1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
26 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2014 Integros [integros.com]
30 * Copyright 2016 Toomas Soome <tsoome@me.com>
31 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
32 * Copyright 2018 Joyent, Inc.
33 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
34 * Copyright 2017 Joyent, Inc.
35 * Copyright (c) 2017, Intel Corporation.
36 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
37 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
38 * Copyright (c) 2023, 2024, Klara Inc.
39 */
40
41 /*
42 * SPA: Storage Pool Allocator
43 *
44 * This file contains all the routines used when modifying on-disk SPA state.
45 * This includes opening, importing, destroying, exporting a pool, and syncing a
46 * pool.
47 */
48
49 #include <sys/zfs_context.h>
50 #include <sys/fm/fs/zfs.h>
51 #include <sys/spa_impl.h>
52 #include <sys/zio.h>
53 #include <sys/zio_checksum.h>
54 #include <sys/dmu.h>
55 #include <sys/dmu_tx.h>
56 #include <sys/zap.h>
57 #include <sys/zil.h>
58 #include <sys/brt.h>
59 #include <sys/ddt.h>
60 #include <sys/vdev_impl.h>
61 #include <sys/vdev_removal.h>
62 #include <sys/vdev_indirect_mapping.h>
63 #include <sys/vdev_indirect_births.h>
64 #include <sys/vdev_initialize.h>
65 #include <sys/vdev_rebuild.h>
66 #include <sys/vdev_trim.h>
67 #include <sys/vdev_disk.h>
68 #include <sys/vdev_raidz.h>
69 #include <sys/vdev_draid.h>
70 #include <sys/metaslab.h>
71 #include <sys/metaslab_impl.h>
72 #include <sys/mmp.h>
73 #include <sys/uberblock_impl.h>
74 #include <sys/txg.h>
75 #include <sys/avl.h>
76 #include <sys/bpobj.h>
77 #include <sys/dmu_traverse.h>
78 #include <sys/dmu_objset.h>
79 #include <sys/unique.h>
80 #include <sys/dsl_pool.h>
81 #include <sys/dsl_dataset.h>
82 #include <sys/dsl_dir.h>
83 #include <sys/dsl_prop.h>
84 #include <sys/dsl_synctask.h>
85 #include <sys/fs/zfs.h>
86 #include <sys/arc.h>
87 #include <sys/callb.h>
88 #include <sys/systeminfo.h>
89 #include <sys/zfs_ioctl.h>
90 #include <sys/dsl_scan.h>
91 #include <sys/zfeature.h>
92 #include <sys/dsl_destroy.h>
93 #include <sys/zvol.h>
94
95 #ifdef _KERNEL
96 #include <sys/fm/protocol.h>
97 #include <sys/fm/util.h>
98 #include <sys/callb.h>
99 #include <sys/zone.h>
100 #include <sys/vmsystm.h>
101 #endif /* _KERNEL */
102
103 #include "zfs_crrd.h"
104 #include "zfs_prop.h"
105 #include "zfs_comutil.h"
106 #include <cityhash.h>
107
108 /*
109 * spa_thread() existed on Illumos as a parent thread for the various worker
110 * threads that actually run the pool, as a way to both reference the entire
111 * pool work as a single object, and to share properties like scheduling
112 * options. It has not yet been adapted to Linux or FreeBSD. This define is
113 * used to mark related parts of the code to make things easier for the reader,
114 * and to compile this code out. It can be removed when someone implements it,
115 * moves it to some Illumos-specific place, or removes it entirely.
116 */
117 #undef HAVE_SPA_THREAD
118
119 /*
120 * The "System Duty Cycle" scheduling class is an Illumos feature to help
121 * prevent CPU-intensive kernel threads from affecting latency on interactive
122 * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is
123 * gated behind a define. On Illumos SDC depends on spa_thread(), but
124 * spa_thread() also has other uses, so this is a separate define.
125 */
126 #undef HAVE_SYSDC
127
128 /*
129 * The interval, in seconds, at which failed configuration cache file writes
130 * should be retried.
131 */
132 int zfs_ccw_retry_interval = 300;
133
134 typedef enum zti_modes {
135 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
136 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */
137 ZTI_MODE_SYNC, /* sync thread assigned */
138 ZTI_MODE_NULL, /* don't create a taskq */
139 ZTI_NMODES
140 } zti_modes_t;
141
142 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
143 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
144 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 }
145 #define ZTI_SYNC { ZTI_MODE_SYNC, 0, 1 }
146 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
147
148 #define ZTI_N(n) ZTI_P(n, 1)
149 #define ZTI_ONE ZTI_N(1)
150
151 typedef struct zio_taskq_info {
152 zti_modes_t zti_mode;
153 uint_t zti_value;
154 uint_t zti_count;
155 } zio_taskq_info_t;
156
157 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
158 "iss", "iss_h", "int", "int_h"
159 };
160
161 /*
162 * This table defines the taskq settings for each ZFS I/O type. When
163 * initializing a pool, we use this table to create an appropriately sized
164 * taskq. Some operations are low volume and therefore have a small, static
165 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
166 * macros. Other operations process a large amount of data; the ZTI_SCALE
167 * macro causes us to create a taskq oriented for throughput. Some operations
168 * are so high frequency and short-lived that the taskq itself can become a
169 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
170 * additional degree of parallelism specified by the number of threads per-
171 * taskq and the number of taskqs; when dispatching an event in this case, the
172 * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs
173 * that scales with the number of CPUs.
174 *
175 * The different taskq priorities are to handle the different contexts (issue
176 * and interrupt) and then to reserve threads for high priority I/Os that
177 * need to be handled with minimum delay. Illumos taskq has unfair TQ_FRONT
178 * implementation, so separate high priority threads are used there.
179 */
180 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
181 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
182 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
183 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */
184 #ifdef illumos
185 { ZTI_SYNC, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */
186 #else
187 { ZTI_SYNC, ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* WRITE */
188 #endif
189 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
190 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
191 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FLUSH */
192 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
193 };
194
195 static void spa_sync_version(void *arg, dmu_tx_t *tx);
196 static void spa_sync_props(void *arg, dmu_tx_t *tx);
197 static boolean_t spa_has_active_shared_spare(spa_t *spa);
198 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
199 const char **ereport);
200 static void spa_vdev_resilver_done(spa_t *spa);
201
202 /*
203 * Percentage of all CPUs that can be used by the metaslab preload taskq.
204 */
205 static uint_t metaslab_preload_pct = 50;
206
207 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */
208 static uint_t zio_taskq_batch_tpq; /* threads per taskq */
209
210 #ifdef HAVE_SYSDC
211 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
212 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */
213 #endif
214
215 #ifdef HAVE_SPA_THREAD
216 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
217 #endif
218
219 static uint_t zio_taskq_write_tpq = 16;
220
221 /*
222 * Report any spa_load_verify errors found, but do not fail spa_load.
223 * This is used by zdb to analyze non-idle pools.
224 */
225 boolean_t spa_load_verify_dryrun = B_FALSE;
226
227 /*
228 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
229 * This is used by zdb for spacemaps verification.
230 */
231 boolean_t spa_mode_readable_spacemaps = B_FALSE;
232
233 /*
234 * This (illegal) pool name is used when temporarily importing a spa_t in order
235 * to get the vdev stats associated with the imported devices.
236 */
237 #define TRYIMPORT_NAME "$import"
238
239 /*
240 * For debugging purposes: print out vdev tree during pool import.
241 */
242 static int spa_load_print_vdev_tree = B_FALSE;
243
244 /*
245 * A non-zero value for zfs_max_missing_tvds means that we allow importing
246 * pools with missing top-level vdevs. This is strictly intended for advanced
247 * pool recovery cases since missing data is almost inevitable. Pools with
248 * missing devices can only be imported read-only for safety reasons, and their
249 * fail-mode will be automatically set to "continue".
250 *
251 * With 1 missing vdev we should be able to import the pool and mount all
252 * datasets. User data that was not modified after the missing device has been
253 * added should be recoverable. This means that snapshots created prior to the
254 * addition of that device should be completely intact.
255 *
256 * With 2 missing vdevs, some datasets may fail to mount since there are
257 * dataset statistics that are stored as regular metadata. Some data might be
258 * recoverable if those vdevs were added recently.
259 *
260 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
261 * may be missing entirely. Chances of data recovery are very low. Note that
262 * there are also risks of performing an inadvertent rewind as we might be
263 * missing all the vdevs with the latest uberblocks.
264 */
265 uint64_t zfs_max_missing_tvds = 0;
266
267 /*
268 * The parameters below are similar to zfs_max_missing_tvds but are only
269 * intended for a preliminary open of the pool with an untrusted config which
270 * might be incomplete or out-dated.
271 *
272 * We are more tolerant for pools opened from a cachefile since we could have
273 * an out-dated cachefile where a device removal was not registered.
274 * We could have set the limit arbitrarily high but in the case where devices
275 * are really missing we would want to return the proper error codes; we chose
276 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
277 * and we get a chance to retrieve the trusted config.
278 */
279 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
280
281 /*
282 * In the case where config was assembled by scanning device paths (/dev/dsks
283 * by default) we are less tolerant since all the existing devices should have
284 * been detected and we want spa_load to return the right error codes.
285 */
286 uint64_t zfs_max_missing_tvds_scan = 0;
287
288 /*
289 * Debugging aid that pauses spa_sync() towards the end.
290 */
291 static const boolean_t zfs_pause_spa_sync = B_FALSE;
292
293 /*
294 * Variables to indicate the livelist condense zthr func should wait at certain
295 * points for the livelist to be removed - used to test condense/destroy races
296 */
297 static int zfs_livelist_condense_zthr_pause = 0;
298 static int zfs_livelist_condense_sync_pause = 0;
299
300 /*
301 * Variables to track whether or not condense cancellation has been
302 * triggered in testing.
303 */
304 static int zfs_livelist_condense_sync_cancel = 0;
305 static int zfs_livelist_condense_zthr_cancel = 0;
306
307 /*
308 * Variable to track whether or not extra ALLOC blkptrs were added to a
309 * livelist entry while it was being condensed (caused by the way we track
310 * remapped blkptrs in dbuf_remap_impl)
311 */
312 static int zfs_livelist_condense_new_alloc = 0;
313
314 /*
315 * Time variable to decide how often the txg should be added into the
316 * database (in seconds).
317 * The smallest available resolution is in minutes, which means an update occurs
318 * each time we reach `spa_note_txg_time` and the txg has changed. We provide
319 * a 256-slot ring buffer for minute-level resolution. The number is limited by
320 * the size of the structure we use and the maximum amount of bytes we can write
321 * into ZAP. Setting `spa_note_txg_time` to 10 minutes results in approximately
322 * 144 records per day. Given the 256 slots, this provides roughly 1.5 days of
323 * high-resolution data.
324 *
325 * The user can decrease `spa_note_txg_time` to increase resolution within
326 * a day, at the cost of retaining fewer days of data. Alternatively, increasing
327 * the interval allows storing data over a longer period, but with lower
328 * frequency.
329 *
330 * This parameter does not affect the daily or monthly databases, as those only
331 * store one record per day and per month, respectively.
332 */
333 static uint_t spa_note_txg_time = 10 * 60;
334
335 /*
336 * How often flush txg database to a disk (in seconds).
337 * We flush data every time we write to it, making it the most reliable option.
338 * Since this happens every 10 minutes, it shouldn't introduce any noticeable
339 * overhead for the system. In case of failure, we will always have an
340 * up-to-date version of the database.
341 *
342 * The user can adjust the flush interval to a lower value, but it probably
343 * doesn't make sense to flush more often than the database is updated.
344 * The user can also increase the interval if they're concerned about the
345 * performance of writing the entire database to disk.
346 */
347 static uint_t spa_flush_txg_time = 10 * 60;
348
349 /*
350 * ==========================================================================
351 * SPA properties routines
352 * ==========================================================================
353 */
354
355 /*
356 * Add a (source=src, propname=propval) list to an nvlist.
357 */
358 static void
spa_prop_add_list(nvlist_t * nvl,zpool_prop_t prop,const char * strval,uint64_t intval,zprop_source_t src)359 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
360 uint64_t intval, zprop_source_t src)
361 {
362 const char *propname = zpool_prop_to_name(prop);
363 nvlist_t *propval;
364
365 propval = fnvlist_alloc();
366 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
367
368 if (strval != NULL)
369 fnvlist_add_string(propval, ZPROP_VALUE, strval);
370 else
371 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
372
373 fnvlist_add_nvlist(nvl, propname, propval);
374 nvlist_free(propval);
375 }
376
377 static int
spa_prop_add(spa_t * spa,const char * propname,nvlist_t * outnvl)378 spa_prop_add(spa_t *spa, const char *propname, nvlist_t *outnvl)
379 {
380 zpool_prop_t prop = zpool_name_to_prop(propname);
381 zprop_source_t src = ZPROP_SRC_NONE;
382 uint64_t intval;
383 int err;
384
385 /*
386 * NB: Not all properties lookups via this API require
387 * the spa props lock, so they must explicitly grab it here.
388 */
389 switch (prop) {
390 case ZPOOL_PROP_DEDUPCACHED:
391 err = ddt_get_pool_dedup_cached(spa, &intval);
392 if (err != 0)
393 return (SET_ERROR(err));
394 break;
395 default:
396 return (SET_ERROR(EINVAL));
397 }
398
399 spa_prop_add_list(outnvl, prop, NULL, intval, src);
400
401 return (0);
402 }
403
404 int
spa_prop_get_nvlist(spa_t * spa,char ** props,unsigned int n_props,nvlist_t * outnvl)405 spa_prop_get_nvlist(spa_t *spa, char **props, unsigned int n_props,
406 nvlist_t *outnvl)
407 {
408 int err = 0;
409
410 if (props == NULL)
411 return (0);
412
413 for (unsigned int i = 0; i < n_props && err == 0; i++) {
414 err = spa_prop_add(spa, props[i], outnvl);
415 }
416
417 return (err);
418 }
419
420 /*
421 * Add a user property (source=src, propname=propval) to an nvlist.
422 */
423 static void
spa_prop_add_user(nvlist_t * nvl,const char * propname,char * strval,zprop_source_t src)424 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
425 zprop_source_t src)
426 {
427 nvlist_t *propval;
428
429 VERIFY0(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP));
430 VERIFY0(nvlist_add_uint64(propval, ZPROP_SOURCE, src));
431 VERIFY0(nvlist_add_string(propval, ZPROP_VALUE, strval));
432 VERIFY0(nvlist_add_nvlist(nvl, propname, propval));
433 nvlist_free(propval);
434 }
435
436 /*
437 * Get property values from the spa configuration.
438 */
439 static void
spa_prop_get_config(spa_t * spa,nvlist_t * nv)440 spa_prop_get_config(spa_t *spa, nvlist_t *nv)
441 {
442 vdev_t *rvd = spa->spa_root_vdev;
443 dsl_pool_t *pool = spa->spa_dsl_pool;
444 uint64_t size, alloc, cap, version;
445 const zprop_source_t src = ZPROP_SRC_NONE;
446 spa_config_dirent_t *dp;
447 metaslab_class_t *mc = spa_normal_class(spa);
448
449 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
450
451 if (rvd != NULL) {
452 alloc = metaslab_class_get_alloc(mc);
453 alloc += metaslab_class_get_alloc(spa_special_class(spa));
454 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
455 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
456 alloc += metaslab_class_get_alloc(
457 spa_special_embedded_log_class(spa));
458
459 size = metaslab_class_get_space(mc);
460 size += metaslab_class_get_space(spa_special_class(spa));
461 size += metaslab_class_get_space(spa_dedup_class(spa));
462 size += metaslab_class_get_space(spa_embedded_log_class(spa));
463 size += metaslab_class_get_space(
464 spa_special_embedded_log_class(spa));
465
466 spa_prop_add_list(nv, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
467 spa_prop_add_list(nv, ZPOOL_PROP_SIZE, NULL, size, src);
468 spa_prop_add_list(nv, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
469 spa_prop_add_list(nv, ZPOOL_PROP_FREE, NULL,
470 size - alloc, src);
471 spa_prop_add_list(nv, ZPOOL_PROP_CHECKPOINT, NULL,
472 spa->spa_checkpoint_info.sci_dspace, src);
473
474 spa_prop_add_list(nv, ZPOOL_PROP_FRAGMENTATION, NULL,
475 metaslab_class_fragmentation(mc), src);
476 spa_prop_add_list(nv, ZPOOL_PROP_EXPANDSZ, NULL,
477 metaslab_class_expandable_space(mc), src);
478 spa_prop_add_list(nv, ZPOOL_PROP_READONLY, NULL,
479 (spa_mode(spa) == SPA_MODE_READ), src);
480
481 cap = (size == 0) ? 0 : (alloc * 100 / size);
482 spa_prop_add_list(nv, ZPOOL_PROP_CAPACITY, NULL, cap, src);
483
484 spa_prop_add_list(nv, ZPOOL_PROP_DEDUPRATIO, NULL,
485 ddt_get_pool_dedup_ratio(spa), src);
486 spa_prop_add_list(nv, ZPOOL_PROP_BCLONEUSED, NULL,
487 brt_get_used(spa), src);
488 spa_prop_add_list(nv, ZPOOL_PROP_BCLONESAVED, NULL,
489 brt_get_saved(spa), src);
490 spa_prop_add_list(nv, ZPOOL_PROP_BCLONERATIO, NULL,
491 brt_get_ratio(spa), src);
492
493 spa_prop_add_list(nv, ZPOOL_PROP_DEDUP_TABLE_SIZE, NULL,
494 ddt_get_ddt_dsize(spa), src);
495 spa_prop_add_list(nv, ZPOOL_PROP_HEALTH, NULL,
496 rvd->vdev_state, src);
497 spa_prop_add_list(nv, ZPOOL_PROP_LAST_SCRUBBED_TXG, NULL,
498 spa_get_last_scrubbed_txg(spa), src);
499
500 version = spa_version(spa);
501 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
502 spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
503 version, ZPROP_SRC_DEFAULT);
504 } else {
505 spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
506 version, ZPROP_SRC_LOCAL);
507 }
508 spa_prop_add_list(nv, ZPOOL_PROP_LOAD_GUID,
509 NULL, spa_load_guid(spa), src);
510 }
511
512 if (pool != NULL) {
513 /*
514 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
515 * when opening pools before this version freedir will be NULL.
516 */
517 if (pool->dp_free_dir != NULL) {
518 spa_prop_add_list(nv, ZPOOL_PROP_FREEING, NULL,
519 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
520 src);
521 } else {
522 spa_prop_add_list(nv, ZPOOL_PROP_FREEING,
523 NULL, 0, src);
524 }
525
526 if (pool->dp_leak_dir != NULL) {
527 spa_prop_add_list(nv, ZPOOL_PROP_LEAKED, NULL,
528 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
529 src);
530 } else {
531 spa_prop_add_list(nv, ZPOOL_PROP_LEAKED,
532 NULL, 0, src);
533 }
534 }
535
536 spa_prop_add_list(nv, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
537
538 if (spa->spa_comment != NULL) {
539 spa_prop_add_list(nv, ZPOOL_PROP_COMMENT, spa->spa_comment,
540 0, ZPROP_SRC_LOCAL);
541 }
542
543 if (spa->spa_compatibility != NULL) {
544 spa_prop_add_list(nv, ZPOOL_PROP_COMPATIBILITY,
545 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
546 }
547
548 if (spa->spa_root != NULL)
549 spa_prop_add_list(nv, ZPOOL_PROP_ALTROOT, spa->spa_root,
550 0, ZPROP_SRC_LOCAL);
551
552 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
553 spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
554 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
555 } else {
556 spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
557 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
558 }
559
560 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
561 spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
562 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
563 } else {
564 spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
565 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
566 }
567
568 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
569 if (dp->scd_path == NULL) {
570 spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
571 "none", 0, ZPROP_SRC_LOCAL);
572 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
573 spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
574 dp->scd_path, 0, ZPROP_SRC_LOCAL);
575 }
576 }
577 }
578
579 /*
580 * Get zpool property values.
581 */
582 int
spa_prop_get(spa_t * spa,nvlist_t * nv)583 spa_prop_get(spa_t *spa, nvlist_t *nv)
584 {
585 objset_t *mos = spa->spa_meta_objset;
586 zap_cursor_t zc;
587 zap_attribute_t *za;
588 dsl_pool_t *dp;
589 int err = 0;
590
591 dp = spa_get_dsl(spa);
592 dsl_pool_config_enter(dp, FTAG);
593 za = zap_attribute_alloc();
594 mutex_enter(&spa->spa_props_lock);
595
596 /*
597 * Get properties from the spa config.
598 */
599 spa_prop_get_config(spa, nv);
600
601 /* If no pool property object, no more prop to get. */
602 if (mos == NULL || spa->spa_pool_props_object == 0)
603 goto out;
604
605 /*
606 * Get properties from the MOS pool property object.
607 */
608 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
609 (err = zap_cursor_retrieve(&zc, za)) == 0;
610 zap_cursor_advance(&zc)) {
611 uint64_t intval = 0;
612 char *strval = NULL;
613 zprop_source_t src = ZPROP_SRC_DEFAULT;
614 zpool_prop_t prop;
615
616 if ((prop = zpool_name_to_prop(za->za_name)) ==
617 ZPOOL_PROP_INVAL && !zfs_prop_user(za->za_name))
618 continue;
619
620 switch (za->za_integer_length) {
621 case 8:
622 /* integer property */
623 if (za->za_first_integer !=
624 zpool_prop_default_numeric(prop))
625 src = ZPROP_SRC_LOCAL;
626
627 if (prop == ZPOOL_PROP_BOOTFS) {
628 dsl_dataset_t *ds = NULL;
629
630 err = dsl_dataset_hold_obj(dp,
631 za->za_first_integer, FTAG, &ds);
632 if (err != 0)
633 break;
634
635 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
636 KM_SLEEP);
637 dsl_dataset_name(ds, strval);
638 dsl_dataset_rele(ds, FTAG);
639 } else {
640 strval = NULL;
641 intval = za->za_first_integer;
642 }
643
644 spa_prop_add_list(nv, prop, strval, intval, src);
645
646 if (strval != NULL)
647 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
648
649 break;
650
651 case 1:
652 /* string property */
653 strval = kmem_alloc(za->za_num_integers, KM_SLEEP);
654 err = zap_lookup(mos, spa->spa_pool_props_object,
655 za->za_name, 1, za->za_num_integers, strval);
656 if (err) {
657 kmem_free(strval, za->za_num_integers);
658 break;
659 }
660 if (prop != ZPOOL_PROP_INVAL) {
661 spa_prop_add_list(nv, prop, strval, 0, src);
662 } else {
663 src = ZPROP_SRC_LOCAL;
664 spa_prop_add_user(nv, za->za_name, strval,
665 src);
666 }
667 kmem_free(strval, za->za_num_integers);
668 break;
669
670 default:
671 break;
672 }
673 }
674 zap_cursor_fini(&zc);
675 out:
676 mutex_exit(&spa->spa_props_lock);
677 dsl_pool_config_exit(dp, FTAG);
678 zap_attribute_free(za);
679
680 if (err && err != ENOENT)
681 return (err);
682
683 return (0);
684 }
685
686 /*
687 * Validate the given pool properties nvlist and modify the list
688 * for the property values to be set.
689 */
690 static int
spa_prop_validate(spa_t * spa,nvlist_t * props)691 spa_prop_validate(spa_t *spa, nvlist_t *props)
692 {
693 nvpair_t *elem;
694 int error = 0, reset_bootfs = 0;
695 uint64_t objnum = 0;
696 boolean_t has_feature = B_FALSE;
697
698 elem = NULL;
699 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
700 uint64_t intval;
701 const char *strval, *slash, *check, *fname;
702 const char *propname = nvpair_name(elem);
703 zpool_prop_t prop = zpool_name_to_prop(propname);
704
705 switch (prop) {
706 case ZPOOL_PROP_INVAL:
707 /*
708 * Sanitize the input.
709 */
710 if (zfs_prop_user(propname)) {
711 if (strlen(propname) >= ZAP_MAXNAMELEN) {
712 error = SET_ERROR(ENAMETOOLONG);
713 break;
714 }
715
716 if (strlen(fnvpair_value_string(elem)) >=
717 ZAP_MAXVALUELEN) {
718 error = SET_ERROR(E2BIG);
719 break;
720 }
721 } else if (zpool_prop_feature(propname)) {
722 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
723 error = SET_ERROR(EINVAL);
724 break;
725 }
726
727 if (nvpair_value_uint64(elem, &intval) != 0) {
728 error = SET_ERROR(EINVAL);
729 break;
730 }
731
732 if (intval != 0) {
733 error = SET_ERROR(EINVAL);
734 break;
735 }
736
737 fname = strchr(propname, '@') + 1;
738 if (zfeature_lookup_name(fname, NULL) != 0) {
739 error = SET_ERROR(EINVAL);
740 break;
741 }
742
743 has_feature = B_TRUE;
744 } else {
745 error = SET_ERROR(EINVAL);
746 break;
747 }
748 break;
749
750 case ZPOOL_PROP_VERSION:
751 error = nvpair_value_uint64(elem, &intval);
752 if (!error &&
753 (intval < spa_version(spa) ||
754 intval > SPA_VERSION_BEFORE_FEATURES ||
755 has_feature))
756 error = SET_ERROR(EINVAL);
757 break;
758
759 case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
760 error = nvpair_value_uint64(elem, &intval);
761 break;
762
763 case ZPOOL_PROP_DELEGATION:
764 case ZPOOL_PROP_AUTOREPLACE:
765 case ZPOOL_PROP_LISTSNAPS:
766 case ZPOOL_PROP_AUTOEXPAND:
767 case ZPOOL_PROP_AUTOTRIM:
768 error = nvpair_value_uint64(elem, &intval);
769 if (!error && intval > 1)
770 error = SET_ERROR(EINVAL);
771 break;
772
773 case ZPOOL_PROP_MULTIHOST:
774 error = nvpair_value_uint64(elem, &intval);
775 if (!error && intval > 1)
776 error = SET_ERROR(EINVAL);
777
778 if (!error) {
779 uint32_t hostid = zone_get_hostid(NULL);
780 if (hostid)
781 spa->spa_hostid = hostid;
782 else
783 error = SET_ERROR(ENOTSUP);
784 }
785
786 break;
787
788 case ZPOOL_PROP_BOOTFS:
789 /*
790 * If the pool version is less than SPA_VERSION_BOOTFS,
791 * or the pool is still being created (version == 0),
792 * the bootfs property cannot be set.
793 */
794 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
795 error = SET_ERROR(ENOTSUP);
796 break;
797 }
798
799 /*
800 * Make sure the vdev config is bootable
801 */
802 if (!vdev_is_bootable(spa->spa_root_vdev)) {
803 error = SET_ERROR(ENOTSUP);
804 break;
805 }
806
807 reset_bootfs = 1;
808
809 error = nvpair_value_string(elem, &strval);
810
811 if (!error) {
812 objset_t *os;
813
814 if (strval == NULL || strval[0] == '\0') {
815 objnum = zpool_prop_default_numeric(
816 ZPOOL_PROP_BOOTFS);
817 break;
818 }
819
820 error = dmu_objset_hold(strval, FTAG, &os);
821 if (error != 0)
822 break;
823
824 /* Must be ZPL. */
825 if (dmu_objset_type(os) != DMU_OST_ZFS) {
826 error = SET_ERROR(ENOTSUP);
827 } else {
828 objnum = dmu_objset_id(os);
829 }
830 dmu_objset_rele(os, FTAG);
831 }
832 break;
833
834 case ZPOOL_PROP_FAILUREMODE:
835 error = nvpair_value_uint64(elem, &intval);
836 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
837 error = SET_ERROR(EINVAL);
838
839 /*
840 * This is a special case which only occurs when
841 * the pool has completely failed. This allows
842 * the user to change the in-core failmode property
843 * without syncing it out to disk (I/Os might
844 * currently be blocked). We do this by returning
845 * EIO to the caller (spa_prop_set) to trick it
846 * into thinking we encountered a property validation
847 * error.
848 */
849 if (!error && spa_suspended(spa)) {
850 spa->spa_failmode = intval;
851 error = SET_ERROR(EIO);
852 }
853 break;
854
855 case ZPOOL_PROP_CACHEFILE:
856 if ((error = nvpair_value_string(elem, &strval)) != 0)
857 break;
858
859 if (strval[0] == '\0')
860 break;
861
862 if (strcmp(strval, "none") == 0)
863 break;
864
865 if (strval[0] != '/') {
866 error = SET_ERROR(EINVAL);
867 break;
868 }
869
870 slash = strrchr(strval, '/');
871 ASSERT(slash != NULL);
872
873 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
874 strcmp(slash, "/..") == 0)
875 error = SET_ERROR(EINVAL);
876 break;
877
878 case ZPOOL_PROP_COMMENT:
879 if ((error = nvpair_value_string(elem, &strval)) != 0)
880 break;
881 for (check = strval; *check != '\0'; check++) {
882 if (!isprint(*check)) {
883 error = SET_ERROR(EINVAL);
884 break;
885 }
886 }
887 if (strlen(strval) > ZPROP_MAX_COMMENT)
888 error = SET_ERROR(E2BIG);
889 break;
890
891 default:
892 break;
893 }
894
895 if (error)
896 break;
897 }
898
899 (void) nvlist_remove_all(props,
900 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
901
902 if (!error && reset_bootfs) {
903 error = nvlist_remove(props,
904 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
905
906 if (!error) {
907 error = nvlist_add_uint64(props,
908 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
909 }
910 }
911
912 return (error);
913 }
914
915 void
spa_configfile_set(spa_t * spa,nvlist_t * nvp,boolean_t need_sync)916 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
917 {
918 const char *cachefile;
919 spa_config_dirent_t *dp;
920
921 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
922 &cachefile) != 0)
923 return;
924
925 dp = kmem_alloc(sizeof (spa_config_dirent_t),
926 KM_SLEEP);
927
928 if (cachefile[0] == '\0')
929 dp->scd_path = spa_strdup(spa_config_path);
930 else if (strcmp(cachefile, "none") == 0)
931 dp->scd_path = NULL;
932 else
933 dp->scd_path = spa_strdup(cachefile);
934
935 list_insert_head(&spa->spa_config_list, dp);
936 if (need_sync)
937 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
938 }
939
940 int
spa_prop_set(spa_t * spa,nvlist_t * nvp)941 spa_prop_set(spa_t *spa, nvlist_t *nvp)
942 {
943 int error;
944 nvpair_t *elem = NULL;
945 boolean_t need_sync = B_FALSE;
946
947 if ((error = spa_prop_validate(spa, nvp)) != 0)
948 return (error);
949
950 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
951 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
952
953 if (prop == ZPOOL_PROP_CACHEFILE ||
954 prop == ZPOOL_PROP_ALTROOT ||
955 prop == ZPOOL_PROP_READONLY)
956 continue;
957
958 if (prop == ZPOOL_PROP_INVAL &&
959 zfs_prop_user(nvpair_name(elem))) {
960 need_sync = B_TRUE;
961 break;
962 }
963
964 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
965 uint64_t ver = 0;
966
967 if (prop == ZPOOL_PROP_VERSION) {
968 VERIFY0(nvpair_value_uint64(elem, &ver));
969 } else {
970 ASSERT(zpool_prop_feature(nvpair_name(elem)));
971 ver = SPA_VERSION_FEATURES;
972 need_sync = B_TRUE;
973 }
974
975 /* Save time if the version is already set. */
976 if (ver == spa_version(spa))
977 continue;
978
979 /*
980 * In addition to the pool directory object, we might
981 * create the pool properties object, the features for
982 * read object, the features for write object, or the
983 * feature descriptions object.
984 */
985 error = dsl_sync_task(spa->spa_name, NULL,
986 spa_sync_version, &ver,
987 6, ZFS_SPACE_CHECK_RESERVED);
988 if (error)
989 return (error);
990 continue;
991 }
992
993 need_sync = B_TRUE;
994 break;
995 }
996
997 if (need_sync) {
998 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
999 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
1000 }
1001
1002 return (0);
1003 }
1004
1005 /*
1006 * If the bootfs property value is dsobj, clear it.
1007 */
1008 void
spa_prop_clear_bootfs(spa_t * spa,uint64_t dsobj,dmu_tx_t * tx)1009 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
1010 {
1011 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
1012 VERIFY(zap_remove(spa->spa_meta_objset,
1013 spa->spa_pool_props_object,
1014 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
1015 spa->spa_bootfs = 0;
1016 }
1017 }
1018
1019 static int
spa_change_guid_check(void * arg,dmu_tx_t * tx)1020 spa_change_guid_check(void *arg, dmu_tx_t *tx)
1021 {
1022 uint64_t *newguid __maybe_unused = arg;
1023 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1024 vdev_t *rvd = spa->spa_root_vdev;
1025 uint64_t vdev_state;
1026
1027 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1028 int error = (spa_has_checkpoint(spa)) ?
1029 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
1030 return (SET_ERROR(error));
1031 }
1032
1033 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1034 vdev_state = rvd->vdev_state;
1035 spa_config_exit(spa, SCL_STATE, FTAG);
1036
1037 if (vdev_state != VDEV_STATE_HEALTHY)
1038 return (SET_ERROR(ENXIO));
1039
1040 ASSERT3U(spa_guid(spa), !=, *newguid);
1041
1042 return (0);
1043 }
1044
1045 static void
spa_change_guid_sync(void * arg,dmu_tx_t * tx)1046 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
1047 {
1048 uint64_t *newguid = arg;
1049 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1050 uint64_t oldguid;
1051 vdev_t *rvd = spa->spa_root_vdev;
1052
1053 oldguid = spa_guid(spa);
1054
1055 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1056 rvd->vdev_guid = *newguid;
1057 rvd->vdev_guid_sum += (*newguid - oldguid);
1058 vdev_config_dirty(rvd);
1059 spa_config_exit(spa, SCL_STATE, FTAG);
1060
1061 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
1062 (u_longlong_t)oldguid, (u_longlong_t)*newguid);
1063 }
1064
1065 /*
1066 * Change the GUID for the pool. This is done so that we can later
1067 * re-import a pool built from a clone of our own vdevs. We will modify
1068 * the root vdev's guid, our own pool guid, and then mark all of our
1069 * vdevs dirty. Note that we must make sure that all our vdevs are
1070 * online when we do this, or else any vdevs that weren't present
1071 * would be orphaned from our pool. We are also going to issue a
1072 * sysevent to update any watchers.
1073 *
1074 * The GUID of the pool will be changed to the value pointed to by guidp.
1075 * The GUID may not be set to the reserverd value of 0.
1076 * The new GUID will be generated if guidp is NULL.
1077 */
1078 int
spa_change_guid(spa_t * spa,const uint64_t * guidp)1079 spa_change_guid(spa_t *spa, const uint64_t *guidp)
1080 {
1081 uint64_t guid;
1082 int error;
1083
1084 mutex_enter(&spa->spa_vdev_top_lock);
1085 mutex_enter(&spa_namespace_lock);
1086
1087 if (guidp != NULL) {
1088 guid = *guidp;
1089 if (guid == 0) {
1090 error = SET_ERROR(EINVAL);
1091 goto out;
1092 }
1093
1094 if (spa_guid_exists(guid, 0)) {
1095 error = SET_ERROR(EEXIST);
1096 goto out;
1097 }
1098 } else {
1099 guid = spa_generate_guid(NULL);
1100 }
1101
1102 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
1103 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
1104
1105 if (error == 0) {
1106 /*
1107 * Clear the kobj flag from all the vdevs to allow
1108 * vdev_cache_process_kobj_evt() to post events to all the
1109 * vdevs since GUID is updated.
1110 */
1111 vdev_clear_kobj_evt(spa->spa_root_vdev);
1112 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
1113 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
1114
1115 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1116 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
1117 }
1118
1119 out:
1120 mutex_exit(&spa_namespace_lock);
1121 mutex_exit(&spa->spa_vdev_top_lock);
1122
1123 return (error);
1124 }
1125
1126 /*
1127 * ==========================================================================
1128 * SPA state manipulation (open/create/destroy/import/export)
1129 * ==========================================================================
1130 */
1131
1132 static int
spa_error_entry_compare(const void * a,const void * b)1133 spa_error_entry_compare(const void *a, const void *b)
1134 {
1135 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
1136 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
1137 int ret;
1138
1139 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
1140 sizeof (zbookmark_phys_t));
1141
1142 return (TREE_ISIGN(ret));
1143 }
1144
1145 /*
1146 * Utility function which retrieves copies of the current logs and
1147 * re-initializes them in the process.
1148 */
1149 void
spa_get_errlists(spa_t * spa,avl_tree_t * last,avl_tree_t * scrub)1150 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1151 {
1152 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1153
1154 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1155 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1156
1157 avl_create(&spa->spa_errlist_scrub,
1158 spa_error_entry_compare, sizeof (spa_error_entry_t),
1159 offsetof(spa_error_entry_t, se_avl));
1160 avl_create(&spa->spa_errlist_last,
1161 spa_error_entry_compare, sizeof (spa_error_entry_t),
1162 offsetof(spa_error_entry_t, se_avl));
1163 }
1164
1165 static void
spa_taskqs_init(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1166 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1167 {
1168 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1169 enum zti_modes mode = ztip->zti_mode;
1170 uint_t value = ztip->zti_value;
1171 uint_t count = ztip->zti_count;
1172 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1173 uint_t cpus, flags = TASKQ_DYNAMIC;
1174
1175 switch (mode) {
1176 case ZTI_MODE_FIXED:
1177 ASSERT3U(value, >, 0);
1178 break;
1179
1180 case ZTI_MODE_SYNC:
1181
1182 /*
1183 * Create one wr_iss taskq for every 'zio_taskq_write_tpq' CPUs,
1184 * not to exceed the number of spa allocators, and align to it.
1185 */
1186 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1187 count = MAX(1, cpus / MAX(1, zio_taskq_write_tpq));
1188 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1189 count = MIN(count, spa->spa_alloc_count);
1190 while (spa->spa_alloc_count % count != 0 &&
1191 spa->spa_alloc_count < count * 2)
1192 count--;
1193
1194 /*
1195 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no
1196 * single taskq may have more threads than 100% of online cpus.
1197 */
1198 value = (zio_taskq_batch_pct + count / 2) / count;
1199 value = MIN(value, 100);
1200 flags |= TASKQ_THREADS_CPU_PCT;
1201 break;
1202
1203 case ZTI_MODE_SCALE:
1204 flags |= TASKQ_THREADS_CPU_PCT;
1205 /*
1206 * We want more taskqs to reduce lock contention, but we want
1207 * less for better request ordering and CPU utilization.
1208 */
1209 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1210 if (zio_taskq_batch_tpq > 0) {
1211 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1212 zio_taskq_batch_tpq);
1213 } else {
1214 /*
1215 * Prefer 6 threads per taskq, but no more taskqs
1216 * than threads in them on large systems. For 80%:
1217 *
1218 * taskq taskq total
1219 * cpus taskqs percent threads threads
1220 * ------- ------- ------- ------- -------
1221 * 1 1 80% 1 1
1222 * 2 1 80% 1 1
1223 * 4 1 80% 3 3
1224 * 8 2 40% 3 6
1225 * 16 3 27% 4 12
1226 * 32 5 16% 5 25
1227 * 64 7 11% 7 49
1228 * 128 10 8% 10 100
1229 * 256 14 6% 15 210
1230 */
1231 count = 1 + cpus / 6;
1232 while (count * count > cpus)
1233 count--;
1234 }
1235 /* Limit each taskq within 100% to not trigger assertion. */
1236 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1237 value = (zio_taskq_batch_pct + count / 2) / count;
1238 break;
1239
1240 case ZTI_MODE_NULL:
1241 tqs->stqs_count = 0;
1242 tqs->stqs_taskq = NULL;
1243 return;
1244
1245 default:
1246 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1247 "spa_taskqs_init()",
1248 zio_type_name[t], zio_taskq_types[q], mode, value);
1249 break;
1250 }
1251
1252 ASSERT3U(count, >, 0);
1253 tqs->stqs_count = count;
1254 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1255
1256 for (uint_t i = 0; i < count; i++) {
1257 taskq_t *tq;
1258 char name[32];
1259
1260 if (count > 1)
1261 (void) snprintf(name, sizeof (name), "%s_%s_%u",
1262 zio_type_name[t], zio_taskq_types[q], i);
1263 else
1264 (void) snprintf(name, sizeof (name), "%s_%s",
1265 zio_type_name[t], zio_taskq_types[q]);
1266
1267 #ifdef HAVE_SYSDC
1268 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1269 (void) zio_taskq_basedc;
1270 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1271 spa->spa_proc, zio_taskq_basedc, flags);
1272 } else {
1273 #endif
1274 /*
1275 * The write issue taskq can be extremely CPU
1276 * intensive. Run it at slightly less important
1277 * priority than the other taskqs.
1278 */
1279 const pri_t pri = (t == ZIO_TYPE_WRITE &&
1280 q == ZIO_TASKQ_ISSUE) ?
1281 wtqclsyspri : maxclsyspri;
1282 tq = taskq_create_proc(name, value, pri, 50,
1283 INT_MAX, spa->spa_proc, flags);
1284 #ifdef HAVE_SYSDC
1285 }
1286 #endif
1287
1288 tqs->stqs_taskq[i] = tq;
1289 }
1290 }
1291
1292 static void
spa_taskqs_fini(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1293 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1294 {
1295 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1296
1297 if (tqs->stqs_taskq == NULL) {
1298 ASSERT0(tqs->stqs_count);
1299 return;
1300 }
1301
1302 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1303 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1304 taskq_destroy(tqs->stqs_taskq[i]);
1305 }
1306
1307 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1308 tqs->stqs_taskq = NULL;
1309 }
1310
1311 #ifdef _KERNEL
1312 /*
1313 * The READ and WRITE rows of zio_taskqs are configurable at module load time
1314 * by setting zio_taskq_read or zio_taskq_write.
1315 *
1316 * Example (the defaults for READ and WRITE)
1317 * zio_taskq_read='fixed,1,8 null scale null'
1318 * zio_taskq_write='sync null scale null'
1319 *
1320 * Each sets the entire row at a time.
1321 *
1322 * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number
1323 * of threads per taskq.
1324 *
1325 * 'null' can only be set on the high-priority queues (queue selection for
1326 * high-priority queues will fall back to the regular queue if the high-pri
1327 * is NULL.
1328 */
1329 static const char *const modes[ZTI_NMODES] = {
1330 "fixed", "scale", "sync", "null"
1331 };
1332
1333 /* Parse the incoming config string. Modifies cfg */
1334 static int
spa_taskq_param_set(zio_type_t t,char * cfg)1335 spa_taskq_param_set(zio_type_t t, char *cfg)
1336 {
1337 int err = 0;
1338
1339 zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}};
1340
1341 char *next = cfg, *tok, *c;
1342
1343 /*
1344 * Parse out each element from the string and fill `row`. The entire
1345 * row has to be set at once, so any errors are flagged by just
1346 * breaking out of this loop early.
1347 */
1348 uint_t q;
1349 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1350 /* `next` is the start of the config */
1351 if (next == NULL)
1352 break;
1353
1354 /* Eat up leading space */
1355 while (isspace(*next))
1356 next++;
1357 if (*next == '\0')
1358 break;
1359
1360 /* Mode ends at space or end of string */
1361 tok = next;
1362 next = strchr(tok, ' ');
1363 if (next != NULL) *next++ = '\0';
1364
1365 /* Parameters start after a comma */
1366 c = strchr(tok, ',');
1367 if (c != NULL) *c++ = '\0';
1368
1369 /* Match mode string */
1370 uint_t mode;
1371 for (mode = 0; mode < ZTI_NMODES; mode++)
1372 if (strcmp(tok, modes[mode]) == 0)
1373 break;
1374 if (mode == ZTI_NMODES)
1375 break;
1376
1377 /* Invalid canary */
1378 row[q].zti_mode = ZTI_NMODES;
1379
1380 /* Per-mode setup */
1381 switch (mode) {
1382
1383 /*
1384 * FIXED is parameterised: number of queues, and number of
1385 * threads per queue.
1386 */
1387 case ZTI_MODE_FIXED: {
1388 /* No parameters? */
1389 if (c == NULL || *c == '\0')
1390 break;
1391
1392 /* Find next parameter */
1393 tok = c;
1394 c = strchr(tok, ',');
1395 if (c == NULL)
1396 break;
1397
1398 /* Take digits and convert */
1399 unsigned long long nq;
1400 if (!(isdigit(*tok)))
1401 break;
1402 err = ddi_strtoull(tok, &tok, 10, &nq);
1403 /* Must succeed and also end at the next param sep */
1404 if (err != 0 || tok != c)
1405 break;
1406
1407 /* Move past the comma */
1408 tok++;
1409 /* Need another number */
1410 if (!(isdigit(*tok)))
1411 break;
1412 /* Remember start to make sure we moved */
1413 c = tok;
1414
1415 /* Take digits */
1416 unsigned long long ntpq;
1417 err = ddi_strtoull(tok, &tok, 10, &ntpq);
1418 /* Must succeed, and moved forward */
1419 if (err != 0 || tok == c || *tok != '\0')
1420 break;
1421
1422 /*
1423 * sanity; zero queues/threads make no sense, and
1424 * 16K is almost certainly more than anyone will ever
1425 * need and avoids silly numbers like UINT32_MAX
1426 */
1427 if (nq == 0 || nq >= 16384 ||
1428 ntpq == 0 || ntpq >= 16384)
1429 break;
1430
1431 const zio_taskq_info_t zti = ZTI_P(ntpq, nq);
1432 row[q] = zti;
1433 break;
1434 }
1435
1436 case ZTI_MODE_SCALE: {
1437 const zio_taskq_info_t zti = ZTI_SCALE;
1438 row[q] = zti;
1439 break;
1440 }
1441
1442 case ZTI_MODE_SYNC: {
1443 const zio_taskq_info_t zti = ZTI_SYNC;
1444 row[q] = zti;
1445 break;
1446 }
1447
1448 case ZTI_MODE_NULL: {
1449 /*
1450 * Can only null the high-priority queues; the general-
1451 * purpose ones have to exist.
1452 */
1453 if (q != ZIO_TASKQ_ISSUE_HIGH &&
1454 q != ZIO_TASKQ_INTERRUPT_HIGH)
1455 break;
1456
1457 const zio_taskq_info_t zti = ZTI_NULL;
1458 row[q] = zti;
1459 break;
1460 }
1461
1462 default:
1463 break;
1464 }
1465
1466 /* Ensure we set a mode */
1467 if (row[q].zti_mode == ZTI_NMODES)
1468 break;
1469 }
1470
1471 /* Didn't get a full row, fail */
1472 if (q < ZIO_TASKQ_TYPES)
1473 return (SET_ERROR(EINVAL));
1474
1475 /* Eat trailing space */
1476 if (next != NULL)
1477 while (isspace(*next))
1478 next++;
1479
1480 /* If there's anything left over then fail */
1481 if (next != NULL && *next != '\0')
1482 return (SET_ERROR(EINVAL));
1483
1484 /* Success! Copy it into the real config */
1485 for (q = 0; q < ZIO_TASKQ_TYPES; q++)
1486 zio_taskqs[t][q] = row[q];
1487
1488 return (0);
1489 }
1490
1491 static int
spa_taskq_param_get(zio_type_t t,char * buf,boolean_t add_newline)1492 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline)
1493 {
1494 int pos = 0;
1495
1496 /* Build paramater string from live config */
1497 const char *sep = "";
1498 for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) {
1499 const zio_taskq_info_t *zti = &zio_taskqs[t][q];
1500 if (zti->zti_mode == ZTI_MODE_FIXED)
1501 pos += sprintf(&buf[pos], "%s%s,%u,%u", sep,
1502 modes[zti->zti_mode], zti->zti_count,
1503 zti->zti_value);
1504 else
1505 pos += sprintf(&buf[pos], "%s%s", sep,
1506 modes[zti->zti_mode]);
1507 sep = " ";
1508 }
1509
1510 if (add_newline)
1511 buf[pos++] = '\n';
1512 buf[pos] = '\0';
1513
1514 return (pos);
1515 }
1516
1517 #ifdef __linux__
1518 static int
spa_taskq_read_param_set(const char * val,zfs_kernel_param_t * kp)1519 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp)
1520 {
1521 char *cfg = kmem_strdup(val);
1522 int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg);
1523 kmem_free(cfg, strlen(val)+1);
1524 return (-err);
1525 }
1526 static int
spa_taskq_read_param_get(char * buf,zfs_kernel_param_t * kp)1527 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp)
1528 {
1529 return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE));
1530 }
1531
1532 static int
spa_taskq_write_param_set(const char * val,zfs_kernel_param_t * kp)1533 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp)
1534 {
1535 char *cfg = kmem_strdup(val);
1536 int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg);
1537 kmem_free(cfg, strlen(val)+1);
1538 return (-err);
1539 }
1540 static int
spa_taskq_write_param_get(char * buf,zfs_kernel_param_t * kp)1541 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp)
1542 {
1543 return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE));
1544 }
1545 #else
1546 /*
1547 * On FreeBSD load-time parameters can be set up before malloc() is available,
1548 * so we have to do all the parsing work on the stack.
1549 */
1550 #define SPA_TASKQ_PARAM_MAX (128)
1551
1552 static int
spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)1553 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)
1554 {
1555 char buf[SPA_TASKQ_PARAM_MAX];
1556 int err;
1557
1558 (void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE);
1559 err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1560 if (err || req->newptr == NULL)
1561 return (err);
1562 return (spa_taskq_param_set(ZIO_TYPE_READ, buf));
1563 }
1564
1565 static int
spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)1566 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)
1567 {
1568 char buf[SPA_TASKQ_PARAM_MAX];
1569 int err;
1570
1571 (void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE);
1572 err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1573 if (err || req->newptr == NULL)
1574 return (err);
1575 return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf));
1576 }
1577 #endif
1578 #endif /* _KERNEL */
1579
1580 /*
1581 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1582 * Note that a type may have multiple discrete taskqs to avoid lock contention
1583 * on the taskq itself.
1584 */
1585 void
spa_taskq_dispatch(spa_t * spa,zio_type_t t,zio_taskq_type_t q,task_func_t * func,zio_t * zio,boolean_t cutinline)1586 spa_taskq_dispatch(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1587 task_func_t *func, zio_t *zio, boolean_t cutinline)
1588 {
1589 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1590 taskq_t *tq;
1591
1592 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1593 ASSERT3U(tqs->stqs_count, !=, 0);
1594
1595 /*
1596 * NB: We are assuming that the zio can only be dispatched
1597 * to a single taskq at a time. It would be a grievous error
1598 * to dispatch the zio to another taskq at the same time.
1599 */
1600 ASSERT(zio);
1601 ASSERT(taskq_empty_ent(&zio->io_tqent));
1602
1603 if (tqs->stqs_count == 1) {
1604 tq = tqs->stqs_taskq[0];
1605 } else if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) &&
1606 ZIO_HAS_ALLOCATOR(zio)) {
1607 tq = tqs->stqs_taskq[zio->io_allocator % tqs->stqs_count];
1608 } else {
1609 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1610 }
1611
1612 taskq_dispatch_ent(tq, func, zio, cutinline ? TQ_FRONT : 0,
1613 &zio->io_tqent);
1614 }
1615
1616 static void
spa_create_zio_taskqs(spa_t * spa)1617 spa_create_zio_taskqs(spa_t *spa)
1618 {
1619 for (int t = 0; t < ZIO_TYPES; t++) {
1620 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1621 spa_taskqs_init(spa, t, q);
1622 }
1623 }
1624 }
1625
1626 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1627 static void
spa_thread(void * arg)1628 spa_thread(void *arg)
1629 {
1630 psetid_t zio_taskq_psrset_bind = PS_NONE;
1631 callb_cpr_t cprinfo;
1632
1633 spa_t *spa = arg;
1634 user_t *pu = PTOU(curproc);
1635
1636 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1637 spa->spa_name);
1638
1639 ASSERT(curproc != &p0);
1640 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1641 "zpool-%s", spa->spa_name);
1642 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1643
1644 /* bind this thread to the requested psrset */
1645 if (zio_taskq_psrset_bind != PS_NONE) {
1646 pool_lock();
1647 mutex_enter(&cpu_lock);
1648 mutex_enter(&pidlock);
1649 mutex_enter(&curproc->p_lock);
1650
1651 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1652 0, NULL, NULL) == 0) {
1653 curthread->t_bind_pset = zio_taskq_psrset_bind;
1654 } else {
1655 cmn_err(CE_WARN,
1656 "Couldn't bind process for zfs pool \"%s\" to "
1657 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1658 }
1659
1660 mutex_exit(&curproc->p_lock);
1661 mutex_exit(&pidlock);
1662 mutex_exit(&cpu_lock);
1663 pool_unlock();
1664 }
1665
1666 #ifdef HAVE_SYSDC
1667 if (zio_taskq_sysdc) {
1668 sysdc_thread_enter(curthread, 100, 0);
1669 }
1670 #endif
1671
1672 spa->spa_proc = curproc;
1673 spa->spa_did = curthread->t_did;
1674
1675 spa_create_zio_taskqs(spa);
1676
1677 mutex_enter(&spa->spa_proc_lock);
1678 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1679
1680 spa->spa_proc_state = SPA_PROC_ACTIVE;
1681 cv_broadcast(&spa->spa_proc_cv);
1682
1683 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1684 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1685 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1686 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1687
1688 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1689 spa->spa_proc_state = SPA_PROC_GONE;
1690 spa->spa_proc = &p0;
1691 cv_broadcast(&spa->spa_proc_cv);
1692 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1693
1694 mutex_enter(&curproc->p_lock);
1695 lwp_exit();
1696 }
1697 #endif
1698
1699 extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1700
1701 /*
1702 * Activate an uninitialized pool.
1703 */
1704 static void
spa_activate(spa_t * spa,spa_mode_t mode)1705 spa_activate(spa_t *spa, spa_mode_t mode)
1706 {
1707 metaslab_ops_t *msp = metaslab_allocator(spa);
1708 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1709
1710 spa->spa_state = POOL_STATE_ACTIVE;
1711 spa->spa_final_txg = UINT64_MAX;
1712 spa->spa_mode = mode;
1713 spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1714
1715 spa->spa_normal_class = metaslab_class_create(spa, "normal",
1716 msp, B_FALSE);
1717 spa->spa_log_class = metaslab_class_create(spa, "log", msp, B_TRUE);
1718 spa->spa_embedded_log_class = metaslab_class_create(spa,
1719 "embedded_log", msp, B_TRUE);
1720 spa->spa_special_class = metaslab_class_create(spa, "special",
1721 msp, B_FALSE);
1722 spa->spa_special_embedded_log_class = metaslab_class_create(spa,
1723 "special_embedded_log", msp, B_TRUE);
1724 spa->spa_dedup_class = metaslab_class_create(spa, "dedup",
1725 msp, B_FALSE);
1726
1727 /* Try to create a covering process */
1728 mutex_enter(&spa->spa_proc_lock);
1729 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1730 ASSERT(spa->spa_proc == &p0);
1731 spa->spa_did = 0;
1732
1733 #ifdef HAVE_SPA_THREAD
1734 /* Only create a process if we're going to be around a while. */
1735 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1736 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1737 NULL, 0) == 0) {
1738 spa->spa_proc_state = SPA_PROC_CREATED;
1739 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1740 cv_wait(&spa->spa_proc_cv,
1741 &spa->spa_proc_lock);
1742 }
1743 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1744 ASSERT(spa->spa_proc != &p0);
1745 ASSERT(spa->spa_did != 0);
1746 } else {
1747 #ifdef _KERNEL
1748 cmn_err(CE_WARN,
1749 "Couldn't create process for zfs pool \"%s\"\n",
1750 spa->spa_name);
1751 #endif
1752 }
1753 }
1754 #endif /* HAVE_SPA_THREAD */
1755 mutex_exit(&spa->spa_proc_lock);
1756
1757 /* If we didn't create a process, we need to create our taskqs. */
1758 if (spa->spa_proc == &p0) {
1759 spa_create_zio_taskqs(spa);
1760 }
1761
1762 for (size_t i = 0; i < TXG_SIZE; i++) {
1763 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1764 ZIO_FLAG_CANFAIL);
1765 }
1766
1767 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1768 offsetof(vdev_t, vdev_config_dirty_node));
1769 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1770 offsetof(objset_t, os_evicting_node));
1771 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1772 offsetof(vdev_t, vdev_state_dirty_node));
1773
1774 txg_list_create(&spa->spa_vdev_txg_list, spa,
1775 offsetof(struct vdev, vdev_txg_node));
1776
1777 avl_create(&spa->spa_errlist_scrub,
1778 spa_error_entry_compare, sizeof (spa_error_entry_t),
1779 offsetof(spa_error_entry_t, se_avl));
1780 avl_create(&spa->spa_errlist_last,
1781 spa_error_entry_compare, sizeof (spa_error_entry_t),
1782 offsetof(spa_error_entry_t, se_avl));
1783 avl_create(&spa->spa_errlist_healed,
1784 spa_error_entry_compare, sizeof (spa_error_entry_t),
1785 offsetof(spa_error_entry_t, se_avl));
1786
1787 spa_activate_os(spa);
1788
1789 spa_keystore_init(&spa->spa_keystore);
1790
1791 /*
1792 * This taskq is used to perform zvol-minor-related tasks
1793 * asynchronously. This has several advantages, including easy
1794 * resolution of various deadlocks.
1795 *
1796 * The taskq must be single threaded to ensure tasks are always
1797 * processed in the order in which they were dispatched.
1798 *
1799 * A taskq per pool allows one to keep the pools independent.
1800 * This way if one pool is suspended, it will not impact another.
1801 *
1802 * The preferred location to dispatch a zvol minor task is a sync
1803 * task. In this context, there is easy access to the spa_t and minimal
1804 * error handling is required because the sync task must succeed.
1805 */
1806 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1807 1, INT_MAX, 0);
1808
1809 /*
1810 * The taskq to preload metaslabs.
1811 */
1812 spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1813 metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1814 TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1815
1816 /*
1817 * Taskq dedicated to prefetcher threads: this is used to prevent the
1818 * pool traverse code from monopolizing the global (and limited)
1819 * system_taskq by inappropriately scheduling long running tasks on it.
1820 */
1821 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1822 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1823
1824 /*
1825 * The taskq to upgrade datasets in this pool. Currently used by
1826 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1827 */
1828 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1829 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1830 }
1831
1832 /*
1833 * Opposite of spa_activate().
1834 */
1835 static void
spa_deactivate(spa_t * spa)1836 spa_deactivate(spa_t *spa)
1837 {
1838 ASSERT(spa->spa_sync_on == B_FALSE);
1839 ASSERT0P(spa->spa_dsl_pool);
1840 ASSERT0P(spa->spa_root_vdev);
1841 ASSERT0P(spa->spa_async_zio_root);
1842 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1843
1844 spa_evicting_os_wait(spa);
1845
1846 if (spa->spa_zvol_taskq) {
1847 taskq_destroy(spa->spa_zvol_taskq);
1848 spa->spa_zvol_taskq = NULL;
1849 }
1850
1851 if (spa->spa_metaslab_taskq) {
1852 taskq_destroy(spa->spa_metaslab_taskq);
1853 spa->spa_metaslab_taskq = NULL;
1854 }
1855
1856 if (spa->spa_prefetch_taskq) {
1857 taskq_destroy(spa->spa_prefetch_taskq);
1858 spa->spa_prefetch_taskq = NULL;
1859 }
1860
1861 if (spa->spa_upgrade_taskq) {
1862 taskq_destroy(spa->spa_upgrade_taskq);
1863 spa->spa_upgrade_taskq = NULL;
1864 }
1865
1866 txg_list_destroy(&spa->spa_vdev_txg_list);
1867
1868 list_destroy(&spa->spa_config_dirty_list);
1869 list_destroy(&spa->spa_evicting_os_list);
1870 list_destroy(&spa->spa_state_dirty_list);
1871
1872 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1873
1874 for (int t = 0; t < ZIO_TYPES; t++) {
1875 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1876 spa_taskqs_fini(spa, t, q);
1877 }
1878 }
1879
1880 for (size_t i = 0; i < TXG_SIZE; i++) {
1881 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1882 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1883 spa->spa_txg_zio[i] = NULL;
1884 }
1885
1886 metaslab_class_destroy(spa->spa_normal_class);
1887 spa->spa_normal_class = NULL;
1888
1889 metaslab_class_destroy(spa->spa_log_class);
1890 spa->spa_log_class = NULL;
1891
1892 metaslab_class_destroy(spa->spa_embedded_log_class);
1893 spa->spa_embedded_log_class = NULL;
1894
1895 metaslab_class_destroy(spa->spa_special_class);
1896 spa->spa_special_class = NULL;
1897
1898 metaslab_class_destroy(spa->spa_special_embedded_log_class);
1899 spa->spa_special_embedded_log_class = NULL;
1900
1901 metaslab_class_destroy(spa->spa_dedup_class);
1902 spa->spa_dedup_class = NULL;
1903
1904 /*
1905 * If this was part of an import or the open otherwise failed, we may
1906 * still have errors left in the queues. Empty them just in case.
1907 */
1908 spa_errlog_drain(spa);
1909 avl_destroy(&spa->spa_errlist_scrub);
1910 avl_destroy(&spa->spa_errlist_last);
1911 avl_destroy(&spa->spa_errlist_healed);
1912
1913 spa_keystore_fini(&spa->spa_keystore);
1914
1915 spa->spa_state = POOL_STATE_UNINITIALIZED;
1916
1917 mutex_enter(&spa->spa_proc_lock);
1918 if (spa->spa_proc_state != SPA_PROC_NONE) {
1919 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1920 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1921 cv_broadcast(&spa->spa_proc_cv);
1922 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1923 ASSERT(spa->spa_proc != &p0);
1924 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1925 }
1926 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1927 spa->spa_proc_state = SPA_PROC_NONE;
1928 }
1929 ASSERT(spa->spa_proc == &p0);
1930 mutex_exit(&spa->spa_proc_lock);
1931
1932 /*
1933 * We want to make sure spa_thread() has actually exited the ZFS
1934 * module, so that the module can't be unloaded out from underneath
1935 * it.
1936 */
1937 if (spa->spa_did != 0) {
1938 thread_join(spa->spa_did);
1939 spa->spa_did = 0;
1940 }
1941
1942 spa_deactivate_os(spa);
1943
1944 }
1945
1946 /*
1947 * Verify a pool configuration, and construct the vdev tree appropriately. This
1948 * will create all the necessary vdevs in the appropriate layout, with each vdev
1949 * in the CLOSED state. This will prep the pool before open/creation/import.
1950 * All vdev validation is done by the vdev_alloc() routine.
1951 */
1952 int
spa_config_parse(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int atype)1953 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1954 uint_t id, int atype)
1955 {
1956 nvlist_t **child;
1957 uint_t children;
1958 int error;
1959
1960 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1961 return (error);
1962
1963 if ((*vdp)->vdev_ops->vdev_op_leaf)
1964 return (0);
1965
1966 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1967 &child, &children);
1968
1969 if (error == ENOENT)
1970 return (0);
1971
1972 if (error) {
1973 vdev_free(*vdp);
1974 *vdp = NULL;
1975 return (SET_ERROR(EINVAL));
1976 }
1977
1978 for (int c = 0; c < children; c++) {
1979 vdev_t *vd;
1980 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1981 atype)) != 0) {
1982 vdev_free(*vdp);
1983 *vdp = NULL;
1984 return (error);
1985 }
1986 }
1987
1988 ASSERT(*vdp != NULL);
1989
1990 return (0);
1991 }
1992
1993 static boolean_t
spa_should_flush_logs_on_unload(spa_t * spa)1994 spa_should_flush_logs_on_unload(spa_t *spa)
1995 {
1996 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1997 return (B_FALSE);
1998
1999 if (!spa_writeable(spa))
2000 return (B_FALSE);
2001
2002 if (!spa->spa_sync_on)
2003 return (B_FALSE);
2004
2005 if (spa_state(spa) != POOL_STATE_EXPORTED)
2006 return (B_FALSE);
2007
2008 if (zfs_keep_log_spacemaps_at_export)
2009 return (B_FALSE);
2010
2011 return (B_TRUE);
2012 }
2013
2014 /*
2015 * Opens a transaction that will set the flag that will instruct
2016 * spa_sync to attempt to flush all the metaslabs for that txg.
2017 */
2018 static void
spa_unload_log_sm_flush_all(spa_t * spa)2019 spa_unload_log_sm_flush_all(spa_t *spa)
2020 {
2021 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2022 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
2023
2024 ASSERT0(spa->spa_log_flushall_txg);
2025 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
2026
2027 dmu_tx_commit(tx);
2028 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
2029 }
2030
2031 static void
spa_unload_log_sm_metadata(spa_t * spa)2032 spa_unload_log_sm_metadata(spa_t *spa)
2033 {
2034 void *cookie = NULL;
2035 spa_log_sm_t *sls;
2036 log_summary_entry_t *e;
2037
2038 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
2039 &cookie)) != NULL) {
2040 VERIFY0(sls->sls_mscount);
2041 kmem_free(sls, sizeof (spa_log_sm_t));
2042 }
2043
2044 while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
2045 VERIFY0(e->lse_mscount);
2046 kmem_free(e, sizeof (log_summary_entry_t));
2047 }
2048
2049 spa->spa_unflushed_stats.sus_nblocks = 0;
2050 spa->spa_unflushed_stats.sus_memused = 0;
2051 spa->spa_unflushed_stats.sus_blocklimit = 0;
2052 }
2053
2054 static void
spa_destroy_aux_threads(spa_t * spa)2055 spa_destroy_aux_threads(spa_t *spa)
2056 {
2057 if (spa->spa_condense_zthr != NULL) {
2058 zthr_destroy(spa->spa_condense_zthr);
2059 spa->spa_condense_zthr = NULL;
2060 }
2061 if (spa->spa_checkpoint_discard_zthr != NULL) {
2062 zthr_destroy(spa->spa_checkpoint_discard_zthr);
2063 spa->spa_checkpoint_discard_zthr = NULL;
2064 }
2065 if (spa->spa_livelist_delete_zthr != NULL) {
2066 zthr_destroy(spa->spa_livelist_delete_zthr);
2067 spa->spa_livelist_delete_zthr = NULL;
2068 }
2069 if (spa->spa_livelist_condense_zthr != NULL) {
2070 zthr_destroy(spa->spa_livelist_condense_zthr);
2071 spa->spa_livelist_condense_zthr = NULL;
2072 }
2073 if (spa->spa_raidz_expand_zthr != NULL) {
2074 zthr_destroy(spa->spa_raidz_expand_zthr);
2075 spa->spa_raidz_expand_zthr = NULL;
2076 }
2077 }
2078
2079 static void
spa_sync_time_logger(spa_t * spa,uint64_t txg)2080 spa_sync_time_logger(spa_t *spa, uint64_t txg)
2081 {
2082 uint64_t curtime;
2083 dmu_tx_t *tx;
2084
2085 if (!spa_writeable(spa)) {
2086 return;
2087 }
2088 curtime = gethrestime_sec();
2089 if (curtime < spa->spa_last_noted_txg_time + spa_note_txg_time) {
2090 return;
2091 }
2092
2093 if (txg > spa->spa_last_noted_txg) {
2094 spa->spa_last_noted_txg_time = curtime;
2095 spa->spa_last_noted_txg = txg;
2096
2097 mutex_enter(&spa->spa_txg_log_time_lock);
2098 dbrrd_add(&spa->spa_txg_log_time, curtime, txg);
2099 mutex_exit(&spa->spa_txg_log_time_lock);
2100 }
2101
2102 if (curtime < spa->spa_last_flush_txg_time + spa_flush_txg_time) {
2103 return;
2104 }
2105 spa->spa_last_flush_txg_time = curtime;
2106
2107 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2108
2109 VERIFY0(zap_update(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
2110 DMU_POOL_TXG_LOG_TIME_MINUTES, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2111 &spa->spa_txg_log_time.dbr_minutes, tx));
2112 VERIFY0(zap_update(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
2113 DMU_POOL_TXG_LOG_TIME_DAYS, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2114 &spa->spa_txg_log_time.dbr_days, tx));
2115 VERIFY0(zap_update(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
2116 DMU_POOL_TXG_LOG_TIME_MONTHS, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2117 &spa->spa_txg_log_time.dbr_months, tx));
2118 dmu_tx_commit(tx);
2119 }
2120
2121 static void
spa_unload_sync_time_logger(spa_t * spa)2122 spa_unload_sync_time_logger(spa_t *spa)
2123 {
2124 uint64_t txg;
2125 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2126 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT));
2127
2128 txg = dmu_tx_get_txg(tx);
2129 spa->spa_last_noted_txg_time = 0;
2130 spa->spa_last_flush_txg_time = 0;
2131 spa_sync_time_logger(spa, txg);
2132
2133 dmu_tx_commit(tx);
2134 }
2135
2136 static void
spa_load_txg_log_time(spa_t * spa)2137 spa_load_txg_log_time(spa_t *spa)
2138 {
2139 int error;
2140
2141 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2142 DMU_POOL_TXG_LOG_TIME_MINUTES, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2143 &spa->spa_txg_log_time.dbr_minutes);
2144 if (error != 0 && error != ENOENT) {
2145 spa_load_note(spa, "unable to load a txg time database with "
2146 "minute resolution [error=%d]", error);
2147 }
2148 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2149 DMU_POOL_TXG_LOG_TIME_DAYS, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2150 &spa->spa_txg_log_time.dbr_days);
2151 if (error != 0 && error != ENOENT) {
2152 spa_load_note(spa, "unable to load a txg time database with "
2153 "day resolution [error=%d]", error);
2154 }
2155 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2156 DMU_POOL_TXG_LOG_TIME_MONTHS, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2157 &spa->spa_txg_log_time.dbr_months);
2158 if (error != 0 && error != ENOENT) {
2159 spa_load_note(spa, "unable to load a txg time database with "
2160 "month resolution [error=%d]", error);
2161 }
2162 }
2163
2164 static boolean_t
spa_should_sync_time_logger_on_unload(spa_t * spa)2165 spa_should_sync_time_logger_on_unload(spa_t *spa)
2166 {
2167
2168 if (!spa_writeable(spa))
2169 return (B_FALSE);
2170
2171 if (!spa->spa_sync_on)
2172 return (B_FALSE);
2173
2174 if (spa_state(spa) != POOL_STATE_EXPORTED)
2175 return (B_FALSE);
2176
2177 if (spa->spa_last_noted_txg == 0)
2178 return (B_FALSE);
2179
2180 return (B_TRUE);
2181 }
2182
2183
2184 /*
2185 * Opposite of spa_load().
2186 */
2187 static void
spa_unload(spa_t * spa)2188 spa_unload(spa_t *spa)
2189 {
2190 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
2191 spa->spa_export_thread == curthread);
2192 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
2193
2194 spa_import_progress_remove(spa_guid(spa));
2195 spa_load_note(spa, "UNLOADING");
2196
2197 spa_wake_waiters(spa);
2198
2199 /*
2200 * If we have set the spa_final_txg, we have already performed the
2201 * tasks below in spa_export_common(). We should not redo it here since
2202 * we delay the final TXGs beyond what spa_final_txg is set at.
2203 */
2204 if (spa->spa_final_txg == UINT64_MAX) {
2205 if (spa_should_sync_time_logger_on_unload(spa))
2206 spa_unload_sync_time_logger(spa);
2207
2208 /*
2209 * If the log space map feature is enabled and the pool is
2210 * getting exported (but not destroyed), we want to spend some
2211 * time flushing as many metaslabs as we can in an attempt to
2212 * destroy log space maps and save import time.
2213 */
2214 if (spa_should_flush_logs_on_unload(spa))
2215 spa_unload_log_sm_flush_all(spa);
2216
2217 /*
2218 * Stop async tasks.
2219 */
2220 spa_async_suspend(spa);
2221
2222 if (spa->spa_root_vdev) {
2223 vdev_t *root_vdev = spa->spa_root_vdev;
2224 vdev_initialize_stop_all(root_vdev,
2225 VDEV_INITIALIZE_ACTIVE);
2226 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
2227 vdev_autotrim_stop_all(spa);
2228 vdev_rebuild_stop_all(spa);
2229 l2arc_spa_rebuild_stop(spa);
2230 }
2231
2232 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2233 spa->spa_final_txg = spa_last_synced_txg(spa) +
2234 TXG_DEFER_SIZE + 1;
2235 spa_config_exit(spa, SCL_ALL, FTAG);
2236 }
2237
2238 /*
2239 * Stop syncing.
2240 */
2241 if (spa->spa_sync_on) {
2242 txg_sync_stop(spa->spa_dsl_pool);
2243 spa->spa_sync_on = B_FALSE;
2244 }
2245
2246 /*
2247 * This ensures that there is no async metaslab prefetching
2248 * while we attempt to unload the spa.
2249 */
2250 taskq_wait(spa->spa_metaslab_taskq);
2251
2252 if (spa->spa_mmp.mmp_thread)
2253 mmp_thread_stop(spa);
2254
2255 /*
2256 * Wait for any outstanding async I/O to complete.
2257 */
2258 if (spa->spa_async_zio_root != NULL) {
2259 for (int i = 0; i < max_ncpus; i++)
2260 (void) zio_wait(spa->spa_async_zio_root[i]);
2261 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
2262 spa->spa_async_zio_root = NULL;
2263 }
2264
2265 if (spa->spa_vdev_removal != NULL) {
2266 spa_vdev_removal_destroy(spa->spa_vdev_removal);
2267 spa->spa_vdev_removal = NULL;
2268 }
2269
2270 spa_destroy_aux_threads(spa);
2271
2272 spa_condense_fini(spa);
2273
2274 bpobj_close(&spa->spa_deferred_bpobj);
2275
2276 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
2277
2278 /*
2279 * Close all vdevs.
2280 */
2281 if (spa->spa_root_vdev)
2282 vdev_free(spa->spa_root_vdev);
2283 ASSERT0P(spa->spa_root_vdev);
2284
2285 /*
2286 * Close the dsl pool.
2287 */
2288 if (spa->spa_dsl_pool) {
2289 dsl_pool_close(spa->spa_dsl_pool);
2290 spa->spa_dsl_pool = NULL;
2291 spa->spa_meta_objset = NULL;
2292 }
2293
2294 ddt_unload(spa);
2295 brt_unload(spa);
2296 spa_unload_log_sm_metadata(spa);
2297
2298 /*
2299 * Drop and purge level 2 cache
2300 */
2301 spa_l2cache_drop(spa);
2302
2303 if (spa->spa_spares.sav_vdevs) {
2304 for (int i = 0; i < spa->spa_spares.sav_count; i++)
2305 vdev_free(spa->spa_spares.sav_vdevs[i]);
2306 kmem_free(spa->spa_spares.sav_vdevs,
2307 spa->spa_spares.sav_count * sizeof (void *));
2308 spa->spa_spares.sav_vdevs = NULL;
2309 }
2310 if (spa->spa_spares.sav_config) {
2311 nvlist_free(spa->spa_spares.sav_config);
2312 spa->spa_spares.sav_config = NULL;
2313 }
2314 spa->spa_spares.sav_count = 0;
2315
2316 if (spa->spa_l2cache.sav_vdevs) {
2317 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
2318 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
2319 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
2320 }
2321 kmem_free(spa->spa_l2cache.sav_vdevs,
2322 spa->spa_l2cache.sav_count * sizeof (void *));
2323 spa->spa_l2cache.sav_vdevs = NULL;
2324 }
2325 if (spa->spa_l2cache.sav_config) {
2326 nvlist_free(spa->spa_l2cache.sav_config);
2327 spa->spa_l2cache.sav_config = NULL;
2328 }
2329 spa->spa_l2cache.sav_count = 0;
2330
2331 spa->spa_async_suspended = 0;
2332
2333 spa->spa_indirect_vdevs_loaded = B_FALSE;
2334
2335 if (spa->spa_comment != NULL) {
2336 spa_strfree(spa->spa_comment);
2337 spa->spa_comment = NULL;
2338 }
2339 if (spa->spa_compatibility != NULL) {
2340 spa_strfree(spa->spa_compatibility);
2341 spa->spa_compatibility = NULL;
2342 }
2343
2344 spa->spa_raidz_expand = NULL;
2345 spa->spa_checkpoint_txg = 0;
2346
2347 spa_config_exit(spa, SCL_ALL, spa);
2348 }
2349
2350 /*
2351 * Load (or re-load) the current list of vdevs describing the active spares for
2352 * this pool. When this is called, we have some form of basic information in
2353 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
2354 * then re-generate a more complete list including status information.
2355 */
2356 void
spa_load_spares(spa_t * spa)2357 spa_load_spares(spa_t *spa)
2358 {
2359 nvlist_t **spares;
2360 uint_t nspares;
2361 int i;
2362 vdev_t *vd, *tvd;
2363
2364 #ifndef _KERNEL
2365 /*
2366 * zdb opens both the current state of the pool and the
2367 * checkpointed state (if present), with a different spa_t.
2368 *
2369 * As spare vdevs are shared among open pools, we skip loading
2370 * them when we load the checkpointed state of the pool.
2371 */
2372 if (!spa_writeable(spa))
2373 return;
2374 #endif
2375
2376 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2377
2378 /*
2379 * First, close and free any existing spare vdevs.
2380 */
2381 if (spa->spa_spares.sav_vdevs) {
2382 for (i = 0; i < spa->spa_spares.sav_count; i++) {
2383 vd = spa->spa_spares.sav_vdevs[i];
2384
2385 /* Undo the call to spa_activate() below */
2386 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2387 B_FALSE)) != NULL && tvd->vdev_isspare)
2388 spa_spare_remove(tvd);
2389 vdev_close(vd);
2390 vdev_free(vd);
2391 }
2392
2393 kmem_free(spa->spa_spares.sav_vdevs,
2394 spa->spa_spares.sav_count * sizeof (void *));
2395 }
2396
2397 if (spa->spa_spares.sav_config == NULL)
2398 nspares = 0;
2399 else
2400 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2401 ZPOOL_CONFIG_SPARES, &spares, &nspares));
2402
2403 spa->spa_spares.sav_count = (int)nspares;
2404 spa->spa_spares.sav_vdevs = NULL;
2405
2406 if (nspares == 0)
2407 return;
2408
2409 /*
2410 * Construct the array of vdevs, opening them to get status in the
2411 * process. For each spare, there is potentially two different vdev_t
2412 * structures associated with it: one in the list of spares (used only
2413 * for basic validation purposes) and one in the active vdev
2414 * configuration (if it's spared in). During this phase we open and
2415 * validate each vdev on the spare list. If the vdev also exists in the
2416 * active configuration, then we also mark this vdev as an active spare.
2417 */
2418 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
2419 KM_SLEEP);
2420 for (i = 0; i < spa->spa_spares.sav_count; i++) {
2421 VERIFY0(spa_config_parse(spa, &vd, spares[i], NULL, 0,
2422 VDEV_ALLOC_SPARE));
2423 ASSERT(vd != NULL);
2424
2425 spa->spa_spares.sav_vdevs[i] = vd;
2426
2427 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2428 B_FALSE)) != NULL) {
2429 if (!tvd->vdev_isspare)
2430 spa_spare_add(tvd);
2431
2432 /*
2433 * We only mark the spare active if we were successfully
2434 * able to load the vdev. Otherwise, importing a pool
2435 * with a bad active spare would result in strange
2436 * behavior, because multiple pool would think the spare
2437 * is actively in use.
2438 *
2439 * There is a vulnerability here to an equally bizarre
2440 * circumstance, where a dead active spare is later
2441 * brought back to life (onlined or otherwise). Given
2442 * the rarity of this scenario, and the extra complexity
2443 * it adds, we ignore the possibility.
2444 */
2445 if (!vdev_is_dead(tvd))
2446 spa_spare_activate(tvd);
2447 }
2448
2449 vd->vdev_top = vd;
2450 vd->vdev_aux = &spa->spa_spares;
2451
2452 if (vdev_open(vd) != 0)
2453 continue;
2454
2455 if (vdev_validate_aux(vd) == 0)
2456 spa_spare_add(vd);
2457 }
2458
2459 /*
2460 * Recompute the stashed list of spares, with status information
2461 * this time.
2462 */
2463 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
2464
2465 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
2466 KM_SLEEP);
2467 for (i = 0; i < spa->spa_spares.sav_count; i++)
2468 spares[i] = vdev_config_generate(spa,
2469 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
2470 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
2471 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
2472 spa->spa_spares.sav_count);
2473 for (i = 0; i < spa->spa_spares.sav_count; i++)
2474 nvlist_free(spares[i]);
2475 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
2476 }
2477
2478 /*
2479 * Load (or re-load) the current list of vdevs describing the active l2cache for
2480 * this pool. When this is called, we have some form of basic information in
2481 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
2482 * then re-generate a more complete list including status information.
2483 * Devices which are already active have their details maintained, and are
2484 * not re-opened.
2485 */
2486 void
spa_load_l2cache(spa_t * spa)2487 spa_load_l2cache(spa_t *spa)
2488 {
2489 nvlist_t **l2cache = NULL;
2490 uint_t nl2cache;
2491 int i, j, oldnvdevs;
2492 uint64_t guid;
2493 vdev_t *vd, **oldvdevs, **newvdevs;
2494 spa_aux_vdev_t *sav = &spa->spa_l2cache;
2495
2496 #ifndef _KERNEL
2497 /*
2498 * zdb opens both the current state of the pool and the
2499 * checkpointed state (if present), with a different spa_t.
2500 *
2501 * As L2 caches are part of the ARC which is shared among open
2502 * pools, we skip loading them when we load the checkpointed
2503 * state of the pool.
2504 */
2505 if (!spa_writeable(spa))
2506 return;
2507 #endif
2508
2509 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2510
2511 oldvdevs = sav->sav_vdevs;
2512 oldnvdevs = sav->sav_count;
2513 sav->sav_vdevs = NULL;
2514 sav->sav_count = 0;
2515
2516 if (sav->sav_config == NULL) {
2517 nl2cache = 0;
2518 newvdevs = NULL;
2519 goto out;
2520 }
2521
2522 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
2523 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
2524 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
2525
2526 /*
2527 * Process new nvlist of vdevs.
2528 */
2529 for (i = 0; i < nl2cache; i++) {
2530 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2531
2532 newvdevs[i] = NULL;
2533 for (j = 0; j < oldnvdevs; j++) {
2534 vd = oldvdevs[j];
2535 if (vd != NULL && guid == vd->vdev_guid) {
2536 /*
2537 * Retain previous vdev for add/remove ops.
2538 */
2539 newvdevs[i] = vd;
2540 oldvdevs[j] = NULL;
2541 break;
2542 }
2543 }
2544
2545 if (newvdevs[i] == NULL) {
2546 /*
2547 * Create new vdev
2548 */
2549 VERIFY0(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2550 VDEV_ALLOC_L2CACHE));
2551 ASSERT(vd != NULL);
2552 newvdevs[i] = vd;
2553
2554 /*
2555 * Commit this vdev as an l2cache device,
2556 * even if it fails to open.
2557 */
2558 spa_l2cache_add(vd);
2559
2560 vd->vdev_top = vd;
2561 vd->vdev_aux = sav;
2562
2563 spa_l2cache_activate(vd);
2564
2565 if (vdev_open(vd) != 0)
2566 continue;
2567
2568 (void) vdev_validate_aux(vd);
2569
2570 if (!vdev_is_dead(vd))
2571 l2arc_add_vdev(spa, vd);
2572
2573 /*
2574 * Upon cache device addition to a pool or pool
2575 * creation with a cache device or if the header
2576 * of the device is invalid we issue an async
2577 * TRIM command for the whole device which will
2578 * execute if l2arc_trim_ahead > 0.
2579 */
2580 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2581 }
2582 }
2583
2584 sav->sav_vdevs = newvdevs;
2585 sav->sav_count = (int)nl2cache;
2586
2587 /*
2588 * Recompute the stashed list of l2cache devices, with status
2589 * information this time.
2590 */
2591 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2592
2593 if (sav->sav_count > 0)
2594 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2595 KM_SLEEP);
2596 for (i = 0; i < sav->sav_count; i++)
2597 l2cache[i] = vdev_config_generate(spa,
2598 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2599 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2600 (const nvlist_t * const *)l2cache, sav->sav_count);
2601
2602 out:
2603 /*
2604 * Purge vdevs that were dropped
2605 */
2606 if (oldvdevs) {
2607 for (i = 0; i < oldnvdevs; i++) {
2608 uint64_t pool;
2609
2610 vd = oldvdevs[i];
2611 if (vd != NULL) {
2612 ASSERT(vd->vdev_isl2cache);
2613
2614 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2615 pool != 0ULL && l2arc_vdev_present(vd))
2616 l2arc_remove_vdev(vd);
2617 vdev_clear_stats(vd);
2618 vdev_free(vd);
2619 }
2620 }
2621
2622 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2623 }
2624
2625 for (i = 0; i < sav->sav_count; i++)
2626 nvlist_free(l2cache[i]);
2627 if (sav->sav_count)
2628 kmem_free(l2cache, sav->sav_count * sizeof (void *));
2629 }
2630
2631 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)2632 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2633 {
2634 dmu_buf_t *db;
2635 char *packed = NULL;
2636 size_t nvsize = 0;
2637 int error;
2638 *value = NULL;
2639
2640 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2641 if (error)
2642 return (error);
2643
2644 nvsize = *(uint64_t *)db->db_data;
2645 dmu_buf_rele(db, FTAG);
2646
2647 packed = vmem_alloc(nvsize, KM_SLEEP);
2648 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2649 DMU_READ_PREFETCH);
2650 if (error == 0)
2651 error = nvlist_unpack(packed, nvsize, value, 0);
2652 vmem_free(packed, nvsize);
2653
2654 return (error);
2655 }
2656
2657 /*
2658 * Concrete top-level vdevs that are not missing and are not logs. At every
2659 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2660 */
2661 static uint64_t
spa_healthy_core_tvds(spa_t * spa)2662 spa_healthy_core_tvds(spa_t *spa)
2663 {
2664 vdev_t *rvd = spa->spa_root_vdev;
2665 uint64_t tvds = 0;
2666
2667 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2668 vdev_t *vd = rvd->vdev_child[i];
2669 if (vd->vdev_islog)
2670 continue;
2671 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2672 tvds++;
2673 }
2674
2675 return (tvds);
2676 }
2677
2678 /*
2679 * Checks to see if the given vdev could not be opened, in which case we post a
2680 * sysevent to notify the autoreplace code that the device has been removed.
2681 */
2682 static void
spa_check_removed(vdev_t * vd)2683 spa_check_removed(vdev_t *vd)
2684 {
2685 for (uint64_t c = 0; c < vd->vdev_children; c++)
2686 spa_check_removed(vd->vdev_child[c]);
2687
2688 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2689 vdev_is_concrete(vd)) {
2690 zfs_post_autoreplace(vd->vdev_spa, vd);
2691 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2692 }
2693 }
2694
2695 static int
spa_check_for_missing_logs(spa_t * spa)2696 spa_check_for_missing_logs(spa_t *spa)
2697 {
2698 vdev_t *rvd = spa->spa_root_vdev;
2699
2700 /*
2701 * If we're doing a normal import, then build up any additional
2702 * diagnostic information about missing log devices.
2703 * We'll pass this up to the user for further processing.
2704 */
2705 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2706 nvlist_t **child, *nv;
2707 uint64_t idx = 0;
2708
2709 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2710 KM_SLEEP);
2711 nv = fnvlist_alloc();
2712
2713 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2714 vdev_t *tvd = rvd->vdev_child[c];
2715
2716 /*
2717 * We consider a device as missing only if it failed
2718 * to open (i.e. offline or faulted is not considered
2719 * as missing).
2720 */
2721 if (tvd->vdev_islog &&
2722 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2723 child[idx++] = vdev_config_generate(spa, tvd,
2724 B_FALSE, VDEV_CONFIG_MISSING);
2725 }
2726 }
2727
2728 if (idx > 0) {
2729 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2730 (const nvlist_t * const *)child, idx);
2731 fnvlist_add_nvlist(spa->spa_load_info,
2732 ZPOOL_CONFIG_MISSING_DEVICES, nv);
2733
2734 for (uint64_t i = 0; i < idx; i++)
2735 nvlist_free(child[i]);
2736 }
2737 nvlist_free(nv);
2738 kmem_free(child, rvd->vdev_children * sizeof (char **));
2739
2740 if (idx > 0) {
2741 spa_load_failed(spa, "some log devices are missing");
2742 vdev_dbgmsg_print_tree(rvd, 2);
2743 return (SET_ERROR(ENXIO));
2744 }
2745 } else {
2746 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2747 vdev_t *tvd = rvd->vdev_child[c];
2748
2749 if (tvd->vdev_islog &&
2750 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2751 spa_set_log_state(spa, SPA_LOG_CLEAR);
2752 spa_load_note(spa, "some log devices are "
2753 "missing, ZIL is dropped.");
2754 vdev_dbgmsg_print_tree(rvd, 2);
2755 break;
2756 }
2757 }
2758 }
2759
2760 return (0);
2761 }
2762
2763 /*
2764 * Check for missing log devices
2765 */
2766 static boolean_t
spa_check_logs(spa_t * spa)2767 spa_check_logs(spa_t *spa)
2768 {
2769 boolean_t rv = B_FALSE;
2770 dsl_pool_t *dp = spa_get_dsl(spa);
2771
2772 switch (spa->spa_log_state) {
2773 default:
2774 break;
2775 case SPA_LOG_MISSING:
2776 /* need to recheck in case slog has been restored */
2777 case SPA_LOG_UNKNOWN:
2778 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2779 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2780 if (rv)
2781 spa_set_log_state(spa, SPA_LOG_MISSING);
2782 break;
2783 }
2784 return (rv);
2785 }
2786
2787 /*
2788 * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2789 */
2790 static boolean_t
spa_passivate_log(spa_t * spa)2791 spa_passivate_log(spa_t *spa)
2792 {
2793 vdev_t *rvd = spa->spa_root_vdev;
2794 boolean_t slog_found = B_FALSE;
2795
2796 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2797
2798 for (int c = 0; c < rvd->vdev_children; c++) {
2799 vdev_t *tvd = rvd->vdev_child[c];
2800
2801 if (tvd->vdev_islog) {
2802 ASSERT0P(tvd->vdev_log_mg);
2803 metaslab_group_passivate(tvd->vdev_mg);
2804 slog_found = B_TRUE;
2805 }
2806 }
2807
2808 return (slog_found);
2809 }
2810
2811 /*
2812 * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2813 */
2814 static void
spa_activate_log(spa_t * spa)2815 spa_activate_log(spa_t *spa)
2816 {
2817 vdev_t *rvd = spa->spa_root_vdev;
2818
2819 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2820
2821 for (int c = 0; c < rvd->vdev_children; c++) {
2822 vdev_t *tvd = rvd->vdev_child[c];
2823
2824 if (tvd->vdev_islog) {
2825 ASSERT0P(tvd->vdev_log_mg);
2826 metaslab_group_activate(tvd->vdev_mg);
2827 }
2828 }
2829 }
2830
2831 int
spa_reset_logs(spa_t * spa)2832 spa_reset_logs(spa_t *spa)
2833 {
2834 int error;
2835
2836 error = dmu_objset_find(spa_name(spa), zil_reset,
2837 NULL, DS_FIND_CHILDREN);
2838 if (error == 0) {
2839 /*
2840 * We successfully offlined the log device, sync out the
2841 * current txg so that the "stubby" block can be removed
2842 * by zil_sync().
2843 */
2844 txg_wait_synced(spa->spa_dsl_pool, 0);
2845 }
2846 return (error);
2847 }
2848
2849 static void
spa_aux_check_removed(spa_aux_vdev_t * sav)2850 spa_aux_check_removed(spa_aux_vdev_t *sav)
2851 {
2852 for (int i = 0; i < sav->sav_count; i++)
2853 spa_check_removed(sav->sav_vdevs[i]);
2854 }
2855
2856 void
spa_claim_notify(zio_t * zio)2857 spa_claim_notify(zio_t *zio)
2858 {
2859 spa_t *spa = zio->io_spa;
2860
2861 if (zio->io_error)
2862 return;
2863
2864 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2865 if (spa->spa_claim_max_txg < BP_GET_BIRTH(zio->io_bp))
2866 spa->spa_claim_max_txg = BP_GET_BIRTH(zio->io_bp);
2867 mutex_exit(&spa->spa_props_lock);
2868 }
2869
2870 typedef struct spa_load_error {
2871 boolean_t sle_verify_data;
2872 uint64_t sle_meta_count;
2873 uint64_t sle_data_count;
2874 } spa_load_error_t;
2875
2876 static void
spa_load_verify_done(zio_t * zio)2877 spa_load_verify_done(zio_t *zio)
2878 {
2879 blkptr_t *bp = zio->io_bp;
2880 spa_load_error_t *sle = zio->io_private;
2881 dmu_object_type_t type = BP_GET_TYPE(bp);
2882 int error = zio->io_error;
2883 spa_t *spa = zio->io_spa;
2884
2885 abd_free(zio->io_abd);
2886 if (error) {
2887 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2888 type != DMU_OT_INTENT_LOG)
2889 atomic_inc_64(&sle->sle_meta_count);
2890 else
2891 atomic_inc_64(&sle->sle_data_count);
2892 }
2893
2894 mutex_enter(&spa->spa_scrub_lock);
2895 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2896 cv_broadcast(&spa->spa_scrub_io_cv);
2897 mutex_exit(&spa->spa_scrub_lock);
2898 }
2899
2900 /*
2901 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2902 * By default, we set it to 1/16th of the arc.
2903 */
2904 static uint_t spa_load_verify_shift = 4;
2905 static int spa_load_verify_metadata = B_TRUE;
2906 static int spa_load_verify_data = B_TRUE;
2907
2908 static int
spa_load_verify_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)2909 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2910 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2911 {
2912 zio_t *rio = arg;
2913 spa_load_error_t *sle = rio->io_private;
2914
2915 (void) zilog, (void) dnp;
2916
2917 /*
2918 * Note: normally this routine will not be called if
2919 * spa_load_verify_metadata is not set. However, it may be useful
2920 * to manually set the flag after the traversal has begun.
2921 */
2922 if (!spa_load_verify_metadata)
2923 return (0);
2924
2925 /*
2926 * Sanity check the block pointer in order to detect obvious damage
2927 * before using the contents in subsequent checks or in zio_read().
2928 * When damaged consider it to be a metadata error since we cannot
2929 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2930 */
2931 if (zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2932 atomic_inc_64(&sle->sle_meta_count);
2933 return (0);
2934 }
2935
2936 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2937 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2938 return (0);
2939
2940 if (!BP_IS_METADATA(bp) &&
2941 (!spa_load_verify_data || !sle->sle_verify_data))
2942 return (0);
2943
2944 uint64_t maxinflight_bytes =
2945 arc_target_bytes() >> spa_load_verify_shift;
2946 size_t size = BP_GET_PSIZE(bp);
2947
2948 mutex_enter(&spa->spa_scrub_lock);
2949 while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2950 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2951 spa->spa_load_verify_bytes += size;
2952 mutex_exit(&spa->spa_scrub_lock);
2953
2954 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2955 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2956 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2957 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2958 return (0);
2959 }
2960
2961 static int
verify_dataset_name_len(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)2962 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2963 {
2964 (void) dp, (void) arg;
2965
2966 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2967 return (SET_ERROR(ENAMETOOLONG));
2968
2969 return (0);
2970 }
2971
2972 static int
spa_load_verify(spa_t * spa)2973 spa_load_verify(spa_t *spa)
2974 {
2975 zio_t *rio;
2976 spa_load_error_t sle = { 0 };
2977 zpool_load_policy_t policy;
2978 boolean_t verify_ok = B_FALSE;
2979 int error = 0;
2980
2981 zpool_get_load_policy(spa->spa_config, &policy);
2982
2983 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2984 policy.zlp_maxmeta == UINT64_MAX)
2985 return (0);
2986
2987 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2988 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2989 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2990 DS_FIND_CHILDREN);
2991 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2992 if (error != 0)
2993 return (error);
2994
2995 /*
2996 * Verify data only if we are rewinding or error limit was set.
2997 * Otherwise nothing except dbgmsg care about it to waste time.
2998 */
2999 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
3000 (policy.zlp_maxdata < UINT64_MAX);
3001
3002 rio = zio_root(spa, NULL, &sle,
3003 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
3004
3005 if (spa_load_verify_metadata) {
3006 if (spa->spa_extreme_rewind) {
3007 spa_load_note(spa, "performing a complete scan of the "
3008 "pool since extreme rewind is on. This may take "
3009 "a very long time.\n (spa_load_verify_data=%u, "
3010 "spa_load_verify_metadata=%u)",
3011 spa_load_verify_data, spa_load_verify_metadata);
3012 }
3013
3014 error = traverse_pool(spa, spa->spa_verify_min_txg,
3015 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
3016 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
3017 }
3018
3019 (void) zio_wait(rio);
3020 ASSERT0(spa->spa_load_verify_bytes);
3021
3022 spa->spa_load_meta_errors = sle.sle_meta_count;
3023 spa->spa_load_data_errors = sle.sle_data_count;
3024
3025 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
3026 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
3027 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
3028 (u_longlong_t)sle.sle_data_count);
3029 }
3030
3031 if (spa_load_verify_dryrun ||
3032 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
3033 sle.sle_data_count <= policy.zlp_maxdata)) {
3034 int64_t loss = 0;
3035
3036 verify_ok = B_TRUE;
3037 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
3038 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
3039
3040 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
3041 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
3042 spa->spa_load_txg_ts);
3043 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
3044 loss);
3045 fnvlist_add_uint64(spa->spa_load_info,
3046 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
3047 fnvlist_add_uint64(spa->spa_load_info,
3048 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
3049 } else {
3050 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
3051 }
3052
3053 if (spa_load_verify_dryrun)
3054 return (0);
3055
3056 if (error) {
3057 if (error != ENXIO && error != EIO)
3058 error = SET_ERROR(EIO);
3059 return (error);
3060 }
3061
3062 return (verify_ok ? 0 : EIO);
3063 }
3064
3065 /*
3066 * Find a value in the pool props object.
3067 */
3068 static void
spa_prop_find(spa_t * spa,zpool_prop_t prop,uint64_t * val)3069 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
3070 {
3071 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
3072 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
3073 }
3074
3075 /*
3076 * Find a value in the pool directory object.
3077 */
3078 static int
spa_dir_prop(spa_t * spa,const char * name,uint64_t * val,boolean_t log_enoent)3079 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
3080 {
3081 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3082 name, sizeof (uint64_t), 1, val);
3083
3084 if (error != 0 && (error != ENOENT || log_enoent)) {
3085 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
3086 "[error=%d]", name, error);
3087 }
3088
3089 return (error);
3090 }
3091
3092 static int
spa_vdev_err(vdev_t * vdev,vdev_aux_t aux,int err)3093 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
3094 {
3095 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
3096 return (SET_ERROR(err));
3097 }
3098
3099 boolean_t
spa_livelist_delete_check(spa_t * spa)3100 spa_livelist_delete_check(spa_t *spa)
3101 {
3102 return (spa->spa_livelists_to_delete != 0);
3103 }
3104
3105 static boolean_t
spa_livelist_delete_cb_check(void * arg,zthr_t * z)3106 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
3107 {
3108 (void) z;
3109 spa_t *spa = arg;
3110 return (spa_livelist_delete_check(spa));
3111 }
3112
3113 static int
delete_blkptr_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)3114 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3115 {
3116 spa_t *spa = arg;
3117 zio_free(spa, tx->tx_txg, bp);
3118 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3119 -bp_get_dsize_sync(spa, bp),
3120 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3121 return (0);
3122 }
3123
3124 static int
dsl_get_next_livelist_obj(objset_t * os,uint64_t zap_obj,uint64_t * llp)3125 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
3126 {
3127 int err;
3128 zap_cursor_t zc;
3129 zap_attribute_t *za = zap_attribute_alloc();
3130 zap_cursor_init(&zc, os, zap_obj);
3131 err = zap_cursor_retrieve(&zc, za);
3132 zap_cursor_fini(&zc);
3133 if (err == 0)
3134 *llp = za->za_first_integer;
3135 zap_attribute_free(za);
3136 return (err);
3137 }
3138
3139 /*
3140 * Components of livelist deletion that must be performed in syncing
3141 * context: freeing block pointers and updating the pool-wide data
3142 * structures to indicate how much work is left to do
3143 */
3144 typedef struct sublist_delete_arg {
3145 spa_t *spa;
3146 dsl_deadlist_t *ll;
3147 uint64_t key;
3148 bplist_t *to_free;
3149 } sublist_delete_arg_t;
3150
3151 static void
sublist_delete_sync(void * arg,dmu_tx_t * tx)3152 sublist_delete_sync(void *arg, dmu_tx_t *tx)
3153 {
3154 sublist_delete_arg_t *sda = arg;
3155 spa_t *spa = sda->spa;
3156 dsl_deadlist_t *ll = sda->ll;
3157 uint64_t key = sda->key;
3158 bplist_t *to_free = sda->to_free;
3159
3160 bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
3161 dsl_deadlist_remove_entry(ll, key, tx);
3162 }
3163
3164 typedef struct livelist_delete_arg {
3165 spa_t *spa;
3166 uint64_t ll_obj;
3167 uint64_t zap_obj;
3168 } livelist_delete_arg_t;
3169
3170 static void
livelist_delete_sync(void * arg,dmu_tx_t * tx)3171 livelist_delete_sync(void *arg, dmu_tx_t *tx)
3172 {
3173 livelist_delete_arg_t *lda = arg;
3174 spa_t *spa = lda->spa;
3175 uint64_t ll_obj = lda->ll_obj;
3176 uint64_t zap_obj = lda->zap_obj;
3177 objset_t *mos = spa->spa_meta_objset;
3178 uint64_t count;
3179
3180 /* free the livelist and decrement the feature count */
3181 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
3182 dsl_deadlist_free(mos, ll_obj, tx);
3183 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
3184 VERIFY0(zap_count(mos, zap_obj, &count));
3185 if (count == 0) {
3186 /* no more livelists to delete */
3187 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
3188 DMU_POOL_DELETED_CLONES, tx));
3189 VERIFY0(zap_destroy(mos, zap_obj, tx));
3190 spa->spa_livelists_to_delete = 0;
3191 spa_notify_waiters(spa);
3192 }
3193 }
3194
3195 /*
3196 * Load in the value for the livelist to be removed and open it. Then,
3197 * load its first sublist and determine which block pointers should actually
3198 * be freed. Then, call a synctask which performs the actual frees and updates
3199 * the pool-wide livelist data.
3200 */
3201 static void
spa_livelist_delete_cb(void * arg,zthr_t * z)3202 spa_livelist_delete_cb(void *arg, zthr_t *z)
3203 {
3204 spa_t *spa = arg;
3205 uint64_t ll_obj = 0, count;
3206 objset_t *mos = spa->spa_meta_objset;
3207 uint64_t zap_obj = spa->spa_livelists_to_delete;
3208 /*
3209 * Determine the next livelist to delete. This function should only
3210 * be called if there is at least one deleted clone.
3211 */
3212 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
3213 VERIFY0(zap_count(mos, ll_obj, &count));
3214 if (count > 0) {
3215 dsl_deadlist_t *ll;
3216 dsl_deadlist_entry_t *dle;
3217 bplist_t to_free;
3218 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
3219 VERIFY0(dsl_deadlist_open(ll, mos, ll_obj));
3220 dle = dsl_deadlist_first(ll);
3221 ASSERT3P(dle, !=, NULL);
3222 bplist_create(&to_free);
3223 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
3224 z, NULL);
3225 if (err == 0) {
3226 sublist_delete_arg_t sync_arg = {
3227 .spa = spa,
3228 .ll = ll,
3229 .key = dle->dle_mintxg,
3230 .to_free = &to_free
3231 };
3232 zfs_dbgmsg("deleting sublist (id %llu) from"
3233 " livelist %llu, %lld remaining",
3234 (u_longlong_t)dle->dle_bpobj.bpo_object,
3235 (u_longlong_t)ll_obj, (longlong_t)count - 1);
3236 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
3237 sublist_delete_sync, &sync_arg, 0,
3238 ZFS_SPACE_CHECK_DESTROY));
3239 } else {
3240 VERIFY3U(err, ==, EINTR);
3241 }
3242 bplist_clear(&to_free);
3243 bplist_destroy(&to_free);
3244 dsl_deadlist_close(ll);
3245 kmem_free(ll, sizeof (dsl_deadlist_t));
3246 } else {
3247 livelist_delete_arg_t sync_arg = {
3248 .spa = spa,
3249 .ll_obj = ll_obj,
3250 .zap_obj = zap_obj
3251 };
3252 zfs_dbgmsg("deletion of livelist %llu completed",
3253 (u_longlong_t)ll_obj);
3254 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
3255 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
3256 }
3257 }
3258
3259 static void
spa_start_livelist_destroy_thread(spa_t * spa)3260 spa_start_livelist_destroy_thread(spa_t *spa)
3261 {
3262 ASSERT0P(spa->spa_livelist_delete_zthr);
3263 spa->spa_livelist_delete_zthr =
3264 zthr_create("z_livelist_destroy",
3265 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
3266 minclsyspri);
3267 }
3268
3269 typedef struct livelist_new_arg {
3270 bplist_t *allocs;
3271 bplist_t *frees;
3272 } livelist_new_arg_t;
3273
3274 static int
livelist_track_new_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3275 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3276 dmu_tx_t *tx)
3277 {
3278 ASSERT0P(tx);
3279 livelist_new_arg_t *lna = arg;
3280 if (bp_freed) {
3281 bplist_append(lna->frees, bp);
3282 } else {
3283 bplist_append(lna->allocs, bp);
3284 zfs_livelist_condense_new_alloc++;
3285 }
3286 return (0);
3287 }
3288
3289 typedef struct livelist_condense_arg {
3290 spa_t *spa;
3291 bplist_t to_keep;
3292 uint64_t first_size;
3293 uint64_t next_size;
3294 } livelist_condense_arg_t;
3295
3296 static void
spa_livelist_condense_sync(void * arg,dmu_tx_t * tx)3297 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
3298 {
3299 livelist_condense_arg_t *lca = arg;
3300 spa_t *spa = lca->spa;
3301 bplist_t new_frees;
3302 dsl_dataset_t *ds = spa->spa_to_condense.ds;
3303
3304 /* Have we been cancelled? */
3305 if (spa->spa_to_condense.cancelled) {
3306 zfs_livelist_condense_sync_cancel++;
3307 goto out;
3308 }
3309
3310 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3311 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3312 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
3313
3314 /*
3315 * It's possible that the livelist was changed while the zthr was
3316 * running. Therefore, we need to check for new blkptrs in the two
3317 * entries being condensed and continue to track them in the livelist.
3318 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
3319 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
3320 * we need to sort them into two different bplists.
3321 */
3322 uint64_t first_obj = first->dle_bpobj.bpo_object;
3323 uint64_t next_obj = next->dle_bpobj.bpo_object;
3324 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3325 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3326
3327 bplist_create(&new_frees);
3328 livelist_new_arg_t new_bps = {
3329 .allocs = &lca->to_keep,
3330 .frees = &new_frees,
3331 };
3332
3333 if (cur_first_size > lca->first_size) {
3334 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
3335 livelist_track_new_cb, &new_bps, lca->first_size));
3336 }
3337 if (cur_next_size > lca->next_size) {
3338 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
3339 livelist_track_new_cb, &new_bps, lca->next_size));
3340 }
3341
3342 dsl_deadlist_clear_entry(first, ll, tx);
3343 ASSERT(bpobj_is_empty(&first->dle_bpobj));
3344 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
3345
3346 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
3347 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
3348 bplist_destroy(&new_frees);
3349
3350 char dsname[ZFS_MAX_DATASET_NAME_LEN];
3351 dsl_dataset_name(ds, dsname);
3352 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
3353 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
3354 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
3355 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
3356 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
3357 (u_longlong_t)cur_next_size,
3358 (u_longlong_t)first->dle_bpobj.bpo_object,
3359 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
3360 out:
3361 dmu_buf_rele(ds->ds_dbuf, spa);
3362 spa->spa_to_condense.ds = NULL;
3363 bplist_clear(&lca->to_keep);
3364 bplist_destroy(&lca->to_keep);
3365 kmem_free(lca, sizeof (livelist_condense_arg_t));
3366 spa->spa_to_condense.syncing = B_FALSE;
3367 }
3368
3369 static void
spa_livelist_condense_cb(void * arg,zthr_t * t)3370 spa_livelist_condense_cb(void *arg, zthr_t *t)
3371 {
3372 while (zfs_livelist_condense_zthr_pause &&
3373 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3374 delay(1);
3375
3376 spa_t *spa = arg;
3377 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3378 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3379 uint64_t first_size, next_size;
3380
3381 livelist_condense_arg_t *lca =
3382 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
3383 bplist_create(&lca->to_keep);
3384
3385 /*
3386 * Process the livelists (matching FREEs and ALLOCs) in open context
3387 * so we have minimal work in syncing context to condense.
3388 *
3389 * We save bpobj sizes (first_size and next_size) to use later in
3390 * syncing context to determine if entries were added to these sublists
3391 * while in open context. This is possible because the clone is still
3392 * active and open for normal writes and we want to make sure the new,
3393 * unprocessed blockpointers are inserted into the livelist normally.
3394 *
3395 * Note that dsl_process_sub_livelist() both stores the size number of
3396 * blockpointers and iterates over them while the bpobj's lock held, so
3397 * the sizes returned to us are consistent which what was actually
3398 * processed.
3399 */
3400 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
3401 &first_size);
3402 if (err == 0)
3403 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
3404 t, &next_size);
3405
3406 if (err == 0) {
3407 while (zfs_livelist_condense_sync_pause &&
3408 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3409 delay(1);
3410
3411 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3412 dmu_tx_mark_netfree(tx);
3413 dmu_tx_hold_space(tx, 1);
3414 err = dmu_tx_assign(tx, DMU_TX_NOWAIT | DMU_TX_NOTHROTTLE);
3415 if (err == 0) {
3416 /*
3417 * Prevent the condense zthr restarting before
3418 * the synctask completes.
3419 */
3420 spa->spa_to_condense.syncing = B_TRUE;
3421 lca->spa = spa;
3422 lca->first_size = first_size;
3423 lca->next_size = next_size;
3424 dsl_sync_task_nowait(spa_get_dsl(spa),
3425 spa_livelist_condense_sync, lca, tx);
3426 dmu_tx_commit(tx);
3427 return;
3428 }
3429 }
3430 /*
3431 * Condensing can not continue: either it was externally stopped or
3432 * we were unable to assign to a tx because the pool has run out of
3433 * space. In the second case, we'll just end up trying to condense
3434 * again in a later txg.
3435 */
3436 ASSERT(err != 0);
3437 bplist_clear(&lca->to_keep);
3438 bplist_destroy(&lca->to_keep);
3439 kmem_free(lca, sizeof (livelist_condense_arg_t));
3440 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
3441 spa->spa_to_condense.ds = NULL;
3442 if (err == EINTR)
3443 zfs_livelist_condense_zthr_cancel++;
3444 }
3445
3446 /*
3447 * Check that there is something to condense but that a condense is not
3448 * already in progress and that condensing has not been cancelled.
3449 */
3450 static boolean_t
spa_livelist_condense_cb_check(void * arg,zthr_t * z)3451 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
3452 {
3453 (void) z;
3454 spa_t *spa = arg;
3455 if ((spa->spa_to_condense.ds != NULL) &&
3456 (spa->spa_to_condense.syncing == B_FALSE) &&
3457 (spa->spa_to_condense.cancelled == B_FALSE)) {
3458 return (B_TRUE);
3459 }
3460 return (B_FALSE);
3461 }
3462
3463 static void
spa_start_livelist_condensing_thread(spa_t * spa)3464 spa_start_livelist_condensing_thread(spa_t *spa)
3465 {
3466 spa->spa_to_condense.ds = NULL;
3467 spa->spa_to_condense.first = NULL;
3468 spa->spa_to_condense.next = NULL;
3469 spa->spa_to_condense.syncing = B_FALSE;
3470 spa->spa_to_condense.cancelled = B_FALSE;
3471
3472 ASSERT0P(spa->spa_livelist_condense_zthr);
3473 spa->spa_livelist_condense_zthr =
3474 zthr_create("z_livelist_condense",
3475 spa_livelist_condense_cb_check,
3476 spa_livelist_condense_cb, spa, minclsyspri);
3477 }
3478
3479 static void
spa_spawn_aux_threads(spa_t * spa)3480 spa_spawn_aux_threads(spa_t *spa)
3481 {
3482 ASSERT(spa_writeable(spa));
3483
3484 spa_start_raidz_expansion_thread(spa);
3485 spa_start_indirect_condensing_thread(spa);
3486 spa_start_livelist_destroy_thread(spa);
3487 spa_start_livelist_condensing_thread(spa);
3488
3489 ASSERT0P(spa->spa_checkpoint_discard_zthr);
3490 spa->spa_checkpoint_discard_zthr =
3491 zthr_create("z_checkpoint_discard",
3492 spa_checkpoint_discard_thread_check,
3493 spa_checkpoint_discard_thread, spa, minclsyspri);
3494 }
3495
3496 /*
3497 * Fix up config after a partly-completed split. This is done with the
3498 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
3499 * pool have that entry in their config, but only the splitting one contains
3500 * a list of all the guids of the vdevs that are being split off.
3501 *
3502 * This function determines what to do with that list: either rejoin
3503 * all the disks to the pool, or complete the splitting process. To attempt
3504 * the rejoin, each disk that is offlined is marked online again, and
3505 * we do a reopen() call. If the vdev label for every disk that was
3506 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
3507 * then we call vdev_split() on each disk, and complete the split.
3508 *
3509 * Otherwise we leave the config alone, with all the vdevs in place in
3510 * the original pool.
3511 */
3512 static void
spa_try_repair(spa_t * spa,nvlist_t * config)3513 spa_try_repair(spa_t *spa, nvlist_t *config)
3514 {
3515 uint_t extracted;
3516 uint64_t *glist;
3517 uint_t i, gcount;
3518 nvlist_t *nvl;
3519 vdev_t **vd;
3520 boolean_t attempt_reopen;
3521
3522 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
3523 return;
3524
3525 /* check that the config is complete */
3526 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3527 &glist, &gcount) != 0)
3528 return;
3529
3530 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3531
3532 /* attempt to online all the vdevs & validate */
3533 attempt_reopen = B_TRUE;
3534 for (i = 0; i < gcount; i++) {
3535 if (glist[i] == 0) /* vdev is hole */
3536 continue;
3537
3538 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3539 if (vd[i] == NULL) {
3540 /*
3541 * Don't bother attempting to reopen the disks;
3542 * just do the split.
3543 */
3544 attempt_reopen = B_FALSE;
3545 } else {
3546 /* attempt to re-online it */
3547 vd[i]->vdev_offline = B_FALSE;
3548 }
3549 }
3550
3551 if (attempt_reopen) {
3552 vdev_reopen(spa->spa_root_vdev);
3553
3554 /* check each device to see what state it's in */
3555 for (extracted = 0, i = 0; i < gcount; i++) {
3556 if (vd[i] != NULL &&
3557 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3558 break;
3559 ++extracted;
3560 }
3561 }
3562
3563 /*
3564 * If every disk has been moved to the new pool, or if we never
3565 * even attempted to look at them, then we split them off for
3566 * good.
3567 */
3568 if (!attempt_reopen || gcount == extracted) {
3569 for (i = 0; i < gcount; i++)
3570 if (vd[i] != NULL)
3571 vdev_split(vd[i]);
3572 vdev_reopen(spa->spa_root_vdev);
3573 }
3574
3575 kmem_free(vd, gcount * sizeof (vdev_t *));
3576 }
3577
3578 static int
spa_load(spa_t * spa,spa_load_state_t state,spa_import_type_t type)3579 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3580 {
3581 const char *ereport = FM_EREPORT_ZFS_POOL;
3582 int error;
3583
3584 spa->spa_load_state = state;
3585 (void) spa_import_progress_set_state(spa_guid(spa),
3586 spa_load_state(spa));
3587 spa_import_progress_set_notes(spa, "spa_load()");
3588
3589 gethrestime(&spa->spa_loaded_ts);
3590 error = spa_load_impl(spa, type, &ereport);
3591
3592 /*
3593 * Don't count references from objsets that are already closed
3594 * and are making their way through the eviction process.
3595 */
3596 spa_evicting_os_wait(spa);
3597 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3598 if (error) {
3599 if (error != EEXIST) {
3600 spa->spa_loaded_ts.tv_sec = 0;
3601 spa->spa_loaded_ts.tv_nsec = 0;
3602 }
3603 if (error != EBADF) {
3604 (void) zfs_ereport_post(ereport, spa,
3605 NULL, NULL, NULL, 0);
3606 }
3607 }
3608 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3609 spa->spa_ena = 0;
3610
3611 (void) spa_import_progress_set_state(spa_guid(spa),
3612 spa_load_state(spa));
3613
3614 return (error);
3615 }
3616
3617 #ifdef ZFS_DEBUG
3618 /*
3619 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3620 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3621 * spa's per-vdev ZAP list.
3622 */
3623 static uint64_t
vdev_count_verify_zaps(vdev_t * vd)3624 vdev_count_verify_zaps(vdev_t *vd)
3625 {
3626 spa_t *spa = vd->vdev_spa;
3627 uint64_t total = 0;
3628
3629 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3630 vd->vdev_root_zap != 0) {
3631 total++;
3632 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3633 spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3634 }
3635 if (vd->vdev_top_zap != 0) {
3636 total++;
3637 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3638 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3639 }
3640 if (vd->vdev_leaf_zap != 0) {
3641 total++;
3642 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3643 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3644 }
3645
3646 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3647 total += vdev_count_verify_zaps(vd->vdev_child[i]);
3648 }
3649
3650 return (total);
3651 }
3652 #else
3653 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3654 #endif
3655
3656 /*
3657 * Determine whether the activity check is required.
3658 */
3659 static boolean_t
spa_activity_check_required(spa_t * spa,uberblock_t * ub,nvlist_t * label,nvlist_t * config)3660 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3661 nvlist_t *config)
3662 {
3663 uint64_t state = 0;
3664 uint64_t hostid = 0;
3665 uint64_t tryconfig_txg = 0;
3666 uint64_t tryconfig_timestamp = 0;
3667 uint16_t tryconfig_mmp_seq = 0;
3668 nvlist_t *nvinfo;
3669
3670 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3671 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3672 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3673 &tryconfig_txg);
3674 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3675 &tryconfig_timestamp);
3676 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3677 &tryconfig_mmp_seq);
3678 }
3679
3680 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3681
3682 /*
3683 * Disable the MMP activity check - This is used by zdb which
3684 * is intended to be used on potentially active pools.
3685 */
3686 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3687 return (B_FALSE);
3688
3689 /*
3690 * Skip the activity check when the MMP feature is disabled.
3691 */
3692 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3693 return (B_FALSE);
3694
3695 /*
3696 * If the tryconfig_ values are nonzero, they are the results of an
3697 * earlier tryimport. If they all match the uberblock we just found,
3698 * then the pool has not changed and we return false so we do not test
3699 * a second time.
3700 */
3701 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3702 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3703 tryconfig_mmp_seq && tryconfig_mmp_seq ==
3704 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3705 return (B_FALSE);
3706
3707 /*
3708 * Allow the activity check to be skipped when importing the pool
3709 * on the same host which last imported it. Since the hostid from
3710 * configuration may be stale use the one read from the label.
3711 */
3712 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3713 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3714
3715 if (hostid == spa_get_hostid(spa))
3716 return (B_FALSE);
3717
3718 /*
3719 * Skip the activity test when the pool was cleanly exported.
3720 */
3721 if (state != POOL_STATE_ACTIVE)
3722 return (B_FALSE);
3723
3724 return (B_TRUE);
3725 }
3726
3727 /*
3728 * Nanoseconds the activity check must watch for changes on-disk.
3729 */
3730 static uint64_t
spa_activity_check_duration(spa_t * spa,uberblock_t * ub)3731 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3732 {
3733 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3734 uint64_t multihost_interval = MSEC2NSEC(
3735 MMP_INTERVAL_OK(zfs_multihost_interval));
3736 uint64_t import_delay = MAX(NANOSEC, import_intervals *
3737 multihost_interval);
3738
3739 /*
3740 * Local tunables determine a minimum duration except for the case
3741 * where we know when the remote host will suspend the pool if MMP
3742 * writes do not land.
3743 *
3744 * See Big Theory comment at the top of mmp.c for the reasoning behind
3745 * these cases and times.
3746 */
3747
3748 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3749
3750 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3751 MMP_FAIL_INT(ub) > 0) {
3752
3753 /* MMP on remote host will suspend pool after failed writes */
3754 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3755 MMP_IMPORT_SAFETY_FACTOR / 100;
3756
3757 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3758 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3759 "import_intervals=%llu", (u_longlong_t)import_delay,
3760 (u_longlong_t)MMP_FAIL_INT(ub),
3761 (u_longlong_t)MMP_INTERVAL(ub),
3762 (u_longlong_t)import_intervals);
3763
3764 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3765 MMP_FAIL_INT(ub) == 0) {
3766
3767 /* MMP on remote host will never suspend pool */
3768 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3769 ub->ub_mmp_delay) * import_intervals);
3770
3771 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3772 "mmp_interval=%llu ub_mmp_delay=%llu "
3773 "import_intervals=%llu", (u_longlong_t)import_delay,
3774 (u_longlong_t)MMP_INTERVAL(ub),
3775 (u_longlong_t)ub->ub_mmp_delay,
3776 (u_longlong_t)import_intervals);
3777
3778 } else if (MMP_VALID(ub)) {
3779 /*
3780 * zfs-0.7 compatibility case
3781 */
3782
3783 import_delay = MAX(import_delay, (multihost_interval +
3784 ub->ub_mmp_delay) * import_intervals);
3785
3786 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3787 "import_intervals=%llu leaves=%u",
3788 (u_longlong_t)import_delay,
3789 (u_longlong_t)ub->ub_mmp_delay,
3790 (u_longlong_t)import_intervals,
3791 vdev_count_leaves(spa));
3792 } else {
3793 /* Using local tunings is the only reasonable option */
3794 zfs_dbgmsg("pool last imported on non-MMP aware "
3795 "host using import_delay=%llu multihost_interval=%llu "
3796 "import_intervals=%llu", (u_longlong_t)import_delay,
3797 (u_longlong_t)multihost_interval,
3798 (u_longlong_t)import_intervals);
3799 }
3800
3801 return (import_delay);
3802 }
3803
3804 /*
3805 * Remote host activity check.
3806 *
3807 * error results:
3808 * 0 - no activity detected
3809 * EREMOTEIO - remote activity detected
3810 * EINTR - user canceled the operation
3811 */
3812 static int
spa_activity_check(spa_t * spa,uberblock_t * ub,nvlist_t * config,boolean_t importing)3813 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config,
3814 boolean_t importing)
3815 {
3816 uint64_t txg = ub->ub_txg;
3817 uint64_t timestamp = ub->ub_timestamp;
3818 uint64_t mmp_config = ub->ub_mmp_config;
3819 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3820 uint64_t import_delay;
3821 hrtime_t import_expire, now;
3822 nvlist_t *mmp_label = NULL;
3823 vdev_t *rvd = spa->spa_root_vdev;
3824 kcondvar_t cv;
3825 kmutex_t mtx;
3826 int error = 0;
3827
3828 cv_init(&cv, NULL, CV_DEFAULT, NULL);
3829 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3830 mutex_enter(&mtx);
3831
3832 /*
3833 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3834 * during the earlier tryimport. If the txg recorded there is 0 then
3835 * the pool is known to be active on another host.
3836 *
3837 * Otherwise, the pool might be in use on another host. Check for
3838 * changes in the uberblocks on disk if necessary.
3839 */
3840 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3841 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3842 ZPOOL_CONFIG_LOAD_INFO);
3843
3844 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3845 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3846 vdev_uberblock_load(rvd, ub, &mmp_label);
3847 error = SET_ERROR(EREMOTEIO);
3848 goto out;
3849 }
3850 }
3851
3852 import_delay = spa_activity_check_duration(spa, ub);
3853
3854 /* Add a small random factor in case of simultaneous imports (0-25%) */
3855 import_delay += import_delay * random_in_range(250) / 1000;
3856
3857 import_expire = gethrtime() + import_delay;
3858
3859 if (importing) {
3860 spa_import_progress_set_notes(spa, "Checking MMP activity, "
3861 "waiting %llu ms", (u_longlong_t)NSEC2MSEC(import_delay));
3862 }
3863
3864 int iterations = 0;
3865 while ((now = gethrtime()) < import_expire) {
3866 if (importing && iterations++ % 30 == 0) {
3867 spa_import_progress_set_notes(spa, "Checking MMP "
3868 "activity, %llu ms remaining",
3869 (u_longlong_t)NSEC2MSEC(import_expire - now));
3870 }
3871
3872 if (importing) {
3873 (void) spa_import_progress_set_mmp_check(spa_guid(spa),
3874 NSEC2SEC(import_expire - gethrtime()));
3875 }
3876
3877 vdev_uberblock_load(rvd, ub, &mmp_label);
3878
3879 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3880 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3881 zfs_dbgmsg("multihost activity detected "
3882 "txg %llu ub_txg %llu "
3883 "timestamp %llu ub_timestamp %llu "
3884 "mmp_config %#llx ub_mmp_config %#llx",
3885 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3886 (u_longlong_t)timestamp,
3887 (u_longlong_t)ub->ub_timestamp,
3888 (u_longlong_t)mmp_config,
3889 (u_longlong_t)ub->ub_mmp_config);
3890
3891 error = SET_ERROR(EREMOTEIO);
3892 break;
3893 }
3894
3895 if (mmp_label) {
3896 nvlist_free(mmp_label);
3897 mmp_label = NULL;
3898 }
3899
3900 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3901 if (error != -1) {
3902 error = SET_ERROR(EINTR);
3903 break;
3904 }
3905 error = 0;
3906 }
3907
3908 out:
3909 mutex_exit(&mtx);
3910 mutex_destroy(&mtx);
3911 cv_destroy(&cv);
3912
3913 /*
3914 * If the pool is determined to be active store the status in the
3915 * spa->spa_load_info nvlist. If the remote hostname or hostid are
3916 * available from configuration read from disk store them as well.
3917 * This allows 'zpool import' to generate a more useful message.
3918 *
3919 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
3920 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3921 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
3922 */
3923 if (error == EREMOTEIO) {
3924 if (mmp_label) {
3925 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3926 const char *hostname = fnvlist_lookup_string(
3927 mmp_label, ZPOOL_CONFIG_HOSTNAME);
3928 fnvlist_add_string(spa->spa_load_info,
3929 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3930 }
3931
3932 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3933 uint64_t hostid = fnvlist_lookup_uint64(
3934 mmp_label, ZPOOL_CONFIG_HOSTID);
3935 fnvlist_add_uint64(spa->spa_load_info,
3936 ZPOOL_CONFIG_MMP_HOSTID, hostid);
3937 }
3938 }
3939
3940 fnvlist_add_uint64(spa->spa_load_info,
3941 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3942 fnvlist_add_uint64(spa->spa_load_info,
3943 ZPOOL_CONFIG_MMP_TXG, 0);
3944
3945 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3946 }
3947
3948 if (mmp_label)
3949 nvlist_free(mmp_label);
3950
3951 return (error);
3952 }
3953
3954 /*
3955 * Called from zfs_ioc_clear for a pool that was suspended
3956 * after failing mmp write checks.
3957 */
3958 boolean_t
spa_mmp_remote_host_activity(spa_t * spa)3959 spa_mmp_remote_host_activity(spa_t *spa)
3960 {
3961 ASSERT(spa_multihost(spa) && spa_suspended(spa));
3962
3963 nvlist_t *best_label;
3964 uberblock_t best_ub;
3965
3966 /*
3967 * Locate the best uberblock on disk
3968 */
3969 vdev_uberblock_load(spa->spa_root_vdev, &best_ub, &best_label);
3970 if (best_label) {
3971 /*
3972 * confirm that the best hostid matches our hostid
3973 */
3974 if (nvlist_exists(best_label, ZPOOL_CONFIG_HOSTID) &&
3975 spa_get_hostid(spa) !=
3976 fnvlist_lookup_uint64(best_label, ZPOOL_CONFIG_HOSTID)) {
3977 nvlist_free(best_label);
3978 return (B_TRUE);
3979 }
3980 nvlist_free(best_label);
3981 } else {
3982 return (B_TRUE);
3983 }
3984
3985 if (!MMP_VALID(&best_ub) ||
3986 !MMP_FAIL_INT_VALID(&best_ub) ||
3987 MMP_FAIL_INT(&best_ub) == 0) {
3988 return (B_TRUE);
3989 }
3990
3991 if (best_ub.ub_txg != spa->spa_uberblock.ub_txg ||
3992 best_ub.ub_timestamp != spa->spa_uberblock.ub_timestamp) {
3993 zfs_dbgmsg("txg mismatch detected during pool clear "
3994 "txg %llu ub_txg %llu timestamp %llu ub_timestamp %llu",
3995 (u_longlong_t)spa->spa_uberblock.ub_txg,
3996 (u_longlong_t)best_ub.ub_txg,
3997 (u_longlong_t)spa->spa_uberblock.ub_timestamp,
3998 (u_longlong_t)best_ub.ub_timestamp);
3999 return (B_TRUE);
4000 }
4001
4002 /*
4003 * Perform an activity check looking for any remote writer
4004 */
4005 return (spa_activity_check(spa, &spa->spa_uberblock, spa->spa_config,
4006 B_FALSE) != 0);
4007 }
4008
4009 static int
spa_verify_host(spa_t * spa,nvlist_t * mos_config)4010 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
4011 {
4012 uint64_t hostid;
4013 const char *hostname;
4014 uint64_t myhostid = 0;
4015
4016 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
4017 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
4018 hostname = fnvlist_lookup_string(mos_config,
4019 ZPOOL_CONFIG_HOSTNAME);
4020
4021 myhostid = zone_get_hostid(NULL);
4022
4023 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
4024 cmn_err(CE_WARN, "pool '%s' could not be "
4025 "loaded as it was last accessed by "
4026 "another system (host: %s hostid: 0x%llx). "
4027 "See: https://openzfs.github.io/openzfs-docs/msg/"
4028 "ZFS-8000-EY",
4029 spa_name(spa), hostname, (u_longlong_t)hostid);
4030 spa_load_failed(spa, "hostid verification failed: pool "
4031 "last accessed by host: %s (hostid: 0x%llx)",
4032 hostname, (u_longlong_t)hostid);
4033 return (SET_ERROR(EBADF));
4034 }
4035 }
4036
4037 return (0);
4038 }
4039
4040 static int
spa_ld_parse_config(spa_t * spa,spa_import_type_t type)4041 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
4042 {
4043 int error = 0;
4044 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
4045 int parse;
4046 vdev_t *rvd;
4047 uint64_t pool_guid;
4048 const char *comment;
4049 const char *compatibility;
4050
4051 /*
4052 * Versioning wasn't explicitly added to the label until later, so if
4053 * it's not present treat it as the initial version.
4054 */
4055 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4056 &spa->spa_ubsync.ub_version) != 0)
4057 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4058
4059 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
4060 spa_load_failed(spa, "invalid config provided: '%s' missing",
4061 ZPOOL_CONFIG_POOL_GUID);
4062 return (SET_ERROR(EINVAL));
4063 }
4064
4065 /*
4066 * If we are doing an import, ensure that the pool is not already
4067 * imported by checking if its pool guid already exists in the
4068 * spa namespace.
4069 *
4070 * The only case that we allow an already imported pool to be
4071 * imported again, is when the pool is checkpointed and we want to
4072 * look at its checkpointed state from userland tools like zdb.
4073 */
4074 #ifdef _KERNEL
4075 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
4076 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
4077 spa_guid_exists(pool_guid, 0)) {
4078 #else
4079 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
4080 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
4081 spa_guid_exists(pool_guid, 0) &&
4082 !spa_importing_readonly_checkpoint(spa)) {
4083 #endif
4084 spa_load_failed(spa, "a pool with guid %llu is already open",
4085 (u_longlong_t)pool_guid);
4086 return (SET_ERROR(EEXIST));
4087 }
4088
4089 spa->spa_config_guid = pool_guid;
4090
4091 nvlist_free(spa->spa_load_info);
4092 spa->spa_load_info = fnvlist_alloc();
4093
4094 ASSERT0P(spa->spa_comment);
4095 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
4096 spa->spa_comment = spa_strdup(comment);
4097
4098 ASSERT0P(spa->spa_compatibility);
4099 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
4100 &compatibility) == 0)
4101 spa->spa_compatibility = spa_strdup(compatibility);
4102
4103 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4104 &spa->spa_config_txg);
4105
4106 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
4107 spa->spa_config_splitting = fnvlist_dup(nvl);
4108
4109 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
4110 spa_load_failed(spa, "invalid config provided: '%s' missing",
4111 ZPOOL_CONFIG_VDEV_TREE);
4112 return (SET_ERROR(EINVAL));
4113 }
4114
4115 /*
4116 * Create "The Godfather" zio to hold all async IOs
4117 */
4118 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4119 KM_SLEEP);
4120 for (int i = 0; i < max_ncpus; i++) {
4121 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4122 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4123 ZIO_FLAG_GODFATHER);
4124 }
4125
4126 /*
4127 * Parse the configuration into a vdev tree. We explicitly set the
4128 * value that will be returned by spa_version() since parsing the
4129 * configuration requires knowing the version number.
4130 */
4131 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4132 parse = (type == SPA_IMPORT_EXISTING ?
4133 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
4134 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
4135 spa_config_exit(spa, SCL_ALL, FTAG);
4136
4137 if (error != 0) {
4138 spa_load_failed(spa, "unable to parse config [error=%d]",
4139 error);
4140 return (error);
4141 }
4142
4143 ASSERT(spa->spa_root_vdev == rvd);
4144 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
4145 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
4146
4147 if (type != SPA_IMPORT_ASSEMBLE) {
4148 ASSERT(spa_guid(spa) == pool_guid);
4149 }
4150
4151 return (0);
4152 }
4153
4154 /*
4155 * Recursively open all vdevs in the vdev tree. This function is called twice:
4156 * first with the untrusted config, then with the trusted config.
4157 */
4158 static int
4159 spa_ld_open_vdevs(spa_t *spa)
4160 {
4161 int error = 0;
4162
4163 /*
4164 * spa_missing_tvds_allowed defines how many top-level vdevs can be
4165 * missing/unopenable for the root vdev to be still considered openable.
4166 */
4167 if (spa->spa_trust_config) {
4168 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
4169 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
4170 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
4171 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
4172 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
4173 } else {
4174 spa->spa_missing_tvds_allowed = 0;
4175 }
4176
4177 spa->spa_missing_tvds_allowed =
4178 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
4179
4180 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4181 error = vdev_open(spa->spa_root_vdev);
4182 spa_config_exit(spa, SCL_ALL, FTAG);
4183
4184 if (spa->spa_missing_tvds != 0) {
4185 spa_load_note(spa, "vdev tree has %lld missing top-level "
4186 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
4187 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
4188 /*
4189 * Although theoretically we could allow users to open
4190 * incomplete pools in RW mode, we'd need to add a lot
4191 * of extra logic (e.g. adjust pool space to account
4192 * for missing vdevs).
4193 * This limitation also prevents users from accidentally
4194 * opening the pool in RW mode during data recovery and
4195 * damaging it further.
4196 */
4197 spa_load_note(spa, "pools with missing top-level "
4198 "vdevs can only be opened in read-only mode.");
4199 error = SET_ERROR(ENXIO);
4200 } else {
4201 spa_load_note(spa, "current settings allow for maximum "
4202 "%lld missing top-level vdevs at this stage.",
4203 (u_longlong_t)spa->spa_missing_tvds_allowed);
4204 }
4205 }
4206 if (error != 0) {
4207 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
4208 error);
4209 }
4210 if (spa->spa_missing_tvds != 0 || error != 0)
4211 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
4212
4213 return (error);
4214 }
4215
4216 /*
4217 * We need to validate the vdev labels against the configuration that
4218 * we have in hand. This function is called twice: first with an untrusted
4219 * config, then with a trusted config. The validation is more strict when the
4220 * config is trusted.
4221 */
4222 static int
4223 spa_ld_validate_vdevs(spa_t *spa)
4224 {
4225 int error = 0;
4226 vdev_t *rvd = spa->spa_root_vdev;
4227
4228 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4229 error = vdev_validate(rvd);
4230 spa_config_exit(spa, SCL_ALL, FTAG);
4231
4232 if (error != 0) {
4233 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
4234 return (error);
4235 }
4236
4237 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
4238 spa_load_failed(spa, "cannot open vdev tree after invalidating "
4239 "some vdevs");
4240 vdev_dbgmsg_print_tree(rvd, 2);
4241 return (SET_ERROR(ENXIO));
4242 }
4243
4244 return (0);
4245 }
4246
4247 static void
4248 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
4249 {
4250 spa->spa_state = POOL_STATE_ACTIVE;
4251 spa->spa_ubsync = spa->spa_uberblock;
4252 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
4253 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
4254 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
4255 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
4256 spa->spa_claim_max_txg = spa->spa_first_txg;
4257 spa->spa_prev_software_version = ub->ub_software_version;
4258 }
4259
4260 static int
4261 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
4262 {
4263 vdev_t *rvd = spa->spa_root_vdev;
4264 nvlist_t *label;
4265 uberblock_t *ub = &spa->spa_uberblock;
4266 boolean_t activity_check = B_FALSE;
4267
4268 /*
4269 * If we are opening the checkpointed state of the pool by
4270 * rewinding to it, at this point we will have written the
4271 * checkpointed uberblock to the vdev labels, so searching
4272 * the labels will find the right uberblock. However, if
4273 * we are opening the checkpointed state read-only, we have
4274 * not modified the labels. Therefore, we must ignore the
4275 * labels and continue using the spa_uberblock that was set
4276 * by spa_ld_checkpoint_rewind.
4277 *
4278 * Note that it would be fine to ignore the labels when
4279 * rewinding (opening writeable) as well. However, if we
4280 * crash just after writing the labels, we will end up
4281 * searching the labels. Doing so in the common case means
4282 * that this code path gets exercised normally, rather than
4283 * just in the edge case.
4284 */
4285 if (ub->ub_checkpoint_txg != 0 &&
4286 spa_importing_readonly_checkpoint(spa)) {
4287 spa_ld_select_uberblock_done(spa, ub);
4288 return (0);
4289 }
4290
4291 /*
4292 * Find the best uberblock.
4293 */
4294 vdev_uberblock_load(rvd, ub, &label);
4295
4296 /*
4297 * If we weren't able to find a single valid uberblock, return failure.
4298 */
4299 if (ub->ub_txg == 0) {
4300 nvlist_free(label);
4301 spa_load_failed(spa, "no valid uberblock found");
4302 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
4303 }
4304
4305 if (spa->spa_load_max_txg != UINT64_MAX) {
4306 (void) spa_import_progress_set_max_txg(spa_guid(spa),
4307 (u_longlong_t)spa->spa_load_max_txg);
4308 }
4309 spa_load_note(spa, "using uberblock with txg=%llu",
4310 (u_longlong_t)ub->ub_txg);
4311 if (ub->ub_raidz_reflow_info != 0) {
4312 spa_load_note(spa, "uberblock raidz_reflow_info: "
4313 "state=%u offset=%llu",
4314 (int)RRSS_GET_STATE(ub),
4315 (u_longlong_t)RRSS_GET_OFFSET(ub));
4316 }
4317
4318
4319 /*
4320 * For pools which have the multihost property on determine if the
4321 * pool is truly inactive and can be safely imported. Prevent
4322 * hosts which don't have a hostid set from importing the pool.
4323 */
4324 activity_check = spa_activity_check_required(spa, ub, label,
4325 spa->spa_config);
4326 if (activity_check) {
4327 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
4328 spa_get_hostid(spa) == 0) {
4329 nvlist_free(label);
4330 fnvlist_add_uint64(spa->spa_load_info,
4331 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4332 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4333 }
4334
4335 int error =
4336 spa_activity_check(spa, ub, spa->spa_config, B_TRUE);
4337 if (error) {
4338 nvlist_free(label);
4339 return (error);
4340 }
4341
4342 fnvlist_add_uint64(spa->spa_load_info,
4343 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
4344 fnvlist_add_uint64(spa->spa_load_info,
4345 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
4346 fnvlist_add_uint16(spa->spa_load_info,
4347 ZPOOL_CONFIG_MMP_SEQ,
4348 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
4349 }
4350
4351 /*
4352 * If the pool has an unsupported version we can't open it.
4353 */
4354 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
4355 nvlist_free(label);
4356 spa_load_failed(spa, "version %llu is not supported",
4357 (u_longlong_t)ub->ub_version);
4358 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
4359 }
4360
4361 if (ub->ub_version >= SPA_VERSION_FEATURES) {
4362 nvlist_t *features;
4363
4364 /*
4365 * If we weren't able to find what's necessary for reading the
4366 * MOS in the label, return failure.
4367 */
4368 if (label == NULL) {
4369 spa_load_failed(spa, "label config unavailable");
4370 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4371 ENXIO));
4372 }
4373
4374 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
4375 &features) != 0) {
4376 nvlist_free(label);
4377 spa_load_failed(spa, "invalid label: '%s' missing",
4378 ZPOOL_CONFIG_FEATURES_FOR_READ);
4379 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4380 ENXIO));
4381 }
4382
4383 /*
4384 * Update our in-core representation with the definitive values
4385 * from the label.
4386 */
4387 nvlist_free(spa->spa_label_features);
4388 spa->spa_label_features = fnvlist_dup(features);
4389 }
4390
4391 nvlist_free(label);
4392
4393 /*
4394 * Look through entries in the label nvlist's features_for_read. If
4395 * there is a feature listed there which we don't understand then we
4396 * cannot open a pool.
4397 */
4398 if (ub->ub_version >= SPA_VERSION_FEATURES) {
4399 nvlist_t *unsup_feat;
4400
4401 unsup_feat = fnvlist_alloc();
4402
4403 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
4404 NULL); nvp != NULL;
4405 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
4406 if (!zfeature_is_supported(nvpair_name(nvp))) {
4407 fnvlist_add_string(unsup_feat,
4408 nvpair_name(nvp), "");
4409 }
4410 }
4411
4412 if (!nvlist_empty(unsup_feat)) {
4413 fnvlist_add_nvlist(spa->spa_load_info,
4414 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4415 nvlist_free(unsup_feat);
4416 spa_load_failed(spa, "some features are unsupported");
4417 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4418 ENOTSUP));
4419 }
4420
4421 nvlist_free(unsup_feat);
4422 }
4423
4424 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
4425 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4426 spa_try_repair(spa, spa->spa_config);
4427 spa_config_exit(spa, SCL_ALL, FTAG);
4428 nvlist_free(spa->spa_config_splitting);
4429 spa->spa_config_splitting = NULL;
4430 }
4431
4432 /*
4433 * Initialize internal SPA structures.
4434 */
4435 spa_ld_select_uberblock_done(spa, ub);
4436
4437 return (0);
4438 }
4439
4440 static int
4441 spa_ld_open_rootbp(spa_t *spa)
4442 {
4443 int error = 0;
4444 vdev_t *rvd = spa->spa_root_vdev;
4445
4446 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
4447 if (error != 0) {
4448 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
4449 "[error=%d]", error);
4450 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4451 }
4452 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
4453
4454 return (0);
4455 }
4456
4457 static int
4458 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
4459 boolean_t reloading)
4460 {
4461 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
4462 nvlist_t *nv, *mos_config, *policy;
4463 int error = 0, copy_error;
4464 uint64_t healthy_tvds, healthy_tvds_mos;
4465 uint64_t mos_config_txg;
4466
4467 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
4468 != 0)
4469 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4470
4471 /*
4472 * If we're assembling a pool from a split, the config provided is
4473 * already trusted so there is nothing to do.
4474 */
4475 if (type == SPA_IMPORT_ASSEMBLE)
4476 return (0);
4477
4478 healthy_tvds = spa_healthy_core_tvds(spa);
4479
4480 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
4481 != 0) {
4482 spa_load_failed(spa, "unable to retrieve MOS config");
4483 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4484 }
4485
4486 /*
4487 * If we are doing an open, pool owner wasn't verified yet, thus do
4488 * the verification here.
4489 */
4490 if (spa->spa_load_state == SPA_LOAD_OPEN) {
4491 error = spa_verify_host(spa, mos_config);
4492 if (error != 0) {
4493 nvlist_free(mos_config);
4494 return (error);
4495 }
4496 }
4497
4498 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
4499
4500 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4501
4502 /*
4503 * Build a new vdev tree from the trusted config
4504 */
4505 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
4506 if (error != 0) {
4507 nvlist_free(mos_config);
4508 spa_config_exit(spa, SCL_ALL, FTAG);
4509 spa_load_failed(spa, "spa_config_parse failed [error=%d]",
4510 error);
4511 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4512 }
4513
4514 /*
4515 * Vdev paths in the MOS may be obsolete. If the untrusted config was
4516 * obtained by scanning /dev/dsk, then it will have the right vdev
4517 * paths. We update the trusted MOS config with this information.
4518 * We first try to copy the paths with vdev_copy_path_strict, which
4519 * succeeds only when both configs have exactly the same vdev tree.
4520 * If that fails, we fall back to a more flexible method that has a
4521 * best effort policy.
4522 */
4523 copy_error = vdev_copy_path_strict(rvd, mrvd);
4524 if (copy_error != 0 || spa_load_print_vdev_tree) {
4525 spa_load_note(spa, "provided vdev tree:");
4526 vdev_dbgmsg_print_tree(rvd, 2);
4527 spa_load_note(spa, "MOS vdev tree:");
4528 vdev_dbgmsg_print_tree(mrvd, 2);
4529 }
4530 if (copy_error != 0) {
4531 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
4532 "back to vdev_copy_path_relaxed");
4533 vdev_copy_path_relaxed(rvd, mrvd);
4534 }
4535
4536 vdev_close(rvd);
4537 vdev_free(rvd);
4538 spa->spa_root_vdev = mrvd;
4539 rvd = mrvd;
4540 spa_config_exit(spa, SCL_ALL, FTAG);
4541
4542 /*
4543 * If 'zpool import' used a cached config, then the on-disk hostid and
4544 * hostname may be different to the cached config in ways that should
4545 * prevent import. Userspace can't discover this without a scan, but
4546 * we know, so we add these values to LOAD_INFO so the caller can know
4547 * the difference.
4548 *
4549 * Note that we have to do this before the config is regenerated,
4550 * because the new config will have the hostid and hostname for this
4551 * host, in readiness for import.
4552 */
4553 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
4554 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
4555 fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
4556 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
4557 fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
4558 fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
4559
4560 /*
4561 * We will use spa_config if we decide to reload the spa or if spa_load
4562 * fails and we rewind. We must thus regenerate the config using the
4563 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
4564 * pass settings on how to load the pool and is not stored in the MOS.
4565 * We copy it over to our new, trusted config.
4566 */
4567 mos_config_txg = fnvlist_lookup_uint64(mos_config,
4568 ZPOOL_CONFIG_POOL_TXG);
4569 nvlist_free(mos_config);
4570 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
4571 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
4572 &policy) == 0)
4573 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
4574 spa_config_set(spa, mos_config);
4575 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
4576
4577 /*
4578 * Now that we got the config from the MOS, we should be more strict
4579 * in checking blkptrs and can make assumptions about the consistency
4580 * of the vdev tree. spa_trust_config must be set to true before opening
4581 * vdevs in order for them to be writeable.
4582 */
4583 spa->spa_trust_config = B_TRUE;
4584
4585 /*
4586 * Open and validate the new vdev tree
4587 */
4588 error = spa_ld_open_vdevs(spa);
4589 if (error != 0)
4590 return (error);
4591
4592 error = spa_ld_validate_vdevs(spa);
4593 if (error != 0)
4594 return (error);
4595
4596 if (copy_error != 0 || spa_load_print_vdev_tree) {
4597 spa_load_note(spa, "final vdev tree:");
4598 vdev_dbgmsg_print_tree(rvd, 2);
4599 }
4600
4601 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
4602 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
4603 /*
4604 * Sanity check to make sure that we are indeed loading the
4605 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4606 * in the config provided and they happened to be the only ones
4607 * to have the latest uberblock, we could involuntarily perform
4608 * an extreme rewind.
4609 */
4610 healthy_tvds_mos = spa_healthy_core_tvds(spa);
4611 if (healthy_tvds_mos - healthy_tvds >=
4612 SPA_SYNC_MIN_VDEVS) {
4613 spa_load_note(spa, "config provided misses too many "
4614 "top-level vdevs compared to MOS (%lld vs %lld). ",
4615 (u_longlong_t)healthy_tvds,
4616 (u_longlong_t)healthy_tvds_mos);
4617 spa_load_note(spa, "vdev tree:");
4618 vdev_dbgmsg_print_tree(rvd, 2);
4619 if (reloading) {
4620 spa_load_failed(spa, "config was already "
4621 "provided from MOS. Aborting.");
4622 return (spa_vdev_err(rvd,
4623 VDEV_AUX_CORRUPT_DATA, EIO));
4624 }
4625 spa_load_note(spa, "spa must be reloaded using MOS "
4626 "config");
4627 return (SET_ERROR(EAGAIN));
4628 }
4629 }
4630
4631 error = spa_check_for_missing_logs(spa);
4632 if (error != 0)
4633 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4634
4635 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4636 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4637 "guid sum (%llu != %llu)",
4638 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4639 (u_longlong_t)rvd->vdev_guid_sum);
4640 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4641 ENXIO));
4642 }
4643
4644 return (0);
4645 }
4646
4647 static int
4648 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4649 {
4650 int error = 0;
4651 vdev_t *rvd = spa->spa_root_vdev;
4652
4653 /*
4654 * Everything that we read before spa_remove_init() must be stored
4655 * on concreted vdevs. Therefore we do this as early as possible.
4656 */
4657 error = spa_remove_init(spa);
4658 if (error != 0) {
4659 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4660 error);
4661 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4662 }
4663
4664 /*
4665 * Retrieve information needed to condense indirect vdev mappings.
4666 */
4667 error = spa_condense_init(spa);
4668 if (error != 0) {
4669 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4670 error);
4671 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4672 }
4673
4674 return (0);
4675 }
4676
4677 static int
4678 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4679 {
4680 int error = 0;
4681 vdev_t *rvd = spa->spa_root_vdev;
4682
4683 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4684 boolean_t missing_feat_read = B_FALSE;
4685 nvlist_t *unsup_feat, *enabled_feat;
4686
4687 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4688 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4689 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4690 }
4691
4692 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4693 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4694 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4695 }
4696
4697 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4698 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4699 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4700 }
4701
4702 enabled_feat = fnvlist_alloc();
4703 unsup_feat = fnvlist_alloc();
4704
4705 if (!spa_features_check(spa, B_FALSE,
4706 unsup_feat, enabled_feat))
4707 missing_feat_read = B_TRUE;
4708
4709 if (spa_writeable(spa) ||
4710 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4711 if (!spa_features_check(spa, B_TRUE,
4712 unsup_feat, enabled_feat)) {
4713 *missing_feat_writep = B_TRUE;
4714 }
4715 }
4716
4717 fnvlist_add_nvlist(spa->spa_load_info,
4718 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4719
4720 if (!nvlist_empty(unsup_feat)) {
4721 fnvlist_add_nvlist(spa->spa_load_info,
4722 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4723 }
4724
4725 fnvlist_free(enabled_feat);
4726 fnvlist_free(unsup_feat);
4727
4728 if (!missing_feat_read) {
4729 fnvlist_add_boolean(spa->spa_load_info,
4730 ZPOOL_CONFIG_CAN_RDONLY);
4731 }
4732
4733 /*
4734 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4735 * twofold: to determine whether the pool is available for
4736 * import in read-write mode and (if it is not) whether the
4737 * pool is available for import in read-only mode. If the pool
4738 * is available for import in read-write mode, it is displayed
4739 * as available in userland; if it is not available for import
4740 * in read-only mode, it is displayed as unavailable in
4741 * userland. If the pool is available for import in read-only
4742 * mode but not read-write mode, it is displayed as unavailable
4743 * in userland with a special note that the pool is actually
4744 * available for open in read-only mode.
4745 *
4746 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4747 * missing a feature for write, we must first determine whether
4748 * the pool can be opened read-only before returning to
4749 * userland in order to know whether to display the
4750 * abovementioned note.
4751 */
4752 if (missing_feat_read || (*missing_feat_writep &&
4753 spa_writeable(spa))) {
4754 spa_load_failed(spa, "pool uses unsupported features");
4755 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4756 ENOTSUP));
4757 }
4758
4759 /*
4760 * Load refcounts for ZFS features from disk into an in-memory
4761 * cache during SPA initialization.
4762 */
4763 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4764 uint64_t refcount;
4765
4766 error = feature_get_refcount_from_disk(spa,
4767 &spa_feature_table[i], &refcount);
4768 if (error == 0) {
4769 spa->spa_feat_refcount_cache[i] = refcount;
4770 } else if (error == ENOTSUP) {
4771 spa->spa_feat_refcount_cache[i] =
4772 SPA_FEATURE_DISABLED;
4773 } else {
4774 spa_load_failed(spa, "error getting refcount "
4775 "for feature %s [error=%d]",
4776 spa_feature_table[i].fi_guid, error);
4777 return (spa_vdev_err(rvd,
4778 VDEV_AUX_CORRUPT_DATA, EIO));
4779 }
4780 }
4781 }
4782
4783 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4784 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4785 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4786 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4787 }
4788
4789 /*
4790 * Encryption was added before bookmark_v2, even though bookmark_v2
4791 * is now a dependency. If this pool has encryption enabled without
4792 * bookmark_v2, trigger an errata message.
4793 */
4794 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4795 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4796 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4797 }
4798
4799 return (0);
4800 }
4801
4802 static int
4803 spa_ld_load_special_directories(spa_t *spa)
4804 {
4805 int error = 0;
4806 vdev_t *rvd = spa->spa_root_vdev;
4807
4808 spa->spa_is_initializing = B_TRUE;
4809 error = dsl_pool_open(spa->spa_dsl_pool);
4810 spa->spa_is_initializing = B_FALSE;
4811 if (error != 0) {
4812 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4813 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4814 }
4815
4816 return (0);
4817 }
4818
4819 static int
4820 spa_ld_get_props(spa_t *spa)
4821 {
4822 int error = 0;
4823 uint64_t obj;
4824 vdev_t *rvd = spa->spa_root_vdev;
4825
4826 /* Grab the checksum salt from the MOS. */
4827 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4828 DMU_POOL_CHECKSUM_SALT, 1,
4829 sizeof (spa->spa_cksum_salt.zcs_bytes),
4830 spa->spa_cksum_salt.zcs_bytes);
4831 if (error == ENOENT) {
4832 /* Generate a new salt for subsequent use */
4833 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4834 sizeof (spa->spa_cksum_salt.zcs_bytes));
4835 } else if (error != 0) {
4836 spa_load_failed(spa, "unable to retrieve checksum salt from "
4837 "MOS [error=%d]", error);
4838 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4839 }
4840
4841 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4842 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4843 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4844 if (error != 0) {
4845 spa_load_failed(spa, "error opening deferred-frees bpobj "
4846 "[error=%d]", error);
4847 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4848 }
4849
4850 /*
4851 * Load the bit that tells us to use the new accounting function
4852 * (raid-z deflation). If we have an older pool, this will not
4853 * be present.
4854 */
4855 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4856 if (error != 0 && error != ENOENT)
4857 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4858
4859 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4860 &spa->spa_creation_version, B_FALSE);
4861 if (error != 0 && error != ENOENT)
4862 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4863
4864 /* Load time log */
4865 spa_load_txg_log_time(spa);
4866
4867 /*
4868 * Load the persistent error log. If we have an older pool, this will
4869 * not be present.
4870 */
4871 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4872 B_FALSE);
4873 if (error != 0 && error != ENOENT)
4874 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4875
4876 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4877 &spa->spa_errlog_scrub, B_FALSE);
4878 if (error != 0 && error != ENOENT)
4879 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4880
4881 /* Load the last scrubbed txg. */
4882 error = spa_dir_prop(spa, DMU_POOL_LAST_SCRUBBED_TXG,
4883 &spa->spa_scrubbed_last_txg, B_FALSE);
4884 if (error != 0 && error != ENOENT)
4885 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4886
4887 /*
4888 * Load the livelist deletion field. If a livelist is queued for
4889 * deletion, indicate that in the spa
4890 */
4891 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4892 &spa->spa_livelists_to_delete, B_FALSE);
4893 if (error != 0 && error != ENOENT)
4894 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4895
4896 /*
4897 * Load the history object. If we have an older pool, this
4898 * will not be present.
4899 */
4900 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4901 if (error != 0 && error != ENOENT)
4902 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4903
4904 /*
4905 * Load the per-vdev ZAP map. If we have an older pool, this will not
4906 * be present; in this case, defer its creation to a later time to
4907 * avoid dirtying the MOS this early / out of sync context. See
4908 * spa_sync_config_object.
4909 */
4910
4911 /* The sentinel is only available in the MOS config. */
4912 nvlist_t *mos_config;
4913 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4914 spa_load_failed(spa, "unable to retrieve MOS config");
4915 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4916 }
4917
4918 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4919 &spa->spa_all_vdev_zaps, B_FALSE);
4920
4921 if (error == ENOENT) {
4922 VERIFY(!nvlist_exists(mos_config,
4923 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4924 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4925 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4926 } else if (error != 0) {
4927 nvlist_free(mos_config);
4928 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4929 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4930 /*
4931 * An older version of ZFS overwrote the sentinel value, so
4932 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4933 * destruction to later; see spa_sync_config_object.
4934 */
4935 spa->spa_avz_action = AVZ_ACTION_DESTROY;
4936 /*
4937 * We're assuming that no vdevs have had their ZAPs created
4938 * before this. Better be sure of it.
4939 */
4940 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4941 }
4942 nvlist_free(mos_config);
4943
4944 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4945
4946 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4947 B_FALSE);
4948 if (error && error != ENOENT)
4949 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4950
4951 if (error == 0) {
4952 uint64_t autoreplace = 0;
4953
4954 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4955 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4956 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4957 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4958 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4959 spa_prop_find(spa, ZPOOL_PROP_DEDUP_TABLE_QUOTA,
4960 &spa->spa_dedup_table_quota);
4961 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4962 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4963 spa->spa_autoreplace = (autoreplace != 0);
4964 }
4965
4966 /*
4967 * If we are importing a pool with missing top-level vdevs,
4968 * we enforce that the pool doesn't panic or get suspended on
4969 * error since the likelihood of missing data is extremely high.
4970 */
4971 if (spa->spa_missing_tvds > 0 &&
4972 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4973 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4974 spa_load_note(spa, "forcing failmode to 'continue' "
4975 "as some top level vdevs are missing");
4976 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4977 }
4978
4979 return (0);
4980 }
4981
4982 static int
4983 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4984 {
4985 int error = 0;
4986 vdev_t *rvd = spa->spa_root_vdev;
4987
4988 /*
4989 * If we're assembling the pool from the split-off vdevs of
4990 * an existing pool, we don't want to attach the spares & cache
4991 * devices.
4992 */
4993
4994 /*
4995 * Load any hot spares for this pool.
4996 */
4997 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4998 B_FALSE);
4999 if (error != 0 && error != ENOENT)
5000 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5001 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
5002 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
5003 if (load_nvlist(spa, spa->spa_spares.sav_object,
5004 &spa->spa_spares.sav_config) != 0) {
5005 spa_load_failed(spa, "error loading spares nvlist");
5006 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5007 }
5008
5009 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5010 spa_load_spares(spa);
5011 spa_config_exit(spa, SCL_ALL, FTAG);
5012 } else if (error == 0) {
5013 spa->spa_spares.sav_sync = B_TRUE;
5014 }
5015
5016 /*
5017 * Load any level 2 ARC devices for this pool.
5018 */
5019 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
5020 &spa->spa_l2cache.sav_object, B_FALSE);
5021 if (error != 0 && error != ENOENT)
5022 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5023 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
5024 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
5025 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
5026 &spa->spa_l2cache.sav_config) != 0) {
5027 spa_load_failed(spa, "error loading l2cache nvlist");
5028 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5029 }
5030
5031 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5032 spa_load_l2cache(spa);
5033 spa_config_exit(spa, SCL_ALL, FTAG);
5034 } else if (error == 0) {
5035 spa->spa_l2cache.sav_sync = B_TRUE;
5036 }
5037
5038 return (0);
5039 }
5040
5041 static int
5042 spa_ld_load_vdev_metadata(spa_t *spa)
5043 {
5044 int error = 0;
5045 vdev_t *rvd = spa->spa_root_vdev;
5046
5047 /*
5048 * If the 'multihost' property is set, then never allow a pool to
5049 * be imported when the system hostid is zero. The exception to
5050 * this rule is zdb which is always allowed to access pools.
5051 */
5052 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
5053 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
5054 fnvlist_add_uint64(spa->spa_load_info,
5055 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
5056 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
5057 }
5058
5059 /*
5060 * If the 'autoreplace' property is set, then post a resource notifying
5061 * the ZFS DE that it should not issue any faults for unopenable
5062 * devices. We also iterate over the vdevs, and post a sysevent for any
5063 * unopenable vdevs so that the normal autoreplace handler can take
5064 * over.
5065 */
5066 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
5067 spa_check_removed(spa->spa_root_vdev);
5068 /*
5069 * For the import case, this is done in spa_import(), because
5070 * at this point we're using the spare definitions from
5071 * the MOS config, not necessarily from the userland config.
5072 */
5073 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
5074 spa_aux_check_removed(&spa->spa_spares);
5075 spa_aux_check_removed(&spa->spa_l2cache);
5076 }
5077 }
5078
5079 /*
5080 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
5081 */
5082 error = vdev_load(rvd);
5083 if (error != 0) {
5084 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
5085 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
5086 }
5087
5088 error = spa_ld_log_spacemaps(spa);
5089 if (error != 0) {
5090 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
5091 error);
5092 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
5093 }
5094
5095 /*
5096 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
5097 */
5098 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5099 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
5100 spa_config_exit(spa, SCL_ALL, FTAG);
5101
5102 return (0);
5103 }
5104
5105 static int
5106 spa_ld_load_dedup_tables(spa_t *spa)
5107 {
5108 int error = 0;
5109 vdev_t *rvd = spa->spa_root_vdev;
5110
5111 error = ddt_load(spa);
5112 if (error != 0) {
5113 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
5114 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5115 }
5116
5117 return (0);
5118 }
5119
5120 static int
5121 spa_ld_load_brt(spa_t *spa)
5122 {
5123 int error = 0;
5124 vdev_t *rvd = spa->spa_root_vdev;
5125
5126 error = brt_load(spa);
5127 if (error != 0) {
5128 spa_load_failed(spa, "brt_load failed [error=%d]", error);
5129 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5130 }
5131
5132 return (0);
5133 }
5134
5135 static int
5136 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
5137 {
5138 vdev_t *rvd = spa->spa_root_vdev;
5139
5140 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
5141 boolean_t missing = spa_check_logs(spa);
5142 if (missing) {
5143 if (spa->spa_missing_tvds != 0) {
5144 spa_load_note(spa, "spa_check_logs failed "
5145 "so dropping the logs");
5146 } else {
5147 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
5148 spa_load_failed(spa, "spa_check_logs failed");
5149 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
5150 ENXIO));
5151 }
5152 }
5153 }
5154
5155 return (0);
5156 }
5157
5158 static int
5159 spa_ld_verify_pool_data(spa_t *spa)
5160 {
5161 int error = 0;
5162 vdev_t *rvd = spa->spa_root_vdev;
5163
5164 /*
5165 * We've successfully opened the pool, verify that we're ready
5166 * to start pushing transactions.
5167 */
5168 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
5169 error = spa_load_verify(spa);
5170 if (error != 0) {
5171 spa_load_failed(spa, "spa_load_verify failed "
5172 "[error=%d]", error);
5173 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
5174 error));
5175 }
5176 }
5177
5178 return (0);
5179 }
5180
5181 static void
5182 spa_ld_claim_log_blocks(spa_t *spa)
5183 {
5184 dmu_tx_t *tx;
5185 dsl_pool_t *dp = spa_get_dsl(spa);
5186
5187 /*
5188 * Claim log blocks that haven't been committed yet.
5189 * This must all happen in a single txg.
5190 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
5191 * invoked from zil_claim_log_block()'s i/o done callback.
5192 * Price of rollback is that we abandon the log.
5193 */
5194 spa->spa_claiming = B_TRUE;
5195
5196 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
5197 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
5198 zil_claim, tx, DS_FIND_CHILDREN);
5199 dmu_tx_commit(tx);
5200
5201 spa->spa_claiming = B_FALSE;
5202
5203 spa_set_log_state(spa, SPA_LOG_GOOD);
5204 }
5205
5206 static void
5207 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
5208 boolean_t update_config_cache)
5209 {
5210 vdev_t *rvd = spa->spa_root_vdev;
5211 int need_update = B_FALSE;
5212
5213 /*
5214 * If the config cache is stale, or we have uninitialized
5215 * metaslabs (see spa_vdev_add()), then update the config.
5216 *
5217 * If this is a verbatim import, trust the current
5218 * in-core spa_config and update the disk labels.
5219 */
5220 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
5221 spa->spa_load_state == SPA_LOAD_IMPORT ||
5222 spa->spa_load_state == SPA_LOAD_RECOVER ||
5223 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
5224 need_update = B_TRUE;
5225
5226 for (int c = 0; c < rvd->vdev_children; c++)
5227 if (rvd->vdev_child[c]->vdev_ms_array == 0)
5228 need_update = B_TRUE;
5229
5230 /*
5231 * Update the config cache asynchronously in case we're the
5232 * root pool, in which case the config cache isn't writable yet.
5233 */
5234 if (need_update)
5235 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
5236 }
5237
5238 static void
5239 spa_ld_prepare_for_reload(spa_t *spa)
5240 {
5241 spa_mode_t mode = spa->spa_mode;
5242 int async_suspended = spa->spa_async_suspended;
5243
5244 spa_unload(spa);
5245 spa_deactivate(spa);
5246 spa_activate(spa, mode);
5247
5248 /*
5249 * We save the value of spa_async_suspended as it gets reset to 0 by
5250 * spa_unload(). We want to restore it back to the original value before
5251 * returning as we might be calling spa_async_resume() later.
5252 */
5253 spa->spa_async_suspended = async_suspended;
5254 }
5255
5256 static int
5257 spa_ld_read_checkpoint_txg(spa_t *spa)
5258 {
5259 uberblock_t checkpoint;
5260 int error = 0;
5261
5262 ASSERT0(spa->spa_checkpoint_txg);
5263 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
5264 spa->spa_load_thread == curthread);
5265
5266 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5267 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5268 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5269
5270 if (error == ENOENT)
5271 return (0);
5272
5273 if (error != 0)
5274 return (error);
5275
5276 ASSERT3U(checkpoint.ub_txg, !=, 0);
5277 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
5278 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
5279 spa->spa_checkpoint_txg = checkpoint.ub_txg;
5280 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
5281
5282 return (0);
5283 }
5284
5285 static int
5286 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
5287 {
5288 int error = 0;
5289
5290 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5291 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5292
5293 /*
5294 * Never trust the config that is provided unless we are assembling
5295 * a pool following a split.
5296 * This means don't trust blkptrs and the vdev tree in general. This
5297 * also effectively puts the spa in read-only mode since
5298 * spa_writeable() checks for spa_trust_config to be true.
5299 * We will later load a trusted config from the MOS.
5300 */
5301 if (type != SPA_IMPORT_ASSEMBLE)
5302 spa->spa_trust_config = B_FALSE;
5303
5304 /*
5305 * Parse the config provided to create a vdev tree.
5306 */
5307 error = spa_ld_parse_config(spa, type);
5308 if (error != 0)
5309 return (error);
5310
5311 spa_import_progress_add(spa);
5312
5313 /*
5314 * Now that we have the vdev tree, try to open each vdev. This involves
5315 * opening the underlying physical device, retrieving its geometry and
5316 * probing the vdev with a dummy I/O. The state of each vdev will be set
5317 * based on the success of those operations. After this we'll be ready
5318 * to read from the vdevs.
5319 */
5320 error = spa_ld_open_vdevs(spa);
5321 if (error != 0)
5322 return (error);
5323
5324 /*
5325 * Read the label of each vdev and make sure that the GUIDs stored
5326 * there match the GUIDs in the config provided.
5327 * If we're assembling a new pool that's been split off from an
5328 * existing pool, the labels haven't yet been updated so we skip
5329 * validation for now.
5330 */
5331 if (type != SPA_IMPORT_ASSEMBLE) {
5332 error = spa_ld_validate_vdevs(spa);
5333 if (error != 0)
5334 return (error);
5335 }
5336
5337 /*
5338 * Read all vdev labels to find the best uberblock (i.e. latest,
5339 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
5340 * get the list of features required to read blkptrs in the MOS from
5341 * the vdev label with the best uberblock and verify that our version
5342 * of zfs supports them all.
5343 */
5344 error = spa_ld_select_uberblock(spa, type);
5345 if (error != 0)
5346 return (error);
5347
5348 /*
5349 * Pass that uberblock to the dsl_pool layer which will open the root
5350 * blkptr. This blkptr points to the latest version of the MOS and will
5351 * allow us to read its contents.
5352 */
5353 error = spa_ld_open_rootbp(spa);
5354 if (error != 0)
5355 return (error);
5356
5357 return (0);
5358 }
5359
5360 static int
5361 spa_ld_checkpoint_rewind(spa_t *spa)
5362 {
5363 uberblock_t checkpoint;
5364 int error = 0;
5365
5366 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5367 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5368
5369 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5370 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5371 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5372
5373 if (error != 0) {
5374 spa_load_failed(spa, "unable to retrieve checkpointed "
5375 "uberblock from the MOS config [error=%d]", error);
5376
5377 if (error == ENOENT)
5378 error = ZFS_ERR_NO_CHECKPOINT;
5379
5380 return (error);
5381 }
5382
5383 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
5384 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
5385
5386 /*
5387 * We need to update the txg and timestamp of the checkpointed
5388 * uberblock to be higher than the latest one. This ensures that
5389 * the checkpointed uberblock is selected if we were to close and
5390 * reopen the pool right after we've written it in the vdev labels.
5391 * (also see block comment in vdev_uberblock_compare)
5392 */
5393 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
5394 checkpoint.ub_timestamp = gethrestime_sec();
5395
5396 /*
5397 * Set current uberblock to be the checkpointed uberblock.
5398 */
5399 spa->spa_uberblock = checkpoint;
5400
5401 /*
5402 * If we are doing a normal rewind, then the pool is open for
5403 * writing and we sync the "updated" checkpointed uberblock to
5404 * disk. Once this is done, we've basically rewound the whole
5405 * pool and there is no way back.
5406 *
5407 * There are cases when we don't want to attempt and sync the
5408 * checkpointed uberblock to disk because we are opening a
5409 * pool as read-only. Specifically, verifying the checkpointed
5410 * state with zdb, and importing the checkpointed state to get
5411 * a "preview" of its content.
5412 */
5413 if (spa_writeable(spa)) {
5414 vdev_t *rvd = spa->spa_root_vdev;
5415
5416 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5417 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
5418 int svdcount = 0;
5419 int children = rvd->vdev_children;
5420 int c0 = random_in_range(children);
5421
5422 for (int c = 0; c < children; c++) {
5423 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
5424
5425 /* Stop when revisiting the first vdev */
5426 if (c > 0 && svd[0] == vd)
5427 break;
5428
5429 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
5430 !vdev_is_concrete(vd))
5431 continue;
5432
5433 svd[svdcount++] = vd;
5434 if (svdcount == SPA_SYNC_MIN_VDEVS)
5435 break;
5436 }
5437 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
5438 if (error == 0)
5439 spa->spa_last_synced_guid = rvd->vdev_guid;
5440 spa_config_exit(spa, SCL_ALL, FTAG);
5441
5442 if (error != 0) {
5443 spa_load_failed(spa, "failed to write checkpointed "
5444 "uberblock to the vdev labels [error=%d]", error);
5445 return (error);
5446 }
5447 }
5448
5449 return (0);
5450 }
5451
5452 static int
5453 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
5454 boolean_t *update_config_cache)
5455 {
5456 int error;
5457
5458 /*
5459 * Parse the config for pool, open and validate vdevs,
5460 * select an uberblock, and use that uberblock to open
5461 * the MOS.
5462 */
5463 error = spa_ld_mos_init(spa, type);
5464 if (error != 0)
5465 return (error);
5466
5467 /*
5468 * Retrieve the trusted config stored in the MOS and use it to create
5469 * a new, exact version of the vdev tree, then reopen all vdevs.
5470 */
5471 error = spa_ld_trusted_config(spa, type, B_FALSE);
5472 if (error == EAGAIN) {
5473 if (update_config_cache != NULL)
5474 *update_config_cache = B_TRUE;
5475
5476 /*
5477 * Redo the loading process with the trusted config if it is
5478 * too different from the untrusted config.
5479 */
5480 spa_ld_prepare_for_reload(spa);
5481 spa_load_note(spa, "RELOADING");
5482 error = spa_ld_mos_init(spa, type);
5483 if (error != 0)
5484 return (error);
5485
5486 error = spa_ld_trusted_config(spa, type, B_TRUE);
5487 if (error != 0)
5488 return (error);
5489
5490 } else if (error != 0) {
5491 return (error);
5492 }
5493
5494 return (0);
5495 }
5496
5497 /*
5498 * Load an existing storage pool, using the config provided. This config
5499 * describes which vdevs are part of the pool and is later validated against
5500 * partial configs present in each vdev's label and an entire copy of the
5501 * config stored in the MOS.
5502 */
5503 static int
5504 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
5505 {
5506 int error = 0;
5507 boolean_t missing_feat_write = B_FALSE;
5508 boolean_t checkpoint_rewind =
5509 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5510 boolean_t update_config_cache = B_FALSE;
5511 hrtime_t load_start = gethrtime();
5512
5513 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5514 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5515
5516 spa_load_note(spa, "LOADING");
5517
5518 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
5519 if (error != 0)
5520 return (error);
5521
5522 /*
5523 * If we are rewinding to the checkpoint then we need to repeat
5524 * everything we've done so far in this function but this time
5525 * selecting the checkpointed uberblock and using that to open
5526 * the MOS.
5527 */
5528 if (checkpoint_rewind) {
5529 /*
5530 * If we are rewinding to the checkpoint update config cache
5531 * anyway.
5532 */
5533 update_config_cache = B_TRUE;
5534
5535 /*
5536 * Extract the checkpointed uberblock from the current MOS
5537 * and use this as the pool's uberblock from now on. If the
5538 * pool is imported as writeable we also write the checkpoint
5539 * uberblock to the labels, making the rewind permanent.
5540 */
5541 error = spa_ld_checkpoint_rewind(spa);
5542 if (error != 0)
5543 return (error);
5544
5545 /*
5546 * Redo the loading process again with the
5547 * checkpointed uberblock.
5548 */
5549 spa_ld_prepare_for_reload(spa);
5550 spa_load_note(spa, "LOADING checkpointed uberblock");
5551 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
5552 if (error != 0)
5553 return (error);
5554 }
5555
5556 /*
5557 * Drop the namespace lock for the rest of the function.
5558 */
5559 spa->spa_load_thread = curthread;
5560 mutex_exit(&spa_namespace_lock);
5561
5562 /*
5563 * Retrieve the checkpoint txg if the pool has a checkpoint.
5564 */
5565 spa_import_progress_set_notes(spa, "Loading checkpoint txg");
5566 error = spa_ld_read_checkpoint_txg(spa);
5567 if (error != 0)
5568 goto fail;
5569
5570 /*
5571 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
5572 * from the pool and their contents were re-mapped to other vdevs. Note
5573 * that everything that we read before this step must have been
5574 * rewritten on concrete vdevs after the last device removal was
5575 * initiated. Otherwise we could be reading from indirect vdevs before
5576 * we have loaded their mappings.
5577 */
5578 spa_import_progress_set_notes(spa, "Loading indirect vdev metadata");
5579 error = spa_ld_open_indirect_vdev_metadata(spa);
5580 if (error != 0)
5581 goto fail;
5582
5583 /*
5584 * Retrieve the full list of active features from the MOS and check if
5585 * they are all supported.
5586 */
5587 spa_import_progress_set_notes(spa, "Checking feature flags");
5588 error = spa_ld_check_features(spa, &missing_feat_write);
5589 if (error != 0)
5590 goto fail;
5591
5592 /*
5593 * Load several special directories from the MOS needed by the dsl_pool
5594 * layer.
5595 */
5596 spa_import_progress_set_notes(spa, "Loading special MOS directories");
5597 error = spa_ld_load_special_directories(spa);
5598 if (error != 0)
5599 goto fail;
5600
5601 /*
5602 * Retrieve pool properties from the MOS.
5603 */
5604 spa_import_progress_set_notes(spa, "Loading properties");
5605 error = spa_ld_get_props(spa);
5606 if (error != 0)
5607 goto fail;
5608
5609 /*
5610 * Retrieve the list of auxiliary devices - cache devices and spares -
5611 * and open them.
5612 */
5613 spa_import_progress_set_notes(spa, "Loading AUX vdevs");
5614 error = spa_ld_open_aux_vdevs(spa, type);
5615 if (error != 0)
5616 goto fail;
5617
5618 /*
5619 * Load the metadata for all vdevs. Also check if unopenable devices
5620 * should be autoreplaced.
5621 */
5622 spa_import_progress_set_notes(spa, "Loading vdev metadata");
5623 error = spa_ld_load_vdev_metadata(spa);
5624 if (error != 0)
5625 goto fail;
5626
5627 spa_import_progress_set_notes(spa, "Loading dedup tables");
5628 error = spa_ld_load_dedup_tables(spa);
5629 if (error != 0)
5630 goto fail;
5631
5632 spa_import_progress_set_notes(spa, "Loading BRT");
5633 error = spa_ld_load_brt(spa);
5634 if (error != 0)
5635 goto fail;
5636
5637 /*
5638 * Verify the logs now to make sure we don't have any unexpected errors
5639 * when we claim log blocks later.
5640 */
5641 spa_import_progress_set_notes(spa, "Verifying Log Devices");
5642 error = spa_ld_verify_logs(spa, type, ereport);
5643 if (error != 0)
5644 goto fail;
5645
5646 if (missing_feat_write) {
5647 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5648
5649 /*
5650 * At this point, we know that we can open the pool in
5651 * read-only mode but not read-write mode. We now have enough
5652 * information and can return to userland.
5653 */
5654 error = spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5655 ENOTSUP);
5656 goto fail;
5657 }
5658
5659 /*
5660 * Traverse the last txgs to make sure the pool was left off in a safe
5661 * state. When performing an extreme rewind, we verify the whole pool,
5662 * which can take a very long time.
5663 */
5664 spa_import_progress_set_notes(spa, "Verifying pool data");
5665 error = spa_ld_verify_pool_data(spa);
5666 if (error != 0)
5667 goto fail;
5668
5669 /*
5670 * Calculate the deflated space for the pool. This must be done before
5671 * we write anything to the pool because we'd need to update the space
5672 * accounting using the deflated sizes.
5673 */
5674 spa_import_progress_set_notes(spa, "Calculating deflated space");
5675 spa_update_dspace(spa);
5676
5677 /*
5678 * We have now retrieved all the information we needed to open the
5679 * pool. If we are importing the pool in read-write mode, a few
5680 * additional steps must be performed to finish the import.
5681 */
5682 spa_import_progress_set_notes(spa, "Starting import");
5683 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5684 spa->spa_load_max_txg == UINT64_MAX)) {
5685 uint64_t config_cache_txg = spa->spa_config_txg;
5686
5687 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5688
5689 /*
5690 * Before we do any zio_write's, complete the raidz expansion
5691 * scratch space copying, if necessary.
5692 */
5693 if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID)
5694 vdev_raidz_reflow_copy_scratch(spa);
5695
5696 /*
5697 * In case of a checkpoint rewind, log the original txg
5698 * of the checkpointed uberblock.
5699 */
5700 if (checkpoint_rewind) {
5701 spa_history_log_internal(spa, "checkpoint rewind",
5702 NULL, "rewound state to txg=%llu",
5703 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5704 }
5705
5706 spa_import_progress_set_notes(spa, "Claiming ZIL blocks");
5707 /*
5708 * Traverse the ZIL and claim all blocks.
5709 */
5710 spa_ld_claim_log_blocks(spa);
5711
5712 /*
5713 * Kick-off the syncing thread.
5714 */
5715 spa->spa_sync_on = B_TRUE;
5716 txg_sync_start(spa->spa_dsl_pool);
5717 mmp_thread_start(spa);
5718
5719 /*
5720 * Wait for all claims to sync. We sync up to the highest
5721 * claimed log block birth time so that claimed log blocks
5722 * don't appear to be from the future. spa_claim_max_txg
5723 * will have been set for us by ZIL traversal operations
5724 * performed above.
5725 */
5726 spa_import_progress_set_notes(spa, "Syncing ZIL claims");
5727 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5728
5729 /*
5730 * Check if we need to request an update of the config. On the
5731 * next sync, we would update the config stored in vdev labels
5732 * and the cachefile (by default /etc/zfs/zpool.cache).
5733 */
5734 spa_import_progress_set_notes(spa, "Updating configs");
5735 spa_ld_check_for_config_update(spa, config_cache_txg,
5736 update_config_cache);
5737
5738 /*
5739 * Check if a rebuild was in progress and if so resume it.
5740 * Then check all DTLs to see if anything needs resilvering.
5741 * The resilver will be deferred if a rebuild was started.
5742 */
5743 spa_import_progress_set_notes(spa, "Starting resilvers");
5744 if (vdev_rebuild_active(spa->spa_root_vdev)) {
5745 vdev_rebuild_restart(spa);
5746 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5747 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5748 spa_async_request(spa, SPA_ASYNC_RESILVER);
5749 }
5750
5751 /*
5752 * Log the fact that we booted up (so that we can detect if
5753 * we rebooted in the middle of an operation).
5754 */
5755 spa_history_log_version(spa, "open", NULL);
5756
5757 spa_import_progress_set_notes(spa,
5758 "Restarting device removals");
5759 spa_restart_removal(spa);
5760 spa_spawn_aux_threads(spa);
5761
5762 /*
5763 * Delete any inconsistent datasets.
5764 *
5765 * Note:
5766 * Since we may be issuing deletes for clones here,
5767 * we make sure to do so after we've spawned all the
5768 * auxiliary threads above (from which the livelist
5769 * deletion zthr is part of).
5770 */
5771 spa_import_progress_set_notes(spa,
5772 "Cleaning up inconsistent objsets");
5773 (void) dmu_objset_find(spa_name(spa),
5774 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5775
5776 /*
5777 * Clean up any stale temporary dataset userrefs.
5778 */
5779 spa_import_progress_set_notes(spa,
5780 "Cleaning up temporary userrefs");
5781 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5782
5783 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5784 spa_import_progress_set_notes(spa, "Restarting initialize");
5785 vdev_initialize_restart(spa->spa_root_vdev);
5786 spa_import_progress_set_notes(spa, "Restarting TRIM");
5787 vdev_trim_restart(spa->spa_root_vdev);
5788 vdev_autotrim_restart(spa);
5789 spa_config_exit(spa, SCL_CONFIG, FTAG);
5790 spa_import_progress_set_notes(spa, "Finished importing");
5791 }
5792 zio_handle_import_delay(spa, gethrtime() - load_start);
5793
5794 spa_import_progress_remove(spa_guid(spa));
5795 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5796
5797 spa_load_note(spa, "LOADED");
5798 fail:
5799 mutex_enter(&spa_namespace_lock);
5800 spa->spa_load_thread = NULL;
5801 cv_broadcast(&spa_namespace_cv);
5802
5803 return (error);
5804
5805 }
5806
5807 static int
5808 spa_load_retry(spa_t *spa, spa_load_state_t state)
5809 {
5810 spa_mode_t mode = spa->spa_mode;
5811
5812 spa_unload(spa);
5813 spa_deactivate(spa);
5814
5815 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5816
5817 spa_activate(spa, mode);
5818 spa_async_suspend(spa);
5819
5820 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5821 (u_longlong_t)spa->spa_load_max_txg);
5822
5823 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5824 }
5825
5826 /*
5827 * If spa_load() fails this function will try loading prior txg's. If
5828 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5829 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5830 * function will not rewind the pool and will return the same error as
5831 * spa_load().
5832 */
5833 static int
5834 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5835 int rewind_flags)
5836 {
5837 nvlist_t *loadinfo = NULL;
5838 nvlist_t *config = NULL;
5839 int load_error, rewind_error;
5840 uint64_t safe_rewind_txg;
5841 uint64_t min_txg;
5842
5843 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5844 spa->spa_load_max_txg = spa->spa_load_txg;
5845 spa_set_log_state(spa, SPA_LOG_CLEAR);
5846 } else {
5847 spa->spa_load_max_txg = max_request;
5848 if (max_request != UINT64_MAX)
5849 spa->spa_extreme_rewind = B_TRUE;
5850 }
5851
5852 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5853 if (load_error == 0)
5854 return (0);
5855 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5856 /*
5857 * When attempting checkpoint-rewind on a pool with no
5858 * checkpoint, we should not attempt to load uberblocks
5859 * from previous txgs when spa_load fails.
5860 */
5861 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5862 spa_import_progress_remove(spa_guid(spa));
5863 return (load_error);
5864 }
5865
5866 if (spa->spa_root_vdev != NULL)
5867 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5868
5869 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5870 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5871
5872 if (rewind_flags & ZPOOL_NEVER_REWIND) {
5873 nvlist_free(config);
5874 spa_import_progress_remove(spa_guid(spa));
5875 return (load_error);
5876 }
5877
5878 if (state == SPA_LOAD_RECOVER) {
5879 /* Price of rolling back is discarding txgs, including log */
5880 spa_set_log_state(spa, SPA_LOG_CLEAR);
5881 } else {
5882 /*
5883 * If we aren't rolling back save the load info from our first
5884 * import attempt so that we can restore it after attempting
5885 * to rewind.
5886 */
5887 loadinfo = spa->spa_load_info;
5888 spa->spa_load_info = fnvlist_alloc();
5889 }
5890
5891 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5892 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5893 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5894 TXG_INITIAL : safe_rewind_txg;
5895
5896 /*
5897 * Continue as long as we're finding errors, we're still within
5898 * the acceptable rewind range, and we're still finding uberblocks
5899 */
5900 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5901 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5902 if (spa->spa_load_max_txg < safe_rewind_txg)
5903 spa->spa_extreme_rewind = B_TRUE;
5904 rewind_error = spa_load_retry(spa, state);
5905 }
5906
5907 spa->spa_extreme_rewind = B_FALSE;
5908 spa->spa_load_max_txg = UINT64_MAX;
5909
5910 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5911 spa_config_set(spa, config);
5912 else
5913 nvlist_free(config);
5914
5915 if (state == SPA_LOAD_RECOVER) {
5916 ASSERT0P(loadinfo);
5917 spa_import_progress_remove(spa_guid(spa));
5918 return (rewind_error);
5919 } else {
5920 /* Store the rewind info as part of the initial load info */
5921 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5922 spa->spa_load_info);
5923
5924 /* Restore the initial load info */
5925 fnvlist_free(spa->spa_load_info);
5926 spa->spa_load_info = loadinfo;
5927
5928 spa_import_progress_remove(spa_guid(spa));
5929 return (load_error);
5930 }
5931 }
5932
5933 /*
5934 * Pool Open/Import
5935 *
5936 * The import case is identical to an open except that the configuration is sent
5937 * down from userland, instead of grabbed from the configuration cache. For the
5938 * case of an open, the pool configuration will exist in the
5939 * POOL_STATE_UNINITIALIZED state.
5940 *
5941 * The stats information (gen/count/ustats) is used to gather vdev statistics at
5942 * the same time open the pool, without having to keep around the spa_t in some
5943 * ambiguous state.
5944 */
5945 static int
5946 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5947 nvlist_t *nvpolicy, nvlist_t **config)
5948 {
5949 spa_t *spa;
5950 spa_load_state_t state = SPA_LOAD_OPEN;
5951 int error;
5952 int locked = B_FALSE;
5953 int firstopen = B_FALSE;
5954
5955 *spapp = NULL;
5956
5957 /*
5958 * As disgusting as this is, we need to support recursive calls to this
5959 * function because dsl_dir_open() is called during spa_load(), and ends
5960 * up calling spa_open() again. The real fix is to figure out how to
5961 * avoid dsl_dir_open() calling this in the first place.
5962 */
5963 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5964 mutex_enter(&spa_namespace_lock);
5965 locked = B_TRUE;
5966 }
5967
5968 if ((spa = spa_lookup(pool)) == NULL) {
5969 if (locked)
5970 mutex_exit(&spa_namespace_lock);
5971 return (SET_ERROR(ENOENT));
5972 }
5973
5974 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5975 zpool_load_policy_t policy;
5976
5977 firstopen = B_TRUE;
5978
5979 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5980 &policy);
5981 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5982 state = SPA_LOAD_RECOVER;
5983
5984 spa_activate(spa, spa_mode_global);
5985
5986 if (state != SPA_LOAD_RECOVER)
5987 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5988 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5989
5990 zfs_dbgmsg("spa_open_common: opening %s", pool);
5991 error = spa_load_best(spa, state, policy.zlp_txg,
5992 policy.zlp_rewind);
5993
5994 if (error == EBADF) {
5995 /*
5996 * If vdev_validate() returns failure (indicated by
5997 * EBADF), it indicates that one of the vdevs indicates
5998 * that the pool has been exported or destroyed. If
5999 * this is the case, the config cache is out of sync and
6000 * we should remove the pool from the namespace.
6001 */
6002 spa_unload(spa);
6003 spa_deactivate(spa);
6004 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
6005 spa_remove(spa);
6006 if (locked)
6007 mutex_exit(&spa_namespace_lock);
6008 return (SET_ERROR(ENOENT));
6009 }
6010
6011 if (error) {
6012 /*
6013 * We can't open the pool, but we still have useful
6014 * information: the state of each vdev after the
6015 * attempted vdev_open(). Return this to the user.
6016 */
6017 if (config != NULL && spa->spa_config) {
6018 *config = fnvlist_dup(spa->spa_config);
6019 fnvlist_add_nvlist(*config,
6020 ZPOOL_CONFIG_LOAD_INFO,
6021 spa->spa_load_info);
6022 }
6023 spa_unload(spa);
6024 spa_deactivate(spa);
6025 spa->spa_last_open_failed = error;
6026 if (locked)
6027 mutex_exit(&spa_namespace_lock);
6028 *spapp = NULL;
6029 return (error);
6030 }
6031 }
6032
6033 spa_open_ref(spa, tag);
6034
6035 if (config != NULL)
6036 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6037
6038 /*
6039 * If we've recovered the pool, pass back any information we
6040 * gathered while doing the load.
6041 */
6042 if (state == SPA_LOAD_RECOVER && config != NULL) {
6043 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
6044 spa->spa_load_info);
6045 }
6046
6047 if (locked) {
6048 spa->spa_last_open_failed = 0;
6049 spa->spa_last_ubsync_txg = 0;
6050 spa->spa_load_txg = 0;
6051 mutex_exit(&spa_namespace_lock);
6052 }
6053
6054 if (firstopen)
6055 zvol_create_minors(spa_name(spa));
6056
6057 *spapp = spa;
6058
6059 return (0);
6060 }
6061
6062 int
6063 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
6064 nvlist_t *policy, nvlist_t **config)
6065 {
6066 return (spa_open_common(name, spapp, tag, policy, config));
6067 }
6068
6069 int
6070 spa_open(const char *name, spa_t **spapp, const void *tag)
6071 {
6072 return (spa_open_common(name, spapp, tag, NULL, NULL));
6073 }
6074
6075 /*
6076 * Lookup the given spa_t, incrementing the inject count in the process,
6077 * preventing it from being exported or destroyed.
6078 */
6079 spa_t *
6080 spa_inject_addref(char *name)
6081 {
6082 spa_t *spa;
6083
6084 mutex_enter(&spa_namespace_lock);
6085 if ((spa = spa_lookup(name)) == NULL) {
6086 mutex_exit(&spa_namespace_lock);
6087 return (NULL);
6088 }
6089 spa->spa_inject_ref++;
6090 mutex_exit(&spa_namespace_lock);
6091
6092 return (spa);
6093 }
6094
6095 void
6096 spa_inject_delref(spa_t *spa)
6097 {
6098 mutex_enter(&spa_namespace_lock);
6099 spa->spa_inject_ref--;
6100 mutex_exit(&spa_namespace_lock);
6101 }
6102
6103 /*
6104 * Add spares device information to the nvlist.
6105 */
6106 static void
6107 spa_add_spares(spa_t *spa, nvlist_t *config)
6108 {
6109 nvlist_t **spares;
6110 uint_t i, nspares;
6111 nvlist_t *nvroot;
6112 uint64_t guid;
6113 vdev_stat_t *vs;
6114 uint_t vsc;
6115 uint64_t pool;
6116
6117 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6118
6119 if (spa->spa_spares.sav_count == 0)
6120 return;
6121
6122 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6123 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
6124 ZPOOL_CONFIG_SPARES, &spares, &nspares));
6125 if (nspares != 0) {
6126 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6127 (const nvlist_t * const *)spares, nspares);
6128 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6129 &spares, &nspares));
6130
6131 /*
6132 * Go through and find any spares which have since been
6133 * repurposed as an active spare. If this is the case, update
6134 * their status appropriately.
6135 */
6136 for (i = 0; i < nspares; i++) {
6137 guid = fnvlist_lookup_uint64(spares[i],
6138 ZPOOL_CONFIG_GUID);
6139 VERIFY0(nvlist_lookup_uint64_array(spares[i],
6140 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
6141 if (spa_spare_exists(guid, &pool, NULL) &&
6142 pool != 0ULL) {
6143 vs->vs_state = VDEV_STATE_CANT_OPEN;
6144 vs->vs_aux = VDEV_AUX_SPARED;
6145 } else {
6146 vs->vs_state =
6147 spa->spa_spares.sav_vdevs[i]->vdev_state;
6148 }
6149 }
6150 }
6151 }
6152
6153 /*
6154 * Add l2cache device information to the nvlist, including vdev stats.
6155 */
6156 static void
6157 spa_add_l2cache(spa_t *spa, nvlist_t *config)
6158 {
6159 nvlist_t **l2cache;
6160 uint_t i, j, nl2cache;
6161 nvlist_t *nvroot;
6162 uint64_t guid;
6163 vdev_t *vd;
6164 vdev_stat_t *vs;
6165 uint_t vsc;
6166
6167 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6168
6169 if (spa->spa_l2cache.sav_count == 0)
6170 return;
6171
6172 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6173 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
6174 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
6175 if (nl2cache != 0) {
6176 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6177 (const nvlist_t * const *)l2cache, nl2cache);
6178 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6179 &l2cache, &nl2cache));
6180
6181 /*
6182 * Update level 2 cache device stats.
6183 */
6184
6185 for (i = 0; i < nl2cache; i++) {
6186 guid = fnvlist_lookup_uint64(l2cache[i],
6187 ZPOOL_CONFIG_GUID);
6188
6189 vd = NULL;
6190 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
6191 if (guid ==
6192 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
6193 vd = spa->spa_l2cache.sav_vdevs[j];
6194 break;
6195 }
6196 }
6197 ASSERT(vd != NULL);
6198
6199 VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
6200 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
6201 vdev_get_stats(vd, vs);
6202 vdev_config_generate_stats(vd, l2cache[i]);
6203
6204 }
6205 }
6206 }
6207
6208 static void
6209 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
6210 {
6211 zap_cursor_t zc;
6212 zap_attribute_t *za = zap_attribute_alloc();
6213
6214 if (spa->spa_feat_for_read_obj != 0) {
6215 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6216 spa->spa_feat_for_read_obj);
6217 zap_cursor_retrieve(&zc, za) == 0;
6218 zap_cursor_advance(&zc)) {
6219 ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6220 za->za_num_integers == 1);
6221 VERIFY0(nvlist_add_uint64(features, za->za_name,
6222 za->za_first_integer));
6223 }
6224 zap_cursor_fini(&zc);
6225 }
6226
6227 if (spa->spa_feat_for_write_obj != 0) {
6228 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6229 spa->spa_feat_for_write_obj);
6230 zap_cursor_retrieve(&zc, za) == 0;
6231 zap_cursor_advance(&zc)) {
6232 ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6233 za->za_num_integers == 1);
6234 VERIFY0(nvlist_add_uint64(features, za->za_name,
6235 za->za_first_integer));
6236 }
6237 zap_cursor_fini(&zc);
6238 }
6239 zap_attribute_free(za);
6240 }
6241
6242 static void
6243 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
6244 {
6245 int i;
6246
6247 for (i = 0; i < SPA_FEATURES; i++) {
6248 zfeature_info_t feature = spa_feature_table[i];
6249 uint64_t refcount;
6250
6251 if (feature_get_refcount(spa, &feature, &refcount) != 0)
6252 continue;
6253
6254 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
6255 }
6256 }
6257
6258 /*
6259 * Store a list of pool features and their reference counts in the
6260 * config.
6261 *
6262 * The first time this is called on a spa, allocate a new nvlist, fetch
6263 * the pool features and reference counts from disk, then save the list
6264 * in the spa. In subsequent calls on the same spa use the saved nvlist
6265 * and refresh its values from the cached reference counts. This
6266 * ensures we don't block here on I/O on a suspended pool so 'zpool
6267 * clear' can resume the pool.
6268 */
6269 static void
6270 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
6271 {
6272 nvlist_t *features;
6273
6274 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6275
6276 mutex_enter(&spa->spa_feat_stats_lock);
6277 features = spa->spa_feat_stats;
6278
6279 if (features != NULL) {
6280 spa_feature_stats_from_cache(spa, features);
6281 } else {
6282 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
6283 spa->spa_feat_stats = features;
6284 spa_feature_stats_from_disk(spa, features);
6285 }
6286
6287 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
6288 features));
6289
6290 mutex_exit(&spa->spa_feat_stats_lock);
6291 }
6292
6293 int
6294 spa_get_stats(const char *name, nvlist_t **config,
6295 char *altroot, size_t buflen)
6296 {
6297 int error;
6298 spa_t *spa;
6299
6300 *config = NULL;
6301 error = spa_open_common(name, &spa, FTAG, NULL, config);
6302
6303 if (spa != NULL) {
6304 /*
6305 * This still leaves a window of inconsistency where the spares
6306 * or l2cache devices could change and the config would be
6307 * self-inconsistent.
6308 */
6309 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6310
6311 if (*config != NULL) {
6312 uint64_t loadtimes[2];
6313
6314 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
6315 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
6316 fnvlist_add_uint64_array(*config,
6317 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
6318
6319 fnvlist_add_uint64(*config,
6320 ZPOOL_CONFIG_ERRCOUNT,
6321 spa_approx_errlog_size(spa));
6322
6323 if (spa_suspended(spa)) {
6324 fnvlist_add_uint64(*config,
6325 ZPOOL_CONFIG_SUSPENDED,
6326 spa->spa_failmode);
6327 fnvlist_add_uint64(*config,
6328 ZPOOL_CONFIG_SUSPENDED_REASON,
6329 spa->spa_suspended);
6330 }
6331
6332 spa_add_spares(spa, *config);
6333 spa_add_l2cache(spa, *config);
6334 spa_add_feature_stats(spa, *config);
6335 }
6336 }
6337
6338 /*
6339 * We want to get the alternate root even for faulted pools, so we cheat
6340 * and call spa_lookup() directly.
6341 */
6342 if (altroot) {
6343 if (spa == NULL) {
6344 mutex_enter(&spa_namespace_lock);
6345 spa = spa_lookup(name);
6346 if (spa)
6347 spa_altroot(spa, altroot, buflen);
6348 else
6349 altroot[0] = '\0';
6350 spa = NULL;
6351 mutex_exit(&spa_namespace_lock);
6352 } else {
6353 spa_altroot(spa, altroot, buflen);
6354 }
6355 }
6356
6357 if (spa != NULL) {
6358 spa_config_exit(spa, SCL_CONFIG, FTAG);
6359 spa_close(spa, FTAG);
6360 }
6361
6362 return (error);
6363 }
6364
6365 /*
6366 * Validate that the auxiliary device array is well formed. We must have an
6367 * array of nvlists, each which describes a valid leaf vdev. If this is an
6368 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
6369 * specified, as long as they are well-formed.
6370 */
6371 static int
6372 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
6373 spa_aux_vdev_t *sav, const char *config, uint64_t version,
6374 vdev_labeltype_t label)
6375 {
6376 nvlist_t **dev;
6377 uint_t i, ndev;
6378 vdev_t *vd;
6379 int error;
6380
6381 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6382
6383 /*
6384 * It's acceptable to have no devs specified.
6385 */
6386 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
6387 return (0);
6388
6389 if (ndev == 0)
6390 return (SET_ERROR(EINVAL));
6391
6392 /*
6393 * Make sure the pool is formatted with a version that supports this
6394 * device type.
6395 */
6396 if (spa_version(spa) < version)
6397 return (SET_ERROR(ENOTSUP));
6398
6399 /*
6400 * Set the pending device list so we correctly handle device in-use
6401 * checking.
6402 */
6403 sav->sav_pending = dev;
6404 sav->sav_npending = ndev;
6405
6406 for (i = 0; i < ndev; i++) {
6407 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
6408 mode)) != 0)
6409 goto out;
6410
6411 if (!vd->vdev_ops->vdev_op_leaf) {
6412 vdev_free(vd);
6413 error = SET_ERROR(EINVAL);
6414 goto out;
6415 }
6416
6417 vd->vdev_top = vd;
6418
6419 if ((error = vdev_open(vd)) == 0 &&
6420 (error = vdev_label_init(vd, crtxg, label)) == 0) {
6421 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
6422 vd->vdev_guid);
6423 }
6424
6425 vdev_free(vd);
6426
6427 if (error &&
6428 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
6429 goto out;
6430 else
6431 error = 0;
6432 }
6433
6434 out:
6435 sav->sav_pending = NULL;
6436 sav->sav_npending = 0;
6437 return (error);
6438 }
6439
6440 static int
6441 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
6442 {
6443 int error;
6444
6445 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6446
6447 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6448 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
6449 VDEV_LABEL_SPARE)) != 0) {
6450 return (error);
6451 }
6452
6453 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6454 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
6455 VDEV_LABEL_L2CACHE));
6456 }
6457
6458 static void
6459 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
6460 const char *config)
6461 {
6462 int i;
6463
6464 if (sav->sav_config != NULL) {
6465 nvlist_t **olddevs;
6466 uint_t oldndevs;
6467 nvlist_t **newdevs;
6468
6469 /*
6470 * Generate new dev list by concatenating with the
6471 * current dev list.
6472 */
6473 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
6474 &olddevs, &oldndevs));
6475
6476 newdevs = kmem_alloc(sizeof (void *) *
6477 (ndevs + oldndevs), KM_SLEEP);
6478 for (i = 0; i < oldndevs; i++)
6479 newdevs[i] = fnvlist_dup(olddevs[i]);
6480 for (i = 0; i < ndevs; i++)
6481 newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
6482
6483 fnvlist_remove(sav->sav_config, config);
6484
6485 fnvlist_add_nvlist_array(sav->sav_config, config,
6486 (const nvlist_t * const *)newdevs, ndevs + oldndevs);
6487 for (i = 0; i < oldndevs + ndevs; i++)
6488 nvlist_free(newdevs[i]);
6489 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
6490 } else {
6491 /*
6492 * Generate a new dev list.
6493 */
6494 sav->sav_config = fnvlist_alloc();
6495 fnvlist_add_nvlist_array(sav->sav_config, config,
6496 (const nvlist_t * const *)devs, ndevs);
6497 }
6498 }
6499
6500 /*
6501 * Stop and drop level 2 ARC devices
6502 */
6503 void
6504 spa_l2cache_drop(spa_t *spa)
6505 {
6506 vdev_t *vd;
6507 int i;
6508 spa_aux_vdev_t *sav = &spa->spa_l2cache;
6509
6510 for (i = 0; i < sav->sav_count; i++) {
6511 uint64_t pool;
6512
6513 vd = sav->sav_vdevs[i];
6514 ASSERT(vd != NULL);
6515
6516 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
6517 pool != 0ULL && l2arc_vdev_present(vd))
6518 l2arc_remove_vdev(vd);
6519 }
6520 }
6521
6522 /*
6523 * Verify encryption parameters for spa creation. If we are encrypting, we must
6524 * have the encryption feature flag enabled.
6525 */
6526 static int
6527 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
6528 boolean_t has_encryption)
6529 {
6530 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
6531 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
6532 !has_encryption)
6533 return (SET_ERROR(ENOTSUP));
6534
6535 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
6536 }
6537
6538 /*
6539 * Pool Creation
6540 */
6541 int
6542 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
6543 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
6544 {
6545 spa_t *spa;
6546 const char *altroot = NULL;
6547 vdev_t *rvd;
6548 dsl_pool_t *dp;
6549 dmu_tx_t *tx;
6550 int error = 0;
6551 uint64_t txg = TXG_INITIAL;
6552 nvlist_t **spares, **l2cache;
6553 uint_t nspares, nl2cache;
6554 uint64_t version, obj, ndraid = 0;
6555 boolean_t has_features;
6556 boolean_t has_encryption;
6557 boolean_t has_allocclass;
6558 spa_feature_t feat;
6559 const char *feat_name;
6560 const char *poolname;
6561 nvlist_t *nvl;
6562
6563 if (props == NULL ||
6564 nvlist_lookup_string(props,
6565 zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
6566 poolname = (char *)pool;
6567
6568 /*
6569 * If this pool already exists, return failure.
6570 */
6571 mutex_enter(&spa_namespace_lock);
6572 if (spa_lookup(poolname) != NULL) {
6573 mutex_exit(&spa_namespace_lock);
6574 return (SET_ERROR(EEXIST));
6575 }
6576
6577 /*
6578 * Allocate a new spa_t structure.
6579 */
6580 nvl = fnvlist_alloc();
6581 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
6582 (void) nvlist_lookup_string(props,
6583 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6584 spa = spa_add(poolname, nvl, altroot);
6585 fnvlist_free(nvl);
6586 spa_activate(spa, spa_mode_global);
6587
6588 if (props && (error = spa_prop_validate(spa, props))) {
6589 spa_deactivate(spa);
6590 spa_remove(spa);
6591 mutex_exit(&spa_namespace_lock);
6592 return (error);
6593 }
6594
6595 /*
6596 * Temporary pool names should never be written to disk.
6597 */
6598 if (poolname != pool)
6599 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
6600
6601 has_features = B_FALSE;
6602 has_encryption = B_FALSE;
6603 has_allocclass = B_FALSE;
6604 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
6605 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
6606 if (zpool_prop_feature(nvpair_name(elem))) {
6607 has_features = B_TRUE;
6608
6609 feat_name = strchr(nvpair_name(elem), '@') + 1;
6610 VERIFY0(zfeature_lookup_name(feat_name, &feat));
6611 if (feat == SPA_FEATURE_ENCRYPTION)
6612 has_encryption = B_TRUE;
6613 if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
6614 has_allocclass = B_TRUE;
6615 }
6616 }
6617
6618 /* verify encryption params, if they were provided */
6619 if (dcp != NULL) {
6620 error = spa_create_check_encryption_params(dcp, has_encryption);
6621 if (error != 0) {
6622 spa_deactivate(spa);
6623 spa_remove(spa);
6624 mutex_exit(&spa_namespace_lock);
6625 return (error);
6626 }
6627 }
6628 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
6629 spa_deactivate(spa);
6630 spa_remove(spa);
6631 mutex_exit(&spa_namespace_lock);
6632 return (ENOTSUP);
6633 }
6634
6635 if (has_features || nvlist_lookup_uint64(props,
6636 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
6637 version = SPA_VERSION;
6638 }
6639 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6640
6641 spa->spa_first_txg = txg;
6642 spa->spa_uberblock.ub_txg = txg - 1;
6643 spa->spa_uberblock.ub_version = version;
6644 spa->spa_ubsync = spa->spa_uberblock;
6645 spa->spa_load_state = SPA_LOAD_CREATE;
6646 spa->spa_removing_phys.sr_state = DSS_NONE;
6647 spa->spa_removing_phys.sr_removing_vdev = -1;
6648 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
6649 spa->spa_indirect_vdevs_loaded = B_TRUE;
6650
6651 /*
6652 * Create "The Godfather" zio to hold all async IOs
6653 */
6654 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
6655 KM_SLEEP);
6656 for (int i = 0; i < max_ncpus; i++) {
6657 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
6658 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6659 ZIO_FLAG_GODFATHER);
6660 }
6661
6662 /*
6663 * Create the root vdev.
6664 */
6665 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6666
6667 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6668
6669 ASSERT(error != 0 || rvd != NULL);
6670 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6671
6672 if (error == 0 && !zfs_allocatable_devs(nvroot))
6673 error = SET_ERROR(EINVAL);
6674
6675 if (error == 0 &&
6676 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6677 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6678 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6679 /*
6680 * instantiate the metaslab groups (this will dirty the vdevs)
6681 * we can no longer error exit past this point
6682 */
6683 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6684 vdev_t *vd = rvd->vdev_child[c];
6685
6686 vdev_metaslab_set_size(vd);
6687 vdev_expand(vd, txg);
6688 }
6689 }
6690
6691 spa_config_exit(spa, SCL_ALL, FTAG);
6692
6693 if (error != 0) {
6694 spa_unload(spa);
6695 spa_deactivate(spa);
6696 spa_remove(spa);
6697 mutex_exit(&spa_namespace_lock);
6698 return (error);
6699 }
6700
6701 /*
6702 * Get the list of spares, if specified.
6703 */
6704 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6705 &spares, &nspares) == 0) {
6706 spa->spa_spares.sav_config = fnvlist_alloc();
6707 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6708 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6709 nspares);
6710 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6711 spa_load_spares(spa);
6712 spa_config_exit(spa, SCL_ALL, FTAG);
6713 spa->spa_spares.sav_sync = B_TRUE;
6714 }
6715
6716 /*
6717 * Get the list of level 2 cache devices, if specified.
6718 */
6719 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6720 &l2cache, &nl2cache) == 0) {
6721 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6722 NV_UNIQUE_NAME, KM_SLEEP));
6723 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6724 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6725 nl2cache);
6726 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6727 spa_load_l2cache(spa);
6728 spa_config_exit(spa, SCL_ALL, FTAG);
6729 spa->spa_l2cache.sav_sync = B_TRUE;
6730 }
6731
6732 spa->spa_is_initializing = B_TRUE;
6733 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6734 spa->spa_is_initializing = B_FALSE;
6735
6736 /*
6737 * Create DDTs (dedup tables).
6738 */
6739 ddt_create(spa);
6740 /*
6741 * Create BRT table and BRT table object.
6742 */
6743 brt_create(spa);
6744
6745 spa_update_dspace(spa);
6746
6747 tx = dmu_tx_create_assigned(dp, txg);
6748
6749 /*
6750 * Create the pool's history object.
6751 */
6752 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6753 spa_history_create_obj(spa, tx);
6754
6755 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6756 spa_history_log_version(spa, "create", tx);
6757
6758 /*
6759 * Create the pool config object.
6760 */
6761 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6762 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6763 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6764
6765 if (zap_add(spa->spa_meta_objset,
6766 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6767 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6768 cmn_err(CE_PANIC, "failed to add pool config");
6769 }
6770
6771 if (zap_add(spa->spa_meta_objset,
6772 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6773 sizeof (uint64_t), 1, &version, tx) != 0) {
6774 cmn_err(CE_PANIC, "failed to add pool version");
6775 }
6776
6777 /* Newly created pools with the right version are always deflated. */
6778 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6779 spa->spa_deflate = TRUE;
6780 if (zap_add(spa->spa_meta_objset,
6781 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6782 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6783 cmn_err(CE_PANIC, "failed to add deflate");
6784 }
6785 }
6786
6787 /*
6788 * Create the deferred-free bpobj. Turn off compression
6789 * because sync-to-convergence takes longer if the blocksize
6790 * keeps changing.
6791 */
6792 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6793 dmu_object_set_compress(spa->spa_meta_objset, obj,
6794 ZIO_COMPRESS_OFF, tx);
6795 if (zap_add(spa->spa_meta_objset,
6796 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6797 sizeof (uint64_t), 1, &obj, tx) != 0) {
6798 cmn_err(CE_PANIC, "failed to add bpobj");
6799 }
6800 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6801 spa->spa_meta_objset, obj));
6802
6803 /*
6804 * Generate some random noise for salted checksums to operate on.
6805 */
6806 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6807 sizeof (spa->spa_cksum_salt.zcs_bytes));
6808
6809 /*
6810 * Set pool properties.
6811 */
6812 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6813 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6814 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6815 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6816 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6817 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6818 spa->spa_dedup_table_quota =
6819 zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_TABLE_QUOTA);
6820
6821 if (props != NULL) {
6822 spa_configfile_set(spa, props, B_FALSE);
6823 spa_sync_props(props, tx);
6824 }
6825
6826 for (int i = 0; i < ndraid; i++)
6827 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6828
6829 dmu_tx_commit(tx);
6830
6831 spa->spa_sync_on = B_TRUE;
6832 txg_sync_start(dp);
6833 mmp_thread_start(spa);
6834 txg_wait_synced(dp, txg);
6835
6836 spa_spawn_aux_threads(spa);
6837
6838 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6839
6840 /*
6841 * Don't count references from objsets that are already closed
6842 * and are making their way through the eviction process.
6843 */
6844 spa_evicting_os_wait(spa);
6845 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6846 spa->spa_load_state = SPA_LOAD_NONE;
6847
6848 spa_import_os(spa);
6849
6850 mutex_exit(&spa_namespace_lock);
6851
6852 return (0);
6853 }
6854
6855 /*
6856 * Import a non-root pool into the system.
6857 */
6858 int
6859 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6860 {
6861 spa_t *spa;
6862 const char *altroot = NULL;
6863 spa_load_state_t state = SPA_LOAD_IMPORT;
6864 zpool_load_policy_t policy;
6865 spa_mode_t mode = spa_mode_global;
6866 uint64_t readonly = B_FALSE;
6867 int error;
6868 nvlist_t *nvroot;
6869 nvlist_t **spares, **l2cache;
6870 uint_t nspares, nl2cache;
6871
6872 /*
6873 * If a pool with this name exists, return failure.
6874 */
6875 mutex_enter(&spa_namespace_lock);
6876 if (spa_lookup(pool) != NULL) {
6877 mutex_exit(&spa_namespace_lock);
6878 return (SET_ERROR(EEXIST));
6879 }
6880
6881 /*
6882 * Create and initialize the spa structure.
6883 */
6884 (void) nvlist_lookup_string(props,
6885 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6886 (void) nvlist_lookup_uint64(props,
6887 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6888 if (readonly)
6889 mode = SPA_MODE_READ;
6890 spa = spa_add(pool, config, altroot);
6891 spa->spa_import_flags = flags;
6892
6893 /*
6894 * Verbatim import - Take a pool and insert it into the namespace
6895 * as if it had been loaded at boot.
6896 */
6897 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6898 if (props != NULL)
6899 spa_configfile_set(spa, props, B_FALSE);
6900
6901 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6902 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6903 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6904 mutex_exit(&spa_namespace_lock);
6905 return (0);
6906 }
6907
6908 spa_activate(spa, mode);
6909
6910 /*
6911 * Don't start async tasks until we know everything is healthy.
6912 */
6913 spa_async_suspend(spa);
6914
6915 zpool_get_load_policy(config, &policy);
6916 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6917 state = SPA_LOAD_RECOVER;
6918
6919 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6920
6921 if (state != SPA_LOAD_RECOVER) {
6922 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6923 zfs_dbgmsg("spa_import: importing %s", pool);
6924 } else {
6925 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6926 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6927 }
6928 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6929
6930 /*
6931 * Propagate anything learned while loading the pool and pass it
6932 * back to caller (i.e. rewind info, missing devices, etc).
6933 */
6934 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6935
6936 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6937 /*
6938 * Toss any existing sparelist, as it doesn't have any validity
6939 * anymore, and conflicts with spa_has_spare().
6940 */
6941 if (spa->spa_spares.sav_config) {
6942 nvlist_free(spa->spa_spares.sav_config);
6943 spa->spa_spares.sav_config = NULL;
6944 spa_load_spares(spa);
6945 }
6946 if (spa->spa_l2cache.sav_config) {
6947 nvlist_free(spa->spa_l2cache.sav_config);
6948 spa->spa_l2cache.sav_config = NULL;
6949 spa_load_l2cache(spa);
6950 }
6951
6952 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6953 spa_config_exit(spa, SCL_ALL, FTAG);
6954
6955 if (props != NULL)
6956 spa_configfile_set(spa, props, B_FALSE);
6957
6958 if (error != 0 || (props && spa_writeable(spa) &&
6959 (error = spa_prop_set(spa, props)))) {
6960 spa_unload(spa);
6961 spa_deactivate(spa);
6962 spa_remove(spa);
6963 mutex_exit(&spa_namespace_lock);
6964 return (error);
6965 }
6966
6967 spa_async_resume(spa);
6968
6969 /*
6970 * Override any spares and level 2 cache devices as specified by
6971 * the user, as these may have correct device names/devids, etc.
6972 */
6973 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6974 &spares, &nspares) == 0) {
6975 if (spa->spa_spares.sav_config)
6976 fnvlist_remove(spa->spa_spares.sav_config,
6977 ZPOOL_CONFIG_SPARES);
6978 else
6979 spa->spa_spares.sav_config = fnvlist_alloc();
6980 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6981 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6982 nspares);
6983 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6984 spa_load_spares(spa);
6985 spa_config_exit(spa, SCL_ALL, FTAG);
6986 spa->spa_spares.sav_sync = B_TRUE;
6987 spa->spa_spares.sav_label_sync = B_TRUE;
6988 }
6989 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6990 &l2cache, &nl2cache) == 0) {
6991 if (spa->spa_l2cache.sav_config)
6992 fnvlist_remove(spa->spa_l2cache.sav_config,
6993 ZPOOL_CONFIG_L2CACHE);
6994 else
6995 spa->spa_l2cache.sav_config = fnvlist_alloc();
6996 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6997 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6998 nl2cache);
6999 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7000 spa_load_l2cache(spa);
7001 spa_config_exit(spa, SCL_ALL, FTAG);
7002 spa->spa_l2cache.sav_sync = B_TRUE;
7003 spa->spa_l2cache.sav_label_sync = B_TRUE;
7004 }
7005
7006 /*
7007 * Check for any removed devices.
7008 */
7009 if (spa->spa_autoreplace) {
7010 spa_aux_check_removed(&spa->spa_spares);
7011 spa_aux_check_removed(&spa->spa_l2cache);
7012 }
7013
7014 if (spa_writeable(spa)) {
7015 /*
7016 * Update the config cache to include the newly-imported pool.
7017 */
7018 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7019 }
7020
7021 /*
7022 * It's possible that the pool was expanded while it was exported.
7023 * We kick off an async task to handle this for us.
7024 */
7025 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
7026
7027 spa_history_log_version(spa, "import", NULL);
7028
7029 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
7030
7031 mutex_exit(&spa_namespace_lock);
7032
7033 zvol_create_minors(pool);
7034
7035 spa_import_os(spa);
7036
7037 return (0);
7038 }
7039
7040 nvlist_t *
7041 spa_tryimport(nvlist_t *tryconfig)
7042 {
7043 nvlist_t *config = NULL;
7044 const char *poolname, *cachefile;
7045 spa_t *spa;
7046 uint64_t state;
7047 int error;
7048 zpool_load_policy_t policy;
7049
7050 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
7051 return (NULL);
7052
7053 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
7054 return (NULL);
7055
7056 /*
7057 * Create and initialize the spa structure.
7058 */
7059 char *name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
7060 (void) snprintf(name, MAXPATHLEN, "%s-%llx-%s",
7061 TRYIMPORT_NAME, (u_longlong_t)(uintptr_t)curthread, poolname);
7062
7063 mutex_enter(&spa_namespace_lock);
7064 spa = spa_add(name, tryconfig, NULL);
7065 spa_activate(spa, SPA_MODE_READ);
7066 kmem_free(name, MAXPATHLEN);
7067
7068 /*
7069 * Rewind pool if a max txg was provided.
7070 */
7071 zpool_get_load_policy(spa->spa_config, &policy);
7072 if (policy.zlp_txg != UINT64_MAX) {
7073 spa->spa_load_max_txg = policy.zlp_txg;
7074 spa->spa_extreme_rewind = B_TRUE;
7075 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
7076 poolname, (longlong_t)policy.zlp_txg);
7077 } else {
7078 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
7079 }
7080
7081 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
7082 == 0) {
7083 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
7084 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
7085 } else {
7086 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
7087 }
7088
7089 /*
7090 * spa_import() relies on a pool config fetched by spa_try_import()
7091 * for spare/cache devices. Import flags are not passed to
7092 * spa_tryimport(), which makes it return early due to a missing log
7093 * device and missing retrieving the cache device and spare eventually.
7094 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
7095 * the correct configuration regardless of the missing log device.
7096 */
7097 spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
7098
7099 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
7100
7101 /*
7102 * If 'tryconfig' was at least parsable, return the current config.
7103 */
7104 if (spa->spa_root_vdev != NULL) {
7105 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
7106 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
7107 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
7108 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
7109 spa->spa_uberblock.ub_timestamp);
7110 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
7111 spa->spa_load_info);
7112 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
7113 spa->spa_errata);
7114
7115 /*
7116 * If the bootfs property exists on this pool then we
7117 * copy it out so that external consumers can tell which
7118 * pools are bootable.
7119 */
7120 if ((!error || error == EEXIST) && spa->spa_bootfs) {
7121 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
7122
7123 /*
7124 * We have to play games with the name since the
7125 * pool was opened as TRYIMPORT_NAME.
7126 */
7127 if (dsl_dsobj_to_dsname(spa_name(spa),
7128 spa->spa_bootfs, tmpname) == 0) {
7129 char *cp;
7130 char *dsname;
7131
7132 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
7133
7134 cp = strchr(tmpname, '/');
7135 if (cp == NULL) {
7136 (void) strlcpy(dsname, tmpname,
7137 MAXPATHLEN);
7138 } else {
7139 (void) snprintf(dsname, MAXPATHLEN,
7140 "%s/%s", poolname, ++cp);
7141 }
7142 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
7143 dsname);
7144 kmem_free(dsname, MAXPATHLEN);
7145 }
7146 kmem_free(tmpname, MAXPATHLEN);
7147 }
7148
7149 /*
7150 * Add the list of hot spares and level 2 cache devices.
7151 */
7152 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7153 spa_add_spares(spa, config);
7154 spa_add_l2cache(spa, config);
7155 spa_config_exit(spa, SCL_CONFIG, FTAG);
7156 }
7157
7158 spa_unload(spa);
7159 spa_deactivate(spa);
7160 spa_remove(spa);
7161 mutex_exit(&spa_namespace_lock);
7162
7163 return (config);
7164 }
7165
7166 /*
7167 * Pool export/destroy
7168 *
7169 * The act of destroying or exporting a pool is very simple. We make sure there
7170 * is no more pending I/O and any references to the pool are gone. Then, we
7171 * update the pool state and sync all the labels to disk, removing the
7172 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
7173 * we don't sync the labels or remove the configuration cache.
7174 */
7175 static int
7176 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
7177 boolean_t force, boolean_t hardforce)
7178 {
7179 int error = 0;
7180 spa_t *spa;
7181 hrtime_t export_start = gethrtime();
7182
7183 if (oldconfig)
7184 *oldconfig = NULL;
7185
7186 if (!(spa_mode_global & SPA_MODE_WRITE))
7187 return (SET_ERROR(EROFS));
7188
7189 mutex_enter(&spa_namespace_lock);
7190 if ((spa = spa_lookup(pool)) == NULL) {
7191 mutex_exit(&spa_namespace_lock);
7192 return (SET_ERROR(ENOENT));
7193 }
7194
7195 if (spa->spa_is_exporting) {
7196 /* the pool is being exported by another thread */
7197 mutex_exit(&spa_namespace_lock);
7198 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
7199 }
7200 spa->spa_is_exporting = B_TRUE;
7201
7202 /*
7203 * Put a hold on the pool, drop the namespace lock, stop async tasks
7204 * and see if we can export.
7205 */
7206 spa_open_ref(spa, FTAG);
7207 mutex_exit(&spa_namespace_lock);
7208 spa_async_suspend(spa);
7209 if (spa->spa_zvol_taskq) {
7210 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
7211 taskq_wait(spa->spa_zvol_taskq);
7212 }
7213 mutex_enter(&spa_namespace_lock);
7214 spa->spa_export_thread = curthread;
7215 spa_close(spa, FTAG);
7216
7217 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
7218 mutex_exit(&spa_namespace_lock);
7219 goto export_spa;
7220 }
7221
7222 /*
7223 * The pool will be in core if it's openable, in which case we can
7224 * modify its state. Objsets may be open only because they're dirty,
7225 * so we have to force it to sync before checking spa_refcnt.
7226 */
7227 if (spa->spa_sync_on) {
7228 txg_wait_synced(spa->spa_dsl_pool, 0);
7229 spa_evicting_os_wait(spa);
7230 }
7231
7232 /*
7233 * A pool cannot be exported or destroyed if there are active
7234 * references. If we are resetting a pool, allow references by
7235 * fault injection handlers.
7236 */
7237 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
7238 error = SET_ERROR(EBUSY);
7239 goto fail;
7240 }
7241
7242 mutex_exit(&spa_namespace_lock);
7243 /*
7244 * At this point we no longer hold the spa_namespace_lock and
7245 * there were no references on the spa. Future spa_lookups will
7246 * notice the spa->spa_export_thread and wait until we signal
7247 * that we are finshed.
7248 */
7249
7250 if (spa->spa_sync_on) {
7251 vdev_t *rvd = spa->spa_root_vdev;
7252 /*
7253 * A pool cannot be exported if it has an active shared spare.
7254 * This is to prevent other pools stealing the active spare
7255 * from an exported pool. At user's own will, such pool can
7256 * be forcedly exported.
7257 */
7258 if (!force && new_state == POOL_STATE_EXPORTED &&
7259 spa_has_active_shared_spare(spa)) {
7260 error = SET_ERROR(EXDEV);
7261 mutex_enter(&spa_namespace_lock);
7262 goto fail;
7263 }
7264
7265 /*
7266 * We're about to export or destroy this pool. Make sure
7267 * we stop all initialization and trim activity here before
7268 * we set the spa_final_txg. This will ensure that all
7269 * dirty data resulting from the initialization is
7270 * committed to disk before we unload the pool.
7271 */
7272 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
7273 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
7274 vdev_autotrim_stop_all(spa);
7275 vdev_rebuild_stop_all(spa);
7276 l2arc_spa_rebuild_stop(spa);
7277
7278 /*
7279 * We want this to be reflected on every label,
7280 * so mark them all dirty. spa_unload() will do the
7281 * final sync that pushes these changes out.
7282 */
7283 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7284 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7285 spa->spa_state = new_state;
7286 vdev_config_dirty(rvd);
7287 spa_config_exit(spa, SCL_ALL, FTAG);
7288 }
7289
7290 if (spa_should_sync_time_logger_on_unload(spa))
7291 spa_unload_sync_time_logger(spa);
7292
7293 /*
7294 * If the log space map feature is enabled and the pool is
7295 * getting exported (but not destroyed), we want to spend some
7296 * time flushing as many metaslabs as we can in an attempt to
7297 * destroy log space maps and save import time. This has to be
7298 * done before we set the spa_final_txg, otherwise
7299 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
7300 * spa_should_flush_logs_on_unload() should be called after
7301 * spa_state has been set to the new_state.
7302 */
7303 if (spa_should_flush_logs_on_unload(spa))
7304 spa_unload_log_sm_flush_all(spa);
7305
7306 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7307 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7308 spa->spa_final_txg = spa_last_synced_txg(spa) +
7309 TXG_DEFER_SIZE + 1;
7310 spa_config_exit(spa, SCL_ALL, FTAG);
7311 }
7312 }
7313
7314 export_spa:
7315 spa_export_os(spa);
7316
7317 if (new_state == POOL_STATE_DESTROYED)
7318 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
7319 else if (new_state == POOL_STATE_EXPORTED)
7320 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
7321
7322 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7323 spa_unload(spa);
7324 spa_deactivate(spa);
7325 }
7326
7327 if (oldconfig && spa->spa_config)
7328 *oldconfig = fnvlist_dup(spa->spa_config);
7329
7330 if (new_state == POOL_STATE_EXPORTED)
7331 zio_handle_export_delay(spa, gethrtime() - export_start);
7332
7333 /*
7334 * Take the namespace lock for the actual spa_t removal
7335 */
7336 mutex_enter(&spa_namespace_lock);
7337 if (new_state != POOL_STATE_UNINITIALIZED) {
7338 if (!hardforce)
7339 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
7340 spa_remove(spa);
7341 } else {
7342 /*
7343 * If spa_remove() is not called for this spa_t and
7344 * there is any possibility that it can be reused,
7345 * we make sure to reset the exporting flag.
7346 */
7347 spa->spa_is_exporting = B_FALSE;
7348 spa->spa_export_thread = NULL;
7349 }
7350
7351 /*
7352 * Wake up any waiters in spa_lookup()
7353 */
7354 cv_broadcast(&spa_namespace_cv);
7355 mutex_exit(&spa_namespace_lock);
7356 return (0);
7357
7358 fail:
7359 spa->spa_is_exporting = B_FALSE;
7360 spa->spa_export_thread = NULL;
7361
7362 spa_async_resume(spa);
7363 /*
7364 * Wake up any waiters in spa_lookup()
7365 */
7366 cv_broadcast(&spa_namespace_cv);
7367 mutex_exit(&spa_namespace_lock);
7368 return (error);
7369 }
7370
7371 /*
7372 * Destroy a storage pool.
7373 */
7374 int
7375 spa_destroy(const char *pool)
7376 {
7377 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
7378 B_FALSE, B_FALSE));
7379 }
7380
7381 /*
7382 * Export a storage pool.
7383 */
7384 int
7385 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
7386 boolean_t hardforce)
7387 {
7388 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
7389 force, hardforce));
7390 }
7391
7392 /*
7393 * Similar to spa_export(), this unloads the spa_t without actually removing it
7394 * from the namespace in any way.
7395 */
7396 int
7397 spa_reset(const char *pool)
7398 {
7399 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
7400 B_FALSE, B_FALSE));
7401 }
7402
7403 /*
7404 * ==========================================================================
7405 * Device manipulation
7406 * ==========================================================================
7407 */
7408
7409 /*
7410 * This is called as a synctask to increment the draid feature flag
7411 */
7412 static void
7413 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
7414 {
7415 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7416 int draid = (int)(uintptr_t)arg;
7417
7418 for (int c = 0; c < draid; c++)
7419 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
7420 }
7421
7422 /*
7423 * Add a device to a storage pool.
7424 */
7425 int
7426 spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift)
7427 {
7428 uint64_t txg, ndraid = 0;
7429 int error;
7430 vdev_t *rvd = spa->spa_root_vdev;
7431 vdev_t *vd, *tvd;
7432 nvlist_t **spares, **l2cache;
7433 uint_t nspares, nl2cache;
7434
7435 ASSERT(spa_writeable(spa));
7436
7437 txg = spa_vdev_enter(spa);
7438
7439 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
7440 VDEV_ALLOC_ADD)) != 0)
7441 return (spa_vdev_exit(spa, NULL, txg, error));
7442
7443 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
7444
7445 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
7446 &nspares) != 0)
7447 nspares = 0;
7448
7449 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
7450 &nl2cache) != 0)
7451 nl2cache = 0;
7452
7453 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
7454 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7455
7456 if (vd->vdev_children != 0 &&
7457 (error = vdev_create(vd, txg, B_FALSE)) != 0) {
7458 return (spa_vdev_exit(spa, vd, txg, error));
7459 }
7460
7461 /*
7462 * The virtual dRAID spares must be added after vdev tree is created
7463 * and the vdev guids are generated. The guid of their associated
7464 * dRAID is stored in the config and used when opening the spare.
7465 */
7466 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
7467 rvd->vdev_children)) == 0) {
7468 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
7469 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
7470 nspares = 0;
7471 } else {
7472 return (spa_vdev_exit(spa, vd, txg, error));
7473 }
7474
7475 /*
7476 * We must validate the spares and l2cache devices after checking the
7477 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
7478 */
7479 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
7480 return (spa_vdev_exit(spa, vd, txg, error));
7481
7482 /*
7483 * If we are in the middle of a device removal, we can only add
7484 * devices which match the existing devices in the pool.
7485 * If we are in the middle of a removal, or have some indirect
7486 * vdevs, we can not add raidz or dRAID top levels.
7487 */
7488 if (spa->spa_vdev_removal != NULL ||
7489 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7490 for (int c = 0; c < vd->vdev_children; c++) {
7491 tvd = vd->vdev_child[c];
7492 if (spa->spa_vdev_removal != NULL &&
7493 tvd->vdev_ashift != spa->spa_max_ashift) {
7494 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7495 }
7496 /* Fail if top level vdev is raidz or a dRAID */
7497 if (vdev_get_nparity(tvd) != 0)
7498 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7499
7500 /*
7501 * Need the top level mirror to be
7502 * a mirror of leaf vdevs only
7503 */
7504 if (tvd->vdev_ops == &vdev_mirror_ops) {
7505 for (uint64_t cid = 0;
7506 cid < tvd->vdev_children; cid++) {
7507 vdev_t *cvd = tvd->vdev_child[cid];
7508 if (!cvd->vdev_ops->vdev_op_leaf) {
7509 return (spa_vdev_exit(spa, vd,
7510 txg, EINVAL));
7511 }
7512 }
7513 }
7514 }
7515 }
7516
7517 if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) {
7518 for (int c = 0; c < vd->vdev_children; c++) {
7519 tvd = vd->vdev_child[c];
7520 if (tvd->vdev_ashift != spa->spa_max_ashift) {
7521 return (spa_vdev_exit(spa, vd, txg,
7522 ZFS_ERR_ASHIFT_MISMATCH));
7523 }
7524 }
7525 }
7526
7527 for (int c = 0; c < vd->vdev_children; c++) {
7528 tvd = vd->vdev_child[c];
7529 vdev_remove_child(vd, tvd);
7530 tvd->vdev_id = rvd->vdev_children;
7531 vdev_add_child(rvd, tvd);
7532 vdev_config_dirty(tvd);
7533 }
7534
7535 if (nspares != 0) {
7536 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
7537 ZPOOL_CONFIG_SPARES);
7538 spa_load_spares(spa);
7539 spa->spa_spares.sav_sync = B_TRUE;
7540 }
7541
7542 if (nl2cache != 0) {
7543 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
7544 ZPOOL_CONFIG_L2CACHE);
7545 spa_load_l2cache(spa);
7546 spa->spa_l2cache.sav_sync = B_TRUE;
7547 }
7548
7549 /*
7550 * We can't increment a feature while holding spa_vdev so we
7551 * have to do it in a synctask.
7552 */
7553 if (ndraid != 0) {
7554 dmu_tx_t *tx;
7555
7556 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
7557 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
7558 (void *)(uintptr_t)ndraid, tx);
7559 dmu_tx_commit(tx);
7560 }
7561
7562 /*
7563 * We have to be careful when adding new vdevs to an existing pool.
7564 * If other threads start allocating from these vdevs before we
7565 * sync the config cache, and we lose power, then upon reboot we may
7566 * fail to open the pool because there are DVAs that the config cache
7567 * can't translate. Therefore, we first add the vdevs without
7568 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
7569 * and then let spa_config_update() initialize the new metaslabs.
7570 *
7571 * spa_load() checks for added-but-not-initialized vdevs, so that
7572 * if we lose power at any point in this sequence, the remaining
7573 * steps will be completed the next time we load the pool.
7574 */
7575 (void) spa_vdev_exit(spa, vd, txg, 0);
7576
7577 mutex_enter(&spa_namespace_lock);
7578 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7579 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
7580 mutex_exit(&spa_namespace_lock);
7581
7582 return (0);
7583 }
7584
7585 /*
7586 * Given a vdev to be replaced and its parent, check for a possible
7587 * "double spare" condition if a vdev is to be replaced by a spare. When this
7588 * happens, you can get two spares assigned to one failed vdev.
7589 *
7590 * To trigger a double spare condition:
7591 *
7592 * 1. disk1 fails
7593 * 2. 1st spare is kicked in for disk1 and it resilvers
7594 * 3. Someone replaces disk1 with a new blank disk
7595 * 4. New blank disk starts resilvering
7596 * 5. While resilvering, new blank disk has IO errors and faults
7597 * 6. 2nd spare is kicked in for new blank disk
7598 * 7. At this point two spares are kicked in for the original disk1.
7599 *
7600 * It looks like this:
7601 *
7602 * NAME STATE READ WRITE CKSUM
7603 * tank2 DEGRADED 0 0 0
7604 * draid2:6d:10c:2s-0 DEGRADED 0 0 0
7605 * scsi-0QEMU_QEMU_HARDDISK_d1 ONLINE 0 0 0
7606 * scsi-0QEMU_QEMU_HARDDISK_d2 ONLINE 0 0 0
7607 * scsi-0QEMU_QEMU_HARDDISK_d3 ONLINE 0 0 0
7608 * scsi-0QEMU_QEMU_HARDDISK_d4 ONLINE 0 0 0
7609 * scsi-0QEMU_QEMU_HARDDISK_d5 ONLINE 0 0 0
7610 * scsi-0QEMU_QEMU_HARDDISK_d6 ONLINE 0 0 0
7611 * scsi-0QEMU_QEMU_HARDDISK_d7 ONLINE 0 0 0
7612 * scsi-0QEMU_QEMU_HARDDISK_d8 ONLINE 0 0 0
7613 * scsi-0QEMU_QEMU_HARDDISK_d9 ONLINE 0 0 0
7614 * spare-9 DEGRADED 0 0 0
7615 * replacing-0 DEGRADED 0 93 0
7616 * scsi-0QEMU_QEMU_HARDDISK_d10-part1/old UNAVAIL 0 0 0
7617 * spare-1 DEGRADED 0 0 0
7618 * scsi-0QEMU_QEMU_HARDDISK_d10 REMOVED 0 0 0
7619 * draid2-0-0 ONLINE 0 0 0
7620 * draid2-0-1 ONLINE 0 0 0
7621 * spares
7622 * draid2-0-0 INUSE currently in use
7623 * draid2-0-1 INUSE currently in use
7624 *
7625 * ARGS:
7626 *
7627 * newvd: New spare disk
7628 * pvd: Parent vdev_t the spare should attach to
7629 *
7630 * This function returns B_TRUE if adding the new vdev would create a double
7631 * spare condition, B_FALSE otherwise.
7632 */
7633 static boolean_t
7634 spa_vdev_new_spare_would_cause_double_spares(vdev_t *newvd, vdev_t *pvd)
7635 {
7636 vdev_t *ppvd;
7637
7638 ppvd = pvd->vdev_parent;
7639 if (ppvd == NULL)
7640 return (B_FALSE);
7641
7642 /*
7643 * To determine if this configuration would cause a double spare, we
7644 * look at the vdev_op of the parent vdev, and of the parent's parent
7645 * vdev. We also look at vdev_isspare on the new disk. A double spare
7646 * condition looks like this:
7647 *
7648 * 1. parent of parent's op is a spare or draid spare
7649 * 2. parent's op is replacing
7650 * 3. new disk is a spare
7651 */
7652 if ((ppvd->vdev_ops == &vdev_spare_ops) ||
7653 (ppvd->vdev_ops == &vdev_draid_spare_ops))
7654 if (pvd->vdev_ops == &vdev_replacing_ops)
7655 if (newvd->vdev_isspare)
7656 return (B_TRUE);
7657
7658 return (B_FALSE);
7659 }
7660
7661 /*
7662 * Attach a device to a vdev specified by its guid. The vdev type can be
7663 * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a
7664 * single device). When the vdev is a single device, a mirror vdev will be
7665 * automatically inserted.
7666 *
7667 * If 'replacing' is specified, the new device is intended to replace the
7668 * existing device; in this case the two devices are made into their own
7669 * mirror using the 'replacing' vdev, which is functionally identical to
7670 * the mirror vdev (it actually reuses all the same ops) but has a few
7671 * extra rules: you can't attach to it after it's been created, and upon
7672 * completion of resilvering, the first disk (the one being replaced)
7673 * is automatically detached.
7674 *
7675 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
7676 * should be performed instead of traditional healing reconstruction. From
7677 * an administrators perspective these are both resilver operations.
7678 */
7679 int
7680 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
7681 int rebuild)
7682 {
7683 uint64_t txg, dtl_max_txg;
7684 vdev_t *rvd = spa->spa_root_vdev;
7685 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
7686 vdev_ops_t *pvops;
7687 char *oldvdpath, *newvdpath;
7688 int newvd_isspare = B_FALSE;
7689 int error;
7690
7691 ASSERT(spa_writeable(spa));
7692
7693 txg = spa_vdev_enter(spa);
7694
7695 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
7696
7697 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7698 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7699 error = (spa_has_checkpoint(spa)) ?
7700 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7701 return (spa_vdev_exit(spa, NULL, txg, error));
7702 }
7703
7704 if (rebuild) {
7705 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
7706 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7707
7708 if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
7709 dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
7710 return (spa_vdev_exit(spa, NULL, txg,
7711 ZFS_ERR_RESILVER_IN_PROGRESS));
7712 }
7713 } else {
7714 if (vdev_rebuild_active(rvd))
7715 return (spa_vdev_exit(spa, NULL, txg,
7716 ZFS_ERR_REBUILD_IN_PROGRESS));
7717 }
7718
7719 if (spa->spa_vdev_removal != NULL) {
7720 return (spa_vdev_exit(spa, NULL, txg,
7721 ZFS_ERR_DEVRM_IN_PROGRESS));
7722 }
7723
7724 if (oldvd == NULL)
7725 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7726
7727 boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops;
7728
7729 if (raidz) {
7730 if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION))
7731 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7732
7733 /*
7734 * Can't expand a raidz while prior expand is in progress.
7735 */
7736 if (spa->spa_raidz_expand != NULL) {
7737 return (spa_vdev_exit(spa, NULL, txg,
7738 ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS));
7739 }
7740 } else if (!oldvd->vdev_ops->vdev_op_leaf) {
7741 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7742 }
7743
7744 if (raidz)
7745 pvd = oldvd;
7746 else
7747 pvd = oldvd->vdev_parent;
7748
7749 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
7750 VDEV_ALLOC_ATTACH) != 0)
7751 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7752
7753 if (newrootvd->vdev_children != 1)
7754 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7755
7756 newvd = newrootvd->vdev_child[0];
7757
7758 if (!newvd->vdev_ops->vdev_op_leaf)
7759 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7760
7761 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
7762 return (spa_vdev_exit(spa, newrootvd, txg, error));
7763
7764 /*
7765 * log, dedup and special vdevs should not be replaced by spares.
7766 */
7767 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
7768 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
7769 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7770 }
7771
7772 /*
7773 * A dRAID spare can only replace a child of its parent dRAID vdev.
7774 */
7775 if (newvd->vdev_ops == &vdev_draid_spare_ops &&
7776 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
7777 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7778 }
7779
7780 if (rebuild) {
7781 /*
7782 * For rebuilds, the top vdev must support reconstruction
7783 * using only space maps. This means the only allowable
7784 * vdevs types are the root vdev, a mirror, or dRAID.
7785 */
7786 tvd = pvd;
7787 if (pvd->vdev_top != NULL)
7788 tvd = pvd->vdev_top;
7789
7790 if (tvd->vdev_ops != &vdev_mirror_ops &&
7791 tvd->vdev_ops != &vdev_root_ops &&
7792 tvd->vdev_ops != &vdev_draid_ops) {
7793 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7794 }
7795 }
7796
7797 if (!replacing) {
7798 /*
7799 * For attach, the only allowable parent is a mirror or
7800 * the root vdev. A raidz vdev can be attached to, but
7801 * you cannot attach to a raidz child.
7802 */
7803 if (pvd->vdev_ops != &vdev_mirror_ops &&
7804 pvd->vdev_ops != &vdev_root_ops &&
7805 !raidz)
7806 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7807
7808 pvops = &vdev_mirror_ops;
7809 } else {
7810 /*
7811 * Active hot spares can only be replaced by inactive hot
7812 * spares.
7813 */
7814 if (pvd->vdev_ops == &vdev_spare_ops &&
7815 oldvd->vdev_isspare &&
7816 !spa_has_spare(spa, newvd->vdev_guid))
7817 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7818
7819 /*
7820 * If the source is a hot spare, and the parent isn't already a
7821 * spare, then we want to create a new hot spare. Otherwise, we
7822 * want to create a replacing vdev. The user is not allowed to
7823 * attach to a spared vdev child unless the 'isspare' state is
7824 * the same (spare replaces spare, non-spare replaces
7825 * non-spare).
7826 */
7827 if (pvd->vdev_ops == &vdev_replacing_ops &&
7828 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7829 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7830 } else if (pvd->vdev_ops == &vdev_spare_ops &&
7831 newvd->vdev_isspare != oldvd->vdev_isspare) {
7832 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7833 }
7834
7835 if (spa_vdev_new_spare_would_cause_double_spares(newvd, pvd)) {
7836 vdev_dbgmsg(newvd,
7837 "disk would create double spares, ignore.");
7838 return (spa_vdev_exit(spa, newrootvd, txg, EEXIST));
7839 }
7840
7841 if (newvd->vdev_isspare)
7842 pvops = &vdev_spare_ops;
7843 else
7844 pvops = &vdev_replacing_ops;
7845 }
7846
7847 /*
7848 * Make sure the new device is big enough.
7849 */
7850 vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd;
7851 if (newvd->vdev_asize < vdev_get_min_asize(min_vdev))
7852 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7853
7854 /*
7855 * The new device cannot have a higher alignment requirement
7856 * than the top-level vdev.
7857 */
7858 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) {
7859 return (spa_vdev_exit(spa, newrootvd, txg,
7860 ZFS_ERR_ASHIFT_MISMATCH));
7861 }
7862
7863 /*
7864 * RAIDZ-expansion-specific checks.
7865 */
7866 if (raidz) {
7867 if (vdev_raidz_attach_check(newvd) != 0)
7868 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7869
7870 /*
7871 * Fail early if a child is not healthy or being replaced
7872 */
7873 for (int i = 0; i < oldvd->vdev_children; i++) {
7874 if (vdev_is_dead(oldvd->vdev_child[i]) ||
7875 !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) {
7876 return (spa_vdev_exit(spa, newrootvd, txg,
7877 ENXIO));
7878 }
7879 /* Also fail if reserved boot area is in-use */
7880 if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i])
7881 != 0) {
7882 return (spa_vdev_exit(spa, newrootvd, txg,
7883 EADDRINUSE));
7884 }
7885 }
7886 }
7887
7888 if (raidz) {
7889 /*
7890 * Note: oldvdpath is freed by spa_strfree(), but
7891 * kmem_asprintf() is freed by kmem_strfree(), so we have to
7892 * move it to a spa_strdup-ed string.
7893 */
7894 char *tmp = kmem_asprintf("raidz%u-%u",
7895 (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id);
7896 oldvdpath = spa_strdup(tmp);
7897 kmem_strfree(tmp);
7898 } else {
7899 oldvdpath = spa_strdup(oldvd->vdev_path);
7900 }
7901 newvdpath = spa_strdup(newvd->vdev_path);
7902
7903 /*
7904 * If this is an in-place replacement, update oldvd's path and devid
7905 * to make it distinguishable from newvd, and unopenable from now on.
7906 */
7907 if (strcmp(oldvdpath, newvdpath) == 0) {
7908 spa_strfree(oldvd->vdev_path);
7909 oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5,
7910 KM_SLEEP);
7911 (void) sprintf(oldvd->vdev_path, "%s/old",
7912 newvdpath);
7913 if (oldvd->vdev_devid != NULL) {
7914 spa_strfree(oldvd->vdev_devid);
7915 oldvd->vdev_devid = NULL;
7916 }
7917 spa_strfree(oldvdpath);
7918 oldvdpath = spa_strdup(oldvd->vdev_path);
7919 }
7920
7921 /*
7922 * If the parent is not a mirror, or if we're replacing, insert the new
7923 * mirror/replacing/spare vdev above oldvd.
7924 */
7925 if (!raidz && pvd->vdev_ops != pvops) {
7926 pvd = vdev_add_parent(oldvd, pvops);
7927 ASSERT(pvd->vdev_ops == pvops);
7928 ASSERT(oldvd->vdev_parent == pvd);
7929 }
7930
7931 ASSERT(pvd->vdev_top->vdev_parent == rvd);
7932
7933 /*
7934 * Extract the new device from its root and add it to pvd.
7935 */
7936 vdev_remove_child(newrootvd, newvd);
7937 newvd->vdev_id = pvd->vdev_children;
7938 newvd->vdev_crtxg = oldvd->vdev_crtxg;
7939 vdev_add_child(pvd, newvd);
7940
7941 /*
7942 * Reevaluate the parent vdev state.
7943 */
7944 vdev_propagate_state(pvd);
7945
7946 tvd = newvd->vdev_top;
7947 ASSERT(pvd->vdev_top == tvd);
7948 ASSERT(tvd->vdev_parent == rvd);
7949
7950 vdev_config_dirty(tvd);
7951
7952 /*
7953 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7954 * for any dmu_sync-ed blocks. It will propagate upward when
7955 * spa_vdev_exit() calls vdev_dtl_reassess().
7956 */
7957 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7958
7959 if (raidz) {
7960 /*
7961 * Wait for the youngest allocations and frees to sync,
7962 * and then wait for the deferral of those frees to finish.
7963 */
7964 spa_vdev_config_exit(spa, NULL,
7965 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
7966
7967 vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE);
7968 vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE);
7969 vdev_autotrim_stop_wait(tvd);
7970
7971 dtl_max_txg = spa_vdev_config_enter(spa);
7972
7973 tvd->vdev_rz_expanding = B_TRUE;
7974
7975 vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg);
7976 vdev_config_dirty(tvd);
7977
7978 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
7979 dtl_max_txg);
7980 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync,
7981 newvd, tx);
7982 dmu_tx_commit(tx);
7983 } else {
7984 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
7985 dtl_max_txg - TXG_INITIAL);
7986
7987 if (newvd->vdev_isspare) {
7988 spa_spare_activate(newvd);
7989 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7990 }
7991
7992 newvd_isspare = newvd->vdev_isspare;
7993
7994 /*
7995 * Mark newvd's DTL dirty in this txg.
7996 */
7997 vdev_dirty(tvd, VDD_DTL, newvd, txg);
7998
7999 /*
8000 * Schedule the resilver or rebuild to restart in the future.
8001 * We do this to ensure that dmu_sync-ed blocks have been
8002 * stitched into the respective datasets.
8003 */
8004 if (rebuild) {
8005 newvd->vdev_rebuild_txg = txg;
8006
8007 vdev_rebuild(tvd);
8008 } else {
8009 newvd->vdev_resilver_txg = txg;
8010
8011 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
8012 spa_feature_is_enabled(spa,
8013 SPA_FEATURE_RESILVER_DEFER)) {
8014 vdev_defer_resilver(newvd);
8015 } else {
8016 dsl_scan_restart_resilver(spa->spa_dsl_pool,
8017 dtl_max_txg);
8018 }
8019 }
8020 }
8021
8022 if (spa->spa_bootfs)
8023 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
8024
8025 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
8026
8027 /*
8028 * Commit the config
8029 */
8030 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
8031
8032 spa_history_log_internal(spa, "vdev attach", NULL,
8033 "%s vdev=%s %s vdev=%s",
8034 replacing && newvd_isspare ? "spare in" :
8035 replacing ? "replace" : "attach", newvdpath,
8036 replacing ? "for" : "to", oldvdpath);
8037
8038 spa_strfree(oldvdpath);
8039 spa_strfree(newvdpath);
8040
8041 return (0);
8042 }
8043
8044 /*
8045 * Detach a device from a mirror or replacing vdev.
8046 *
8047 * If 'replace_done' is specified, only detach if the parent
8048 * is a replacing or a spare vdev.
8049 */
8050 int
8051 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
8052 {
8053 uint64_t txg;
8054 int error;
8055 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
8056 vdev_t *vd, *pvd, *cvd, *tvd;
8057 boolean_t unspare = B_FALSE;
8058 uint64_t unspare_guid = 0;
8059 char *vdpath;
8060
8061 ASSERT(spa_writeable(spa));
8062
8063 txg = spa_vdev_detach_enter(spa, guid);
8064
8065 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8066
8067 /*
8068 * Besides being called directly from the userland through the
8069 * ioctl interface, spa_vdev_detach() can be potentially called
8070 * at the end of spa_vdev_resilver_done().
8071 *
8072 * In the regular case, when we have a checkpoint this shouldn't
8073 * happen as we never empty the DTLs of a vdev during the scrub
8074 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
8075 * should never get here when we have a checkpoint.
8076 *
8077 * That said, even in a case when we checkpoint the pool exactly
8078 * as spa_vdev_resilver_done() calls this function everything
8079 * should be fine as the resilver will return right away.
8080 */
8081 ASSERT(MUTEX_HELD(&spa_namespace_lock));
8082 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8083 error = (spa_has_checkpoint(spa)) ?
8084 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8085 return (spa_vdev_exit(spa, NULL, txg, error));
8086 }
8087
8088 if (vd == NULL)
8089 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
8090
8091 if (!vd->vdev_ops->vdev_op_leaf)
8092 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
8093
8094 pvd = vd->vdev_parent;
8095
8096 /*
8097 * If the parent/child relationship is not as expected, don't do it.
8098 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
8099 * vdev that's replacing B with C. The user's intent in replacing
8100 * is to go from M(A,B) to M(A,C). If the user decides to cancel
8101 * the replace by detaching C, the expected behavior is to end up
8102 * M(A,B). But suppose that right after deciding to detach C,
8103 * the replacement of B completes. We would have M(A,C), and then
8104 * ask to detach C, which would leave us with just A -- not what
8105 * the user wanted. To prevent this, we make sure that the
8106 * parent/child relationship hasn't changed -- in this example,
8107 * that C's parent is still the replacing vdev R.
8108 */
8109 if (pvd->vdev_guid != pguid && pguid != 0)
8110 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
8111
8112 /*
8113 * Only 'replacing' or 'spare' vdevs can be replaced.
8114 */
8115 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
8116 pvd->vdev_ops != &vdev_spare_ops)
8117 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
8118
8119 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
8120 spa_version(spa) >= SPA_VERSION_SPARES);
8121
8122 /*
8123 * Only mirror, replacing, and spare vdevs support detach.
8124 */
8125 if (pvd->vdev_ops != &vdev_replacing_ops &&
8126 pvd->vdev_ops != &vdev_mirror_ops &&
8127 pvd->vdev_ops != &vdev_spare_ops)
8128 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
8129
8130 /*
8131 * If this device has the only valid copy of some data,
8132 * we cannot safely detach it.
8133 */
8134 if (vdev_dtl_required(vd))
8135 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
8136
8137 ASSERT(pvd->vdev_children >= 2);
8138
8139 /*
8140 * If we are detaching the second disk from a replacing vdev, then
8141 * check to see if we changed the original vdev's path to have "/old"
8142 * at the end in spa_vdev_attach(). If so, undo that change now.
8143 */
8144 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
8145 vd->vdev_path != NULL) {
8146 size_t len = strlen(vd->vdev_path);
8147
8148 for (int c = 0; c < pvd->vdev_children; c++) {
8149 cvd = pvd->vdev_child[c];
8150
8151 if (cvd == vd || cvd->vdev_path == NULL)
8152 continue;
8153
8154 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
8155 strcmp(cvd->vdev_path + len, "/old") == 0) {
8156 spa_strfree(cvd->vdev_path);
8157 cvd->vdev_path = spa_strdup(vd->vdev_path);
8158 break;
8159 }
8160 }
8161 }
8162
8163 /*
8164 * If we are detaching the original disk from a normal spare, then it
8165 * implies that the spare should become a real disk, and be removed
8166 * from the active spare list for the pool. dRAID spares on the
8167 * other hand are coupled to the pool and thus should never be removed
8168 * from the spares list.
8169 */
8170 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
8171 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
8172
8173 if (last_cvd->vdev_isspare &&
8174 last_cvd->vdev_ops != &vdev_draid_spare_ops) {
8175 unspare = B_TRUE;
8176 }
8177 }
8178
8179 /*
8180 * Erase the disk labels so the disk can be used for other things.
8181 * This must be done after all other error cases are handled,
8182 * but before we disembowel vd (so we can still do I/O to it).
8183 * But if we can't do it, don't treat the error as fatal --
8184 * it may be that the unwritability of the disk is the reason
8185 * it's being detached!
8186 */
8187 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
8188
8189 /*
8190 * Remove vd from its parent and compact the parent's children.
8191 */
8192 vdev_remove_child(pvd, vd);
8193 vdev_compact_children(pvd);
8194
8195 /*
8196 * Remember one of the remaining children so we can get tvd below.
8197 */
8198 cvd = pvd->vdev_child[pvd->vdev_children - 1];
8199
8200 /*
8201 * If we need to remove the remaining child from the list of hot spares,
8202 * do it now, marking the vdev as no longer a spare in the process.
8203 * We must do this before vdev_remove_parent(), because that can
8204 * change the GUID if it creates a new toplevel GUID. For a similar
8205 * reason, we must remove the spare now, in the same txg as the detach;
8206 * otherwise someone could attach a new sibling, change the GUID, and
8207 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
8208 */
8209 if (unspare) {
8210 ASSERT(cvd->vdev_isspare);
8211 spa_spare_remove(cvd);
8212 unspare_guid = cvd->vdev_guid;
8213 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
8214 cvd->vdev_unspare = B_TRUE;
8215 }
8216
8217 /*
8218 * If the parent mirror/replacing vdev only has one child,
8219 * the parent is no longer needed. Remove it from the tree.
8220 */
8221 if (pvd->vdev_children == 1) {
8222 if (pvd->vdev_ops == &vdev_spare_ops)
8223 cvd->vdev_unspare = B_FALSE;
8224 vdev_remove_parent(cvd);
8225 }
8226
8227 /*
8228 * We don't set tvd until now because the parent we just removed
8229 * may have been the previous top-level vdev.
8230 */
8231 tvd = cvd->vdev_top;
8232 ASSERT(tvd->vdev_parent == rvd);
8233
8234 /*
8235 * Reevaluate the parent vdev state.
8236 */
8237 vdev_propagate_state(cvd);
8238
8239 /*
8240 * If the 'autoexpand' property is set on the pool then automatically
8241 * try to expand the size of the pool. For example if the device we
8242 * just detached was smaller than the others, it may be possible to
8243 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
8244 * first so that we can obtain the updated sizes of the leaf vdevs.
8245 */
8246 if (spa->spa_autoexpand) {
8247 vdev_reopen(tvd);
8248 vdev_expand(tvd, txg);
8249 }
8250
8251 vdev_config_dirty(tvd);
8252
8253 /*
8254 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
8255 * vd->vdev_detached is set and free vd's DTL object in syncing context.
8256 * But first make sure we're not on any *other* txg's DTL list, to
8257 * prevent vd from being accessed after it's freed.
8258 */
8259 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
8260 for (int t = 0; t < TXG_SIZE; t++)
8261 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
8262 vd->vdev_detached = B_TRUE;
8263 vdev_dirty(tvd, VDD_DTL, vd, txg);
8264
8265 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
8266 spa_notify_waiters(spa);
8267
8268 /* hang on to the spa before we release the lock */
8269 spa_open_ref(spa, FTAG);
8270
8271 error = spa_vdev_exit(spa, vd, txg, 0);
8272
8273 spa_history_log_internal(spa, "detach", NULL,
8274 "vdev=%s", vdpath);
8275 spa_strfree(vdpath);
8276
8277 /*
8278 * If this was the removal of the original device in a hot spare vdev,
8279 * then we want to go through and remove the device from the hot spare
8280 * list of every other pool.
8281 */
8282 if (unspare) {
8283 spa_t *altspa = NULL;
8284
8285 mutex_enter(&spa_namespace_lock);
8286 while ((altspa = spa_next(altspa)) != NULL) {
8287 if (altspa->spa_state != POOL_STATE_ACTIVE ||
8288 altspa == spa)
8289 continue;
8290
8291 spa_open_ref(altspa, FTAG);
8292 mutex_exit(&spa_namespace_lock);
8293 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
8294 mutex_enter(&spa_namespace_lock);
8295 spa_close(altspa, FTAG);
8296 }
8297 mutex_exit(&spa_namespace_lock);
8298
8299 /* search the rest of the vdevs for spares to remove */
8300 spa_vdev_resilver_done(spa);
8301 }
8302
8303 /* all done with the spa; OK to release */
8304 mutex_enter(&spa_namespace_lock);
8305 spa_close(spa, FTAG);
8306 mutex_exit(&spa_namespace_lock);
8307
8308 return (error);
8309 }
8310
8311 static int
8312 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8313 list_t *vd_list)
8314 {
8315 ASSERT(MUTEX_HELD(&spa_namespace_lock));
8316
8317 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8318
8319 /* Look up vdev and ensure it's a leaf. */
8320 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8321 if (vd == NULL || vd->vdev_detached) {
8322 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8323 return (SET_ERROR(ENODEV));
8324 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8325 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8326 return (SET_ERROR(EINVAL));
8327 } else if (!vdev_writeable(vd)) {
8328 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8329 return (SET_ERROR(EROFS));
8330 }
8331 mutex_enter(&vd->vdev_initialize_lock);
8332 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8333
8334 /*
8335 * When we activate an initialize action we check to see
8336 * if the vdev_initialize_thread is NULL. We do this instead
8337 * of using the vdev_initialize_state since there might be
8338 * a previous initialization process which has completed but
8339 * the thread is not exited.
8340 */
8341 if (cmd_type == POOL_INITIALIZE_START &&
8342 (vd->vdev_initialize_thread != NULL ||
8343 vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) {
8344 mutex_exit(&vd->vdev_initialize_lock);
8345 return (SET_ERROR(EBUSY));
8346 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
8347 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
8348 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
8349 mutex_exit(&vd->vdev_initialize_lock);
8350 return (SET_ERROR(ESRCH));
8351 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
8352 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
8353 mutex_exit(&vd->vdev_initialize_lock);
8354 return (SET_ERROR(ESRCH));
8355 } else if (cmd_type == POOL_INITIALIZE_UNINIT &&
8356 vd->vdev_initialize_thread != NULL) {
8357 mutex_exit(&vd->vdev_initialize_lock);
8358 return (SET_ERROR(EBUSY));
8359 }
8360
8361 switch (cmd_type) {
8362 case POOL_INITIALIZE_START:
8363 vdev_initialize(vd);
8364 break;
8365 case POOL_INITIALIZE_CANCEL:
8366 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
8367 break;
8368 case POOL_INITIALIZE_SUSPEND:
8369 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
8370 break;
8371 case POOL_INITIALIZE_UNINIT:
8372 vdev_uninitialize(vd);
8373 break;
8374 default:
8375 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8376 }
8377 mutex_exit(&vd->vdev_initialize_lock);
8378
8379 return (0);
8380 }
8381
8382 int
8383 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
8384 nvlist_t *vdev_errlist)
8385 {
8386 int total_errors = 0;
8387 list_t vd_list;
8388
8389 list_create(&vd_list, sizeof (vdev_t),
8390 offsetof(vdev_t, vdev_initialize_node));
8391
8392 /*
8393 * We hold the namespace lock through the whole function
8394 * to prevent any changes to the pool while we're starting or
8395 * stopping initialization. The config and state locks are held so that
8396 * we can properly assess the vdev state before we commit to
8397 * the initializing operation.
8398 */
8399 mutex_enter(&spa_namespace_lock);
8400
8401 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8402 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8403 uint64_t vdev_guid = fnvpair_value_uint64(pair);
8404
8405 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
8406 &vd_list);
8407 if (error != 0) {
8408 char guid_as_str[MAXNAMELEN];
8409
8410 (void) snprintf(guid_as_str, sizeof (guid_as_str),
8411 "%llu", (unsigned long long)vdev_guid);
8412 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8413 total_errors++;
8414 }
8415 }
8416
8417 /* Wait for all initialize threads to stop. */
8418 vdev_initialize_stop_wait(spa, &vd_list);
8419
8420 /* Sync out the initializing state */
8421 txg_wait_synced(spa->spa_dsl_pool, 0);
8422 mutex_exit(&spa_namespace_lock);
8423
8424 list_destroy(&vd_list);
8425
8426 return (total_errors);
8427 }
8428
8429 static int
8430 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8431 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
8432 {
8433 ASSERT(MUTEX_HELD(&spa_namespace_lock));
8434
8435 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8436
8437 /* Look up vdev and ensure it's a leaf. */
8438 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8439 if (vd == NULL || vd->vdev_detached) {
8440 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8441 return (SET_ERROR(ENODEV));
8442 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8443 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8444 return (SET_ERROR(EINVAL));
8445 } else if (!vdev_writeable(vd)) {
8446 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8447 return (SET_ERROR(EROFS));
8448 } else if (!vd->vdev_has_trim) {
8449 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8450 return (SET_ERROR(EOPNOTSUPP));
8451 } else if (secure && !vd->vdev_has_securetrim) {
8452 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8453 return (SET_ERROR(EOPNOTSUPP));
8454 }
8455 mutex_enter(&vd->vdev_trim_lock);
8456 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8457
8458 /*
8459 * When we activate a TRIM action we check to see if the
8460 * vdev_trim_thread is NULL. We do this instead of using the
8461 * vdev_trim_state since there might be a previous TRIM process
8462 * which has completed but the thread is not exited.
8463 */
8464 if (cmd_type == POOL_TRIM_START &&
8465 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing ||
8466 vd->vdev_top->vdev_rz_expanding)) {
8467 mutex_exit(&vd->vdev_trim_lock);
8468 return (SET_ERROR(EBUSY));
8469 } else if (cmd_type == POOL_TRIM_CANCEL &&
8470 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
8471 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
8472 mutex_exit(&vd->vdev_trim_lock);
8473 return (SET_ERROR(ESRCH));
8474 } else if (cmd_type == POOL_TRIM_SUSPEND &&
8475 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
8476 mutex_exit(&vd->vdev_trim_lock);
8477 return (SET_ERROR(ESRCH));
8478 }
8479
8480 switch (cmd_type) {
8481 case POOL_TRIM_START:
8482 vdev_trim(vd, rate, partial, secure);
8483 break;
8484 case POOL_TRIM_CANCEL:
8485 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
8486 break;
8487 case POOL_TRIM_SUSPEND:
8488 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
8489 break;
8490 default:
8491 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8492 }
8493 mutex_exit(&vd->vdev_trim_lock);
8494
8495 return (0);
8496 }
8497
8498 /*
8499 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
8500 * TRIM threads for each child vdev. These threads pass over all of the free
8501 * space in the vdev's metaslabs and issues TRIM commands for that space.
8502 */
8503 int
8504 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
8505 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
8506 {
8507 int total_errors = 0;
8508 list_t vd_list;
8509
8510 list_create(&vd_list, sizeof (vdev_t),
8511 offsetof(vdev_t, vdev_trim_node));
8512
8513 /*
8514 * We hold the namespace lock through the whole function
8515 * to prevent any changes to the pool while we're starting or
8516 * stopping TRIM. The config and state locks are held so that
8517 * we can properly assess the vdev state before we commit to
8518 * the TRIM operation.
8519 */
8520 mutex_enter(&spa_namespace_lock);
8521
8522 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8523 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8524 uint64_t vdev_guid = fnvpair_value_uint64(pair);
8525
8526 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
8527 rate, partial, secure, &vd_list);
8528 if (error != 0) {
8529 char guid_as_str[MAXNAMELEN];
8530
8531 (void) snprintf(guid_as_str, sizeof (guid_as_str),
8532 "%llu", (unsigned long long)vdev_guid);
8533 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8534 total_errors++;
8535 }
8536 }
8537
8538 /* Wait for all TRIM threads to stop. */
8539 vdev_trim_stop_wait(spa, &vd_list);
8540
8541 /* Sync out the TRIM state */
8542 txg_wait_synced(spa->spa_dsl_pool, 0);
8543 mutex_exit(&spa_namespace_lock);
8544
8545 list_destroy(&vd_list);
8546
8547 return (total_errors);
8548 }
8549
8550 /*
8551 * Split a set of devices from their mirrors, and create a new pool from them.
8552 */
8553 int
8554 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
8555 nvlist_t *props, boolean_t exp)
8556 {
8557 int error = 0;
8558 uint64_t txg, *glist;
8559 spa_t *newspa;
8560 uint_t c, children, lastlog;
8561 nvlist_t **child, *nvl, *tmp;
8562 dmu_tx_t *tx;
8563 const char *altroot = NULL;
8564 vdev_t *rvd, **vml = NULL; /* vdev modify list */
8565 boolean_t activate_slog;
8566
8567 ASSERT(spa_writeable(spa));
8568
8569 txg = spa_vdev_enter(spa);
8570
8571 ASSERT(MUTEX_HELD(&spa_namespace_lock));
8572 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8573 error = (spa_has_checkpoint(spa)) ?
8574 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8575 return (spa_vdev_exit(spa, NULL, txg, error));
8576 }
8577
8578 /* clear the log and flush everything up to now */
8579 activate_slog = spa_passivate_log(spa);
8580 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8581 error = spa_reset_logs(spa);
8582 txg = spa_vdev_config_enter(spa);
8583
8584 if (activate_slog)
8585 spa_activate_log(spa);
8586
8587 if (error != 0)
8588 return (spa_vdev_exit(spa, NULL, txg, error));
8589
8590 /* check new spa name before going any further */
8591 if (spa_lookup(newname) != NULL)
8592 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
8593
8594 /*
8595 * scan through all the children to ensure they're all mirrors
8596 */
8597 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
8598 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
8599 &children) != 0)
8600 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8601
8602 /* first, check to ensure we've got the right child count */
8603 rvd = spa->spa_root_vdev;
8604 lastlog = 0;
8605 for (c = 0; c < rvd->vdev_children; c++) {
8606 vdev_t *vd = rvd->vdev_child[c];
8607
8608 /* don't count the holes & logs as children */
8609 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
8610 !vdev_is_concrete(vd))) {
8611 if (lastlog == 0)
8612 lastlog = c;
8613 continue;
8614 }
8615
8616 lastlog = 0;
8617 }
8618 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
8619 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8620
8621 /* next, ensure no spare or cache devices are part of the split */
8622 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
8623 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
8624 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8625
8626 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
8627 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
8628
8629 /* then, loop over each vdev and validate it */
8630 for (c = 0; c < children; c++) {
8631 uint64_t is_hole = 0;
8632
8633 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
8634 &is_hole);
8635
8636 if (is_hole != 0) {
8637 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
8638 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
8639 continue;
8640 } else {
8641 error = SET_ERROR(EINVAL);
8642 break;
8643 }
8644 }
8645
8646 /* deal with indirect vdevs */
8647 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
8648 &vdev_indirect_ops)
8649 continue;
8650
8651 /* which disk is going to be split? */
8652 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
8653 &glist[c]) != 0) {
8654 error = SET_ERROR(EINVAL);
8655 break;
8656 }
8657
8658 /* look it up in the spa */
8659 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
8660 if (vml[c] == NULL) {
8661 error = SET_ERROR(ENODEV);
8662 break;
8663 }
8664
8665 /* make sure there's nothing stopping the split */
8666 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
8667 vml[c]->vdev_islog ||
8668 !vdev_is_concrete(vml[c]) ||
8669 vml[c]->vdev_isspare ||
8670 vml[c]->vdev_isl2cache ||
8671 !vdev_writeable(vml[c]) ||
8672 vml[c]->vdev_children != 0 ||
8673 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
8674 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
8675 error = SET_ERROR(EINVAL);
8676 break;
8677 }
8678
8679 if (vdev_dtl_required(vml[c]) ||
8680 vdev_resilver_needed(vml[c], NULL, NULL)) {
8681 error = SET_ERROR(EBUSY);
8682 break;
8683 }
8684
8685 /* we need certain info from the top level */
8686 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
8687 vml[c]->vdev_top->vdev_ms_array);
8688 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
8689 vml[c]->vdev_top->vdev_ms_shift);
8690 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
8691 vml[c]->vdev_top->vdev_asize);
8692 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
8693 vml[c]->vdev_top->vdev_ashift);
8694
8695 /* transfer per-vdev ZAPs */
8696 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
8697 VERIFY0(nvlist_add_uint64(child[c],
8698 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
8699
8700 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
8701 VERIFY0(nvlist_add_uint64(child[c],
8702 ZPOOL_CONFIG_VDEV_TOP_ZAP,
8703 vml[c]->vdev_parent->vdev_top_zap));
8704 }
8705
8706 if (error != 0) {
8707 kmem_free(vml, children * sizeof (vdev_t *));
8708 kmem_free(glist, children * sizeof (uint64_t));
8709 return (spa_vdev_exit(spa, NULL, txg, error));
8710 }
8711
8712 /* stop writers from using the disks */
8713 for (c = 0; c < children; c++) {
8714 if (vml[c] != NULL)
8715 vml[c]->vdev_offline = B_TRUE;
8716 }
8717 vdev_reopen(spa->spa_root_vdev);
8718
8719 /*
8720 * Temporarily record the splitting vdevs in the spa config. This
8721 * will disappear once the config is regenerated.
8722 */
8723 nvl = fnvlist_alloc();
8724 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
8725 kmem_free(glist, children * sizeof (uint64_t));
8726
8727 mutex_enter(&spa->spa_props_lock);
8728 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
8729 mutex_exit(&spa->spa_props_lock);
8730 spa->spa_config_splitting = nvl;
8731 vdev_config_dirty(spa->spa_root_vdev);
8732
8733 /* configure and create the new pool */
8734 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
8735 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
8736 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
8737 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
8738 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
8739 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
8740 spa_generate_guid(NULL));
8741 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
8742 (void) nvlist_lookup_string(props,
8743 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
8744
8745 /* add the new pool to the namespace */
8746 newspa = spa_add(newname, config, altroot);
8747 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
8748 newspa->spa_config_txg = spa->spa_config_txg;
8749 spa_set_log_state(newspa, SPA_LOG_CLEAR);
8750
8751 /* release the spa config lock, retaining the namespace lock */
8752 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8753
8754 if (zio_injection_enabled)
8755 zio_handle_panic_injection(spa, FTAG, 1);
8756
8757 spa_activate(newspa, spa_mode_global);
8758 spa_async_suspend(newspa);
8759
8760 /*
8761 * Temporarily stop the initializing and TRIM activity. We set the
8762 * state to ACTIVE so that we know to resume initializing or TRIM
8763 * once the split has completed.
8764 */
8765 list_t vd_initialize_list;
8766 list_create(&vd_initialize_list, sizeof (vdev_t),
8767 offsetof(vdev_t, vdev_initialize_node));
8768
8769 list_t vd_trim_list;
8770 list_create(&vd_trim_list, sizeof (vdev_t),
8771 offsetof(vdev_t, vdev_trim_node));
8772
8773 for (c = 0; c < children; c++) {
8774 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8775 mutex_enter(&vml[c]->vdev_initialize_lock);
8776 vdev_initialize_stop(vml[c],
8777 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
8778 mutex_exit(&vml[c]->vdev_initialize_lock);
8779
8780 mutex_enter(&vml[c]->vdev_trim_lock);
8781 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
8782 mutex_exit(&vml[c]->vdev_trim_lock);
8783 }
8784 }
8785
8786 vdev_initialize_stop_wait(spa, &vd_initialize_list);
8787 vdev_trim_stop_wait(spa, &vd_trim_list);
8788
8789 list_destroy(&vd_initialize_list);
8790 list_destroy(&vd_trim_list);
8791
8792 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
8793 newspa->spa_is_splitting = B_TRUE;
8794
8795 /* create the new pool from the disks of the original pool */
8796 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
8797 if (error)
8798 goto out;
8799
8800 /* if that worked, generate a real config for the new pool */
8801 if (newspa->spa_root_vdev != NULL) {
8802 newspa->spa_config_splitting = fnvlist_alloc();
8803 fnvlist_add_uint64(newspa->spa_config_splitting,
8804 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
8805 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
8806 B_TRUE));
8807 }
8808
8809 /* set the props */
8810 if (props != NULL) {
8811 spa_configfile_set(newspa, props, B_FALSE);
8812 error = spa_prop_set(newspa, props);
8813 if (error)
8814 goto out;
8815 }
8816
8817 /* flush everything */
8818 txg = spa_vdev_config_enter(newspa);
8819 vdev_config_dirty(newspa->spa_root_vdev);
8820 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
8821
8822 if (zio_injection_enabled)
8823 zio_handle_panic_injection(spa, FTAG, 2);
8824
8825 spa_async_resume(newspa);
8826
8827 /* finally, update the original pool's config */
8828 txg = spa_vdev_config_enter(spa);
8829 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
8830 error = dmu_tx_assign(tx, DMU_TX_WAIT);
8831 if (error != 0)
8832 dmu_tx_abort(tx);
8833 for (c = 0; c < children; c++) {
8834 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8835 vdev_t *tvd = vml[c]->vdev_top;
8836
8837 /*
8838 * Need to be sure the detachable VDEV is not
8839 * on any *other* txg's DTL list to prevent it
8840 * from being accessed after it's freed.
8841 */
8842 for (int t = 0; t < TXG_SIZE; t++) {
8843 (void) txg_list_remove_this(
8844 &tvd->vdev_dtl_list, vml[c], t);
8845 }
8846
8847 vdev_split(vml[c]);
8848 if (error == 0)
8849 spa_history_log_internal(spa, "detach", tx,
8850 "vdev=%s", vml[c]->vdev_path);
8851
8852 vdev_free(vml[c]);
8853 }
8854 }
8855 spa->spa_avz_action = AVZ_ACTION_REBUILD;
8856 vdev_config_dirty(spa->spa_root_vdev);
8857 spa->spa_config_splitting = NULL;
8858 nvlist_free(nvl);
8859 if (error == 0)
8860 dmu_tx_commit(tx);
8861 (void) spa_vdev_exit(spa, NULL, txg, 0);
8862
8863 if (zio_injection_enabled)
8864 zio_handle_panic_injection(spa, FTAG, 3);
8865
8866 /* split is complete; log a history record */
8867 spa_history_log_internal(newspa, "split", NULL,
8868 "from pool %s", spa_name(spa));
8869
8870 newspa->spa_is_splitting = B_FALSE;
8871 kmem_free(vml, children * sizeof (vdev_t *));
8872
8873 /* if we're not going to mount the filesystems in userland, export */
8874 if (exp)
8875 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
8876 B_FALSE, B_FALSE);
8877
8878 return (error);
8879
8880 out:
8881 spa_unload(newspa);
8882 spa_deactivate(newspa);
8883 spa_remove(newspa);
8884
8885 txg = spa_vdev_config_enter(spa);
8886
8887 /* re-online all offlined disks */
8888 for (c = 0; c < children; c++) {
8889 if (vml[c] != NULL)
8890 vml[c]->vdev_offline = B_FALSE;
8891 }
8892
8893 /* restart initializing or trimming disks as necessary */
8894 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
8895 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
8896 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
8897
8898 vdev_reopen(spa->spa_root_vdev);
8899
8900 nvlist_free(spa->spa_config_splitting);
8901 spa->spa_config_splitting = NULL;
8902 (void) spa_vdev_exit(spa, NULL, txg, error);
8903
8904 kmem_free(vml, children * sizeof (vdev_t *));
8905 return (error);
8906 }
8907
8908 /*
8909 * Find any device that's done replacing, or a vdev marked 'unspare' that's
8910 * currently spared, so we can detach it.
8911 */
8912 static vdev_t *
8913 spa_vdev_resilver_done_hunt(vdev_t *vd)
8914 {
8915 vdev_t *newvd, *oldvd;
8916
8917 for (int c = 0; c < vd->vdev_children; c++) {
8918 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8919 if (oldvd != NULL)
8920 return (oldvd);
8921 }
8922
8923 /*
8924 * Check for a completed replacement. We always consider the first
8925 * vdev in the list to be the oldest vdev, and the last one to be
8926 * the newest (see spa_vdev_attach() for how that works). In
8927 * the case where the newest vdev is faulted, we will not automatically
8928 * remove it after a resilver completes. This is OK as it will require
8929 * user intervention to determine which disk the admin wishes to keep.
8930 */
8931 if (vd->vdev_ops == &vdev_replacing_ops) {
8932 ASSERT(vd->vdev_children > 1);
8933
8934 newvd = vd->vdev_child[vd->vdev_children - 1];
8935 oldvd = vd->vdev_child[0];
8936
8937 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8938 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8939 !vdev_dtl_required(oldvd))
8940 return (oldvd);
8941 }
8942
8943 /*
8944 * Check for a completed resilver with the 'unspare' flag set.
8945 * Also potentially update faulted state.
8946 */
8947 if (vd->vdev_ops == &vdev_spare_ops) {
8948 vdev_t *first = vd->vdev_child[0];
8949 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8950
8951 if (last->vdev_unspare) {
8952 oldvd = first;
8953 newvd = last;
8954 } else if (first->vdev_unspare) {
8955 oldvd = last;
8956 newvd = first;
8957 } else {
8958 oldvd = NULL;
8959 }
8960
8961 if (oldvd != NULL &&
8962 vdev_dtl_empty(newvd, DTL_MISSING) &&
8963 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8964 !vdev_dtl_required(oldvd))
8965 return (oldvd);
8966
8967 vdev_propagate_state(vd);
8968
8969 /*
8970 * If there are more than two spares attached to a disk,
8971 * and those spares are not required, then we want to
8972 * attempt to free them up now so that they can be used
8973 * by other pools. Once we're back down to a single
8974 * disk+spare, we stop removing them.
8975 */
8976 if (vd->vdev_children > 2) {
8977 newvd = vd->vdev_child[1];
8978
8979 if (newvd->vdev_isspare && last->vdev_isspare &&
8980 vdev_dtl_empty(last, DTL_MISSING) &&
8981 vdev_dtl_empty(last, DTL_OUTAGE) &&
8982 !vdev_dtl_required(newvd))
8983 return (newvd);
8984 }
8985 }
8986
8987 return (NULL);
8988 }
8989
8990 static void
8991 spa_vdev_resilver_done(spa_t *spa)
8992 {
8993 vdev_t *vd, *pvd, *ppvd;
8994 uint64_t guid, sguid, pguid, ppguid;
8995
8996 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8997
8998 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8999 pvd = vd->vdev_parent;
9000 ppvd = pvd->vdev_parent;
9001 guid = vd->vdev_guid;
9002 pguid = pvd->vdev_guid;
9003 ppguid = ppvd->vdev_guid;
9004 sguid = 0;
9005 /*
9006 * If we have just finished replacing a hot spared device, then
9007 * we need to detach the parent's first child (the original hot
9008 * spare) as well.
9009 */
9010 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
9011 ppvd->vdev_children == 2) {
9012 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
9013 sguid = ppvd->vdev_child[1]->vdev_guid;
9014 }
9015 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
9016
9017 spa_config_exit(spa, SCL_ALL, FTAG);
9018 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
9019 return;
9020 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
9021 return;
9022 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9023 }
9024
9025 spa_config_exit(spa, SCL_ALL, FTAG);
9026
9027 /*
9028 * If a detach was not performed above replace waiters will not have
9029 * been notified. In which case we must do so now.
9030 */
9031 spa_notify_waiters(spa);
9032 }
9033
9034 /*
9035 * Update the stored path or FRU for this vdev.
9036 */
9037 static int
9038 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
9039 boolean_t ispath)
9040 {
9041 vdev_t *vd;
9042 boolean_t sync = B_FALSE;
9043
9044 ASSERT(spa_writeable(spa));
9045
9046 spa_vdev_state_enter(spa, SCL_ALL);
9047
9048 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
9049 return (spa_vdev_state_exit(spa, NULL, ENOENT));
9050
9051 if (!vd->vdev_ops->vdev_op_leaf)
9052 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
9053
9054 if (ispath) {
9055 if (strcmp(value, vd->vdev_path) != 0) {
9056 spa_strfree(vd->vdev_path);
9057 vd->vdev_path = spa_strdup(value);
9058 sync = B_TRUE;
9059 }
9060 } else {
9061 if (vd->vdev_fru == NULL) {
9062 vd->vdev_fru = spa_strdup(value);
9063 sync = B_TRUE;
9064 } else if (strcmp(value, vd->vdev_fru) != 0) {
9065 spa_strfree(vd->vdev_fru);
9066 vd->vdev_fru = spa_strdup(value);
9067 sync = B_TRUE;
9068 }
9069 }
9070
9071 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
9072 }
9073
9074 int
9075 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
9076 {
9077 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
9078 }
9079
9080 int
9081 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
9082 {
9083 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
9084 }
9085
9086 /*
9087 * ==========================================================================
9088 * SPA Scanning
9089 * ==========================================================================
9090 */
9091 int
9092 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
9093 {
9094 ASSERT0(spa_config_held(spa, SCL_ALL, RW_WRITER));
9095
9096 if (dsl_scan_resilvering(spa->spa_dsl_pool))
9097 return (SET_ERROR(EBUSY));
9098
9099 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
9100 }
9101
9102 int
9103 spa_scan_stop(spa_t *spa)
9104 {
9105 ASSERT0(spa_config_held(spa, SCL_ALL, RW_WRITER));
9106 if (dsl_scan_resilvering(spa->spa_dsl_pool))
9107 return (SET_ERROR(EBUSY));
9108
9109 return (dsl_scan_cancel(spa->spa_dsl_pool));
9110 }
9111
9112 int
9113 spa_scan(spa_t *spa, pool_scan_func_t func)
9114 {
9115 return (spa_scan_range(spa, func, 0, 0));
9116 }
9117
9118 int
9119 spa_scan_range(spa_t *spa, pool_scan_func_t func, uint64_t txgstart,
9120 uint64_t txgend)
9121 {
9122 ASSERT0(spa_config_held(spa, SCL_ALL, RW_WRITER));
9123
9124 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
9125 return (SET_ERROR(ENOTSUP));
9126
9127 if (func == POOL_SCAN_RESILVER &&
9128 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
9129 return (SET_ERROR(ENOTSUP));
9130
9131 if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0))
9132 return (SET_ERROR(ENOTSUP));
9133
9134 /*
9135 * If a resilver was requested, but there is no DTL on a
9136 * writeable leaf device, we have nothing to do.
9137 */
9138 if (func == POOL_SCAN_RESILVER &&
9139 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
9140 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
9141 return (0);
9142 }
9143
9144 if (func == POOL_SCAN_ERRORSCRUB &&
9145 !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
9146 return (SET_ERROR(ENOTSUP));
9147
9148 return (dsl_scan(spa->spa_dsl_pool, func, txgstart, txgend));
9149 }
9150
9151 /*
9152 * ==========================================================================
9153 * SPA async task processing
9154 * ==========================================================================
9155 */
9156
9157 static void
9158 spa_async_remove(spa_t *spa, vdev_t *vd, boolean_t by_kernel)
9159 {
9160 if (vd->vdev_remove_wanted) {
9161 vd->vdev_remove_wanted = B_FALSE;
9162 vd->vdev_delayed_close = B_FALSE;
9163 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
9164
9165 /*
9166 * We want to clear the stats, but we don't want to do a full
9167 * vdev_clear() as that will cause us to throw away
9168 * degraded/faulted state as well as attempt to reopen the
9169 * device, all of which is a waste.
9170 */
9171 vd->vdev_stat.vs_read_errors = 0;
9172 vd->vdev_stat.vs_write_errors = 0;
9173 vd->vdev_stat.vs_checksum_errors = 0;
9174
9175 vdev_state_dirty(vd->vdev_top);
9176
9177 /* Tell userspace that the vdev is gone. */
9178 zfs_post_remove(spa, vd, by_kernel);
9179 }
9180
9181 for (int c = 0; c < vd->vdev_children; c++)
9182 spa_async_remove(spa, vd->vdev_child[c], by_kernel);
9183 }
9184
9185 static void
9186 spa_async_fault_vdev(vdev_t *vd, boolean_t *suspend)
9187 {
9188 if (vd->vdev_fault_wanted) {
9189 vdev_state_t newstate = VDEV_STATE_FAULTED;
9190 vd->vdev_fault_wanted = B_FALSE;
9191
9192 /*
9193 * If this device has the only valid copy of the data, then
9194 * back off and simply mark the vdev as degraded instead.
9195 */
9196 if (!vd->vdev_top->vdev_islog && vd->vdev_aux == NULL &&
9197 vdev_dtl_required(vd)) {
9198 newstate = VDEV_STATE_DEGRADED;
9199 /* A required disk is missing so suspend the pool */
9200 *suspend = B_TRUE;
9201 }
9202 vdev_set_state(vd, B_TRUE, newstate, VDEV_AUX_ERR_EXCEEDED);
9203 }
9204 for (int c = 0; c < vd->vdev_children; c++)
9205 spa_async_fault_vdev(vd->vdev_child[c], suspend);
9206 }
9207
9208 static void
9209 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
9210 {
9211 if (!spa->spa_autoexpand)
9212 return;
9213
9214 for (int c = 0; c < vd->vdev_children; c++) {
9215 vdev_t *cvd = vd->vdev_child[c];
9216 spa_async_autoexpand(spa, cvd);
9217 }
9218
9219 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
9220 return;
9221
9222 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
9223 }
9224
9225 static __attribute__((noreturn)) void
9226 spa_async_thread(void *arg)
9227 {
9228 spa_t *spa = (spa_t *)arg;
9229 dsl_pool_t *dp = spa->spa_dsl_pool;
9230 int tasks;
9231
9232 ASSERT(spa->spa_sync_on);
9233
9234 mutex_enter(&spa->spa_async_lock);
9235 tasks = spa->spa_async_tasks;
9236 spa->spa_async_tasks = 0;
9237 mutex_exit(&spa->spa_async_lock);
9238
9239 /*
9240 * See if the config needs to be updated.
9241 */
9242 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
9243 uint64_t old_space, new_space;
9244
9245 mutex_enter(&spa_namespace_lock);
9246 old_space = metaslab_class_get_space(spa_normal_class(spa));
9247 old_space += metaslab_class_get_space(spa_special_class(spa));
9248 old_space += metaslab_class_get_space(spa_dedup_class(spa));
9249 old_space += metaslab_class_get_space(
9250 spa_embedded_log_class(spa));
9251 old_space += metaslab_class_get_space(
9252 spa_special_embedded_log_class(spa));
9253
9254 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
9255
9256 new_space = metaslab_class_get_space(spa_normal_class(spa));
9257 new_space += metaslab_class_get_space(spa_special_class(spa));
9258 new_space += metaslab_class_get_space(spa_dedup_class(spa));
9259 new_space += metaslab_class_get_space(
9260 spa_embedded_log_class(spa));
9261 new_space += metaslab_class_get_space(
9262 spa_special_embedded_log_class(spa));
9263 mutex_exit(&spa_namespace_lock);
9264
9265 /*
9266 * If the pool grew as a result of the config update,
9267 * then log an internal history event.
9268 */
9269 if (new_space != old_space) {
9270 spa_history_log_internal(spa, "vdev online", NULL,
9271 "pool '%s' size: %llu(+%llu)",
9272 spa_name(spa), (u_longlong_t)new_space,
9273 (u_longlong_t)(new_space - old_space));
9274 }
9275 }
9276
9277 /*
9278 * See if any devices need to be marked REMOVED.
9279 */
9280 if (tasks & (SPA_ASYNC_REMOVE | SPA_ASYNC_REMOVE_BY_USER)) {
9281 boolean_t by_kernel = B_TRUE;
9282 if (tasks & SPA_ASYNC_REMOVE_BY_USER)
9283 by_kernel = B_FALSE;
9284 spa_vdev_state_enter(spa, SCL_NONE);
9285 spa_async_remove(spa, spa->spa_root_vdev, by_kernel);
9286 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
9287 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i],
9288 by_kernel);
9289 for (int i = 0; i < spa->spa_spares.sav_count; i++)
9290 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i],
9291 by_kernel);
9292 (void) spa_vdev_state_exit(spa, NULL, 0);
9293 }
9294
9295 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
9296 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9297 spa_async_autoexpand(spa, spa->spa_root_vdev);
9298 spa_config_exit(spa, SCL_CONFIG, FTAG);
9299 }
9300
9301 /*
9302 * See if any devices need to be marked faulted.
9303 */
9304 if (tasks & SPA_ASYNC_FAULT_VDEV) {
9305 spa_vdev_state_enter(spa, SCL_NONE);
9306 boolean_t suspend = B_FALSE;
9307 spa_async_fault_vdev(spa->spa_root_vdev, &suspend);
9308 (void) spa_vdev_state_exit(spa, NULL, 0);
9309 if (suspend)
9310 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9311 }
9312
9313 /*
9314 * If any devices are done replacing, detach them.
9315 */
9316 if (tasks & SPA_ASYNC_RESILVER_DONE ||
9317 tasks & SPA_ASYNC_REBUILD_DONE ||
9318 tasks & SPA_ASYNC_DETACH_SPARE) {
9319 spa_vdev_resilver_done(spa);
9320 }
9321
9322 /*
9323 * Kick off a resilver.
9324 */
9325 if (tasks & SPA_ASYNC_RESILVER &&
9326 !vdev_rebuild_active(spa->spa_root_vdev) &&
9327 (!dsl_scan_resilvering(dp) ||
9328 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
9329 dsl_scan_restart_resilver(dp, 0);
9330
9331 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
9332 mutex_enter(&spa_namespace_lock);
9333 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9334 vdev_initialize_restart(spa->spa_root_vdev);
9335 spa_config_exit(spa, SCL_CONFIG, FTAG);
9336 mutex_exit(&spa_namespace_lock);
9337 }
9338
9339 if (tasks & SPA_ASYNC_TRIM_RESTART) {
9340 mutex_enter(&spa_namespace_lock);
9341 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9342 vdev_trim_restart(spa->spa_root_vdev);
9343 spa_config_exit(spa, SCL_CONFIG, FTAG);
9344 mutex_exit(&spa_namespace_lock);
9345 }
9346
9347 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
9348 mutex_enter(&spa_namespace_lock);
9349 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9350 vdev_autotrim_restart(spa);
9351 spa_config_exit(spa, SCL_CONFIG, FTAG);
9352 mutex_exit(&spa_namespace_lock);
9353 }
9354
9355 /*
9356 * Kick off L2 cache whole device TRIM.
9357 */
9358 if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
9359 mutex_enter(&spa_namespace_lock);
9360 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9361 vdev_trim_l2arc(spa);
9362 spa_config_exit(spa, SCL_CONFIG, FTAG);
9363 mutex_exit(&spa_namespace_lock);
9364 }
9365
9366 /*
9367 * Kick off L2 cache rebuilding.
9368 */
9369 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
9370 mutex_enter(&spa_namespace_lock);
9371 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
9372 l2arc_spa_rebuild_start(spa);
9373 spa_config_exit(spa, SCL_L2ARC, FTAG);
9374 mutex_exit(&spa_namespace_lock);
9375 }
9376
9377 /*
9378 * Let the world know that we're done.
9379 */
9380 mutex_enter(&spa->spa_async_lock);
9381 spa->spa_async_thread = NULL;
9382 cv_broadcast(&spa->spa_async_cv);
9383 mutex_exit(&spa->spa_async_lock);
9384 thread_exit();
9385 }
9386
9387 void
9388 spa_async_suspend(spa_t *spa)
9389 {
9390 mutex_enter(&spa->spa_async_lock);
9391 spa->spa_async_suspended++;
9392 while (spa->spa_async_thread != NULL)
9393 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
9394 mutex_exit(&spa->spa_async_lock);
9395
9396 spa_vdev_remove_suspend(spa);
9397
9398 zthr_t *condense_thread = spa->spa_condense_zthr;
9399 if (condense_thread != NULL)
9400 zthr_cancel(condense_thread);
9401
9402 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9403 if (raidz_expand_thread != NULL)
9404 zthr_cancel(raidz_expand_thread);
9405
9406 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9407 if (discard_thread != NULL)
9408 zthr_cancel(discard_thread);
9409
9410 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9411 if (ll_delete_thread != NULL)
9412 zthr_cancel(ll_delete_thread);
9413
9414 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9415 if (ll_condense_thread != NULL)
9416 zthr_cancel(ll_condense_thread);
9417 }
9418
9419 void
9420 spa_async_resume(spa_t *spa)
9421 {
9422 mutex_enter(&spa->spa_async_lock);
9423 ASSERT(spa->spa_async_suspended != 0);
9424 spa->spa_async_suspended--;
9425 mutex_exit(&spa->spa_async_lock);
9426 spa_restart_removal(spa);
9427
9428 zthr_t *condense_thread = spa->spa_condense_zthr;
9429 if (condense_thread != NULL)
9430 zthr_resume(condense_thread);
9431
9432 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9433 if (raidz_expand_thread != NULL)
9434 zthr_resume(raidz_expand_thread);
9435
9436 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9437 if (discard_thread != NULL)
9438 zthr_resume(discard_thread);
9439
9440 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9441 if (ll_delete_thread != NULL)
9442 zthr_resume(ll_delete_thread);
9443
9444 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9445 if (ll_condense_thread != NULL)
9446 zthr_resume(ll_condense_thread);
9447 }
9448
9449 static boolean_t
9450 spa_async_tasks_pending(spa_t *spa)
9451 {
9452 uint_t non_config_tasks;
9453 uint_t config_task;
9454 boolean_t config_task_suspended;
9455
9456 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
9457 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
9458 if (spa->spa_ccw_fail_time == 0) {
9459 config_task_suspended = B_FALSE;
9460 } else {
9461 config_task_suspended =
9462 (gethrtime() - spa->spa_ccw_fail_time) <
9463 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
9464 }
9465
9466 return (non_config_tasks || (config_task && !config_task_suspended));
9467 }
9468
9469 static void
9470 spa_async_dispatch(spa_t *spa)
9471 {
9472 mutex_enter(&spa->spa_async_lock);
9473 if (spa_async_tasks_pending(spa) &&
9474 !spa->spa_async_suspended &&
9475 spa->spa_async_thread == NULL)
9476 spa->spa_async_thread = thread_create(NULL, 0,
9477 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
9478 mutex_exit(&spa->spa_async_lock);
9479 }
9480
9481 void
9482 spa_async_request(spa_t *spa, int task)
9483 {
9484 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
9485 mutex_enter(&spa->spa_async_lock);
9486 spa->spa_async_tasks |= task;
9487 mutex_exit(&spa->spa_async_lock);
9488 }
9489
9490 int
9491 spa_async_tasks(spa_t *spa)
9492 {
9493 return (spa->spa_async_tasks);
9494 }
9495
9496 /*
9497 * ==========================================================================
9498 * SPA syncing routines
9499 * ==========================================================================
9500 */
9501
9502
9503 static int
9504 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9505 dmu_tx_t *tx)
9506 {
9507 bpobj_t *bpo = arg;
9508 bpobj_enqueue(bpo, bp, bp_freed, tx);
9509 return (0);
9510 }
9511
9512 int
9513 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9514 {
9515 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
9516 }
9517
9518 int
9519 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9520 {
9521 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
9522 }
9523
9524 static int
9525 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9526 {
9527 zio_t *pio = arg;
9528
9529 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
9530 pio->io_flags));
9531 return (0);
9532 }
9533
9534 static int
9535 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9536 dmu_tx_t *tx)
9537 {
9538 ASSERT(!bp_freed);
9539 return (spa_free_sync_cb(arg, bp, tx));
9540 }
9541
9542 /*
9543 * Note: this simple function is not inlined to make it easier to dtrace the
9544 * amount of time spent syncing frees.
9545 */
9546 static void
9547 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
9548 {
9549 zio_t *zio = zio_root(spa, NULL, NULL, 0);
9550 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
9551 VERIFY0(zio_wait(zio));
9552 }
9553
9554 /*
9555 * Note: this simple function is not inlined to make it easier to dtrace the
9556 * amount of time spent syncing deferred frees.
9557 */
9558 static void
9559 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
9560 {
9561 if (spa_sync_pass(spa) != 1)
9562 return;
9563
9564 /*
9565 * Note:
9566 * If the log space map feature is active, we stop deferring
9567 * frees to the next TXG and therefore running this function
9568 * would be considered a no-op as spa_deferred_bpobj should
9569 * not have any entries.
9570 *
9571 * That said we run this function anyway (instead of returning
9572 * immediately) for the edge-case scenario where we just
9573 * activated the log space map feature in this TXG but we have
9574 * deferred frees from the previous TXG.
9575 */
9576 zio_t *zio = zio_root(spa, NULL, NULL, 0);
9577 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
9578 bpobj_spa_free_sync_cb, zio, tx), ==, 0);
9579 VERIFY0(zio_wait(zio));
9580 }
9581
9582 static void
9583 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
9584 {
9585 char *packed = NULL;
9586 size_t bufsize;
9587 size_t nvsize = 0;
9588 dmu_buf_t *db;
9589
9590 VERIFY0(nvlist_size(nv, &nvsize, NV_ENCODE_XDR));
9591
9592 /*
9593 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
9594 * information. This avoids the dmu_buf_will_dirty() path and
9595 * saves us a pre-read to get data we don't actually care about.
9596 */
9597 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
9598 packed = vmem_alloc(bufsize, KM_SLEEP);
9599
9600 VERIFY0(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
9601 KM_SLEEP));
9602 memset(packed + nvsize, 0, bufsize - nvsize);
9603
9604 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
9605
9606 vmem_free(packed, bufsize);
9607
9608 VERIFY0(dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
9609 dmu_buf_will_dirty(db, tx);
9610 *(uint64_t *)db->db_data = nvsize;
9611 dmu_buf_rele(db, FTAG);
9612 }
9613
9614 static void
9615 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
9616 const char *config, const char *entry)
9617 {
9618 nvlist_t *nvroot;
9619 nvlist_t **list;
9620 int i;
9621
9622 if (!sav->sav_sync)
9623 return;
9624
9625 /*
9626 * Update the MOS nvlist describing the list of available devices.
9627 * spa_validate_aux() will have already made sure this nvlist is
9628 * valid and the vdevs are labeled appropriately.
9629 */
9630 if (sav->sav_object == 0) {
9631 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
9632 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
9633 sizeof (uint64_t), tx);
9634 VERIFY(zap_update(spa->spa_meta_objset,
9635 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
9636 &sav->sav_object, tx) == 0);
9637 }
9638
9639 nvroot = fnvlist_alloc();
9640 if (sav->sav_count == 0) {
9641 fnvlist_add_nvlist_array(nvroot, config,
9642 (const nvlist_t * const *)NULL, 0);
9643 } else {
9644 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
9645 for (i = 0; i < sav->sav_count; i++)
9646 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
9647 B_FALSE, VDEV_CONFIG_L2CACHE);
9648 fnvlist_add_nvlist_array(nvroot, config,
9649 (const nvlist_t * const *)list, sav->sav_count);
9650 for (i = 0; i < sav->sav_count; i++)
9651 nvlist_free(list[i]);
9652 kmem_free(list, sav->sav_count * sizeof (void *));
9653 }
9654
9655 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
9656 nvlist_free(nvroot);
9657
9658 sav->sav_sync = B_FALSE;
9659 }
9660
9661 /*
9662 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
9663 * The all-vdev ZAP must be empty.
9664 */
9665 static void
9666 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
9667 {
9668 spa_t *spa = vd->vdev_spa;
9669
9670 if (vd->vdev_root_zap != 0 &&
9671 spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
9672 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9673 vd->vdev_root_zap, tx));
9674 }
9675 if (vd->vdev_top_zap != 0) {
9676 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9677 vd->vdev_top_zap, tx));
9678 }
9679 if (vd->vdev_leaf_zap != 0) {
9680 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9681 vd->vdev_leaf_zap, tx));
9682 }
9683 for (uint64_t i = 0; i < vd->vdev_children; i++) {
9684 spa_avz_build(vd->vdev_child[i], avz, tx);
9685 }
9686 }
9687
9688 static void
9689 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
9690 {
9691 nvlist_t *config;
9692
9693 /*
9694 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
9695 * its config may not be dirty but we still need to build per-vdev ZAPs.
9696 * Similarly, if the pool is being assembled (e.g. after a split), we
9697 * need to rebuild the AVZ although the config may not be dirty.
9698 */
9699 if (list_is_empty(&spa->spa_config_dirty_list) &&
9700 spa->spa_avz_action == AVZ_ACTION_NONE)
9701 return;
9702
9703 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9704
9705 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
9706 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
9707 spa->spa_all_vdev_zaps != 0);
9708
9709 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
9710 /* Make and build the new AVZ */
9711 uint64_t new_avz = zap_create(spa->spa_meta_objset,
9712 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
9713 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
9714
9715 /* Diff old AVZ with new one */
9716 zap_cursor_t zc;
9717 zap_attribute_t *za = zap_attribute_alloc();
9718
9719 for (zap_cursor_init(&zc, spa->spa_meta_objset,
9720 spa->spa_all_vdev_zaps);
9721 zap_cursor_retrieve(&zc, za) == 0;
9722 zap_cursor_advance(&zc)) {
9723 uint64_t vdzap = za->za_first_integer;
9724 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
9725 vdzap) == ENOENT) {
9726 /*
9727 * ZAP is listed in old AVZ but not in new one;
9728 * destroy it
9729 */
9730 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
9731 tx));
9732 }
9733 }
9734
9735 zap_cursor_fini(&zc);
9736 zap_attribute_free(za);
9737
9738 /* Destroy the old AVZ */
9739 VERIFY0(zap_destroy(spa->spa_meta_objset,
9740 spa->spa_all_vdev_zaps, tx));
9741
9742 /* Replace the old AVZ in the dir obj with the new one */
9743 VERIFY0(zap_update(spa->spa_meta_objset,
9744 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
9745 sizeof (new_avz), 1, &new_avz, tx));
9746
9747 spa->spa_all_vdev_zaps = new_avz;
9748 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
9749 zap_cursor_t zc;
9750 zap_attribute_t *za = zap_attribute_alloc();
9751
9752 /* Walk through the AVZ and destroy all listed ZAPs */
9753 for (zap_cursor_init(&zc, spa->spa_meta_objset,
9754 spa->spa_all_vdev_zaps);
9755 zap_cursor_retrieve(&zc, za) == 0;
9756 zap_cursor_advance(&zc)) {
9757 uint64_t zap = za->za_first_integer;
9758 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
9759 }
9760
9761 zap_cursor_fini(&zc);
9762 zap_attribute_free(za);
9763
9764 /* Destroy and unlink the AVZ itself */
9765 VERIFY0(zap_destroy(spa->spa_meta_objset,
9766 spa->spa_all_vdev_zaps, tx));
9767 VERIFY0(zap_remove(spa->spa_meta_objset,
9768 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
9769 spa->spa_all_vdev_zaps = 0;
9770 }
9771
9772 if (spa->spa_all_vdev_zaps == 0) {
9773 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
9774 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
9775 DMU_POOL_VDEV_ZAP_MAP, tx);
9776 }
9777 spa->spa_avz_action = AVZ_ACTION_NONE;
9778
9779 /* Create ZAPs for vdevs that don't have them. */
9780 vdev_construct_zaps(spa->spa_root_vdev, tx);
9781
9782 config = spa_config_generate(spa, spa->spa_root_vdev,
9783 dmu_tx_get_txg(tx), B_FALSE);
9784
9785 /*
9786 * If we're upgrading the spa version then make sure that
9787 * the config object gets updated with the correct version.
9788 */
9789 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
9790 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
9791 spa->spa_uberblock.ub_version);
9792
9793 spa_config_exit(spa, SCL_STATE, FTAG);
9794
9795 nvlist_free(spa->spa_config_syncing);
9796 spa->spa_config_syncing = config;
9797
9798 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
9799 }
9800
9801 static void
9802 spa_sync_version(void *arg, dmu_tx_t *tx)
9803 {
9804 uint64_t *versionp = arg;
9805 uint64_t version = *versionp;
9806 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9807
9808 /*
9809 * Setting the version is special cased when first creating the pool.
9810 */
9811 ASSERT(tx->tx_txg != TXG_INITIAL);
9812
9813 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
9814 ASSERT(version >= spa_version(spa));
9815
9816 spa->spa_uberblock.ub_version = version;
9817 vdev_config_dirty(spa->spa_root_vdev);
9818 spa_history_log_internal(spa, "set", tx, "version=%lld",
9819 (longlong_t)version);
9820 }
9821
9822 /*
9823 * Set zpool properties.
9824 */
9825 static void
9826 spa_sync_props(void *arg, dmu_tx_t *tx)
9827 {
9828 nvlist_t *nvp = arg;
9829 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9830 objset_t *mos = spa->spa_meta_objset;
9831 nvpair_t *elem = NULL;
9832
9833 mutex_enter(&spa->spa_props_lock);
9834
9835 while ((elem = nvlist_next_nvpair(nvp, elem))) {
9836 uint64_t intval;
9837 const char *strval, *fname;
9838 zpool_prop_t prop;
9839 const char *propname;
9840 const char *elemname = nvpair_name(elem);
9841 zprop_type_t proptype;
9842 spa_feature_t fid;
9843
9844 switch (prop = zpool_name_to_prop(elemname)) {
9845 case ZPOOL_PROP_VERSION:
9846 intval = fnvpair_value_uint64(elem);
9847 /*
9848 * The version is synced separately before other
9849 * properties and should be correct by now.
9850 */
9851 ASSERT3U(spa_version(spa), >=, intval);
9852 break;
9853
9854 case ZPOOL_PROP_ALTROOT:
9855 /*
9856 * 'altroot' is a non-persistent property. It should
9857 * have been set temporarily at creation or import time.
9858 */
9859 ASSERT(spa->spa_root != NULL);
9860 break;
9861
9862 case ZPOOL_PROP_READONLY:
9863 case ZPOOL_PROP_CACHEFILE:
9864 /*
9865 * 'readonly' and 'cachefile' are also non-persistent
9866 * properties.
9867 */
9868 break;
9869 case ZPOOL_PROP_COMMENT:
9870 strval = fnvpair_value_string(elem);
9871 if (spa->spa_comment != NULL)
9872 spa_strfree(spa->spa_comment);
9873 spa->spa_comment = spa_strdup(strval);
9874 /*
9875 * We need to dirty the configuration on all the vdevs
9876 * so that their labels get updated. We also need to
9877 * update the cache file to keep it in sync with the
9878 * MOS version. It's unnecessary to do this for pool
9879 * creation since the vdev's configuration has already
9880 * been dirtied.
9881 */
9882 if (tx->tx_txg != TXG_INITIAL) {
9883 vdev_config_dirty(spa->spa_root_vdev);
9884 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9885 }
9886 spa_history_log_internal(spa, "set", tx,
9887 "%s=%s", elemname, strval);
9888 break;
9889 case ZPOOL_PROP_COMPATIBILITY:
9890 strval = fnvpair_value_string(elem);
9891 if (spa->spa_compatibility != NULL)
9892 spa_strfree(spa->spa_compatibility);
9893 spa->spa_compatibility = spa_strdup(strval);
9894 /*
9895 * Dirty the configuration on vdevs as above.
9896 */
9897 if (tx->tx_txg != TXG_INITIAL) {
9898 vdev_config_dirty(spa->spa_root_vdev);
9899 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9900 }
9901
9902 spa_history_log_internal(spa, "set", tx,
9903 "%s=%s", nvpair_name(elem), strval);
9904 break;
9905
9906 case ZPOOL_PROP_INVAL:
9907 if (zpool_prop_feature(elemname)) {
9908 fname = strchr(elemname, '@') + 1;
9909 VERIFY0(zfeature_lookup_name(fname, &fid));
9910
9911 spa_feature_enable(spa, fid, tx);
9912 spa_history_log_internal(spa, "set", tx,
9913 "%s=enabled", elemname);
9914 break;
9915 } else if (!zfs_prop_user(elemname)) {
9916 ASSERT(zpool_prop_feature(elemname));
9917 break;
9918 }
9919 zfs_fallthrough;
9920 default:
9921 /*
9922 * Set pool property values in the poolprops mos object.
9923 */
9924 if (spa->spa_pool_props_object == 0) {
9925 spa->spa_pool_props_object =
9926 zap_create_link(mos, DMU_OT_POOL_PROPS,
9927 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
9928 tx);
9929 }
9930
9931 /* normalize the property name */
9932 if (prop == ZPOOL_PROP_INVAL) {
9933 propname = elemname;
9934 proptype = PROP_TYPE_STRING;
9935 } else {
9936 propname = zpool_prop_to_name(prop);
9937 proptype = zpool_prop_get_type(prop);
9938 }
9939
9940 if (nvpair_type(elem) == DATA_TYPE_STRING) {
9941 ASSERT(proptype == PROP_TYPE_STRING);
9942 strval = fnvpair_value_string(elem);
9943 if (strlen(strval) == 0) {
9944 /* remove the property if value == "" */
9945 (void) zap_remove(mos,
9946 spa->spa_pool_props_object,
9947 propname, tx);
9948 } else {
9949 VERIFY0(zap_update(mos,
9950 spa->spa_pool_props_object,
9951 propname, 1, strlen(strval) + 1,
9952 strval, tx));
9953 }
9954 spa_history_log_internal(spa, "set", tx,
9955 "%s=%s", elemname, strval);
9956 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
9957 intval = fnvpair_value_uint64(elem);
9958
9959 if (proptype == PROP_TYPE_INDEX) {
9960 const char *unused;
9961 VERIFY0(zpool_prop_index_to_string(
9962 prop, intval, &unused));
9963 }
9964 VERIFY0(zap_update(mos,
9965 spa->spa_pool_props_object, propname,
9966 8, 1, &intval, tx));
9967 spa_history_log_internal(spa, "set", tx,
9968 "%s=%lld", elemname,
9969 (longlong_t)intval);
9970
9971 switch (prop) {
9972 case ZPOOL_PROP_DELEGATION:
9973 spa->spa_delegation = intval;
9974 break;
9975 case ZPOOL_PROP_BOOTFS:
9976 spa->spa_bootfs = intval;
9977 break;
9978 case ZPOOL_PROP_FAILUREMODE:
9979 spa->spa_failmode = intval;
9980 break;
9981 case ZPOOL_PROP_AUTOTRIM:
9982 spa->spa_autotrim = intval;
9983 spa_async_request(spa,
9984 SPA_ASYNC_AUTOTRIM_RESTART);
9985 break;
9986 case ZPOOL_PROP_AUTOEXPAND:
9987 spa->spa_autoexpand = intval;
9988 if (tx->tx_txg != TXG_INITIAL)
9989 spa_async_request(spa,
9990 SPA_ASYNC_AUTOEXPAND);
9991 break;
9992 case ZPOOL_PROP_MULTIHOST:
9993 spa->spa_multihost = intval;
9994 break;
9995 case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
9996 spa->spa_dedup_table_quota = intval;
9997 break;
9998 default:
9999 break;
10000 }
10001 } else {
10002 ASSERT(0); /* not allowed */
10003 }
10004 }
10005
10006 }
10007
10008 mutex_exit(&spa->spa_props_lock);
10009 }
10010
10011 /*
10012 * Perform one-time upgrade on-disk changes. spa_version() does not
10013 * reflect the new version this txg, so there must be no changes this
10014 * txg to anything that the upgrade code depends on after it executes.
10015 * Therefore this must be called after dsl_pool_sync() does the sync
10016 * tasks.
10017 */
10018 static void
10019 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
10020 {
10021 if (spa_sync_pass(spa) != 1)
10022 return;
10023
10024 dsl_pool_t *dp = spa->spa_dsl_pool;
10025 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
10026
10027 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
10028 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
10029 dsl_pool_create_origin(dp, tx);
10030
10031 /* Keeping the origin open increases spa_minref */
10032 spa->spa_minref += 3;
10033 }
10034
10035 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
10036 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
10037 dsl_pool_upgrade_clones(dp, tx);
10038 }
10039
10040 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
10041 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
10042 dsl_pool_upgrade_dir_clones(dp, tx);
10043
10044 /* Keeping the freedir open increases spa_minref */
10045 spa->spa_minref += 3;
10046 }
10047
10048 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
10049 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
10050 spa_feature_create_zap_objects(spa, tx);
10051 }
10052
10053 /*
10054 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
10055 * when possibility to use lz4 compression for metadata was added
10056 * Old pools that have this feature enabled must be upgraded to have
10057 * this feature active
10058 */
10059 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
10060 boolean_t lz4_en = spa_feature_is_enabled(spa,
10061 SPA_FEATURE_LZ4_COMPRESS);
10062 boolean_t lz4_ac = spa_feature_is_active(spa,
10063 SPA_FEATURE_LZ4_COMPRESS);
10064
10065 if (lz4_en && !lz4_ac)
10066 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
10067 }
10068
10069 /*
10070 * If we haven't written the salt, do so now. Note that the
10071 * feature may not be activated yet, but that's fine since
10072 * the presence of this ZAP entry is backwards compatible.
10073 */
10074 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
10075 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
10076 VERIFY0(zap_add(spa->spa_meta_objset,
10077 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
10078 sizeof (spa->spa_cksum_salt.zcs_bytes),
10079 spa->spa_cksum_salt.zcs_bytes, tx));
10080 }
10081
10082 rrw_exit(&dp->dp_config_rwlock, FTAG);
10083 }
10084
10085 static void
10086 vdev_indirect_state_sync_verify(vdev_t *vd)
10087 {
10088 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
10089 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
10090
10091 if (vd->vdev_ops == &vdev_indirect_ops) {
10092 ASSERT(vim != NULL);
10093 ASSERT(vib != NULL);
10094 }
10095
10096 uint64_t obsolete_sm_object = 0;
10097 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
10098 if (obsolete_sm_object != 0) {
10099 ASSERT(vd->vdev_obsolete_sm != NULL);
10100 ASSERT(vd->vdev_removing ||
10101 vd->vdev_ops == &vdev_indirect_ops);
10102 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
10103 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
10104 ASSERT3U(obsolete_sm_object, ==,
10105 space_map_object(vd->vdev_obsolete_sm));
10106 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
10107 space_map_allocated(vd->vdev_obsolete_sm));
10108 }
10109 ASSERT(vd->vdev_obsolete_segments != NULL);
10110
10111 /*
10112 * Since frees / remaps to an indirect vdev can only
10113 * happen in syncing context, the obsolete segments
10114 * tree must be empty when we start syncing.
10115 */
10116 ASSERT0(zfs_range_tree_space(vd->vdev_obsolete_segments));
10117 }
10118
10119 /*
10120 * Set the top-level vdev's max queue depth. Evaluate each top-level's
10121 * async write queue depth in case it changed. The max queue depth will
10122 * not change in the middle of syncing out this txg.
10123 */
10124 static void
10125 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
10126 {
10127 ASSERT(spa_writeable(spa));
10128
10129 metaslab_class_balance(spa_normal_class(spa), B_TRUE);
10130 metaslab_class_balance(spa_special_class(spa), B_TRUE);
10131 metaslab_class_balance(spa_dedup_class(spa), B_TRUE);
10132 }
10133
10134 static void
10135 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
10136 {
10137 ASSERT(spa_writeable(spa));
10138
10139 vdev_t *rvd = spa->spa_root_vdev;
10140 for (int c = 0; c < rvd->vdev_children; c++) {
10141 vdev_t *vd = rvd->vdev_child[c];
10142 vdev_indirect_state_sync_verify(vd);
10143
10144 if (vdev_indirect_should_condense(vd)) {
10145 spa_condense_indirect_start_sync(vd, tx);
10146 break;
10147 }
10148 }
10149 }
10150
10151 static void
10152 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
10153 {
10154 objset_t *mos = spa->spa_meta_objset;
10155 dsl_pool_t *dp = spa->spa_dsl_pool;
10156 uint64_t txg = tx->tx_txg;
10157 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
10158
10159 do {
10160 int pass = ++spa->spa_sync_pass;
10161
10162 spa_sync_config_object(spa, tx);
10163 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
10164 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
10165 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
10166 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
10167 spa_errlog_sync(spa, txg);
10168 dsl_pool_sync(dp, txg);
10169
10170 if (pass < zfs_sync_pass_deferred_free ||
10171 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
10172 /*
10173 * If the log space map feature is active we don't
10174 * care about deferred frees and the deferred bpobj
10175 * as the log space map should effectively have the
10176 * same results (i.e. appending only to one object).
10177 */
10178 spa_sync_frees(spa, free_bpl, tx);
10179 } else {
10180 /*
10181 * We can not defer frees in pass 1, because
10182 * we sync the deferred frees later in pass 1.
10183 */
10184 ASSERT3U(pass, >, 1);
10185 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
10186 &spa->spa_deferred_bpobj, tx);
10187 }
10188
10189 brt_sync(spa, txg);
10190 ddt_sync(spa, txg);
10191 dsl_scan_sync(dp, tx);
10192 dsl_errorscrub_sync(dp, tx);
10193 svr_sync(spa, tx);
10194 spa_sync_upgrades(spa, tx);
10195
10196 spa_flush_metaslabs(spa, tx);
10197
10198 vdev_t *vd = NULL;
10199 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
10200 != NULL)
10201 vdev_sync(vd, txg);
10202
10203 if (pass == 1) {
10204 /*
10205 * dsl_pool_sync() -> dp_sync_tasks may have dirtied
10206 * the config. If that happens, this txg should not
10207 * be a no-op. So we must sync the config to the MOS
10208 * before checking for no-op.
10209 *
10210 * Note that when the config is dirty, it will
10211 * be written to the MOS (i.e. the MOS will be
10212 * dirtied) every time we call spa_sync_config_object()
10213 * in this txg. Therefore we can't call this after
10214 * dsl_pool_sync() every pass, because it would
10215 * prevent us from converging, since we'd dirty
10216 * the MOS every pass.
10217 *
10218 * Sync tasks can only be processed in pass 1, so
10219 * there's no need to do this in later passes.
10220 */
10221 spa_sync_config_object(spa, tx);
10222 }
10223
10224 /*
10225 * Note: We need to check if the MOS is dirty because we could
10226 * have marked the MOS dirty without updating the uberblock
10227 * (e.g. if we have sync tasks but no dirty user data). We need
10228 * to check the uberblock's rootbp because it is updated if we
10229 * have synced out dirty data (though in this case the MOS will
10230 * most likely also be dirty due to second order effects, we
10231 * don't want to rely on that here).
10232 */
10233 if (pass == 1 &&
10234 BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp) < txg &&
10235 !dmu_objset_is_dirty(mos, txg)) {
10236 /*
10237 * Nothing changed on the first pass, therefore this
10238 * TXG is a no-op. Avoid syncing deferred frees, so
10239 * that we can keep this TXG as a no-op.
10240 */
10241 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10242 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10243 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
10244 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
10245 break;
10246 }
10247
10248 spa_sync_deferred_frees(spa, tx);
10249 } while (dmu_objset_is_dirty(mos, txg));
10250 }
10251
10252 /*
10253 * Rewrite the vdev configuration (which includes the uberblock) to
10254 * commit the transaction group.
10255 *
10256 * If there are no dirty vdevs, we sync the uberblock to a few random
10257 * top-level vdevs that are known to be visible in the config cache
10258 * (see spa_vdev_add() for a complete description). If there *are* dirty
10259 * vdevs, sync the uberblock to all vdevs.
10260 */
10261 static void
10262 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
10263 {
10264 vdev_t *rvd = spa->spa_root_vdev;
10265 uint64_t txg = tx->tx_txg;
10266
10267 for (;;) {
10268 int error = 0;
10269
10270 /*
10271 * We hold SCL_STATE to prevent vdev open/close/etc.
10272 * while we're attempting to write the vdev labels.
10273 */
10274 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10275
10276 if (list_is_empty(&spa->spa_config_dirty_list)) {
10277 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
10278 int svdcount = 0;
10279 int children = rvd->vdev_children;
10280 int c0 = random_in_range(children);
10281
10282 for (int c = 0; c < children; c++) {
10283 vdev_t *vd =
10284 rvd->vdev_child[(c0 + c) % children];
10285
10286 /* Stop when revisiting the first vdev */
10287 if (c > 0 && svd[0] == vd)
10288 break;
10289
10290 if (vd->vdev_ms_array == 0 ||
10291 vd->vdev_islog ||
10292 !vdev_is_concrete(vd))
10293 continue;
10294
10295 svd[svdcount++] = vd;
10296 if (svdcount == SPA_SYNC_MIN_VDEVS)
10297 break;
10298 }
10299 error = vdev_config_sync(svd, svdcount, txg);
10300 } else {
10301 error = vdev_config_sync(rvd->vdev_child,
10302 rvd->vdev_children, txg);
10303 }
10304
10305 if (error == 0)
10306 spa->spa_last_synced_guid = rvd->vdev_guid;
10307
10308 spa_config_exit(spa, SCL_STATE, FTAG);
10309
10310 if (error == 0)
10311 break;
10312 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
10313 zio_resume_wait(spa);
10314 }
10315 }
10316
10317 /*
10318 * Sync the specified transaction group. New blocks may be dirtied as
10319 * part of the process, so we iterate until it converges.
10320 */
10321 void
10322 spa_sync(spa_t *spa, uint64_t txg)
10323 {
10324 vdev_t *vd = NULL;
10325
10326 VERIFY(spa_writeable(spa));
10327
10328 /*
10329 * Wait for i/os issued in open context that need to complete
10330 * before this txg syncs.
10331 */
10332 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
10333 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
10334 ZIO_FLAG_CANFAIL);
10335
10336 /*
10337 * Now that there can be no more cloning in this transaction group,
10338 * but we are still before issuing frees, we can process pending BRT
10339 * updates.
10340 */
10341 brt_pending_apply(spa, txg);
10342
10343 spa_sync_time_logger(spa, txg);
10344
10345 /*
10346 * Lock out configuration changes.
10347 */
10348 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
10349
10350 spa->spa_syncing_txg = txg;
10351 spa->spa_sync_pass = 0;
10352
10353 /*
10354 * If there are any pending vdev state changes, convert them
10355 * into config changes that go out with this transaction group.
10356 */
10357 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10358 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10359 /* Avoid holding the write lock unless actually necessary */
10360 if (vd->vdev_aux == NULL) {
10361 vdev_state_clean(vd);
10362 vdev_config_dirty(vd);
10363 continue;
10364 }
10365 /*
10366 * We need the write lock here because, for aux vdevs,
10367 * calling vdev_config_dirty() modifies sav_config.
10368 * This is ugly and will become unnecessary when we
10369 * eliminate the aux vdev wart by integrating all vdevs
10370 * into the root vdev tree.
10371 */
10372 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10373 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
10374 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10375 vdev_state_clean(vd);
10376 vdev_config_dirty(vd);
10377 }
10378 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10379 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10380 }
10381 spa_config_exit(spa, SCL_STATE, FTAG);
10382
10383 dsl_pool_t *dp = spa->spa_dsl_pool;
10384 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
10385
10386 spa->spa_sync_starttime = gethrtime();
10387
10388 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10389 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
10390 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
10391 NSEC_TO_TICK(spa->spa_deadman_synctime));
10392
10393 /*
10394 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
10395 * set spa_deflate if we have no raid-z vdevs.
10396 */
10397 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
10398 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
10399 vdev_t *rvd = spa->spa_root_vdev;
10400
10401 int i;
10402 for (i = 0; i < rvd->vdev_children; i++) {
10403 vd = rvd->vdev_child[i];
10404 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
10405 break;
10406 }
10407 if (i == rvd->vdev_children) {
10408 spa->spa_deflate = TRUE;
10409 VERIFY0(zap_add(spa->spa_meta_objset,
10410 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
10411 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
10412 }
10413 }
10414
10415 spa_sync_adjust_vdev_max_queue_depth(spa);
10416
10417 spa_sync_condense_indirect(spa, tx);
10418
10419 spa_sync_iterate_to_convergence(spa, tx);
10420
10421 #ifdef ZFS_DEBUG
10422 if (!list_is_empty(&spa->spa_config_dirty_list)) {
10423 /*
10424 * Make sure that the number of ZAPs for all the vdevs matches
10425 * the number of ZAPs in the per-vdev ZAP list. This only gets
10426 * called if the config is dirty; otherwise there may be
10427 * outstanding AVZ operations that weren't completed in
10428 * spa_sync_config_object.
10429 */
10430 uint64_t all_vdev_zap_entry_count;
10431 ASSERT0(zap_count(spa->spa_meta_objset,
10432 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
10433 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
10434 all_vdev_zap_entry_count);
10435 }
10436 #endif
10437
10438 if (spa->spa_vdev_removal != NULL) {
10439 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
10440 }
10441
10442 spa_sync_rewrite_vdev_config(spa, tx);
10443 dmu_tx_commit(tx);
10444
10445 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10446 spa->spa_deadman_tqid = 0;
10447
10448 /*
10449 * Clear the dirty config list.
10450 */
10451 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
10452 vdev_config_clean(vd);
10453
10454 /*
10455 * Now that the new config has synced transactionally,
10456 * let it become visible to the config cache.
10457 */
10458 if (spa->spa_config_syncing != NULL) {
10459 spa_config_set(spa, spa->spa_config_syncing);
10460 spa->spa_config_txg = txg;
10461 spa->spa_config_syncing = NULL;
10462 }
10463
10464 dsl_pool_sync_done(dp, txg);
10465
10466 /*
10467 * Update usable space statistics.
10468 */
10469 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
10470 != NULL)
10471 vdev_sync_done(vd, txg);
10472
10473 metaslab_class_evict_old(spa->spa_normal_class, txg);
10474 metaslab_class_evict_old(spa->spa_log_class, txg);
10475 /* Embedded log classes have only one metaslab per vdev. */
10476 metaslab_class_evict_old(spa->spa_special_class, txg);
10477 metaslab_class_evict_old(spa->spa_dedup_class, txg);
10478
10479 spa_sync_close_syncing_log_sm(spa);
10480
10481 spa_update_dspace(spa);
10482
10483 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
10484 vdev_autotrim_kick(spa);
10485
10486 /*
10487 * It had better be the case that we didn't dirty anything
10488 * since vdev_config_sync().
10489 */
10490 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10491 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10492 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
10493
10494 while (zfs_pause_spa_sync)
10495 delay(1);
10496
10497 spa->spa_sync_pass = 0;
10498
10499 /*
10500 * Update the last synced uberblock here. We want to do this at
10501 * the end of spa_sync() so that consumers of spa_last_synced_txg()
10502 * will be guaranteed that all the processing associated with
10503 * that txg has been completed.
10504 */
10505 spa->spa_ubsync = spa->spa_uberblock;
10506 spa_config_exit(spa, SCL_CONFIG, FTAG);
10507
10508 spa_handle_ignored_writes(spa);
10509
10510 /*
10511 * If any async tasks have been requested, kick them off.
10512 */
10513 spa_async_dispatch(spa);
10514 }
10515
10516 /*
10517 * Sync all pools. We don't want to hold the namespace lock across these
10518 * operations, so we take a reference on the spa_t and drop the lock during the
10519 * sync.
10520 */
10521 void
10522 spa_sync_allpools(void)
10523 {
10524 spa_t *spa = NULL;
10525 mutex_enter(&spa_namespace_lock);
10526 while ((spa = spa_next(spa)) != NULL) {
10527 if (spa_state(spa) != POOL_STATE_ACTIVE ||
10528 !spa_writeable(spa) || spa_suspended(spa))
10529 continue;
10530 spa_open_ref(spa, FTAG);
10531 mutex_exit(&spa_namespace_lock);
10532 txg_wait_synced(spa_get_dsl(spa), 0);
10533 mutex_enter(&spa_namespace_lock);
10534 spa_close(spa, FTAG);
10535 }
10536 mutex_exit(&spa_namespace_lock);
10537 }
10538
10539 taskq_t *
10540 spa_sync_tq_create(spa_t *spa, const char *name)
10541 {
10542 kthread_t **kthreads;
10543
10544 ASSERT0P(spa->spa_sync_tq);
10545 ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus);
10546
10547 /*
10548 * - do not allow more allocators than cpus.
10549 * - there may be more cpus than allocators.
10550 * - do not allow more sync taskq threads than allocators or cpus.
10551 */
10552 int nthreads = spa->spa_alloc_count;
10553 spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) *
10554 nthreads, KM_SLEEP);
10555
10556 spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri,
10557 nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads);
10558 VERIFY(spa->spa_sync_tq != NULL);
10559 VERIFY(kthreads != NULL);
10560
10561 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10562 for (int i = 0; i < nthreads; i++, ti++) {
10563 ti->sti_thread = kthreads[i];
10564 ti->sti_allocator = i;
10565 }
10566
10567 kmem_free(kthreads, sizeof (*kthreads) * nthreads);
10568 return (spa->spa_sync_tq);
10569 }
10570
10571 void
10572 spa_sync_tq_destroy(spa_t *spa)
10573 {
10574 ASSERT(spa->spa_sync_tq != NULL);
10575
10576 taskq_wait(spa->spa_sync_tq);
10577 taskq_destroy(spa->spa_sync_tq);
10578 kmem_free(spa->spa_syncthreads,
10579 sizeof (spa_syncthread_info_t) * spa->spa_alloc_count);
10580 spa->spa_sync_tq = NULL;
10581 }
10582
10583 uint_t
10584 spa_acq_allocator(spa_t *spa)
10585 {
10586 int i;
10587
10588 if (spa->spa_alloc_count == 1)
10589 return (0);
10590
10591 mutex_enter(&spa->spa_allocs_use->sau_lock);
10592 uint_t r = spa->spa_allocs_use->sau_rotor;
10593 do {
10594 if (++r == spa->spa_alloc_count)
10595 r = 0;
10596 } while (spa->spa_allocs_use->sau_inuse[r]);
10597 spa->spa_allocs_use->sau_inuse[r] = B_TRUE;
10598 spa->spa_allocs_use->sau_rotor = r;
10599 mutex_exit(&spa->spa_allocs_use->sau_lock);
10600
10601 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10602 for (i = 0; i < spa->spa_alloc_count; i++, ti++) {
10603 if (ti->sti_thread == curthread) {
10604 ti->sti_allocator = r;
10605 break;
10606 }
10607 }
10608 ASSERT3S(i, <, spa->spa_alloc_count);
10609 return (r);
10610 }
10611
10612 void
10613 spa_rel_allocator(spa_t *spa, uint_t allocator)
10614 {
10615 if (spa->spa_alloc_count > 1)
10616 spa->spa_allocs_use->sau_inuse[allocator] = B_FALSE;
10617 }
10618
10619 void
10620 spa_select_allocator(zio_t *zio)
10621 {
10622 zbookmark_phys_t *bm = &zio->io_bookmark;
10623 spa_t *spa = zio->io_spa;
10624
10625 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
10626
10627 /*
10628 * A gang block (for example) may have inherited its parent's
10629 * allocator, in which case there is nothing further to do here.
10630 */
10631 if (ZIO_HAS_ALLOCATOR(zio))
10632 return;
10633
10634 ASSERT(spa != NULL);
10635 ASSERT(bm != NULL);
10636
10637 /*
10638 * First try to use an allocator assigned to the syncthread, and set
10639 * the corresponding write issue taskq for the allocator.
10640 * Note, we must have an open pool to do this.
10641 */
10642 if (spa->spa_sync_tq != NULL) {
10643 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10644 for (int i = 0; i < spa->spa_alloc_count; i++, ti++) {
10645 if (ti->sti_thread == curthread) {
10646 zio->io_allocator = ti->sti_allocator;
10647 return;
10648 }
10649 }
10650 }
10651
10652 /*
10653 * We want to try to use as many allocators as possible to help improve
10654 * performance, but we also want logically adjacent IOs to be physically
10655 * adjacent to improve sequential read performance. We chunk each object
10656 * into 2^20 block regions, and then hash based on the objset, object,
10657 * level, and region to accomplish both of these goals.
10658 */
10659 uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level,
10660 bm->zb_blkid >> 20);
10661
10662 zio->io_allocator = (uint_t)hv % spa->spa_alloc_count;
10663 }
10664
10665 /*
10666 * ==========================================================================
10667 * Miscellaneous routines
10668 * ==========================================================================
10669 */
10670
10671 /*
10672 * Remove all pools in the system.
10673 */
10674 void
10675 spa_evict_all(void)
10676 {
10677 spa_t *spa;
10678
10679 /*
10680 * Remove all cached state. All pools should be closed now,
10681 * so every spa in the AVL tree should be unreferenced.
10682 */
10683 mutex_enter(&spa_namespace_lock);
10684 while ((spa = spa_next(NULL)) != NULL) {
10685 /*
10686 * Stop async tasks. The async thread may need to detach
10687 * a device that's been replaced, which requires grabbing
10688 * spa_namespace_lock, so we must drop it here.
10689 */
10690 spa_open_ref(spa, FTAG);
10691 mutex_exit(&spa_namespace_lock);
10692 spa_async_suspend(spa);
10693 mutex_enter(&spa_namespace_lock);
10694 spa_close(spa, FTAG);
10695
10696 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
10697 spa_unload(spa);
10698 spa_deactivate(spa);
10699 }
10700 spa_remove(spa);
10701 }
10702 mutex_exit(&spa_namespace_lock);
10703 }
10704
10705 vdev_t *
10706 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
10707 {
10708 vdev_t *vd;
10709 int i;
10710
10711 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
10712 return (vd);
10713
10714 if (aux) {
10715 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
10716 vd = spa->spa_l2cache.sav_vdevs[i];
10717 if (vd->vdev_guid == guid)
10718 return (vd);
10719 }
10720
10721 for (i = 0; i < spa->spa_spares.sav_count; i++) {
10722 vd = spa->spa_spares.sav_vdevs[i];
10723 if (vd->vdev_guid == guid)
10724 return (vd);
10725 }
10726 }
10727
10728 return (NULL);
10729 }
10730
10731 void
10732 spa_upgrade(spa_t *spa, uint64_t version)
10733 {
10734 ASSERT(spa_writeable(spa));
10735
10736 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
10737
10738 /*
10739 * This should only be called for a non-faulted pool, and since a
10740 * future version would result in an unopenable pool, this shouldn't be
10741 * possible.
10742 */
10743 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
10744 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
10745
10746 spa->spa_uberblock.ub_version = version;
10747 vdev_config_dirty(spa->spa_root_vdev);
10748
10749 spa_config_exit(spa, SCL_ALL, FTAG);
10750
10751 txg_wait_synced(spa_get_dsl(spa), 0);
10752 }
10753
10754 static boolean_t
10755 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
10756 {
10757 (void) spa;
10758 int i;
10759 uint64_t vdev_guid;
10760
10761 for (i = 0; i < sav->sav_count; i++)
10762 if (sav->sav_vdevs[i]->vdev_guid == guid)
10763 return (B_TRUE);
10764
10765 for (i = 0; i < sav->sav_npending; i++) {
10766 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
10767 &vdev_guid) == 0 && vdev_guid == guid)
10768 return (B_TRUE);
10769 }
10770
10771 return (B_FALSE);
10772 }
10773
10774 boolean_t
10775 spa_has_l2cache(spa_t *spa, uint64_t guid)
10776 {
10777 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
10778 }
10779
10780 boolean_t
10781 spa_has_spare(spa_t *spa, uint64_t guid)
10782 {
10783 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
10784 }
10785
10786 /*
10787 * Check if a pool has an active shared spare device.
10788 * Note: reference count of an active spare is 2, as a spare and as a replace
10789 */
10790 static boolean_t
10791 spa_has_active_shared_spare(spa_t *spa)
10792 {
10793 int i, refcnt;
10794 uint64_t pool;
10795 spa_aux_vdev_t *sav = &spa->spa_spares;
10796
10797 for (i = 0; i < sav->sav_count; i++) {
10798 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
10799 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
10800 refcnt > 2)
10801 return (B_TRUE);
10802 }
10803
10804 return (B_FALSE);
10805 }
10806
10807 uint64_t
10808 spa_total_metaslabs(spa_t *spa)
10809 {
10810 vdev_t *rvd = spa->spa_root_vdev;
10811
10812 uint64_t m = 0;
10813 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
10814 vdev_t *vd = rvd->vdev_child[c];
10815 if (!vdev_is_concrete(vd))
10816 continue;
10817 m += vd->vdev_ms_count;
10818 }
10819 return (m);
10820 }
10821
10822 /*
10823 * Notify any waiting threads that some activity has switched from being in-
10824 * progress to not-in-progress so that the thread can wake up and determine
10825 * whether it is finished waiting.
10826 */
10827 void
10828 spa_notify_waiters(spa_t *spa)
10829 {
10830 /*
10831 * Acquiring spa_activities_lock here prevents the cv_broadcast from
10832 * happening between the waiting thread's check and cv_wait.
10833 */
10834 mutex_enter(&spa->spa_activities_lock);
10835 cv_broadcast(&spa->spa_activities_cv);
10836 mutex_exit(&spa->spa_activities_lock);
10837 }
10838
10839 /*
10840 * Notify any waiting threads that the pool is exporting, and then block until
10841 * they are finished using the spa_t.
10842 */
10843 void
10844 spa_wake_waiters(spa_t *spa)
10845 {
10846 mutex_enter(&spa->spa_activities_lock);
10847 spa->spa_waiters_cancel = B_TRUE;
10848 cv_broadcast(&spa->spa_activities_cv);
10849 while (spa->spa_waiters != 0)
10850 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
10851 spa->spa_waiters_cancel = B_FALSE;
10852 mutex_exit(&spa->spa_activities_lock);
10853 }
10854
10855 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
10856 static boolean_t
10857 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
10858 {
10859 spa_t *spa = vd->vdev_spa;
10860
10861 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
10862 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10863 ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
10864 activity == ZPOOL_WAIT_TRIM);
10865
10866 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
10867 &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
10868
10869 mutex_exit(&spa->spa_activities_lock);
10870 mutex_enter(lock);
10871 mutex_enter(&spa->spa_activities_lock);
10872
10873 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
10874 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
10875 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
10876 mutex_exit(lock);
10877
10878 if (in_progress)
10879 return (B_TRUE);
10880
10881 for (int i = 0; i < vd->vdev_children; i++) {
10882 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
10883 activity))
10884 return (B_TRUE);
10885 }
10886
10887 return (B_FALSE);
10888 }
10889
10890 /*
10891 * If use_guid is true, this checks whether the vdev specified by guid is
10892 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
10893 * is being initialized/trimmed. The caller must hold the config lock and
10894 * spa_activities_lock.
10895 */
10896 static int
10897 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
10898 zpool_wait_activity_t activity, boolean_t *in_progress)
10899 {
10900 mutex_exit(&spa->spa_activities_lock);
10901 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10902 mutex_enter(&spa->spa_activities_lock);
10903
10904 vdev_t *vd;
10905 if (use_guid) {
10906 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
10907 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
10908 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10909 return (EINVAL);
10910 }
10911 } else {
10912 vd = spa->spa_root_vdev;
10913 }
10914
10915 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
10916
10917 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10918 return (0);
10919 }
10920
10921 /*
10922 * Locking for waiting threads
10923 * ---------------------------
10924 *
10925 * Waiting threads need a way to check whether a given activity is in progress,
10926 * and then, if it is, wait for it to complete. Each activity will have some
10927 * in-memory representation of the relevant on-disk state which can be used to
10928 * determine whether or not the activity is in progress. The in-memory state and
10929 * the locking used to protect it will be different for each activity, and may
10930 * not be suitable for use with a cvar (e.g., some state is protected by the
10931 * config lock). To allow waiting threads to wait without any races, another
10932 * lock, spa_activities_lock, is used.
10933 *
10934 * When the state is checked, both the activity-specific lock (if there is one)
10935 * and spa_activities_lock are held. In some cases, the activity-specific lock
10936 * is acquired explicitly (e.g. the config lock). In others, the locking is
10937 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
10938 * thread releases the activity-specific lock and, if the activity is in
10939 * progress, then cv_waits using spa_activities_lock.
10940 *
10941 * The waiting thread is woken when another thread, one completing some
10942 * activity, updates the state of the activity and then calls
10943 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
10944 * needs to hold its activity-specific lock when updating the state, and this
10945 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
10946 *
10947 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
10948 * and because it is held when the waiting thread checks the state of the
10949 * activity, it can never be the case that the completing thread both updates
10950 * the activity state and cv_broadcasts in between the waiting thread's check
10951 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
10952 *
10953 * In order to prevent deadlock, when the waiting thread does its check, in some
10954 * cases it will temporarily drop spa_activities_lock in order to acquire the
10955 * activity-specific lock. The order in which spa_activities_lock and the
10956 * activity specific lock are acquired in the waiting thread is determined by
10957 * the order in which they are acquired in the completing thread; if the
10958 * completing thread calls spa_notify_waiters with the activity-specific lock
10959 * held, then the waiting thread must also acquire the activity-specific lock
10960 * first.
10961 */
10962
10963 static int
10964 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
10965 boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
10966 {
10967 int error = 0;
10968
10969 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10970
10971 switch (activity) {
10972 case ZPOOL_WAIT_CKPT_DISCARD:
10973 *in_progress =
10974 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
10975 zap_contains(spa_meta_objset(spa),
10976 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
10977 ENOENT);
10978 break;
10979 case ZPOOL_WAIT_FREE:
10980 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
10981 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
10982 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
10983 spa_livelist_delete_check(spa));
10984 break;
10985 case ZPOOL_WAIT_INITIALIZE:
10986 case ZPOOL_WAIT_TRIM:
10987 error = spa_vdev_activity_in_progress(spa, use_tag, tag,
10988 activity, in_progress);
10989 break;
10990 case ZPOOL_WAIT_REPLACE:
10991 mutex_exit(&spa->spa_activities_lock);
10992 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10993 mutex_enter(&spa->spa_activities_lock);
10994
10995 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
10996 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10997 break;
10998 case ZPOOL_WAIT_REMOVE:
10999 *in_progress = (spa->spa_removing_phys.sr_state ==
11000 DSS_SCANNING);
11001 break;
11002 case ZPOOL_WAIT_RESILVER:
11003 *in_progress = vdev_rebuild_active(spa->spa_root_vdev);
11004 if (*in_progress)
11005 break;
11006 zfs_fallthrough;
11007 case ZPOOL_WAIT_SCRUB:
11008 {
11009 boolean_t scanning, paused, is_scrub;
11010 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
11011
11012 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
11013 scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
11014 paused = dsl_scan_is_paused_scrub(scn);
11015 *in_progress = (scanning && !paused &&
11016 is_scrub == (activity == ZPOOL_WAIT_SCRUB));
11017 break;
11018 }
11019 case ZPOOL_WAIT_RAIDZ_EXPAND:
11020 {
11021 vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
11022 *in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING);
11023 break;
11024 }
11025 default:
11026 panic("unrecognized value for activity %d", activity);
11027 }
11028
11029 return (error);
11030 }
11031
11032 static int
11033 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
11034 boolean_t use_tag, uint64_t tag, boolean_t *waited)
11035 {
11036 /*
11037 * The tag is used to distinguish between instances of an activity.
11038 * 'initialize' and 'trim' are the only activities that we use this for.
11039 * The other activities can only have a single instance in progress in a
11040 * pool at one time, making the tag unnecessary.
11041 *
11042 * There can be multiple devices being replaced at once, but since they
11043 * all finish once resilvering finishes, we don't bother keeping track
11044 * of them individually, we just wait for them all to finish.
11045 */
11046 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
11047 activity != ZPOOL_WAIT_TRIM)
11048 return (EINVAL);
11049
11050 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
11051 return (EINVAL);
11052
11053 spa_t *spa;
11054 int error = spa_open(pool, &spa, FTAG);
11055 if (error != 0)
11056 return (error);
11057
11058 /*
11059 * Increment the spa's waiter count so that we can call spa_close and
11060 * still ensure that the spa_t doesn't get freed before this thread is
11061 * finished with it when the pool is exported. We want to call spa_close
11062 * before we start waiting because otherwise the additional ref would
11063 * prevent the pool from being exported or destroyed throughout the
11064 * potentially long wait.
11065 */
11066 mutex_enter(&spa->spa_activities_lock);
11067 spa->spa_waiters++;
11068 spa_close(spa, FTAG);
11069
11070 *waited = B_FALSE;
11071 for (;;) {
11072 boolean_t in_progress;
11073 error = spa_activity_in_progress(spa, activity, use_tag, tag,
11074 &in_progress);
11075
11076 if (error || !in_progress || spa->spa_waiters_cancel)
11077 break;
11078
11079 *waited = B_TRUE;
11080
11081 if (cv_wait_sig(&spa->spa_activities_cv,
11082 &spa->spa_activities_lock) == 0) {
11083 error = EINTR;
11084 break;
11085 }
11086 }
11087
11088 spa->spa_waiters--;
11089 cv_signal(&spa->spa_waiters_cv);
11090 mutex_exit(&spa->spa_activities_lock);
11091
11092 return (error);
11093 }
11094
11095 /*
11096 * Wait for a particular instance of the specified activity to complete, where
11097 * the instance is identified by 'tag'
11098 */
11099 int
11100 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
11101 boolean_t *waited)
11102 {
11103 return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
11104 }
11105
11106 /*
11107 * Wait for all instances of the specified activity complete
11108 */
11109 int
11110 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
11111 {
11112
11113 return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
11114 }
11115
11116 sysevent_t *
11117 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
11118 {
11119 sysevent_t *ev = NULL;
11120 #ifdef _KERNEL
11121 nvlist_t *resource;
11122
11123 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
11124 if (resource) {
11125 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
11126 ev->resource = resource;
11127 }
11128 #else
11129 (void) spa, (void) vd, (void) hist_nvl, (void) name;
11130 #endif
11131 return (ev);
11132 }
11133
11134 void
11135 spa_event_post(sysevent_t *ev)
11136 {
11137 #ifdef _KERNEL
11138 if (ev) {
11139 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
11140 kmem_free(ev, sizeof (*ev));
11141 }
11142 #else
11143 (void) ev;
11144 #endif
11145 }
11146
11147 /*
11148 * Post a zevent corresponding to the given sysevent. The 'name' must be one
11149 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
11150 * filled in from the spa and (optionally) the vdev. This doesn't do anything
11151 * in the userland libzpool, as we don't want consumers to misinterpret ztest
11152 * or zdb as real changes.
11153 */
11154 void
11155 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
11156 {
11157 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
11158 }
11159
11160 /* state manipulation functions */
11161 EXPORT_SYMBOL(spa_open);
11162 EXPORT_SYMBOL(spa_open_rewind);
11163 EXPORT_SYMBOL(spa_get_stats);
11164 EXPORT_SYMBOL(spa_create);
11165 EXPORT_SYMBOL(spa_import);
11166 EXPORT_SYMBOL(spa_tryimport);
11167 EXPORT_SYMBOL(spa_destroy);
11168 EXPORT_SYMBOL(spa_export);
11169 EXPORT_SYMBOL(spa_reset);
11170 EXPORT_SYMBOL(spa_async_request);
11171 EXPORT_SYMBOL(spa_async_suspend);
11172 EXPORT_SYMBOL(spa_async_resume);
11173 EXPORT_SYMBOL(spa_inject_addref);
11174 EXPORT_SYMBOL(spa_inject_delref);
11175 EXPORT_SYMBOL(spa_scan_stat_init);
11176 EXPORT_SYMBOL(spa_scan_get_stats);
11177
11178 /* device manipulation */
11179 EXPORT_SYMBOL(spa_vdev_add);
11180 EXPORT_SYMBOL(spa_vdev_attach);
11181 EXPORT_SYMBOL(spa_vdev_detach);
11182 EXPORT_SYMBOL(spa_vdev_setpath);
11183 EXPORT_SYMBOL(spa_vdev_setfru);
11184 EXPORT_SYMBOL(spa_vdev_split_mirror);
11185
11186 /* spare statech is global across all pools) */
11187 EXPORT_SYMBOL(spa_spare_add);
11188 EXPORT_SYMBOL(spa_spare_remove);
11189 EXPORT_SYMBOL(spa_spare_exists);
11190 EXPORT_SYMBOL(spa_spare_activate);
11191
11192 /* L2ARC statech is global across all pools) */
11193 EXPORT_SYMBOL(spa_l2cache_add);
11194 EXPORT_SYMBOL(spa_l2cache_remove);
11195 EXPORT_SYMBOL(spa_l2cache_exists);
11196 EXPORT_SYMBOL(spa_l2cache_activate);
11197 EXPORT_SYMBOL(spa_l2cache_drop);
11198
11199 /* scanning */
11200 EXPORT_SYMBOL(spa_scan);
11201 EXPORT_SYMBOL(spa_scan_range);
11202 EXPORT_SYMBOL(spa_scan_stop);
11203
11204 /* spa syncing */
11205 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
11206 EXPORT_SYMBOL(spa_sync_allpools);
11207
11208 /* properties */
11209 EXPORT_SYMBOL(spa_prop_set);
11210 EXPORT_SYMBOL(spa_prop_get);
11211 EXPORT_SYMBOL(spa_prop_clear_bootfs);
11212
11213 /* asynchronous event notification */
11214 EXPORT_SYMBOL(spa_event_notify);
11215
11216 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
11217 "Percentage of CPUs to run a metaslab preload taskq");
11218
11219 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
11220 "log2 fraction of arc that can be used by inflight I/Os when "
11221 "verifying pool during import");
11222
11223 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
11224 "Set to traverse metadata on pool import");
11225
11226 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
11227 "Set to traverse data on pool import");
11228
11229 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
11230 "Print vdev tree to zfs_dbgmsg during pool import");
11231
11232 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RW,
11233 "Percentage of CPUs to run an IO worker thread");
11234
11235 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RW,
11236 "Number of threads per IO worker taskqueue");
11237
11238 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
11239 "Allow importing pool with up to this number of missing top-level "
11240 "vdevs (in read-only mode)");
11241
11242 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
11243 ZMOD_RW, "Set the livelist condense zthr to pause");
11244
11245 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
11246 ZMOD_RW, "Set the livelist condense synctask to pause");
11247
11248 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
11249 INT, ZMOD_RW,
11250 "Whether livelist condensing was canceled in the synctask");
11251
11252 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
11253 INT, ZMOD_RW,
11254 "Whether livelist condensing was canceled in the zthr function");
11255
11256 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
11257 ZMOD_RW,
11258 "Whether extra ALLOC blkptrs were added to a livelist entry while it "
11259 "was being condensed");
11260
11261 ZFS_MODULE_PARAM(zfs_spa, spa_, note_txg_time, UINT, ZMOD_RW,
11262 "How frequently TXG timestamps are stored internally (in seconds)");
11263
11264 ZFS_MODULE_PARAM(zfs_spa, spa_, flush_txg_time, UINT, ZMOD_RW,
11265 "How frequently the TXG timestamps database should be flushed "
11266 "to disk (in seconds)");
11267
11268 #ifdef _KERNEL
11269 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read,
11270 spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RW,
11271 "Configure IO queues for read IO");
11272 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write,
11273 spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RW,
11274 "Configure IO queues for write IO");
11275 #endif
11276
11277 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_write_tpq, UINT, ZMOD_RW,
11278 "Number of CPUs per write issue taskq");
11279