pool, this
4963 * will not be present.
4964 */
4965 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4966 if (error != 0 && error != ENOENT)
4967 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4968
4969 /*
4970 * Load the per-vdev ZAP map. If we have an older pool, this will not
4971 * be present; in this case, defer its creation to a later time to
4972 * avoid dirtying the MOS this early / out of sync context. See
4973 * spa_sync_config_object.
4974 */
4975
4976 /* The sentinel is only available in the MOS config. */
4977 nvlist_t *mos_config;
4978 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4979 spa_load_failed(spa, "unable to retrieve MOS config");
4980 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4981 }
4982
4983 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4984 &spa->spa_all_vdev_zaps, B_FALSE);
4985
4986 if (error == ENOENT) {
4987 VERIFY(!nvlist_exists(mos_config,
4988 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4989 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4990 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4991 } else if (error != 0) {
4992 nvlist_free(mos_config);
4993 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4994 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4995 /*
4996 * An older version of ZFS overwrote the sentinel value, so
4997 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4998 * destruction to later; see spa_sync_config_object.
4999 */
5000 spa->spa_avz_action = AVZ_ACTION_DESTROY;
5001 /*
5002 * We're assuming that no vdevs have had their ZAPs created
5003 * before this. Better be sure of it.
5004 */
5005 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
5006 }
5007 nvlist_free(mos_config);
5008
5009 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5010
5011 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
5012 B_FALSE);
5013 if (error && error != ENOENT)
5014 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5015
5016 if (error == 0) {
5017 uint64_t autoreplace = 0;
5018
5019 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
5020 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
5021 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
5022 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
5023 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
5024 spa_prop_find(spa, ZPOOL_PROP_DEDUP_TABLE_QUOTA,
5025 &spa->spa_dedup_table_quota);
5026 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
5027 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
5028 spa->spa_autoreplace = (autoreplace != 0);
5029 }
5030
5031 /*
5032 * If we are importing a pool with missing top-level vdevs,
5033 * we enforce that the pool doesn't panic or get suspended on
5034 * error since the likelihood of missing data is extremely high.
5035 */
5036 if (spa->spa_missing_tvds > 0 &&
5037 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
5038 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
5039 spa_load_note(spa, "forcing failmode to 'continue' "
5040 "as some top level vdevs are missing");
5041 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
5042 }
5043
5044 return (0);
5045 }
5046
5047 static int
5048 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
5049 {
5050 int error = 0;
5051 vdev_t *rvd = spa->spa_root_vdev;
5052
5053 /*
5054 * If we're assembling the pool from the split-off vdevs of
5055 * an existing pool, we don't want to attach the spares & cache
5056 * devices.
5057 */
5058
5059 /*
5060 * Load any hot spares for this pool.
5061 */
5062 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
5063 B_FALSE);
5064 if (error != 0 && error != ENOENT)
5065 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5066 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
5067 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
5068 if (load_nvlist(spa, spa->spa_spares.sav_object,
5069 &spa->spa_spares.sav_config) != 0) {
5070 spa_load_failed(spa, "error loading spares nvlist");
5071 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5072 }
5073
5074 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5075 spa_load_spares(spa);
5076 spa_config_exit(spa, SCL_ALL, FTAG);
5077 } else if (error == 0) {
5078 spa->spa_spares.sav_sync = B_TRUE;
5079 }
5080
5081 /*
5082 * Load any level 2 ARC devices for this pool.
5083 */
5084 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
5085 &spa->spa_l2cache.sav_object, B_FALSE);
5086 if (error != 0 && error != ENOENT)
5087 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5088 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
5089 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
5090 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
5091 &spa->spa_l2cache.sav_config) != 0) {
5092 spa_load_failed(spa, "error loading l2cache nvlist");
5093 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5094 }
5095
5096 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5097 spa_load_l2cache(spa);
5098 spa_config_exit(spa, SCL_ALL, FTAG);
5099 } else if (error == 0) {
5100 spa->spa_l2cache.sav_sync = B_TRUE;
5101 }
5102
5103 return (0);
5104 }
5105
5106 static int
5107 spa_ld_load_vdev_metadata(spa_t *spa)
5108 {
5109 int error = 0;
5110 vdev_t *rvd = spa->spa_root_vdev;
5111
5112 /*
5113 * If the 'multihost' property is set, then never allow a pool to
5114 * be imported when the system hostid is zero. The exception to
5115 * this rule is zdb which is always allowed to access pools.
5116 */
5117 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
5118 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
5119 fnvlist_add_uint64(spa->spa_load_info,
5120 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
5121 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
5122 }
5123
5124 /*
5125 * If the 'autoreplace' property is set, then post a resource notifying
5126 * the ZFS DE that it should not issue any faults for unopenable
5127 * devices. We also iterate over the vdevs, and post a sysevent for any
5128 * unopenable vdevs so that the normal autoreplace handler can take
5129 * over.
5130 */
5131 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
5132 spa_check_removed(spa->spa_root_vdev);
5133 /*
5134 * For the import case, this is done in spa_import(), because
5135 * at this point we're using the spare definitions from
5136 * the MOS config, not necessarily from the userland config.
5137 */
5138 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
5139 spa_aux_check_removed(&spa->spa_spares);
5140 spa_aux_check_removed(&spa->spa_l2cache);
5141 }
5142 }
5143
5144 /*
5145 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
5146 */
5147 error = vdev_load(rvd);
5148 if (error != 0) {
5149 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
5150 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
5151 }
5152
5153 error = spa_ld_log_spacemaps(spa);
5154 if (error != 0) {
5155 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
5156 error);
5157 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
5158 }
5159
5160 /*
5161 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
5162 */
5163 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5164 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
5165 spa_config_exit(spa, SCL_ALL, FTAG);
5166
5167 return (0);
5168 }
5169
5170 static int
5171 spa_ld_load_dedup_tables(spa_t *spa)
5172 {
5173 int error = 0;
5174 vdev_t *rvd = spa->spa_root_vdev;
5175
5176 error = ddt_load(spa);
5177 if (error != 0) {
5178 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
5179 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5180 }
5181
5182 return (0);
5183 }
5184
5185 static int
5186 spa_ld_load_brt(spa_t *spa)
5187 {
5188 int error = 0;
5189 vdev_t *rvd = spa->spa_root_vdev;
5190
5191 error = brt_load(spa);
5192 if (error != 0) {
5193 spa_load_failed(spa, "brt_load failed [error=%d]", error);
5194 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5195 }
5196
5197 return (0);
5198 }
5199
5200 static int
5201 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
5202 {
5203 vdev_t *rvd = spa->spa_root_vdev;
5204
5205 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
5206 boolean_t missing = spa_check_logs(spa);
5207 if (missing) {
5208 if (spa->spa_missing_tvds != 0) {
5209 spa_load_note(spa, "spa_check_logs failed "
5210 "so dropping the logs");
5211 } else {
5212 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
5213 spa_load_failed(spa, "spa_check_logs failed");
5214 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
5215 ENXIO));
5216 }
5217 }
5218 }
5219
5220 return (0);
5221 }
5222
5223 static int
5224 spa_ld_verify_pool_data(spa_t *spa)
5225 {
5226 int error = 0;
5227 vdev_t *rvd = spa->spa_root_vdev;
5228
5229 /*
5230 * We've successfully opened the pool, verify that we're ready
5231 * to start pushing transactions.
5232 */
5233 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
5234 error = spa_load_verify(spa);
5235 if (error != 0) {
5236 spa_load_failed(spa, "spa_load_verify failed "
5237 "[error=%d]", error);
5238 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
5239 error));
5240 }
5241 }
5242
5243 return (0);
5244 }
5245
5246 static void
5247 spa_ld_claim_log_blocks(spa_t *spa)
5248 {
5249 dmu_tx_t *tx;
5250 dsl_pool_t *dp = spa_get_dsl(spa);
5251
5252 /*
5253 * Claim log blocks that haven't been committed yet.
5254 * This must all happen in a single txg.
5255 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
5256 * invoked from zil_claim_log_block()'s i/o done callback.
5257 * Price of rollback is that we abandon the log.
5258 */
5259 spa->spa_claiming = B_TRUE;
5260
5261 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
5262 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
5263 zil_claim, tx, DS_FIND_CHILDREN);
5264 dmu_tx_commit(tx);
5265
5266 spa->spa_claiming = B_FALSE;
5267
5268 spa_set_log_state(spa, SPA_LOG_GOOD);
5269 }
5270
5271 static void
5272 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
5273 boolean_t update_config_cache)
5274 {
5275 vdev_t *rvd = spa->spa_root_vdev;
5276 int need_update = B_FALSE;
5277
5278 /*
5279 * If the config cache is stale, or we have uninitialized
5280 * metaslabs (see spa_vdev_add()), then update the config.
5281 *
5282 * If this is a verbatim import, trust the current
5283 * in-core spa_config and update the disk labels.
5284 */
5285 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
5286 spa->spa_load_state == SPA_LOAD_IMPORT ||
5287 spa->spa_load_state == SPA_LOAD_RECOVER ||
5288 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
5289 need_update = B_TRUE;
5290
5291 for (int c = 0; c < rvd->vdev_children; c++)
5292 if (rvd->vdev_child[c]->vdev_ms_array == 0)
5293 need_update = B_TRUE;
5294
5295 /*
5296 * Update the config cache asynchronously in case we're the
5297 * root pool, in which case the config cache isn't writable yet.
5298 */
5299 if (need_update)
5300 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
5301 }
5302
5303 static void
5304 spa_ld_prepare_for_reload(spa_t *spa)
5305 {
5306 spa_mode_t mode = spa->spa_mode;
5307 int async_suspended = spa->spa_async_suspended;
5308
5309 spa_unload(spa);
5310 spa_deactivate(spa);
5311 spa_activate(spa, mode);
5312
5313 /*
5314 * We save the value of spa_async_suspended as it gets reset to 0 by
5315 * spa_unload(). We want to restore it back to the original value before
5316 * returning as we might be calling spa_async_resume() later.
5317 */
5318 spa->spa_async_suspended = async_suspended;
5319 }
5320
5321 static int
5322 spa_ld_read_checkpoint_txg(spa_t *spa)
5323 {
5324 uberblock_t checkpoint;
5325 int error = 0;
5326
5327 ASSERT0(spa->spa_checkpoint_txg);
5328 ASSERT(spa_namespace_held() ||
5329 spa->spa_load_thread == curthread);
5330
5331 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5332 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5333 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5334
5335 if (error == ENOENT)
5336 return (0);
5337
5338 if (error != 0)
5339 return (error);
5340
5341 ASSERT3U(checkpoint.ub_txg, !=, 0);
5342 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
5343 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
5344 spa->spa_checkpoint_txg = checkpoint.ub_txg;
5345 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
5346
5347 return (0);
5348 }
5349
5350 static int
5351 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
5352 {
5353 int error = 0;
5354
5355 ASSERT(spa_namespace_held());
5356 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5357
5358 /*
5359 * Never trust the config that is provided unless we are assembling
5360 * a pool following a split.
5361 * This means don't trust blkptrs and the vdev tree in general. This
5362 * also effectively puts the spa in read-only mode since
5363 * spa_writeable() checks for spa_trust_config to be true.
5364 * We will later load a trusted config from the MOS.
5365 */
5366 if (type != SPA_IMPORT_ASSEMBLE)
5367 spa->spa_trust_config = B_FALSE;
5368
5369 /*
5370 * Parse the config provided to create a vdev tree.
5371 */
5372 error = spa_ld_parse_config(spa, type);
5373 if (error != 0)
5374 return (error);
5375
5376 spa_import_progress_add(spa);
5377
5378 /*
5379 * Now that we have the vdev tree, try to open each vdev. This involves
5380 * opening the underlying physical device, retrieving its geometry and
5381 * probing the vdev with a dummy I/O. The state of each vdev will be set
5382 * based on the success of those operations. After this we'll be ready
5383 * to read from the vdevs.
5384 */
5385 error = spa_ld_open_vdevs(spa);
5386 if (error != 0)
5387 return (error);
5388
5389 /*
5390 * Read the label of each vdev and make sure that the GUIDs stored
5391 * there match the GUIDs in the config provided.
5392 * If we're assembling a new pool that's been split off from an
5393 * existing pool, the labels haven't yet been updated so we skip
5394 * validation for now.
5395 */
5396 if (type != SPA_IMPORT_ASSEMBLE) {
5397 error = spa_ld_validate_vdevs(spa);
5398 if (error != 0)
5399 return (error);
5400 }
5401
5402 /*
5403 * Read all vdev labels to find the best uberblock (i.e. latest,
5404 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
5405 * get the list of features required to read blkptrs in the MOS from
5406 * the vdev label with the best uberblock and verify that our version
5407 * of zfs supports them all.
5408 */
5409 error = spa_ld_select_uberblock(spa, type);
5410 if (error != 0)
5411 return (error);
5412
5413 /*
5414 * Pass that uberblock to the dsl_pool layer which will open the root
5415 * blkptr. This blkptr points to the latest version of the MOS and will
5416 * allow us to read its contents.
5417 */
5418 error = spa_ld_open_rootbp(spa);
5419 if (error != 0)
5420 return (error);
5421
5422 return (0);
5423 }
5424
5425 static int
5426 spa_ld_checkpoint_rewind(spa_t *spa)
5427 {
5428 uberblock_t checkpoint;
5429 int error = 0;
5430
5431 ASSERT(spa_namespace_held());
5432 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5433
5434 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5435 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5436 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5437
5438 if (error != 0) {
5439 spa_load_failed(spa, "unable to retrieve checkpointed "
5440 "uberblock from the MOS config [error=%d]", error);
5441
5442 if (error == ENOENT)
5443 error = ZFS_ERR_NO_CHECKPOINT;
5444
5445 return (error);
5446 }
5447
5448 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
5449 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
5450
5451 /*
5452 * We need to update the txg and timestamp of the checkpointed
5453 * uberblock to be higher than the latest one. This ensures that
5454 * the checkpointed uberblock is selected if we were to close and
5455 * reopen the pool right after we've written it in the vdev labels.
5456 * (also see block comment in vdev_uberblock_compare)
5457 */
5458 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
5459 checkpoint.ub_timestamp = gethrestime_sec();
5460
5461 /*
5462 * Set current uberblock to be the checkpointed uberblock.
5463 */
5464 spa->spa_uberblock = checkpoint;
5465
5466 /*
5467 * If we are doing a normal rewind, then the pool is open for
5468 * writing and we sync the "updated" checkpointed uberblock to
5469 * disk. Once this is done, we've basically rewound the whole
5470 * pool and there is no way back.
5471 *
5472 * There are cases when we don't want to attempt and sync the
5473 * checkpointed uberblock to disk because we are opening a
5474 * pool as read-only. Specifically, verifying the checkpointed
5475 * state with zdb, and importing the checkpointed state to get
5476 * a "preview" of its content.
5477 */
5478 if (spa_writeable(spa)) {
5479 vdev_t *rvd = spa->spa_root_vdev;
5480
5481 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5482 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
5483 int svdcount = 0;
5484 int children = rvd->vdev_children;
5485 int c0 = random_in_range(children);
5486
5487 for (int c = 0; c < children; c++) {
5488 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
5489
5490 /* Stop when revisiting the first vdev */
5491 if (c > 0 && svd[0] == vd)
5492 break;
5493
5494 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
5495 !vdev_is_concrete(vd))
5496 continue;
5497
5498 svd[svdcount++] = vd;
5499 if (svdcount == SPA_SYNC_MIN_VDEVS)
5500 break;
5501 }
5502 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
5503 if (error == 0)
5504 spa->spa_last_synced_guid = rvd->vdev_guid;
5505 spa_config_exit(spa, SCL_ALL, FTAG);
5506
5507 if (error != 0) {
5508 spa_load_failed(spa, "failed to write checkpointed "
5509 "uberblock to the vdev labels [error=%d]", error);
5510 return (error);
5511 }
5512 }
5513
5514 return (0);
5515 }
5516
5517 static int
5518 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
5519 boolean_t *update_config_cache)
5520 {
5521 int error;
5522
5523 /*
5524 * Parse the config for pool, open and validate vdevs,
5525 * select an uberblock, and use that uberblock to open
5526 * the MOS.
5527 */
5528 error = spa_ld_mos_init(spa, type);
5529 if (error != 0)
5530 return (error);
5531
5532 /*
5533 * Retrieve the trusted config stored in the MOS and use it to create
5534 * a new, exact version of the vdev tree, then reopen all vdevs.
5535 */
5536 error = spa_ld_trusted_config(spa, type, B_FALSE);
5537 if (error == EAGAIN) {
5538 if (update_config_cache != NULL)
5539 *update_config_cache = B_TRUE;
5540
5541 /*
5542 * Redo the loading process with the trusted config if it is
5543 * too different from the untrusted config.
5544 */
5545 spa_ld_prepare_for_reload(spa);
5546 spa_load_note(spa, "RELOADING");
5547 error = spa_ld_mos_init(spa, type);
5548 if (error != 0)
5549 return (error);
5550
5551 error = spa_ld_trusted_config(spa, type, B_TRUE);
5552 if (error != 0)
5553 return (error);
5554
5555 } else if (error != 0) {
5556 return (error);
5557 }
5558
5559 return (0);
5560 }
5561
5562 /*
5563 * Load an existing storage pool, using the config provided. This config
5564 * describes which vdevs are part of the pool and is later validated against
5565 * partial configs present in each vdev's label and an entire copy of the
5566 * config stored in the MOS.
5567 */
5568 static int
5569 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
5570 {
5571 int error = 0;
5572 boolean_t missing_feat_write = B_FALSE;
5573 boolean_t checkpoint_rewind =
5574 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5575 boolean_t update_config_cache = B_FALSE;
5576 hrtime_t load_start = gethrtime();
5577
5578 ASSERT(spa_namespace_held());
5579 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5580
5581 spa_load_note(spa, "LOADING");
5582
5583 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
5584 if (error != 0)
5585 return (error);
5586
5587 /*
5588 * If we are rewinding to the checkpoint then we need to repeat
5589 * everything we've done so far in this function but this time
5590 * selecting the checkpointed uberblock and using that to open
5591 * the MOS.
5592 */
5593 if (checkpoint_rewind) {
5594 /*
5595 * If we are rewinding to the checkpoint update config cache
5596 * anyway.
5597 */
5598 update_config_cache = B_TRUE;
5599
5600 /*
5601 * Extract the checkpointed uberblock from the current MOS
5602 * and use this as the pool's uberblock from now on. If the
5603 * pool is imported as writeable we also write the checkpoint
5604 * uberblock to the labels, making the rewind permanent.
5605 */
5606 error = spa_ld_checkpoint_rewind(spa);
5607 if (error != 0)
5608 return (error);
5609
5610 /*
5611 * Redo the loading process again with the
5612 * checkpointed uberblock.
5613 */
5614 spa_ld_prepare_for_reload(spa);
5615 spa_load_note(spa, "LOADING checkpointed uberblock");
5616 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
5617 if (error != 0)
5618 return (error);
5619 }
5620
5621 /*
5622 * Drop the namespace lock for the rest of the function.
5623 */
5624 spa->spa_load_thread = curthread;
5625 spa_namespace_exit(FTAG);
5626
5627 /*
5628 * Retrieve the checkpoint txg if the pool has a checkpoint.
5629 */
5630 spa_import_progress_set_notes(spa, "Loading checkpoint txg");
5631 error = spa_ld_read_checkpoint_txg(spa);
5632 if (error != 0)
5633 goto fail;
5634
5635 /*
5636 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
5637 * from the pool and their contents were re-mapped to other vdevs. Note
5638 * that everything that we read before this step must have been
5639 * rewritten on concrete vdevs after the last device removal was
5640 * initiated. Otherwise we could be reading from indirect vdevs before
5641 * we have loaded their mappings.
5642 */
5643 spa_import_progress_set_notes(spa, "Loading indirect vdev metadata");
5644 error = spa_ld_open_indirect_vdev_metadata(spa);
5645 if (error != 0)
5646 goto fail;
5647
5648 /*
5649 * Retrieve the full list of active features from the MOS and check if
5650 * they are all supported.
5651 */
5652 spa_import_progress_set_notes(spa, "Checking feature flags");
5653 error = spa_ld_check_features(spa, &missing_feat_write);
5654 if (error != 0)
5655 goto fail;
5656
5657 /*
5658 * Load several special directories from the MOS needed by the dsl_pool
5659 * layer.
5660 */
5661 spa_import_progress_set_notes(spa, "Loading special MOS directories");
5662 error = spa_ld_load_special_directories(spa);
5663 if (error != 0)
5664 goto fail;
5665
5666 /*
5667 * Retrieve pool properties from the MOS.
5668 */
5669 spa_import_progress_set_notes(spa, "Loading properties");
5670 error = spa_ld_get_props(spa);
5671 if (error != 0)
5672 goto fail;
5673
5674 /*
5675 * Retrieve the list of auxiliary devices - cache devices and spares -
5676 * and open them.
5677 */
5678 spa_import_progress_set_notes(spa, "Loading AUX vdevs");
5679 error = spa_ld_open_aux_vdevs(spa, type);
5680 if (error != 0)
5681 goto fail;
5682
5683 /*
5684 * Load the metadata for all vdevs. Also check if unopenable devices
5685 * should be autoreplaced.
5686 */
5687 spa_import_progress_set_notes(spa, "Loading vdev metadata");
5688 error = spa_ld_load_vdev_metadata(spa);
5689 if (error != 0)
5690 goto fail;
5691
5692 spa_import_progress_set_notes(spa, "Loading dedup tables");
5693 error = spa_ld_load_dedup_tables(spa);
5694 if (error != 0)
5695 goto fail;
5696
5697 spa_import_progress_set_notes(spa, "Loading BRT");
5698 error = spa_ld_load_brt(spa);
5699 if (error != 0)
5700 goto fail;
5701
5702 /*
5703 * Verify the logs now to make sure we don't have any unexpected errors
5704 * when we claim log blocks later.
5705 */
5706 spa_import_progress_set_notes(spa, "Verifying Log Devices");
5707 error = spa_ld_verify_logs(spa, type, ereport);
5708 if (error != 0)
5709 goto fail;
5710
5711 if (missing_feat_write) {
5712 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5713
5714 /*
5715 * At this point, we know that we can open the pool in
5716 * read-only mode but not read-write mode. We now have enough
5717 * information and can return to userland.
5718 */
5719 error = spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5720 ENOTSUP);
5721 goto fail;
5722 }
5723
5724 /*
5725 * Traverse the last txgs to make sure the pool was left off in a safe
5726 * state. When performing an extreme rewind, we verify the whole pool,
5727 * which can take a very long time.
5728 */
5729 spa_import_progress_set_notes(spa, "Verifying pool data");
5730 error = spa_ld_verify_pool_data(spa);
5731 if (error != 0)
5732 goto fail;
5733
5734 /*
5735 * Calculate the deflated space for the pool. This must be done before
5736 * we write anything to the pool because we'd need to update the space
5737 * accounting using the deflated sizes.
5738 */
5739 spa_import_progress_set_notes(spa, "Calculating deflated space");
5740 spa_update_dspace(spa);
5741
5742 /*
5743 * We have now retrieved all the information we needed to open the
5744 * pool. If we are importing the pool in read-write mode, a few
5745 * additional steps must be performed to finish the import.
5746 */
5747 spa_import_progress_set_notes(spa, "Starting import");
5748 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5749 spa->spa_load_max_txg == UINT64_MAX)) {
5750 uint64_t config_cache_txg = spa->spa_config_txg;
5751
5752 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5753
5754 /*
5755 * Before we do any zio_write's, complete the raidz expansion
5756 * scratch space copying, if necessary.
5757 */
5758 if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID)
5759 vdev_raidz_reflow_copy_scratch(spa);
5760
5761 /*
5762 * In case of a checkpoint rewind, log the original txg
5763 * of the checkpointed uberblock.
5764 */
5765 if (checkpoint_rewind) {
5766 spa_history_log_internal(spa, "checkpoint rewind",
5767 NULL, "rewound state to txg=%llu",
5768 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5769 }
5770
5771 spa_import_progress_set_notes(spa, "Claiming ZIL blocks");
5772 /*
5773 * Traverse the ZIL and claim all blocks.
5774 */
5775 spa_ld_claim_log_blocks(spa);
5776
5777 /*
5778 * Kick-off the syncing thread.
5779 */
5780 spa->spa_sync_on = B_TRUE;
5781 txg_sync_start(spa->spa_dsl_pool);
5782 mmp_thread_start(spa);
5783
5784 /*
5785 * Wait for all claims to sync. We sync up to the highest
5786 * claimed log block birth time so that claimed log blocks
5787 * don't appear to be from the future. spa_claim_max_txg
5788 * will have been set for us by ZIL traversal operations
5789 * performed above.
5790 */
5791 spa_import_progress_set_notes(spa, "Syncing ZIL claims");
5792 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5793
5794 /*
5795 * Check if we need to request an update of the config. On the
5796 * next sync, we would update the config stored in vdev labels
5797 * and the cachefile (by default /etc/zfs/zpool.cache).
5798 */
5799 spa_import_progress_set_notes(spa, "Updating configs");
5800 spa_ld_check_for_config_update(spa, config_cache_txg,
5801 update_config_cache);
5802
5803 /*
5804 * Check if a rebuild was in progress and if so resume it.
5805 * Then check all DTLs to see if anything needs resilvering.
5806 * The resilver will be deferred if a rebuild was started.
5807 */
5808 spa_import_progress_set_notes(spa, "Starting resilvers");
5809 if (vdev_rebuild_active(spa->spa_root_vdev)) {
5810 vdev_rebuild_restart(spa);
5811 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5812 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5813 spa_async_request(spa, SPA_ASYNC_RESILVER);
5814 }
5815
5816 /*
5817 * Log the fact that we booted up (so that we can detect if
5818 * we rebooted in the middle of an operation).
5819 */
5820 spa_history_log_version(spa, "open", NULL);
5821
5822 spa_import_progress_set_notes(spa,
5823 "Restarting device removals");
5824 spa_restart_removal(spa);
5825 spa_spawn_aux_threads(spa);
5826
5827 /*
5828 * Delete any inconsistent datasets.
5829 *
5830 * Note:
5831 * Since we may be issuing deletes for clones here,
5832 * we make sure to do so after we've spawned all the
5833 * auxiliary threads above (from which the livelist
5834 * deletion zthr is part of).
5835 */
5836 spa_import_progress_set_notes(spa,
5837 "Cleaning up inconsistent objsets");
5838 (void) dmu_objset_find(spa_name(spa),
5839 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5840
5841 /*
5842 * Clean up any stale temporary dataset userrefs.
5843 */
5844 spa_import_progress_set_notes(spa,
5845 "Cleaning up temporary userrefs");
5846 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5847
5848 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5849 spa_import_progress_set_notes(spa, "Restarting initialize");
5850 vdev_initialize_restart(spa->spa_root_vdev);
5851 spa_import_progress_set_notes(spa, "Restarting TRIM");
5852 vdev_trim_restart(spa->spa_root_vdev);
5853 vdev_autotrim_restart(spa);
5854 spa_config_exit(spa, SCL_CONFIG, FTAG);
5855 spa_import_progress_set_notes(spa, "Finished importing");
5856 }
5857 zio_handle_import_delay(spa, gethrtime() - load_start);
5858
5859 spa_import_progress_remove(spa_guid(spa));
5860 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5861
5862 spa_load_note(spa, "LOADED");
5863 fail:
5864 spa_namespace_enter(FTAG);
5865 spa->spa_load_thread = NULL;
5866 spa_namespace_broadcast();
5867
5868 return (error);
5869
5870 }
5871
5872 static int
5873 spa_load_retry(spa_t *spa, spa_load_state_t state)
5874 {
5875 spa_mode_t mode = spa->spa_mode;
5876
5877 spa_unload(spa);
5878 spa_deactivate(spa);
5879
5880 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5881
5882 spa_activate(spa, mode);
5883 spa_async_suspend(spa);
5884
5885 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5886 (u_longlong_t)spa->spa_load_max_txg);
5887
5888 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5889 }
5890
5891 /*
5892 * If spa_load() fails this function will try loading prior txg's. If
5893 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5894 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5895 * function will not rewind the pool and will return the same error as
5896 * spa_load().
5897 */
5898 static int
5899 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5900 int rewind_flags)
5901 {
5902 nvlist_t *loadinfo = NULL;
5903 nvlist_t *config = NULL;
5904 int load_error, rewind_error;
5905 uint64_t safe_rewind_txg;
5906 uint64_t min_txg;
5907
5908 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5909 spa->spa_load_max_txg = spa->spa_load_txg;
5910 spa_set_log_state(spa, SPA_LOG_CLEAR);
5911 } else {
5912 spa->spa_load_max_txg = max_request;
5913 if (max_request != UINT64_MAX)
5914 spa->spa_extreme_rewind = B_TRUE;
5915 }
5916
5917 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5918 if (load_error == 0)
5919 return (0);
5920 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5921 /*
5922 * When attempting checkpoint-rewind on a pool with no
5923 * checkpoint, we should not attempt to load uberblocks
5924 * from previous txgs when spa_load fails.
5925 */
5926 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5927 spa_import_progress_remove(spa_guid(spa));
5928 return (load_error);
5929 }
5930
5931 if (spa->spa_root_vdev != NULL)
5932 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5933
5934 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5935 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5936
5937 if (rewind_flags & ZPOOL_NEVER_REWIND) {
5938 nvlist_free(config);
5939 spa_import_progress_remove(spa_guid(spa));
5940 return (load_error);
5941 }
5942
5943 if (state == SPA_LOAD_RECOVER) {
5944 /* Price of rolling back is discarding txgs, including log */
5945 spa_set_log_state(spa, SPA_LOG_CLEAR);
5946 } else {
5947 /*
5948 * If we aren't rolling back save the load info from our first
5949 * import attempt so that we can restore it after attempting
5950 * to rewind.
5951 */
5952 loadinfo = spa->spa_load_info;
5953 spa->spa_load_info = fnvlist_alloc();
5954 }
5955
5956 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5957 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5958 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5959 TXG_INITIAL : safe_rewind_txg;
5960
5961 /*
5962 * Continue as long as we're finding errors, we're still within
5963 * the acceptable rewind range, and we're still finding uberblocks
5964 */
5965 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5966 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5967 if (spa->spa_load_max_txg < safe_rewind_txg)
5968 spa->spa_extreme_rewind = B_TRUE;
5969 rewind_error = spa_load_retry(spa, state);
5970 }
5971
5972 spa->spa_extreme_rewind = B_FALSE;
5973 spa->spa_load_max_txg = UINT64_MAX;
5974
5975 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5976 spa_config_set(spa, config);
5977 else
5978 nvlist_free(config);
5979
5980 if (state == SPA_LOAD_RECOVER) {
5981 ASSERT0P(loadinfo);
5982 spa_import_progress_remove(spa_guid(spa));
5983 return (rewind_error);
5984 } else {
5985 /* Store the rewind info as part of the initial load info */
5986 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5987 spa->spa_load_info);
5988
5989 /* Restore the initial load info */
5990 fnvlist_free(spa->spa_load_info);
5991 spa->spa_load_info = loadinfo;
5992
5993 spa_import_progress_remove(spa_guid(spa));
5994 return (load_error);
5995 }
5996 }
5997
5998 /*
5999 * Pool Open/Import
6000 *
6001 * The import case is identical to an open except that the configuration is sent
6002 * down from userland, instead of grabbed from the configuration cache. For the
6003 * case of an open, the pool configuration will exist in the
6004 * POOL_STATE_UNINITIALIZED state.
6005 *
6006 * The stats information (gen/count/ustats) is used to gather vdev statistics at
6007 * the same time open the pool, without having to keep around the spa_t in some
6008 * ambiguous state.
6009 */
6010 static int
6011 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
6012 nvlist_t *nvpolicy, nvlist_t **config)
6013 {
6014 spa_t *spa;
6015 spa_load_state_t state = SPA_LOAD_OPEN;
6016 int error;
6017 int locked = B_FALSE;
6018 int firstopen = B_FALSE;
6019
6020 *spapp = NULL;
6021
6022 /*
6023 * As disgusting as this is, we need to support recursive calls to this
6024 * function because dsl_dir_open() is called during spa_load(), and ends
6025 * up calling spa_open() again. The real fix is to figure out how to
6026 * avoid dsl_dir_open() calling this in the first place.
6027 */
6028 if (!spa_namespace_held()) {
6029 spa_namespace_enter(FTAG);
6030 locked = B_TRUE;
6031 }
6032
6033 if ((spa = spa_lookup(pool)) == NULL) {
6034 if (locked)
6035 spa_namespace_exit(FTAG);
6036 return (SET_ERROR(ENOENT));
6037 }
6038
6039 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
6040 zpool_load_policy_t policy;
6041
6042 firstopen = B_TRUE;
6043
6044 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
6045 &policy);
6046 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6047 state = SPA_LOAD_RECOVER;
6048
6049 spa_activate(spa, spa_mode_global);
6050
6051 if (state != SPA_LOAD_RECOVER)
6052 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6053 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6054
6055 zfs_dbgmsg("spa_open_common: opening %s", pool);
6056 error = spa_load_best(spa, state, policy.zlp_txg,
6057 policy.zlp_rewind);
6058
6059 if (error == EBADF) {
6060 /*
6061 * If vdev_validate() returns failure (indicated by
6062 * EBADF), it indicates that one of the vdevs indicates
6063 * that the pool has been exported or destroyed. If
6064 * this is the case, the config cache is out of sync and
6065 * we should remove the pool from the namespace.
6066 */
6067 spa_unload(spa);
6068 spa_deactivate(spa);
6069 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
6070 spa_remove(spa);
6071 if (locked)
6072 spa_namespace_exit(FTAG);
6073 return (SET_ERROR(ENOENT));
6074 }
6075
6076 if (error) {
6077 /*
6078 * We can't open the pool, but we still have useful
6079 * information: the state of each vdev after the
6080 * attempted vdev_open(). Return this to the user.
6081 */
6082 if (config != NULL && spa->spa_config) {
6083 *config = fnvlist_dup(spa->spa_config);
6084 fnvlist_add_nvlist(*config,
6085 ZPOOL_CONFIG_LOAD_INFO,
6086 spa->spa_load_info);
6087 }
6088 spa_unload(spa);
6089 spa_deactivate(spa);
6090 spa->spa_last_open_failed = error;
6091 if (locked)
6092 spa_namespace_exit(FTAG);
6093 *spapp = NULL;
6094 return (error);
6095 }
6096 }
6097
6098 spa_open_ref(spa, tag);
6099
6100 if (config != NULL)
6101 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6102
6103 /*
6104 * If we've recovered the pool, pass back any information we
6105 * gathered while doing the load.
6106 */
6107 if (state == SPA_LOAD_RECOVER && config != NULL) {
6108 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
6109 spa->spa_load_info);
6110 }
6111
6112 if (locked) {
6113 spa->spa_last_open_failed = 0;
6114 spa->spa_last_ubsync_txg = 0;
6115 spa->spa_load_txg = 0;
6116 spa_namespace_exit(FTAG);
6117 }
6118
6119 if (firstopen)
6120 zvol_create_minors(spa_name(spa));
6121
6122 *spapp = spa;
6123
6124 return (0);
6125 }
6126
6127 int
6128 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
6129 nvlist_t *policy, nvlist_t **config)
6130 {
6131 return (spa_open_common(name, spapp, tag, policy, config));
6132 }
6133
6134 int
6135 spa_open(const char *name, spa_t **spapp, const void *tag)
6136 {
6137 return (spa_open_common(name, spapp, tag, NULL, NULL));
6138 }
6139
6140 /*
6141 * Lookup the given spa_t, incrementing the inject count in the process,
6142 * preventing it from being exported or destroyed.
6143 */
6144 spa_t *
6145 spa_inject_addref(char *name)
6146 {
6147 spa_t *spa;
6148
6149 spa_namespace_enter(FTAG);
6150 if ((spa = spa_lookup(name)) == NULL) {
6151 spa_namespace_exit(FTAG);
6152 return (NULL);
6153 }
6154 spa->spa_inject_ref++;
6155 spa_namespace_exit(FTAG);
6156
6157 return (spa);
6158 }
6159
6160 void
6161 spa_inject_delref(spa_t *spa)
6162 {
6163 spa_namespace_enter(FTAG);
6164 spa->spa_inject_ref--;
6165 spa_namespace_exit(FTAG);
6166 }
6167
6168 /*
6169 * Add spares device information to the nvlist.
6170 */
6171 static void
6172 spa_add_spares(spa_t *spa, nvlist_t *config)
6173 {
6174 nvlist_t **spares;
6175 uint_t i, nspares;
6176 nvlist_t *nvroot;
6177 uint64_t guid;
6178 vdev_stat_t *vs;
6179 uint_t vsc;
6180 uint64_t pool;
6181
6182 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6183
6184 if (spa->spa_spares.sav_count == 0)
6185 return;
6186
6187 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6188 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
6189 ZPOOL_CONFIG_SPARES, &spares, &nspares));
6190 if (nspares != 0) {
6191 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6192 (const nvlist_t * const *)spares, nspares);
6193 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6194 &spares, &nspares));
6195
6196 /*
6197 * Go through and find any spares which have since been
6198 * repurposed as an active spare. If this is the case, update
6199 * their status appropriately.
6200 */
6201 for (i = 0; i < nspares; i++) {
6202 guid = fnvlist_lookup_uint64(spares[i],
6203 ZPOOL_CONFIG_GUID);
6204 VERIFY0(nvlist_lookup_uint64_array(spares[i],
6205 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
6206 if (spa_spare_exists(guid, &pool, NULL) &&
6207 pool != 0ULL) {
6208 vs->vs_state = VDEV_STATE_CANT_OPEN;
6209 vs->vs_aux = VDEV_AUX_SPARED;
6210 } else {
6211 vs->vs_state =
6212 spa->spa_spares.sav_vdevs[i]->vdev_state;
6213 }
6214 }
6215 }
6216 }
6217
6218 /*
6219 * Add l2cache device information to the nvlist, including vdev stats.
6220 */
6221 static void
6222 spa_add_l2cache(spa_t *spa, nvlist_t *config)
6223 {
6224 nvlist_t **l2cache;
6225 uint_t i, j, nl2cache;
6226 nvlist_t *nvroot;
6227 uint64_t guid;
6228 vdev_t *vd;
6229 vdev_stat_t *vs;
6230 uint_t vsc;
6231
6232 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6233
6234 if (spa->spa_l2cache.sav_count == 0)
6235 return;
6236
6237 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6238 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
6239 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
6240 if (nl2cache != 0) {
6241 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6242 (const nvlist_t * const *)l2cache, nl2cache);
6243 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6244 &l2cache, &nl2cache));
6245
6246 /*
6247 * Update level 2 cache device stats.
6248 */
6249
6250 for (i = 0; i < nl2cache; i++) {
6251 guid = fnvlist_lookup_uint64(l2cache[i],
6252 ZPOOL_CONFIG_GUID);
6253
6254 vd = NULL;
6255 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
6256 if (guid ==
6257 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
6258 vd = spa->spa_l2cache.sav_vdevs[j];
6259 break;
6260 }
6261 }
6262 ASSERT(vd != NULL);
6263
6264 VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
6265 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
6266 vdev_get_stats(vd, vs);
6267 vdev_config_generate_stats(vd, l2cache[i]);
6268
6269 }
6270 }
6271 }
6272
6273 static void
6274 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
6275 {
6276 zap_cursor_t zc;
6277 zap_attribute_t *za = zap_attribute_alloc();
6278
6279 if (spa->spa_feat_for_read_obj != 0) {
6280 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6281 spa->spa_feat_for_read_obj);
6282 zap_cursor_retrieve(&zc, za) == 0;
6283 zap_cursor_advance(&zc)) {
6284 ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6285 za->za_num_integers == 1);
6286 VERIFY0(nvlist_add_uint64(features, za->za_name,
6287 za->za_first_integer));
6288 }
6289 zap_cursor_fini(&zc);
6290 }
6291
6292 if (spa->spa_feat_for_write_obj != 0) {
6293 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6294 spa->spa_feat_for_write_obj);
6295 zap_cursor_retrieve(&zc, za) == 0;
6296 zap_cursor_advance(&zc)) {
6297 ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6298 za->za_num_integers == 1);
6299 VERIFY0(nvlist_add_uint64(features, za->za_name,
6300 za->za_first_integer));
6301 }
6302 zap_cursor_fini(&zc);
6303 }
6304 zap_attribute_free(za);
6305 }
6306
6307 static void
6308 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
6309 {
6310 int i;
6311
6312 for (i = 0; i < SPA_FEATURES; i++) {
6313 zfeature_info_t feature = spa_feature_table[i];
6314 uint64_t refcount;
6315
6316 if (feature_get_refcount(spa, &feature, &refcount) != 0)
6317 continue;
6318
6319 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
6320 }
6321 }
6322
6323 /*
6324 * Store a list of pool features and their reference counts in the
6325 * config.
6326 *
6327 * The first time this is called on a spa, allocate a new nvlist, fetch
6328 * the pool features and reference counts from disk, then save the list
6329 * in the spa. In subsequent calls on the same spa use the saved nvlist
6330 * and refresh its values from the cached reference counts. This
6331 * ensures we don't block here on I/O on a suspended pool so 'zpool
6332 * clear' can resume the pool.
6333 */
6334 static void
6335 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
6336 {
6337 nvlist_t *features;
6338
6339 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6340
6341 mutex_enter(&spa->spa_feat_stats_lock);
6342 features = spa->spa_feat_stats;
6343
6344 if (features != NULL) {
6345 spa_feature_stats_from_cache(spa, features);
6346 } else {
6347 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
6348 spa->spa_feat_stats = features;
6349 spa_feature_stats_from_disk(spa, features);
6350 }
6351
6352 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
6353 features));
6354
6355 mutex_exit(&spa->spa_feat_stats_lock);
6356 }
6357
6358 int
6359 spa_get_stats(const char *name, nvlist_t **config,
6360 char *altroot, size_t buflen)
6361 {
6362 int error;
6363 spa_t *spa;
6364
6365 *config = NULL;
6366 error = spa_open_common(name, &spa, FTAG, NULL, config);
6367
6368 if (spa != NULL) {
6369 /*
6370 * This still leaves a window of inconsistency where the spares
6371 * or l2cache devices could change and the config would be
6372 * self-inconsistent.
6373 */
6374 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6375
6376 if (*config != NULL) {
6377 uint64_t loadtimes[2];
6378
6379 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
6380 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
6381 fnvlist_add_uint64_array(*config,
6382 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
6383
6384 fnvlist_add_uint64(*config,
6385 ZPOOL_CONFIG_ERRCOUNT,
6386 spa_approx_errlog_size(spa));
6387
6388 if (spa_suspended(spa)) {
6389 fnvlist_add_uint64(*config,
6390 ZPOOL_CONFIG_SUSPENDED,
6391 spa->spa_failmode);
6392 fnvlist_add_uint64(*config,
6393 ZPOOL_CONFIG_SUSPENDED_REASON,
6394 spa->spa_suspended);
6395 }
6396
6397 spa_add_spares(spa, *config);
6398 spa_add_l2cache(spa, *config);
6399 spa_add_feature_stats(spa, *config);
6400 }
6401 }
6402
6403 /*
6404 * We want to get the alternate root even for faulted pools, so we cheat
6405 * and call spa_lookup() directly.
6406 */
6407 if (altroot) {
6408 if (spa == NULL) {
6409 spa_namespace_enter(FTAG);
6410 spa = spa_lookup(name);
6411 if (spa)
6412 spa_altroot(spa, altroot, buflen);
6413 else
6414 altroot[0] = '\0';
6415 spa = NULL;
6416 spa_namespace_exit(FTAG);
6417 } else {
6418 spa_altroot(spa, altroot, buflen);
6419 }
6420 }
6421
6422 if (spa != NULL) {
6423 spa_config_exit(spa, SCL_CONFIG, FTAG);
6424 spa_close(spa, FTAG);
6425 }
6426
6427 return (error);
6428 }
6429
6430 /*
6431 * Validate that the auxiliary device array is well formed. We must have an
6432 * array of nvlists, each which describes a valid leaf vdev. If this is an
6433 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
6434 * specified, as long as they are well-formed.
6435 */
6436 static int
6437 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
6438 spa_aux_vdev_t *sav, const char *config, uint64_t version,
6439 vdev_labeltype_t label)
6440 {
6441 nvlist_t **dev;
6442 uint_t i, ndev;
6443 vdev_t *vd;
6444 int error;
6445
6446 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6447
6448 /*
6449 * It's acceptable to have no devs specified.
6450 */
6451 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
6452 return (0);
6453
6454 if (ndev == 0)
6455 return (SET_ERROR(EINVAL));
6456
6457 /*
6458 * Make sure the pool is formatted with a version that supports this
6459 * device type.
6460 */
6461 if (spa_version(spa) < version)
6462 return (SET_ERROR(ENOTSUP));
6463
6464 /*
6465 * Set the pending device list so we correctly handle device in-use
6466 * checking.
6467 */
6468 sav->sav_pending = dev;
6469 sav->sav_npending = ndev;
6470
6471 for (i = 0; i < ndev; i++) {
6472 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
6473 mode)) != 0)
6474 goto out;
6475
6476 if (!vd->vdev_ops->vdev_op_leaf) {
6477 vdev_free(vd);
6478 error = SET_ERROR(EINVAL);
6479 goto out;
6480 }
6481
6482 vd->vdev_top = vd;
6483
6484 if ((error = vdev_open(vd)) == 0 &&
6485 (error = vdev_label_init(vd, crtxg, label)) == 0) {
6486 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
6487 vd->vdev_guid);
6488 }
6489
6490 vdev_free(vd);
6491
6492 if (error &&
6493 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
6494 goto out;
6495 else
6496 error = 0;
6497 }
6498
6499 out:
6500 sav->sav_pending = NULL;
6501 sav->sav_npending = 0;
6502 return (error);
6503 }
6504
6505 static int
6506 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
6507 {
6508 int error;
6509
6510 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6511
6512 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6513 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
6514 VDEV_LABEL_SPARE)) != 0) {
6515 return (error);
6516 }
6517
6518 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6519 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
6520 VDEV_LABEL_L2CACHE));
6521 }
6522
6523 static void
6524 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
6525 const char *config)
6526 {
6527 int i;
6528
6529 if (sav->sav_config != NULL) {
6530 nvlist_t **olddevs;
6531 uint_t oldndevs;
6532 nvlist_t **newdevs;
6533
6534 /*
6535 * Generate new dev list by concatenating with the
6536 * current dev list.
6537 */
6538 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
6539 &olddevs, &oldndevs));
6540
6541 newdevs = kmem_alloc(sizeof (void *) *
6542 (ndevs + oldndevs), KM_SLEEP);
6543 for (i = 0; i < oldndevs; i++)
6544 newdevs[i] = fnvlist_dup(olddevs[i]);
6545 for (i = 0; i < ndevs; i++)
6546 newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
6547
6548 fnvlist_remove(sav->sav_config, config);
6549
6550 fnvlist_add_nvlist_array(sav->sav_config, config,
6551 (const nvlist_t * const *)newdevs, ndevs + oldndevs);
6552 for (i = 0; i < oldndevs + ndevs; i++)
6553 nvlist_free(newdevs[i]);
6554 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
6555 } else {
6556 /*
6557 * Generate a new dev list.
6558 */
6559 sav->sav_config = fnvlist_alloc();
6560 fnvlist_add_nvlist_array(sav->sav_config, config,
6561 (const nvlist_t * const *)devs, ndevs);
6562 }
6563 }
6564
6565 /*
6566 * Stop and drop level 2 ARC devices
6567 */
6568 void
6569 spa_l2cache_drop(spa_t *spa)
6570 {
6571 vdev_t *vd;
6572 int i;
6573 spa_aux_vdev_t *sav = &spa->spa_l2cache;
6574
6575 for (i = 0; i < sav->sav_count; i++) {
6576 uint64_t pool;
6577
6578 vd = sav->sav_vdevs[i];
6579 ASSERT(vd != NULL);
6580
6581 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
6582 pool != 0ULL && l2arc_vdev_present(vd))
6583 l2arc_remove_vdev(vd);
6584 }
6585 }
6586
6587 /*
6588 * Verify encryption parameters for spa creation. If we are encrypting, we must
6589 * have the encryption feature flag enabled.
6590 */
6591 static int
6592 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
6593 boolean_t has_encryption)
6594 {
6595 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
6596 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
6597 !has_encryption)
6598 return (SET_ERROR(ENOTSUP));
6599
6600 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
6601 }
6602
6603 /*
6604 * Pool Creation
6605 */
6606 int
6607 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
6608 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
6609 {
6610 spa_t *spa;
6611 const char *altroot = NULL;
6612 vdev_t *rvd;
6613 dsl_pool_t *dp;
6614 dmu_tx_t *tx;
6615 int error = 0;
6616 uint64_t txg = TXG_INITIAL;
6617 nvlist_t **spares, **l2cache;
6618 uint_t nspares, nl2cache;
6619 uint64_t version, obj, ndraid = 0;
6620 boolean_t has_features;
6621 boolean_t has_encryption;
6622 boolean_t has_allocclass;
6623 spa_feature_t feat;
6624 const char *feat_name;
6625 const char *poolname;
6626 nvlist_t *nvl;
6627
6628 if (props == NULL ||
6629 nvlist_lookup_string(props,
6630 zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
6631 poolname = (char *)pool;
6632
6633 /*
6634 * If this pool already exists, return failure.
6635 */
6636 spa_namespace_enter(FTAG);
6637 if (spa_lookup(poolname) != NULL) {
6638 spa_namespace_exit(FTAG);
6639 return (SET_ERROR(EEXIST));
6640 }
6641
6642 /*
6643 * Allocate a new spa_t structure.
6644 */
6645 nvl = fnvlist_alloc();
6646 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
6647 (void) nvlist_lookup_string(props,
6648 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6649 spa = spa_add(poolname, nvl, altroot);
6650 fnvlist_free(nvl);
6651 spa_activate(spa, spa_mode_global);
6652
6653 if (props && (error = spa_prop_validate(spa, props))) {
6654 spa_deactivate(spa);
6655 spa_remove(spa);
6656 spa_namespace_exit(FTAG);
6657 return (error);
6658 }
6659
6660 /*
6661 * Temporary pool names should never be written to disk.
6662 */
6663 if (poolname != pool)
6664 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
6665
6666 has_features = B_FALSE;
6667 has_encryption = B_FALSE;
6668 has_allocclass = B_FALSE;
6669 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
6670 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
6671 if (zpool_prop_feature(nvpair_name(elem))) {
6672 has_features = B_TRUE;
6673
6674 feat_name = strchr(nvpair_name(elem), '@') + 1;
6675 VERIFY0(zfeature_lookup_name(feat_name, &feat));
6676 if (feat == SPA_FEATURE_ENCRYPTION)
6677 has_encryption = B_TRUE;
6678 if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
6679 has_allocclass = B_TRUE;
6680 }
6681 }
6682
6683 /* verify encryption params, if they were provided */
6684 if (dcp != NULL) {
6685 error = spa_create_check_encryption_params(dcp, has_encryption);
6686 if (error != 0) {
6687 spa_deactivate(spa);
6688 spa_remove(spa);
6689 spa_namespace_exit(FTAG);
6690 return (error);
6691 }
6692 }
6693 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
6694 spa_deactivate(spa);
6695 spa_remove(spa);
6696 spa_namespace_exit(FTAG);
6697 return (ENOTSUP);
6698 }
6699
6700 if (has_features || nvlist_lookup_uint64(props,
6701 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
6702 version = SPA_VERSION;
6703 }
6704 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6705
6706 spa->spa_first_txg = txg;
6707 spa->spa_uberblock.ub_txg = txg - 1;
6708 spa->spa_uberblock.ub_version = version;
6709 spa->spa_ubsync = spa->spa_uberblock;
6710 spa->spa_load_state = SPA_LOAD_CREATE;
6711 spa->spa_removing_phys.sr_state = DSS_NONE;
6712 spa->spa_removing_phys.sr_removing_vdev = -1;
6713 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
6714 spa->spa_indirect_vdevs_loaded = B_TRUE;
6715
6716 /*
6717 * Create "The Godfather" zio to hold all async IOs
6718 */
6719 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
6720 KM_SLEEP);
6721 for (int i = 0; i < max_ncpus; i++) {
6722 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
6723 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6724 ZIO_FLAG_GODFATHER);
6725 }
6726
6727 /*
6728 * Create the root vdev.
6729 */
6730 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6731
6732 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6733
6734 ASSERT(error != 0 || rvd != NULL);
6735 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6736
6737 if (error == 0 && !zfs_allocatable_devs(nvroot))
6738 error = SET_ERROR(EINVAL);
6739
6740 if (error == 0 &&
6741 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6742 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6743 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6744 /*
6745 * instantiate the metaslab groups (this will dirty the vdevs)
6746 * we can no longer error exit past this point
6747 */
6748 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6749 vdev_t *vd = rvd->vdev_child[c];
6750
6751 vdev_metaslab_set_size(vd);
6752 vdev_expand(vd, txg);
6753 }
6754 }
6755
6756 spa_config_exit(spa, SCL_ALL, FTAG);
6757
6758 if (error != 0) {
6759 spa_unload(spa);
6760 spa_deactivate(spa);
6761 spa_remove(spa);
6762 spa_namespace_exit(FTAG);
6763 return (error);
6764 }
6765
6766 /*
6767 * Get the list of spares, if specified.
6768 */
6769 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6770 &spares, &nspares) == 0) {
6771 spa->spa_spares.sav_config = fnvlist_alloc();
6772 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6773 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6774 nspares);
6775 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6776 spa_load_spares(spa);
6777 spa_config_exit(spa, SCL_ALL, FTAG);
6778 spa->spa_spares.sav_sync = B_TRUE;
6779 }
6780
6781 /*
6782 * Get the list of level 2 cache devices, if specified.
6783 */
6784 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6785 &l2cache, &nl2cache) == 0) {
6786 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6787 NV_UNIQUE_NAME, KM_SLEEP));
6788 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6789 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6790 nl2cache);
6791 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6792 spa_load_l2cache(spa);
6793 spa_config_exit(spa, SCL_ALL, FTAG);
6794 spa->spa_l2cache.sav_sync = B_TRUE;
6795 }
6796
6797 spa->spa_is_initializing = B_TRUE;
6798 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6799 spa->spa_is_initializing = B_FALSE;
6800
6801 /*
6802 * Create DDTs (dedup tables).
6803 */
6804 ddt_create(spa);
6805 /*
6806 * Create BRT table and BRT table object.
6807 */
6808 brt_create(spa);
6809
6810 spa_update_dspace(spa);
6811
6812 tx = dmu_tx_create_assigned(dp, txg);
6813
6814 /*
6815 * Create the pool's history object.
6816 */
6817 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6818 spa_history_create_obj(spa, tx);
6819
6820 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6821 spa_history_log_version(spa, "create", tx);
6822
6823 /*
6824 * Create the pool config object.
6825 */
6826 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6827 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6828 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6829
6830 if (zap_add(spa->spa_meta_objset,
6831 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6832 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6833 cmn_err(CE_PANIC, "failed to add pool config");
6834 }
6835
6836 if (zap_add(spa->spa_meta_objset,
6837 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6838 sizeof (uint64_t), 1, &version, tx) != 0) {
6839 cmn_err(CE_PANIC, "failed to add pool version");
6840 }
6841
6842 /* Newly created pools with the right version are always deflated. */
6843 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6844 spa->spa_deflate = TRUE;
6845 if (zap_add(spa->spa_meta_objset,
6846 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6847 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6848 cmn_err(CE_PANIC, "failed to add deflate");
6849 }
6850 }
6851
6852 /*
6853 * Create the deferred-free bpobj. Turn off compression
6854 * because sync-to-convergence takes longer if the blocksize
6855 * keeps changing.
6856 */
6857 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6858 dmu_object_set_compress(spa->spa_meta_objset, obj,
6859 ZIO_COMPRESS_OFF, tx);
6860 if (zap_add(spa->spa_meta_objset,
6861 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6862 sizeof (uint64_t), 1, &obj, tx) != 0) {
6863 cmn_err(CE_PANIC, "failed to add bpobj");
6864 }
6865 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6866 spa->spa_meta_objset, obj));
6867
6868 /*
6869 * Generate some random noise for salted checksums to operate on.
6870 */
6871 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6872 sizeof (spa->spa_cksum_salt.zcs_bytes));
6873
6874 /*
6875 * Set pool properties.
6876 */
6877 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6878 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6879 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6880 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6881 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6882 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6883 spa->spa_dedup_table_quota =
6884 zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_TABLE_QUOTA);
6885
6886 if (props != NULL) {
6887 spa_configfile_set(spa, props, B_FALSE);
6888 spa_sync_props(props, tx);
6889 }
6890
6891 for (int i = 0; i < ndraid; i++)
6892 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6893
6894 dmu_tx_commit(tx);
6895
6896 spa->spa_sync_on = B_TRUE;
6897 txg_sync_start(dp);
6898 mmp_thread_start(spa);
6899 txg_wait_synced(dp, txg);
6900
6901 spa_spawn_aux_threads(spa);
6902
6903 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6904
6905 /*
6906 * Don't count references from objsets that are already closed
6907 * and are making their way through the eviction process.
6908 */
6909 spa_evicting_os_wait(spa);
6910 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6911 spa->spa_load_state = SPA_LOAD_NONE;
6912
6913 spa_import_os(spa);
6914
6915 spa_namespace_exit(FTAG);
6916
6917 return (0);
6918 }
6919
6920 /*
6921 * Import a non-root pool into the system.
6922 */
6923 int
6924 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6925 {
6926 spa_t *spa;
6927 const char *altroot = NULL;
6928 spa_load_state_t state = SPA_LOAD_IMPORT;
6929 zpool_load_policy_t policy;
6930 spa_mode_t mode = spa_mode_global;
6931 uint64_t readonly = B_FALSE;
6932 int error;
6933 nvlist_t *nvroot;
6934 nvlist_t **spares, **l2cache;
6935 uint_t nspares, nl2cache;
6936
6937 /*
6938 * If a pool with this name exists, return failure.
6939 */
6940 spa_namespace_enter(FTAG);
6941 if (spa_lookup(pool) != NULL) {
6942 spa_namespace_exit(FTAG);
6943 return (SET_ERROR(EEXIST));
6944 }
6945
6946 /*
6947 * Create and initialize the spa structure.
6948 */
6949 (void) nvlist_lookup_string(props,
6950 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6951 (void) nvlist_lookup_uint64(props,
6952 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6953 if (readonly)
6954 mode = SPA_MODE_READ;
6955 spa = spa_add(pool, config, altroot);
6956 spa->spa_import_flags = flags;
6957
6958 /*
6959 * Verbatim import - Take a pool and insert it into the namespace
6960 * as if it had been loaded at boot.
6961 */
6962 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6963 if (props != NULL)
6964 spa_configfile_set(spa, props, B_FALSE);
6965
6966 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6967 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6968 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6969 spa_namespace_exit(FTAG);
6970 return (0);
6971 }
6972
6973 spa_activate(spa, mode);
6974
6975 /*
6976 * Don't start async tasks until we know everything is healthy.
6977 */
6978 spa_async_suspend(spa);
6979
6980 zpool_get_load_policy(config, &policy);
6981 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6982 state = SPA_LOAD_RECOVER;
6983
6984 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6985
6986 if (state != SPA_LOAD_RECOVER) {
6987 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6988 zfs_dbgmsg("spa_import: importing %s", pool);
6989 } else {
6990 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6991 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6992 }
6993 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6994
6995 /*
6996 * Propagate anything learned while loading the pool and pass it
6997 * back to caller (i.e. rewind info, missing devices, etc).
6998 */
6999 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
7000
7001 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7002 /*
7003 * Toss any existing sparelist, as it doesn't have any validity
7004 * anymore, and conflicts with spa_has_spare().
7005 */
7006 if (spa->spa_spares.sav_config) {
7007 nvlist_free(spa->spa_spares.sav_config);
7008 spa->spa_spares.sav_config = NULL;
7009 spa_load_spares(spa);
7010 }
7011 if (spa->spa_l2cache.sav_config) {
7012 nvlist_free(spa->spa_l2cache.sav_config);
7013 spa->spa_l2cache.sav_config = NULL;
7014 spa_load_l2cache(spa);
7015 }
7016
7017 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
7018 spa_config_exit(spa, SCL_ALL, FTAG);
7019
7020 if (props != NULL)
7021 spa_configfile_set(spa, props, B_FALSE);
7022
7023 if (error != 0 || (props && spa_writeable(spa) &&
7024 (error = spa_prop_set(spa, props)))) {
7025 spa_unload(spa);
7026 spa_deactivate(spa);
7027 spa_remove(spa);
7028 spa_namespace_exit(FTAG);
7029 return (error);
7030 }
7031
7032 spa_async_resume(spa);
7033
7034 /*
7035 * Override any spares and level 2 cache devices as specified by
7036 * the user, as these may have correct device names/devids, etc.
7037 */
7038 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
7039 &spares, &nspares) == 0) {
7040 if (spa->spa_spares.sav_config)
7041 fnvlist_remove(spa->spa_spares.sav_config,
7042 ZPOOL_CONFIG_SPARES);
7043 else
7044 spa->spa_spares.sav_config = fnvlist_alloc();
7045 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
7046 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
7047 nspares);
7048 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7049 spa_load_spares(spa);
7050 spa_config_exit(spa, SCL_ALL, FTAG);
7051 spa->spa_spares.sav_sync = B_TRUE;
7052 spa->spa_spares.sav_label_sync = B_TRUE;
7053 }
7054 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
7055 &l2cache, &nl2cache) == 0) {
7056 if (spa->spa_l2cache.sav_config)
7057 fnvlist_remove(spa->spa_l2cache.sav_config,
7058 ZPOOL_CONFIG_L2CACHE);
7059 else
7060 spa->spa_l2cache.sav_config = fnvlist_alloc();
7061 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
7062 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
7063 nl2cache);
7064 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7065 spa_load_l2cache(spa);
7066 spa_config_exit(spa, SCL_ALL, FTAG);
7067 spa->spa_l2cache.sav_sync = B_TRUE;
7068 spa->spa_l2cache.sav_label_sync = B_TRUE;
7069 }
7070
7071 /*
7072 * Check for any removed devices.
7073 */
7074 if (spa->spa_autoreplace) {
7075 spa_aux_check_removed(&spa->spa_spares);
7076 spa_aux_check_removed(&spa->spa_l2cache);
7077 }
7078
7079 if (spa_writeable(spa)) {
7080 /*
7081 * Update the config cache to include the newly-imported pool.
7082 */
7083 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7084 }
7085
7086 /*
7087 * It's possible that the pool was expanded while it was exported.
7088 * We kick off an async task to handle this for us.
7089 */
7090 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
7091
7092 spa_history_log_version(spa, "import", NULL);
7093
7094 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
7095
7096 spa_namespace_exit(FTAG);
7097
7098 zvol_create_minors(pool);
7099
7100 spa_import_os(spa);
7101
7102 return (0);
7103 }
7104
7105 nvlist_t *
7106 spa_tryimport(nvlist_t *tryconfig)
7107 {
7108 nvlist_t *config = NULL;
7109 const char *poolname, *cachefile;
7110 spa_t *spa;
7111 uint64_t state;
7112 int error;
7113 zpool_load_policy_t policy;
7114
7115 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
7116 return (NULL);
7117
7118 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
7119 return (NULL);
7120
7121 /*
7122 * Create and initialize the spa structure.
7123 */
7124 char *name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
7125 (void) snprintf(name, MAXPATHLEN, "%s-%llx-%s",
7126 TRYIMPORT_NAME, (u_longlong_t)(uintptr_t)curthread, poolname);
7127
7128 spa_namespace_enter(FTAG);
7129 spa = spa_add(name, tryconfig, NULL);
7130 spa_activate(spa, SPA_MODE_READ);
7131 kmem_free(name, MAXPATHLEN);
7132
7133 /*
7134 * Rewind pool if a max txg was provided.
7135 */
7136 zpool_get_load_policy(spa->spa_config, &policy);
7137 if (policy.zlp_txg != UINT64_MAX) {
7138 spa->spa_load_max_txg = policy.zlp_txg;
7139 spa->spa_extreme_rewind = B_TRUE;
7140 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
7141 poolname, (longlong_t)policy.zlp_txg);
7142 } else {
7143 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
7144 }
7145
7146 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
7147 == 0) {
7148 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
7149 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
7150 } else {
7151 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
7152 }
7153
7154 /*
7155 * spa_import() relies on a pool config fetched by spa_try_import()
7156 * for spare/cache devices. Import flags are not passed to
7157 * spa_tryimport(), which makes it return early due to a missing log
7158 * device and missing retrieving the cache device and spare eventually.
7159 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
7160 * the correct configuration regardless of the missing log device.
7161 */
7162 spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
7163
7164 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
7165
7166 /*
7167 * If 'tryconfig' was at least parsable, return the current config.
7168 */
7169 if (spa->spa_root_vdev != NULL) {
7170 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
7171 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
7172 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
7173 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
7174 spa->spa_uberblock.ub_timestamp);
7175 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
7176 spa->spa_load_info);
7177 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
7178 spa->spa_errata);
7179
7180 /*
7181 * If the bootfs property exists on this pool then we
7182 * copy it out so that external consumers can tell which
7183 * pools are bootable.
7184 */
7185 if ((!error || error == EEXIST) && spa->spa_bootfs) {
7186 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
7187
7188 /*
7189 * We have to play games with the name since the
7190 * pool was opened as TRYIMPORT_NAME.
7191 */
7192 if (dsl_dsobj_to_dsname(spa_name(spa),
7193 spa->spa_bootfs, tmpname) == 0) {
7194 char *cp;
7195 char *dsname;
7196
7197 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
7198
7199 cp = strchr(tmpname, '/');
7200 if (cp == NULL) {
7201 (void) strlcpy(dsname, tmpname,
7202 MAXPATHLEN);
7203 } else {
7204 (void) snprintf(dsname, MAXPATHLEN,
7205 "%s/%s", poolname, ++cp);
7206 }
7207 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
7208 dsname);
7209 kmem_free(dsname, MAXPATHLEN);
7210 }
7211 kmem_free(tmpname, MAXPATHLEN);
7212 }
7213
7214 /*
7215 * Add the list of hot spares and level 2 cache devices.
7216 */
7217 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7218 spa_add_spares(spa, config);
7219 spa_add_l2cache(spa, config);
7220 spa_config_exit(spa, SCL_CONFIG, FTAG);
7221 }
7222
7223 spa_unload(spa);
7224 spa_deactivate(spa);
7225 spa_remove(spa);
7226 spa_namespace_exit(FTAG);
7227
7228 return (config);
7229 }
7230
7231 /*
7232 * Pool export/destroy
7233 *
7234 * The act of destroying or exporting a pool is very simple. We make sure there
7235 * is no more pending I/O and any references to the pool are gone. Then, we
7236 * update the pool state and sync all the labels to disk, removing the
7237 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
7238 * we don't sync the labels or remove the configuration cache.
7239 */
7240 static int
7241 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
7242 boolean_t force, boolean_t hardforce)
7243 {
7244 int error = 0;
7245 spa_t *spa;
7246 hrtime_t export_start = gethrtime();
7247
7248 if (oldconfig)
7249 *oldconfig = NULL;
7250
7251 if (!(spa_mode_global & SPA_MODE_WRITE))
7252 return (SET_ERROR(EROFS));
7253
7254 spa_namespace_enter(FTAG);
7255 if ((spa = spa_lookup(pool)) == NULL) {
7256 spa_namespace_exit(FTAG);
7257 return (SET_ERROR(ENOENT));
7258 }
7259
7260 if (spa->spa_is_exporting) {
7261 /* the pool is being exported by another thread */
7262 spa_namespace_exit(FTAG);
7263 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
7264 }
7265 spa->spa_is_exporting = B_TRUE;
7266
7267 /*
7268 * Put a hold on the pool, drop the namespace lock, stop async tasks
7269 * and see if we can export.
7270 */
7271 spa_open_ref(spa, FTAG);
7272 spa_namespace_exit(FTAG);
7273 spa_async_suspend(spa);
7274 if (spa->spa_zvol_taskq) {
7275 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
7276 taskq_wait(spa->spa_zvol_taskq);
7277 }
7278 spa_namespace_enter(FTAG);
7279 spa->spa_export_thread = curthread;
7280 spa_close(spa, FTAG);
7281
7282 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
7283 spa_namespace_exit(FTAG);
7284 goto export_spa;
7285 }
7286
7287 /*
7288 * The pool will be in core if it's openable, in which case we can
7289 * modify its state. Objsets may be open only because they're dirty,
7290 * so we have to force it to sync before checking spa_refcnt.
7291 */
7292 if (spa->spa_sync_on) {
7293 txg_wait_synced(spa->spa_dsl_pool, 0);
7294 spa_evicting_os_wait(spa);
7295 }
7296
7297 /*
7298 * A pool cannot be exported or destroyed if there are active
7299 * references. If we are resetting a pool, allow references by
7300 * fault injection handlers.
7301 */
7302 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
7303 error = SET_ERROR(EBUSY);
7304 goto fail;
7305 }
7306
7307 spa_namespace_exit(FTAG);
7308 /*
7309 * At this point we no longer hold the spa_namespace_lock and
7310 * there were no references on the spa. Future spa_lookups will
7311 * notice the spa->spa_export_thread and wait until we signal
7312 * that we are finshed.
7313 */
7314
7315 if (spa->spa_sync_on) {
7316 vdev_t *rvd = spa->spa_root_vdev;
7317 /*
7318 * A pool cannot be exported if it has an active shared spare.
7319 * This is to prevent other pools stealing the active spare
7320 * from an exported pool. At user's own will, such pool can
7321 * be forcedly exported.
7322 */
7323 if (!force && new_state == POOL_STATE_EXPORTED &&
7324 spa_has_active_shared_spare(spa)) {
7325 error = SET_ERROR(EXDEV);
7326 spa_namespace_enter(FTAG);
7327 goto fail;
7328 }
7329
7330 /*
7331 * We're about to export or destroy this pool. Make sure
7332 * we stop all initialization and trim activity here before
7333 * we set the spa_final_txg. This will ensure that all
7334 * dirty data resulting from the initialization is
7335 * committed to disk before we unload the pool.
7336 */
7337 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
7338 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
7339 vdev_autotrim_stop_all(spa);
7340 vdev_rebuild_stop_all(spa);
7341 l2arc_spa_rebuild_stop(spa);
7342
7343 /*
7344 * We want this to be reflected on every label,
7345 * so mark them all dirty. spa_unload() will do the
7346 * final sync that pushes these changes out.
7347 */
7348 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7349 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7350 spa->spa_state = new_state;
7351 vdev_config_dirty(rvd);
7352 spa_config_exit(spa, SCL_ALL, FTAG);
7353 }
7354
7355 if (spa_should_sync_time_logger_on_unload(spa))
7356 spa_unload_sync_time_logger(spa);
7357
7358 /*
7359 * If the log space map feature is enabled and the pool is
7360 * getting exported (but not destroyed), we want to spend some
7361 * time flushing as many metaslabs as we can in an attempt to
7362 * destroy log space maps and save import time. This has to be
7363 * done before we set the spa_final_txg, otherwise
7364 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
7365 * spa_should_flush_logs_on_unload() should be called after
7366 * spa_state has been set to the new_state.
7367 */
7368 if (spa_should_flush_logs_on_unload(spa))
7369 spa_unload_log_sm_flush_all(spa);
7370
7371 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7372 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7373 spa->spa_final_txg = spa_last_synced_txg(spa) +
7374 TXG_DEFER_SIZE + 1;
7375 spa_config_exit(spa, SCL_ALL, FTAG);
7376 }
7377 }
7378
7379 export_spa:
7380 spa_export_os(spa);
7381
7382 if (new_state == POOL_STATE_DESTROYED)
7383 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
7384 else if (new_state == POOL_STATE_EXPORTED)
7385 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
7386
7387 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7388 spa_unload(spa);
7389 spa_deactivate(spa);
7390 }
7391
7392 if (oldconfig && spa->spa_config)
7393 *oldconfig = fnvlist_dup(spa->spa_config);
7394
7395 if (new_state == POOL_STATE_EXPORTED)
7396 zio_handle_export_delay(spa, gethrtime() - export_start);
7397
7398 /*
7399 * Take the namespace lock for the actual spa_t removal
7400 */
7401 spa_namespace_enter(FTAG);
7402 if (new_state != POOL_STATE_UNINITIALIZED) {
7403 if (!hardforce)
7404 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
7405 spa_remove(spa);
7406 } else {
7407 /*
7408 * If spa_remove() is not called for this spa_t and
7409 * there is any possibility that it can be reused,
7410 * we make sure to reset the exporting flag.
7411 */
7412 spa->spa_is_exporting = B_FALSE;
7413 spa->spa_export_thread = NULL;
7414 }
7415
7416 /*
7417 * Wake up any waiters in spa_lookup()
7418 */
7419 spa_namespace_broadcast();
7420 spa_namespace_exit(FTAG);
7421 return (0);
7422
7423 fail:
7424 spa->spa_is_exporting = B_FALSE;
7425 spa->spa_export_thread = NULL;
7426
7427 spa_async_resume(spa);
7428 /*
7429 * Wake up any waiters in spa_lookup()
7430 */
7431 spa_namespace_broadcast();
7432 spa_namespace_exit(FTAG);
7433 return (error);
7434 }
7435
7436 /*
7437 * Destroy a storage pool.
7438 */
7439 int
7440 spa_destroy(const char *pool)
7441 {
7442 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
7443 B_FALSE, B_FALSE));
7444 }
7445
7446 /*
7447 * Export a storage pool.
7448 */
7449 int
7450 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
7451 boolean_t hardforce)
7452 {
7453 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
7454 force, hardforce));
7455 }
7456
7457 /*
7458 * Similar to spa_export(), this unloads the spa_t without actually removing it
7459 * from the namespace in any way.
7460 */
7461 int
7462 spa_reset(const char *pool)
7463 {
7464 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
7465 B_FALSE, B_FALSE));
7466 }
7467
7468 /*
7469 * ==========================================================================
7470 * Device manipulation
7471 * ==========================================================================
7472 */
7473
7474 /*
7475 * This is called as a synctask to increment the draid feature flag
7476 */
7477 static void
7478 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
7479 {
7480 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7481 int draid = (int)(uintptr_t)arg;
7482
7483 for (int c = 0; c < draid; c++)
7484 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
7485 }
7486
7487 /*
7488 * Add a device to a storage pool.
7489 */
7490 int
7491 spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift)
7492 {
7493 uint64_t txg, ndraid = 0;
7494 int error;
7495 vdev_t *rvd = spa->spa_root_vdev;
7496 vdev_t *vd, *tvd;
7497 nvlist_t **spares, **l2cache;
7498 uint_t nspares, nl2cache;
7499
7500 ASSERT(spa_writeable(spa));
7501
7502 txg = spa_vdev_enter(spa);
7503
7504 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
7505 VDEV_ALLOC_ADD)) != 0)
7506 return (spa_vdev_exit(spa, NULL, txg, error));
7507
7508 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
7509
7510 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
7511 &nspares) != 0)
7512 nspares = 0;
7513
7514 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
7515 &nl2cache) != 0)
7516 nl2cache = 0;
7517
7518 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
7519 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7520
7521 if (vd->vdev_children != 0 &&
7522 (error = vdev_create(vd, txg, B_FALSE)) != 0) {
7523 return (spa_vdev_exit(spa, vd, txg, error));
7524 }
7525
7526 /*
7527 * The virtual dRAID spares must be added after vdev tree is created
7528 * and the vdev guids are generated. The guid of their associated
7529 * dRAID is stored in the config and used when opening the spare.
7530 */
7531 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
7532 rvd->vdev_children)) == 0) {
7533 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
7534 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
7535 nspares = 0;
7536 } else {
7537 return (spa_vdev_exit(spa, vd, txg, error));
7538 }
7539
7540 /*
7541 * We must validate the spares and l2cache devices after checking the
7542 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
7543 */
7544 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
7545 return (spa_vdev_exit(spa, vd, txg, error));
7546
7547 /*
7548 * If we are in the middle of a device removal, we can only add
7549 * devices which match the existing devices in the pool.
7550 * If we are in the middle of a removal, or have some indirect
7551 * vdevs, we can not add raidz or dRAID top levels.
7552 */
7553 if (spa->spa_vdev_removal != NULL ||
7554 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7555 for (int c = 0; c < vd->vdev_children; c++) {
7556 tvd = vd->vdev_child[c];
7557 if (spa->spa_vdev_removal != NULL &&
7558 tvd->vdev_ashift != spa->spa_max_ashift) {
7559 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7560 }
7561 /* Fail if top level vdev is raidz or a dRAID */
7562 if (vdev_get_nparity(tvd) != 0)
7563 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7564
7565 /*
7566 * Need the top level mirror to be
7567 * a mirror of leaf vdevs only
7568 */
7569 if (tvd->vdev_ops == &vdev_mirror_ops) {
7570 for (uint64_t cid = 0;
7571 cid < tvd->vdev_children; cid++) {
7572 vdev_t *cvd = tvd->vdev_child[cid];
7573 if (!cvd->vdev_ops->vdev_op_leaf) {
7574 return (spa_vdev_exit(spa, vd,
7575 txg, EINVAL));
7576 }
7577 }
7578 }
7579 }
7580 }
7581
7582 if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) {
7583 for (int c = 0; c < vd->vdev_children; c++) {
7584 tvd = vd->vdev_child[c];
7585 if (tvd->vdev_ashift != spa->spa_max_ashift) {
7586 return (spa_vdev_exit(spa, vd, txg,
7587 ZFS_ERR_ASHIFT_MISMATCH));
7588 }
7589 }
7590 }
7591
7592 for (int c = 0; c < vd->vdev_children; c++) {
7593 tvd = vd->vdev_child[c];
7594 vdev_remove_child(vd, tvd);
7595 tvd->vdev_id = rvd->vdev_children;
7596 vdev_add_child(rvd, tvd);
7597 vdev_config_dirty(tvd);
7598 }
7599
7600 if (nspares != 0) {
7601 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
7602 ZPOOL_CONFIG_SPARES);
7603 spa_load_spares(spa);
7604 spa->spa_spares.sav_sync = B_TRUE;
7605 }
7606
7607 if (nl2cache != 0) {
7608 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
7609 ZPOOL_CONFIG_L2CACHE);
7610 spa_load_l2cache(spa);
7611 spa->spa_l2cache.sav_sync = B_TRUE;
7612 }
7613
7614 /*
7615 * We can't increment a feature while holding spa_vdev so we
7616 * have to do it in a synctask.
7617 */
7618 if (ndraid != 0) {
7619 dmu_tx_t *tx;
7620
7621 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
7622 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
7623 (void *)(uintptr_t)ndraid, tx);
7624 dmu_tx_commit(tx);
7625 }
7626
7627 /*
7628 * We have to be careful when adding new vdevs to an existing pool.
7629 * If other threads start allocating from these vdevs before we
7630 * sync the config cache, and we lose power, then upon reboot we may
7631 * fail to open the pool because there are DVAs that the config cache
7632 * can't translate. Therefore, we first add the vdevs without
7633 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
7634 * and then let spa_config_update() initialize the new metaslabs.
7635 *
7636 * spa_load() checks for added-but-not-initialized vdevs, so that
7637 * if we lose power at any point in this sequence, the remaining
7638 * steps will be completed the next time we load the pool.
7639 */
7640 (void) spa_vdev_exit(spa, vd, txg, 0);
7641
7642 spa_namespace_enter(FTAG);
7643 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7644 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
7645 spa_namespace_exit(FTAG);
7646
7647 return (0);
7648 }
7649
7650 /*
7651 * Given a vdev to be replaced and its parent, check for a possible
7652 * "double spare" condition if a vdev is to be replaced by a spare. When this
7653 * happens, you can get two spares assigned to one failed vdev.
7654 *
7655 * To trigger a double spare condition:
7656 *
7657 * 1. disk1 fails
7658 * 2. 1st spare is kicked in for disk1 and it resilvers
7659 * 3. Someone replaces disk1 with a new blank disk
7660 * 4. New blank disk starts resilvering
7661 * 5. While resilvering, new blank disk has IO errors and faults
7662 * 6. 2nd spare is kicked in for new blank disk
7663 * 7. At this point two spares are kicked in for the original disk1.
7664 *
7665 * It looks like this:
7666 *
7667 * NAME STATE READ WRITE CKSUM
7668 * tank2 DEGRADED 0 0 0
7669 * draid2:6d:10c:2s-0 DEGRADED 0 0 0
7670 * scsi-0QEMU_QEMU_HARDDISK_d1 ONLINE 0 0 0
7671 * scsi-0QEMU_QEMU_HARDDISK_d2 ONLINE 0 0 0
7672 * scsi-0QEMU_QEMU_HARDDISK_d3 ONLINE 0 0 0
7673 * scsi-0QEMU_QEMU_HARDDISK_d4 ONLINE 0 0 0
7674 * scsi-0QEMU_QEMU_HARDDISK_d5 ONLINE 0 0 0
7675 * scsi-0QEMU_QEMU_HARDDISK_d6 ONLINE 0 0 0
7676 * scsi-0QEMU_QEMU_HARDDISK_d7 ONLINE 0 0 0
7677 * scsi-0QEMU_QEMU_HARDDISK_d8 ONLINE 0 0 0
7678 * scsi-0QEMU_QEMU_HARDDISK_d9 ONLINE 0 0 0
7679 * spare-9 DEGRADED 0 0 0
7680 * replacing-0 DEGRADED 0 93 0
7681 * scsi-0QEMU_QEMU_HARDDISK_d10-part1/old UNAVAIL 0 0 0
7682 * spare-1 DEGRADED 0 0 0
7683 * scsi-0QEMU_QEMU_HARDDISK_d10 REMOVED 0 0 0
7684 * draid2-0-0 ONLINE 0 0 0
7685 * draid2-0-1 ONLINE 0 0 0
7686 * spares
7687 * draid2-0-0 INUSE currently in use
7688 * draid2-0-1 INUSE currently in use
7689 *
7690 * ARGS:
7691 *
7692 * newvd: New spare disk
7693 * pvd: Parent vdev_t the spare should attach to
7694 *
7695 * This function returns B_TRUE if adding the new vdev would create a double
7696 * spare condition, B_FALSE otherwise.
7697 */
7698 static boolean_t
7699 spa_vdev_new_spare_would_cause_double_spares(vdev_t *newvd, vdev_t *pvd)
7700 {
7701 vdev_t *ppvd;
7702
7703 ppvd = pvd->vdev_parent;
7704 if (ppvd == NULL)
7705 return (B_FALSE);
7706
7707 /*
7708 * To determine if this configuration would cause a double spare, we
7709 * look at the vdev_op of the parent vdev, and of the parent's parent
7710 * vdev. We also look at vdev_isspare on the new disk. A double spare
7711 * condition looks like this:
7712 *
7713 * 1. parent of parent's op is a spare or draid spare
7714 * 2. parent's op is replacing
7715 * 3. new disk is a spare
7716 */
7717 if ((ppvd->vdev_ops == &vdev_spare_ops) ||
7718 (ppvd->vdev_ops == &vdev_draid_spare_ops))
7719 if (pvd->vdev_ops == &vdev_replacing_ops)
7720 if (newvd->vdev_isspare)
7721 return (B_TRUE);
7722
7723 return (B_FALSE);
7724 }
7725
7726 /*
7727 * Attach a device to a vdev specified by its guid. The vdev type can be
7728 * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a
7729 * single device). When the vdev is a single device, a mirror vdev will be
7730 * automatically inserted.
7731 *
7732 * If 'replacing' is specified, the new device is intended to replace the
7733 * existing device; in this case the two devices are made into their own
7734 * mirror using the 'replacing' vdev, which is functionally identical to
7735 * the mirror vdev (it actually reuses all the same ops) but has a few
7736 * extra rules: you can't attach to it after it's been created, and upon
7737 * completion of resilvering, the first disk (the one being replaced)
7738 * is automatically detached.
7739 *
7740 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
7741 * should be performed instead of traditional healing reconstruction. From
7742 * an administrators perspective these are both resilver operations.
7743 */
7744 int
7745 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
7746 int rebuild)
7747 {
7748 uint64_t txg, dtl_max_txg;
7749 vdev_t *rvd = spa->spa_root_vdev;
7750 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
7751 vdev_ops_t *pvops;
7752 char *oldvdpath, *newvdpath;
7753 int newvd_isspare = B_FALSE;
7754 int error;
7755
7756 ASSERT(spa_writeable(spa));
7757
7758 txg = spa_vdev_enter(spa);
7759
7760 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
7761
7762 ASSERT(spa_namespace_held());
7763 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7764 error = (spa_has_checkpoint(spa)) ?
7765 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7766 return (spa_vdev_exit(spa, NULL, txg, error));
7767 }
7768
7769 if (rebuild) {
7770 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
7771 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7772
7773 if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
7774 dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
7775 return (spa_vdev_exit(spa, NULL, txg,
7776 ZFS_ERR_RESILVER_IN_PROGRESS));
7777 }
7778 } else {
7779 if (vdev_rebuild_active(rvd))
7780 return (spa_vdev_exit(spa, NULL, txg,
7781 ZFS_ERR_REBUILD_IN_PROGRESS));
7782 }
7783
7784 if (spa->spa_vdev_removal != NULL) {
7785 return (spa_vdev_exit(spa, NULL, txg,
7786 ZFS_ERR_DEVRM_IN_PROGRESS));
7787 }
7788
7789 if (oldvd == NULL)
7790 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7791
7792 boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops;
7793
7794 if (raidz) {
7795 if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION))
7796 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7797
7798 /*
7799 * Can't expand a raidz while prior expand is in progress.
7800 */
7801 if (spa->spa_raidz_expand != NULL) {
7802 return (spa_vdev_exit(spa, NULL, txg,
7803 ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS));
7804 }
7805 } else if (!oldvd->vdev_ops->vdev_op_leaf) {
7806 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7807 }
7808
7809 if (raidz)
7810 pvd = oldvd;
7811 else
7812 pvd = oldvd->vdev_parent;
7813
7814 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
7815 VDEV_ALLOC_ATTACH) != 0)
7816 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7817
7818 if (newrootvd->vdev_children != 1)
7819 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7820
7821 newvd = newrootvd->vdev_child[0];
7822
7823 if (!newvd->vdev_ops->vdev_op_leaf)
7824 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7825
7826 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
7827 return (spa_vdev_exit(spa, newrootvd, txg, error));
7828
7829 /*
7830 * log, dedup and special vdevs should not be replaced by spares.
7831 */
7832 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
7833 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
7834 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7835 }
7836
7837 /*
7838 * A dRAID spare can only replace a child of its parent dRAID vdev.
7839 */
7840 if (newvd->vdev_ops == &vdev_draid_spare_ops &&
7841 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
7842 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7843 }
7844
7845 if (rebuild) {
7846 /*
7847 * For rebuilds, the top vdev must support reconstruction
7848 * using only space maps. This means the only allowable
7849 * vdevs types are the root vdev, a mirror, or dRAID.
7850 */
7851 tvd = pvd;
7852 if (pvd->vdev_top != NULL)
7853 tvd = pvd->vdev_top;
7854
7855 if (tvd->vdev_ops != &vdev_mirror_ops &&
7856 tvd->vdev_ops != &vdev_root_ops &&
7857 tvd->vdev_ops != &vdev_draid_ops) {
7858 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7859 }
7860 }
7861
7862 if (!replacing) {
7863 /*
7864 * For attach, the only allowable parent is a mirror or
7865 * the root vdev. A raidz vdev can be attached to, but
7866 * you cannot attach to a raidz child.
7867 */
7868 if (pvd->vdev_ops != &vdev_mirror_ops &&
7869 pvd->vdev_ops != &vdev_root_ops &&
7870 !raidz)
7871 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7872
7873 pvops = &vdev_mirror_ops;
7874 } else {
7875 /*
7876 * Active hot spares can only be replaced by inactive hot
7877 * spares.
7878 */
7879 if (pvd->vdev_ops == &vdev_spare_ops &&
7880 oldvd->vdev_isspare &&
7881 !spa_has_spare(spa, newvd->vdev_guid))
7882 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7883
7884 /*
7885 * If the source is a hot spare, and the parent isn't already a
7886 * spare, then we want to create a new hot spare. Otherwise, we
7887 * want to create a replacing vdev. The user is not allowed to
7888 * attach to a spared vdev child unless the 'isspare' state is
7889 * the same (spare replaces spare, non-spare replaces
7890 * non-spare).
7891 */
7892 if (pvd->vdev_ops == &vdev_replacing_ops &&
7893 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7894 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7895 } else if (pvd->vdev_ops == &vdev_spare_ops &&
7896 newvd->vdev_isspare != oldvd->vdev_isspare) {
7897 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7898 }
7899
7900 if (spa_vdev_new_spare_would_cause_double_spares(newvd, pvd)) {
7901 vdev_dbgmsg(newvd,
7902 "disk would create double spares, ignore.");
7903 return (spa_vdev_exit(spa, newrootvd, txg, EEXIST));
7904 }
7905
7906 if (newvd->vdev_isspare)
7907 pvops = &vdev_spare_ops;
7908 else
7909 pvops = &vdev_replacing_ops;
7910 }
7911
7912 /*
7913 * Make sure the new device is big enough.
7914 */
7915 vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd;
7916 if (newvd->vdev_asize < vdev_get_min_asize(min_vdev))
7917 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7918
7919 /*
7920 * The new device cannot have a higher alignment requirement
7921 * than the top-level vdev.
7922 */
7923 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) {
7924 return (spa_vdev_exit(spa, newrootvd, txg,
7925 ZFS_ERR_ASHIFT_MISMATCH));
7926 }
7927
7928 /*
7929 * RAIDZ-expansion-specific checks.
7930 */
7931 if (raidz) {
7932 if (vdev_raidz_attach_check(newvd) != 0)
7933 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7934
7935 /*
7936 * Fail early if a child is not healthy or being replaced
7937 */
7938 for (int i = 0; i < oldvd->vdev_children; i++) {
7939 if (vdev_is_dead(oldvd->vdev_child[i]) ||
7940 !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) {
7941 return (spa_vdev_exit(spa, newrootvd, txg,
7942 ENXIO));
7943 }
7944 /* Also fail if reserved boot area is in-use */
7945 if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i])
7946 != 0) {
7947 return (spa_vdev_exit(spa, newrootvd, txg,
7948 EADDRINUSE));
7949 }
7950 }
7951 }
7952
7953 if (raidz) {
7954 /*
7955 * Note: oldvdpath is freed by spa_strfree(), but
7956 * kmem_asprintf() is freed by kmem_strfree(), so we have to
7957 * move it to a spa_strdup-ed string.
7958 */
7959 char *tmp = kmem_asprintf("raidz%u-%u",
7960 (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id);
7961 oldvdpath = spa_strdup(tmp);
7962 kmem_strfree(tmp);
7963 } else {
7964 oldvdpath = spa_strdup(oldvd->vdev_path);
7965 }
7966 newvdpath = spa_strdup(newvd->vdev_path);
7967
7968 /*
7969 * If this is an in-place replacement, update oldvd's path and devid
7970 * to make it distinguishable from newvd, and unopenable from now on.
7971 */
7972 if (strcmp(oldvdpath, newvdpath) == 0) {
7973 spa_strfree(oldvd->vdev_path);
7974 oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5,
7975 KM_SLEEP);
7976 (void) sprintf(oldvd->vdev_path, "%s/old",
7977 newvdpath);
7978 if (oldvd->vdev_devid != NULL) {
7979 spa_strfree(oldvd->vdev_devid);
7980 oldvd->vdev_devid = NULL;
7981 }
7982 spa_strfree(oldvdpath);
7983 oldvdpath = spa_strdup(oldvd->vdev_path);
7984 }
7985
7986 /*
7987 * If the parent is not a mirror, or if we're replacing, insert the new
7988 * mirror/replacing/spare vdev above oldvd.
7989 */
7990 if (!raidz && pvd->vdev_ops != pvops) {
7991 pvd = vdev_add_parent(oldvd, pvops);
7992 ASSERT(pvd->vdev_ops == pvops);
7993 ASSERT(oldvd->vdev_parent == pvd);
7994 }
7995
7996 ASSERT(pvd->vdev_top->vdev_parent == rvd);
7997
7998 /*
7999 * Extract the new device from its root and add it to pvd.
8000 */
8001 vdev_remove_child(newrootvd, newvd);
8002 newvd->vdev_id = pvd->vdev_children;
8003 newvd->vdev_crtxg = oldvd->vdev_crtxg;
8004 vdev_add_child(pvd, newvd);
8005
8006 /*
8007 * Reevaluate the parent vdev state.
8008 */
8009 vdev_propagate_state(pvd);
8010
8011 tvd = newvd->vdev_top;
8012 ASSERT(pvd->vdev_top == tvd);
8013 ASSERT(tvd->vdev_parent == rvd);
8014
8015 vdev_config_dirty(tvd);
8016
8017 /*
8018 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
8019 * for any dmu_sync-ed blocks. It will propagate upward when
8020 * spa_vdev_exit() calls vdev_dtl_reassess().
8021 */
8022 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
8023
8024 if (raidz) {
8025 /*
8026 * Wait for the youngest allocations and frees to sync,
8027 * and then wait for the deferral of those frees to finish.
8028 */
8029 spa_vdev_config_exit(spa, NULL,
8030 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
8031
8032 vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE);
8033 vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE);
8034 vdev_autotrim_stop_wait(tvd);
8035
8036 dtl_max_txg = spa_vdev_config_enter(spa);
8037
8038 tvd->vdev_rz_expanding = B_TRUE;
8039
8040 vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg);
8041 vdev_config_dirty(tvd);
8042
8043 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
8044 dtl_max_txg);
8045 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync,
8046 newvd, tx);
8047 dmu_tx_commit(tx);
8048 } else {
8049 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
8050 dtl_max_txg - TXG_INITIAL);
8051
8052 if (newvd->vdev_isspare) {
8053 spa_spare_activate(newvd);
8054 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
8055 }
8056
8057 newvd_isspare = newvd->vdev_isspare;
8058
8059 /*
8060 * Mark newvd's DTL dirty in this txg.
8061 */
8062 vdev_dirty(tvd, VDD_DTL, newvd, txg);
8063
8064 /*
8065 * Schedule the resilver or rebuild to restart in the future.
8066 * We do this to ensure that dmu_sync-ed blocks have been
8067 * stitched into the respective datasets.
8068 */
8069 if (rebuild) {
8070 newvd->vdev_rebuild_txg = txg;
8071
8072 vdev_rebuild(tvd);
8073 } else {
8074 newvd->vdev_resilver_txg = txg;
8075
8076 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
8077 spa_feature_is_enabled(spa,
8078 SPA_FEATURE_RESILVER_DEFER)) {
8079 vdev_defer_resilver(newvd);
8080 } else {
8081 dsl_scan_restart_resilver(spa->spa_dsl_pool,
8082 dtl_max_txg);
8083 }
8084 }
8085 }
8086
8087 if (spa->spa_bootfs)
8088 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
8089
8090 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
8091
8092 /*
8093 * Commit the config
8094 */
8095 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
8096
8097 spa_history_log_internal(spa, "vdev attach", NULL,
8098 "%s vdev=%s %s vdev=%s",
8099 replacing && newvd_isspare ? "spare in" :
8100 replacing ? "replace" : "attach", newvdpath,
8101 replacing ? "for" : "to", oldvdpath);
8102
8103 spa_strfree(oldvdpath);
8104 spa_strfree(newvdpath);
8105
8106 return (0);
8107 }
8108
8109 /*
8110 * Detach a device from a mirror or replacing vdev.
8111 *
8112 * If 'replace_done' is specified, only detach if the parent
8113 * is a replacing or a spare vdev.
8114 */
8115 int
8116 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
8117 {
8118 uint64_t txg;
8119 int error;
8120 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
8121 vdev_t *vd, *pvd, *cvd, *tvd;
8122 boolean_t unspare = B_FALSE;
8123 uint64_t unspare_guid = 0;
8124 char *vdpath;
8125
8126 ASSERT(spa_writeable(spa));
8127
8128 txg = spa_vdev_detach_enter(spa, guid);
8129
8130 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8131
8132 /*
8133 * Besides being called directly from the userland through the
8134 * ioctl interface, spa_vdev_detach() can be potentially called
8135 * at the end of spa_vdev_resilver_done().
8136 *
8137 * In the regular case, when we have a checkpoint this shouldn't
8138 * happen as we never empty the DTLs of a vdev during the scrub
8139 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
8140 * should never get here when we have a checkpoint.
8141 *
8142 * That said, even in a case when we checkpoint the pool exactly
8143 * as spa_vdev_resilver_done() calls this function everything
8144 * should be fine as the resilver will return right away.
8145 */
8146 ASSERT(spa_namespace_held());
8147 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8148 error = (spa_has_checkpoint(spa)) ?
8149 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8150 return (spa_vdev_exit(spa, NULL, txg, error));
8151 }
8152
8153 if (vd == NULL)
8154 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
8155
8156 if (!vd->vdev_ops->vdev_op_leaf)
8157 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
8158
8159 pvd = vd->vdev_parent;
8160
8161 /*
8162 * If the parent/child relationship is not as expected, don't do it.
8163 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
8164 * vdev that's replacing B with C. The user's intent in replacing
8165 * is to go from M(A,B) to M(A,C). If the user decides to cancel
8166 * the replace by detaching C, the expected behavior is to end up
8167 * M(A,B). But suppose that right after deciding to detach C,
8168 * the replacement of B completes. We would have M(A,C), and then
8169 * ask to detach C, which would leave us with just A -- not what
8170 * the user wanted. To prevent this, we make sure that the
8171 * parent/child relationship hasn't changed -- in this example,
8172 * that C's parent is still the replacing vdev R.
8173 */
8174 if (pvd->vdev_guid != pguid && pguid != 0)
8175 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
8176
8177 /*
8178 * Only 'replacing' or 'spare' vdevs can be replaced.
8179 */
8180 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
8181 pvd->vdev_ops != &vdev_spare_ops)
8182 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
8183
8184 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
8185 spa_version(spa) >= SPA_VERSION_SPARES);
8186
8187 /*
8188 * Only mirror, replacing, and spare vdevs support detach.
8189 */
8190 if (pvd->vdev_ops != &vdev_replacing_ops &&
8191 pvd->vdev_ops != &vdev_mirror_ops &&
8192 pvd->vdev_ops != &vdev_spare_ops)
8193 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
8194
8195 /*
8196 * If this device has the only valid copy of some data,
8197 * we cannot safely detach it.
8198 */
8199 if (vdev_dtl_required(vd))
8200 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
8201
8202 ASSERT(pvd->vdev_children >= 2);
8203
8204 /*
8205 * If we are detaching the second disk from a replacing vdev, then
8206 * check to see if we changed the original vdev's path to have "/old"
8207 * at the end in spa_vdev_attach(). If so, undo that change now.
8208 */
8209 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
8210 vd->vdev_path != NULL) {
8211 size_t len = strlen(vd->vdev_path);
8212
8213 for (int c = 0; c < pvd->vdev_children; c++) {
8214 cvd = pvd->vdev_child[c];
8215
8216 if (cvd == vd || cvd->vdev_path == NULL)
8217 continue;
8218
8219 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
8220 strcmp(cvd->vdev_path + len, "/old") == 0) {
8221 spa_strfree(cvd->vdev_path);
8222 cvd->vdev_path = spa_strdup(vd->vdev_path);
8223 break;
8224 }
8225 }
8226 }
8227
8228 /*
8229 * If we are detaching the original disk from a normal spare, then it
8230 * implies that the spare should become a real disk, and be removed
8231 * from the active spare list for the pool. dRAID spares on the
8232 * other hand are coupled to the pool and thus should never be removed
8233 * from the spares list.
8234 */
8235 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
8236 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
8237
8238 if (last_cvd->vdev_isspare &&
8239 last_cvd->vdev_ops != &vdev_draid_spare_ops) {
8240 unspare = B_TRUE;
8241 }
8242 }
8243
8244 /*
8245 * Erase the disk labels so the disk can be used for other things.
8246 * This must be done after all other error cases are handled,
8247 * but before we disembowel vd (so we can still do I/O to it).
8248 * But if we can't do it, don't treat the error as fatal --
8249 * it may be that the unwritability of the disk is the reason
8250 * it's being detached!
8251 */
8252 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
8253
8254 /*
8255 * Remove vd from its parent and compact the parent's children.
8256 */
8257 vdev_remove_child(pvd, vd);
8258 vdev_compact_children(pvd);
8259
8260 /*
8261 * Remember one of the remaining children so we can get tvd below.
8262 */
8263 cvd = pvd->vdev_child[pvd->vdev_children - 1];
8264
8265 /*
8266 * If we need to remove the remaining child from the list of hot spares,
8267 * do it now, marking the vdev as no longer a spare in the process.
8268 * We must do this before vdev_remove_parent(), because that can
8269 * change the GUID if it creates a new toplevel GUID. For a similar
8270 * reason, we must remove the spare now, in the same txg as the detach;
8271 * otherwise someone could attach a new sibling, change the GUID, and
8272 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
8273 */
8274 if (unspare) {
8275 ASSERT(cvd->vdev_isspare);
8276 spa_spare_remove(cvd);
8277 unspare_guid = cvd->vdev_guid;
8278 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
8279 cvd->vdev_unspare = B_TRUE;
8280 }
8281
8282 /*
8283 * If the parent mirror/replacing vdev only has one child,
8284 * the parent is no longer needed. Remove it from the tree.
8285 */
8286 if (pvd->vdev_children == 1) {
8287 if (pvd->vdev_ops == &vdev_spare_ops)
8288 cvd->vdev_unspare = B_FALSE;
8289 vdev_remove_parent(cvd);
8290 }
8291
8292 /*
8293 * We don't set tvd until now because the parent we just removed
8294 * may have been the previous top-level vdev.
8295 */
8296 tvd = cvd->vdev_top;
8297 ASSERT(tvd->vdev_parent == rvd);
8298
8299 /*
8300 * Reevaluate the parent vdev state.
8301 */
8302 vdev_propagate_state(cvd);
8303
8304 /*
8305 * If the 'autoexpand' property is set on the pool then automatically
8306 * try to expand the size of the pool. For example if the device we
8307 * just detached was smaller than the others, it may be possible to
8308 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
8309 * first so that we can obtain the updated sizes of the leaf vdevs.
8310 */
8311 if (spa->spa_autoexpand) {
8312 vdev_reopen(tvd);
8313 vdev_expand(tvd, txg);
8314 }
8315
8316 vdev_config_dirty(tvd);
8317
8318 /*
8319 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
8320 * vd->vdev_detached is set and free vd's DTL object in syncing context.
8321 * But first make sure we're not on any *other* txg's DTL list, to
8322 * prevent vd from being accessed after it's freed.
8323 */
8324 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
8325 for (int t = 0; t < TXG_SIZE; t++)
8326 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
8327 vd->vdev_detached = B_TRUE;
8328 vdev_dirty(tvd, VDD_DTL, vd, txg);
8329
8330 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
8331 spa_notify_waiters(spa);
8332
8333 /* hang on to the spa before we release the lock */
8334 spa_open_ref(spa, FTAG);
8335
8336 error = spa_vdev_exit(spa, vd, txg, 0);
8337
8338 spa_history_log_internal(spa, "detach", NULL,
8339 "vdev=%s", vdpath);
8340 spa_strfree(vdpath);
8341
8342 /*
8343 * If this was the removal of the original device in a hot spare vdev,
8344 * then we want to go through and remove the device from the hot spare
8345 * list of every other pool.
8346 */
8347 if (unspare) {
8348 spa_t *altspa = NULL;
8349
8350 spa_namespace_enter(FTAG);
8351 while ((altspa = spa_next(altspa)) != NULL) {
8352 if (altspa->spa_state != POOL_STATE_ACTIVE ||
8353 altspa == spa)
8354 continue;
8355
8356 spa_open_ref(altspa, FTAG);
8357 spa_namespace_exit(FTAG);
8358 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
8359 spa_namespace_enter(FTAG);
8360 spa_close(altspa, FTAG);
8361 }
8362 spa_namespace_exit(FTAG);
8363
8364 /* search the rest of the vdevs for spares to remove */
8365 spa_vdev_resilver_done(spa);
8366 }
8367
8368 /* all done with the spa; OK to release */
8369 spa_namespace_enter(FTAG);
8370 spa_close(spa, FTAG);
8371 spa_namespace_exit(FTAG);
8372
8373 return (error);
8374 }
8375
8376 static int
8377 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8378 list_t *vd_list)
8379 {
8380 ASSERT(spa_namespace_held());
8381
8382 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8383
8384 /* Look up vdev and ensure it's a leaf. */
8385 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8386 if (vd == NULL || vd->vdev_detached) {
8387 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8388 return (SET_ERROR(ENODEV));
8389 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8390 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8391 return (SET_ERROR(EINVAL));
8392 } else if (!vdev_writeable(vd)) {
8393 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8394 return (SET_ERROR(EROFS));
8395 }
8396 mutex_enter(&vd->vdev_initialize_lock);
8397 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8398
8399 /*
8400 * When we activate an initialize action we check to see
8401 * if the vdev_initialize_thread is NULL. We do this instead
8402 * of using the vdev_initialize_state since there might be
8403 * a previous initialization process which has completed but
8404 * the thread is not exited.
8405 */
8406 if (cmd_type == POOL_INITIALIZE_START &&
8407 (vd->vdev_initialize_thread != NULL ||
8408 vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) {
8409 mutex_exit(&vd->vdev_initialize_lock);
8410 return (SET_ERROR(EBUSY));
8411 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
8412 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
8413 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
8414 mutex_exit(&vd->vdev_initialize_lock);
8415 return (SET_ERROR(ESRCH));
8416 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
8417 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
8418 mutex_exit(&vd->vdev_initialize_lock);
8419 return (SET_ERROR(ESRCH));
8420 } else if (cmd_type == POOL_INITIALIZE_UNINIT &&
8421 vd->vdev_initialize_thread != NULL) {
8422 mutex_exit(&vd->vdev_initialize_lock);
8423 return (SET_ERROR(EBUSY));
8424 }
8425
8426 switch (cmd_type) {
8427 case POOL_INITIALIZE_START:
8428 vdev_initialize(vd);
8429 break;
8430 case POOL_INITIALIZE_CANCEL:
8431 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
8432 break;
8433 case POOL_INITIALIZE_SUSPEND:
8434 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
8435 break;
8436 case POOL_INITIALIZE_UNINIT:
8437 vdev_uninitialize(vd);
8438 break;
8439 default:
8440 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8441 }
8442 mutex_exit(&vd->vdev_initialize_lock);
8443
8444 return (0);
8445 }
8446
8447 int
8448 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
8449 nvlist_t *vdev_errlist)
8450 {
8451 int total_errors = 0;
8452 list_t vd_list;
8453
8454 list_create(&vd_list, sizeof (vdev_t),
8455 offsetof(vdev_t, vdev_initialize_node));
8456
8457 /*
8458 * We hold the namespace lock through the whole function
8459 * to prevent any changes to the pool while we're starting or
8460 * stopping initialization. The config and state locks are held so that
8461 * we can properly assess the vdev state before we commit to
8462 * the initializing operation.
8463 */
8464 spa_namespace_enter(FTAG);
8465
8466 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8467 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8468 uint64_t vdev_guid = fnvpair_value_uint64(pair);
8469
8470 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
8471 &vd_list);
8472 if (error != 0) {
8473 char guid_as_str[MAXNAMELEN];
8474
8475 (void) snprintf(guid_as_str, sizeof (guid_as_str),
8476 "%llu", (unsigned long long)vdev_guid);
8477 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8478 total_errors++;
8479 }
8480 }
8481
8482 /* Wait for all initialize threads to stop. */
8483 vdev_initialize_stop_wait(spa, &vd_list);
8484
8485 /* Sync out the initializing state */
8486 txg_wait_synced(spa->spa_dsl_pool, 0);
8487 spa_namespace_exit(FTAG);
8488
8489 list_destroy(&vd_list);
8490
8491 return (total_errors);
8492 }
8493
8494 static int
8495 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8496 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
8497 {
8498 ASSERT(spa_namespace_held());
8499
8500 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8501
8502 /* Look up vdev and ensure it's a leaf. */
8503 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8504 if (vd == NULL || vd->vdev_detached) {
8505 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8506 return (SET_ERROR(ENODEV));
8507 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8508 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8509 return (SET_ERROR(EINVAL));
8510 } else if (!vdev_writeable(vd)) {
8511 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8512 return (SET_ERROR(EROFS));
8513 } else if (!vd->vdev_has_trim) {
8514 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8515 return (SET_ERROR(EOPNOTSUPP));
8516 } else if (secure && !vd->vdev_has_securetrim) {
8517 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8518 return (SET_ERROR(EOPNOTSUPP));
8519 }
8520 mutex_enter(&vd->vdev_trim_lock);
8521 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8522
8523 /*
8524 * When we activate a TRIM action we check to see if the
8525 * vdev_trim_thread is NULL. We do this instead of using the
8526 * vdev_trim_state since there might be a previous TRIM process
8527 * which has completed but the thread is not exited.
8528 */
8529 if (cmd_type == POOL_TRIM_START &&
8530 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing ||
8531 vd->vdev_top->vdev_rz_expanding)) {
8532 mutex_exit(&vd->vdev_trim_lock);
8533 return (SET_ERROR(EBUSY));
8534 } else if (cmd_type == POOL_TRIM_CANCEL &&
8535 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
8536 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
8537 mutex_exit(&vd->vdev_trim_lock);
8538 return (SET_ERROR(ESRCH));
8539 } else if (cmd_type == POOL_TRIM_SUSPEND &&
8540 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
8541 mutex_exit(&vd->vdev_trim_lock);
8542 return (SET_ERROR(ESRCH));
8543 }
8544
8545 switch (cmd_type) {
8546 case POOL_TRIM_START:
8547 vdev_trim(vd, rate, partial, secure);
8548 break;
8549 case POOL_TRIM_CANCEL:
8550 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
8551 break;
8552 case POOL_TRIM_SUSPEND:
8553 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
8554 break;
8555 default:
8556 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8557 }
8558 mutex_exit(&vd->vdev_trim_lock);
8559
8560 return (0);
8561 }
8562
8563 /*
8564 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
8565 * TRIM threads for each child vdev. These threads pass over all of the free
8566 * space in the vdev's metaslabs and issues TRIM commands for that space.
8567 */
8568 int
8569 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
8570 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
8571 {
8572 int total_errors = 0;
8573 list_t vd_list;
8574
8575 list_create(&vd_list, sizeof (vdev_t),
8576 offsetof(vdev_t, vdev_trim_node));
8577
8578 /*
8579 * We hold the namespace lock through the whole function
8580 * to prevent any changes to the pool while we're starting or
8581 * stopping TRIM. The config and state locks are held so that
8582 * we can properly assess the vdev state before we commit to
8583 * the TRIM operation.
8584 */
8585 spa_namespace_enter(FTAG);
8586
8587 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8588 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8589 uint64_t vdev_guid = fnvpair_value_uint64(pair);
8590
8591 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
8592 rate, partial, secure, &vd_list);
8593 if (error != 0) {
8594 char guid_as_str[MAXNAMELEN];
8595
8596 (void) snprintf(guid_as_str, sizeof (guid_as_str),
8597 "%llu", (unsigned long long)vdev_guid);
8598 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8599 total_errors++;
8600 }
8601 }
8602
8603 /* Wait for all TRIM threads to stop. */
8604 vdev_trim_stop_wait(spa, &vd_list);
8605
8606 /* Sync out the TRIM state */
8607 txg_wait_synced(spa->spa_dsl_pool, 0);
8608 spa_namespace_exit(FTAG);
8609
8610 list_destroy(&vd_list);
8611
8612 return (total_errors);
8613 }
8614
8615 /*
8616 * Split a set of devices from their mirrors, and create a new pool from them.
8617 */
8618 int
8619 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
8620 nvlist_t *props, boolean_t exp)
8621 {
8622 int error = 0;
8623 uint64_t txg, *glist;
8624 spa_t *newspa;
8625 uint_t c, children, lastlog;
8626 nvlist_t **child, *nvl, *tmp;
8627 dmu_tx_t *tx;
8628 const char *altroot = NULL;
8629 vdev_t *rvd, **vml = NULL; /* vdev modify list */
8630 boolean_t activate_slog;
8631
8632 ASSERT(spa_writeable(spa));
8633
8634 txg = spa_vdev_enter(spa);
8635
8636 ASSERT(spa_namespace_held());
8637 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8638 error = (spa_has_checkpoint(spa)) ?
8639 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8640 return (spa_vdev_exit(spa, NULL, txg, error));
8641 }
8642
8643 /* clear the log and flush everything up to now */
8644 activate_slog = spa_passivate_log(spa);
8645 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8646 error = spa_reset_logs(spa);
8647 txg = spa_vdev_config_enter(spa);
8648
8649 if (activate_slog)
8650 spa_activate_log(spa);
8651
8652 if (error != 0)
8653 return (spa_vdev_exit(spa, NULL, txg, error));
8654
8655 /* check new spa name before going any further */
8656 if (spa_lookup(newname) != NULL)
8657 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
8658
8659 /*
8660 * scan through all the children to ensure they're all mirrors
8661 */
8662 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
8663 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
8664 &children) != 0)
8665 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8666
8667 /* first, check to ensure we've got the right child count */
8668 rvd = spa->spa_root_vdev;
8669 lastlog = 0;
8670 for (c = 0; c < rvd->vdev_children; c++) {
8671 vdev_t *vd = rvd->vdev_child[c];
8672
8673 /* don't count the holes & logs as children */
8674 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
8675 !vdev_is_concrete(vd))) {
8676 if (lastlog == 0)
8677 lastlog = c;
8678 continue;
8679 }
8680
8681 lastlog = 0;
8682 }
8683 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
8684 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8685
8686 /* next, ensure no spare or cache devices are part of the split */
8687 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
8688 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
8689 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8690
8691 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
8692 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
8693
8694 /* then, loop over each vdev and validate it */
8695 for (c = 0; c < children; c++) {
8696 uint64_t is_hole = 0;
8697
8698 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
8699 &is_hole);
8700
8701 if (is_hole != 0) {
8702 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
8703 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
8704 continue;
8705 } else {
8706 error = SET_ERROR(EINVAL);
8707 break;
8708 }
8709 }
8710
8711 /* deal with indirect vdevs */
8712 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
8713 &vdev_indirect_ops)
8714 continue;
8715
8716 /* which disk is going to be split? */
8717 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
8718 &glist[c]) != 0) {
8719 error = SET_ERROR(EINVAL);
8720 break;
8721 }
8722
8723 /* look it up in the spa */
8724 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
8725 if (vml[c] == NULL) {
8726 error = SET_ERROR(ENODEV);
8727 break;
8728 }
8729
8730 /* make sure there's nothing stopping the split */
8731 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
8732 vml[c]->vdev_islog ||
8733 !vdev_is_concrete(vml[c]) ||
8734 vml[c]->vdev_isspare ||
8735 vml[c]->vdev_isl2cache ||
8736 !vdev_writeable(vml[c]) ||
8737 vml[c]->vdev_children != 0 ||
8738 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
8739 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
8740 error = SET_ERROR(EINVAL);
8741 break;
8742 }
8743
8744 if (vdev_dtl_required(vml[c]) ||
8745 vdev_resilver_needed(vml[c], NULL, NULL)) {
8746 error = SET_ERROR(EBUSY);
8747 break;
8748 }
8749
8750 /* we need certain info from the top level */
8751 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
8752 vml[c]->vdev_top->vdev_ms_array);
8753 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
8754 vml[c]->vdev_top->vdev_ms_shift);
8755 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
8756 vml[c]->vdev_top->vdev_asize);
8757 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
8758 vml[c]->vdev_top->vdev_ashift);
8759
8760 /* transfer per-vdev ZAPs */
8761 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
8762 VERIFY0(nvlist_add_uint64(child[c],
8763 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
8764
8765 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
8766 VERIFY0(nvlist_add_uint64(child[c],
8767 ZPOOL_CONFIG_VDEV_TOP_ZAP,
8768 vml[c]->vdev_parent->vdev_top_zap));
8769 }
8770
8771 if (error != 0) {
8772 kmem_free(vml, children * sizeof (vdev_t *));
8773 kmem_free(glist, children * sizeof (uint64_t));
8774 return (spa_vdev_exit(spa, NULL, txg, error));
8775 }
8776
8777 /* stop writers from using the disks */
8778 for (c = 0; c < children; c++) {
8779 if (vml[c] != NULL)
8780 vml[c]->vdev_offline = B_TRUE;
8781 }
8782 vdev_reopen(spa->spa_root_vdev);
8783
8784 /*
8785 * Temporarily record the splitting vdevs in the spa config. This
8786 * will disappear once the config is regenerated.
8787 */
8788 nvl = fnvlist_alloc();
8789 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
8790 kmem_free(glist, children * sizeof (uint64_t));
8791
8792 mutex_enter(&spa->spa_props_lock);
8793 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
8794 mutex_exit(&spa->spa_props_lock);
8795 spa->spa_config_splitting = nvl;
8796 vdev_config_dirty(spa->spa_root_vdev);
8797
8798 /* configure and create the new pool */
8799 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
8800 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
8801 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
8802 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
8803 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
8804 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
8805 spa_generate_guid(NULL));
8806 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
8807 (void) nvlist_lookup_string(props,
8808 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
8809
8810 /* add the new pool to the namespace */
8811 newspa = spa_add(newname, config, altroot);
8812 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
8813 newspa->spa_config_txg = spa->spa_config_txg;
8814 spa_set_log_state(newspa, SPA_LOG_CLEAR);
8815
8816 /* release the spa config lock, retaining the namespace lock */
8817 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8818
8819 if (zio_injection_enabled)
8820 zio_handle_panic_injection(spa, FTAG, 1);
8821
8822 spa_activate(newspa, spa_mode_global);
8823 spa_async_suspend(newspa);
8824
8825 /*
8826 * Temporarily stop the initializing and TRIM activity. We set the
8827 * state to ACTIVE so that we know to resume initializing or TRIM
8828 * once the split has completed.
8829 */
8830 list_t vd_initialize_list;
8831 list_create(&vd_initialize_list, sizeof (vdev_t),
8832 offsetof(vdev_t, vdev_initialize_node));
8833
8834 list_t vd_trim_list;
8835 list_create(&vd_trim_list, sizeof (vdev_t),
8836 offsetof(vdev_t, vdev_trim_node));
8837
8838 for (c = 0; c < children; c++) {
8839 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8840 mutex_enter(&vml[c]->vdev_initialize_lock);
8841 vdev_initialize_stop(vml[c],
8842 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
8843 mutex_exit(&vml[c]->vdev_initialize_lock);
8844
8845 mutex_enter(&vml[c]->vdev_trim_lock);
8846 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
8847 mutex_exit(&vml[c]->vdev_trim_lock);
8848 }
8849 }
8850
8851 vdev_initialize_stop_wait(spa, &vd_initialize_list);
8852 vdev_trim_stop_wait(spa, &vd_trim_list);
8853
8854 list_destroy(&vd_initialize_list);
8855 list_destroy(&vd_trim_list);
8856
8857 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
8858 newspa->spa_is_splitting = B_TRUE;
8859
8860 /* create the new pool from the disks of the original pool */
8861 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
8862 if (error)
8863 goto out;
8864
8865 /* if that worked, generate a real config for the new pool */
8866 if (newspa->spa_root_vdev != NULL) {
8867 newspa->spa_config_splitting = fnvlist_alloc();
8868 fnvlist_add_uint64(newspa->spa_config_splitting,
8869 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
8870 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
8871 B_TRUE));
8872 }
8873
8874 /* set the props */
8875 if (props != NULL) {
8876 spa_configfile_set(newspa, props, B_FALSE);
8877 error = spa_prop_set(newspa, props);
8878 if (error)
8879 goto out;
8880 }
8881
8882 /* flush everything */
8883 txg = spa_vdev_config_enter(newspa);
8884 vdev_config_dirty(newspa->spa_root_vdev);
8885 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
8886
8887 if (zio_injection_enabled)
8888 zio_handle_panic_injection(spa, FTAG, 2);
8889
8890 spa_async_resume(newspa);
8891
8892 /* finally, update the original pool's config */
8893 txg = spa_vdev_config_enter(spa);
8894 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
8895 error = dmu_tx_assign(tx, DMU_TX_WAIT);
8896 if (error != 0)
8897 dmu_tx_abort(tx);
8898 for (c = 0; c < children; c++) {
8899 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8900 vdev_t *tvd = vml[c]->vdev_top;
8901
8902 /*
8903 * Need to be sure the detachable VDEV is not
8904 * on any *other* txg's DTL list to prevent it
8905 * from being accessed after it's freed.
8906 */
8907 for (int t = 0; t < TXG_SIZE; t++) {
8908 (void) txg_list_remove_this(
8909 &tvd->vdev_dtl_list, vml[c], t);
8910 }
8911
8912 vdev_split(vml[c]);
8913 if (error == 0)
8914 spa_history_log_internal(spa, "detach", tx,
8915 "vdev=%s", vml[c]->vdev_path);
8916
8917 vdev_free(vml[c]);
8918 }
8919 }
8920 spa->spa_avz_action = AVZ_ACTION_REBUILD;
8921 vdev_config_dirty(spa->spa_root_vdev);
8922 spa->spa_config_splitting = NULL;
8923 nvlist_free(nvl);
8924 if (error == 0)
8925 dmu_tx_commit(tx);
8926 (void) spa_vdev_exit(spa, NULL, txg, 0);
8927
8928 if (zio_injection_enabled)
8929 zio_handle_panic_injection(spa, FTAG, 3);
8930
8931 /* split is complete; log a history record */
8932 spa_history_log_internal(newspa, "split", NULL,
8933 "from pool %s", spa_name(spa));
8934
8935 newspa->spa_is_splitting = B_FALSE;
8936 kmem_free(vml, children * sizeof (vdev_t *));
8937
8938 /* if we're not going to mount the filesystems in userland, export */
8939 if (exp)
8940 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
8941 B_FALSE, B_FALSE);
8942
8943 return (error);
8944
8945 out:
8946 spa_unload(newspa);
8947 spa_deactivate(newspa);
8948 spa_remove(newspa);
8949
8950 txg = spa_vdev_config_enter(spa);
8951
8952 /* re-online all offlined disks */
8953 for (c = 0; c < children; c++) {
8954 if (vml[c] != NULL)
8955 vml[c]->vdev_offline = B_FALSE;
8956 }
8957
8958 /* restart initializing or trimming disks as necessary */
8959 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
8960 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
8961 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
8962
8963 vdev_reopen(spa->spa_root_vdev);
8964
8965 nvlist_free(spa->spa_config_splitting);
8966 spa->spa_config_splitting = NULL;
8967 (void) spa_vdev_exit(spa, NULL, txg, error);
8968
8969 kmem_free(vml, children * sizeof (vdev_t *));
8970 return (error);
8971 }
8972
8973 /*
8974 * Find any device that's done replacing, or a vdev marked 'unspare' that's
8975 * currently spared, so we can detach it.
8976 */
8977 static vdev_t *
8978 spa_vdev_resilver_done_hunt(vdev_t *vd)
8979 {
8980 vdev_t *newvd, *oldvd;
8981
8982 for (int c = 0; c < vd->vdev_children; c++) {
8983 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8984 if (oldvd != NULL)
8985 return (oldvd);
8986 }
8987
8988 /*
8989 * Check for a completed replacement. We always consider the first
8990 * vdev in the list to be the oldest vdev, and the last one to be
8991 * the newest (see spa_vdev_attach() for how that works). In
8992 * the case where the newest vdev is faulted, we will not automatically
8993 * remove it after a resilver completes. This is OK as it will require
8994 * user intervention to determine which disk the admin wishes to keep.
8995 */
8996 if (vd->vdev_ops == &vdev_replacing_ops) {
8997 ASSERT(vd->vdev_children > 1);
8998
8999 newvd = vd->vdev_child[vd->vdev_children - 1];
9000 oldvd = vd->vdev_child[0];
9001
9002 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
9003 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
9004 !vdev_dtl_required(oldvd))
9005 return (oldvd);
9006 }
9007
9008 /*
9009 * Check for a completed resilver with the 'unspare' flag set.
9010 * Also potentially update faulted state.
9011 */
9012 if (vd->vdev_ops == &vdev_spare_ops) {
9013 vdev_t *first = vd->vdev_child[0];
9014 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
9015
9016 if (last->vdev_unspare) {
9017 oldvd = first;
9018 newvd = last;
9019 } else if (first->vdev_unspare) {
9020 oldvd = last;
9021 newvd = first;
9022 } else {
9023 oldvd = NULL;
9024 }
9025
9026 if (oldvd != NULL &&
9027 vdev_dtl_empty(newvd, DTL_MISSING) &&
9028 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
9029 !vdev_dtl_required(oldvd))
9030 return (oldvd);
9031
9032 vdev_propagate_state(vd);
9033
9034 /*
9035 * If there are more than two spares attached to a disk,
9036 * and those spares are not required, then we want to
9037 * attempt to free them up now so that they can be used
9038 * by other pools. Once we're back down to a single
9039 * disk+spare, we stop removing them.
9040 */
9041 if (vd->vdev_children > 2) {
9042 newvd = vd->vdev_child[1];
9043
9044 if (newvd->vdev_isspare && last->vdev_isspare &&
9045 vdev_dtl_empty(last, DTL_MISSING) &&
9046 vdev_dtl_empty(last, DTL_OUTAGE) &&
9047 !vdev_dtl_required(newvd))
9048 return (newvd);
9049 }
9050 }
9051
9052 return (NULL);
9053 }
9054
9055 static void
9056 spa_vdev_resilver_done(spa_t *spa)
9057 {
9058 vdev_t *vd, *pvd, *ppvd;
9059 uint64_t guid, sguid, pguid, ppguid;
9060
9061 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9062
9063 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
9064 pvd = vd->vdev_parent;
9065 ppvd = pvd->vdev_parent;
9066 guid = vd->vdev_guid;
9067 pguid = pvd->vdev_guid;
9068 ppguid = ppvd->vdev_guid;
9069 sguid = 0;
9070 /*
9071 * If we have just finished replacing a hot spared device, then
9072 * we need to detach the parent's first child (the original hot
9073 * spare) as well.
9074 */
9075 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
9076 ppvd->vdev_children == 2) {
9077 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
9078 sguid = ppvd->vdev_child[1]->vdev_guid;
9079 }
9080 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
9081
9082 spa_config_exit(spa, SCL_ALL, FTAG);
9083 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
9084 return;
9085 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
9086 return;
9087 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9088 }
9089
9090 spa_config_exit(spa, SCL_ALL, FTAG);
9091
9092 /*
9093 * If a detach was not performed above replace waiters will not have
9094 * been notified. In which case we must do so now.
9095 */
9096 spa_notify_waiters(spa);
9097 }
9098
9099 /*
9100 * Update the stored path or FRU for this vdev.
9101 */
9102 static int
9103 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
9104 boolean_t ispath)
9105 {
9106 vdev_t *vd;
9107 boolean_t sync = B_FALSE;
9108
9109 ASSERT(spa_writeable(spa));
9110
9111 spa_vdev_state_enter(spa, SCL_ALL);
9112
9113 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
9114 return (spa_vdev_state_exit(spa, NULL, ENOENT));
9115
9116 if (!vd->vdev_ops->vdev_op_leaf)
9117 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
9118
9119 if (ispath) {
9120 if (strcmp(value, vd->vdev_path) != 0) {
9121 spa_strfree(vd->vdev_path);
9122 vd->vdev_path = spa_strdup(value);
9123 sync = B_TRUE;
9124 }
9125 } else {
9126 if (vd->vdev_fru == NULL) {
9127 vd->vdev_fru = spa_strdup(value);
9128 sync = B_TRUE;
9129 } else if (strcmp(value, vd->vdev_fru) != 0) {
9130 spa_strfree(vd->vdev_fru);
9131 vd->vdev_fru = spa_strdup(value);
9132 sync = B_TRUE;
9133 }
9134 }
9135
9136 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
9137 }
9138
9139 int
9140 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
9141 {
9142 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
9143 }
9144
9145 int
9146 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
9147 {
9148 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
9149 }
9150
9151 /*
9152 * ==========================================================================
9153 * SPA Scanning
9154 * ==========================================================================
9155 */
9156 int
9157 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
9158 {
9159 ASSERT0(spa_config_held(spa, SCL_ALL, RW_WRITER));
9160
9161 if (dsl_scan_resilvering(spa->spa_dsl_pool))
9162 return (SET_ERROR(EBUSY));
9163
9164 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
9165 }
9166
9167 int
9168 spa_scan_stop(spa_t *spa)
9169 {
9170 ASSERT0(spa_config_held(spa, SCL_ALL, RW_WRITER));
9171 if (dsl_scan_resilvering(spa->spa_dsl_pool))
9172 return (SET_ERROR(EBUSY));
9173
9174 return (dsl_scan_cancel(spa->spa_dsl_pool));
9175 }
9176
9177 int
9178 spa_scan(spa_t *spa, pool_scan_func_t func)
9179 {
9180 return (spa_scan_range(spa, func, 0, 0));
9181 }
9182
9183 int
9184 spa_scan_range(spa_t *spa, pool_scan_func_t func, uint64_t txgstart,
9185 uint64_t txgend)
9186 {
9187 ASSERT0(spa_config_held(spa, SCL_ALL, RW_WRITER));
9188
9189 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
9190 return (SET_ERROR(ENOTSUP));
9191
9192 if (func == POOL_SCAN_RESILVER &&
9193 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
9194 return (SET_ERROR(ENOTSUP));
9195
9196 if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0))
9197 return (SET_ERROR(ENOTSUP));
9198
9199 /*
9200 * If a resilver was requested, but there is no DTL on a
9201 * writeable leaf device, we have nothing to do.
9202 */
9203 if (func == POOL_SCAN_RESILVER &&
9204 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
9205 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
9206 return (0);
9207 }
9208
9209 if (func == POOL_SCAN_ERRORSCRUB &&
9210 !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
9211 return (SET_ERROR(ENOTSUP));
9212
9213 return (dsl_scan(spa->spa_dsl_pool, func, txgstart, txgend));
9214 }
9215
9216 /*
9217 * ==========================================================================
9218 * SPA async task processing
9219 * ==========================================================================
9220 */
9221
9222 static void
9223 spa_async_remove(spa_t *spa, vdev_t *vd, boolean_t by_kernel)
9224 {
9225 if (vd->vdev_remove_wanted) {
9226 vd->vdev_remove_wanted = B_FALSE;
9227 vd->vdev_delayed_close = B_FALSE;
9228 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
9229
9230 /*
9231 * We want to clear the stats, but we don't want to do a full
9232 * vdev_clear() as that will cause us to throw away
9233 * degraded/faulted state as well as attempt to reopen the
9234 * device, all of which is a waste.
9235 */
9236 vd->vdev_stat.vs_read_errors = 0;
9237 vd->vdev_stat.vs_write_errors = 0;
9238 vd->vdev_stat.vs_checksum_errors = 0;
9239
9240 vdev_state_dirty(vd->vdev_top);
9241
9242 /* Tell userspace that the vdev is gone. */
9243 zfs_post_remove(spa, vd, by_kernel);
9244 }
9245
9246 for (int c = 0; c < vd->vdev_children; c++)
9247 spa_async_remove(spa, vd->vdev_child[c], by_kernel);
9248 }
9249
9250 static void
9251 spa_async_fault_vdev(vdev_t *vd, boolean_t *suspend)
9252 {
9253 if (vd->vdev_fault_wanted) {
9254 vdev_state_t newstate = VDEV_STATE_FAULTED;
9255 vd->vdev_fault_wanted = B_FALSE;
9256
9257 /*
9258 * If this device has the only valid copy of the data, then
9259 * back off and simply mark the vdev as degraded instead.
9260 */
9261 if (!vd->vdev_top->vdev_islog && vd->vdev_aux == NULL &&
9262 vdev_dtl_required(vd)) {
9263 newstate = VDEV_STATE_DEGRADED;
9264 /* A required disk is missing so suspend the pool */
9265 *suspend = B_TRUE;
9266 }
9267 vdev_set_state(vd, B_TRUE, newstate, VDEV_AUX_ERR_EXCEEDED);
9268 }
9269 for (int c = 0; c < vd->vdev_children; c++)
9270 spa_async_fault_vdev(vd->vdev_child[c], suspend);
9271 }
9272
9273 static void
9274 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
9275 {
9276 if (!spa->spa_autoexpand)
9277 return;
9278
9279 for (int c = 0; c < vd->vdev_children; c++) {
9280 vdev_t *cvd = vd->vdev_child[c];
9281 spa_async_autoexpand(spa, cvd);
9282 }
9283
9284 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
9285 return;
9286
9287 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
9288 }
9289
9290 static __attribute__((noreturn)) void
9291 spa_async_thread(void *arg)
9292 {
9293 spa_t *spa = (spa_t *)arg;
9294 dsl_pool_t *dp = spa->spa_dsl_pool;
9295 int tasks;
9296
9297 ASSERT(spa->spa_sync_on);
9298
9299 mutex_enter(&spa->spa_async_lock);
9300 tasks = spa->spa_async_tasks;
9301 spa->spa_async_tasks = 0;
9302 mutex_exit(&spa->spa_async_lock);
9303
9304 /*
9305 * See if the config needs to be updated.
9306 */
9307 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
9308 uint64_t old_space, new_space;
9309
9310 spa_namespace_enter(FTAG);
9311 old_space = metaslab_class_get_space(spa_normal_class(spa));
9312 old_space += metaslab_class_get_space(spa_special_class(spa));
9313 old_space += metaslab_class_get_space(spa_dedup_class(spa));
9314 old_space += metaslab_class_get_space(
9315 spa_embedded_log_class(spa));
9316 old_space += metaslab_class_get_space(
9317 spa_special_embedded_log_class(spa));
9318
9319 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
9320
9321 new_space = metaslab_class_get_space(spa_normal_class(spa));
9322 new_space += metaslab_class_get_space(spa_special_class(spa));
9323 new_space += metaslab_class_get_space(spa_dedup_class(spa));
9324 new_space += metaslab_class_get_space(
9325 spa_embedded_log_class(spa));
9326 new_space += metaslab_class_get_space(
9327 spa_special_embedded_log_class(spa));
9328 spa_namespace_exit(FTAG);
9329
9330 /*
9331 * If the pool grew as a result of the config update,
9332 * then log an internal history event.
9333 */
9334 if (new_space != old_space) {
9335 spa_history_log_internal(spa, "vdev online", NULL,
9336 "pool '%s' size: %llu(+%llu)",
9337 spa_name(spa), (u_longlong_t)new_space,
9338 (u_longlong_t)(new_space - old_space));
9339 }
9340 }
9341
9342 /*
9343 * See if any devices need to be marked REMOVED.
9344 */
9345 if (tasks & (SPA_ASYNC_REMOVE | SPA_ASYNC_REMOVE_BY_USER)) {
9346 boolean_t by_kernel = B_TRUE;
9347 if (tasks & SPA_ASYNC_REMOVE_BY_USER)
9348 by_kernel = B_FALSE;
9349 spa_vdev_state_enter(spa, SCL_NONE);
9350 spa_async_remove(spa, spa->spa_root_vdev, by_kernel);
9351 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
9352 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i],
9353 by_kernel);
9354 for (int i = 0; i < spa->spa_spares.sav_count; i++)
9355 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i],
9356 by_kernel);
9357 (void) spa_vdev_state_exit(spa, NULL, 0);
9358 }
9359
9360 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
9361 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9362 spa_async_autoexpand(spa, spa->spa_root_vdev);
9363 spa_config_exit(spa, SCL_CONFIG, FTAG);
9364 }
9365
9366 /*
9367 * See if any devices need to be marked faulted.
9368 */
9369 if (tasks & SPA_ASYNC_FAULT_VDEV) {
9370 spa_vdev_state_enter(spa, SCL_NONE);
9371 boolean_t suspend = B_FALSE;
9372 spa_async_fault_vdev(spa->spa_root_vdev, &suspend);
9373 (void) spa_vdev_state_exit(spa, NULL, 0);
9374 if (suspend)
9375 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9376 }
9377
9378 /*
9379 * If any devices are done replacing, detach them.
9380 */
9381 if (tasks & SPA_ASYNC_RESILVER_DONE ||
9382 tasks & SPA_ASYNC_REBUILD_DONE ||
9383 tasks & SPA_ASYNC_DETACH_SPARE) {
9384 spa_vdev_resilver_done(spa);
9385 }
9386
9387 /*
9388 * Kick off a resilver.
9389 */
9390 if (tasks & SPA_ASYNC_RESILVER &&
9391 !vdev_rebuild_active(spa->spa_root_vdev) &&
9392 (!dsl_scan_resilvering(dp) ||
9393 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
9394 dsl_scan_restart_resilver(dp, 0);
9395
9396 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
9397 spa_namespace_enter(FTAG);
9398 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9399 vdev_initialize_restart(spa->spa_root_vdev);
9400 spa_config_exit(spa, SCL_CONFIG, FTAG);
9401 spa_namespace_exit(FTAG);
9402 }
9403
9404 if (tasks & SPA_ASYNC_TRIM_RESTART) {
9405 spa_namespace_enter(FTAG);
9406 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9407 vdev_trim_restart(spa->spa_root_vdev);
9408 spa_config_exit(spa, SCL_CONFIG, FTAG);
9409 spa_namespace_exit(FTAG);
9410 }
9411
9412 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
9413 spa_namespace_enter(FTAG);
9414 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9415 vdev_autotrim_restart(spa);
9416 spa_config_exit(spa, SCL_CONFIG, FTAG);
9417 spa_namespace_exit(FTAG);
9418 }
9419
9420 /*
9421 * Kick off L2 cache whole device TRIM.
9422 */
9423 if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
9424 spa_namespace_enter(FTAG);
9425 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9426 vdev_trim_l2arc(spa);
9427 spa_config_exit(spa, SCL_CONFIG, FTAG);
9428 spa_namespace_exit(FTAG);
9429 }
9430
9431 /*
9432 * Kick off L2 cache rebuilding.
9433 */
9434 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
9435 spa_namespace_enter(FTAG);
9436 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
9437 l2arc_spa_rebuild_start(spa);
9438 spa_config_exit(spa, SCL_L2ARC, FTAG);
9439 spa_namespace_exit(FTAG);
9440 }
9441
9442 /*
9443 * Let the world know that we're done.
9444 */
9445 mutex_enter(&spa->spa_async_lock);
9446 spa->spa_async_thread = NULL;
9447 cv_broadcast(&spa->spa_async_cv);
9448 mutex_exit(&spa->spa_async_lock);
9449 thread_exit();
9450 }
9451
9452 void
9453 spa_async_suspend(spa_t *spa)
9454 {
9455 mutex_enter(&spa->spa_async_lock);
9456 spa->spa_async_suspended++;
9457 while (spa->spa_async_thread != NULL)
9458 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
9459 mutex_exit(&spa->spa_async_lock);
9460
9461 spa_vdev_remove_suspend(spa);
9462
9463 zthr_t *condense_thread = spa->spa_condense_zthr;
9464 if (condense_thread != NULL)
9465 zthr_cancel(condense_thread);
9466
9467 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9468 if (raidz_expand_thread != NULL)
9469 zthr_cancel(raidz_expand_thread);
9470
9471 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9472 if (discard_thread != NULL)
9473 zthr_cancel(discard_thread);
9474
9475 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9476 if (ll_delete_thread != NULL)
9477 zthr_cancel(ll_delete_thread);
9478
9479 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9480 if (ll_condense_thread != NULL)
9481 zthr_cancel(ll_condense_thread);
9482 }
9483
9484 void
9485 spa_async_resume(spa_t *spa)
9486 {
9487 mutex_enter(&spa->spa_async_lock);
9488 ASSERT(spa->spa_async_suspended != 0);
9489 spa->spa_async_suspended--;
9490 mutex_exit(&spa->spa_async_lock);
9491 spa_restart_removal(spa);
9492
9493 zthr_t *condense_thread = spa->spa_condense_zthr;
9494 if (condense_thread != NULL)
9495 zthr_resume(condense_thread);
9496
9497 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9498 if (raidz_expand_thread != NULL)
9499 zthr_resume(raidz_expand_thread);
9500
9501 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9502 if (discard_thread != NULL)
9503 zthr_resume(discard_thread);
9504
9505 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9506 if (ll_delete_thread != NULL)
9507 zthr_resume(ll_delete_thread);
9508
9509 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9510 if (ll_condense_thread != NULL)
9511 zthr_resume(ll_condense_thread);
9512 }
9513
9514 static boolean_t
9515 spa_async_tasks_pending(spa_t *spa)
9516 {
9517 uint_t non_config_tasks;
9518 uint_t config_task;
9519 boolean_t config_task_suspended;
9520
9521 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
9522 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
9523 if (spa->spa_ccw_fail_time == 0) {
9524 config_task_suspended = B_FALSE;
9525 } else {
9526 config_task_suspended =
9527 (gethrtime() - spa->spa_ccw_fail_time) <
9528 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
9529 }
9530
9531 return (non_config_tasks || (config_task && !config_task_suspended));
9532 }
9533
9534 static void
9535 spa_async_dispatch(spa_t *spa)
9536 {
9537 mutex_enter(&spa->spa_async_lock);
9538 if (spa_async_tasks_pending(spa) &&
9539 !spa->spa_async_suspended &&
9540 spa->spa_async_thread == NULL)
9541 spa->spa_async_thread = thread_create(NULL, 0,
9542 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
9543 mutex_exit(&spa->spa_async_lock);
9544 }
9545
9546 void
9547 spa_async_request(spa_t *spa, int task)
9548 {
9549 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
9550 mutex_enter(&spa->spa_async_lock);
9551 spa->spa_async_tasks |= task;
9552 mutex_exit(&spa->spa_async_lock);
9553 }
9554
9555 int
9556 spa_async_tasks(spa_t *spa)
9557 {
9558 return (spa->spa_async_tasks);
9559 }
9560
9561 /*
9562 * ==========================================================================
9563 * SPA syncing routines
9564 * ==========================================================================
9565 */
9566
9567
9568 static int
9569 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9570 dmu_tx_t *tx)
9571 {
9572 bpobj_t *bpo = arg;
9573 bpobj_enqueue(bpo, bp, bp_freed, tx);
9574 return (0);
9575 }
9576
9577 int
9578 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9579 {
9580 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
9581 }
9582
9583 int
9584 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9585 {
9586 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
9587 }
9588
9589 static int
9590 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9591 {
9592 zio_t *pio = arg;
9593
9594 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
9595 pio->io_flags));
9596 return (0);
9597 }
9598
9599 static int
9600 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9601 dmu_tx_t *tx)
9602 {
9603 ASSERT(!bp_freed);
9604 return (spa_free_sync_cb(arg, bp, tx));
9605 }
9606
9607 /*
9608 * Note: this simple function is not inlined to make it easier to dtrace the
9609 * amount of time spent syncing frees.
9610 */
9611 static void
9612 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
9613 {
9614 zio_t *zio = zio_root(spa, NULL, NULL, 0);
9615 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
9616 VERIFY0(zio_wait(zio));
9617 }
9618
9619 /*
9620 * Note: this simple function is not inlined to make it easier to dtrace the
9621 * amount of time spent syncing deferred frees.
9622 */
9623 static void
9624 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
9625 {
9626 if (spa_sync_pass(spa) != 1)
9627 return;
9628
9629 /*
9630 * Note:
9631 * If the log space map feature is active, we stop deferring
9632 * frees to the next TXG and therefore running this function
9633 * would be considered a no-op as spa_deferred_bpobj should
9634 * not have any entries.
9635 *
9636 * That said we run this function anyway (instead of returning
9637 * immediately) for the edge-case scenario where we just
9638 * activated the log space map feature in this TXG but we have
9639 * deferred frees from the previous TXG.
9640 */
9641 zio_t *zio = zio_root(spa, NULL, NULL, 0);
9642 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
9643 bpobj_spa_free_sync_cb, zio, tx), ==, 0);
9644 VERIFY0(zio_wait(zio));
9645 }
9646
9647 static void
9648 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
9649 {
9650 char *packed = NULL;
9651 size_t bufsize;
9652 size_t nvsize = 0;
9653 dmu_buf_t *db;
9654
9655 VERIFY0(nvlist_size(nv, &nvsize, NV_ENCODE_XDR));
9656
9657 /*
9658 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
9659 * information. This avoids the dmu_buf_will_dirty() path and
9660 * saves us a pre-read to get data we don't actually care about.
9661 */
9662 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
9663 packed = vmem_alloc(bufsize, KM_SLEEP);
9664
9665 VERIFY0(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
9666 KM_SLEEP));
9667 memset(packed + nvsize, 0, bufsize - nvsize);
9668
9669 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx,
9670 DMU_READ_NO_PREFETCH);
9671
9672 vmem_free(packed, bufsize);
9673
9674 VERIFY0(dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
9675 dmu_buf_will_dirty(db, tx);
9676 *(uint64_t *)db->db_data = nvsize;
9677 dmu_buf_rele(db, FTAG);
9678 }
9679
9680 static void
9681 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
9682 const char *config, const char *entry)
9683 {
9684 nvlist_t *nvroot;
9685 nvlist_t **list;
9686 int i;
9687
9688 if (!sav->sav_sync)
9689 return;
9690
9691 /*
9692 * Update the MOS nvlist describing the list of available devices.
9693 * spa_validate_aux() will have already made sure this nvlist is
9694 * valid and the vdevs are labeled appropriately.
9695 */
9696 if (sav->sav_object == 0) {
9697 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
9698 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
9699 sizeof (uint64_t), tx);
9700 VERIFY(zap_update(spa->spa_meta_objset,
9701 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
9702 &sav->sav_object, tx) == 0);
9703 }
9704
9705 nvroot = fnvlist_alloc();
9706 if (sav->sav_count == 0) {
9707 fnvlist_add_nvlist_array(nvroot, config,
9708 (const nvlist_t * const *)NULL, 0);
9709 } else {
9710 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
9711 for (i = 0; i < sav->sav_count; i++)
9712 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
9713 B_FALSE, VDEV_CONFIG_L2CACHE);
9714 fnvlist_add_nvlist_array(nvroot, config,
9715 (const nvlist_t * const *)list, sav->sav_count);
9716 for (i = 0; i < sav->sav_count; i++)
9717 nvlist_free(list[i]);
9718 kmem_free(list, sav->sav_count * sizeof (void *));
9719 }
9720
9721 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
9722 nvlist_free(nvroot);
9723
9724 sav->sav_sync = B_FALSE;
9725 }
9726
9727 /*
9728 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
9729 * The all-vdev ZAP must be empty.
9730 */
9731 static void
9732 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
9733 {
9734 spa_t *spa = vd->vdev_spa;
9735
9736 if (vd->vdev_root_zap != 0 &&
9737 spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
9738 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9739 vd->vdev_root_zap, tx));
9740 }
9741 if (vd->vdev_top_zap != 0) {
9742 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9743 vd->vdev_top_zap, tx));
9744 }
9745 if (vd->vdev_leaf_zap != 0) {
9746 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9747 vd->vdev_leaf_zap, tx));
9748 }
9749 for (uint64_t i = 0; i < vd->vdev_children; i++) {
9750 spa_avz_build(vd->vdev_child[i], avz, tx);
9751 }
9752 }
9753
9754 static void
9755 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
9756 {
9757 nvlist_t *config;
9758
9759 /*
9760 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
9761 * its config may not be dirty but we still need to build per-vdev ZAPs.
9762 * Similarly, if the pool is being assembled (e.g. after a split), we
9763 * need to rebuild the AVZ although the config may not be dirty.
9764 */
9765 if (list_is_empty(&spa->spa_config_dirty_list) &&
9766 spa->spa_avz_action == AVZ_ACTION_NONE)
9767 return;
9768
9769 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9770
9771 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
9772 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
9773 spa->spa_all_vdev_zaps != 0);
9774
9775 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
9776 /* Make and build the new AVZ */
9777 uint64_t new_avz = zap_create(spa->spa_meta_objset,
9778 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
9779 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
9780
9781 /* Diff old AVZ with new one */
9782 zap_cursor_t zc;
9783 zap_attribute_t *za = zap_attribute_alloc();
9784
9785 for (zap_cursor_init(&zc, spa->spa_meta_objset,
9786 spa->spa_all_vdev_zaps);
9787 zap_cursor_retrieve(&zc, za) == 0;
9788 zap_cursor_advance(&zc)) {
9789 uint64_t vdzap = za->za_first_integer;
9790 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
9791 vdzap) == ENOENT) {
9792 /*
9793 * ZAP is listed in old AVZ but not in new one;
9794 * destroy it
9795 */
9796 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
9797 tx));
9798 }
9799 }
9800
9801 zap_cursor_fini(&zc);
9802 zap_attribute_free(za);
9803
9804 /* Destroy the old AVZ */
9805 VERIFY0(zap_destroy(spa->spa_meta_objset,
9806 spa->spa_all_vdev_zaps, tx));
9807
9808 /* Replace the old AVZ in the dir obj with the new one */
9809 VERIFY0(zap_update(spa->spa_meta_objset,
9810 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
9811 sizeof (new_avz), 1, &new_avz, tx));
9812
9813 spa->spa_all_vdev_zaps = new_avz;
9814 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
9815 zap_cursor_t zc;
9816 zap_attribute_t *za = zap_attribute_alloc();
9817
9818 /* Walk through the AVZ and destroy all listed ZAPs */
9819 for (zap_cursor_init(&zc, spa->spa_meta_objset,
9820 spa->spa_all_vdev_zaps);
9821 zap_cursor_retrieve(&zc, za) == 0;
9822 zap_cursor_advance(&zc)) {
9823 uint64_t zap = za->za_first_integer;
9824 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
9825 }
9826
9827 zap_cursor_fini(&zc);
9828 zap_attribute_free(za);
9829
9830 /* Destroy and unlink the AVZ itself */
9831 VERIFY0(zap_destroy(spa->spa_meta_objset,
9832 spa->spa_all_vdev_zaps, tx));
9833 VERIFY0(zap_remove(spa->spa_meta_objset,
9834 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
9835 spa->spa_all_vdev_zaps = 0;
9836 }
9837
9838 if (spa->spa_all_vdev_zaps == 0) {
9839 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
9840 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
9841 DMU_POOL_VDEV_ZAP_MAP, tx);
9842 }
9843 spa->spa_avz_action = AVZ_ACTION_NONE;
9844
9845 /* Create ZAPs for vdevs that don't have them. */
9846 vdev_construct_zaps(spa->spa_root_vdev, tx);
9847
9848 config = spa_config_generate(spa, spa->spa_root_vdev,
9849 dmu_tx_get_txg(tx), B_FALSE);
9850
9851 /*
9852 * If we're upgrading the spa version then make sure that
9853 * the config object gets updated with the correct version.
9854 */
9855 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
9856 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
9857 spa->spa_uberblock.ub_version);
9858
9859 spa_config_exit(spa, SCL_STATE, FTAG);
9860
9861 nvlist_free(spa->spa_config_syncing);
9862 spa->spa_config_syncing = config;
9863
9864 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
9865 }
9866
9867 static void
9868 spa_sync_version(void *arg, dmu_tx_t *tx)
9869 {
9870 uint64_t *versionp = arg;
9871 uint64_t version = *versionp;
9872 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9873
9874 /*
9875 * Setting the version is special cased when first creating the pool.
9876 */
9877 ASSERT(tx->tx_txg != TXG_INITIAL);
9878
9879 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
9880 ASSERT(version >= spa_version(spa));
9881
9882 spa->spa_uberblock.ub_version = version;
9883 vdev_config_dirty(spa->spa_root_vdev);
9884 spa_history_log_internal(spa, "set", tx, "version=%lld",
9885 (longlong_t)version);
9886 }
9887
9888 /*
9889 * Set zpool properties.
9890 */
9891 static void
9892 spa_sync_props(void *arg, dmu_tx_t *tx)
9893 {
9894 nvlist_t *nvp = arg;
9895 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9896 objset_t *mos = spa->spa_meta_objset;
9897 nvpair_t *elem = NULL;
9898
9899 mutex_enter(&spa->spa_props_lock);
9900
9901 while ((elem = nvlist_next_nvpair(nvp, elem))) {
9902 uint64_t intval;
9903 const char *strval, *fname;
9904 zpool_prop_t prop;
9905 const char *propname;
9906 const char *elemname = nvpair_name(elem);
9907 zprop_type_t proptype;
9908 spa_feature_t fid;
9909
9910 switch (prop = zpool_name_to_prop(elemname)) {
9911 case ZPOOL_PROP_VERSION:
9912 intval = fnvpair_value_uint64(elem);
9913 /*
9914 * The version is synced separately before other
9915 * properties and should be correct by now.
9916 */
9917 ASSERT3U(spa_version(spa), >=, intval);
9918 break;
9919
9920 case ZPOOL_PROP_ALTROOT:
9921 /*
9922 * 'altroot' is a non-persistent property. It should
9923 * have been set temporarily at creation or import time.
9924 */
9925 ASSERT(spa->spa_root != NULL);
9926 break;
9927
9928 case ZPOOL_PROP_READONLY:
9929 case ZPOOL_PROP_CACHEFILE:
9930 /*
9931 * 'readonly' and 'cachefile' are also non-persistent
9932 * properties.
9933 */
9934 break;
9935 case ZPOOL_PROP_COMMENT:
9936 strval = fnvpair_value_string(elem);
9937 if (spa->spa_comment != NULL)
9938 spa_strfree(spa->spa_comment);
9939 spa->spa_comment = spa_strdup(strval);
9940 /*
9941 * We need to dirty the configuration on all the vdevs
9942 * so that their labels get updated. We also need to
9943 * update the cache file to keep it in sync with the
9944 * MOS version. It's unnecessary to do this for pool
9945 * creation since the vdev's configuration has already
9946 * been dirtied.
9947 */
9948 if (tx->tx_txg != TXG_INITIAL) {
9949 vdev_config_dirty(spa->spa_root_vdev);
9950 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9951 }
9952 spa_history_log_internal(spa, "set", tx,
9953 "%s=%s", elemname, strval);
9954 break;
9955 case ZPOOL_PROP_COMPATIBILITY:
9956 strval = fnvpair_value_string(elem);
9957 if (spa->spa_compatibility != NULL)
9958 spa_strfree(spa->spa_compatibility);
9959 spa->spa_compatibility = spa_strdup(strval);
9960 /*
9961 * Dirty the configuration on vdevs as above.
9962 */
9963 if (tx->tx_txg != TXG_INITIAL) {
9964 vdev_config_dirty(spa->spa_root_vdev);
9965 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9966 }
9967
9968 spa_history_log_internal(spa, "set", tx,
9969 "%s=%s", nvpair_name(elem), strval);
9970 break;
9971
9972 case ZPOOL_PROP_INVAL:
9973 if (zpool_prop_feature(elemname)) {
9974 fname = strchr(elemname, '@') + 1;
9975 VERIFY0(zfeature_lookup_name(fname, &fid));
9976
9977 spa_feature_enable(spa, fid, tx);
9978 spa_history_log_internal(spa, "set", tx,
9979 "%s=enabled", elemname);
9980 break;
9981 } else if (!zfs_prop_user(elemname)) {
9982 ASSERT(zpool_prop_feature(elemname));
9983 break;
9984 }
9985 zfs_fallthrough;
9986 default:
9987 /*
9988 * Set pool property values in the poolprops mos object.
9989 */
9990 if (spa->spa_pool_props_object == 0) {
9991 spa->spa_pool_props_object =
9992 zap_create_link(mos, DMU_OT_POOL_PROPS,
9993 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
9994 tx);
9995 }
9996
9997 /* normalize the property name */
9998 if (prop == ZPOOL_PROP_INVAL) {
9999 propname = elemname;
10000 proptype = PROP_TYPE_STRING;
10001 } else {
10002 propname = zpool_prop_to_name(prop);
10003 proptype = zpool_prop_get_type(prop);
10004 }
10005
10006 if (nvpair_type(elem) == DATA_TYPE_STRING) {
10007 ASSERT(proptype == PROP_TYPE_STRING);
10008 strval = fnvpair_value_string(elem);
10009 if (strlen(strval) == 0) {
10010 /* remove the property if value == "" */
10011 (void) zap_remove(mos,
10012 spa->spa_pool_props_object,
10013 propname, tx);
10014 } else {
10015 VERIFY0(zap_update(mos,
10016 spa->spa_pool_props_object,
10017 propname, 1, strlen(strval) + 1,
10018 strval, tx));
10019 }
10020 spa_history_log_internal(spa, "set", tx,
10021 "%s=%s", elemname, strval);
10022 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
10023 intval = fnvpair_value_uint64(elem);
10024
10025 if (proptype == PROP_TYPE_INDEX) {
10026 const char *unused;
10027 VERIFY0(zpool_prop_index_to_string(
10028 prop, intval, &unused));
10029 }
10030 VERIFY0(zap_update(mos,
10031 spa->spa_pool_props_object, propname,
10032 8, 1, &intval, tx));
10033 spa_history_log_internal(spa, "set", tx,
10034 "%s=%lld", elemname,
10035 (longlong_t)intval);
10036
10037 switch (prop) {
10038 case ZPOOL_PROP_DELEGATION:
10039 spa->spa_delegation = intval;
10040 break;
10041 case ZPOOL_PROP_BOOTFS:
10042 spa->spa_bootfs = intval;
10043 break;
10044 case ZPOOL_PROP_FAILUREMODE:
10045 spa->spa_failmode = intval;
10046 break;
10047 case ZPOOL_PROP_AUTOTRIM:
10048 spa->spa_autotrim = intval;
10049 spa_async_request(spa,
10050 SPA_ASYNC_AUTOTRIM_RESTART);
10051 break;
10052 case ZPOOL_PROP_AUTOEXPAND:
10053 spa->spa_autoexpand = intval;
10054 if (tx->tx_txg != TXG_INITIAL)
10055 spa_async_request(spa,
10056 SPA_ASYNC_AUTOEXPAND);
10057 break;
10058 case ZPOOL_PROP_MULTIHOST:
10059 spa->spa_multihost = intval;
10060 break;
10061 case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
10062 spa->spa_dedup_table_quota = intval;
10063 break;
10064 default:
10065 break;
10066 }
10067 } else {
10068 ASSERT(0); /* not allowed */
10069 }
10070 }
10071
10072 }
10073
10074 mutex_exit(&spa->spa_props_lock);
10075 }
10076
10077 /*
10078 * Perform one-time upgrade on-disk changes. spa_version() does not
10079 * reflect the new version this txg, so there must be no changes this
10080 * txg to anything that the upgrade code depends on after it executes.
10081 * Therefore this must be called after dsl_pool_sync() does the sync
10082 * tasks.
10083 */
10084 static void
10085 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
10086 {
10087 if (spa_sync_pass(spa) != 1)
10088 return;
10089
10090 dsl_pool_t *dp = spa->spa_dsl_pool;
10091 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
10092
10093 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
10094 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
10095 dsl_pool_create_origin(dp, tx);
10096
10097 /* Keeping the origin open increases spa_minref */
10098 spa->spa_minref += 3;
10099 }
10100
10101 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
10102 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
10103 dsl_pool_upgrade_clones(dp, tx);
10104 }
10105
10106 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
10107 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
10108 dsl_pool_upgrade_dir_clones(dp, tx);
10109
10110 /* Keeping the freedir open increases spa_minref */
10111 spa->spa_minref += 3;
10112 }
10113
10114 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
10115 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
10116 spa_feature_create_zap_objects(spa, tx);
10117 }
10118
10119 /*
10120 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
10121 * when possibility to use lz4 compression for metadata was added
10122 * Old pools that have this feature enabled must be upgraded to have
10123 * this feature active
10124 */
10125 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
10126 boolean_t lz4_en = spa_feature_is_enabled(spa,
10127 SPA_FEATURE_LZ4_COMPRESS);
10128 boolean_t lz4_ac = spa_feature_is_active(spa,
10129 SPA_FEATURE_LZ4_COMPRESS);
10130
10131 if (lz4_en && !lz4_ac)
10132 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
10133 }
10134
10135 /*
10136 * If we haven't written the salt, do so now. Note that the
10137 * feature may not be activated yet, but that's fine since
10138 * the presence of this ZAP entry is backwards compatible.
10139 */
10140 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
10141 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
10142 VERIFY0(zap_add(spa->spa_meta_objset,
10143 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
10144 sizeof (spa->spa_cksum_salt.zcs_bytes),
10145 spa->spa_cksum_salt.zcs_bytes, tx));
10146 }
10147
10148 rrw_exit(&dp->dp_config_rwlock, FTAG);
10149 }
10150
10151 static void
10152 vdev_indirect_state_sync_verify(vdev_t *vd)
10153 {
10154 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
10155 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
10156
10157 if (vd->vdev_ops == &vdev_indirect_ops) {
10158 ASSERT(vim != NULL);
10159 ASSERT(vib != NULL);
10160 }
10161
10162 uint64_t obsolete_sm_object = 0;
10163 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
10164 if (obsolete_sm_object != 0) {
10165 ASSERT(vd->vdev_obsolete_sm != NULL);
10166 ASSERT(vd->vdev_removing ||
10167 vd->vdev_ops == &vdev_indirect_ops);
10168 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
10169 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
10170 ASSERT3U(obsolete_sm_object, ==,
10171 space_map_object(vd->vdev_obsolete_sm));
10172 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
10173 space_map_allocated(vd->vdev_obsolete_sm));
10174 }
10175 ASSERT(vd->vdev_obsolete_segments != NULL);
10176
10177 /*
10178 * Since frees / remaps to an indirect vdev can only
10179 * happen in syncing context, the obsolete segments
10180 * tree must be empty when we start syncing.
10181 */
10182 ASSERT0(zfs_range_tree_space(vd->vdev_obsolete_segments));
10183 }
10184
10185 /*
10186 * Set the top-level vdev's max queue depth. Evaluate each top-level's
10187 * async write queue depth in case it changed. The max queue depth will
10188 * not change in the middle of syncing out this txg.
10189 */
10190 static void
10191 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
10192 {
10193 ASSERT(spa_writeable(spa));
10194
10195 metaslab_class_balance(spa_normal_class(spa), B_TRUE);
10196 metaslab_class_balance(spa_special_class(spa), B_TRUE);
10197 metaslab_class_balance(spa_dedup_class(spa), B_TRUE);
10198 }
10199
10200 static void
10201 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
10202 {
10203 ASSERT(spa_writeable(spa));
10204
10205 vdev_t *rvd = spa->spa_root_vdev;
10206 for (int c = 0; c < rvd->vdev_children; c++) {
10207 vdev_t *vd = rvd->vdev_child[c];
10208 vdev_indirect_state_sync_verify(vd);
10209
10210 if (vdev_indirect_should_condense(vd)) {
10211 spa_condense_indirect_start_sync(vd, tx);
10212 break;
10213 }
10214 }
10215 }
10216
10217 static void
10218 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
10219 {
10220 objset_t *mos = spa->spa_meta_objset;
10221 dsl_pool_t *dp = spa->spa_dsl_pool;
10222 uint64_t txg = tx->tx_txg;
10223 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
10224
10225 do {
10226 int pass = ++spa->spa_sync_pass;
10227
10228 spa_sync_config_object(spa, tx);
10229 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
10230 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
10231 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
10232 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
10233 spa_errlog_sync(spa, txg);
10234 dsl_pool_sync(dp, txg);
10235
10236 if (pass < zfs_sync_pass_deferred_free ||
10237 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
10238 /*
10239 * If the log space map feature is active we don't
10240 * care about deferred frees and the deferred bpobj
10241 * as the log space map should effectively have the
10242 * same results (i.e. appending only to one object).
10243 */
10244 spa_sync_frees(spa, free_bpl, tx);
10245 } else {
10246 /*
10247 * We can not defer frees in pass 1, because
10248 * we sync the deferred frees later in pass 1.
10249 */
10250 ASSERT3U(pass, >, 1);
10251 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
10252 &spa->spa_deferred_bpobj, tx);
10253 }
10254
10255 brt_sync(spa, txg);
10256 ddt_sync(spa, txg);
10257 dsl_scan_sync(dp, tx);
10258 dsl_errorscrub_sync(dp, tx);
10259 svr_sync(spa, tx);
10260 spa_sync_upgrades(spa, tx);
10261
10262 spa_flush_metaslabs(spa, tx);
10263
10264 vdev_t *vd = NULL;
10265 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
10266 != NULL)
10267 vdev_sync(vd, txg);
10268
10269 if (pass == 1) {
10270 /*
10271 * dsl_pool_sync() -> dp_sync_tasks may have dirtied
10272 * the config. If that happens, this txg should not
10273 * be a no-op. So we must sync the config to the MOS
10274 * before checking for no-op.
10275 *
10276 * Note that when the config is dirty, it will
10277 * be written to the MOS (i.e. the MOS will be
10278 * dirtied) every time we call spa_sync_config_object()
10279 * in this txg. Therefore we can't call this after
10280 * dsl_pool_sync() every pass, because it would
10281 * prevent us from converging, since we'd dirty
10282 * the MOS every pass.
10283 *
10284 * Sync tasks can only be processed in pass 1, so
10285 * there's no need to do this in later passes.
10286 */
10287 spa_sync_config_object(spa, tx);
10288 }
10289
10290 /*
10291 * Note: We need to check if the MOS is dirty because we could
10292 * have marked the MOS dirty without updating the uberblock
10293 * (e.g. if we have sync tasks but no dirty user data). We need
10294 * to check the uberblock's rootbp because it is updated if we
10295 * have synced out dirty data (though in this case the MOS will
10296 * most likely also be dirty due to second order effects, we
10297 * don't want to rely on that here).
10298 */
10299 if (pass == 1 &&
10300 BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp) < txg &&
10301 !dmu_objset_is_dirty(mos, txg)) {
10302 /*
10303 * Nothing changed on the first pass, therefore this
10304 * TXG is a no-op. Avoid syncing deferred frees, so
10305 * that we can keep this TXG as a no-op.
10306 */
10307 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10308 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10309 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
10310 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
10311 break;
10312 }
10313
10314 spa_sync_deferred_frees(spa, tx);
10315 } while (dmu_objset_is_dirty(mos, txg));
10316 }
10317
10318 /*
10319 * Rewrite the vdev configuration (which includes the uberblock) to
10320 * commit the transaction group.
10321 *
10322 * If there are no dirty vdevs, we sync the uberblock to a few random
10323 * top-level vdevs that are known to be visible in the config cache
10324 * (see spa_vdev_add() for a complete description). If there *are* dirty
10325 * vdevs, sync the uberblock to all vdevs.
10326 */
10327 static void
10328 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
10329 {
10330 vdev_t *rvd = spa->spa_root_vdev;
10331 uint64_t txg = tx->tx_txg;
10332
10333 for (;;) {
10334 int error = 0;
10335
10336 /*
10337 * We hold SCL_STATE to prevent vdev open/close/etc.
10338 * while we're attempting to write the vdev labels.
10339 */
10340 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10341
10342 if (list_is_empty(&spa->spa_config_dirty_list)) {
10343 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
10344 int svdcount = 0;
10345 int children = rvd->vdev_children;
10346 int c0 = random_in_range(children);
10347
10348 for (int c = 0; c < children; c++) {
10349 vdev_t *vd =
10350 rvd->vdev_child[(c0 + c) % children];
10351
10352 /* Stop when revisiting the first vdev */
10353 if (c > 0 && svd[0] == vd)
10354 break;
10355
10356 if (vd->vdev_ms_array == 0 ||
10357 vd->vdev_islog ||
10358 !vdev_is_concrete(vd))
10359 continue;
10360
10361 svd[svdcount++] = vd;
10362 if (svdcount == SPA_SYNC_MIN_VDEVS)
10363 break;
10364 }
10365 error = vdev_config_sync(svd, svdcount, txg);
10366 } else {
10367 error = vdev_config_sync(rvd->vdev_child,
10368 rvd->vdev_children, txg);
10369 }
10370
10371 if (error == 0)
10372 spa->spa_last_synced_guid = rvd->vdev_guid;
10373
10374 spa_config_exit(spa, SCL_STATE, FTAG);
10375
10376 if (error == 0)
10377 break;
10378 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
10379 zio_resume_wait(spa);
10380 }
10381 }
10382
10383 /*
10384 * Sync the specified transaction group. New blocks may be dirtied as
10385 * part of the process, so we iterate until it converges.
10386 */
10387 void
10388 spa_sync(spa_t *spa, uint64_t txg)
10389 {
10390 vdev_t *vd = NULL;
10391
10392 VERIFY(spa_writeable(spa));
10393
10394 /*
10395 * Wait for i/os issued in open context that need to complete
10396 * before this txg syncs.
10397 */
10398 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
10399 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
10400 ZIO_FLAG_CANFAIL);
10401
10402 /*
10403 * Now that there can be no more cloning in this transaction group,
10404 * but we are still before issuing frees, we can process pending BRT
10405 * updates.
10406 */
10407 brt_pending_apply(spa, txg);
10408
10409 spa_sync_time_logger(spa, txg);
10410
10411 /*
10412 * Lock out configuration changes.
10413 */
10414 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
10415
10416 spa->spa_syncing_txg = txg;
10417 spa->spa_sync_pass = 0;
10418
10419 /*
10420 * If there are any pending vdev state changes, convert them
10421 * into config changes that go out with this transaction group.
10422 */
10423 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10424 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10425 /* Avoid holding the write lock unless actually necessary */
10426 if (vd->vdev_aux == NULL) {
10427 vdev_state_clean(vd);
10428 vdev_config_dirty(vd);
10429 continue;
10430 }
10431 /*
10432 * We need the write lock here because, for aux vdevs,
10433 * calling vdev_config_dirty() modifies sav_config.
10434 * This is ugly and will become unnecessary when we
10435 * eliminate the aux vdev wart by integrating all vdevs
10436 * into the root vdev tree.
10437 */
10438 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10439 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
10440 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10441 vdev_state_clean(vd);
10442 vdev_config_dirty(vd);
10443 }
10444 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10445 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10446 }
10447 spa_config_exit(spa, SCL_STATE, FTAG);
10448
10449 dsl_pool_t *dp = spa->spa_dsl_pool;
10450 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
10451
10452 spa->spa_sync_starttime = gethrtime();
10453
10454 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10455 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
10456 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
10457 NSEC_TO_TICK(spa->spa_deadman_synctime));
10458
10459 /*
10460 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
10461 * set spa_deflate if we have no raid-z vdevs.
10462 */
10463 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
10464 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
10465 vdev_t *rvd = spa->spa_root_vdev;
10466
10467 int i;
10468 for (i = 0; i < rvd->vdev_children; i++) {
10469 vd = rvd->vdev_child[i];
10470 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
10471 break;
10472 }
10473 if (i == rvd->vdev_children) {
10474 spa->spa_deflate = TRUE;
10475 VERIFY0(zap_add(spa->spa_meta_objset,
10476 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
10477 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
10478 }
10479 }
10480
10481 spa_sync_adjust_vdev_max_queue_depth(spa);
10482
10483 spa_sync_condense_indirect(spa, tx);
10484
10485 spa_sync_iterate_to_convergence(spa, tx);
10486
10487 #ifdef ZFS_DEBUG
10488 if (!list_is_empty(&spa->spa_config_dirty_list)) {
10489 /*
10490 * Make sure that the number of ZAPs for all the vdevs matches
10491 * the number of ZAPs in the per-vdev ZAP list. This only gets
10492 * called if the config is dirty; otherwise there may be
10493 * outstanding AVZ operations that weren't completed in
10494 * spa_sync_config_object.
10495 */
10496 uint64_t all_vdev_zap_entry_count;
10497 ASSERT0(zap_count(spa->spa_meta_objset,
10498 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
10499 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
10500 all_vdev_zap_entry_count);
10501 }
10502 #endif
10503
10504 if (spa->spa_vdev_removal != NULL) {
10505 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
10506 }
10507
10508 spa_sync_rewrite_vdev_config(spa, tx);
10509 dmu_tx_commit(tx);
10510
10511 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10512 spa->spa_deadman_tqid = 0;
10513
10514 /*
10515 * Clear the dirty config list.
10516 */
10517 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
10518 vdev_config_clean(vd);
10519
10520 /*
10521 * Now that the new config has synced transactionally,
10522 * let it become visible to the config cache.
10523 */
10524 if (spa->spa_config_syncing != NULL) {
10525 spa_config_set(spa, spa->spa_config_syncing);
10526 spa->spa_config_txg = txg;
10527 spa->spa_config_syncing = NULL;
10528 }
10529
10530 dsl_pool_sync_done(dp, txg);
10531
10532 /*
10533 * Update usable space statistics.
10534 */
10535 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
10536 != NULL)
10537 vdev_sync_done(vd, txg);
10538
10539 metaslab_class_evict_old(spa->spa_normal_class, txg);
10540 metaslab_class_evict_old(spa->spa_log_class, txg);
10541 /* Embedded log classes have only one metaslab per vdev. */
10542 metaslab_class_evict_old(spa->spa_special_class, txg);
10543 metaslab_class_evict_old(spa->spa_dedup_class, txg);
10544
10545 spa_sync_close_syncing_log_sm(spa);
10546
10547 spa_update_dspace(spa);
10548
10549 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
10550 vdev_autotrim_kick(spa);
10551
10552 /*
10553 * It had better be the case that we didn't dirty anything
10554 * since vdev_config_sync().
10555 */
10556 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10557 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10558 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
10559
10560 while (zfs_pause_spa_sync)
10561 delay(1);
10562
10563 spa->spa_sync_pass = 0;
10564
10565 /*
10566 * Update the last synced uberblock here. We want to do this at
10567 * the end of spa_sync() so that consumers of spa_last_synced_txg()
10568 * will be guaranteed that all the processing associated with
10569 * that txg has been completed.
10570 */
10571 spa->spa_ubsync = spa->spa_uberblock;
10572 spa_config_exit(spa, SCL_CONFIG, FTAG);
10573
10574 spa_handle_ignored_writes(spa);
10575
10576 /*
10577 * If any async tasks have been requested, kick them off.
10578 */
10579 spa_async_dispatch(spa);
10580 }
10581
10582 /*
10583 * Sync all pools. We don't want to hold the namespace lock across these
10584 * operations, so we take a reference on the spa_t and drop the lock during the
10585 * sync.
10586 */
10587 void
10588 spa_sync_allpools(void)
10589 {
10590 spa_t *spa = NULL;
10591 spa_namespace_enter(FTAG);
10592 while ((spa = spa_next(spa)) != NULL) {
10593 if (spa_state(spa) != POOL_STATE_ACTIVE ||
10594 !spa_writeable(spa) || spa_suspended(spa))
10595 continue;
10596 spa_open_ref(spa, FTAG);
10597 spa_namespace_exit(FTAG);
10598 txg_wait_synced(spa_get_dsl(spa), 0);
10599 spa_namespace_enter(FTAG);
10600 spa_close(spa, FTAG);
10601 }
10602 spa_namespace_exit(FTAG);
10603 }
10604
10605 taskq_t *
10606 spa_sync_tq_create(spa_t *spa, const char *name)
10607 {
10608 kthread_t **kthreads;
10609
10610 ASSERT0P(spa->spa_sync_tq);
10611 ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus);
10612
10613 /*
10614 * - do not allow more allocators than cpus.
10615 * - there may be more cpus than allocators.
10616 * - do not allow more sync taskq threads than allocators or cpus.
10617 */
10618 int nthreads = spa->spa_alloc_count;
10619 spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) *
10620 nthreads, KM_SLEEP);
10621
10622 spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri,
10623 nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads);
10624 VERIFY(spa->spa_sync_tq != NULL);
10625 VERIFY(kthreads != NULL);
10626
10627 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10628 for (int i = 0; i < nthreads; i++, ti++) {
10629 ti->sti_thread = kthreads[i];
10630 ti->sti_allocator = i;
10631 }
10632
10633 kmem_free(kthreads, sizeof (*kthreads) * nthreads);
10634 return (spa->spa_sync_tq);
10635 }
10636
10637 void
10638 spa_sync_tq_destroy(spa_t *spa)
10639 {
10640 ASSERT(spa->spa_sync_tq != NULL);
10641
10642 taskq_wait(spa->spa_sync_tq);
10643 taskq_destroy(spa->spa_sync_tq);
10644 kmem_free(spa->spa_syncthreads,
10645 sizeof (spa_syncthread_info_t) * spa->spa_alloc_count);
10646 spa->spa_sync_tq = NULL;
10647 }
10648
10649 uint_t
10650 spa_acq_allocator(spa_t *spa)
10651 {
10652 int i;
10653
10654 if (spa->spa_alloc_count == 1)
10655 return (0);
10656
10657 mutex_enter(&spa->spa_allocs_use->sau_lock);
10658 uint_t r = spa->spa_allocs_use->sau_rotor;
10659 do {
10660 if (++r == spa->spa_alloc_count)
10661 r = 0;
10662 } while (spa->spa_allocs_use->sau_inuse[r]);
10663 spa->spa_allocs_use->sau_inuse[r] = B_TRUE;
10664 spa->spa_allocs_use->sau_rotor = r;
10665 mutex_exit(&spa->spa_allocs_use->sau_lock);
10666
10667 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10668 for (i = 0; i < spa->spa_alloc_count; i++, ti++) {
10669 if (ti->sti_thread == curthread) {
10670 ti->sti_allocator = r;
10671 break;
10672 }
10673 }
10674 ASSERT3S(i, <, spa->spa_alloc_count);
10675 return (r);
10676 }
10677
10678 void
10679 spa_rel_allocator(spa_t *spa, uint_t allocator)
10680 {
10681 if (spa->spa_alloc_count > 1)
10682 spa->spa_allocs_use->sau_inuse[allocator] = B_FALSE;
10683 }
10684
10685 void
10686 spa_select_allocator(zio_t *zio)
10687 {
10688 zbookmark_phys_t *bm = &zio->io_bookmark;
10689 spa_t *spa = zio->io_spa;
10690
10691 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
10692
10693 /*
10694 * A gang block (for example) may have inherited its parent's
10695 * allocator, in which case there is nothing further to do here.
10696 */
10697 if (ZIO_HAS_ALLOCATOR(zio))
10698 return;
10699
10700 ASSERT(spa != NULL);
10701 ASSERT(bm != NULL);
10702
10703 /*
10704 * First try to use an allocator assigned to the syncthread, and set
10705 * the corresponding write issue taskq for the allocator.
10706 * Note, we must have an open pool to do this.
10707 */
10708 if (spa->spa_sync_tq != NULL) {
10709 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10710 for (int i = 0; i < spa->spa_alloc_count; i++, ti++) {
10711 if (ti->sti_thread == curthread) {
10712 zio->io_allocator = ti->sti_allocator;
10713 return;
10714 }
10715 }
10716 }
10717
10718 /*
10719 * We want to try to use as many allocators as possible to help improve
10720 * performance, but we also want logically adjacent IOs to be physically
10721 * adjacent to improve sequential read performance. We chunk each object
10722 * into 2^20 block regions, and then hash based on the objset, object,
10723 * level, and region to accomplish both of these goals.
10724 */
10725 uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level,
10726 bm->zb_blkid >> 20);
10727
10728 zio->io_allocator = (uint_t)hv % spa->spa_alloc_count;
10729 }
10730
10731 /*
10732 * ==========================================================================
10733 * Miscellaneous routines
10734 * ==========================================================================
10735 */
10736
10737 /*
10738 * Remove all pools in the system.
10739 */
10740 void
10741 spa_evict_all(void)
10742 {
10743 spa_t *spa;
10744
10745 /*
10746 * Remove all cached state. All pools should be closed now,
10747 * so every spa in the AVL tree should be unreferenced.
10748 */
10749 spa_namespace_enter(FTAG);
10750 while ((spa = spa_next(NULL)) != NULL) {
10751 /*
10752 * Stop async tasks. The async thread may need to detach
10753 * a device that's been replaced, which requires grabbing
10754 * spa_namespace_lock, so we must drop it here.
10755 */
10756 spa_open_ref(spa, FTAG);
10757 spa_namespace_exit(FTAG);
10758 spa_async_suspend(spa);
10759 spa_namespace_enter(FTAG);
10760 spa_close(spa, FTAG);
10761
10762 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
10763 spa_unload(spa);
10764 spa_deactivate(spa);
10765 }
10766 spa_remove(spa);
10767 }
10768 spa_namespace_exit(FTAG);
10769 }
10770
10771 vdev_t *
10772 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
10773 {
10774 vdev_t *vd;
10775 int i;
10776
10777 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
10778 return (vd);
10779
10780 if (aux) {
10781 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
10782 vd = spa->spa_l2cache.sav_vdevs[i];
10783 if (vd->vdev_guid == guid)
10784 return (vd);
10785 }
10786
10787 for (i = 0; i < spa->spa_spares.sav_count; i++) {
10788 vd = spa->spa_spares.sav_vdevs[i];
10789 if (vd->vdev_guid == guid)
10790 return (vd);
10791 }
10792 }
10793
10794 return (NULL);
10795 }
10796
10797 void
10798 spa_upgrade(spa_t *spa, uint64_t version)
10799 {
10800 ASSERT(spa_writeable(spa));
10801
10802 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
10803
10804 /*
10805 * This should only be called for a non-faulted pool, and since a
10806 * future version would result in an unopenable pool, this shouldn't be
10807 * possible.
10808 */
10809 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
10810 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
10811
10812 spa->spa_uberblock.ub_version = version;
10813 vdev_config_dirty(spa->spa_root_vdev);
10814
10815 spa_config_exit(spa, SCL_ALL, FTAG);
10816
10817 txg_wait_synced(spa_get_dsl(spa), 0);
10818 }
10819
10820 static boolean_t
10821 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
10822 {
10823 (void) spa;
10824 int i;
10825 uint64_t vdev_guid;
10826
10827 for (i = 0; i < sav->sav_count; i++)
10828 if (sav->sav_vdevs[i]->vdev_guid == guid)
10829 return (B_TRUE);
10830
10831 for (i = 0; i < sav->sav_npending; i++) {
10832 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
10833 &vdev_guid) == 0 && vdev_guid == guid)
10834 return (B_TRUE);
10835 }
10836
10837 return (B_FALSE);
10838 }
10839
10840 boolean_t
10841 spa_has_l2cache(spa_t *spa, uint64_t guid)
10842 {
10843 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
10844 }
10845
10846 boolean_t
10847 spa_has_spare(spa_t *spa, uint64_t guid)
10848 {
10849 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
10850 }
10851
10852 /*
10853 * Check if a pool has an active shared spare device.
10854 * Note: reference count of an active spare is 2, as a spare and as a replace
10855 */
10856 static boolean_t
10857 spa_has_active_shared_spare(spa_t *spa)
10858 {
10859 int i, refcnt;
10860 uint64_t pool;
10861 spa_aux_vdev_t *sav = &spa->spa_spares;
10862
10863 for (i = 0; i < sav->sav_count; i++) {
10864 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
10865 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
10866 refcnt > 2)
10867 return (B_TRUE);
10868 }
10869
10870 return (B_FALSE);
10871 }
10872
10873 uint64_t
10874 spa_total_metaslabs(spa_t *spa)
10875 {
10876 vdev_t *rvd = spa->spa_root_vdev;
10877
10878 uint64_t m = 0;
10879 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
10880 vdev_t *vd = rvd->vdev_child[c];
10881 if (!vdev_is_concrete(vd))
10882 continue;
10883 m += vd->vdev_ms_count;
10884 }
10885 return (m);
10886 }
10887
10888 /*
10889 * Notify any waiting threads that some activity has switched from being in-
10890 * progress to not-in-progress so that the thread can wake up and determine
10891 * whether it is finished waiting.
10892 */
10893 void
10894 spa_notify_waiters(spa_t *spa)
10895 {
10896 /*
10897 * Acquiring spa_activities_lock here prevents the cv_broadcast from
10898 * happening between the waiting thread's check and cv_wait.
10899 */
10900 mutex_enter(&spa->spa_activities_lock);
10901 cv_broadcast(&spa->spa_activities_cv);
10902 mutex_exit(&spa->spa_activities_lock);
10903 }
10904
10905 /*
10906 * Notify any waiting threads that the pool is exporting, and then block until
10907 * they are finished using the spa_t.
10908 */
10909 void
10910 spa_wake_waiters(spa_t *spa)
10911 {
10912 mutex_enter(&spa->spa_activities_lock);
10913 spa->spa_waiters_cancel = B_TRUE;
10914 cv_broadcast(&spa->spa_activities_cv);
10915 while (spa->spa_waiters != 0)
10916 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
10917 spa->spa_waiters_cancel = B_FALSE;
10918 mutex_exit(&spa->spa_activities_lock);
10919 }
10920
10921 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
10922 static boolean_t
10923 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
10924 {
10925 spa_t *spa = vd->vdev_spa;
10926
10927 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
10928 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10929 ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
10930 activity == ZPOOL_WAIT_TRIM);
10931
10932 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
10933 &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
10934
10935 mutex_exit(&spa->spa_activities_lock);
10936 mutex_enter(lock);
10937 mutex_enter(&spa->spa_activities_lock);
10938
10939 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
10940 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
10941 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
10942 mutex_exit(lock);
10943
10944 if (in_progress)
10945 return (B_TRUE);
10946
10947 for (int i = 0; i < vd->vdev_children; i++) {
10948 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
10949 activity))
10950 return (B_TRUE);
10951 }
10952
10953 return (B_FALSE);
10954 }
10955
10956 /*
10957 * If use_guid is true, this checks whether the vdev specified by guid is
10958 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
10959 * is being initialized/trimmed. The caller must hold the config lock and
10960 * spa_activities_lock.
10961 */
10962 static int
10963 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
10964 zpool_wait_activity_t activity, boolean_t *in_progress)
10965 {
10966 mutex_exit(&spa->spa_activities_lock);
10967 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10968 mutex_enter(&spa->spa_activities_lock);
10969
10970 vdev_t *vd;
10971 if (use_guid) {
10972 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
10973 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
10974 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10975 return (EINVAL);
10976 }
10977 } else {
10978 vd = spa->spa_root_vdev;
10979 }
10980
10981 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
10982
10983 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10984 return (0);
10985 }
10986
10987 /*
10988 * Locking for waiting threads
10989 * ---------------------------
10990 *
10991 * Waiting threads need a way to check whether a given activity is in progress,
10992 * and then, if it is, wait for it to complete. Each activity will have some
10993 * in-memory representation of the relevant on-disk state which can be used to
10994 * determine whether or not the activity is in progress. The in-memory state and
10995 * the locking used to protect it will be different for each activity, and may
10996 * not be suitable for use with a cvar (e.g., some state is protected by the
10997 * config lock). To allow waiting threads to wait without any races, another
10998 * lock, spa_activities_lock, is used.
10999 *
11000 * When the state is checked, both the activity-specific lock (if there is one)
11001 * and spa_activities_lock are held. In some cases, the activity-specific lock
11002 * is acquired explicitly (e.g. the config lock). In others, the locking is
11003 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
11004 * thread releases the activity-specific lock and, if the activity is in
11005 * progress, then cv_waits using spa_activities_lock.
11006 *
11007 * The waiting thread is woken when another thread, one completing some
11008 * activity, updates the state of the activity and then calls
11009 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
11010 * needs to hold its activity-specific lock when updating the state, and this
11011 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
11012 *
11013 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
11014 * and because it is held when the waiting thread checks the state of the
11015 * activity, it can never be the case that the completing thread both updates
11016 * the activity state and cv_broadcasts in between the waiting thread's check
11017 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
11018 *
11019 * In order to prevent deadlock, when the waiting thread does its check, in some
11020 * cases it will temporarily drop spa_activities_lock in order to acquire the
11021 * activity-specific lock. The order in which spa_activities_lock and the
11022 * activity specific lock are acquired in the waiting thread is determined by
11023 * the order in which they are acquired in the completing thread; if the
11024 * completing thread calls spa_notify_waiters with the activity-specific lock
11025 * held, then the waiting thread must also acquire the activity-specific lock
11026 * first.
11027 */
11028
11029 static int
11030 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
11031 boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
11032 {
11033 int error = 0;
11034
11035 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
11036
11037 switch (activity) {
11038 case ZPOOL_WAIT_CKPT_DISCARD:
11039 *in_progress =
11040 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
11041 zap_contains(spa_meta_objset(spa),
11042 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
11043 ENOENT);
11044 break;
11045 case ZPOOL_WAIT_FREE:
11046 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
11047 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
11048 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
11049 spa_livelist_delete_check(spa));
11050 break;
11051 case ZPOOL_WAIT_INITIALIZE:
11052 case ZPOOL_WAIT_TRIM:
11053 error = spa_vdev_activity_in_progress(spa, use_tag, tag,
11054 activity, in_progress);
11055 break;
11056 case ZPOOL_WAIT_REPLACE:
11057 mutex_exit(&spa->spa_activities_lock);
11058 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
11059 mutex_enter(&spa->spa_activities_lock);
11060
11061 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
11062 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
11063 break;
11064 case ZPOOL_WAIT_REMOVE:
11065 *in_progress = (spa->spa_removing_phys.sr_state ==
11066 DSS_SCANNING);
11067 break;
11068 case ZPOOL_WAIT_RESILVER:
11069 *in_progress = vdev_rebuild_active(spa->spa_root_vdev);
11070 if (*in_progress)
11071 break;
11072 zfs_fallthrough;
11073 case ZPOOL_WAIT_SCRUB:
11074 {
11075 boolean_t scanning, paused, is_scrub;
11076 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
11077
11078 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
11079 scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
11080 paused = dsl_scan_is_paused_scrub(scn);
11081 *in_progress = (scanning && !paused &&
11082 is_scrub == (activity == ZPOOL_WAIT_SCRUB));
11083 break;
11084 }
11085 case ZPOOL_WAIT_RAIDZ_EXPAND:
11086 {
11087 vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
11088 *in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING);
11089 break;
11090 }
11091 default:
11092 panic("unrecognized value for activity %d", activity);
11093 }
11094
11095 return (error);
11096 }
11097
11098 static int
11099 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
11100 boolean_t use_tag, uint64_t tag, boolean_t *waited)
11101 {
11102 /*
11103 * The tag is used to distinguish between instances of an activity.
11104 * 'initialize' and 'trim' are the only activities that we use this for.
11105 * The other activities can only have a single instance in progress in a
11106 * pool at one time, making the tag unnecessary.
11107 *
11108 * There can be multiple devices being replaced at once, but since they
11109 * all finish once resilvering finishes, we don't bother keeping track
11110 * of them individually, we just wait for them all to finish.
11111 */
11112 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
11113 activity != ZPOOL_WAIT_TRIM)
11114 return (EINVAL);
11115
11116 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
11117 return (EINVAL);
11118
11119 spa_t *spa;
11120 int error = spa_open(pool, &spa, FTAG);
11121 if (error != 0)
11122 return (error);
11123
11124 /*
11125 * Increment the spa's waiter count so that we can call spa_close and
11126 * still ensure that the spa_t doesn't get freed before this thread is
11127 * finished with it when the pool is exported. We want to call spa_close
11128 * before we start waiting because otherwise the additional ref would
11129 * prevent the pool from being exported or destroyed throughout the
11130 * potentially long wait.
11131 */
11132 mutex_enter(&spa->spa_activities_lock);
11133 spa->spa_waiters++;
11134 spa_close(spa, FTAG);
11135
11136 *waited = B_FALSE;
11137 for (;;) {
11138 boolean_t in_progress;
11139 error = spa_activity_in_progress(spa, activity, use_tag, tag,
11140 &in_progress);
11141
11142 if (error || !in_progress || spa->spa_waiters_cancel)
11143 break;
11144
11145 *waited = B_TRUE;
11146
11147 if (cv_wait_sig(&spa->spa_activities_cv,
11148 &spa->spa_activities_lock) == 0) {
11149 error = EINTR;
11150 break;
11151 }
11152 }
11153
11154 spa->spa_waiters--;
11155 cv_signal(&spa->spa_waiters_cv);
11156 mutex_exit(&spa->spa_activities_lock);
11157
11158 return (error);
11159 }
11160
11161 /*
11162 * Wait for a particular instance of the specified activity to complete, where
11163 * the instance is identified by 'tag'
11164 */
11165 int
11166 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
11167 boolean_t *waited)
11168 {
11169 return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
11170 }
11171
11172 /*
11173 * Wait for all instances of the specified activity complete
11174 */
11175 int
11176 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
11177 {
11178
11179 return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
11180 }
11181
11182 sysevent_t *
11183 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
11184 {
11185 sysevent_t *ev = NULL;
11186 #ifdef _KERNEL
11187 nvlist_t *resource;
11188
11189 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
11190 if (resource) {
11191 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
11192 ev->resource = resource;
11193 }
11194 #else
11195 (void) spa, (void) vd, (void) hist_nvl, (void) name;
11196 #endif
11197 return (ev);
11198 }
11199
11200 void
11201 spa_event_post(sysevent_t *ev)
11202 {
11203 #ifdef _KERNEL
11204 if (ev) {
11205 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
11206 kmem_free(ev, sizeof (*ev));
11207 }
11208 #else
11209 (void) ev;
11210 #endif
11211 }
11212
11213 /*
11214 * Post a zevent corresponding to the given sysevent. The 'name' must be one
11215 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
11216 * filled in from the spa and (optionally) the vdev. This doesn't do anything
11217 * in the userland libzpool, as we don't want consumers to misinterpret ztest
11218 * or zdb as real changes.
11219 */
11220 void
11221 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
11222 {
11223 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
11224 }
11225
11226 /* state manipulation functions */
11227 EXPORT_SYMBOL(spa_open);
11228 EXPORT_SYMBOL(spa_open_rewind);
11229 EXPORT_SYMBOL(spa_get_stats);
11230 EXPORT_SYMBOL(spa_create);
11231 EXPORT_SYMBOL(spa_import);
11232 EXPORT_SYMBOL(spa_tryimport);
11233 EXPORT_SYMBOL(spa_destroy);
11234 EXPORT_SYMBOL(spa_export);
11235 EXPORT_SYMBOL(spa_reset);
11236 EXPORT_SYMBOL(spa_async_request);
11237 EXPORT_SYMBOL(spa_async_suspend);
11238 EXPORT_SYMBOL(spa_async_resume);
11239 EXPORT_SYMBOL(spa_inject_addref);
11240 EXPORT_SYMBOL(spa_inject_delref);
11241 EXPORT_SYMBOL(spa_scan_stat_init);
11242 EXPORT_SYMBOL(spa_scan_get_stats);
11243
11244 /* device manipulation */
11245 EXPORT_SYMBOL(spa_vdev_add);
11246 EXPORT_SYMBOL(spa_vdev_attach);
11247 EXPORT_SYMBOL(spa_vdev_detach);
11248 EXPORT_SYMBOL(spa_vdev_setpath);
11249 EXPORT_SYMBOL(spa_vdev_setfru);
11250 EXPORT_SYMBOL(spa_vdev_split_mirror);
11251
11252 /* spare statech is global across all pools) */
11253 EXPORT_SYMBOL(spa_spare_add);
11254 EXPORT_SYMBOL(spa_spare_remove);
11255 EXPORT_SYMBOL(spa_spare_exists);
11256 EXPORT_SYMBOL(spa_spare_activate);
11257
11258 /* L2ARC statech is global across all pools) */
11259 EXPORT_SYMBOL(spa_l2cache_add);
11260 EXPORT_SYMBOL(spa_l2cache_remove);
11261 EXPORT_SYMBOL(spa_l2cache_exists);
11262 EXPORT_SYMBOL(spa_l2cache_activate);
11263 EXPORT_SYMBOL(spa_l2cache_drop);
11264
11265 /* scanning */
11266 EXPORT_SYMBOL(spa_scan);
11267 EXPORT_SYMBOL(spa_scan_range);
11268 EXPORT_SYMBOL(spa_scan_stop);
11269
11270 /* spa syncing */
11271 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
11272 EXPORT_SYMBOL(spa_sync_allpools);
11273
11274 /* properties */
11275 EXPORT_SYMBOL(spa_prop_set);
11276 EXPORT_SYMBOL(spa_prop_get);
11277 EXPORT_SYMBOL(spa_prop_clear_bootfs);
11278
11279 /* asynchronous event notification */
11280 EXPORT_SYMBOL(spa_event_notify);
11281
11282 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
11283 "Percentage of CPUs to run a metaslab preload taskq");
11284
11285 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
11286 "log2 fraction of arc that can be used by inflight I/Os when "
11287 "verifying pool during import");
11288
11289 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
11290 "Set to traverse metadata on pool import");
11291
11292 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
11293 "Set to traverse data on pool import");
11294
11295 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
11296 "Print vdev tree to zfs_dbgmsg during pool import");
11297
11298 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RW,
11299 "Percentage of CPUs to run an IO worker thread");
11300
11301 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RW,
11302 "Number of threads per IO worker taskqueue");
11303
11304 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
11305 "Allow importing pool with up to this number of missing top-level "
11306 "vdevs (in read-only mode)");
11307
11308 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
11309 ZMOD_RW, "Set the livelist condense zthr to pause");
11310
11311 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
11312 ZMOD_RW, "Set the livelist condense synctask to pause");
11313
11314 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
11315 INT, ZMOD_RW,
11316 "Whether livelist condensing was canceled in the synctask");
11317
11318 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
11319 INT, ZMOD_RW,
11320 "Whether livelist condensing was canceled in the zthr function");
11321
11322 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
11323 ZMOD_RW,
11324 "Whether extra ALLOC blkptrs were added to a livelist entry while it "
11325 "was being condensed");
11326
11327 ZFS_MODULE_PARAM(zfs_spa, spa_, note_txg_time, UINT, ZMOD_RW,
11328 "How frequently TXG timestamps are stored internally (in seconds)");
11329
11330 ZFS_MODULE_PARAM(zfs_spa, spa_, flush_txg_time, UINT, ZMOD_RW,
11331 "How frequently the TXG timestamps database should be flushed "
11332 "to disk (in seconds)");
11333
11334 #ifdef _KERNEL
11335 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read,
11336 spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RW,
11337 "Configure IO queues for read IO");
11338 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write,
11339 spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RW,
11340 "Configure IO queues for write IO");
11341 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_free,
11342 spa_taskq_free_param_set, spa_taskq_free_param_get, ZMOD_RW,
11343 "Configure IO queues for free IO");
11344 #endif
11345
11346 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_write_tpq, UINT, ZMOD_RW,
11347 "Number of CPUs per write issue taskq");
11348