1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
26 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/zap.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/txg.h>
39 #include <sys/avl.h>
40 #include <sys/bpobj.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_synctask.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/arc.h>
45 #include <sys/zfeature.h>
46 #include <sys/vdev_indirect_births.h>
47 #include <sys/vdev_indirect_mapping.h>
48 #include <sys/abd.h>
49 #include <sys/vdev_initialize.h>
50 #include <sys/vdev_trim.h>
51 #include <sys/trace_zfs.h>
52
53 /*
54 * This file contains the necessary logic to remove vdevs from a
55 * storage pool. Currently, the only devices that can be removed
56 * are log, cache, and spare devices; and top level vdevs from a pool
57 * w/o raidz or mirrors. (Note that members of a mirror can be removed
58 * by the detach operation.)
59 *
60 * Log vdevs are removed by evacuating them and then turning the vdev
61 * into a hole vdev while holding spa config locks.
62 *
63 * Top level vdevs are removed and converted into an indirect vdev via
64 * a multi-step process:
65 *
66 * - Disable allocations from this device (spa_vdev_remove_top).
67 *
68 * - From a new thread (spa_vdev_remove_thread), copy data from
69 * the removing vdev to a different vdev. The copy happens in open
70 * context (spa_vdev_copy_impl) and issues a sync task
71 * (vdev_mapping_sync) so the sync thread can update the partial
72 * indirect mappings in core and on disk.
73 *
74 * - If a free happens during a removal, it is freed from the
75 * removing vdev, and if it has already been copied, from the new
76 * location as well (free_from_removing_vdev).
77 *
78 * - After the removal is completed, the copy thread converts the vdev
79 * into an indirect vdev (vdev_remove_complete) before instructing
80 * the sync thread to destroy the space maps and finish the removal
81 * (spa_finish_removal).
82 */
83
84 typedef struct vdev_copy_arg {
85 metaslab_t *vca_msp;
86 uint64_t vca_outstanding_bytes;
87 uint64_t vca_read_error_bytes;
88 uint64_t vca_write_error_bytes;
89 kcondvar_t vca_cv;
90 kmutex_t vca_lock;
91 } vdev_copy_arg_t;
92
93 /*
94 * The maximum amount of memory we can use for outstanding i/o while
95 * doing a device removal. This determines how much i/o we can have
96 * in flight concurrently.
97 */
98 static const uint_t zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
99
100 /*
101 * The largest contiguous segment that we will attempt to allocate when
102 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If
103 * there is a performance problem with attempting to allocate large blocks,
104 * consider decreasing this.
105 *
106 * See also the accessor function spa_remove_max_segment().
107 */
108 uint_t zfs_remove_max_segment = SPA_MAXBLOCKSIZE;
109
110 /*
111 * Ignore hard IO errors during device removal. When set if a device
112 * encounters hard IO error during the removal process the removal will
113 * not be cancelled. This can result in a normally recoverable block
114 * becoming permanently damaged and is not recommended.
115 */
116 static int zfs_removal_ignore_errors = 0;
117
118 /*
119 * Allow a remap segment to span free chunks of at most this size. The main
120 * impact of a larger span is that we will read and write larger, more
121 * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
122 * for iops. The value here was chosen to align with
123 * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
124 * reads (but there's no reason it has to be the same).
125 *
126 * Additionally, a higher span will have the following relatively minor
127 * effects:
128 * - the mapping will be smaller, since one entry can cover more allocated
129 * segments
130 * - more of the fragmentation in the removing device will be preserved
131 * - we'll do larger allocations, which may fail and fall back on smaller
132 * allocations
133 */
134 uint_t vdev_removal_max_span = 32 * 1024;
135
136 /*
137 * This is used by the test suite so that it can ensure that certain
138 * actions happen while in the middle of a removal.
139 */
140 int zfs_removal_suspend_progress = 0;
141
142 #define VDEV_REMOVAL_ZAP_OBJS "lzap"
143
144 static __attribute__((noreturn)) void spa_vdev_remove_thread(void *arg);
145 static int spa_vdev_remove_cancel_impl(spa_t *spa);
146
147 static void
spa_sync_removing_state(spa_t * spa,dmu_tx_t * tx)148 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
149 {
150 VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
151 DMU_POOL_DIRECTORY_OBJECT,
152 DMU_POOL_REMOVING, sizeof (uint64_t),
153 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
154 &spa->spa_removing_phys, tx));
155 }
156
157 static nvlist_t *
spa_nvlist_lookup_by_guid(nvlist_t ** nvpp,int count,uint64_t target_guid)158 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
159 {
160 for (int i = 0; i < count; i++) {
161 uint64_t guid =
162 fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
163
164 if (guid == target_guid)
165 return (nvpp[i]);
166 }
167
168 return (NULL);
169 }
170
171 static void
vdev_activate(vdev_t * vd)172 vdev_activate(vdev_t *vd)
173 {
174 metaslab_group_t *mg = vd->vdev_mg;
175
176 ASSERT(!vd->vdev_islog);
177 ASSERT(vd->vdev_noalloc);
178
179 metaslab_group_activate(mg);
180 metaslab_group_activate(vd->vdev_log_mg);
181
182 vdev_update_nonallocating_space(vd, B_FALSE);
183
184 vd->vdev_noalloc = B_FALSE;
185 }
186
187 static int
vdev_passivate(vdev_t * vd,uint64_t * txg)188 vdev_passivate(vdev_t *vd, uint64_t *txg)
189 {
190 spa_t *spa = vd->vdev_spa;
191 int error;
192
193 ASSERT(!vd->vdev_noalloc);
194
195 vdev_t *rvd = spa->spa_root_vdev;
196 metaslab_group_t *mg = vd->vdev_mg;
197 metaslab_class_t *normal = spa_normal_class(spa);
198 if (mg->mg_class == normal) {
199 /*
200 * We must check that this is not the only allocating device in
201 * the pool before passivating, otherwise we will not be able
202 * to make progress because we can't allocate from any vdevs.
203 */
204 boolean_t last = B_TRUE;
205 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
206 vdev_t *cvd = rvd->vdev_child[id];
207
208 if (cvd == vd || !vdev_is_concrete(cvd) ||
209 vdev_is_dead(cvd))
210 continue;
211
212 metaslab_class_t *mc = cvd->vdev_mg->mg_class;
213 if (mc != normal)
214 continue;
215
216 if (!cvd->vdev_noalloc) {
217 last = B_FALSE;
218 break;
219 }
220 }
221 if (last)
222 return (SET_ERROR(EINVAL));
223 }
224
225 metaslab_group_passivate(mg);
226 ASSERT(!vd->vdev_islog);
227 metaslab_group_passivate(vd->vdev_log_mg);
228
229 /*
230 * Wait for the youngest allocations and frees to sync,
231 * and then wait for the deferral of those frees to finish.
232 */
233 spa_vdev_config_exit(spa, NULL,
234 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
235
236 /*
237 * We must ensure that no "stubby" log blocks are allocated
238 * on the device to be removed. These blocks could be
239 * written at any time, including while we are in the middle
240 * of copying them.
241 */
242 error = spa_reset_logs(spa);
243
244 *txg = spa_vdev_config_enter(spa);
245
246 if (error != 0) {
247 metaslab_group_activate(mg);
248 ASSERT(!vd->vdev_islog);
249 if (vd->vdev_log_mg != NULL)
250 metaslab_group_activate(vd->vdev_log_mg);
251 return (error);
252 }
253
254 vdev_update_nonallocating_space(vd, B_TRUE);
255 vd->vdev_noalloc = B_TRUE;
256
257 return (0);
258 }
259
260 /*
261 * Turn off allocations for a top-level device from the pool.
262 *
263 * Turning off allocations for a top-level device can take a significant
264 * amount of time. As a result we use the spa_vdev_config_[enter/exit]
265 * functions which allow us to grab and release the spa_config_lock while
266 * still holding the namespace lock. During each step the configuration
267 * is synced out.
268 */
269 int
spa_vdev_noalloc(spa_t * spa,uint64_t guid)270 spa_vdev_noalloc(spa_t *spa, uint64_t guid)
271 {
272 vdev_t *vd;
273 uint64_t txg;
274 int error = 0;
275
276 ASSERT(!MUTEX_HELD(&spa_namespace_lock));
277 ASSERT(spa_writeable(spa));
278
279 txg = spa_vdev_enter(spa);
280
281 ASSERT(MUTEX_HELD(&spa_namespace_lock));
282
283 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
284
285 if (vd == NULL)
286 error = SET_ERROR(ENOENT);
287 else if (vd->vdev_mg == NULL)
288 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
289 else if (!vd->vdev_noalloc)
290 error = vdev_passivate(vd, &txg);
291
292 if (error == 0) {
293 vdev_dirty_leaves(vd, VDD_DTL, txg);
294 vdev_config_dirty(vd);
295 }
296
297 error = spa_vdev_exit(spa, NULL, txg, error);
298
299 return (error);
300 }
301
302 int
spa_vdev_alloc(spa_t * spa,uint64_t guid)303 spa_vdev_alloc(spa_t *spa, uint64_t guid)
304 {
305 vdev_t *vd;
306 uint64_t txg;
307 int error = 0;
308
309 ASSERT(!MUTEX_HELD(&spa_namespace_lock));
310 ASSERT(spa_writeable(spa));
311
312 txg = spa_vdev_enter(spa);
313
314 ASSERT(MUTEX_HELD(&spa_namespace_lock));
315
316 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
317
318 if (vd == NULL)
319 error = SET_ERROR(ENOENT);
320 else if (vd->vdev_mg == NULL)
321 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
322 else if (!vd->vdev_removing)
323 vdev_activate(vd);
324
325 if (error == 0) {
326 vdev_dirty_leaves(vd, VDD_DTL, txg);
327 vdev_config_dirty(vd);
328 }
329
330 (void) spa_vdev_exit(spa, NULL, txg, error);
331
332 return (error);
333 }
334
335 static void
spa_vdev_remove_aux(nvlist_t * config,const char * name,nvlist_t ** dev,int count,nvlist_t * dev_to_remove)336 spa_vdev_remove_aux(nvlist_t *config, const char *name, nvlist_t **dev,
337 int count, nvlist_t *dev_to_remove)
338 {
339 nvlist_t **newdev = NULL;
340
341 if (count > 1)
342 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
343
344 for (int i = 0, j = 0; i < count; i++) {
345 if (dev[i] == dev_to_remove)
346 continue;
347 VERIFY0(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP));
348 }
349
350 VERIFY0(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY));
351 fnvlist_add_nvlist_array(config, name, (const nvlist_t * const *)newdev,
352 count - 1);
353
354 for (int i = 0; i < count - 1; i++)
355 nvlist_free(newdev[i]);
356
357 if (count > 1)
358 kmem_free(newdev, (count - 1) * sizeof (void *));
359 }
360
361 static spa_vdev_removal_t *
spa_vdev_removal_create(vdev_t * vd)362 spa_vdev_removal_create(vdev_t *vd)
363 {
364 spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
365 mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
366 cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
367 svr->svr_allocd_segs = zfs_range_tree_create_flags(
368 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
369 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "svr_allocd_segs"));
370 svr->svr_vdev_id = vd->vdev_id;
371
372 for (int i = 0; i < TXG_SIZE; i++) {
373 svr->svr_frees[i] = zfs_range_tree_create_flags(
374 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
375 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "svr_frees"));
376 list_create(&svr->svr_new_segments[i],
377 sizeof (vdev_indirect_mapping_entry_t),
378 offsetof(vdev_indirect_mapping_entry_t, vime_node));
379 }
380
381 return (svr);
382 }
383
384 void
spa_vdev_removal_destroy(spa_vdev_removal_t * svr)385 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
386 {
387 for (int i = 0; i < TXG_SIZE; i++) {
388 ASSERT0(svr->svr_bytes_done[i]);
389 ASSERT0(svr->svr_max_offset_to_sync[i]);
390 zfs_range_tree_destroy(svr->svr_frees[i]);
391 list_destroy(&svr->svr_new_segments[i]);
392 }
393
394 zfs_range_tree_destroy(svr->svr_allocd_segs);
395 mutex_destroy(&svr->svr_lock);
396 cv_destroy(&svr->svr_cv);
397 kmem_free(svr, sizeof (*svr));
398 }
399
400 /*
401 * This is called as a synctask in the txg in which we will mark this vdev
402 * as removing (in the config stored in the MOS).
403 *
404 * It begins the evacuation of a toplevel vdev by:
405 * - initializing the spa_removing_phys which tracks this removal
406 * - computing the amount of space to remove for accounting purposes
407 * - dirtying all dbufs in the spa_config_object
408 * - creating the spa_vdev_removal
409 * - starting the spa_vdev_remove_thread
410 */
411 static void
vdev_remove_initiate_sync(void * arg,dmu_tx_t * tx)412 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
413 {
414 int vdev_id = (uintptr_t)arg;
415 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
416 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
417 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
418 objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
419 spa_vdev_removal_t *svr = NULL;
420 uint64_t txg __maybe_unused = dmu_tx_get_txg(tx);
421
422 ASSERT0(vdev_get_nparity(vd));
423 svr = spa_vdev_removal_create(vd);
424
425 ASSERT(vd->vdev_removing);
426 ASSERT0P(vd->vdev_indirect_mapping);
427
428 spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
429 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
430 /*
431 * By activating the OBSOLETE_COUNTS feature, we prevent
432 * the pool from being downgraded and ensure that the
433 * refcounts are precise.
434 */
435 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
436 uint64_t one = 1;
437 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
438 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
439 &one, tx));
440 boolean_t are_precise __maybe_unused;
441 ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise));
442 ASSERT3B(are_precise, ==, B_TRUE);
443 }
444
445 vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
446 vd->vdev_indirect_mapping =
447 vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
448 vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
449 vd->vdev_indirect_births =
450 vdev_indirect_births_open(mos, vic->vic_births_object);
451 spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
452 spa->spa_removing_phys.sr_start_time = gethrestime_sec();
453 spa->spa_removing_phys.sr_end_time = 0;
454 spa->spa_removing_phys.sr_state = DSS_SCANNING;
455 spa->spa_removing_phys.sr_to_copy = 0;
456 spa->spa_removing_phys.sr_copied = 0;
457
458 /*
459 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
460 * there may be space in the defer tree, which is free, but still
461 * counted in vs_alloc.
462 */
463 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
464 metaslab_t *ms = vd->vdev_ms[i];
465 if (ms->ms_sm == NULL)
466 continue;
467
468 spa->spa_removing_phys.sr_to_copy +=
469 metaslab_allocated_space(ms);
470
471 /*
472 * Space which we are freeing this txg does not need to
473 * be copied.
474 */
475 spa->spa_removing_phys.sr_to_copy -=
476 zfs_range_tree_space(ms->ms_freeing);
477
478 ASSERT0(zfs_range_tree_space(ms->ms_freed));
479 for (int t = 0; t < TXG_SIZE; t++)
480 ASSERT0(zfs_range_tree_space(ms->ms_allocating[t]));
481 }
482
483 /*
484 * Sync tasks are called before metaslab_sync(), so there should
485 * be no already-synced metaslabs in the TXG_CLEAN list.
486 */
487 ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
488
489 spa_sync_removing_state(spa, tx);
490
491 /*
492 * All blocks that we need to read the most recent mapping must be
493 * stored on concrete vdevs. Therefore, we must dirty anything that
494 * is read before spa_remove_init(). Specifically, the
495 * spa_config_object. (Note that although we already modified the
496 * spa_config_object in spa_sync_removing_state, that may not have
497 * modified all blocks of the object.)
498 */
499 dmu_object_info_t doi;
500 VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
501 for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
502 dmu_buf_t *dbuf;
503 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
504 offset, FTAG, &dbuf, 0));
505 dmu_buf_will_dirty(dbuf, tx);
506 offset += dbuf->db_size;
507 dmu_buf_rele(dbuf, FTAG);
508 }
509
510 /*
511 * Now that we've allocated the im_object, dirty the vdev to ensure
512 * that the object gets written to the config on disk.
513 */
514 vdev_config_dirty(vd);
515
516 zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu "
517 "im_obj=%llu", (u_longlong_t)vd->vdev_id, vd,
518 (u_longlong_t)dmu_tx_get_txg(tx),
519 (u_longlong_t)vic->vic_mapping_object);
520
521 spa_history_log_internal(spa, "vdev remove started", tx,
522 "%s vdev %llu %s", spa_name(spa), (u_longlong_t)vd->vdev_id,
523 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
524 /*
525 * Setting spa_vdev_removal causes subsequent frees to call
526 * free_from_removing_vdev(). Note that we don't need any locking
527 * because we are the sync thread, and metaslab_free_impl() is only
528 * called from syncing context (potentially from a zio taskq thread,
529 * but in any case only when there are outstanding free i/os, which
530 * there are not).
531 */
532 ASSERT0P(spa->spa_vdev_removal);
533 spa->spa_vdev_removal = svr;
534 svr->svr_thread = thread_create(NULL, 0,
535 spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
536 }
537
538 /*
539 * When we are opening a pool, we must read the mapping for each
540 * indirect vdev in order from most recently removed to least
541 * recently removed. We do this because the blocks for the mapping
542 * of older indirect vdevs may be stored on more recently removed vdevs.
543 * In order to read each indirect mapping object, we must have
544 * initialized all more recently removed vdevs.
545 */
546 int
spa_remove_init(spa_t * spa)547 spa_remove_init(spa_t *spa)
548 {
549 int error;
550
551 error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
552 DMU_POOL_DIRECTORY_OBJECT,
553 DMU_POOL_REMOVING, sizeof (uint64_t),
554 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
555 &spa->spa_removing_phys);
556
557 if (error == ENOENT) {
558 spa->spa_removing_phys.sr_state = DSS_NONE;
559 spa->spa_removing_phys.sr_removing_vdev = -1;
560 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
561 spa->spa_indirect_vdevs_loaded = B_TRUE;
562 return (0);
563 } else if (error != 0) {
564 return (error);
565 }
566
567 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
568 /*
569 * We are currently removing a vdev. Create and
570 * initialize a spa_vdev_removal_t from the bonus
571 * buffer of the removing vdevs vdev_im_object, and
572 * initialize its partial mapping.
573 */
574 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
575 vdev_t *vd = vdev_lookup_top(spa,
576 spa->spa_removing_phys.sr_removing_vdev);
577
578 if (vd == NULL) {
579 spa_config_exit(spa, SCL_STATE, FTAG);
580 return (EINVAL);
581 }
582
583 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
584
585 ASSERT(vdev_is_concrete(vd));
586 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
587 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
588 ASSERT(vd->vdev_removing);
589
590 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
591 spa->spa_meta_objset, vic->vic_mapping_object);
592 vd->vdev_indirect_births = vdev_indirect_births_open(
593 spa->spa_meta_objset, vic->vic_births_object);
594 spa_config_exit(spa, SCL_STATE, FTAG);
595
596 spa->spa_vdev_removal = svr;
597 }
598
599 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
600 uint64_t indirect_vdev_id =
601 spa->spa_removing_phys.sr_prev_indirect_vdev;
602 while (indirect_vdev_id != UINT64_MAX) {
603 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
604 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
605
606 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
607 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
608 spa->spa_meta_objset, vic->vic_mapping_object);
609 vd->vdev_indirect_births = vdev_indirect_births_open(
610 spa->spa_meta_objset, vic->vic_births_object);
611
612 indirect_vdev_id = vic->vic_prev_indirect_vdev;
613 }
614 spa_config_exit(spa, SCL_STATE, FTAG);
615
616 /*
617 * Now that we've loaded all the indirect mappings, we can allow
618 * reads from other blocks (e.g. via predictive prefetch).
619 */
620 spa->spa_indirect_vdevs_loaded = B_TRUE;
621 return (0);
622 }
623
624 void
spa_restart_removal(spa_t * spa)625 spa_restart_removal(spa_t *spa)
626 {
627 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
628
629 if (svr == NULL)
630 return;
631
632 /*
633 * In general when this function is called there is no
634 * removal thread running. The only scenario where this
635 * is not true is during spa_import() where this function
636 * is called twice [once from spa_import_impl() and
637 * spa_async_resume()]. Thus, in the scenario where we
638 * import a pool that has an ongoing removal we don't
639 * want to spawn a second thread.
640 */
641 if (svr->svr_thread != NULL)
642 return;
643
644 if (!spa_writeable(spa))
645 return;
646
647 zfs_dbgmsg("restarting removal of %llu",
648 (u_longlong_t)svr->svr_vdev_id);
649 svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
650 0, &p0, TS_RUN, minclsyspri);
651 }
652
653 /*
654 * Process freeing from a device which is in the middle of being removed.
655 * We must handle this carefully so that we attempt to copy freed data,
656 * and we correctly free already-copied data.
657 */
658 void
free_from_removing_vdev(vdev_t * vd,uint64_t offset,uint64_t size)659 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
660 {
661 spa_t *spa = vd->vdev_spa;
662 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
663 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
664 uint64_t txg = spa_syncing_txg(spa);
665 uint64_t max_offset_yet = 0;
666
667 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
668 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
669 vdev_indirect_mapping_object(vim));
670 ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
671
672 mutex_enter(&svr->svr_lock);
673
674 /*
675 * Remove the segment from the removing vdev's spacemap. This
676 * ensures that we will not attempt to copy this space (if the
677 * removal thread has not yet visited it), and also ensures
678 * that we know what is actually allocated on the new vdevs
679 * (needed if we cancel the removal).
680 *
681 * Note: we must do the metaslab_free_concrete() with the svr_lock
682 * held, so that the remove_thread can not load this metaslab and then
683 * visit this offset between the time that we metaslab_free_concrete()
684 * and when we check to see if it has been visited.
685 *
686 * Note: The checkpoint flag is set to false as having/taking
687 * a checkpoint and removing a device can't happen at the same
688 * time.
689 */
690 ASSERT(!spa_has_checkpoint(spa));
691 metaslab_free_concrete(vd, offset, size, B_FALSE);
692
693 uint64_t synced_size = 0;
694 uint64_t synced_offset = 0;
695 uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
696 if (offset < max_offset_synced) {
697 /*
698 * The mapping for this offset is already on disk.
699 * Free from the new location.
700 *
701 * Note that we use svr_max_synced_offset because it is
702 * updated atomically with respect to the in-core mapping.
703 * By contrast, vim_max_offset is not.
704 *
705 * This block may be split between a synced entry and an
706 * in-flight or unvisited entry. Only process the synced
707 * portion of it here.
708 */
709 synced_size = MIN(size, max_offset_synced - offset);
710 synced_offset = offset;
711
712 ASSERT3U(max_offset_yet, <=, max_offset_synced);
713 max_offset_yet = max_offset_synced;
714
715 DTRACE_PROBE3(remove__free__synced,
716 spa_t *, spa,
717 uint64_t, offset,
718 uint64_t, synced_size);
719
720 size -= synced_size;
721 offset += synced_size;
722 }
723
724 /*
725 * Look at all in-flight txgs starting from the currently syncing one
726 * and see if a section of this free is being copied. By starting from
727 * this txg and iterating forward, we might find that this region
728 * was copied in two different txgs and handle it appropriately.
729 */
730 for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
731 int txgoff = (txg + i) & TXG_MASK;
732 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
733 /*
734 * The mapping for this offset is in flight, and
735 * will be synced in txg+i.
736 */
737 uint64_t inflight_size = MIN(size,
738 svr->svr_max_offset_to_sync[txgoff] - offset);
739
740 DTRACE_PROBE4(remove__free__inflight,
741 spa_t *, spa,
742 uint64_t, offset,
743 uint64_t, inflight_size,
744 uint64_t, txg + i);
745
746 /*
747 * We copy data in order of increasing offset.
748 * Therefore the max_offset_to_sync[] must increase
749 * (or be zero, indicating that nothing is being
750 * copied in that txg).
751 */
752 if (svr->svr_max_offset_to_sync[txgoff] != 0) {
753 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
754 >=, max_offset_yet);
755 max_offset_yet =
756 svr->svr_max_offset_to_sync[txgoff];
757 }
758
759 /*
760 * We've already committed to copying this segment:
761 * we have allocated space elsewhere in the pool for
762 * it and have an IO outstanding to copy the data. We
763 * cannot free the space before the copy has
764 * completed, or else the copy IO might overwrite any
765 * new data. To free that space, we record the
766 * segment in the appropriate svr_frees tree and free
767 * the mapped space later, in the txg where we have
768 * completed the copy and synced the mapping (see
769 * vdev_mapping_sync).
770 */
771 zfs_range_tree_add(svr->svr_frees[txgoff],
772 offset, inflight_size);
773 size -= inflight_size;
774 offset += inflight_size;
775
776 /*
777 * This space is already accounted for as being
778 * done, because it is being copied in txg+i.
779 * However, if i!=0, then it is being copied in
780 * a future txg. If we crash after this txg
781 * syncs but before txg+i syncs, then the space
782 * will be free. Therefore we must account
783 * for the space being done in *this* txg
784 * (when it is freed) rather than the future txg
785 * (when it will be copied).
786 */
787 ASSERT3U(svr->svr_bytes_done[txgoff], >=,
788 inflight_size);
789 svr->svr_bytes_done[txgoff] -= inflight_size;
790 svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
791 }
792 }
793 ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
794
795 if (size > 0) {
796 /*
797 * The copy thread has not yet visited this offset. Ensure
798 * that it doesn't.
799 */
800
801 DTRACE_PROBE3(remove__free__unvisited,
802 spa_t *, spa,
803 uint64_t, offset,
804 uint64_t, size);
805
806 if (svr->svr_allocd_segs != NULL)
807 zfs_range_tree_clear(svr->svr_allocd_segs, offset,
808 size);
809
810 /*
811 * Since we now do not need to copy this data, for
812 * accounting purposes we have done our job and can count
813 * it as completed.
814 */
815 svr->svr_bytes_done[txg & TXG_MASK] += size;
816 }
817 mutex_exit(&svr->svr_lock);
818
819 /*
820 * Now that we have dropped svr_lock, process the synced portion
821 * of this free.
822 */
823 if (synced_size > 0) {
824 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
825
826 /*
827 * Note: this can only be called from syncing context,
828 * and the vdev_indirect_mapping is only changed from the
829 * sync thread, so we don't need svr_lock while doing
830 * metaslab_free_impl_cb.
831 */
832 boolean_t checkpoint = B_FALSE;
833 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
834 metaslab_free_impl_cb, &checkpoint);
835 }
836 }
837
838 /*
839 * Stop an active removal and update the spa_removing phys.
840 */
841 static void
spa_finish_removal(spa_t * spa,dsl_scan_state_t state,dmu_tx_t * tx)842 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
843 {
844 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
845 ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
846
847 /* Ensure the removal thread has completed before we free the svr. */
848 spa_vdev_remove_suspend(spa);
849
850 ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
851
852 if (state == DSS_FINISHED) {
853 spa_removing_phys_t *srp = &spa->spa_removing_phys;
854 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
855 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
856
857 if (srp->sr_prev_indirect_vdev != -1) {
858 vdev_t *pvd;
859 pvd = vdev_lookup_top(spa,
860 srp->sr_prev_indirect_vdev);
861 ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
862 }
863
864 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
865 srp->sr_prev_indirect_vdev = vd->vdev_id;
866 }
867 spa->spa_removing_phys.sr_state = state;
868 spa->spa_removing_phys.sr_end_time = gethrestime_sec();
869
870 spa->spa_vdev_removal = NULL;
871 spa_vdev_removal_destroy(svr);
872
873 spa_sync_removing_state(spa, tx);
874 spa_notify_waiters(spa);
875
876 vdev_config_dirty(spa->spa_root_vdev);
877 }
878
879 static void
free_mapped_segment_cb(void * arg,uint64_t offset,uint64_t size)880 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
881 {
882 vdev_t *vd = arg;
883 vdev_indirect_mark_obsolete(vd, offset, size);
884 boolean_t checkpoint = B_FALSE;
885 vdev_indirect_ops.vdev_op_remap(vd, offset, size,
886 metaslab_free_impl_cb, &checkpoint);
887 }
888
889 /*
890 * On behalf of the removal thread, syncs an incremental bit more of
891 * the indirect mapping to disk and updates the in-memory mapping.
892 * Called as a sync task in every txg that the removal thread makes progress.
893 */
894 static void
vdev_mapping_sync(void * arg,dmu_tx_t * tx)895 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
896 {
897 spa_vdev_removal_t *svr = arg;
898 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
899 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
900 vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config;
901 uint64_t txg = dmu_tx_get_txg(tx);
902 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
903
904 ASSERT(vic->vic_mapping_object != 0);
905 ASSERT3U(txg, ==, spa_syncing_txg(spa));
906
907 vdev_indirect_mapping_add_entries(vim,
908 &svr->svr_new_segments[txg & TXG_MASK], tx);
909 vdev_indirect_births_add_entry(vd->vdev_indirect_births,
910 vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
911
912 /*
913 * Free the copied data for anything that was freed while the
914 * mapping entries were in flight.
915 */
916 mutex_enter(&svr->svr_lock);
917 zfs_range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
918 free_mapped_segment_cb, vd);
919 ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
920 vdev_indirect_mapping_max_offset(vim));
921 svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
922 mutex_exit(&svr->svr_lock);
923
924 spa_sync_removing_state(spa, tx);
925 }
926
927 typedef struct vdev_copy_segment_arg {
928 spa_t *vcsa_spa;
929 dva_t *vcsa_dest_dva;
930 uint64_t vcsa_txg;
931 zfs_range_tree_t *vcsa_obsolete_segs;
932 } vdev_copy_segment_arg_t;
933
934 static void
unalloc_seg(void * arg,uint64_t start,uint64_t size)935 unalloc_seg(void *arg, uint64_t start, uint64_t size)
936 {
937 vdev_copy_segment_arg_t *vcsa = arg;
938 spa_t *spa = vcsa->vcsa_spa;
939 blkptr_t bp = { { { {0} } } };
940
941 BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
942 BP_SET_LSIZE(&bp, size);
943 BP_SET_PSIZE(&bp, size);
944 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
945 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
946 BP_SET_TYPE(&bp, DMU_OT_NONE);
947 BP_SET_LEVEL(&bp, 0);
948 BP_SET_DEDUP(&bp, 0);
949 BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
950
951 DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
952 DVA_SET_OFFSET(&bp.blk_dva[0],
953 DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
954 DVA_SET_ASIZE(&bp.blk_dva[0], size);
955
956 zio_free(spa, vcsa->vcsa_txg, &bp);
957 }
958
959 /*
960 * All reads and writes associated with a call to spa_vdev_copy_segment()
961 * are done.
962 */
963 static void
spa_vdev_copy_segment_done(zio_t * zio)964 spa_vdev_copy_segment_done(zio_t *zio)
965 {
966 vdev_copy_segment_arg_t *vcsa = zio->io_private;
967
968 zfs_range_tree_vacate(vcsa->vcsa_obsolete_segs,
969 unalloc_seg, vcsa);
970 zfs_range_tree_destroy(vcsa->vcsa_obsolete_segs);
971 kmem_free(vcsa, sizeof (*vcsa));
972
973 spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
974 }
975
976 /*
977 * The write of the new location is done.
978 */
979 static void
spa_vdev_copy_segment_write_done(zio_t * zio)980 spa_vdev_copy_segment_write_done(zio_t *zio)
981 {
982 vdev_copy_arg_t *vca = zio->io_private;
983
984 abd_free(zio->io_abd);
985
986 mutex_enter(&vca->vca_lock);
987 vca->vca_outstanding_bytes -= zio->io_size;
988
989 if (zio->io_error != 0)
990 vca->vca_write_error_bytes += zio->io_size;
991
992 cv_signal(&vca->vca_cv);
993 mutex_exit(&vca->vca_lock);
994 }
995
996 /*
997 * The read of the old location is done. The parent zio is the write to
998 * the new location. Allow it to start.
999 */
1000 static void
spa_vdev_copy_segment_read_done(zio_t * zio)1001 spa_vdev_copy_segment_read_done(zio_t *zio)
1002 {
1003 vdev_copy_arg_t *vca = zio->io_private;
1004
1005 if (zio->io_error != 0) {
1006 mutex_enter(&vca->vca_lock);
1007 vca->vca_read_error_bytes += zio->io_size;
1008 mutex_exit(&vca->vca_lock);
1009 }
1010
1011 zio_nowait(zio_unique_parent(zio));
1012 }
1013
1014 /*
1015 * If the old and new vdevs are mirrors, we will read both sides of the old
1016 * mirror, and write each copy to the corresponding side of the new mirror.
1017 * If the old and new vdevs have a different number of children, we will do
1018 * this as best as possible. Since we aren't verifying checksums, this
1019 * ensures that as long as there's a good copy of the data, we'll have a
1020 * good copy after the removal, even if there's silent damage to one side
1021 * of the mirror. If we're removing a mirror that has some silent damage,
1022 * we'll have exactly the same damage in the new location (assuming that
1023 * the new location is also a mirror).
1024 *
1025 * We accomplish this by creating a tree of zio_t's, with as many writes as
1026 * there are "children" of the new vdev (a non-redundant vdev counts as one
1027 * child, a 2-way mirror has 2 children, etc). Each write has an associated
1028 * read from a child of the old vdev. Typically there will be the same
1029 * number of children of the old and new vdevs. However, if there are more
1030 * children of the new vdev, some child(ren) of the old vdev will be issued
1031 * multiple reads. If there are more children of the old vdev, some copies
1032 * will be dropped.
1033 *
1034 * For example, the tree of zio_t's for a 2-way mirror is:
1035 *
1036 * null
1037 * / \
1038 * write(new vdev, child 0) write(new vdev, child 1)
1039 * | |
1040 * read(old vdev, child 0) read(old vdev, child 1)
1041 *
1042 * Child zio's complete before their parents complete. However, zio's
1043 * created with zio_vdev_child_io() may be issued before their children
1044 * complete. In this case we need to make sure that the children (reads)
1045 * complete before the parents (writes) are *issued*. We do this by not
1046 * calling zio_nowait() on each write until its corresponding read has
1047 * completed.
1048 *
1049 * The spa_config_lock must be held while zio's created by
1050 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
1051 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
1052 * zio is needed to release the spa_config_lock after all the reads and
1053 * writes complete. (Note that we can't grab the config lock for each read,
1054 * because it is not reentrant - we could deadlock with a thread waiting
1055 * for a write lock.)
1056 */
1057 static void
spa_vdev_copy_one_child(vdev_copy_arg_t * vca,zio_t * nzio,vdev_t * source_vd,uint64_t source_offset,vdev_t * dest_child_vd,uint64_t dest_offset,int dest_id,uint64_t size)1058 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
1059 vdev_t *source_vd, uint64_t source_offset,
1060 vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
1061 {
1062 ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
1063
1064 /*
1065 * If the destination child in unwritable then there is no point
1066 * in issuing the source reads which cannot be written.
1067 */
1068 if (!vdev_writeable(dest_child_vd))
1069 return;
1070
1071 mutex_enter(&vca->vca_lock);
1072 vca->vca_outstanding_bytes += size;
1073 mutex_exit(&vca->vca_lock);
1074
1075 abd_t *abd = abd_alloc_for_io(size, B_FALSE);
1076
1077 vdev_t *source_child_vd = NULL;
1078 if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
1079 /*
1080 * Source and dest are both mirrors. Copy from the same
1081 * child id as we are copying to (wrapping around if there
1082 * are more dest children than source children). If the
1083 * preferred source child is unreadable select another.
1084 */
1085 for (int i = 0; i < source_vd->vdev_children; i++) {
1086 source_child_vd = source_vd->vdev_child[
1087 (dest_id + i) % source_vd->vdev_children];
1088 if (vdev_readable(source_child_vd))
1089 break;
1090 }
1091 } else {
1092 source_child_vd = source_vd;
1093 }
1094
1095 /*
1096 * There should always be at least one readable source child or
1097 * the pool would be in a suspended state. Somehow selecting an
1098 * unreadable child would result in IO errors, the removal process
1099 * being cancelled, and the pool reverting to its pre-removal state.
1100 */
1101 ASSERT3P(source_child_vd, !=, NULL);
1102
1103 zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
1104 dest_child_vd, dest_offset, abd, size,
1105 ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
1106 ZIO_FLAG_CANFAIL,
1107 spa_vdev_copy_segment_write_done, vca);
1108
1109 zio_nowait(zio_vdev_child_io(write_zio, NULL,
1110 source_child_vd, source_offset, abd, size,
1111 ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
1112 ZIO_FLAG_CANFAIL,
1113 spa_vdev_copy_segment_read_done, vca));
1114 }
1115
1116 /*
1117 * Allocate a new location for this segment, and create the zio_t's to
1118 * read from the old location and write to the new location.
1119 */
1120 static int
spa_vdev_copy_segment(vdev_t * vd,zfs_range_tree_t * segs,uint64_t maxalloc,uint64_t txg,vdev_copy_arg_t * vca,zio_alloc_list_t * zal)1121 spa_vdev_copy_segment(vdev_t *vd, zfs_range_tree_t *segs,
1122 uint64_t maxalloc, uint64_t txg,
1123 vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
1124 {
1125 metaslab_group_t *mg = vd->vdev_mg;
1126 spa_t *spa = vd->vdev_spa;
1127 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1128 vdev_indirect_mapping_entry_t *entry;
1129 dva_t dst = {{ 0 }};
1130 uint64_t start = zfs_range_tree_min(segs);
1131 ASSERT0(P2PHASE(start, 1 << spa->spa_min_ashift));
1132
1133 ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
1134 ASSERT0(P2PHASE(maxalloc, 1 << spa->spa_min_ashift));
1135
1136 uint64_t size = zfs_range_tree_span(segs);
1137 if (zfs_range_tree_span(segs) > maxalloc) {
1138 /*
1139 * We can't allocate all the segments. Prefer to end
1140 * the allocation at the end of a segment, thus avoiding
1141 * additional split blocks.
1142 */
1143 zfs_range_seg_max_t search;
1144 zfs_btree_index_t where;
1145 zfs_rs_set_start(&search, segs, start + maxalloc);
1146 zfs_rs_set_end(&search, segs, start + maxalloc);
1147 (void) zfs_btree_find(&segs->rt_root, &search, &where);
1148 zfs_range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where,
1149 &where);
1150 if (rs != NULL) {
1151 size = zfs_rs_get_end(rs, segs) - start;
1152 } else {
1153 /*
1154 * There are no segments that end before maxalloc.
1155 * I.e. the first segment is larger than maxalloc,
1156 * so we must split it.
1157 */
1158 size = maxalloc;
1159 }
1160 }
1161 ASSERT3U(size, <=, maxalloc);
1162 ASSERT0(P2PHASE(size, 1 << spa->spa_min_ashift));
1163
1164 /*
1165 * An allocation class might not have any remaining vdevs or space
1166 */
1167 metaslab_class_t *mc = mg->mg_class;
1168 if (mc->mc_groups == 0)
1169 mc = spa_normal_class(spa);
1170 int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg,
1171 0, zal, 0);
1172 if (error == ENOSPC && mc != spa_normal_class(spa)) {
1173 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
1174 &dst, 0, NULL, txg, 0, zal, 0);
1175 }
1176 if (error != 0)
1177 return (error);
1178
1179 /*
1180 * Determine the ranges that are not actually needed. Offsets are
1181 * relative to the start of the range to be copied (i.e. relative to the
1182 * local variable "start").
1183 */
1184 zfs_range_tree_t *obsolete_segs = zfs_range_tree_create_flags(
1185 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
1186 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "obsolete_segs"));
1187
1188 zfs_btree_index_t where;
1189 zfs_range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where);
1190 ASSERT3U(zfs_rs_get_start(rs, segs), ==, start);
1191 uint64_t prev_seg_end = zfs_rs_get_end(rs, segs);
1192 while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) {
1193 if (zfs_rs_get_start(rs, segs) >= start + size) {
1194 break;
1195 } else {
1196 zfs_range_tree_add(obsolete_segs,
1197 prev_seg_end - start,
1198 zfs_rs_get_start(rs, segs) - prev_seg_end);
1199 }
1200 prev_seg_end = zfs_rs_get_end(rs, segs);
1201 }
1202 /* We don't end in the middle of an obsolete range */
1203 ASSERT3U(start + size, <=, prev_seg_end);
1204
1205 zfs_range_tree_clear(segs, start, size);
1206
1207 /*
1208 * We can't have any padding of the allocated size, otherwise we will
1209 * misunderstand what's allocated, and the size of the mapping. We
1210 * prevent padding by ensuring that all devices in the pool have the
1211 * same ashift, and the allocation size is a multiple of the ashift.
1212 */
1213 VERIFY3U(DVA_GET_ASIZE(&dst), ==, size);
1214
1215 entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
1216 DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
1217 entry->vime_mapping.vimep_dst = dst;
1218 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1219 entry->vime_obsolete_count =
1220 zfs_range_tree_space(obsolete_segs);
1221 }
1222
1223 vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1224 vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1225 vcsa->vcsa_obsolete_segs = obsolete_segs;
1226 vcsa->vcsa_spa = spa;
1227 vcsa->vcsa_txg = txg;
1228
1229 /*
1230 * See comment before spa_vdev_copy_one_child().
1231 */
1232 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1233 zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1234 spa_vdev_copy_segment_done, vcsa, 0);
1235 vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1236 if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1237 for (int i = 0; i < dest_vd->vdev_children; i++) {
1238 vdev_t *child = dest_vd->vdev_child[i];
1239 spa_vdev_copy_one_child(vca, nzio, vd, start,
1240 child, DVA_GET_OFFSET(&dst), i, size);
1241 }
1242 } else {
1243 spa_vdev_copy_one_child(vca, nzio, vd, start,
1244 dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1245 }
1246 zio_nowait(nzio);
1247
1248 list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1249 ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1250 vdev_dirty(vd, 0, NULL, txg);
1251
1252 return (0);
1253 }
1254
1255 /*
1256 * Complete the removal of a toplevel vdev. This is called as a
1257 * synctask in the same txg that we will sync out the new config (to the
1258 * MOS object) which indicates that this vdev is indirect.
1259 */
1260 static void
vdev_remove_complete_sync(void * arg,dmu_tx_t * tx)1261 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1262 {
1263 spa_vdev_removal_t *svr = arg;
1264 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1265 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1266
1267 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1268
1269 for (int i = 0; i < TXG_SIZE; i++) {
1270 ASSERT0(svr->svr_bytes_done[i]);
1271 }
1272
1273 ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1274 spa->spa_removing_phys.sr_to_copy);
1275
1276 vdev_destroy_spacemaps(vd, tx);
1277
1278 /* destroy leaf zaps, if any */
1279 ASSERT3P(svr->svr_zaplist, !=, NULL);
1280 for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1281 pair != NULL;
1282 pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1283 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1284 }
1285 fnvlist_free(svr->svr_zaplist);
1286
1287 spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1288 /* vd->vdev_path is not available here */
1289 spa_history_log_internal(spa, "vdev remove completed", tx,
1290 "%s vdev %llu", spa_name(spa), (u_longlong_t)vd->vdev_id);
1291 }
1292
1293 static void
vdev_remove_enlist_zaps(vdev_t * vd,nvlist_t * zlist)1294 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1295 {
1296 ASSERT3P(zlist, !=, NULL);
1297 ASSERT0(vdev_get_nparity(vd));
1298
1299 if (vd->vdev_leaf_zap != 0) {
1300 char zkey[32];
1301 (void) snprintf(zkey, sizeof (zkey), "%s-%llu",
1302 VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap);
1303 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1304 }
1305
1306 for (uint64_t id = 0; id < vd->vdev_children; id++) {
1307 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1308 }
1309 }
1310
1311 static void
vdev_remove_replace_with_indirect(vdev_t * vd,uint64_t txg)1312 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1313 {
1314 vdev_t *ivd;
1315 dmu_tx_t *tx;
1316 spa_t *spa = vd->vdev_spa;
1317 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1318
1319 /*
1320 * First, build a list of leaf zaps to be destroyed.
1321 * This is passed to the sync context thread,
1322 * which does the actual unlinking.
1323 */
1324 svr->svr_zaplist = fnvlist_alloc();
1325 vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1326
1327 ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1328 ivd->vdev_removing = 0;
1329
1330 vd->vdev_leaf_zap = 0;
1331
1332 vdev_remove_child(ivd, vd);
1333 vdev_compact_children(ivd);
1334
1335 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1336
1337 mutex_enter(&svr->svr_lock);
1338 svr->svr_thread = NULL;
1339 cv_broadcast(&svr->svr_cv);
1340 mutex_exit(&svr->svr_lock);
1341
1342 /* After this, we can not use svr. */
1343 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1344 dsl_sync_task_nowait(spa->spa_dsl_pool,
1345 vdev_remove_complete_sync, svr, tx);
1346 dmu_tx_commit(tx);
1347 }
1348
1349 /*
1350 * Complete the removal of a toplevel vdev. This is called in open
1351 * context by the removal thread after we have copied all vdev's data.
1352 */
1353 static void
vdev_remove_complete(spa_t * spa)1354 vdev_remove_complete(spa_t *spa)
1355 {
1356 uint64_t txg;
1357
1358 /*
1359 * Wait for any deferred frees to be synced before we call
1360 * vdev_metaslab_fini()
1361 */
1362 txg_wait_synced(spa->spa_dsl_pool, 0);
1363 txg = spa_vdev_enter(spa);
1364 vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1365 ASSERT0P(vd->vdev_initialize_thread);
1366 ASSERT0P(vd->vdev_trim_thread);
1367 ASSERT0P(vd->vdev_autotrim_thread);
1368 vdev_rebuild_stop_wait(vd);
1369 ASSERT0P(vd->vdev_rebuild_thread);
1370
1371 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1372 ESC_ZFS_VDEV_REMOVE_DEV);
1373
1374 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1375 (u_longlong_t)vd->vdev_id, (u_longlong_t)txg);
1376
1377 /* the vdev is no longer part of the dspace */
1378 vdev_update_nonallocating_space(vd, B_FALSE);
1379
1380 /*
1381 * Discard allocation state.
1382 */
1383 if (vd->vdev_mg != NULL) {
1384 vdev_metaslab_fini(vd);
1385 metaslab_group_destroy(vd->vdev_mg);
1386 vd->vdev_mg = NULL;
1387 }
1388 if (vd->vdev_log_mg != NULL) {
1389 ASSERT0(vd->vdev_ms_count);
1390 metaslab_group_destroy(vd->vdev_log_mg);
1391 vd->vdev_log_mg = NULL;
1392 }
1393 ASSERT0(vd->vdev_stat.vs_space);
1394 ASSERT0(vd->vdev_stat.vs_dspace);
1395
1396 vdev_remove_replace_with_indirect(vd, txg);
1397
1398 /*
1399 * We now release the locks, allowing spa_sync to run and finish the
1400 * removal via vdev_remove_complete_sync in syncing context.
1401 *
1402 * Note that we hold on to the vdev_t that has been replaced. Since
1403 * it isn't part of the vdev tree any longer, it can't be concurrently
1404 * manipulated, even while we don't have the config lock.
1405 */
1406 (void) spa_vdev_exit(spa, NULL, txg, 0);
1407
1408 /*
1409 * Top ZAP should have been transferred to the indirect vdev in
1410 * vdev_remove_replace_with_indirect.
1411 */
1412 ASSERT0(vd->vdev_top_zap);
1413
1414 /*
1415 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1416 */
1417 ASSERT0(vd->vdev_leaf_zap);
1418
1419 txg = spa_vdev_enter(spa);
1420 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1421 /*
1422 * Request to update the config and the config cachefile.
1423 */
1424 vdev_config_dirty(spa->spa_root_vdev);
1425 (void) spa_vdev_exit(spa, vd, txg, 0);
1426
1427 if (ev != NULL)
1428 spa_event_post(ev);
1429 }
1430
1431 /*
1432 * Evacuates a segment of size at most max_alloc from the vdev
1433 * via repeated calls to spa_vdev_copy_segment. If an allocation
1434 * fails, the pool is probably too fragmented to handle such a
1435 * large size, so decrease max_alloc so that the caller will not try
1436 * this size again this txg.
1437 */
1438 static void
spa_vdev_copy_impl(vdev_t * vd,spa_vdev_removal_t * svr,vdev_copy_arg_t * vca,uint64_t * max_alloc,dmu_tx_t * tx)1439 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1440 uint64_t *max_alloc, dmu_tx_t *tx)
1441 {
1442 uint64_t txg = dmu_tx_get_txg(tx);
1443 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1444
1445 mutex_enter(&svr->svr_lock);
1446
1447 /*
1448 * Determine how big of a chunk to copy. We can allocate up
1449 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1450 * bytes of unallocated space at a time. "segs" will track the
1451 * allocated segments that we are copying. We may also be copying
1452 * free segments (of up to vdev_removal_max_span bytes).
1453 */
1454 zfs_range_tree_t *segs = zfs_range_tree_create_flags(
1455 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
1456 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "spa_vdev_copy_impl:segs"));
1457 for (;;) {
1458 zfs_range_tree_t *rt = svr->svr_allocd_segs;
1459 zfs_range_seg_t *rs = zfs_range_tree_first(rt);
1460
1461 if (rs == NULL)
1462 break;
1463
1464 uint64_t seg_length;
1465
1466 if (zfs_range_tree_is_empty(segs)) {
1467 /* need to truncate the first seg based on max_alloc */
1468 seg_length = MIN(zfs_rs_get_end(rs, rt) -
1469 zfs_rs_get_start(rs, rt), *max_alloc);
1470 } else {
1471 if (zfs_rs_get_start(rs, rt) - zfs_range_tree_max(segs)
1472 > vdev_removal_max_span) {
1473 /*
1474 * Including this segment would cause us to
1475 * copy a larger unneeded chunk than is allowed.
1476 */
1477 break;
1478 } else if (zfs_rs_get_end(rs, rt) -
1479 zfs_range_tree_min(segs) > *max_alloc) {
1480 /*
1481 * This additional segment would extend past
1482 * max_alloc. Rather than splitting this
1483 * segment, leave it for the next mapping.
1484 */
1485 break;
1486 } else {
1487 seg_length = zfs_rs_get_end(rs, rt) -
1488 zfs_rs_get_start(rs, rt);
1489 }
1490 }
1491
1492 zfs_range_tree_add(segs, zfs_rs_get_start(rs, rt), seg_length);
1493 zfs_range_tree_remove(svr->svr_allocd_segs,
1494 zfs_rs_get_start(rs, rt), seg_length);
1495 }
1496
1497 if (zfs_range_tree_is_empty(segs)) {
1498 mutex_exit(&svr->svr_lock);
1499 zfs_range_tree_destroy(segs);
1500 return;
1501 }
1502
1503 if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1504 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1505 svr, tx);
1506 }
1507
1508 svr->svr_max_offset_to_sync[txg & TXG_MASK] = zfs_range_tree_max(segs);
1509
1510 /*
1511 * Note: this is the amount of *allocated* space
1512 * that we are taking care of each txg.
1513 */
1514 svr->svr_bytes_done[txg & TXG_MASK] += zfs_range_tree_space(segs);
1515
1516 mutex_exit(&svr->svr_lock);
1517
1518 zio_alloc_list_t zal;
1519 metaslab_trace_init(&zal);
1520 uint64_t thismax = SPA_MAXBLOCKSIZE;
1521 while (!zfs_range_tree_is_empty(segs)) {
1522 int error = spa_vdev_copy_segment(vd,
1523 segs, thismax, txg, vca, &zal);
1524
1525 if (error == ENOSPC) {
1526 /*
1527 * Cut our segment in half, and don't try this
1528 * segment size again this txg. Note that the
1529 * allocation size must be aligned to the highest
1530 * ashift in the pool, so that the allocation will
1531 * not be padded out to a multiple of the ashift,
1532 * which could cause us to think that this mapping
1533 * is larger than we intended.
1534 */
1535 ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1536 ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1537 uint64_t attempted =
1538 MIN(zfs_range_tree_span(segs), thismax);
1539 thismax = P2ROUNDUP(attempted / 2,
1540 1 << spa->spa_max_ashift);
1541 /*
1542 * The minimum-size allocation can not fail.
1543 */
1544 ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1545 *max_alloc = attempted - (1 << spa->spa_max_ashift);
1546 } else {
1547 ASSERT0(error);
1548
1549 /*
1550 * We've performed an allocation, so reset the
1551 * alloc trace list.
1552 */
1553 metaslab_trace_fini(&zal);
1554 metaslab_trace_init(&zal);
1555 }
1556 }
1557 metaslab_trace_fini(&zal);
1558 zfs_range_tree_destroy(segs);
1559 }
1560
1561 /*
1562 * The size of each removal mapping is limited by the tunable
1563 * zfs_remove_max_segment, but we must adjust this to be a multiple of the
1564 * pool's ashift, so that we don't try to split individual sectors regardless
1565 * of the tunable value. (Note that device removal requires that all devices
1566 * have the same ashift, so there's no difference between spa_min_ashift and
1567 * spa_max_ashift.) The raw tunable should not be used elsewhere.
1568 */
1569 uint64_t
spa_remove_max_segment(spa_t * spa)1570 spa_remove_max_segment(spa_t *spa)
1571 {
1572 return (P2ROUNDUP(zfs_remove_max_segment, 1 << spa->spa_max_ashift));
1573 }
1574
1575 /*
1576 * The removal thread operates in open context. It iterates over all
1577 * allocated space in the vdev, by loading each metaslab's spacemap.
1578 * For each contiguous segment of allocated space (capping the segment
1579 * size at SPA_MAXBLOCKSIZE), we:
1580 * - Allocate space for it on another vdev.
1581 * - Create a new mapping from the old location to the new location
1582 * (as a record in svr_new_segments).
1583 * - Initiate a physical read zio to get the data off the removing disk.
1584 * - In the read zio's done callback, initiate a physical write zio to
1585 * write it to the new vdev.
1586 * Note that all of this will take effect when a particular TXG syncs.
1587 * The sync thread ensures that all the phys reads and writes for the syncing
1588 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1589 * (see vdev_mapping_sync()).
1590 */
1591 static __attribute__((noreturn)) void
spa_vdev_remove_thread(void * arg)1592 spa_vdev_remove_thread(void *arg)
1593 {
1594 spa_t *spa = arg;
1595 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1596 vdev_copy_arg_t vca;
1597 uint64_t max_alloc = spa_remove_max_segment(spa);
1598 uint64_t last_txg = 0;
1599
1600 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1601 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1602 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1603 uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1604
1605 ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1606 ASSERT(vdev_is_concrete(vd));
1607 ASSERT(vd->vdev_removing);
1608 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1609 ASSERT(vim != NULL);
1610
1611 mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1612 cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1613 vca.vca_outstanding_bytes = 0;
1614 vca.vca_read_error_bytes = 0;
1615 vca.vca_write_error_bytes = 0;
1616
1617 zfs_range_tree_t *segs = zfs_range_tree_create_flags(
1618 NULL, ZFS_RANGE_SEG64, NULL, 0, 0,
1619 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "spa_vdev_remove_thread:segs"));
1620
1621 mutex_enter(&svr->svr_lock);
1622
1623 /*
1624 * Start from vim_max_offset so we pick up where we left off
1625 * if we are restarting the removal after opening the pool.
1626 */
1627 uint64_t msi;
1628 for (msi = start_offset >> vd->vdev_ms_shift;
1629 msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1630 metaslab_t *msp = vd->vdev_ms[msi];
1631 ASSERT3U(msi, <=, vd->vdev_ms_count);
1632
1633 again:
1634 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
1635 mutex_exit(&svr->svr_lock);
1636
1637 mutex_enter(&msp->ms_sync_lock);
1638 mutex_enter(&msp->ms_lock);
1639
1640 /*
1641 * Assert nothing in flight -- ms_*tree is empty.
1642 */
1643 for (int i = 0; i < TXG_SIZE; i++) {
1644 ASSERT0(zfs_range_tree_space(msp->ms_allocating[i]));
1645 }
1646
1647 /*
1648 * If the metaslab has ever been synced (ms_sm != NULL),
1649 * read the allocated segments from the space map object
1650 * into svr_allocd_segs. Since we do this while holding
1651 * ms_lock and ms_sync_lock, concurrent frees (which
1652 * would have modified the space map) will wait for us
1653 * to finish loading the spacemap, and then take the
1654 * appropriate action (see free_from_removing_vdev()).
1655 */
1656 if (msp->ms_sm != NULL)
1657 VERIFY0(space_map_load(msp->ms_sm, segs, SM_ALLOC));
1658
1659 /*
1660 * We could not hold svr_lock while loading space map, or we
1661 * could hit deadlock in a ZIO pipeline, having to wait for
1662 * it. But we can not block for it here under metaslab locks,
1663 * or it would be a lock ordering violation.
1664 */
1665 if (!mutex_tryenter(&svr->svr_lock)) {
1666 mutex_exit(&msp->ms_lock);
1667 mutex_exit(&msp->ms_sync_lock);
1668 zfs_range_tree_vacate(segs, NULL, NULL);
1669 mutex_enter(&svr->svr_lock);
1670 goto again;
1671 }
1672
1673 zfs_range_tree_swap(&segs, &svr->svr_allocd_segs);
1674 zfs_range_tree_walk(msp->ms_unflushed_allocs,
1675 zfs_range_tree_add, svr->svr_allocd_segs);
1676 zfs_range_tree_walk(msp->ms_unflushed_frees,
1677 zfs_range_tree_remove, svr->svr_allocd_segs);
1678 zfs_range_tree_walk(msp->ms_freeing,
1679 zfs_range_tree_remove, svr->svr_allocd_segs);
1680
1681 mutex_exit(&msp->ms_lock);
1682 mutex_exit(&msp->ms_sync_lock);
1683
1684 /*
1685 * When we are resuming from a paused removal (i.e.
1686 * when importing a pool with a removal in progress),
1687 * discard any state that we have already processed.
1688 */
1689 zfs_range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1690
1691 vca.vca_msp = msp;
1692 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1693 (u_longlong_t)zfs_btree_numnodes(
1694 &svr->svr_allocd_segs->rt_root),
1695 (u_longlong_t)msp->ms_id);
1696
1697 while (!svr->svr_thread_exit &&
1698 !zfs_range_tree_is_empty(svr->svr_allocd_segs)) {
1699
1700 mutex_exit(&svr->svr_lock);
1701
1702 /*
1703 * We need to periodically drop the config lock so that
1704 * writers can get in. Additionally, we can't wait
1705 * for a txg to sync while holding a config lock
1706 * (since a waiting writer could cause a 3-way deadlock
1707 * with the sync thread, which also gets a config
1708 * lock for reader). So we can't hold the config lock
1709 * while calling dmu_tx_assign().
1710 */
1711 spa_config_exit(spa, SCL_CONFIG, FTAG);
1712
1713 /*
1714 * This delay will pause the removal around the point
1715 * specified by zfs_removal_suspend_progress. We do this
1716 * solely from the test suite or during debugging.
1717 */
1718 while (zfs_removal_suspend_progress &&
1719 !svr->svr_thread_exit)
1720 delay(hz);
1721
1722 mutex_enter(&vca.vca_lock);
1723 while (vca.vca_outstanding_bytes >
1724 zfs_remove_max_copy_bytes) {
1725 cv_wait(&vca.vca_cv, &vca.vca_lock);
1726 }
1727 mutex_exit(&vca.vca_lock);
1728
1729 dmu_tx_t *tx =
1730 dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1731
1732 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT |
1733 DMU_TX_SUSPEND));
1734 uint64_t txg = dmu_tx_get_txg(tx);
1735
1736 /*
1737 * Reacquire the vdev_config lock. The vdev_t
1738 * that we're removing may have changed, e.g. due
1739 * to a vdev_attach or vdev_detach.
1740 */
1741 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1742 vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1743
1744 if (txg != last_txg)
1745 max_alloc = spa_remove_max_segment(spa);
1746 last_txg = txg;
1747
1748 spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1749
1750 dmu_tx_commit(tx);
1751 mutex_enter(&svr->svr_lock);
1752 }
1753
1754 mutex_enter(&vca.vca_lock);
1755 if (zfs_removal_ignore_errors == 0 &&
1756 (vca.vca_read_error_bytes > 0 ||
1757 vca.vca_write_error_bytes > 0)) {
1758 svr->svr_thread_exit = B_TRUE;
1759 }
1760 mutex_exit(&vca.vca_lock);
1761 }
1762
1763 mutex_exit(&svr->svr_lock);
1764
1765 spa_config_exit(spa, SCL_CONFIG, FTAG);
1766
1767 zfs_range_tree_destroy(segs);
1768
1769 /*
1770 * Wait for all copies to finish before cleaning up the vca.
1771 */
1772 txg_wait_synced(spa->spa_dsl_pool, 0);
1773 ASSERT0(vca.vca_outstanding_bytes);
1774
1775 mutex_destroy(&vca.vca_lock);
1776 cv_destroy(&vca.vca_cv);
1777
1778 if (svr->svr_thread_exit) {
1779 mutex_enter(&svr->svr_lock);
1780 zfs_range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1781 svr->svr_thread = NULL;
1782 cv_broadcast(&svr->svr_cv);
1783 mutex_exit(&svr->svr_lock);
1784
1785 /*
1786 * During the removal process an unrecoverable read or write
1787 * error was encountered. The removal process must be
1788 * cancelled or this damage may become permanent.
1789 */
1790 if (zfs_removal_ignore_errors == 0 &&
1791 (vca.vca_read_error_bytes > 0 ||
1792 vca.vca_write_error_bytes > 0)) {
1793 zfs_dbgmsg("canceling removal due to IO errors: "
1794 "[read_error_bytes=%llu] [write_error_bytes=%llu]",
1795 (u_longlong_t)vca.vca_read_error_bytes,
1796 (u_longlong_t)vca.vca_write_error_bytes);
1797 spa_vdev_remove_cancel_impl(spa);
1798 }
1799 } else {
1800 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
1801 vdev_remove_complete(spa);
1802 }
1803
1804 thread_exit();
1805 }
1806
1807 void
spa_vdev_remove_suspend(spa_t * spa)1808 spa_vdev_remove_suspend(spa_t *spa)
1809 {
1810 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1811
1812 if (svr == NULL)
1813 return;
1814
1815 mutex_enter(&svr->svr_lock);
1816 svr->svr_thread_exit = B_TRUE;
1817 while (svr->svr_thread != NULL)
1818 cv_wait(&svr->svr_cv, &svr->svr_lock);
1819 svr->svr_thread_exit = B_FALSE;
1820 mutex_exit(&svr->svr_lock);
1821 }
1822
1823 /*
1824 * Return true if the "allocating" property has been set to "off"
1825 */
1826 static boolean_t
vdev_prop_allocating_off(vdev_t * vd)1827 vdev_prop_allocating_off(vdev_t *vd)
1828 {
1829 uint64_t objid = vd->vdev_top_zap;
1830 uint64_t allocating = 1;
1831
1832 /* no vdev property object => no props */
1833 if (objid != 0) {
1834 spa_t *spa = vd->vdev_spa;
1835 objset_t *mos = spa->spa_meta_objset;
1836
1837 mutex_enter(&spa->spa_props_lock);
1838 (void) zap_lookup(mos, objid, "allocating", sizeof (uint64_t),
1839 1, &allocating);
1840 mutex_exit(&spa->spa_props_lock);
1841 }
1842 return (allocating == 0);
1843 }
1844
1845 static int
spa_vdev_remove_cancel_check(void * arg,dmu_tx_t * tx)1846 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1847 {
1848 (void) arg;
1849 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1850
1851 if (spa->spa_vdev_removal == NULL)
1852 return (ENOTACTIVE);
1853 return (0);
1854 }
1855
1856 /*
1857 * Cancel a removal by freeing all entries from the partial mapping
1858 * and marking the vdev as no longer being removing.
1859 */
1860 static void
spa_vdev_remove_cancel_sync(void * arg,dmu_tx_t * tx)1861 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1862 {
1863 (void) arg;
1864 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1865 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1866 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1867 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1868 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1869 objset_t *mos = spa->spa_meta_objset;
1870
1871 ASSERT0P(svr->svr_thread);
1872
1873 spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1874
1875 boolean_t are_precise;
1876 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
1877 if (are_precise) {
1878 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1879 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1880 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1881 }
1882
1883 uint64_t obsolete_sm_object;
1884 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1885 if (obsolete_sm_object != 0) {
1886 ASSERT(vd->vdev_obsolete_sm != NULL);
1887 ASSERT3U(obsolete_sm_object, ==,
1888 space_map_object(vd->vdev_obsolete_sm));
1889
1890 space_map_free(vd->vdev_obsolete_sm, tx);
1891 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1892 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1893 space_map_close(vd->vdev_obsolete_sm);
1894 vd->vdev_obsolete_sm = NULL;
1895 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1896 }
1897 for (int i = 0; i < TXG_SIZE; i++) {
1898 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1899 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1900 vdev_indirect_mapping_max_offset(vim));
1901 }
1902
1903 zfs_range_tree_t *segs = zfs_range_tree_create_flags(
1904 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, ZFS_RT_F_DYN_NAME,
1905 vdev_rt_name(vd, "spa_vdev_remove_cancel_sync:segs"));
1906 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1907 metaslab_t *msp = vd->vdev_ms[msi];
1908
1909 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1910 break;
1911
1912 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
1913
1914 mutex_enter(&msp->ms_lock);
1915
1916 /*
1917 * Assert nothing in flight -- ms_*tree is empty.
1918 */
1919 for (int i = 0; i < TXG_SIZE; i++)
1920 ASSERT0(zfs_range_tree_space(msp->ms_allocating[i]));
1921 for (int i = 0; i < TXG_DEFER_SIZE; i++)
1922 ASSERT0(zfs_range_tree_space(msp->ms_defer[i]));
1923 ASSERT0(zfs_range_tree_space(msp->ms_freed));
1924
1925 if (msp->ms_sm != NULL)
1926 VERIFY0(space_map_load(msp->ms_sm, segs, SM_ALLOC));
1927
1928 zfs_range_tree_walk(msp->ms_unflushed_allocs,
1929 zfs_range_tree_add, segs);
1930 zfs_range_tree_walk(msp->ms_unflushed_frees,
1931 zfs_range_tree_remove, segs);
1932 zfs_range_tree_walk(msp->ms_freeing,
1933 zfs_range_tree_remove, segs);
1934 mutex_exit(&msp->ms_lock);
1935
1936 /*
1937 * Clear everything past what has been synced,
1938 * because we have not allocated mappings for it yet.
1939 */
1940 uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1941 uint64_t ms_end = msp->ms_start + msp->ms_size;
1942 if (ms_end > syncd)
1943 zfs_range_tree_clear(segs, syncd, ms_end - syncd);
1944
1945 zfs_range_tree_vacate(segs, free_mapped_segment_cb, vd);
1946 }
1947 zfs_range_tree_destroy(segs);
1948
1949 /*
1950 * Note: this must happen after we invoke free_mapped_segment_cb,
1951 * because it adds to the obsolete_segments.
1952 */
1953 zfs_range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1954
1955 ASSERT3U(vic->vic_mapping_object, ==,
1956 vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1957 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1958 vd->vdev_indirect_mapping = NULL;
1959 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1960 vic->vic_mapping_object = 0;
1961
1962 ASSERT3U(vic->vic_births_object, ==,
1963 vdev_indirect_births_object(vd->vdev_indirect_births));
1964 vdev_indirect_births_close(vd->vdev_indirect_births);
1965 vd->vdev_indirect_births = NULL;
1966 vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1967 vic->vic_births_object = 0;
1968
1969 /*
1970 * We may have processed some frees from the removing vdev in this
1971 * txg, thus increasing svr_bytes_done; discard that here to
1972 * satisfy the assertions in spa_vdev_removal_destroy().
1973 * Note that future txg's can not have any bytes_done, because
1974 * future TXG's are only modified from open context, and we have
1975 * already shut down the copying thread.
1976 */
1977 svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1978 spa_finish_removal(spa, DSS_CANCELED, tx);
1979
1980 vd->vdev_removing = B_FALSE;
1981
1982 if (!vdev_prop_allocating_off(vd)) {
1983 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1984 vdev_activate(vd);
1985 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1986 }
1987
1988 vdev_config_dirty(vd);
1989
1990 zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1991 (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx));
1992 spa_history_log_internal(spa, "vdev remove canceled", tx,
1993 "%s vdev %llu %s", spa_name(spa),
1994 (u_longlong_t)vd->vdev_id,
1995 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1996 }
1997
1998 static int
spa_vdev_remove_cancel_impl(spa_t * spa)1999 spa_vdev_remove_cancel_impl(spa_t *spa)
2000 {
2001 int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
2002 spa_vdev_remove_cancel_sync, NULL, 0,
2003 ZFS_SPACE_CHECK_EXTRA_RESERVED);
2004 return (error);
2005 }
2006
2007 int
spa_vdev_remove_cancel(spa_t * spa)2008 spa_vdev_remove_cancel(spa_t *spa)
2009 {
2010 spa_vdev_remove_suspend(spa);
2011
2012 if (spa->spa_vdev_removal == NULL)
2013 return (ENOTACTIVE);
2014
2015 return (spa_vdev_remove_cancel_impl(spa));
2016 }
2017
2018 void
svr_sync(spa_t * spa,dmu_tx_t * tx)2019 svr_sync(spa_t *spa, dmu_tx_t *tx)
2020 {
2021 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
2022 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
2023
2024 if (svr == NULL)
2025 return;
2026
2027 /*
2028 * This check is necessary so that we do not dirty the
2029 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
2030 * is nothing to do. Dirtying it every time would prevent us
2031 * from syncing-to-convergence.
2032 */
2033 if (svr->svr_bytes_done[txgoff] == 0)
2034 return;
2035
2036 /*
2037 * Update progress accounting.
2038 */
2039 spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
2040 svr->svr_bytes_done[txgoff] = 0;
2041
2042 spa_sync_removing_state(spa, tx);
2043 }
2044
2045 static void
vdev_remove_make_hole_and_free(vdev_t * vd)2046 vdev_remove_make_hole_and_free(vdev_t *vd)
2047 {
2048 uint64_t id = vd->vdev_id;
2049 spa_t *spa = vd->vdev_spa;
2050 vdev_t *rvd = spa->spa_root_vdev;
2051
2052 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2053 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2054
2055 vdev_free(vd);
2056
2057 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
2058 vdev_add_child(rvd, vd);
2059 vdev_config_dirty(rvd);
2060
2061 /*
2062 * Reassess the health of our root vdev.
2063 */
2064 vdev_reopen(rvd);
2065 }
2066
2067 /*
2068 * Remove a log device. The config lock is held for the specified TXG.
2069 */
2070 static int
spa_vdev_remove_log(vdev_t * vd,uint64_t * txg)2071 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
2072 {
2073 metaslab_group_t *mg = vd->vdev_mg;
2074 spa_t *spa = vd->vdev_spa;
2075 int error = 0;
2076
2077 ASSERT(vd->vdev_islog);
2078 ASSERT(vd == vd->vdev_top);
2079 ASSERT0P(vd->vdev_log_mg);
2080 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2081
2082 /*
2083 * Stop allocating from this vdev.
2084 */
2085 metaslab_group_passivate(mg);
2086
2087 /*
2088 * Wait for the youngest allocations and frees to sync,
2089 * and then wait for the deferral of those frees to finish.
2090 */
2091 spa_vdev_config_exit(spa, NULL,
2092 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2093
2094 /*
2095 * Cancel any initialize or TRIM which was in progress.
2096 */
2097 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
2098 vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED);
2099 vdev_autotrim_stop_wait(vd);
2100
2101 /*
2102 * Evacuate the device. We don't hold the config lock as
2103 * writer since we need to do I/O but we do keep the
2104 * spa_namespace_lock held. Once this completes the device
2105 * should no longer have any blocks allocated on it.
2106 */
2107 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2108 if (vd->vdev_stat.vs_alloc != 0)
2109 error = spa_reset_logs(spa);
2110
2111 *txg = spa_vdev_config_enter(spa);
2112
2113 if (error != 0) {
2114 metaslab_group_activate(mg);
2115 ASSERT0P(vd->vdev_log_mg);
2116 return (error);
2117 }
2118 ASSERT0(vd->vdev_stat.vs_alloc);
2119
2120 /*
2121 * The evacuation succeeded. Remove any remaining MOS metadata
2122 * associated with this vdev, and wait for these changes to sync.
2123 */
2124 vd->vdev_removing = B_TRUE;
2125
2126 vdev_dirty_leaves(vd, VDD_DTL, *txg);
2127 vdev_config_dirty(vd);
2128
2129 /*
2130 * When the log space map feature is enabled we look at
2131 * the vdev's top_zap to find the on-disk flush data of
2132 * the metaslab we just flushed. Thus, while removing a
2133 * log vdev we make sure to call vdev_metaslab_fini()
2134 * first, which removes all metaslabs of this vdev from
2135 * spa_metaslabs_by_flushed before vdev_remove_empty()
2136 * destroys the top_zap of this log vdev.
2137 *
2138 * This avoids the scenario where we flush a metaslab
2139 * from the log vdev being removed that doesn't have a
2140 * top_zap and end up failing to lookup its on-disk flush
2141 * data.
2142 *
2143 * We don't call metaslab_group_destroy() right away
2144 * though (it will be called in vdev_free() later) as
2145 * during metaslab_sync() of metaslabs from other vdevs
2146 * we may touch the metaslab group of this vdev through
2147 * metaslab_class_histogram_verify()
2148 */
2149 vdev_metaslab_fini(vd);
2150
2151 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
2152 *txg = spa_vdev_config_enter(spa);
2153
2154 sysevent_t *ev = spa_event_create(spa, vd, NULL,
2155 ESC_ZFS_VDEV_REMOVE_DEV);
2156 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2157 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2158
2159 /* The top ZAP should have been destroyed by vdev_remove_empty. */
2160 ASSERT0(vd->vdev_top_zap);
2161 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
2162 ASSERT0(vd->vdev_leaf_zap);
2163
2164 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
2165
2166 if (list_link_active(&vd->vdev_state_dirty_node))
2167 vdev_state_clean(vd);
2168 if (list_link_active(&vd->vdev_config_dirty_node))
2169 vdev_config_clean(vd);
2170
2171 ASSERT0(vd->vdev_stat.vs_alloc);
2172
2173 /*
2174 * Clean up the vdev namespace.
2175 */
2176 vdev_remove_make_hole_and_free(vd);
2177
2178 if (ev != NULL)
2179 spa_event_post(ev);
2180
2181 return (0);
2182 }
2183
2184 static int
spa_vdev_remove_top_check(vdev_t * vd)2185 spa_vdev_remove_top_check(vdev_t *vd)
2186 {
2187 spa_t *spa = vd->vdev_spa;
2188
2189 if (vd != vd->vdev_top)
2190 return (SET_ERROR(ENOTSUP));
2191
2192 if (!vdev_is_concrete(vd))
2193 return (SET_ERROR(ENOTSUP));
2194
2195 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
2196 return (SET_ERROR(ENOTSUP));
2197
2198 /*
2199 * This device is already being removed
2200 */
2201 if (vd->vdev_removing)
2202 return (SET_ERROR(EALREADY));
2203
2204 metaslab_class_t *mc = vd->vdev_mg->mg_class;
2205 metaslab_class_t *normal = spa_normal_class(spa);
2206 if (mc != normal) {
2207 /*
2208 * Space allocated from the special (or dedup) class is
2209 * included in the DMU's space usage, but it's not included
2210 * in spa_dspace (or dsl_pool_adjustedsize()). Therefore
2211 * there is always at least as much free space in the normal
2212 * class, as is allocated from the special (and dedup) class.
2213 * As a backup check, we will return ENOSPC if this is
2214 * violated. See also spa_update_dspace().
2215 */
2216 uint64_t available = metaslab_class_get_space(normal) -
2217 metaslab_class_get_alloc(normal);
2218 ASSERT3U(available, >=, vd->vdev_stat.vs_alloc);
2219 if (available < vd->vdev_stat.vs_alloc)
2220 return (SET_ERROR(ENOSPC));
2221 } else if (!vd->vdev_noalloc) {
2222 /* available space in the pool's normal class */
2223 uint64_t available = dsl_dir_space_available(
2224 spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
2225 if (available < vd->vdev_stat.vs_dspace)
2226 return (SET_ERROR(ENOSPC));
2227 }
2228
2229 /*
2230 * There can not be a removal in progress.
2231 */
2232 if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
2233 return (SET_ERROR(EBUSY));
2234
2235 /*
2236 * The device must have all its data.
2237 */
2238 if (!vdev_dtl_empty(vd, DTL_MISSING) ||
2239 !vdev_dtl_empty(vd, DTL_OUTAGE))
2240 return (SET_ERROR(EBUSY));
2241
2242 /*
2243 * The device must be healthy.
2244 */
2245 if (!vdev_readable(vd))
2246 return (SET_ERROR(EIO));
2247
2248 /*
2249 * All vdevs in normal class must have the same ashift.
2250 */
2251 if (spa->spa_max_ashift != spa->spa_min_ashift) {
2252 return (SET_ERROR(EINVAL));
2253 }
2254
2255 /*
2256 * A removed special/dedup vdev must have same ashift as normal class.
2257 */
2258 ASSERT(!vd->vdev_islog);
2259 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2260 vd->vdev_ashift != spa->spa_max_ashift) {
2261 return (SET_ERROR(EINVAL));
2262 }
2263
2264 /*
2265 * All vdevs in normal class must have the same ashift
2266 * and not be raidz or draid.
2267 */
2268 vdev_t *rvd = spa->spa_root_vdev;
2269 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
2270 vdev_t *cvd = rvd->vdev_child[id];
2271
2272 /*
2273 * A removed special/dedup vdev must have the same ashift
2274 * across all vdevs in its class.
2275 */
2276 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2277 cvd->vdev_alloc_bias == vd->vdev_alloc_bias &&
2278 cvd->vdev_ashift != vd->vdev_ashift) {
2279 return (SET_ERROR(EINVAL));
2280 }
2281 if (cvd->vdev_ashift != 0 &&
2282 cvd->vdev_alloc_bias == VDEV_BIAS_NONE)
2283 ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
2284 if (!vdev_is_concrete(cvd))
2285 continue;
2286 if (vdev_get_nparity(cvd) != 0)
2287 return (SET_ERROR(EINVAL));
2288 /*
2289 * Need the mirror to be mirror of leaf vdevs only
2290 */
2291 if (cvd->vdev_ops == &vdev_mirror_ops) {
2292 for (uint64_t cid = 0;
2293 cid < cvd->vdev_children; cid++) {
2294 if (!cvd->vdev_child[cid]->vdev_ops->
2295 vdev_op_leaf)
2296 return (SET_ERROR(EINVAL));
2297 }
2298 }
2299 }
2300
2301 return (0);
2302 }
2303
2304 /*
2305 * Initiate removal of a top-level vdev, reducing the total space in the pool.
2306 * The config lock is held for the specified TXG. Once initiated,
2307 * evacuation of all allocated space (copying it to other vdevs) happens
2308 * in the background (see spa_vdev_remove_thread()), and can be canceled
2309 * (see spa_vdev_remove_cancel()). If successful, the vdev will
2310 * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
2311 */
2312 static int
spa_vdev_remove_top(vdev_t * vd,uint64_t * txg)2313 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
2314 {
2315 spa_t *spa = vd->vdev_spa;
2316 boolean_t set_noalloc = B_FALSE;
2317 int error;
2318
2319 /*
2320 * Check for errors up-front, so that we don't waste time
2321 * passivating the metaslab group and clearing the ZIL if there
2322 * are errors.
2323 */
2324 error = spa_vdev_remove_top_check(vd);
2325
2326 /*
2327 * Stop allocating from this vdev. Note that we must check
2328 * that this is not the only device in the pool before
2329 * passivating, otherwise we will not be able to make
2330 * progress because we can't allocate from any vdevs.
2331 * The above check for sufficient free space serves this
2332 * purpose.
2333 */
2334 if (error == 0 && !vd->vdev_noalloc) {
2335 set_noalloc = B_TRUE;
2336 error = vdev_passivate(vd, txg);
2337 }
2338
2339 if (error != 0)
2340 return (error);
2341
2342 /*
2343 * We stop any initializing and TRIM that is currently in progress
2344 * but leave the state as "active". This will allow the process to
2345 * resume if the removal is canceled sometime later.
2346 */
2347
2348 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
2349
2350 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
2351 vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE);
2352 vdev_autotrim_stop_wait(vd);
2353
2354 *txg = spa_vdev_config_enter(spa);
2355
2356 /*
2357 * Things might have changed while the config lock was dropped
2358 * (e.g. space usage). Check for errors again.
2359 */
2360 error = spa_vdev_remove_top_check(vd);
2361
2362 if (error != 0) {
2363 if (set_noalloc)
2364 vdev_activate(vd);
2365 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2366 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
2367 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
2368 return (error);
2369 }
2370
2371 vd->vdev_removing = B_TRUE;
2372
2373 vdev_dirty_leaves(vd, VDD_DTL, *txg);
2374 vdev_config_dirty(vd);
2375 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2376 dsl_sync_task_nowait(spa->spa_dsl_pool,
2377 vdev_remove_initiate_sync, (void *)(uintptr_t)vd->vdev_id, tx);
2378 dmu_tx_commit(tx);
2379
2380 return (0);
2381 }
2382
2383 /*
2384 * Remove a device from the pool.
2385 *
2386 * Removing a device from the vdev namespace requires several steps
2387 * and can take a significant amount of time. As a result we use
2388 * the spa_vdev_config_[enter/exit] functions which allow us to
2389 * grab and release the spa_config_lock while still holding the namespace
2390 * lock. During each step the configuration is synced out.
2391 */
2392 int
spa_vdev_remove(spa_t * spa,uint64_t guid,boolean_t unspare)2393 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2394 {
2395 vdev_t *vd;
2396 nvlist_t **spares, **l2cache, *nv;
2397 uint64_t txg = 0;
2398 uint_t nspares, nl2cache;
2399 int error = 0, error_log;
2400 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2401 sysevent_t *ev = NULL;
2402 const char *vd_type = NULL;
2403 char *vd_path = NULL;
2404
2405 ASSERT(spa_writeable(spa));
2406
2407 if (!locked)
2408 txg = spa_vdev_enter(spa);
2409
2410 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2411 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2412 error = (spa_has_checkpoint(spa)) ?
2413 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2414
2415 if (!locked)
2416 return (spa_vdev_exit(spa, NULL, txg, error));
2417
2418 return (error);
2419 }
2420
2421 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2422
2423 if (spa->spa_spares.sav_vdevs != NULL &&
2424 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2425 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2426 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2427 /*
2428 * Only remove the hot spare if it's not currently in use
2429 * in this pool.
2430 */
2431 if (vd == NULL || unspare) {
2432 const char *type;
2433 boolean_t draid_spare = B_FALSE;
2434
2435 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type)
2436 == 0 && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0)
2437 draid_spare = B_TRUE;
2438
2439 if (vd == NULL && draid_spare) {
2440 error = SET_ERROR(ENOTSUP);
2441 } else {
2442 if (vd == NULL)
2443 vd = spa_lookup_by_guid(spa,
2444 guid, B_TRUE);
2445 ev = spa_event_create(spa, vd, NULL,
2446 ESC_ZFS_VDEV_REMOVE_AUX);
2447
2448 vd_type = VDEV_TYPE_SPARE;
2449 vd_path = spa_strdup(fnvlist_lookup_string(
2450 nv, ZPOOL_CONFIG_PATH));
2451 spa_vdev_remove_aux(spa->spa_spares.sav_config,
2452 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2453 spa_load_spares(spa);
2454 spa->spa_spares.sav_sync = B_TRUE;
2455 }
2456 } else {
2457 error = SET_ERROR(EBUSY);
2458 }
2459 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
2460 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2461 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2462 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2463 vd_type = VDEV_TYPE_L2CACHE;
2464 vd_path = spa_strdup(fnvlist_lookup_string(
2465 nv, ZPOOL_CONFIG_PATH));
2466 /*
2467 * Cache devices can always be removed.
2468 */
2469 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2470
2471 /*
2472 * Stop trimming the cache device. We need to release the
2473 * config lock to allow the syncing of TRIM transactions
2474 * without releasing the spa_namespace_lock. The same
2475 * strategy is employed in spa_vdev_remove_top().
2476 */
2477 spa_vdev_config_exit(spa, NULL,
2478 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2479 mutex_enter(&vd->vdev_trim_lock);
2480 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
2481 mutex_exit(&vd->vdev_trim_lock);
2482 txg = spa_vdev_config_enter(spa);
2483
2484 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2485 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2486 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2487 spa_load_l2cache(spa);
2488 spa->spa_l2cache.sav_sync = B_TRUE;
2489 } else if (vd != NULL && vd->vdev_islog) {
2490 ASSERT(!locked);
2491 vd_type = VDEV_TYPE_LOG;
2492 vd_path = spa_strdup((vd->vdev_path != NULL) ?
2493 vd->vdev_path : "-");
2494 error = spa_vdev_remove_log(vd, &txg);
2495 } else if (vd != NULL) {
2496 ASSERT(!locked);
2497 error = spa_vdev_remove_top(vd, &txg);
2498 } else {
2499 /*
2500 * There is no vdev of any kind with the specified guid.
2501 */
2502 error = SET_ERROR(ENOENT);
2503 }
2504
2505 error_log = error;
2506
2507 if (!locked)
2508 error = spa_vdev_exit(spa, NULL, txg, error);
2509
2510 /*
2511 * Logging must be done outside the spa config lock. Otherwise,
2512 * this code path could end up holding the spa config lock while
2513 * waiting for a txg_sync so it can write to the internal log.
2514 * Doing that would prevent the txg sync from actually happening,
2515 * causing a deadlock.
2516 */
2517 if (error_log == 0 && vd_type != NULL && vd_path != NULL) {
2518 spa_history_log_internal(spa, "vdev remove", NULL,
2519 "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path);
2520 }
2521 if (vd_path != NULL)
2522 spa_strfree(vd_path);
2523
2524 if (ev != NULL)
2525 spa_event_post(ev);
2526
2527 return (error);
2528 }
2529
2530 int
spa_removal_get_stats(spa_t * spa,pool_removal_stat_t * prs)2531 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2532 {
2533 prs->prs_state = spa->spa_removing_phys.sr_state;
2534
2535 if (prs->prs_state == DSS_NONE)
2536 return (SET_ERROR(ENOENT));
2537
2538 prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2539 prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2540 prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2541 prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2542 prs->prs_copied = spa->spa_removing_phys.sr_copied;
2543
2544 prs->prs_mapping_memory = 0;
2545 uint64_t indirect_vdev_id =
2546 spa->spa_removing_phys.sr_prev_indirect_vdev;
2547 while (indirect_vdev_id != -1) {
2548 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2549 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2550 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2551
2552 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2553 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2554 indirect_vdev_id = vic->vic_prev_indirect_vdev;
2555 }
2556
2557 return (0);
2558 }
2559
2560 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_ignore_errors, INT, ZMOD_RW,
2561 "Ignore hard IO errors when removing device");
2562
2563 ZFS_MODULE_PARAM(zfs_vdev, zfs_, remove_max_segment, UINT, ZMOD_RW,
2564 "Largest contiguous segment to allocate when removing device");
2565
2566 ZFS_MODULE_PARAM(zfs_vdev, vdev_, removal_max_span, UINT, ZMOD_RW,
2567 "Largest span of free chunks a remap segment can span");
2568
2569 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_suspend_progress, UINT, ZMOD_RW,
2570 "Pause device removal after this many bytes are copied "
2571 "(debug use only - causes removal to hang)");
2572
2573 EXPORT_SYMBOL(free_from_removing_vdev);
2574 EXPORT_SYMBOL(spa_removal_get_stats);
2575 EXPORT_SYMBOL(spa_remove_init);
2576 EXPORT_SYMBOL(spa_restart_removal);
2577 EXPORT_SYMBOL(spa_vdev_removal_destroy);
2578 EXPORT_SYMBOL(spa_vdev_remove);
2579 EXPORT_SYMBOL(spa_vdev_remove_cancel);
2580 EXPORT_SYMBOL(spa_vdev_remove_suspend);
2581 EXPORT_SYMBOL(svr_sync);
2582