xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision 7a7741af18d6c8a804cc643cb7ecda9d730c6aa6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
25  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31  * Copyright 2018 Joyent, Inc.
32  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33  * Copyright 2017 Joyent, Inc.
34  * Copyright (c) 2017, Intel Corporation.
35  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36  * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
37  * Copyright (c) 2023, 2024, Klara Inc.
38  */
39 
40 /*
41  * SPA: Storage Pool Allocator
42  *
43  * This file contains all the routines used when modifying on-disk SPA state.
44  * This includes opening, importing, destroying, exporting a pool, and syncing a
45  * pool.
46  */
47 
48 #include <sys/zfs_context.h>
49 #include <sys/fm/fs/zfs.h>
50 #include <sys/spa_impl.h>
51 #include <sys/zio.h>
52 #include <sys/zio_checksum.h>
53 #include <sys/dmu.h>
54 #include <sys/dmu_tx.h>
55 #include <sys/zap.h>
56 #include <sys/zil.h>
57 #include <sys/brt.h>
58 #include <sys/ddt.h>
59 #include <sys/vdev_impl.h>
60 #include <sys/vdev_removal.h>
61 #include <sys/vdev_indirect_mapping.h>
62 #include <sys/vdev_indirect_births.h>
63 #include <sys/vdev_initialize.h>
64 #include <sys/vdev_rebuild.h>
65 #include <sys/vdev_trim.h>
66 #include <sys/vdev_disk.h>
67 #include <sys/vdev_raidz.h>
68 #include <sys/vdev_draid.h>
69 #include <sys/metaslab.h>
70 #include <sys/metaslab_impl.h>
71 #include <sys/mmp.h>
72 #include <sys/uberblock_impl.h>
73 #include <sys/txg.h>
74 #include <sys/avl.h>
75 #include <sys/bpobj.h>
76 #include <sys/dmu_traverse.h>
77 #include <sys/dmu_objset.h>
78 #include <sys/unique.h>
79 #include <sys/dsl_pool.h>
80 #include <sys/dsl_dataset.h>
81 #include <sys/dsl_dir.h>
82 #include <sys/dsl_prop.h>
83 #include <sys/dsl_synctask.h>
84 #include <sys/fs/zfs.h>
85 #include <sys/arc.h>
86 #include <sys/callb.h>
87 #include <sys/systeminfo.h>
88 #include <sys/zfs_ioctl.h>
89 #include <sys/dsl_scan.h>
90 #include <sys/zfeature.h>
91 #include <sys/dsl_destroy.h>
92 #include <sys/zvol.h>
93 
94 #ifdef	_KERNEL
95 #include <sys/fm/protocol.h>
96 #include <sys/fm/util.h>
97 #include <sys/callb.h>
98 #include <sys/zone.h>
99 #include <sys/vmsystm.h>
100 #endif	/* _KERNEL */
101 
102 #include "zfs_prop.h"
103 #include "zfs_comutil.h"
104 #include <cityhash.h>
105 
106 /*
107  * spa_thread() existed on Illumos as a parent thread for the various worker
108  * threads that actually run the pool, as a way to both reference the entire
109  * pool work as a single object, and to share properties like scheduling
110  * options. It has not yet been adapted to Linux or FreeBSD. This define is
111  * used to mark related parts of the code to make things easier for the reader,
112  * and to compile this code out. It can be removed when someone implements it,
113  * moves it to some Illumos-specific place, or removes it entirely.
114  */
115 #undef HAVE_SPA_THREAD
116 
117 /*
118  * The "System Duty Cycle" scheduling class is an Illumos feature to help
119  * prevent CPU-intensive kernel threads from affecting latency on interactive
120  * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is
121  * gated behind a define. On Illumos SDC depends on spa_thread(), but
122  * spa_thread() also has other uses, so this is a separate define.
123  */
124 #undef HAVE_SYSDC
125 
126 /*
127  * The interval, in seconds, at which failed configuration cache file writes
128  * should be retried.
129  */
130 int zfs_ccw_retry_interval = 300;
131 
132 typedef enum zti_modes {
133 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
134 	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
135 	ZTI_MODE_SYNC,			/* sync thread assigned */
136 	ZTI_MODE_NULL,			/* don't create a taskq */
137 	ZTI_NMODES
138 } zti_modes_t;
139 
140 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
141 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
142 #define	ZTI_SCALE	{ ZTI_MODE_SCALE, 0, 1 }
143 #define	ZTI_SYNC	{ ZTI_MODE_SYNC, 0, 1 }
144 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
145 
146 #define	ZTI_N(n)	ZTI_P(n, 1)
147 #define	ZTI_ONE		ZTI_N(1)
148 
149 typedef struct zio_taskq_info {
150 	zti_modes_t zti_mode;
151 	uint_t zti_value;
152 	uint_t zti_count;
153 } zio_taskq_info_t;
154 
155 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
156 	"iss", "iss_h", "int", "int_h"
157 };
158 
159 /*
160  * This table defines the taskq settings for each ZFS I/O type. When
161  * initializing a pool, we use this table to create an appropriately sized
162  * taskq. Some operations are low volume and therefore have a small, static
163  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
164  * macros. Other operations process a large amount of data; the ZTI_SCALE
165  * macro causes us to create a taskq oriented for throughput. Some operations
166  * are so high frequency and short-lived that the taskq itself can become a
167  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
168  * additional degree of parallelism specified by the number of threads per-
169  * taskq and the number of taskqs; when dispatching an event in this case, the
170  * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs
171  * that scales with the number of CPUs.
172  *
173  * The different taskq priorities are to handle the different contexts (issue
174  * and interrupt) and then to reserve threads for high priority I/Os that
175  * need to be handled with minimum delay.  Illumos taskq has unfair TQ_FRONT
176  * implementation, so separate high priority threads are used there.
177  */
178 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
179 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
180 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
181 	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* READ */
182 #ifdef illumos
183 	{ ZTI_SYNC,	ZTI_N(5),	ZTI_SCALE,	ZTI_N(5) }, /* WRITE */
184 #else
185 	{ ZTI_SYNC,	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* WRITE */
186 #endif
187 	{ ZTI_SCALE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
188 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
189 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FLUSH */
190 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
191 };
192 
193 static void spa_sync_version(void *arg, dmu_tx_t *tx);
194 static void spa_sync_props(void *arg, dmu_tx_t *tx);
195 static boolean_t spa_has_active_shared_spare(spa_t *spa);
196 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
197     const char **ereport);
198 static void spa_vdev_resilver_done(spa_t *spa);
199 
200 /*
201  * Percentage of all CPUs that can be used by the metaslab preload taskq.
202  */
203 static uint_t metaslab_preload_pct = 50;
204 
205 static uint_t	zio_taskq_batch_pct = 80;	  /* 1 thread per cpu in pset */
206 static uint_t	zio_taskq_batch_tpq;		  /* threads per taskq */
207 
208 #ifdef HAVE_SYSDC
209 static const boolean_t	zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
210 static const uint_t	zio_taskq_basedc = 80;	  /* base duty cycle */
211 #endif
212 
213 #ifdef HAVE_SPA_THREAD
214 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
215 #endif
216 
217 static uint_t	zio_taskq_write_tpq = 16;
218 
219 /*
220  * Report any spa_load_verify errors found, but do not fail spa_load.
221  * This is used by zdb to analyze non-idle pools.
222  */
223 boolean_t	spa_load_verify_dryrun = B_FALSE;
224 
225 /*
226  * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
227  * This is used by zdb for spacemaps verification.
228  */
229 boolean_t	spa_mode_readable_spacemaps = B_FALSE;
230 
231 /*
232  * This (illegal) pool name is used when temporarily importing a spa_t in order
233  * to get the vdev stats associated with the imported devices.
234  */
235 #define	TRYIMPORT_NAME	"$import"
236 
237 /*
238  * For debugging purposes: print out vdev tree during pool import.
239  */
240 static int		spa_load_print_vdev_tree = B_FALSE;
241 
242 /*
243  * A non-zero value for zfs_max_missing_tvds means that we allow importing
244  * pools with missing top-level vdevs. This is strictly intended for advanced
245  * pool recovery cases since missing data is almost inevitable. Pools with
246  * missing devices can only be imported read-only for safety reasons, and their
247  * fail-mode will be automatically set to "continue".
248  *
249  * With 1 missing vdev we should be able to import the pool and mount all
250  * datasets. User data that was not modified after the missing device has been
251  * added should be recoverable. This means that snapshots created prior to the
252  * addition of that device should be completely intact.
253  *
254  * With 2 missing vdevs, some datasets may fail to mount since there are
255  * dataset statistics that are stored as regular metadata. Some data might be
256  * recoverable if those vdevs were added recently.
257  *
258  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
259  * may be missing entirely. Chances of data recovery are very low. Note that
260  * there are also risks of performing an inadvertent rewind as we might be
261  * missing all the vdevs with the latest uberblocks.
262  */
263 uint64_t	zfs_max_missing_tvds = 0;
264 
265 /*
266  * The parameters below are similar to zfs_max_missing_tvds but are only
267  * intended for a preliminary open of the pool with an untrusted config which
268  * might be incomplete or out-dated.
269  *
270  * We are more tolerant for pools opened from a cachefile since we could have
271  * an out-dated cachefile where a device removal was not registered.
272  * We could have set the limit arbitrarily high but in the case where devices
273  * are really missing we would want to return the proper error codes; we chose
274  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
275  * and we get a chance to retrieve the trusted config.
276  */
277 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
278 
279 /*
280  * In the case where config was assembled by scanning device paths (/dev/dsks
281  * by default) we are less tolerant since all the existing devices should have
282  * been detected and we want spa_load to return the right error codes.
283  */
284 uint64_t	zfs_max_missing_tvds_scan = 0;
285 
286 /*
287  * Debugging aid that pauses spa_sync() towards the end.
288  */
289 static const boolean_t	zfs_pause_spa_sync = B_FALSE;
290 
291 /*
292  * Variables to indicate the livelist condense zthr func should wait at certain
293  * points for the livelist to be removed - used to test condense/destroy races
294  */
295 static int zfs_livelist_condense_zthr_pause = 0;
296 static int zfs_livelist_condense_sync_pause = 0;
297 
298 /*
299  * Variables to track whether or not condense cancellation has been
300  * triggered in testing.
301  */
302 static int zfs_livelist_condense_sync_cancel = 0;
303 static int zfs_livelist_condense_zthr_cancel = 0;
304 
305 /*
306  * Variable to track whether or not extra ALLOC blkptrs were added to a
307  * livelist entry while it was being condensed (caused by the way we track
308  * remapped blkptrs in dbuf_remap_impl)
309  */
310 static int zfs_livelist_condense_new_alloc = 0;
311 
312 /*
313  * ==========================================================================
314  * SPA properties routines
315  * ==========================================================================
316  */
317 
318 /*
319  * Add a (source=src, propname=propval) list to an nvlist.
320  */
321 static void
spa_prop_add_list(nvlist_t * nvl,zpool_prop_t prop,const char * strval,uint64_t intval,zprop_source_t src)322 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
323     uint64_t intval, zprop_source_t src)
324 {
325 	const char *propname = zpool_prop_to_name(prop);
326 	nvlist_t *propval;
327 
328 	propval = fnvlist_alloc();
329 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
330 
331 	if (strval != NULL)
332 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
333 	else
334 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
335 
336 	fnvlist_add_nvlist(nvl, propname, propval);
337 	nvlist_free(propval);
338 }
339 
340 static int
spa_prop_add(spa_t * spa,const char * propname,nvlist_t * outnvl)341 spa_prop_add(spa_t *spa, const char *propname, nvlist_t *outnvl)
342 {
343 	zpool_prop_t prop = zpool_name_to_prop(propname);
344 	zprop_source_t src = ZPROP_SRC_NONE;
345 	uint64_t intval;
346 	int err;
347 
348 	/*
349 	 * NB: Not all properties lookups via this API require
350 	 * the spa props lock, so they must explicitly grab it here.
351 	 */
352 	switch (prop) {
353 	case ZPOOL_PROP_DEDUPCACHED:
354 		err = ddt_get_pool_dedup_cached(spa, &intval);
355 		if (err != 0)
356 			return (SET_ERROR(err));
357 		break;
358 	default:
359 		return (SET_ERROR(EINVAL));
360 	}
361 
362 	spa_prop_add_list(outnvl, prop, NULL, intval, src);
363 
364 	return (0);
365 }
366 
367 int
spa_prop_get_nvlist(spa_t * spa,char ** props,unsigned int n_props,nvlist_t * outnvl)368 spa_prop_get_nvlist(spa_t *spa, char **props, unsigned int n_props,
369     nvlist_t *outnvl)
370 {
371 	int err = 0;
372 
373 	if (props == NULL)
374 		return (0);
375 
376 	for (unsigned int i = 0; i < n_props && err == 0; i++) {
377 		err = spa_prop_add(spa, props[i], outnvl);
378 	}
379 
380 	return (err);
381 }
382 
383 /*
384  * Add a user property (source=src, propname=propval) to an nvlist.
385  */
386 static void
spa_prop_add_user(nvlist_t * nvl,const char * propname,char * strval,zprop_source_t src)387 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
388     zprop_source_t src)
389 {
390 	nvlist_t *propval;
391 
392 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
393 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
394 	VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
395 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
396 	nvlist_free(propval);
397 }
398 
399 /*
400  * Get property values from the spa configuration.
401  */
402 static void
spa_prop_get_config(spa_t * spa,nvlist_t * nv)403 spa_prop_get_config(spa_t *spa, nvlist_t *nv)
404 {
405 	vdev_t *rvd = spa->spa_root_vdev;
406 	dsl_pool_t *pool = spa->spa_dsl_pool;
407 	uint64_t size, alloc, cap, version;
408 	const zprop_source_t src = ZPROP_SRC_NONE;
409 	spa_config_dirent_t *dp;
410 	metaslab_class_t *mc = spa_normal_class(spa);
411 
412 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
413 
414 	if (rvd != NULL) {
415 		alloc = metaslab_class_get_alloc(mc);
416 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
417 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
418 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
419 
420 		size = metaslab_class_get_space(mc);
421 		size += metaslab_class_get_space(spa_special_class(spa));
422 		size += metaslab_class_get_space(spa_dedup_class(spa));
423 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
424 
425 		spa_prop_add_list(nv, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
426 		spa_prop_add_list(nv, ZPOOL_PROP_SIZE, NULL, size, src);
427 		spa_prop_add_list(nv, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
428 		spa_prop_add_list(nv, ZPOOL_PROP_FREE, NULL,
429 		    size - alloc, src);
430 		spa_prop_add_list(nv, ZPOOL_PROP_CHECKPOINT, NULL,
431 		    spa->spa_checkpoint_info.sci_dspace, src);
432 
433 		spa_prop_add_list(nv, ZPOOL_PROP_FRAGMENTATION, NULL,
434 		    metaslab_class_fragmentation(mc), src);
435 		spa_prop_add_list(nv, ZPOOL_PROP_EXPANDSZ, NULL,
436 		    metaslab_class_expandable_space(mc), src);
437 		spa_prop_add_list(nv, ZPOOL_PROP_READONLY, NULL,
438 		    (spa_mode(spa) == SPA_MODE_READ), src);
439 
440 		cap = (size == 0) ? 0 : (alloc * 100 / size);
441 		spa_prop_add_list(nv, ZPOOL_PROP_CAPACITY, NULL, cap, src);
442 
443 		spa_prop_add_list(nv, ZPOOL_PROP_DEDUPRATIO, NULL,
444 		    ddt_get_pool_dedup_ratio(spa), src);
445 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONEUSED, NULL,
446 		    brt_get_used(spa), src);
447 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONESAVED, NULL,
448 		    brt_get_saved(spa), src);
449 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONERATIO, NULL,
450 		    brt_get_ratio(spa), src);
451 
452 		spa_prop_add_list(nv, ZPOOL_PROP_DEDUP_TABLE_SIZE, NULL,
453 		    ddt_get_ddt_dsize(spa), src);
454 
455 		spa_prop_add_list(nv, ZPOOL_PROP_HEALTH, NULL,
456 		    rvd->vdev_state, src);
457 
458 		version = spa_version(spa);
459 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
460 			spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
461 			    version, ZPROP_SRC_DEFAULT);
462 		} else {
463 			spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
464 			    version, ZPROP_SRC_LOCAL);
465 		}
466 		spa_prop_add_list(nv, ZPOOL_PROP_LOAD_GUID,
467 		    NULL, spa_load_guid(spa), src);
468 	}
469 
470 	if (pool != NULL) {
471 		/*
472 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
473 		 * when opening pools before this version freedir will be NULL.
474 		 */
475 		if (pool->dp_free_dir != NULL) {
476 			spa_prop_add_list(nv, ZPOOL_PROP_FREEING, NULL,
477 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
478 			    src);
479 		} else {
480 			spa_prop_add_list(nv, ZPOOL_PROP_FREEING,
481 			    NULL, 0, src);
482 		}
483 
484 		if (pool->dp_leak_dir != NULL) {
485 			spa_prop_add_list(nv, ZPOOL_PROP_LEAKED, NULL,
486 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
487 			    src);
488 		} else {
489 			spa_prop_add_list(nv, ZPOOL_PROP_LEAKED,
490 			    NULL, 0, src);
491 		}
492 	}
493 
494 	spa_prop_add_list(nv, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
495 
496 	if (spa->spa_comment != NULL) {
497 		spa_prop_add_list(nv, ZPOOL_PROP_COMMENT, spa->spa_comment,
498 		    0, ZPROP_SRC_LOCAL);
499 	}
500 
501 	if (spa->spa_compatibility != NULL) {
502 		spa_prop_add_list(nv, ZPOOL_PROP_COMPATIBILITY,
503 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
504 	}
505 
506 	if (spa->spa_root != NULL)
507 		spa_prop_add_list(nv, ZPOOL_PROP_ALTROOT, spa->spa_root,
508 		    0, ZPROP_SRC_LOCAL);
509 
510 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
511 		spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
512 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
513 	} else {
514 		spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
515 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
516 	}
517 
518 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
519 		spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
520 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
521 	} else {
522 		spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
523 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
524 	}
525 
526 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
527 		if (dp->scd_path == NULL) {
528 			spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
529 			    "none", 0, ZPROP_SRC_LOCAL);
530 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
531 			spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
532 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
533 		}
534 	}
535 }
536 
537 /*
538  * Get zpool property values.
539  */
540 int
spa_prop_get(spa_t * spa,nvlist_t * nv)541 spa_prop_get(spa_t *spa, nvlist_t *nv)
542 {
543 	objset_t *mos = spa->spa_meta_objset;
544 	zap_cursor_t zc;
545 	zap_attribute_t *za;
546 	dsl_pool_t *dp;
547 	int err = 0;
548 
549 	dp = spa_get_dsl(spa);
550 	dsl_pool_config_enter(dp, FTAG);
551 	za = zap_attribute_alloc();
552 	mutex_enter(&spa->spa_props_lock);
553 
554 	/*
555 	 * Get properties from the spa config.
556 	 */
557 	spa_prop_get_config(spa, nv);
558 
559 	/* If no pool property object, no more prop to get. */
560 	if (mos == NULL || spa->spa_pool_props_object == 0)
561 		goto out;
562 
563 	/*
564 	 * Get properties from the MOS pool property object.
565 	 */
566 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
567 	    (err = zap_cursor_retrieve(&zc, za)) == 0;
568 	    zap_cursor_advance(&zc)) {
569 		uint64_t intval = 0;
570 		char *strval = NULL;
571 		zprop_source_t src = ZPROP_SRC_DEFAULT;
572 		zpool_prop_t prop;
573 
574 		if ((prop = zpool_name_to_prop(za->za_name)) ==
575 		    ZPOOL_PROP_INVAL && !zfs_prop_user(za->za_name))
576 			continue;
577 
578 		switch (za->za_integer_length) {
579 		case 8:
580 			/* integer property */
581 			if (za->za_first_integer !=
582 			    zpool_prop_default_numeric(prop))
583 				src = ZPROP_SRC_LOCAL;
584 
585 			if (prop == ZPOOL_PROP_BOOTFS) {
586 				dsl_dataset_t *ds = NULL;
587 
588 				err = dsl_dataset_hold_obj(dp,
589 				    za->za_first_integer, FTAG, &ds);
590 				if (err != 0)
591 					break;
592 
593 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
594 				    KM_SLEEP);
595 				dsl_dataset_name(ds, strval);
596 				dsl_dataset_rele(ds, FTAG);
597 			} else {
598 				strval = NULL;
599 				intval = za->za_first_integer;
600 			}
601 
602 			spa_prop_add_list(nv, prop, strval, intval, src);
603 
604 			if (strval != NULL)
605 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
606 
607 			break;
608 
609 		case 1:
610 			/* string property */
611 			strval = kmem_alloc(za->za_num_integers, KM_SLEEP);
612 			err = zap_lookup(mos, spa->spa_pool_props_object,
613 			    za->za_name, 1, za->za_num_integers, strval);
614 			if (err) {
615 				kmem_free(strval, za->za_num_integers);
616 				break;
617 			}
618 			if (prop != ZPOOL_PROP_INVAL) {
619 				spa_prop_add_list(nv, prop, strval, 0, src);
620 			} else {
621 				src = ZPROP_SRC_LOCAL;
622 				spa_prop_add_user(nv, za->za_name, strval,
623 				    src);
624 			}
625 			kmem_free(strval, za->za_num_integers);
626 			break;
627 
628 		default:
629 			break;
630 		}
631 	}
632 	zap_cursor_fini(&zc);
633 out:
634 	mutex_exit(&spa->spa_props_lock);
635 	dsl_pool_config_exit(dp, FTAG);
636 	zap_attribute_free(za);
637 
638 	if (err && err != ENOENT)
639 		return (err);
640 
641 	return (0);
642 }
643 
644 /*
645  * Validate the given pool properties nvlist and modify the list
646  * for the property values to be set.
647  */
648 static int
spa_prop_validate(spa_t * spa,nvlist_t * props)649 spa_prop_validate(spa_t *spa, nvlist_t *props)
650 {
651 	nvpair_t *elem;
652 	int error = 0, reset_bootfs = 0;
653 	uint64_t objnum = 0;
654 	boolean_t has_feature = B_FALSE;
655 
656 	elem = NULL;
657 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
658 		uint64_t intval;
659 		const char *strval, *slash, *check, *fname;
660 		const char *propname = nvpair_name(elem);
661 		zpool_prop_t prop = zpool_name_to_prop(propname);
662 
663 		switch (prop) {
664 		case ZPOOL_PROP_INVAL:
665 			/*
666 			 * Sanitize the input.
667 			 */
668 			if (zfs_prop_user(propname)) {
669 				if (strlen(propname) >= ZAP_MAXNAMELEN) {
670 					error = SET_ERROR(ENAMETOOLONG);
671 					break;
672 				}
673 
674 				if (strlen(fnvpair_value_string(elem)) >=
675 				    ZAP_MAXVALUELEN) {
676 					error = SET_ERROR(E2BIG);
677 					break;
678 				}
679 			} else if (zpool_prop_feature(propname)) {
680 				if (nvpair_type(elem) != DATA_TYPE_UINT64) {
681 					error = SET_ERROR(EINVAL);
682 					break;
683 				}
684 
685 				if (nvpair_value_uint64(elem, &intval) != 0) {
686 					error = SET_ERROR(EINVAL);
687 					break;
688 				}
689 
690 				if (intval != 0) {
691 					error = SET_ERROR(EINVAL);
692 					break;
693 				}
694 
695 				fname = strchr(propname, '@') + 1;
696 				if (zfeature_lookup_name(fname, NULL) != 0) {
697 					error = SET_ERROR(EINVAL);
698 					break;
699 				}
700 
701 				has_feature = B_TRUE;
702 			} else {
703 				error = SET_ERROR(EINVAL);
704 				break;
705 			}
706 			break;
707 
708 		case ZPOOL_PROP_VERSION:
709 			error = nvpair_value_uint64(elem, &intval);
710 			if (!error &&
711 			    (intval < spa_version(spa) ||
712 			    intval > SPA_VERSION_BEFORE_FEATURES ||
713 			    has_feature))
714 				error = SET_ERROR(EINVAL);
715 			break;
716 
717 		case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
718 			error = nvpair_value_uint64(elem, &intval);
719 			break;
720 
721 		case ZPOOL_PROP_DELEGATION:
722 		case ZPOOL_PROP_AUTOREPLACE:
723 		case ZPOOL_PROP_LISTSNAPS:
724 		case ZPOOL_PROP_AUTOEXPAND:
725 		case ZPOOL_PROP_AUTOTRIM:
726 			error = nvpair_value_uint64(elem, &intval);
727 			if (!error && intval > 1)
728 				error = SET_ERROR(EINVAL);
729 			break;
730 
731 		case ZPOOL_PROP_MULTIHOST:
732 			error = nvpair_value_uint64(elem, &intval);
733 			if (!error && intval > 1)
734 				error = SET_ERROR(EINVAL);
735 
736 			if (!error) {
737 				uint32_t hostid = zone_get_hostid(NULL);
738 				if (hostid)
739 					spa->spa_hostid = hostid;
740 				else
741 					error = SET_ERROR(ENOTSUP);
742 			}
743 
744 			break;
745 
746 		case ZPOOL_PROP_BOOTFS:
747 			/*
748 			 * If the pool version is less than SPA_VERSION_BOOTFS,
749 			 * or the pool is still being created (version == 0),
750 			 * the bootfs property cannot be set.
751 			 */
752 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
753 				error = SET_ERROR(ENOTSUP);
754 				break;
755 			}
756 
757 			/*
758 			 * Make sure the vdev config is bootable
759 			 */
760 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
761 				error = SET_ERROR(ENOTSUP);
762 				break;
763 			}
764 
765 			reset_bootfs = 1;
766 
767 			error = nvpair_value_string(elem, &strval);
768 
769 			if (!error) {
770 				objset_t *os;
771 
772 				if (strval == NULL || strval[0] == '\0') {
773 					objnum = zpool_prop_default_numeric(
774 					    ZPOOL_PROP_BOOTFS);
775 					break;
776 				}
777 
778 				error = dmu_objset_hold(strval, FTAG, &os);
779 				if (error != 0)
780 					break;
781 
782 				/* Must be ZPL. */
783 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
784 					error = SET_ERROR(ENOTSUP);
785 				} else {
786 					objnum = dmu_objset_id(os);
787 				}
788 				dmu_objset_rele(os, FTAG);
789 			}
790 			break;
791 
792 		case ZPOOL_PROP_FAILUREMODE:
793 			error = nvpair_value_uint64(elem, &intval);
794 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
795 				error = SET_ERROR(EINVAL);
796 
797 			/*
798 			 * This is a special case which only occurs when
799 			 * the pool has completely failed. This allows
800 			 * the user to change the in-core failmode property
801 			 * without syncing it out to disk (I/Os might
802 			 * currently be blocked). We do this by returning
803 			 * EIO to the caller (spa_prop_set) to trick it
804 			 * into thinking we encountered a property validation
805 			 * error.
806 			 */
807 			if (!error && spa_suspended(spa)) {
808 				spa->spa_failmode = intval;
809 				error = SET_ERROR(EIO);
810 			}
811 			break;
812 
813 		case ZPOOL_PROP_CACHEFILE:
814 			if ((error = nvpair_value_string(elem, &strval)) != 0)
815 				break;
816 
817 			if (strval[0] == '\0')
818 				break;
819 
820 			if (strcmp(strval, "none") == 0)
821 				break;
822 
823 			if (strval[0] != '/') {
824 				error = SET_ERROR(EINVAL);
825 				break;
826 			}
827 
828 			slash = strrchr(strval, '/');
829 			ASSERT(slash != NULL);
830 
831 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
832 			    strcmp(slash, "/..") == 0)
833 				error = SET_ERROR(EINVAL);
834 			break;
835 
836 		case ZPOOL_PROP_COMMENT:
837 			if ((error = nvpair_value_string(elem, &strval)) != 0)
838 				break;
839 			for (check = strval; *check != '\0'; check++) {
840 				if (!isprint(*check)) {
841 					error = SET_ERROR(EINVAL);
842 					break;
843 				}
844 			}
845 			if (strlen(strval) > ZPROP_MAX_COMMENT)
846 				error = SET_ERROR(E2BIG);
847 			break;
848 
849 		default:
850 			break;
851 		}
852 
853 		if (error)
854 			break;
855 	}
856 
857 	(void) nvlist_remove_all(props,
858 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
859 
860 	if (!error && reset_bootfs) {
861 		error = nvlist_remove(props,
862 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
863 
864 		if (!error) {
865 			error = nvlist_add_uint64(props,
866 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
867 		}
868 	}
869 
870 	return (error);
871 }
872 
873 void
spa_configfile_set(spa_t * spa,nvlist_t * nvp,boolean_t need_sync)874 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
875 {
876 	const char *cachefile;
877 	spa_config_dirent_t *dp;
878 
879 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
880 	    &cachefile) != 0)
881 		return;
882 
883 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
884 	    KM_SLEEP);
885 
886 	if (cachefile[0] == '\0')
887 		dp->scd_path = spa_strdup(spa_config_path);
888 	else if (strcmp(cachefile, "none") == 0)
889 		dp->scd_path = NULL;
890 	else
891 		dp->scd_path = spa_strdup(cachefile);
892 
893 	list_insert_head(&spa->spa_config_list, dp);
894 	if (need_sync)
895 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
896 }
897 
898 int
spa_prop_set(spa_t * spa,nvlist_t * nvp)899 spa_prop_set(spa_t *spa, nvlist_t *nvp)
900 {
901 	int error;
902 	nvpair_t *elem = NULL;
903 	boolean_t need_sync = B_FALSE;
904 
905 	if ((error = spa_prop_validate(spa, nvp)) != 0)
906 		return (error);
907 
908 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
909 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
910 
911 		if (prop == ZPOOL_PROP_CACHEFILE ||
912 		    prop == ZPOOL_PROP_ALTROOT ||
913 		    prop == ZPOOL_PROP_READONLY)
914 			continue;
915 
916 		if (prop == ZPOOL_PROP_INVAL &&
917 		    zfs_prop_user(nvpair_name(elem))) {
918 			need_sync = B_TRUE;
919 			break;
920 		}
921 
922 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
923 			uint64_t ver = 0;
924 
925 			if (prop == ZPOOL_PROP_VERSION) {
926 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
927 			} else {
928 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
929 				ver = SPA_VERSION_FEATURES;
930 				need_sync = B_TRUE;
931 			}
932 
933 			/* Save time if the version is already set. */
934 			if (ver == spa_version(spa))
935 				continue;
936 
937 			/*
938 			 * In addition to the pool directory object, we might
939 			 * create the pool properties object, the features for
940 			 * read object, the features for write object, or the
941 			 * feature descriptions object.
942 			 */
943 			error = dsl_sync_task(spa->spa_name, NULL,
944 			    spa_sync_version, &ver,
945 			    6, ZFS_SPACE_CHECK_RESERVED);
946 			if (error)
947 				return (error);
948 			continue;
949 		}
950 
951 		need_sync = B_TRUE;
952 		break;
953 	}
954 
955 	if (need_sync) {
956 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
957 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
958 	}
959 
960 	return (0);
961 }
962 
963 /*
964  * If the bootfs property value is dsobj, clear it.
965  */
966 void
spa_prop_clear_bootfs(spa_t * spa,uint64_t dsobj,dmu_tx_t * tx)967 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
968 {
969 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
970 		VERIFY(zap_remove(spa->spa_meta_objset,
971 		    spa->spa_pool_props_object,
972 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
973 		spa->spa_bootfs = 0;
974 	}
975 }
976 
977 static int
spa_change_guid_check(void * arg,dmu_tx_t * tx)978 spa_change_guid_check(void *arg, dmu_tx_t *tx)
979 {
980 	uint64_t *newguid __maybe_unused = arg;
981 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
982 	vdev_t *rvd = spa->spa_root_vdev;
983 	uint64_t vdev_state;
984 
985 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
986 		int error = (spa_has_checkpoint(spa)) ?
987 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
988 		return (SET_ERROR(error));
989 	}
990 
991 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
992 	vdev_state = rvd->vdev_state;
993 	spa_config_exit(spa, SCL_STATE, FTAG);
994 
995 	if (vdev_state != VDEV_STATE_HEALTHY)
996 		return (SET_ERROR(ENXIO));
997 
998 	ASSERT3U(spa_guid(spa), !=, *newguid);
999 
1000 	return (0);
1001 }
1002 
1003 static void
spa_change_guid_sync(void * arg,dmu_tx_t * tx)1004 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
1005 {
1006 	uint64_t *newguid = arg;
1007 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1008 	uint64_t oldguid;
1009 	vdev_t *rvd = spa->spa_root_vdev;
1010 
1011 	oldguid = spa_guid(spa);
1012 
1013 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1014 	rvd->vdev_guid = *newguid;
1015 	rvd->vdev_guid_sum += (*newguid - oldguid);
1016 	vdev_config_dirty(rvd);
1017 	spa_config_exit(spa, SCL_STATE, FTAG);
1018 
1019 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
1020 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
1021 }
1022 
1023 /*
1024  * Change the GUID for the pool.  This is done so that we can later
1025  * re-import a pool built from a clone of our own vdevs.  We will modify
1026  * the root vdev's guid, our own pool guid, and then mark all of our
1027  * vdevs dirty.  Note that we must make sure that all our vdevs are
1028  * online when we do this, or else any vdevs that weren't present
1029  * would be orphaned from our pool.  We are also going to issue a
1030  * sysevent to update any watchers.
1031  *
1032  * The GUID of the pool will be changed to the value pointed to by guidp.
1033  * The GUID may not be set to the reserverd value of 0.
1034  * The new GUID will be generated if guidp is NULL.
1035  */
1036 int
spa_change_guid(spa_t * spa,const uint64_t * guidp)1037 spa_change_guid(spa_t *spa, const uint64_t *guidp)
1038 {
1039 	uint64_t guid;
1040 	int error;
1041 
1042 	mutex_enter(&spa->spa_vdev_top_lock);
1043 	mutex_enter(&spa_namespace_lock);
1044 
1045 	if (guidp != NULL) {
1046 		guid = *guidp;
1047 		if (guid == 0) {
1048 			error = SET_ERROR(EINVAL);
1049 			goto out;
1050 		}
1051 
1052 		if (spa_guid_exists(guid, 0)) {
1053 			error = SET_ERROR(EEXIST);
1054 			goto out;
1055 		}
1056 	} else {
1057 		guid = spa_generate_guid(NULL);
1058 	}
1059 
1060 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
1061 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
1062 
1063 	if (error == 0) {
1064 		/*
1065 		 * Clear the kobj flag from all the vdevs to allow
1066 		 * vdev_cache_process_kobj_evt() to post events to all the
1067 		 * vdevs since GUID is updated.
1068 		 */
1069 		vdev_clear_kobj_evt(spa->spa_root_vdev);
1070 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
1071 			vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
1072 
1073 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1074 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
1075 	}
1076 
1077 out:
1078 	mutex_exit(&spa_namespace_lock);
1079 	mutex_exit(&spa->spa_vdev_top_lock);
1080 
1081 	return (error);
1082 }
1083 
1084 /*
1085  * ==========================================================================
1086  * SPA state manipulation (open/create/destroy/import/export)
1087  * ==========================================================================
1088  */
1089 
1090 static int
spa_error_entry_compare(const void * a,const void * b)1091 spa_error_entry_compare(const void *a, const void *b)
1092 {
1093 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
1094 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
1095 	int ret;
1096 
1097 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
1098 	    sizeof (zbookmark_phys_t));
1099 
1100 	return (TREE_ISIGN(ret));
1101 }
1102 
1103 /*
1104  * Utility function which retrieves copies of the current logs and
1105  * re-initializes them in the process.
1106  */
1107 void
spa_get_errlists(spa_t * spa,avl_tree_t * last,avl_tree_t * scrub)1108 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1109 {
1110 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1111 
1112 	memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1113 	memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1114 
1115 	avl_create(&spa->spa_errlist_scrub,
1116 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1117 	    offsetof(spa_error_entry_t, se_avl));
1118 	avl_create(&spa->spa_errlist_last,
1119 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1120 	    offsetof(spa_error_entry_t, se_avl));
1121 }
1122 
1123 static void
spa_taskqs_init(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1124 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1125 {
1126 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1127 	enum zti_modes mode = ztip->zti_mode;
1128 	uint_t value = ztip->zti_value;
1129 	uint_t count = ztip->zti_count;
1130 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1131 	uint_t cpus, flags = TASKQ_DYNAMIC;
1132 
1133 	switch (mode) {
1134 	case ZTI_MODE_FIXED:
1135 		ASSERT3U(value, >, 0);
1136 		break;
1137 
1138 	case ZTI_MODE_SYNC:
1139 
1140 		/*
1141 		 * Create one wr_iss taskq for every 'zio_taskq_write_tpq' CPUs,
1142 		 * not to exceed the number of spa allocators, and align to it.
1143 		 */
1144 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1145 		count = MAX(1, cpus / MAX(1, zio_taskq_write_tpq));
1146 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1147 		count = MIN(count, spa->spa_alloc_count);
1148 		while (spa->spa_alloc_count % count != 0 &&
1149 		    spa->spa_alloc_count < count * 2)
1150 			count--;
1151 
1152 		/*
1153 		 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no
1154 		 * single taskq may have more threads than 100% of online cpus.
1155 		 */
1156 		value = (zio_taskq_batch_pct + count / 2) / count;
1157 		value = MIN(value, 100);
1158 		flags |= TASKQ_THREADS_CPU_PCT;
1159 		break;
1160 
1161 	case ZTI_MODE_SCALE:
1162 		flags |= TASKQ_THREADS_CPU_PCT;
1163 		/*
1164 		 * We want more taskqs to reduce lock contention, but we want
1165 		 * less for better request ordering and CPU utilization.
1166 		 */
1167 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1168 		if (zio_taskq_batch_tpq > 0) {
1169 			count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1170 			    zio_taskq_batch_tpq);
1171 		} else {
1172 			/*
1173 			 * Prefer 6 threads per taskq, but no more taskqs
1174 			 * than threads in them on large systems. For 80%:
1175 			 *
1176 			 *                 taskq   taskq   total
1177 			 * cpus    taskqs  percent threads threads
1178 			 * ------- ------- ------- ------- -------
1179 			 * 1       1       80%     1       1
1180 			 * 2       1       80%     1       1
1181 			 * 4       1       80%     3       3
1182 			 * 8       2       40%     3       6
1183 			 * 16      3       27%     4       12
1184 			 * 32      5       16%     5       25
1185 			 * 64      7       11%     7       49
1186 			 * 128     10      8%      10      100
1187 			 * 256     14      6%      15      210
1188 			 */
1189 			count = 1 + cpus / 6;
1190 			while (count * count > cpus)
1191 				count--;
1192 		}
1193 		/* Limit each taskq within 100% to not trigger assertion. */
1194 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1195 		value = (zio_taskq_batch_pct + count / 2) / count;
1196 		break;
1197 
1198 	case ZTI_MODE_NULL:
1199 		tqs->stqs_count = 0;
1200 		tqs->stqs_taskq = NULL;
1201 		return;
1202 
1203 	default:
1204 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1205 		    "spa_taskqs_init()",
1206 		    zio_type_name[t], zio_taskq_types[q], mode, value);
1207 		break;
1208 	}
1209 
1210 	ASSERT3U(count, >, 0);
1211 	tqs->stqs_count = count;
1212 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1213 
1214 	for (uint_t i = 0; i < count; i++) {
1215 		taskq_t *tq;
1216 		char name[32];
1217 
1218 		if (count > 1)
1219 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
1220 			    zio_type_name[t], zio_taskq_types[q], i);
1221 		else
1222 			(void) snprintf(name, sizeof (name), "%s_%s",
1223 			    zio_type_name[t], zio_taskq_types[q]);
1224 
1225 #ifdef HAVE_SYSDC
1226 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1227 			(void) zio_taskq_basedc;
1228 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1229 			    spa->spa_proc, zio_taskq_basedc, flags);
1230 		} else {
1231 #endif
1232 			pri_t pri = maxclsyspri;
1233 			/*
1234 			 * The write issue taskq can be extremely CPU
1235 			 * intensive.  Run it at slightly less important
1236 			 * priority than the other taskqs.
1237 			 *
1238 			 * Under Linux and FreeBSD this means incrementing
1239 			 * the priority value as opposed to platforms like
1240 			 * illumos where it should be decremented.
1241 			 *
1242 			 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1243 			 * are equal then a difference between them is
1244 			 * insignificant.
1245 			 */
1246 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1247 #if defined(__linux__)
1248 				pri++;
1249 #elif defined(__FreeBSD__)
1250 				pri += 4;
1251 #else
1252 #error "unknown OS"
1253 #endif
1254 			}
1255 			tq = taskq_create_proc(name, value, pri, 50,
1256 			    INT_MAX, spa->spa_proc, flags);
1257 #ifdef HAVE_SYSDC
1258 		}
1259 #endif
1260 
1261 		tqs->stqs_taskq[i] = tq;
1262 	}
1263 }
1264 
1265 static void
spa_taskqs_fini(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1266 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1267 {
1268 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1269 
1270 	if (tqs->stqs_taskq == NULL) {
1271 		ASSERT3U(tqs->stqs_count, ==, 0);
1272 		return;
1273 	}
1274 
1275 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1276 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1277 		taskq_destroy(tqs->stqs_taskq[i]);
1278 	}
1279 
1280 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1281 	tqs->stqs_taskq = NULL;
1282 }
1283 
1284 #ifdef _KERNEL
1285 /*
1286  * The READ and WRITE rows of zio_taskqs are configurable at module load time
1287  * by setting zio_taskq_read or zio_taskq_write.
1288  *
1289  * Example (the defaults for READ and WRITE)
1290  *   zio_taskq_read='fixed,1,8 null scale null'
1291  *   zio_taskq_write='sync null scale null'
1292  *
1293  * Each sets the entire row at a time.
1294  *
1295  * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number
1296  * of threads per taskq.
1297  *
1298  * 'null' can only be set on the high-priority queues (queue selection for
1299  * high-priority queues will fall back to the regular queue if the high-pri
1300  * is NULL.
1301  */
1302 static const char *const modes[ZTI_NMODES] = {
1303 	"fixed", "scale", "sync", "null"
1304 };
1305 
1306 /* Parse the incoming config string. Modifies cfg */
1307 static int
spa_taskq_param_set(zio_type_t t,char * cfg)1308 spa_taskq_param_set(zio_type_t t, char *cfg)
1309 {
1310 	int err = 0;
1311 
1312 	zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}};
1313 
1314 	char *next = cfg, *tok, *c;
1315 
1316 	/*
1317 	 * Parse out each element from the string and fill `row`. The entire
1318 	 * row has to be set at once, so any errors are flagged by just
1319 	 * breaking out of this loop early.
1320 	 */
1321 	uint_t q;
1322 	for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1323 		/* `next` is the start of the config */
1324 		if (next == NULL)
1325 			break;
1326 
1327 		/* Eat up leading space */
1328 		while (isspace(*next))
1329 			next++;
1330 		if (*next == '\0')
1331 			break;
1332 
1333 		/* Mode ends at space or end of string */
1334 		tok = next;
1335 		next = strchr(tok, ' ');
1336 		if (next != NULL) *next++ = '\0';
1337 
1338 		/* Parameters start after a comma */
1339 		c = strchr(tok, ',');
1340 		if (c != NULL) *c++ = '\0';
1341 
1342 		/* Match mode string */
1343 		uint_t mode;
1344 		for (mode = 0; mode < ZTI_NMODES; mode++)
1345 			if (strcmp(tok, modes[mode]) == 0)
1346 				break;
1347 		if (mode == ZTI_NMODES)
1348 			break;
1349 
1350 		/* Invalid canary */
1351 		row[q].zti_mode = ZTI_NMODES;
1352 
1353 		/* Per-mode setup */
1354 		switch (mode) {
1355 
1356 		/*
1357 		 * FIXED is parameterised: number of queues, and number of
1358 		 * threads per queue.
1359 		 */
1360 		case ZTI_MODE_FIXED: {
1361 			/* No parameters? */
1362 			if (c == NULL || *c == '\0')
1363 				break;
1364 
1365 			/* Find next parameter */
1366 			tok = c;
1367 			c = strchr(tok, ',');
1368 			if (c == NULL)
1369 				break;
1370 
1371 			/* Take digits and convert */
1372 			unsigned long long nq;
1373 			if (!(isdigit(*tok)))
1374 				break;
1375 			err = ddi_strtoull(tok, &tok, 10, &nq);
1376 			/* Must succeed and also end at the next param sep */
1377 			if (err != 0 || tok != c)
1378 				break;
1379 
1380 			/* Move past the comma */
1381 			tok++;
1382 			/* Need another number */
1383 			if (!(isdigit(*tok)))
1384 				break;
1385 			/* Remember start to make sure we moved */
1386 			c = tok;
1387 
1388 			/* Take digits */
1389 			unsigned long long ntpq;
1390 			err = ddi_strtoull(tok, &tok, 10, &ntpq);
1391 			/* Must succeed, and moved forward */
1392 			if (err != 0 || tok == c || *tok != '\0')
1393 				break;
1394 
1395 			/*
1396 			 * sanity; zero queues/threads make no sense, and
1397 			 * 16K is almost certainly more than anyone will ever
1398 			 * need and avoids silly numbers like UINT32_MAX
1399 			 */
1400 			if (nq == 0 || nq >= 16384 ||
1401 			    ntpq == 0 || ntpq >= 16384)
1402 				break;
1403 
1404 			const zio_taskq_info_t zti = ZTI_P(ntpq, nq);
1405 			row[q] = zti;
1406 			break;
1407 		}
1408 
1409 		case ZTI_MODE_SCALE: {
1410 			const zio_taskq_info_t zti = ZTI_SCALE;
1411 			row[q] = zti;
1412 			break;
1413 		}
1414 
1415 		case ZTI_MODE_SYNC: {
1416 			const zio_taskq_info_t zti = ZTI_SYNC;
1417 			row[q] = zti;
1418 			break;
1419 		}
1420 
1421 		case ZTI_MODE_NULL: {
1422 			/*
1423 			 * Can only null the high-priority queues; the general-
1424 			 * purpose ones have to exist.
1425 			 */
1426 			if (q != ZIO_TASKQ_ISSUE_HIGH &&
1427 			    q != ZIO_TASKQ_INTERRUPT_HIGH)
1428 				break;
1429 
1430 			const zio_taskq_info_t zti = ZTI_NULL;
1431 			row[q] = zti;
1432 			break;
1433 		}
1434 
1435 		default:
1436 			break;
1437 		}
1438 
1439 		/* Ensure we set a mode */
1440 		if (row[q].zti_mode == ZTI_NMODES)
1441 			break;
1442 	}
1443 
1444 	/* Didn't get a full row, fail */
1445 	if (q < ZIO_TASKQ_TYPES)
1446 		return (SET_ERROR(EINVAL));
1447 
1448 	/* Eat trailing space */
1449 	if (next != NULL)
1450 		while (isspace(*next))
1451 			next++;
1452 
1453 	/* If there's anything left over then fail */
1454 	if (next != NULL && *next != '\0')
1455 		return (SET_ERROR(EINVAL));
1456 
1457 	/* Success! Copy it into the real config */
1458 	for (q = 0; q < ZIO_TASKQ_TYPES; q++)
1459 		zio_taskqs[t][q] = row[q];
1460 
1461 	return (0);
1462 }
1463 
1464 static int
spa_taskq_param_get(zio_type_t t,char * buf,boolean_t add_newline)1465 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline)
1466 {
1467 	int pos = 0;
1468 
1469 	/* Build paramater string from live config */
1470 	const char *sep = "";
1471 	for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) {
1472 		const zio_taskq_info_t *zti = &zio_taskqs[t][q];
1473 		if (zti->zti_mode == ZTI_MODE_FIXED)
1474 			pos += sprintf(&buf[pos], "%s%s,%u,%u", sep,
1475 			    modes[zti->zti_mode], zti->zti_count,
1476 			    zti->zti_value);
1477 		else
1478 			pos += sprintf(&buf[pos], "%s%s", sep,
1479 			    modes[zti->zti_mode]);
1480 		sep = " ";
1481 	}
1482 
1483 	if (add_newline)
1484 		buf[pos++] = '\n';
1485 	buf[pos] = '\0';
1486 
1487 	return (pos);
1488 }
1489 
1490 #ifdef __linux__
1491 static int
spa_taskq_read_param_set(const char * val,zfs_kernel_param_t * kp)1492 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp)
1493 {
1494 	char *cfg = kmem_strdup(val);
1495 	int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg);
1496 	kmem_free(cfg, strlen(val)+1);
1497 	return (-err);
1498 }
1499 static int
spa_taskq_read_param_get(char * buf,zfs_kernel_param_t * kp)1500 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp)
1501 {
1502 	return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE));
1503 }
1504 
1505 static int
spa_taskq_write_param_set(const char * val,zfs_kernel_param_t * kp)1506 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp)
1507 {
1508 	char *cfg = kmem_strdup(val);
1509 	int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg);
1510 	kmem_free(cfg, strlen(val)+1);
1511 	return (-err);
1512 }
1513 static int
spa_taskq_write_param_get(char * buf,zfs_kernel_param_t * kp)1514 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp)
1515 {
1516 	return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE));
1517 }
1518 #else
1519 /*
1520  * On FreeBSD load-time parameters can be set up before malloc() is available,
1521  * so we have to do all the parsing work on the stack.
1522  */
1523 #define	SPA_TASKQ_PARAM_MAX	(128)
1524 
1525 static int
spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)1526 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)
1527 {
1528 	char buf[SPA_TASKQ_PARAM_MAX];
1529 	int err;
1530 
1531 	(void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE);
1532 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1533 	if (err || req->newptr == NULL)
1534 		return (err);
1535 	return (spa_taskq_param_set(ZIO_TYPE_READ, buf));
1536 }
1537 
1538 static int
spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)1539 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)
1540 {
1541 	char buf[SPA_TASKQ_PARAM_MAX];
1542 	int err;
1543 
1544 	(void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE);
1545 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1546 	if (err || req->newptr == NULL)
1547 		return (err);
1548 	return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf));
1549 }
1550 #endif
1551 #endif /* _KERNEL */
1552 
1553 /*
1554  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1555  * Note that a type may have multiple discrete taskqs to avoid lock contention
1556  * on the taskq itself.
1557  */
1558 void
spa_taskq_dispatch(spa_t * spa,zio_type_t t,zio_taskq_type_t q,task_func_t * func,zio_t * zio,boolean_t cutinline)1559 spa_taskq_dispatch(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1560     task_func_t *func, zio_t *zio, boolean_t cutinline)
1561 {
1562 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1563 	taskq_t *tq;
1564 
1565 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1566 	ASSERT3U(tqs->stqs_count, !=, 0);
1567 
1568 	/*
1569 	 * NB: We are assuming that the zio can only be dispatched
1570 	 * to a single taskq at a time.  It would be a grievous error
1571 	 * to dispatch the zio to another taskq at the same time.
1572 	 */
1573 	ASSERT(zio);
1574 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1575 
1576 	if (tqs->stqs_count == 1) {
1577 		tq = tqs->stqs_taskq[0];
1578 	} else if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) &&
1579 	    ZIO_HAS_ALLOCATOR(zio)) {
1580 		tq = tqs->stqs_taskq[zio->io_allocator % tqs->stqs_count];
1581 	} else {
1582 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1583 	}
1584 
1585 	taskq_dispatch_ent(tq, func, zio, cutinline ? TQ_FRONT : 0,
1586 	    &zio->io_tqent);
1587 }
1588 
1589 static void
spa_create_zio_taskqs(spa_t * spa)1590 spa_create_zio_taskqs(spa_t *spa)
1591 {
1592 	for (int t = 0; t < ZIO_TYPES; t++) {
1593 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1594 			spa_taskqs_init(spa, t, q);
1595 		}
1596 	}
1597 }
1598 
1599 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1600 static void
spa_thread(void * arg)1601 spa_thread(void *arg)
1602 {
1603 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1604 	callb_cpr_t cprinfo;
1605 
1606 	spa_t *spa = arg;
1607 	user_t *pu = PTOU(curproc);
1608 
1609 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1610 	    spa->spa_name);
1611 
1612 	ASSERT(curproc != &p0);
1613 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1614 	    "zpool-%s", spa->spa_name);
1615 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1616 
1617 	/* bind this thread to the requested psrset */
1618 	if (zio_taskq_psrset_bind != PS_NONE) {
1619 		pool_lock();
1620 		mutex_enter(&cpu_lock);
1621 		mutex_enter(&pidlock);
1622 		mutex_enter(&curproc->p_lock);
1623 
1624 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1625 		    0, NULL, NULL) == 0)  {
1626 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1627 		} else {
1628 			cmn_err(CE_WARN,
1629 			    "Couldn't bind process for zfs pool \"%s\" to "
1630 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1631 		}
1632 
1633 		mutex_exit(&curproc->p_lock);
1634 		mutex_exit(&pidlock);
1635 		mutex_exit(&cpu_lock);
1636 		pool_unlock();
1637 	}
1638 
1639 #ifdef HAVE_SYSDC
1640 	if (zio_taskq_sysdc) {
1641 		sysdc_thread_enter(curthread, 100, 0);
1642 	}
1643 #endif
1644 
1645 	spa->spa_proc = curproc;
1646 	spa->spa_did = curthread->t_did;
1647 
1648 	spa_create_zio_taskqs(spa);
1649 
1650 	mutex_enter(&spa->spa_proc_lock);
1651 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1652 
1653 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1654 	cv_broadcast(&spa->spa_proc_cv);
1655 
1656 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1657 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1658 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1659 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1660 
1661 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1662 	spa->spa_proc_state = SPA_PROC_GONE;
1663 	spa->spa_proc = &p0;
1664 	cv_broadcast(&spa->spa_proc_cv);
1665 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1666 
1667 	mutex_enter(&curproc->p_lock);
1668 	lwp_exit();
1669 }
1670 #endif
1671 
1672 extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1673 
1674 /*
1675  * Activate an uninitialized pool.
1676  */
1677 static void
spa_activate(spa_t * spa,spa_mode_t mode)1678 spa_activate(spa_t *spa, spa_mode_t mode)
1679 {
1680 	metaslab_ops_t *msp = metaslab_allocator(spa);
1681 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1682 
1683 	spa->spa_state = POOL_STATE_ACTIVE;
1684 	spa->spa_mode = mode;
1685 	spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1686 
1687 	spa->spa_normal_class = metaslab_class_create(spa, msp);
1688 	spa->spa_log_class = metaslab_class_create(spa, msp);
1689 	spa->spa_embedded_log_class = metaslab_class_create(spa, msp);
1690 	spa->spa_special_class = metaslab_class_create(spa, msp);
1691 	spa->spa_dedup_class = metaslab_class_create(spa, msp);
1692 
1693 	/* Try to create a covering process */
1694 	mutex_enter(&spa->spa_proc_lock);
1695 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1696 	ASSERT(spa->spa_proc == &p0);
1697 	spa->spa_did = 0;
1698 
1699 #ifdef HAVE_SPA_THREAD
1700 	/* Only create a process if we're going to be around a while. */
1701 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1702 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1703 		    NULL, 0) == 0) {
1704 			spa->spa_proc_state = SPA_PROC_CREATED;
1705 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1706 				cv_wait(&spa->spa_proc_cv,
1707 				    &spa->spa_proc_lock);
1708 			}
1709 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1710 			ASSERT(spa->spa_proc != &p0);
1711 			ASSERT(spa->spa_did != 0);
1712 		} else {
1713 #ifdef _KERNEL
1714 			cmn_err(CE_WARN,
1715 			    "Couldn't create process for zfs pool \"%s\"\n",
1716 			    spa->spa_name);
1717 #endif
1718 		}
1719 	}
1720 #endif /* HAVE_SPA_THREAD */
1721 	mutex_exit(&spa->spa_proc_lock);
1722 
1723 	/* If we didn't create a process, we need to create our taskqs. */
1724 	if (spa->spa_proc == &p0) {
1725 		spa_create_zio_taskqs(spa);
1726 	}
1727 
1728 	for (size_t i = 0; i < TXG_SIZE; i++) {
1729 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1730 		    ZIO_FLAG_CANFAIL);
1731 	}
1732 
1733 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1734 	    offsetof(vdev_t, vdev_config_dirty_node));
1735 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1736 	    offsetof(objset_t, os_evicting_node));
1737 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1738 	    offsetof(vdev_t, vdev_state_dirty_node));
1739 
1740 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1741 	    offsetof(struct vdev, vdev_txg_node));
1742 
1743 	avl_create(&spa->spa_errlist_scrub,
1744 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1745 	    offsetof(spa_error_entry_t, se_avl));
1746 	avl_create(&spa->spa_errlist_last,
1747 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1748 	    offsetof(spa_error_entry_t, se_avl));
1749 	avl_create(&spa->spa_errlist_healed,
1750 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1751 	    offsetof(spa_error_entry_t, se_avl));
1752 
1753 	spa_activate_os(spa);
1754 
1755 	spa_keystore_init(&spa->spa_keystore);
1756 
1757 	/*
1758 	 * This taskq is used to perform zvol-minor-related tasks
1759 	 * asynchronously. This has several advantages, including easy
1760 	 * resolution of various deadlocks.
1761 	 *
1762 	 * The taskq must be single threaded to ensure tasks are always
1763 	 * processed in the order in which they were dispatched.
1764 	 *
1765 	 * A taskq per pool allows one to keep the pools independent.
1766 	 * This way if one pool is suspended, it will not impact another.
1767 	 *
1768 	 * The preferred location to dispatch a zvol minor task is a sync
1769 	 * task. In this context, there is easy access to the spa_t and minimal
1770 	 * error handling is required because the sync task must succeed.
1771 	 */
1772 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1773 	    1, INT_MAX, 0);
1774 
1775 	/*
1776 	 * The taskq to preload metaslabs.
1777 	 */
1778 	spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1779 	    metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1780 	    TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1781 
1782 	/*
1783 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1784 	 * pool traverse code from monopolizing the global (and limited)
1785 	 * system_taskq by inappropriately scheduling long running tasks on it.
1786 	 */
1787 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1788 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1789 
1790 	/*
1791 	 * The taskq to upgrade datasets in this pool. Currently used by
1792 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1793 	 */
1794 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1795 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1796 }
1797 
1798 /*
1799  * Opposite of spa_activate().
1800  */
1801 static void
spa_deactivate(spa_t * spa)1802 spa_deactivate(spa_t *spa)
1803 {
1804 	ASSERT(spa->spa_sync_on == B_FALSE);
1805 	ASSERT(spa->spa_dsl_pool == NULL);
1806 	ASSERT(spa->spa_root_vdev == NULL);
1807 	ASSERT(spa->spa_async_zio_root == NULL);
1808 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1809 
1810 	spa_evicting_os_wait(spa);
1811 
1812 	if (spa->spa_zvol_taskq) {
1813 		taskq_destroy(spa->spa_zvol_taskq);
1814 		spa->spa_zvol_taskq = NULL;
1815 	}
1816 
1817 	if (spa->spa_metaslab_taskq) {
1818 		taskq_destroy(spa->spa_metaslab_taskq);
1819 		spa->spa_metaslab_taskq = NULL;
1820 	}
1821 
1822 	if (spa->spa_prefetch_taskq) {
1823 		taskq_destroy(spa->spa_prefetch_taskq);
1824 		spa->spa_prefetch_taskq = NULL;
1825 	}
1826 
1827 	if (spa->spa_upgrade_taskq) {
1828 		taskq_destroy(spa->spa_upgrade_taskq);
1829 		spa->spa_upgrade_taskq = NULL;
1830 	}
1831 
1832 	txg_list_destroy(&spa->spa_vdev_txg_list);
1833 
1834 	list_destroy(&spa->spa_config_dirty_list);
1835 	list_destroy(&spa->spa_evicting_os_list);
1836 	list_destroy(&spa->spa_state_dirty_list);
1837 
1838 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1839 
1840 	for (int t = 0; t < ZIO_TYPES; t++) {
1841 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1842 			spa_taskqs_fini(spa, t, q);
1843 		}
1844 	}
1845 
1846 	for (size_t i = 0; i < TXG_SIZE; i++) {
1847 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1848 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1849 		spa->spa_txg_zio[i] = NULL;
1850 	}
1851 
1852 	metaslab_class_destroy(spa->spa_normal_class);
1853 	spa->spa_normal_class = NULL;
1854 
1855 	metaslab_class_destroy(spa->spa_log_class);
1856 	spa->spa_log_class = NULL;
1857 
1858 	metaslab_class_destroy(spa->spa_embedded_log_class);
1859 	spa->spa_embedded_log_class = NULL;
1860 
1861 	metaslab_class_destroy(spa->spa_special_class);
1862 	spa->spa_special_class = NULL;
1863 
1864 	metaslab_class_destroy(spa->spa_dedup_class);
1865 	spa->spa_dedup_class = NULL;
1866 
1867 	/*
1868 	 * If this was part of an import or the open otherwise failed, we may
1869 	 * still have errors left in the queues.  Empty them just in case.
1870 	 */
1871 	spa_errlog_drain(spa);
1872 	avl_destroy(&spa->spa_errlist_scrub);
1873 	avl_destroy(&spa->spa_errlist_last);
1874 	avl_destroy(&spa->spa_errlist_healed);
1875 
1876 	spa_keystore_fini(&spa->spa_keystore);
1877 
1878 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1879 
1880 	mutex_enter(&spa->spa_proc_lock);
1881 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1882 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1883 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1884 		cv_broadcast(&spa->spa_proc_cv);
1885 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1886 			ASSERT(spa->spa_proc != &p0);
1887 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1888 		}
1889 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1890 		spa->spa_proc_state = SPA_PROC_NONE;
1891 	}
1892 	ASSERT(spa->spa_proc == &p0);
1893 	mutex_exit(&spa->spa_proc_lock);
1894 
1895 	/*
1896 	 * We want to make sure spa_thread() has actually exited the ZFS
1897 	 * module, so that the module can't be unloaded out from underneath
1898 	 * it.
1899 	 */
1900 	if (spa->spa_did != 0) {
1901 		thread_join(spa->spa_did);
1902 		spa->spa_did = 0;
1903 	}
1904 
1905 	spa_deactivate_os(spa);
1906 
1907 }
1908 
1909 /*
1910  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1911  * will create all the necessary vdevs in the appropriate layout, with each vdev
1912  * in the CLOSED state.  This will prep the pool before open/creation/import.
1913  * All vdev validation is done by the vdev_alloc() routine.
1914  */
1915 int
spa_config_parse(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int atype)1916 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1917     uint_t id, int atype)
1918 {
1919 	nvlist_t **child;
1920 	uint_t children;
1921 	int error;
1922 
1923 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1924 		return (error);
1925 
1926 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1927 		return (0);
1928 
1929 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1930 	    &child, &children);
1931 
1932 	if (error == ENOENT)
1933 		return (0);
1934 
1935 	if (error) {
1936 		vdev_free(*vdp);
1937 		*vdp = NULL;
1938 		return (SET_ERROR(EINVAL));
1939 	}
1940 
1941 	for (int c = 0; c < children; c++) {
1942 		vdev_t *vd;
1943 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1944 		    atype)) != 0) {
1945 			vdev_free(*vdp);
1946 			*vdp = NULL;
1947 			return (error);
1948 		}
1949 	}
1950 
1951 	ASSERT(*vdp != NULL);
1952 
1953 	return (0);
1954 }
1955 
1956 static boolean_t
spa_should_flush_logs_on_unload(spa_t * spa)1957 spa_should_flush_logs_on_unload(spa_t *spa)
1958 {
1959 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1960 		return (B_FALSE);
1961 
1962 	if (!spa_writeable(spa))
1963 		return (B_FALSE);
1964 
1965 	if (!spa->spa_sync_on)
1966 		return (B_FALSE);
1967 
1968 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1969 		return (B_FALSE);
1970 
1971 	if (zfs_keep_log_spacemaps_at_export)
1972 		return (B_FALSE);
1973 
1974 	return (B_TRUE);
1975 }
1976 
1977 /*
1978  * Opens a transaction that will set the flag that will instruct
1979  * spa_sync to attempt to flush all the metaslabs for that txg.
1980  */
1981 static void
spa_unload_log_sm_flush_all(spa_t * spa)1982 spa_unload_log_sm_flush_all(spa_t *spa)
1983 {
1984 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1985 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1986 
1987 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1988 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1989 
1990 	dmu_tx_commit(tx);
1991 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1992 }
1993 
1994 static void
spa_unload_log_sm_metadata(spa_t * spa)1995 spa_unload_log_sm_metadata(spa_t *spa)
1996 {
1997 	void *cookie = NULL;
1998 	spa_log_sm_t *sls;
1999 	log_summary_entry_t *e;
2000 
2001 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
2002 	    &cookie)) != NULL) {
2003 		VERIFY0(sls->sls_mscount);
2004 		kmem_free(sls, sizeof (spa_log_sm_t));
2005 	}
2006 
2007 	while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
2008 		VERIFY0(e->lse_mscount);
2009 		kmem_free(e, sizeof (log_summary_entry_t));
2010 	}
2011 
2012 	spa->spa_unflushed_stats.sus_nblocks = 0;
2013 	spa->spa_unflushed_stats.sus_memused = 0;
2014 	spa->spa_unflushed_stats.sus_blocklimit = 0;
2015 }
2016 
2017 static void
spa_destroy_aux_threads(spa_t * spa)2018 spa_destroy_aux_threads(spa_t *spa)
2019 {
2020 	if (spa->spa_condense_zthr != NULL) {
2021 		zthr_destroy(spa->spa_condense_zthr);
2022 		spa->spa_condense_zthr = NULL;
2023 	}
2024 	if (spa->spa_checkpoint_discard_zthr != NULL) {
2025 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
2026 		spa->spa_checkpoint_discard_zthr = NULL;
2027 	}
2028 	if (spa->spa_livelist_delete_zthr != NULL) {
2029 		zthr_destroy(spa->spa_livelist_delete_zthr);
2030 		spa->spa_livelist_delete_zthr = NULL;
2031 	}
2032 	if (spa->spa_livelist_condense_zthr != NULL) {
2033 		zthr_destroy(spa->spa_livelist_condense_zthr);
2034 		spa->spa_livelist_condense_zthr = NULL;
2035 	}
2036 	if (spa->spa_raidz_expand_zthr != NULL) {
2037 		zthr_destroy(spa->spa_raidz_expand_zthr);
2038 		spa->spa_raidz_expand_zthr = NULL;
2039 	}
2040 }
2041 
2042 /*
2043  * Opposite of spa_load().
2044  */
2045 static void
spa_unload(spa_t * spa)2046 spa_unload(spa_t *spa)
2047 {
2048 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
2049 	    spa->spa_export_thread == curthread);
2050 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
2051 
2052 	spa_import_progress_remove(spa_guid(spa));
2053 	spa_load_note(spa, "UNLOADING");
2054 
2055 	spa_wake_waiters(spa);
2056 
2057 	/*
2058 	 * If we have set the spa_final_txg, we have already performed the
2059 	 * tasks below in spa_export_common(). We should not redo it here since
2060 	 * we delay the final TXGs beyond what spa_final_txg is set at.
2061 	 */
2062 	if (spa->spa_final_txg == UINT64_MAX) {
2063 		/*
2064 		 * If the log space map feature is enabled and the pool is
2065 		 * getting exported (but not destroyed), we want to spend some
2066 		 * time flushing as many metaslabs as we can in an attempt to
2067 		 * destroy log space maps and save import time.
2068 		 */
2069 		if (spa_should_flush_logs_on_unload(spa))
2070 			spa_unload_log_sm_flush_all(spa);
2071 
2072 		/*
2073 		 * Stop async tasks.
2074 		 */
2075 		spa_async_suspend(spa);
2076 
2077 		if (spa->spa_root_vdev) {
2078 			vdev_t *root_vdev = spa->spa_root_vdev;
2079 			vdev_initialize_stop_all(root_vdev,
2080 			    VDEV_INITIALIZE_ACTIVE);
2081 			vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
2082 			vdev_autotrim_stop_all(spa);
2083 			vdev_rebuild_stop_all(spa);
2084 		}
2085 	}
2086 
2087 	/*
2088 	 * Stop syncing.
2089 	 */
2090 	if (spa->spa_sync_on) {
2091 		txg_sync_stop(spa->spa_dsl_pool);
2092 		spa->spa_sync_on = B_FALSE;
2093 	}
2094 
2095 	/*
2096 	 * This ensures that there is no async metaslab prefetching
2097 	 * while we attempt to unload the spa.
2098 	 */
2099 	taskq_wait(spa->spa_metaslab_taskq);
2100 
2101 	if (spa->spa_mmp.mmp_thread)
2102 		mmp_thread_stop(spa);
2103 
2104 	/*
2105 	 * Wait for any outstanding async I/O to complete.
2106 	 */
2107 	if (spa->spa_async_zio_root != NULL) {
2108 		for (int i = 0; i < max_ncpus; i++)
2109 			(void) zio_wait(spa->spa_async_zio_root[i]);
2110 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
2111 		spa->spa_async_zio_root = NULL;
2112 	}
2113 
2114 	if (spa->spa_vdev_removal != NULL) {
2115 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
2116 		spa->spa_vdev_removal = NULL;
2117 	}
2118 
2119 	spa_destroy_aux_threads(spa);
2120 
2121 	spa_condense_fini(spa);
2122 
2123 	bpobj_close(&spa->spa_deferred_bpobj);
2124 
2125 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
2126 
2127 	/*
2128 	 * Close all vdevs.
2129 	 */
2130 	if (spa->spa_root_vdev)
2131 		vdev_free(spa->spa_root_vdev);
2132 	ASSERT(spa->spa_root_vdev == NULL);
2133 
2134 	/*
2135 	 * Close the dsl pool.
2136 	 */
2137 	if (spa->spa_dsl_pool) {
2138 		dsl_pool_close(spa->spa_dsl_pool);
2139 		spa->spa_dsl_pool = NULL;
2140 		spa->spa_meta_objset = NULL;
2141 	}
2142 
2143 	ddt_unload(spa);
2144 	brt_unload(spa);
2145 	spa_unload_log_sm_metadata(spa);
2146 
2147 	/*
2148 	 * Drop and purge level 2 cache
2149 	 */
2150 	spa_l2cache_drop(spa);
2151 
2152 	if (spa->spa_spares.sav_vdevs) {
2153 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
2154 			vdev_free(spa->spa_spares.sav_vdevs[i]);
2155 		kmem_free(spa->spa_spares.sav_vdevs,
2156 		    spa->spa_spares.sav_count * sizeof (void *));
2157 		spa->spa_spares.sav_vdevs = NULL;
2158 	}
2159 	if (spa->spa_spares.sav_config) {
2160 		nvlist_free(spa->spa_spares.sav_config);
2161 		spa->spa_spares.sav_config = NULL;
2162 	}
2163 	spa->spa_spares.sav_count = 0;
2164 
2165 	if (spa->spa_l2cache.sav_vdevs) {
2166 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
2167 			vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
2168 			vdev_free(spa->spa_l2cache.sav_vdevs[i]);
2169 		}
2170 		kmem_free(spa->spa_l2cache.sav_vdevs,
2171 		    spa->spa_l2cache.sav_count * sizeof (void *));
2172 		spa->spa_l2cache.sav_vdevs = NULL;
2173 	}
2174 	if (spa->spa_l2cache.sav_config) {
2175 		nvlist_free(spa->spa_l2cache.sav_config);
2176 		spa->spa_l2cache.sav_config = NULL;
2177 	}
2178 	spa->spa_l2cache.sav_count = 0;
2179 
2180 	spa->spa_async_suspended = 0;
2181 
2182 	spa->spa_indirect_vdevs_loaded = B_FALSE;
2183 
2184 	if (spa->spa_comment != NULL) {
2185 		spa_strfree(spa->spa_comment);
2186 		spa->spa_comment = NULL;
2187 	}
2188 	if (spa->spa_compatibility != NULL) {
2189 		spa_strfree(spa->spa_compatibility);
2190 		spa->spa_compatibility = NULL;
2191 	}
2192 
2193 	spa->spa_raidz_expand = NULL;
2194 
2195 	spa_config_exit(spa, SCL_ALL, spa);
2196 }
2197 
2198 /*
2199  * Load (or re-load) the current list of vdevs describing the active spares for
2200  * this pool.  When this is called, we have some form of basic information in
2201  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
2202  * then re-generate a more complete list including status information.
2203  */
2204 void
spa_load_spares(spa_t * spa)2205 spa_load_spares(spa_t *spa)
2206 {
2207 	nvlist_t **spares;
2208 	uint_t nspares;
2209 	int i;
2210 	vdev_t *vd, *tvd;
2211 
2212 #ifndef _KERNEL
2213 	/*
2214 	 * zdb opens both the current state of the pool and the
2215 	 * checkpointed state (if present), with a different spa_t.
2216 	 *
2217 	 * As spare vdevs are shared among open pools, we skip loading
2218 	 * them when we load the checkpointed state of the pool.
2219 	 */
2220 	if (!spa_writeable(spa))
2221 		return;
2222 #endif
2223 
2224 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2225 
2226 	/*
2227 	 * First, close and free any existing spare vdevs.
2228 	 */
2229 	if (spa->spa_spares.sav_vdevs) {
2230 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
2231 			vd = spa->spa_spares.sav_vdevs[i];
2232 
2233 			/* Undo the call to spa_activate() below */
2234 			if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2235 			    B_FALSE)) != NULL && tvd->vdev_isspare)
2236 				spa_spare_remove(tvd);
2237 			vdev_close(vd);
2238 			vdev_free(vd);
2239 		}
2240 
2241 		kmem_free(spa->spa_spares.sav_vdevs,
2242 		    spa->spa_spares.sav_count * sizeof (void *));
2243 	}
2244 
2245 	if (spa->spa_spares.sav_config == NULL)
2246 		nspares = 0;
2247 	else
2248 		VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2249 		    ZPOOL_CONFIG_SPARES, &spares, &nspares));
2250 
2251 	spa->spa_spares.sav_count = (int)nspares;
2252 	spa->spa_spares.sav_vdevs = NULL;
2253 
2254 	if (nspares == 0)
2255 		return;
2256 
2257 	/*
2258 	 * Construct the array of vdevs, opening them to get status in the
2259 	 * process.   For each spare, there is potentially two different vdev_t
2260 	 * structures associated with it: one in the list of spares (used only
2261 	 * for basic validation purposes) and one in the active vdev
2262 	 * configuration (if it's spared in).  During this phase we open and
2263 	 * validate each vdev on the spare list.  If the vdev also exists in the
2264 	 * active configuration, then we also mark this vdev as an active spare.
2265 	 */
2266 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
2267 	    KM_SLEEP);
2268 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
2269 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
2270 		    VDEV_ALLOC_SPARE) == 0);
2271 		ASSERT(vd != NULL);
2272 
2273 		spa->spa_spares.sav_vdevs[i] = vd;
2274 
2275 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2276 		    B_FALSE)) != NULL) {
2277 			if (!tvd->vdev_isspare)
2278 				spa_spare_add(tvd);
2279 
2280 			/*
2281 			 * We only mark the spare active if we were successfully
2282 			 * able to load the vdev.  Otherwise, importing a pool
2283 			 * with a bad active spare would result in strange
2284 			 * behavior, because multiple pool would think the spare
2285 			 * is actively in use.
2286 			 *
2287 			 * There is a vulnerability here to an equally bizarre
2288 			 * circumstance, where a dead active spare is later
2289 			 * brought back to life (onlined or otherwise).  Given
2290 			 * the rarity of this scenario, and the extra complexity
2291 			 * it adds, we ignore the possibility.
2292 			 */
2293 			if (!vdev_is_dead(tvd))
2294 				spa_spare_activate(tvd);
2295 		}
2296 
2297 		vd->vdev_top = vd;
2298 		vd->vdev_aux = &spa->spa_spares;
2299 
2300 		if (vdev_open(vd) != 0)
2301 			continue;
2302 
2303 		if (vdev_validate_aux(vd) == 0)
2304 			spa_spare_add(vd);
2305 	}
2306 
2307 	/*
2308 	 * Recompute the stashed list of spares, with status information
2309 	 * this time.
2310 	 */
2311 	fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
2312 
2313 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
2314 	    KM_SLEEP);
2315 	for (i = 0; i < spa->spa_spares.sav_count; i++)
2316 		spares[i] = vdev_config_generate(spa,
2317 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
2318 	fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
2319 	    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
2320 	    spa->spa_spares.sav_count);
2321 	for (i = 0; i < spa->spa_spares.sav_count; i++)
2322 		nvlist_free(spares[i]);
2323 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
2324 }
2325 
2326 /*
2327  * Load (or re-load) the current list of vdevs describing the active l2cache for
2328  * this pool.  When this is called, we have some form of basic information in
2329  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
2330  * then re-generate a more complete list including status information.
2331  * Devices which are already active have their details maintained, and are
2332  * not re-opened.
2333  */
2334 void
spa_load_l2cache(spa_t * spa)2335 spa_load_l2cache(spa_t *spa)
2336 {
2337 	nvlist_t **l2cache = NULL;
2338 	uint_t nl2cache;
2339 	int i, j, oldnvdevs;
2340 	uint64_t guid;
2341 	vdev_t *vd, **oldvdevs, **newvdevs;
2342 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2343 
2344 #ifndef _KERNEL
2345 	/*
2346 	 * zdb opens both the current state of the pool and the
2347 	 * checkpointed state (if present), with a different spa_t.
2348 	 *
2349 	 * As L2 caches are part of the ARC which is shared among open
2350 	 * pools, we skip loading them when we load the checkpointed
2351 	 * state of the pool.
2352 	 */
2353 	if (!spa_writeable(spa))
2354 		return;
2355 #endif
2356 
2357 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2358 
2359 	oldvdevs = sav->sav_vdevs;
2360 	oldnvdevs = sav->sav_count;
2361 	sav->sav_vdevs = NULL;
2362 	sav->sav_count = 0;
2363 
2364 	if (sav->sav_config == NULL) {
2365 		nl2cache = 0;
2366 		newvdevs = NULL;
2367 		goto out;
2368 	}
2369 
2370 	VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
2371 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
2372 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
2373 
2374 	/*
2375 	 * Process new nvlist of vdevs.
2376 	 */
2377 	for (i = 0; i < nl2cache; i++) {
2378 		guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2379 
2380 		newvdevs[i] = NULL;
2381 		for (j = 0; j < oldnvdevs; j++) {
2382 			vd = oldvdevs[j];
2383 			if (vd != NULL && guid == vd->vdev_guid) {
2384 				/*
2385 				 * Retain previous vdev for add/remove ops.
2386 				 */
2387 				newvdevs[i] = vd;
2388 				oldvdevs[j] = NULL;
2389 				break;
2390 			}
2391 		}
2392 
2393 		if (newvdevs[i] == NULL) {
2394 			/*
2395 			 * Create new vdev
2396 			 */
2397 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2398 			    VDEV_ALLOC_L2CACHE) == 0);
2399 			ASSERT(vd != NULL);
2400 			newvdevs[i] = vd;
2401 
2402 			/*
2403 			 * Commit this vdev as an l2cache device,
2404 			 * even if it fails to open.
2405 			 */
2406 			spa_l2cache_add(vd);
2407 
2408 			vd->vdev_top = vd;
2409 			vd->vdev_aux = sav;
2410 
2411 			spa_l2cache_activate(vd);
2412 
2413 			if (vdev_open(vd) != 0)
2414 				continue;
2415 
2416 			(void) vdev_validate_aux(vd);
2417 
2418 			if (!vdev_is_dead(vd))
2419 				l2arc_add_vdev(spa, vd);
2420 
2421 			/*
2422 			 * Upon cache device addition to a pool or pool
2423 			 * creation with a cache device or if the header
2424 			 * of the device is invalid we issue an async
2425 			 * TRIM command for the whole device which will
2426 			 * execute if l2arc_trim_ahead > 0.
2427 			 */
2428 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2429 		}
2430 	}
2431 
2432 	sav->sav_vdevs = newvdevs;
2433 	sav->sav_count = (int)nl2cache;
2434 
2435 	/*
2436 	 * Recompute the stashed list of l2cache devices, with status
2437 	 * information this time.
2438 	 */
2439 	fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2440 
2441 	if (sav->sav_count > 0)
2442 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2443 		    KM_SLEEP);
2444 	for (i = 0; i < sav->sav_count; i++)
2445 		l2cache[i] = vdev_config_generate(spa,
2446 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2447 	fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2448 	    (const nvlist_t * const *)l2cache, sav->sav_count);
2449 
2450 out:
2451 	/*
2452 	 * Purge vdevs that were dropped
2453 	 */
2454 	if (oldvdevs) {
2455 		for (i = 0; i < oldnvdevs; i++) {
2456 			uint64_t pool;
2457 
2458 			vd = oldvdevs[i];
2459 			if (vd != NULL) {
2460 				ASSERT(vd->vdev_isl2cache);
2461 
2462 				if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2463 				    pool != 0ULL && l2arc_vdev_present(vd))
2464 					l2arc_remove_vdev(vd);
2465 				vdev_clear_stats(vd);
2466 				vdev_free(vd);
2467 			}
2468 		}
2469 
2470 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2471 	}
2472 
2473 	for (i = 0; i < sav->sav_count; i++)
2474 		nvlist_free(l2cache[i]);
2475 	if (sav->sav_count)
2476 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
2477 }
2478 
2479 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)2480 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2481 {
2482 	dmu_buf_t *db;
2483 	char *packed = NULL;
2484 	size_t nvsize = 0;
2485 	int error;
2486 	*value = NULL;
2487 
2488 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2489 	if (error)
2490 		return (error);
2491 
2492 	nvsize = *(uint64_t *)db->db_data;
2493 	dmu_buf_rele(db, FTAG);
2494 
2495 	packed = vmem_alloc(nvsize, KM_SLEEP);
2496 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2497 	    DMU_READ_PREFETCH);
2498 	if (error == 0)
2499 		error = nvlist_unpack(packed, nvsize, value, 0);
2500 	vmem_free(packed, nvsize);
2501 
2502 	return (error);
2503 }
2504 
2505 /*
2506  * Concrete top-level vdevs that are not missing and are not logs. At every
2507  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2508  */
2509 static uint64_t
spa_healthy_core_tvds(spa_t * spa)2510 spa_healthy_core_tvds(spa_t *spa)
2511 {
2512 	vdev_t *rvd = spa->spa_root_vdev;
2513 	uint64_t tvds = 0;
2514 
2515 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2516 		vdev_t *vd = rvd->vdev_child[i];
2517 		if (vd->vdev_islog)
2518 			continue;
2519 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2520 			tvds++;
2521 	}
2522 
2523 	return (tvds);
2524 }
2525 
2526 /*
2527  * Checks to see if the given vdev could not be opened, in which case we post a
2528  * sysevent to notify the autoreplace code that the device has been removed.
2529  */
2530 static void
spa_check_removed(vdev_t * vd)2531 spa_check_removed(vdev_t *vd)
2532 {
2533 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2534 		spa_check_removed(vd->vdev_child[c]);
2535 
2536 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2537 	    vdev_is_concrete(vd)) {
2538 		zfs_post_autoreplace(vd->vdev_spa, vd);
2539 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2540 	}
2541 }
2542 
2543 static int
spa_check_for_missing_logs(spa_t * spa)2544 spa_check_for_missing_logs(spa_t *spa)
2545 {
2546 	vdev_t *rvd = spa->spa_root_vdev;
2547 
2548 	/*
2549 	 * If we're doing a normal import, then build up any additional
2550 	 * diagnostic information about missing log devices.
2551 	 * We'll pass this up to the user for further processing.
2552 	 */
2553 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2554 		nvlist_t **child, *nv;
2555 		uint64_t idx = 0;
2556 
2557 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2558 		    KM_SLEEP);
2559 		nv = fnvlist_alloc();
2560 
2561 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2562 			vdev_t *tvd = rvd->vdev_child[c];
2563 
2564 			/*
2565 			 * We consider a device as missing only if it failed
2566 			 * to open (i.e. offline or faulted is not considered
2567 			 * as missing).
2568 			 */
2569 			if (tvd->vdev_islog &&
2570 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2571 				child[idx++] = vdev_config_generate(spa, tvd,
2572 				    B_FALSE, VDEV_CONFIG_MISSING);
2573 			}
2574 		}
2575 
2576 		if (idx > 0) {
2577 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2578 			    (const nvlist_t * const *)child, idx);
2579 			fnvlist_add_nvlist(spa->spa_load_info,
2580 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2581 
2582 			for (uint64_t i = 0; i < idx; i++)
2583 				nvlist_free(child[i]);
2584 		}
2585 		nvlist_free(nv);
2586 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2587 
2588 		if (idx > 0) {
2589 			spa_load_failed(spa, "some log devices are missing");
2590 			vdev_dbgmsg_print_tree(rvd, 2);
2591 			return (SET_ERROR(ENXIO));
2592 		}
2593 	} else {
2594 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2595 			vdev_t *tvd = rvd->vdev_child[c];
2596 
2597 			if (tvd->vdev_islog &&
2598 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2599 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2600 				spa_load_note(spa, "some log devices are "
2601 				    "missing, ZIL is dropped.");
2602 				vdev_dbgmsg_print_tree(rvd, 2);
2603 				break;
2604 			}
2605 		}
2606 	}
2607 
2608 	return (0);
2609 }
2610 
2611 /*
2612  * Check for missing log devices
2613  */
2614 static boolean_t
spa_check_logs(spa_t * spa)2615 spa_check_logs(spa_t *spa)
2616 {
2617 	boolean_t rv = B_FALSE;
2618 	dsl_pool_t *dp = spa_get_dsl(spa);
2619 
2620 	switch (spa->spa_log_state) {
2621 	default:
2622 		break;
2623 	case SPA_LOG_MISSING:
2624 		/* need to recheck in case slog has been restored */
2625 	case SPA_LOG_UNKNOWN:
2626 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2627 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2628 		if (rv)
2629 			spa_set_log_state(spa, SPA_LOG_MISSING);
2630 		break;
2631 	}
2632 	return (rv);
2633 }
2634 
2635 /*
2636  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2637  */
2638 static boolean_t
spa_passivate_log(spa_t * spa)2639 spa_passivate_log(spa_t *spa)
2640 {
2641 	vdev_t *rvd = spa->spa_root_vdev;
2642 	boolean_t slog_found = B_FALSE;
2643 
2644 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2645 
2646 	for (int c = 0; c < rvd->vdev_children; c++) {
2647 		vdev_t *tvd = rvd->vdev_child[c];
2648 
2649 		if (tvd->vdev_islog) {
2650 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2651 			metaslab_group_passivate(tvd->vdev_mg);
2652 			slog_found = B_TRUE;
2653 		}
2654 	}
2655 
2656 	return (slog_found);
2657 }
2658 
2659 /*
2660  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2661  */
2662 static void
spa_activate_log(spa_t * spa)2663 spa_activate_log(spa_t *spa)
2664 {
2665 	vdev_t *rvd = spa->spa_root_vdev;
2666 
2667 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2668 
2669 	for (int c = 0; c < rvd->vdev_children; c++) {
2670 		vdev_t *tvd = rvd->vdev_child[c];
2671 
2672 		if (tvd->vdev_islog) {
2673 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2674 			metaslab_group_activate(tvd->vdev_mg);
2675 		}
2676 	}
2677 }
2678 
2679 int
spa_reset_logs(spa_t * spa)2680 spa_reset_logs(spa_t *spa)
2681 {
2682 	int error;
2683 
2684 	error = dmu_objset_find(spa_name(spa), zil_reset,
2685 	    NULL, DS_FIND_CHILDREN);
2686 	if (error == 0) {
2687 		/*
2688 		 * We successfully offlined the log device, sync out the
2689 		 * current txg so that the "stubby" block can be removed
2690 		 * by zil_sync().
2691 		 */
2692 		txg_wait_synced(spa->spa_dsl_pool, 0);
2693 	}
2694 	return (error);
2695 }
2696 
2697 static void
spa_aux_check_removed(spa_aux_vdev_t * sav)2698 spa_aux_check_removed(spa_aux_vdev_t *sav)
2699 {
2700 	for (int i = 0; i < sav->sav_count; i++)
2701 		spa_check_removed(sav->sav_vdevs[i]);
2702 }
2703 
2704 void
spa_claim_notify(zio_t * zio)2705 spa_claim_notify(zio_t *zio)
2706 {
2707 	spa_t *spa = zio->io_spa;
2708 
2709 	if (zio->io_error)
2710 		return;
2711 
2712 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2713 	if (spa->spa_claim_max_txg < BP_GET_LOGICAL_BIRTH(zio->io_bp))
2714 		spa->spa_claim_max_txg = BP_GET_LOGICAL_BIRTH(zio->io_bp);
2715 	mutex_exit(&spa->spa_props_lock);
2716 }
2717 
2718 typedef struct spa_load_error {
2719 	boolean_t	sle_verify_data;
2720 	uint64_t	sle_meta_count;
2721 	uint64_t	sle_data_count;
2722 } spa_load_error_t;
2723 
2724 static void
spa_load_verify_done(zio_t * zio)2725 spa_load_verify_done(zio_t *zio)
2726 {
2727 	blkptr_t *bp = zio->io_bp;
2728 	spa_load_error_t *sle = zio->io_private;
2729 	dmu_object_type_t type = BP_GET_TYPE(bp);
2730 	int error = zio->io_error;
2731 	spa_t *spa = zio->io_spa;
2732 
2733 	abd_free(zio->io_abd);
2734 	if (error) {
2735 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2736 		    type != DMU_OT_INTENT_LOG)
2737 			atomic_inc_64(&sle->sle_meta_count);
2738 		else
2739 			atomic_inc_64(&sle->sle_data_count);
2740 	}
2741 
2742 	mutex_enter(&spa->spa_scrub_lock);
2743 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2744 	cv_broadcast(&spa->spa_scrub_io_cv);
2745 	mutex_exit(&spa->spa_scrub_lock);
2746 }
2747 
2748 /*
2749  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2750  * By default, we set it to 1/16th of the arc.
2751  */
2752 static uint_t spa_load_verify_shift = 4;
2753 static int spa_load_verify_metadata = B_TRUE;
2754 static int spa_load_verify_data = B_TRUE;
2755 
2756 static int
spa_load_verify_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)2757 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2758     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2759 {
2760 	zio_t *rio = arg;
2761 	spa_load_error_t *sle = rio->io_private;
2762 
2763 	(void) zilog, (void) dnp;
2764 
2765 	/*
2766 	 * Note: normally this routine will not be called if
2767 	 * spa_load_verify_metadata is not set.  However, it may be useful
2768 	 * to manually set the flag after the traversal has begun.
2769 	 */
2770 	if (!spa_load_verify_metadata)
2771 		return (0);
2772 
2773 	/*
2774 	 * Sanity check the block pointer in order to detect obvious damage
2775 	 * before using the contents in subsequent checks or in zio_read().
2776 	 * When damaged consider it to be a metadata error since we cannot
2777 	 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2778 	 */
2779 	if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2780 		atomic_inc_64(&sle->sle_meta_count);
2781 		return (0);
2782 	}
2783 
2784 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2785 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2786 		return (0);
2787 
2788 	if (!BP_IS_METADATA(bp) &&
2789 	    (!spa_load_verify_data || !sle->sle_verify_data))
2790 		return (0);
2791 
2792 	uint64_t maxinflight_bytes =
2793 	    arc_target_bytes() >> spa_load_verify_shift;
2794 	size_t size = BP_GET_PSIZE(bp);
2795 
2796 	mutex_enter(&spa->spa_scrub_lock);
2797 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2798 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2799 	spa->spa_load_verify_bytes += size;
2800 	mutex_exit(&spa->spa_scrub_lock);
2801 
2802 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2803 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2804 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2805 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2806 	return (0);
2807 }
2808 
2809 static int
verify_dataset_name_len(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)2810 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2811 {
2812 	(void) dp, (void) arg;
2813 
2814 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2815 		return (SET_ERROR(ENAMETOOLONG));
2816 
2817 	return (0);
2818 }
2819 
2820 static int
spa_load_verify(spa_t * spa)2821 spa_load_verify(spa_t *spa)
2822 {
2823 	zio_t *rio;
2824 	spa_load_error_t sle = { 0 };
2825 	zpool_load_policy_t policy;
2826 	boolean_t verify_ok = B_FALSE;
2827 	int error = 0;
2828 
2829 	zpool_get_load_policy(spa->spa_config, &policy);
2830 
2831 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2832 	    policy.zlp_maxmeta == UINT64_MAX)
2833 		return (0);
2834 
2835 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2836 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2837 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2838 	    DS_FIND_CHILDREN);
2839 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2840 	if (error != 0)
2841 		return (error);
2842 
2843 	/*
2844 	 * Verify data only if we are rewinding or error limit was set.
2845 	 * Otherwise nothing except dbgmsg care about it to waste time.
2846 	 */
2847 	sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2848 	    (policy.zlp_maxdata < UINT64_MAX);
2849 
2850 	rio = zio_root(spa, NULL, &sle,
2851 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2852 
2853 	if (spa_load_verify_metadata) {
2854 		if (spa->spa_extreme_rewind) {
2855 			spa_load_note(spa, "performing a complete scan of the "
2856 			    "pool since extreme rewind is on. This may take "
2857 			    "a very long time.\n  (spa_load_verify_data=%u, "
2858 			    "spa_load_verify_metadata=%u)",
2859 			    spa_load_verify_data, spa_load_verify_metadata);
2860 		}
2861 
2862 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2863 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2864 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2865 	}
2866 
2867 	(void) zio_wait(rio);
2868 	ASSERT0(spa->spa_load_verify_bytes);
2869 
2870 	spa->spa_load_meta_errors = sle.sle_meta_count;
2871 	spa->spa_load_data_errors = sle.sle_data_count;
2872 
2873 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2874 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2875 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2876 		    (u_longlong_t)sle.sle_data_count);
2877 	}
2878 
2879 	if (spa_load_verify_dryrun ||
2880 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2881 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2882 		int64_t loss = 0;
2883 
2884 		verify_ok = B_TRUE;
2885 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2886 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2887 
2888 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2889 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2890 		    spa->spa_load_txg_ts);
2891 		fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2892 		    loss);
2893 		fnvlist_add_uint64(spa->spa_load_info,
2894 		    ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2895 		fnvlist_add_uint64(spa->spa_load_info,
2896 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2897 	} else {
2898 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2899 	}
2900 
2901 	if (spa_load_verify_dryrun)
2902 		return (0);
2903 
2904 	if (error) {
2905 		if (error != ENXIO && error != EIO)
2906 			error = SET_ERROR(EIO);
2907 		return (error);
2908 	}
2909 
2910 	return (verify_ok ? 0 : EIO);
2911 }
2912 
2913 /*
2914  * Find a value in the pool props object.
2915  */
2916 static void
spa_prop_find(spa_t * spa,zpool_prop_t prop,uint64_t * val)2917 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2918 {
2919 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2920 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2921 }
2922 
2923 /*
2924  * Find a value in the pool directory object.
2925  */
2926 static int
spa_dir_prop(spa_t * spa,const char * name,uint64_t * val,boolean_t log_enoent)2927 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2928 {
2929 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2930 	    name, sizeof (uint64_t), 1, val);
2931 
2932 	if (error != 0 && (error != ENOENT || log_enoent)) {
2933 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2934 		    "[error=%d]", name, error);
2935 	}
2936 
2937 	return (error);
2938 }
2939 
2940 static int
spa_vdev_err(vdev_t * vdev,vdev_aux_t aux,int err)2941 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2942 {
2943 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2944 	return (SET_ERROR(err));
2945 }
2946 
2947 boolean_t
spa_livelist_delete_check(spa_t * spa)2948 spa_livelist_delete_check(spa_t *spa)
2949 {
2950 	return (spa->spa_livelists_to_delete != 0);
2951 }
2952 
2953 static boolean_t
spa_livelist_delete_cb_check(void * arg,zthr_t * z)2954 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2955 {
2956 	(void) z;
2957 	spa_t *spa = arg;
2958 	return (spa_livelist_delete_check(spa));
2959 }
2960 
2961 static int
delete_blkptr_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)2962 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2963 {
2964 	spa_t *spa = arg;
2965 	zio_free(spa, tx->tx_txg, bp);
2966 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2967 	    -bp_get_dsize_sync(spa, bp),
2968 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2969 	return (0);
2970 }
2971 
2972 static int
dsl_get_next_livelist_obj(objset_t * os,uint64_t zap_obj,uint64_t * llp)2973 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2974 {
2975 	int err;
2976 	zap_cursor_t zc;
2977 	zap_attribute_t *za = zap_attribute_alloc();
2978 	zap_cursor_init(&zc, os, zap_obj);
2979 	err = zap_cursor_retrieve(&zc, za);
2980 	zap_cursor_fini(&zc);
2981 	if (err == 0)
2982 		*llp = za->za_first_integer;
2983 	zap_attribute_free(za);
2984 	return (err);
2985 }
2986 
2987 /*
2988  * Components of livelist deletion that must be performed in syncing
2989  * context: freeing block pointers and updating the pool-wide data
2990  * structures to indicate how much work is left to do
2991  */
2992 typedef struct sublist_delete_arg {
2993 	spa_t *spa;
2994 	dsl_deadlist_t *ll;
2995 	uint64_t key;
2996 	bplist_t *to_free;
2997 } sublist_delete_arg_t;
2998 
2999 static void
sublist_delete_sync(void * arg,dmu_tx_t * tx)3000 sublist_delete_sync(void *arg, dmu_tx_t *tx)
3001 {
3002 	sublist_delete_arg_t *sda = arg;
3003 	spa_t *spa = sda->spa;
3004 	dsl_deadlist_t *ll = sda->ll;
3005 	uint64_t key = sda->key;
3006 	bplist_t *to_free = sda->to_free;
3007 
3008 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
3009 	dsl_deadlist_remove_entry(ll, key, tx);
3010 }
3011 
3012 typedef struct livelist_delete_arg {
3013 	spa_t *spa;
3014 	uint64_t ll_obj;
3015 	uint64_t zap_obj;
3016 } livelist_delete_arg_t;
3017 
3018 static void
livelist_delete_sync(void * arg,dmu_tx_t * tx)3019 livelist_delete_sync(void *arg, dmu_tx_t *tx)
3020 {
3021 	livelist_delete_arg_t *lda = arg;
3022 	spa_t *spa = lda->spa;
3023 	uint64_t ll_obj = lda->ll_obj;
3024 	uint64_t zap_obj = lda->zap_obj;
3025 	objset_t *mos = spa->spa_meta_objset;
3026 	uint64_t count;
3027 
3028 	/* free the livelist and decrement the feature count */
3029 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
3030 	dsl_deadlist_free(mos, ll_obj, tx);
3031 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
3032 	VERIFY0(zap_count(mos, zap_obj, &count));
3033 	if (count == 0) {
3034 		/* no more livelists to delete */
3035 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
3036 		    DMU_POOL_DELETED_CLONES, tx));
3037 		VERIFY0(zap_destroy(mos, zap_obj, tx));
3038 		spa->spa_livelists_to_delete = 0;
3039 		spa_notify_waiters(spa);
3040 	}
3041 }
3042 
3043 /*
3044  * Load in the value for the livelist to be removed and open it. Then,
3045  * load its first sublist and determine which block pointers should actually
3046  * be freed. Then, call a synctask which performs the actual frees and updates
3047  * the pool-wide livelist data.
3048  */
3049 static void
spa_livelist_delete_cb(void * arg,zthr_t * z)3050 spa_livelist_delete_cb(void *arg, zthr_t *z)
3051 {
3052 	spa_t *spa = arg;
3053 	uint64_t ll_obj = 0, count;
3054 	objset_t *mos = spa->spa_meta_objset;
3055 	uint64_t zap_obj = spa->spa_livelists_to_delete;
3056 	/*
3057 	 * Determine the next livelist to delete. This function should only
3058 	 * be called if there is at least one deleted clone.
3059 	 */
3060 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
3061 	VERIFY0(zap_count(mos, ll_obj, &count));
3062 	if (count > 0) {
3063 		dsl_deadlist_t *ll;
3064 		dsl_deadlist_entry_t *dle;
3065 		bplist_t to_free;
3066 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
3067 		dsl_deadlist_open(ll, mos, ll_obj);
3068 		dle = dsl_deadlist_first(ll);
3069 		ASSERT3P(dle, !=, NULL);
3070 		bplist_create(&to_free);
3071 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
3072 		    z, NULL);
3073 		if (err == 0) {
3074 			sublist_delete_arg_t sync_arg = {
3075 			    .spa = spa,
3076 			    .ll = ll,
3077 			    .key = dle->dle_mintxg,
3078 			    .to_free = &to_free
3079 			};
3080 			zfs_dbgmsg("deleting sublist (id %llu) from"
3081 			    " livelist %llu, %lld remaining",
3082 			    (u_longlong_t)dle->dle_bpobj.bpo_object,
3083 			    (u_longlong_t)ll_obj, (longlong_t)count - 1);
3084 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
3085 			    sublist_delete_sync, &sync_arg, 0,
3086 			    ZFS_SPACE_CHECK_DESTROY));
3087 		} else {
3088 			VERIFY3U(err, ==, EINTR);
3089 		}
3090 		bplist_clear(&to_free);
3091 		bplist_destroy(&to_free);
3092 		dsl_deadlist_close(ll);
3093 		kmem_free(ll, sizeof (dsl_deadlist_t));
3094 	} else {
3095 		livelist_delete_arg_t sync_arg = {
3096 		    .spa = spa,
3097 		    .ll_obj = ll_obj,
3098 		    .zap_obj = zap_obj
3099 		};
3100 		zfs_dbgmsg("deletion of livelist %llu completed",
3101 		    (u_longlong_t)ll_obj);
3102 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
3103 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
3104 	}
3105 }
3106 
3107 static void
spa_start_livelist_destroy_thread(spa_t * spa)3108 spa_start_livelist_destroy_thread(spa_t *spa)
3109 {
3110 	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
3111 	spa->spa_livelist_delete_zthr =
3112 	    zthr_create("z_livelist_destroy",
3113 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
3114 	    minclsyspri);
3115 }
3116 
3117 typedef struct livelist_new_arg {
3118 	bplist_t *allocs;
3119 	bplist_t *frees;
3120 } livelist_new_arg_t;
3121 
3122 static int
livelist_track_new_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3123 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3124     dmu_tx_t *tx)
3125 {
3126 	ASSERT(tx == NULL);
3127 	livelist_new_arg_t *lna = arg;
3128 	if (bp_freed) {
3129 		bplist_append(lna->frees, bp);
3130 	} else {
3131 		bplist_append(lna->allocs, bp);
3132 		zfs_livelist_condense_new_alloc++;
3133 	}
3134 	return (0);
3135 }
3136 
3137 typedef struct livelist_condense_arg {
3138 	spa_t *spa;
3139 	bplist_t to_keep;
3140 	uint64_t first_size;
3141 	uint64_t next_size;
3142 } livelist_condense_arg_t;
3143 
3144 static void
spa_livelist_condense_sync(void * arg,dmu_tx_t * tx)3145 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
3146 {
3147 	livelist_condense_arg_t *lca = arg;
3148 	spa_t *spa = lca->spa;
3149 	bplist_t new_frees;
3150 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
3151 
3152 	/* Have we been cancelled? */
3153 	if (spa->spa_to_condense.cancelled) {
3154 		zfs_livelist_condense_sync_cancel++;
3155 		goto out;
3156 	}
3157 
3158 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3159 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3160 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
3161 
3162 	/*
3163 	 * It's possible that the livelist was changed while the zthr was
3164 	 * running. Therefore, we need to check for new blkptrs in the two
3165 	 * entries being condensed and continue to track them in the livelist.
3166 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
3167 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
3168 	 * we need to sort them into two different bplists.
3169 	 */
3170 	uint64_t first_obj = first->dle_bpobj.bpo_object;
3171 	uint64_t next_obj = next->dle_bpobj.bpo_object;
3172 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3173 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3174 
3175 	bplist_create(&new_frees);
3176 	livelist_new_arg_t new_bps = {
3177 	    .allocs = &lca->to_keep,
3178 	    .frees = &new_frees,
3179 	};
3180 
3181 	if (cur_first_size > lca->first_size) {
3182 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
3183 		    livelist_track_new_cb, &new_bps, lca->first_size));
3184 	}
3185 	if (cur_next_size > lca->next_size) {
3186 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
3187 		    livelist_track_new_cb, &new_bps, lca->next_size));
3188 	}
3189 
3190 	dsl_deadlist_clear_entry(first, ll, tx);
3191 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
3192 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
3193 
3194 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
3195 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
3196 	bplist_destroy(&new_frees);
3197 
3198 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
3199 	dsl_dataset_name(ds, dsname);
3200 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
3201 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
3202 	    "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
3203 	    (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
3204 	    (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
3205 	    (u_longlong_t)cur_next_size,
3206 	    (u_longlong_t)first->dle_bpobj.bpo_object,
3207 	    (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
3208 out:
3209 	dmu_buf_rele(ds->ds_dbuf, spa);
3210 	spa->spa_to_condense.ds = NULL;
3211 	bplist_clear(&lca->to_keep);
3212 	bplist_destroy(&lca->to_keep);
3213 	kmem_free(lca, sizeof (livelist_condense_arg_t));
3214 	spa->spa_to_condense.syncing = B_FALSE;
3215 }
3216 
3217 static void
spa_livelist_condense_cb(void * arg,zthr_t * t)3218 spa_livelist_condense_cb(void *arg, zthr_t *t)
3219 {
3220 	while (zfs_livelist_condense_zthr_pause &&
3221 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3222 		delay(1);
3223 
3224 	spa_t *spa = arg;
3225 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3226 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3227 	uint64_t first_size, next_size;
3228 
3229 	livelist_condense_arg_t *lca =
3230 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
3231 	bplist_create(&lca->to_keep);
3232 
3233 	/*
3234 	 * Process the livelists (matching FREEs and ALLOCs) in open context
3235 	 * so we have minimal work in syncing context to condense.
3236 	 *
3237 	 * We save bpobj sizes (first_size and next_size) to use later in
3238 	 * syncing context to determine if entries were added to these sublists
3239 	 * while in open context. This is possible because the clone is still
3240 	 * active and open for normal writes and we want to make sure the new,
3241 	 * unprocessed blockpointers are inserted into the livelist normally.
3242 	 *
3243 	 * Note that dsl_process_sub_livelist() both stores the size number of
3244 	 * blockpointers and iterates over them while the bpobj's lock held, so
3245 	 * the sizes returned to us are consistent which what was actually
3246 	 * processed.
3247 	 */
3248 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
3249 	    &first_size);
3250 	if (err == 0)
3251 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
3252 		    t, &next_size);
3253 
3254 	if (err == 0) {
3255 		while (zfs_livelist_condense_sync_pause &&
3256 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3257 			delay(1);
3258 
3259 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3260 		dmu_tx_mark_netfree(tx);
3261 		dmu_tx_hold_space(tx, 1);
3262 		err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
3263 		if (err == 0) {
3264 			/*
3265 			 * Prevent the condense zthr restarting before
3266 			 * the synctask completes.
3267 			 */
3268 			spa->spa_to_condense.syncing = B_TRUE;
3269 			lca->spa = spa;
3270 			lca->first_size = first_size;
3271 			lca->next_size = next_size;
3272 			dsl_sync_task_nowait(spa_get_dsl(spa),
3273 			    spa_livelist_condense_sync, lca, tx);
3274 			dmu_tx_commit(tx);
3275 			return;
3276 		}
3277 	}
3278 	/*
3279 	 * Condensing can not continue: either it was externally stopped or
3280 	 * we were unable to assign to a tx because the pool has run out of
3281 	 * space. In the second case, we'll just end up trying to condense
3282 	 * again in a later txg.
3283 	 */
3284 	ASSERT(err != 0);
3285 	bplist_clear(&lca->to_keep);
3286 	bplist_destroy(&lca->to_keep);
3287 	kmem_free(lca, sizeof (livelist_condense_arg_t));
3288 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
3289 	spa->spa_to_condense.ds = NULL;
3290 	if (err == EINTR)
3291 		zfs_livelist_condense_zthr_cancel++;
3292 }
3293 
3294 /*
3295  * Check that there is something to condense but that a condense is not
3296  * already in progress and that condensing has not been cancelled.
3297  */
3298 static boolean_t
spa_livelist_condense_cb_check(void * arg,zthr_t * z)3299 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
3300 {
3301 	(void) z;
3302 	spa_t *spa = arg;
3303 	if ((spa->spa_to_condense.ds != NULL) &&
3304 	    (spa->spa_to_condense.syncing == B_FALSE) &&
3305 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
3306 		return (B_TRUE);
3307 	}
3308 	return (B_FALSE);
3309 }
3310 
3311 static void
spa_start_livelist_condensing_thread(spa_t * spa)3312 spa_start_livelist_condensing_thread(spa_t *spa)
3313 {
3314 	spa->spa_to_condense.ds = NULL;
3315 	spa->spa_to_condense.first = NULL;
3316 	spa->spa_to_condense.next = NULL;
3317 	spa->spa_to_condense.syncing = B_FALSE;
3318 	spa->spa_to_condense.cancelled = B_FALSE;
3319 
3320 	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
3321 	spa->spa_livelist_condense_zthr =
3322 	    zthr_create("z_livelist_condense",
3323 	    spa_livelist_condense_cb_check,
3324 	    spa_livelist_condense_cb, spa, minclsyspri);
3325 }
3326 
3327 static void
spa_spawn_aux_threads(spa_t * spa)3328 spa_spawn_aux_threads(spa_t *spa)
3329 {
3330 	ASSERT(spa_writeable(spa));
3331 
3332 	spa_start_raidz_expansion_thread(spa);
3333 	spa_start_indirect_condensing_thread(spa);
3334 	spa_start_livelist_destroy_thread(spa);
3335 	spa_start_livelist_condensing_thread(spa);
3336 
3337 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
3338 	spa->spa_checkpoint_discard_zthr =
3339 	    zthr_create("z_checkpoint_discard",
3340 	    spa_checkpoint_discard_thread_check,
3341 	    spa_checkpoint_discard_thread, spa, minclsyspri);
3342 }
3343 
3344 /*
3345  * Fix up config after a partly-completed split.  This is done with the
3346  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
3347  * pool have that entry in their config, but only the splitting one contains
3348  * a list of all the guids of the vdevs that are being split off.
3349  *
3350  * This function determines what to do with that list: either rejoin
3351  * all the disks to the pool, or complete the splitting process.  To attempt
3352  * the rejoin, each disk that is offlined is marked online again, and
3353  * we do a reopen() call.  If the vdev label for every disk that was
3354  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
3355  * then we call vdev_split() on each disk, and complete the split.
3356  *
3357  * Otherwise we leave the config alone, with all the vdevs in place in
3358  * the original pool.
3359  */
3360 static void
spa_try_repair(spa_t * spa,nvlist_t * config)3361 spa_try_repair(spa_t *spa, nvlist_t *config)
3362 {
3363 	uint_t extracted;
3364 	uint64_t *glist;
3365 	uint_t i, gcount;
3366 	nvlist_t *nvl;
3367 	vdev_t **vd;
3368 	boolean_t attempt_reopen;
3369 
3370 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
3371 		return;
3372 
3373 	/* check that the config is complete */
3374 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3375 	    &glist, &gcount) != 0)
3376 		return;
3377 
3378 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3379 
3380 	/* attempt to online all the vdevs & validate */
3381 	attempt_reopen = B_TRUE;
3382 	for (i = 0; i < gcount; i++) {
3383 		if (glist[i] == 0)	/* vdev is hole */
3384 			continue;
3385 
3386 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3387 		if (vd[i] == NULL) {
3388 			/*
3389 			 * Don't bother attempting to reopen the disks;
3390 			 * just do the split.
3391 			 */
3392 			attempt_reopen = B_FALSE;
3393 		} else {
3394 			/* attempt to re-online it */
3395 			vd[i]->vdev_offline = B_FALSE;
3396 		}
3397 	}
3398 
3399 	if (attempt_reopen) {
3400 		vdev_reopen(spa->spa_root_vdev);
3401 
3402 		/* check each device to see what state it's in */
3403 		for (extracted = 0, i = 0; i < gcount; i++) {
3404 			if (vd[i] != NULL &&
3405 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3406 				break;
3407 			++extracted;
3408 		}
3409 	}
3410 
3411 	/*
3412 	 * If every disk has been moved to the new pool, or if we never
3413 	 * even attempted to look at them, then we split them off for
3414 	 * good.
3415 	 */
3416 	if (!attempt_reopen || gcount == extracted) {
3417 		for (i = 0; i < gcount; i++)
3418 			if (vd[i] != NULL)
3419 				vdev_split(vd[i]);
3420 		vdev_reopen(spa->spa_root_vdev);
3421 	}
3422 
3423 	kmem_free(vd, gcount * sizeof (vdev_t *));
3424 }
3425 
3426 static int
spa_load(spa_t * spa,spa_load_state_t state,spa_import_type_t type)3427 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3428 {
3429 	const char *ereport = FM_EREPORT_ZFS_POOL;
3430 	int error;
3431 
3432 	spa->spa_load_state = state;
3433 	(void) spa_import_progress_set_state(spa_guid(spa),
3434 	    spa_load_state(spa));
3435 	spa_import_progress_set_notes(spa, "spa_load()");
3436 
3437 	gethrestime(&spa->spa_loaded_ts);
3438 	error = spa_load_impl(spa, type, &ereport);
3439 
3440 	/*
3441 	 * Don't count references from objsets that are already closed
3442 	 * and are making their way through the eviction process.
3443 	 */
3444 	spa_evicting_os_wait(spa);
3445 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3446 	if (error) {
3447 		if (error != EEXIST) {
3448 			spa->spa_loaded_ts.tv_sec = 0;
3449 			spa->spa_loaded_ts.tv_nsec = 0;
3450 		}
3451 		if (error != EBADF) {
3452 			(void) zfs_ereport_post(ereport, spa,
3453 			    NULL, NULL, NULL, 0);
3454 		}
3455 	}
3456 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3457 	spa->spa_ena = 0;
3458 
3459 	(void) spa_import_progress_set_state(spa_guid(spa),
3460 	    spa_load_state(spa));
3461 
3462 	return (error);
3463 }
3464 
3465 #ifdef ZFS_DEBUG
3466 /*
3467  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3468  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3469  * spa's per-vdev ZAP list.
3470  */
3471 static uint64_t
vdev_count_verify_zaps(vdev_t * vd)3472 vdev_count_verify_zaps(vdev_t *vd)
3473 {
3474 	spa_t *spa = vd->vdev_spa;
3475 	uint64_t total = 0;
3476 
3477 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3478 	    vd->vdev_root_zap != 0) {
3479 		total++;
3480 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3481 		    spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3482 	}
3483 	if (vd->vdev_top_zap != 0) {
3484 		total++;
3485 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3486 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3487 	}
3488 	if (vd->vdev_leaf_zap != 0) {
3489 		total++;
3490 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3491 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3492 	}
3493 
3494 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3495 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
3496 	}
3497 
3498 	return (total);
3499 }
3500 #else
3501 #define	vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3502 #endif
3503 
3504 /*
3505  * Determine whether the activity check is required.
3506  */
3507 static boolean_t
spa_activity_check_required(spa_t * spa,uberblock_t * ub,nvlist_t * label,nvlist_t * config)3508 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3509     nvlist_t *config)
3510 {
3511 	uint64_t state = 0;
3512 	uint64_t hostid = 0;
3513 	uint64_t tryconfig_txg = 0;
3514 	uint64_t tryconfig_timestamp = 0;
3515 	uint16_t tryconfig_mmp_seq = 0;
3516 	nvlist_t *nvinfo;
3517 
3518 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3519 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3520 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3521 		    &tryconfig_txg);
3522 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3523 		    &tryconfig_timestamp);
3524 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3525 		    &tryconfig_mmp_seq);
3526 	}
3527 
3528 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3529 
3530 	/*
3531 	 * Disable the MMP activity check - This is used by zdb which
3532 	 * is intended to be used on potentially active pools.
3533 	 */
3534 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3535 		return (B_FALSE);
3536 
3537 	/*
3538 	 * Skip the activity check when the MMP feature is disabled.
3539 	 */
3540 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3541 		return (B_FALSE);
3542 
3543 	/*
3544 	 * If the tryconfig_ values are nonzero, they are the results of an
3545 	 * earlier tryimport.  If they all match the uberblock we just found,
3546 	 * then the pool has not changed and we return false so we do not test
3547 	 * a second time.
3548 	 */
3549 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3550 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3551 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
3552 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3553 		return (B_FALSE);
3554 
3555 	/*
3556 	 * Allow the activity check to be skipped when importing the pool
3557 	 * on the same host which last imported it.  Since the hostid from
3558 	 * configuration may be stale use the one read from the label.
3559 	 */
3560 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3561 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3562 
3563 	if (hostid == spa_get_hostid(spa))
3564 		return (B_FALSE);
3565 
3566 	/*
3567 	 * Skip the activity test when the pool was cleanly exported.
3568 	 */
3569 	if (state != POOL_STATE_ACTIVE)
3570 		return (B_FALSE);
3571 
3572 	return (B_TRUE);
3573 }
3574 
3575 /*
3576  * Nanoseconds the activity check must watch for changes on-disk.
3577  */
3578 static uint64_t
spa_activity_check_duration(spa_t * spa,uberblock_t * ub)3579 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3580 {
3581 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3582 	uint64_t multihost_interval = MSEC2NSEC(
3583 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3584 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3585 	    multihost_interval);
3586 
3587 	/*
3588 	 * Local tunables determine a minimum duration except for the case
3589 	 * where we know when the remote host will suspend the pool if MMP
3590 	 * writes do not land.
3591 	 *
3592 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3593 	 * these cases and times.
3594 	 */
3595 
3596 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3597 
3598 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3599 	    MMP_FAIL_INT(ub) > 0) {
3600 
3601 		/* MMP on remote host will suspend pool after failed writes */
3602 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3603 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3604 
3605 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3606 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3607 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3608 		    (u_longlong_t)MMP_FAIL_INT(ub),
3609 		    (u_longlong_t)MMP_INTERVAL(ub),
3610 		    (u_longlong_t)import_intervals);
3611 
3612 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3613 	    MMP_FAIL_INT(ub) == 0) {
3614 
3615 		/* MMP on remote host will never suspend pool */
3616 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3617 		    ub->ub_mmp_delay) * import_intervals);
3618 
3619 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3620 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3621 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3622 		    (u_longlong_t)MMP_INTERVAL(ub),
3623 		    (u_longlong_t)ub->ub_mmp_delay,
3624 		    (u_longlong_t)import_intervals);
3625 
3626 	} else if (MMP_VALID(ub)) {
3627 		/*
3628 		 * zfs-0.7 compatibility case
3629 		 */
3630 
3631 		import_delay = MAX(import_delay, (multihost_interval +
3632 		    ub->ub_mmp_delay) * import_intervals);
3633 
3634 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3635 		    "import_intervals=%llu leaves=%u",
3636 		    (u_longlong_t)import_delay,
3637 		    (u_longlong_t)ub->ub_mmp_delay,
3638 		    (u_longlong_t)import_intervals,
3639 		    vdev_count_leaves(spa));
3640 	} else {
3641 		/* Using local tunings is the only reasonable option */
3642 		zfs_dbgmsg("pool last imported on non-MMP aware "
3643 		    "host using import_delay=%llu multihost_interval=%llu "
3644 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3645 		    (u_longlong_t)multihost_interval,
3646 		    (u_longlong_t)import_intervals);
3647 	}
3648 
3649 	return (import_delay);
3650 }
3651 
3652 /*
3653  * Remote host activity check.
3654  *
3655  * error results:
3656  *          0 - no activity detected
3657  *  EREMOTEIO - remote activity detected
3658  *      EINTR - user canceled the operation
3659  */
3660 static int
spa_activity_check(spa_t * spa,uberblock_t * ub,nvlist_t * config,boolean_t importing)3661 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config,
3662     boolean_t importing)
3663 {
3664 	uint64_t txg = ub->ub_txg;
3665 	uint64_t timestamp = ub->ub_timestamp;
3666 	uint64_t mmp_config = ub->ub_mmp_config;
3667 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3668 	uint64_t import_delay;
3669 	hrtime_t import_expire, now;
3670 	nvlist_t *mmp_label = NULL;
3671 	vdev_t *rvd = spa->spa_root_vdev;
3672 	kcondvar_t cv;
3673 	kmutex_t mtx;
3674 	int error = 0;
3675 
3676 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3677 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3678 	mutex_enter(&mtx);
3679 
3680 	/*
3681 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3682 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3683 	 * the pool is known to be active on another host.
3684 	 *
3685 	 * Otherwise, the pool might be in use on another host.  Check for
3686 	 * changes in the uberblocks on disk if necessary.
3687 	 */
3688 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3689 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3690 		    ZPOOL_CONFIG_LOAD_INFO);
3691 
3692 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3693 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3694 			vdev_uberblock_load(rvd, ub, &mmp_label);
3695 			error = SET_ERROR(EREMOTEIO);
3696 			goto out;
3697 		}
3698 	}
3699 
3700 	import_delay = spa_activity_check_duration(spa, ub);
3701 
3702 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3703 	import_delay += import_delay * random_in_range(250) / 1000;
3704 
3705 	import_expire = gethrtime() + import_delay;
3706 
3707 	if (importing) {
3708 		spa_import_progress_set_notes(spa, "Checking MMP activity, "
3709 		    "waiting %llu ms", (u_longlong_t)NSEC2MSEC(import_delay));
3710 	}
3711 
3712 	int iterations = 0;
3713 	while ((now = gethrtime()) < import_expire) {
3714 		if (importing && iterations++ % 30 == 0) {
3715 			spa_import_progress_set_notes(spa, "Checking MMP "
3716 			    "activity, %llu ms remaining",
3717 			    (u_longlong_t)NSEC2MSEC(import_expire - now));
3718 		}
3719 
3720 		if (importing) {
3721 			(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3722 			    NSEC2SEC(import_expire - gethrtime()));
3723 		}
3724 
3725 		vdev_uberblock_load(rvd, ub, &mmp_label);
3726 
3727 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3728 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3729 			zfs_dbgmsg("multihost activity detected "
3730 			    "txg %llu ub_txg  %llu "
3731 			    "timestamp %llu ub_timestamp  %llu "
3732 			    "mmp_config %#llx ub_mmp_config %#llx",
3733 			    (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3734 			    (u_longlong_t)timestamp,
3735 			    (u_longlong_t)ub->ub_timestamp,
3736 			    (u_longlong_t)mmp_config,
3737 			    (u_longlong_t)ub->ub_mmp_config);
3738 
3739 			error = SET_ERROR(EREMOTEIO);
3740 			break;
3741 		}
3742 
3743 		if (mmp_label) {
3744 			nvlist_free(mmp_label);
3745 			mmp_label = NULL;
3746 		}
3747 
3748 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3749 		if (error != -1) {
3750 			error = SET_ERROR(EINTR);
3751 			break;
3752 		}
3753 		error = 0;
3754 	}
3755 
3756 out:
3757 	mutex_exit(&mtx);
3758 	mutex_destroy(&mtx);
3759 	cv_destroy(&cv);
3760 
3761 	/*
3762 	 * If the pool is determined to be active store the status in the
3763 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3764 	 * available from configuration read from disk store them as well.
3765 	 * This allows 'zpool import' to generate a more useful message.
3766 	 *
3767 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3768 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3769 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3770 	 */
3771 	if (error == EREMOTEIO) {
3772 		const char *hostname = "<unknown>";
3773 		uint64_t hostid = 0;
3774 
3775 		if (mmp_label) {
3776 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3777 				hostname = fnvlist_lookup_string(mmp_label,
3778 				    ZPOOL_CONFIG_HOSTNAME);
3779 				fnvlist_add_string(spa->spa_load_info,
3780 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3781 			}
3782 
3783 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3784 				hostid = fnvlist_lookup_uint64(mmp_label,
3785 				    ZPOOL_CONFIG_HOSTID);
3786 				fnvlist_add_uint64(spa->spa_load_info,
3787 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3788 			}
3789 		}
3790 
3791 		fnvlist_add_uint64(spa->spa_load_info,
3792 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3793 		fnvlist_add_uint64(spa->spa_load_info,
3794 		    ZPOOL_CONFIG_MMP_TXG, 0);
3795 
3796 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3797 	}
3798 
3799 	if (mmp_label)
3800 		nvlist_free(mmp_label);
3801 
3802 	return (error);
3803 }
3804 
3805 /*
3806  * Called from zfs_ioc_clear for a pool that was suspended
3807  * after failing mmp write checks.
3808  */
3809 boolean_t
spa_mmp_remote_host_activity(spa_t * spa)3810 spa_mmp_remote_host_activity(spa_t *spa)
3811 {
3812 	ASSERT(spa_multihost(spa) && spa_suspended(spa));
3813 
3814 	nvlist_t *best_label;
3815 	uberblock_t best_ub;
3816 
3817 	/*
3818 	 * Locate the best uberblock on disk
3819 	 */
3820 	vdev_uberblock_load(spa->spa_root_vdev, &best_ub, &best_label);
3821 	if (best_label) {
3822 		/*
3823 		 * confirm that the best hostid matches our hostid
3824 		 */
3825 		if (nvlist_exists(best_label, ZPOOL_CONFIG_HOSTID) &&
3826 		    spa_get_hostid(spa) !=
3827 		    fnvlist_lookup_uint64(best_label, ZPOOL_CONFIG_HOSTID)) {
3828 			nvlist_free(best_label);
3829 			return (B_TRUE);
3830 		}
3831 		nvlist_free(best_label);
3832 	} else {
3833 		return (B_TRUE);
3834 	}
3835 
3836 	if (!MMP_VALID(&best_ub) ||
3837 	    !MMP_FAIL_INT_VALID(&best_ub) ||
3838 	    MMP_FAIL_INT(&best_ub) == 0) {
3839 		return (B_TRUE);
3840 	}
3841 
3842 	if (best_ub.ub_txg != spa->spa_uberblock.ub_txg ||
3843 	    best_ub.ub_timestamp != spa->spa_uberblock.ub_timestamp) {
3844 		zfs_dbgmsg("txg mismatch detected during pool clear "
3845 		    "txg %llu ub_txg %llu timestamp %llu ub_timestamp %llu",
3846 		    (u_longlong_t)spa->spa_uberblock.ub_txg,
3847 		    (u_longlong_t)best_ub.ub_txg,
3848 		    (u_longlong_t)spa->spa_uberblock.ub_timestamp,
3849 		    (u_longlong_t)best_ub.ub_timestamp);
3850 		return (B_TRUE);
3851 	}
3852 
3853 	/*
3854 	 * Perform an activity check looking for any remote writer
3855 	 */
3856 	return (spa_activity_check(spa, &spa->spa_uberblock, spa->spa_config,
3857 	    B_FALSE) != 0);
3858 }
3859 
3860 static int
spa_verify_host(spa_t * spa,nvlist_t * mos_config)3861 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3862 {
3863 	uint64_t hostid;
3864 	const char *hostname;
3865 	uint64_t myhostid = 0;
3866 
3867 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3868 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3869 		hostname = fnvlist_lookup_string(mos_config,
3870 		    ZPOOL_CONFIG_HOSTNAME);
3871 
3872 		myhostid = zone_get_hostid(NULL);
3873 
3874 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3875 			cmn_err(CE_WARN, "pool '%s' could not be "
3876 			    "loaded as it was last accessed by "
3877 			    "another system (host: %s hostid: 0x%llx). "
3878 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
3879 			    "ZFS-8000-EY",
3880 			    spa_name(spa), hostname, (u_longlong_t)hostid);
3881 			spa_load_failed(spa, "hostid verification failed: pool "
3882 			    "last accessed by host: %s (hostid: 0x%llx)",
3883 			    hostname, (u_longlong_t)hostid);
3884 			return (SET_ERROR(EBADF));
3885 		}
3886 	}
3887 
3888 	return (0);
3889 }
3890 
3891 static int
spa_ld_parse_config(spa_t * spa,spa_import_type_t type)3892 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3893 {
3894 	int error = 0;
3895 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3896 	int parse;
3897 	vdev_t *rvd;
3898 	uint64_t pool_guid;
3899 	const char *comment;
3900 	const char *compatibility;
3901 
3902 	/*
3903 	 * Versioning wasn't explicitly added to the label until later, so if
3904 	 * it's not present treat it as the initial version.
3905 	 */
3906 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3907 	    &spa->spa_ubsync.ub_version) != 0)
3908 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3909 
3910 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3911 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3912 		    ZPOOL_CONFIG_POOL_GUID);
3913 		return (SET_ERROR(EINVAL));
3914 	}
3915 
3916 	/*
3917 	 * If we are doing an import, ensure that the pool is not already
3918 	 * imported by checking if its pool guid already exists in the
3919 	 * spa namespace.
3920 	 *
3921 	 * The only case that we allow an already imported pool to be
3922 	 * imported again, is when the pool is checkpointed and we want to
3923 	 * look at its checkpointed state from userland tools like zdb.
3924 	 */
3925 #ifdef _KERNEL
3926 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3927 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3928 	    spa_guid_exists(pool_guid, 0)) {
3929 #else
3930 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3931 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3932 	    spa_guid_exists(pool_guid, 0) &&
3933 	    !spa_importing_readonly_checkpoint(spa)) {
3934 #endif
3935 		spa_load_failed(spa, "a pool with guid %llu is already open",
3936 		    (u_longlong_t)pool_guid);
3937 		return (SET_ERROR(EEXIST));
3938 	}
3939 
3940 	spa->spa_config_guid = pool_guid;
3941 
3942 	nvlist_free(spa->spa_load_info);
3943 	spa->spa_load_info = fnvlist_alloc();
3944 
3945 	ASSERT(spa->spa_comment == NULL);
3946 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3947 		spa->spa_comment = spa_strdup(comment);
3948 
3949 	ASSERT(spa->spa_compatibility == NULL);
3950 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3951 	    &compatibility) == 0)
3952 		spa->spa_compatibility = spa_strdup(compatibility);
3953 
3954 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3955 	    &spa->spa_config_txg);
3956 
3957 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3958 		spa->spa_config_splitting = fnvlist_dup(nvl);
3959 
3960 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3961 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3962 		    ZPOOL_CONFIG_VDEV_TREE);
3963 		return (SET_ERROR(EINVAL));
3964 	}
3965 
3966 	/*
3967 	 * Create "The Godfather" zio to hold all async IOs
3968 	 */
3969 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3970 	    KM_SLEEP);
3971 	for (int i = 0; i < max_ncpus; i++) {
3972 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3973 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3974 		    ZIO_FLAG_GODFATHER);
3975 	}
3976 
3977 	/*
3978 	 * Parse the configuration into a vdev tree.  We explicitly set the
3979 	 * value that will be returned by spa_version() since parsing the
3980 	 * configuration requires knowing the version number.
3981 	 */
3982 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3983 	parse = (type == SPA_IMPORT_EXISTING ?
3984 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3985 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3986 	spa_config_exit(spa, SCL_ALL, FTAG);
3987 
3988 	if (error != 0) {
3989 		spa_load_failed(spa, "unable to parse config [error=%d]",
3990 		    error);
3991 		return (error);
3992 	}
3993 
3994 	ASSERT(spa->spa_root_vdev == rvd);
3995 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3996 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3997 
3998 	if (type != SPA_IMPORT_ASSEMBLE) {
3999 		ASSERT(spa_guid(spa) == pool_guid);
4000 	}
4001 
4002 	return (0);
4003 }
4004 
4005 /*
4006  * Recursively open all vdevs in the vdev tree. This function is called twice:
4007  * first with the untrusted config, then with the trusted config.
4008  */
4009 static int
4010 spa_ld_open_vdevs(spa_t *spa)
4011 {
4012 	int error = 0;
4013 
4014 	/*
4015 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
4016 	 * missing/unopenable for the root vdev to be still considered openable.
4017 	 */
4018 	if (spa->spa_trust_config) {
4019 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
4020 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
4021 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
4022 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
4023 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
4024 	} else {
4025 		spa->spa_missing_tvds_allowed = 0;
4026 	}
4027 
4028 	spa->spa_missing_tvds_allowed =
4029 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
4030 
4031 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4032 	error = vdev_open(spa->spa_root_vdev);
4033 	spa_config_exit(spa, SCL_ALL, FTAG);
4034 
4035 	if (spa->spa_missing_tvds != 0) {
4036 		spa_load_note(spa, "vdev tree has %lld missing top-level "
4037 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
4038 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
4039 			/*
4040 			 * Although theoretically we could allow users to open
4041 			 * incomplete pools in RW mode, we'd need to add a lot
4042 			 * of extra logic (e.g. adjust pool space to account
4043 			 * for missing vdevs).
4044 			 * This limitation also prevents users from accidentally
4045 			 * opening the pool in RW mode during data recovery and
4046 			 * damaging it further.
4047 			 */
4048 			spa_load_note(spa, "pools with missing top-level "
4049 			    "vdevs can only be opened in read-only mode.");
4050 			error = SET_ERROR(ENXIO);
4051 		} else {
4052 			spa_load_note(spa, "current settings allow for maximum "
4053 			    "%lld missing top-level vdevs at this stage.",
4054 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
4055 		}
4056 	}
4057 	if (error != 0) {
4058 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
4059 		    error);
4060 	}
4061 	if (spa->spa_missing_tvds != 0 || error != 0)
4062 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
4063 
4064 	return (error);
4065 }
4066 
4067 /*
4068  * We need to validate the vdev labels against the configuration that
4069  * we have in hand. This function is called twice: first with an untrusted
4070  * config, then with a trusted config. The validation is more strict when the
4071  * config is trusted.
4072  */
4073 static int
4074 spa_ld_validate_vdevs(spa_t *spa)
4075 {
4076 	int error = 0;
4077 	vdev_t *rvd = spa->spa_root_vdev;
4078 
4079 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4080 	error = vdev_validate(rvd);
4081 	spa_config_exit(spa, SCL_ALL, FTAG);
4082 
4083 	if (error != 0) {
4084 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
4085 		return (error);
4086 	}
4087 
4088 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
4089 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
4090 		    "some vdevs");
4091 		vdev_dbgmsg_print_tree(rvd, 2);
4092 		return (SET_ERROR(ENXIO));
4093 	}
4094 
4095 	return (0);
4096 }
4097 
4098 static void
4099 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
4100 {
4101 	spa->spa_state = POOL_STATE_ACTIVE;
4102 	spa->spa_ubsync = spa->spa_uberblock;
4103 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
4104 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
4105 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
4106 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
4107 	spa->spa_claim_max_txg = spa->spa_first_txg;
4108 	spa->spa_prev_software_version = ub->ub_software_version;
4109 }
4110 
4111 static int
4112 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
4113 {
4114 	vdev_t *rvd = spa->spa_root_vdev;
4115 	nvlist_t *label;
4116 	uberblock_t *ub = &spa->spa_uberblock;
4117 	boolean_t activity_check = B_FALSE;
4118 
4119 	/*
4120 	 * If we are opening the checkpointed state of the pool by
4121 	 * rewinding to it, at this point we will have written the
4122 	 * checkpointed uberblock to the vdev labels, so searching
4123 	 * the labels will find the right uberblock.  However, if
4124 	 * we are opening the checkpointed state read-only, we have
4125 	 * not modified the labels. Therefore, we must ignore the
4126 	 * labels and continue using the spa_uberblock that was set
4127 	 * by spa_ld_checkpoint_rewind.
4128 	 *
4129 	 * Note that it would be fine to ignore the labels when
4130 	 * rewinding (opening writeable) as well. However, if we
4131 	 * crash just after writing the labels, we will end up
4132 	 * searching the labels. Doing so in the common case means
4133 	 * that this code path gets exercised normally, rather than
4134 	 * just in the edge case.
4135 	 */
4136 	if (ub->ub_checkpoint_txg != 0 &&
4137 	    spa_importing_readonly_checkpoint(spa)) {
4138 		spa_ld_select_uberblock_done(spa, ub);
4139 		return (0);
4140 	}
4141 
4142 	/*
4143 	 * Find the best uberblock.
4144 	 */
4145 	vdev_uberblock_load(rvd, ub, &label);
4146 
4147 	/*
4148 	 * If we weren't able to find a single valid uberblock, return failure.
4149 	 */
4150 	if (ub->ub_txg == 0) {
4151 		nvlist_free(label);
4152 		spa_load_failed(spa, "no valid uberblock found");
4153 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
4154 	}
4155 
4156 	if (spa->spa_load_max_txg != UINT64_MAX) {
4157 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
4158 		    (u_longlong_t)spa->spa_load_max_txg);
4159 	}
4160 	spa_load_note(spa, "using uberblock with txg=%llu",
4161 	    (u_longlong_t)ub->ub_txg);
4162 	if (ub->ub_raidz_reflow_info != 0) {
4163 		spa_load_note(spa, "uberblock raidz_reflow_info: "
4164 		    "state=%u offset=%llu",
4165 		    (int)RRSS_GET_STATE(ub),
4166 		    (u_longlong_t)RRSS_GET_OFFSET(ub));
4167 	}
4168 
4169 
4170 	/*
4171 	 * For pools which have the multihost property on determine if the
4172 	 * pool is truly inactive and can be safely imported.  Prevent
4173 	 * hosts which don't have a hostid set from importing the pool.
4174 	 */
4175 	activity_check = spa_activity_check_required(spa, ub, label,
4176 	    spa->spa_config);
4177 	if (activity_check) {
4178 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
4179 		    spa_get_hostid(spa) == 0) {
4180 			nvlist_free(label);
4181 			fnvlist_add_uint64(spa->spa_load_info,
4182 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4183 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4184 		}
4185 
4186 		int error =
4187 		    spa_activity_check(spa, ub, spa->spa_config, B_TRUE);
4188 		if (error) {
4189 			nvlist_free(label);
4190 			return (error);
4191 		}
4192 
4193 		fnvlist_add_uint64(spa->spa_load_info,
4194 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
4195 		fnvlist_add_uint64(spa->spa_load_info,
4196 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
4197 		fnvlist_add_uint16(spa->spa_load_info,
4198 		    ZPOOL_CONFIG_MMP_SEQ,
4199 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
4200 	}
4201 
4202 	/*
4203 	 * If the pool has an unsupported version we can't open it.
4204 	 */
4205 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
4206 		nvlist_free(label);
4207 		spa_load_failed(spa, "version %llu is not supported",
4208 		    (u_longlong_t)ub->ub_version);
4209 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
4210 	}
4211 
4212 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
4213 		nvlist_t *features;
4214 
4215 		/*
4216 		 * If we weren't able to find what's necessary for reading the
4217 		 * MOS in the label, return failure.
4218 		 */
4219 		if (label == NULL) {
4220 			spa_load_failed(spa, "label config unavailable");
4221 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4222 			    ENXIO));
4223 		}
4224 
4225 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
4226 		    &features) != 0) {
4227 			nvlist_free(label);
4228 			spa_load_failed(spa, "invalid label: '%s' missing",
4229 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
4230 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4231 			    ENXIO));
4232 		}
4233 
4234 		/*
4235 		 * Update our in-core representation with the definitive values
4236 		 * from the label.
4237 		 */
4238 		nvlist_free(spa->spa_label_features);
4239 		spa->spa_label_features = fnvlist_dup(features);
4240 	}
4241 
4242 	nvlist_free(label);
4243 
4244 	/*
4245 	 * Look through entries in the label nvlist's features_for_read. If
4246 	 * there is a feature listed there which we don't understand then we
4247 	 * cannot open a pool.
4248 	 */
4249 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
4250 		nvlist_t *unsup_feat;
4251 
4252 		unsup_feat = fnvlist_alloc();
4253 
4254 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
4255 		    NULL); nvp != NULL;
4256 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
4257 			if (!zfeature_is_supported(nvpair_name(nvp))) {
4258 				fnvlist_add_string(unsup_feat,
4259 				    nvpair_name(nvp), "");
4260 			}
4261 		}
4262 
4263 		if (!nvlist_empty(unsup_feat)) {
4264 			fnvlist_add_nvlist(spa->spa_load_info,
4265 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4266 			nvlist_free(unsup_feat);
4267 			spa_load_failed(spa, "some features are unsupported");
4268 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4269 			    ENOTSUP));
4270 		}
4271 
4272 		nvlist_free(unsup_feat);
4273 	}
4274 
4275 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
4276 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4277 		spa_try_repair(spa, spa->spa_config);
4278 		spa_config_exit(spa, SCL_ALL, FTAG);
4279 		nvlist_free(spa->spa_config_splitting);
4280 		spa->spa_config_splitting = NULL;
4281 	}
4282 
4283 	/*
4284 	 * Initialize internal SPA structures.
4285 	 */
4286 	spa_ld_select_uberblock_done(spa, ub);
4287 
4288 	return (0);
4289 }
4290 
4291 static int
4292 spa_ld_open_rootbp(spa_t *spa)
4293 {
4294 	int error = 0;
4295 	vdev_t *rvd = spa->spa_root_vdev;
4296 
4297 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
4298 	if (error != 0) {
4299 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
4300 		    "[error=%d]", error);
4301 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4302 	}
4303 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
4304 
4305 	return (0);
4306 }
4307 
4308 static int
4309 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
4310     boolean_t reloading)
4311 {
4312 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
4313 	nvlist_t *nv, *mos_config, *policy;
4314 	int error = 0, copy_error;
4315 	uint64_t healthy_tvds, healthy_tvds_mos;
4316 	uint64_t mos_config_txg;
4317 
4318 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
4319 	    != 0)
4320 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4321 
4322 	/*
4323 	 * If we're assembling a pool from a split, the config provided is
4324 	 * already trusted so there is nothing to do.
4325 	 */
4326 	if (type == SPA_IMPORT_ASSEMBLE)
4327 		return (0);
4328 
4329 	healthy_tvds = spa_healthy_core_tvds(spa);
4330 
4331 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
4332 	    != 0) {
4333 		spa_load_failed(spa, "unable to retrieve MOS config");
4334 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4335 	}
4336 
4337 	/*
4338 	 * If we are doing an open, pool owner wasn't verified yet, thus do
4339 	 * the verification here.
4340 	 */
4341 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
4342 		error = spa_verify_host(spa, mos_config);
4343 		if (error != 0) {
4344 			nvlist_free(mos_config);
4345 			return (error);
4346 		}
4347 	}
4348 
4349 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
4350 
4351 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4352 
4353 	/*
4354 	 * Build a new vdev tree from the trusted config
4355 	 */
4356 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
4357 	if (error != 0) {
4358 		nvlist_free(mos_config);
4359 		spa_config_exit(spa, SCL_ALL, FTAG);
4360 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
4361 		    error);
4362 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4363 	}
4364 
4365 	/*
4366 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
4367 	 * obtained by scanning /dev/dsk, then it will have the right vdev
4368 	 * paths. We update the trusted MOS config with this information.
4369 	 * We first try to copy the paths with vdev_copy_path_strict, which
4370 	 * succeeds only when both configs have exactly the same vdev tree.
4371 	 * If that fails, we fall back to a more flexible method that has a
4372 	 * best effort policy.
4373 	 */
4374 	copy_error = vdev_copy_path_strict(rvd, mrvd);
4375 	if (copy_error != 0 || spa_load_print_vdev_tree) {
4376 		spa_load_note(spa, "provided vdev tree:");
4377 		vdev_dbgmsg_print_tree(rvd, 2);
4378 		spa_load_note(spa, "MOS vdev tree:");
4379 		vdev_dbgmsg_print_tree(mrvd, 2);
4380 	}
4381 	if (copy_error != 0) {
4382 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
4383 		    "back to vdev_copy_path_relaxed");
4384 		vdev_copy_path_relaxed(rvd, mrvd);
4385 	}
4386 
4387 	vdev_close(rvd);
4388 	vdev_free(rvd);
4389 	spa->spa_root_vdev = mrvd;
4390 	rvd = mrvd;
4391 	spa_config_exit(spa, SCL_ALL, FTAG);
4392 
4393 	/*
4394 	 * If 'zpool import' used a cached config, then the on-disk hostid and
4395 	 * hostname may be different to the cached config in ways that should
4396 	 * prevent import.  Userspace can't discover this without a scan, but
4397 	 * we know, so we add these values to LOAD_INFO so the caller can know
4398 	 * the difference.
4399 	 *
4400 	 * Note that we have to do this before the config is regenerated,
4401 	 * because the new config will have the hostid and hostname for this
4402 	 * host, in readiness for import.
4403 	 */
4404 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
4405 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
4406 		    fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
4407 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
4408 		fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
4409 		    fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
4410 
4411 	/*
4412 	 * We will use spa_config if we decide to reload the spa or if spa_load
4413 	 * fails and we rewind. We must thus regenerate the config using the
4414 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
4415 	 * pass settings on how to load the pool and is not stored in the MOS.
4416 	 * We copy it over to our new, trusted config.
4417 	 */
4418 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
4419 	    ZPOOL_CONFIG_POOL_TXG);
4420 	nvlist_free(mos_config);
4421 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
4422 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
4423 	    &policy) == 0)
4424 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
4425 	spa_config_set(spa, mos_config);
4426 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
4427 
4428 	/*
4429 	 * Now that we got the config from the MOS, we should be more strict
4430 	 * in checking blkptrs and can make assumptions about the consistency
4431 	 * of the vdev tree. spa_trust_config must be set to true before opening
4432 	 * vdevs in order for them to be writeable.
4433 	 */
4434 	spa->spa_trust_config = B_TRUE;
4435 
4436 	/*
4437 	 * Open and validate the new vdev tree
4438 	 */
4439 	error = spa_ld_open_vdevs(spa);
4440 	if (error != 0)
4441 		return (error);
4442 
4443 	error = spa_ld_validate_vdevs(spa);
4444 	if (error != 0)
4445 		return (error);
4446 
4447 	if (copy_error != 0 || spa_load_print_vdev_tree) {
4448 		spa_load_note(spa, "final vdev tree:");
4449 		vdev_dbgmsg_print_tree(rvd, 2);
4450 	}
4451 
4452 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
4453 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
4454 		/*
4455 		 * Sanity check to make sure that we are indeed loading the
4456 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4457 		 * in the config provided and they happened to be the only ones
4458 		 * to have the latest uberblock, we could involuntarily perform
4459 		 * an extreme rewind.
4460 		 */
4461 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
4462 		if (healthy_tvds_mos - healthy_tvds >=
4463 		    SPA_SYNC_MIN_VDEVS) {
4464 			spa_load_note(spa, "config provided misses too many "
4465 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
4466 			    (u_longlong_t)healthy_tvds,
4467 			    (u_longlong_t)healthy_tvds_mos);
4468 			spa_load_note(spa, "vdev tree:");
4469 			vdev_dbgmsg_print_tree(rvd, 2);
4470 			if (reloading) {
4471 				spa_load_failed(spa, "config was already "
4472 				    "provided from MOS. Aborting.");
4473 				return (spa_vdev_err(rvd,
4474 				    VDEV_AUX_CORRUPT_DATA, EIO));
4475 			}
4476 			spa_load_note(spa, "spa must be reloaded using MOS "
4477 			    "config");
4478 			return (SET_ERROR(EAGAIN));
4479 		}
4480 	}
4481 
4482 	error = spa_check_for_missing_logs(spa);
4483 	if (error != 0)
4484 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4485 
4486 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4487 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4488 		    "guid sum (%llu != %llu)",
4489 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4490 		    (u_longlong_t)rvd->vdev_guid_sum);
4491 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4492 		    ENXIO));
4493 	}
4494 
4495 	return (0);
4496 }
4497 
4498 static int
4499 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4500 {
4501 	int error = 0;
4502 	vdev_t *rvd = spa->spa_root_vdev;
4503 
4504 	/*
4505 	 * Everything that we read before spa_remove_init() must be stored
4506 	 * on concreted vdevs.  Therefore we do this as early as possible.
4507 	 */
4508 	error = spa_remove_init(spa);
4509 	if (error != 0) {
4510 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4511 		    error);
4512 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4513 	}
4514 
4515 	/*
4516 	 * Retrieve information needed to condense indirect vdev mappings.
4517 	 */
4518 	error = spa_condense_init(spa);
4519 	if (error != 0) {
4520 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4521 		    error);
4522 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4523 	}
4524 
4525 	return (0);
4526 }
4527 
4528 static int
4529 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4530 {
4531 	int error = 0;
4532 	vdev_t *rvd = spa->spa_root_vdev;
4533 
4534 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4535 		boolean_t missing_feat_read = B_FALSE;
4536 		nvlist_t *unsup_feat, *enabled_feat;
4537 
4538 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4539 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4540 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4541 		}
4542 
4543 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4544 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4545 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4546 		}
4547 
4548 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4549 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4550 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4551 		}
4552 
4553 		enabled_feat = fnvlist_alloc();
4554 		unsup_feat = fnvlist_alloc();
4555 
4556 		if (!spa_features_check(spa, B_FALSE,
4557 		    unsup_feat, enabled_feat))
4558 			missing_feat_read = B_TRUE;
4559 
4560 		if (spa_writeable(spa) ||
4561 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4562 			if (!spa_features_check(spa, B_TRUE,
4563 			    unsup_feat, enabled_feat)) {
4564 				*missing_feat_writep = B_TRUE;
4565 			}
4566 		}
4567 
4568 		fnvlist_add_nvlist(spa->spa_load_info,
4569 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4570 
4571 		if (!nvlist_empty(unsup_feat)) {
4572 			fnvlist_add_nvlist(spa->spa_load_info,
4573 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4574 		}
4575 
4576 		fnvlist_free(enabled_feat);
4577 		fnvlist_free(unsup_feat);
4578 
4579 		if (!missing_feat_read) {
4580 			fnvlist_add_boolean(spa->spa_load_info,
4581 			    ZPOOL_CONFIG_CAN_RDONLY);
4582 		}
4583 
4584 		/*
4585 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4586 		 * twofold: to determine whether the pool is available for
4587 		 * import in read-write mode and (if it is not) whether the
4588 		 * pool is available for import in read-only mode. If the pool
4589 		 * is available for import in read-write mode, it is displayed
4590 		 * as available in userland; if it is not available for import
4591 		 * in read-only mode, it is displayed as unavailable in
4592 		 * userland. If the pool is available for import in read-only
4593 		 * mode but not read-write mode, it is displayed as unavailable
4594 		 * in userland with a special note that the pool is actually
4595 		 * available for open in read-only mode.
4596 		 *
4597 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4598 		 * missing a feature for write, we must first determine whether
4599 		 * the pool can be opened read-only before returning to
4600 		 * userland in order to know whether to display the
4601 		 * abovementioned note.
4602 		 */
4603 		if (missing_feat_read || (*missing_feat_writep &&
4604 		    spa_writeable(spa))) {
4605 			spa_load_failed(spa, "pool uses unsupported features");
4606 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4607 			    ENOTSUP));
4608 		}
4609 
4610 		/*
4611 		 * Load refcounts for ZFS features from disk into an in-memory
4612 		 * cache during SPA initialization.
4613 		 */
4614 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4615 			uint64_t refcount;
4616 
4617 			error = feature_get_refcount_from_disk(spa,
4618 			    &spa_feature_table[i], &refcount);
4619 			if (error == 0) {
4620 				spa->spa_feat_refcount_cache[i] = refcount;
4621 			} else if (error == ENOTSUP) {
4622 				spa->spa_feat_refcount_cache[i] =
4623 				    SPA_FEATURE_DISABLED;
4624 			} else {
4625 				spa_load_failed(spa, "error getting refcount "
4626 				    "for feature %s [error=%d]",
4627 				    spa_feature_table[i].fi_guid, error);
4628 				return (spa_vdev_err(rvd,
4629 				    VDEV_AUX_CORRUPT_DATA, EIO));
4630 			}
4631 		}
4632 	}
4633 
4634 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4635 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4636 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4637 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4638 	}
4639 
4640 	/*
4641 	 * Encryption was added before bookmark_v2, even though bookmark_v2
4642 	 * is now a dependency. If this pool has encryption enabled without
4643 	 * bookmark_v2, trigger an errata message.
4644 	 */
4645 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4646 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4647 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4648 	}
4649 
4650 	return (0);
4651 }
4652 
4653 static int
4654 spa_ld_load_special_directories(spa_t *spa)
4655 {
4656 	int error = 0;
4657 	vdev_t *rvd = spa->spa_root_vdev;
4658 
4659 	spa->spa_is_initializing = B_TRUE;
4660 	error = dsl_pool_open(spa->spa_dsl_pool);
4661 	spa->spa_is_initializing = B_FALSE;
4662 	if (error != 0) {
4663 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4664 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4665 	}
4666 
4667 	return (0);
4668 }
4669 
4670 static int
4671 spa_ld_get_props(spa_t *spa)
4672 {
4673 	int error = 0;
4674 	uint64_t obj;
4675 	vdev_t *rvd = spa->spa_root_vdev;
4676 
4677 	/* Grab the checksum salt from the MOS. */
4678 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4679 	    DMU_POOL_CHECKSUM_SALT, 1,
4680 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4681 	    spa->spa_cksum_salt.zcs_bytes);
4682 	if (error == ENOENT) {
4683 		/* Generate a new salt for subsequent use */
4684 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4685 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4686 	} else if (error != 0) {
4687 		spa_load_failed(spa, "unable to retrieve checksum salt from "
4688 		    "MOS [error=%d]", error);
4689 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4690 	}
4691 
4692 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4693 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4694 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4695 	if (error != 0) {
4696 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4697 		    "[error=%d]", error);
4698 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4699 	}
4700 
4701 	/*
4702 	 * Load the bit that tells us to use the new accounting function
4703 	 * (raid-z deflation).  If we have an older pool, this will not
4704 	 * be present.
4705 	 */
4706 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4707 	if (error != 0 && error != ENOENT)
4708 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4709 
4710 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4711 	    &spa->spa_creation_version, B_FALSE);
4712 	if (error != 0 && error != ENOENT)
4713 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4714 
4715 	/*
4716 	 * Load the persistent error log.  If we have an older pool, this will
4717 	 * not be present.
4718 	 */
4719 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4720 	    B_FALSE);
4721 	if (error != 0 && error != ENOENT)
4722 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4723 
4724 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4725 	    &spa->spa_errlog_scrub, B_FALSE);
4726 	if (error != 0 && error != ENOENT)
4727 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4728 
4729 	/*
4730 	 * Load the livelist deletion field. If a livelist is queued for
4731 	 * deletion, indicate that in the spa
4732 	 */
4733 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4734 	    &spa->spa_livelists_to_delete, B_FALSE);
4735 	if (error != 0 && error != ENOENT)
4736 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4737 
4738 	/*
4739 	 * Load the history object.  If we have an older pool, this
4740 	 * will not be present.
4741 	 */
4742 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4743 	if (error != 0 && error != ENOENT)
4744 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4745 
4746 	/*
4747 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4748 	 * be present; in this case, defer its creation to a later time to
4749 	 * avoid dirtying the MOS this early / out of sync context. See
4750 	 * spa_sync_config_object.
4751 	 */
4752 
4753 	/* The sentinel is only available in the MOS config. */
4754 	nvlist_t *mos_config;
4755 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4756 		spa_load_failed(spa, "unable to retrieve MOS config");
4757 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4758 	}
4759 
4760 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4761 	    &spa->spa_all_vdev_zaps, B_FALSE);
4762 
4763 	if (error == ENOENT) {
4764 		VERIFY(!nvlist_exists(mos_config,
4765 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4766 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4767 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4768 	} else if (error != 0) {
4769 		nvlist_free(mos_config);
4770 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4771 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4772 		/*
4773 		 * An older version of ZFS overwrote the sentinel value, so
4774 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4775 		 * destruction to later; see spa_sync_config_object.
4776 		 */
4777 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4778 		/*
4779 		 * We're assuming that no vdevs have had their ZAPs created
4780 		 * before this. Better be sure of it.
4781 		 */
4782 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4783 	}
4784 	nvlist_free(mos_config);
4785 
4786 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4787 
4788 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4789 	    B_FALSE);
4790 	if (error && error != ENOENT)
4791 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4792 
4793 	if (error == 0) {
4794 		uint64_t autoreplace = 0;
4795 
4796 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4797 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4798 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4799 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4800 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4801 		spa_prop_find(spa, ZPOOL_PROP_DEDUP_TABLE_QUOTA,
4802 		    &spa->spa_dedup_table_quota);
4803 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4804 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4805 		spa->spa_autoreplace = (autoreplace != 0);
4806 	}
4807 
4808 	/*
4809 	 * If we are importing a pool with missing top-level vdevs,
4810 	 * we enforce that the pool doesn't panic or get suspended on
4811 	 * error since the likelihood of missing data is extremely high.
4812 	 */
4813 	if (spa->spa_missing_tvds > 0 &&
4814 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4815 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4816 		spa_load_note(spa, "forcing failmode to 'continue' "
4817 		    "as some top level vdevs are missing");
4818 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4819 	}
4820 
4821 	return (0);
4822 }
4823 
4824 static int
4825 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4826 {
4827 	int error = 0;
4828 	vdev_t *rvd = spa->spa_root_vdev;
4829 
4830 	/*
4831 	 * If we're assembling the pool from the split-off vdevs of
4832 	 * an existing pool, we don't want to attach the spares & cache
4833 	 * devices.
4834 	 */
4835 
4836 	/*
4837 	 * Load any hot spares for this pool.
4838 	 */
4839 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4840 	    B_FALSE);
4841 	if (error != 0 && error != ENOENT)
4842 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4843 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4844 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4845 		if (load_nvlist(spa, spa->spa_spares.sav_object,
4846 		    &spa->spa_spares.sav_config) != 0) {
4847 			spa_load_failed(spa, "error loading spares nvlist");
4848 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4849 		}
4850 
4851 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4852 		spa_load_spares(spa);
4853 		spa_config_exit(spa, SCL_ALL, FTAG);
4854 	} else if (error == 0) {
4855 		spa->spa_spares.sav_sync = B_TRUE;
4856 	}
4857 
4858 	/*
4859 	 * Load any level 2 ARC devices for this pool.
4860 	 */
4861 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4862 	    &spa->spa_l2cache.sav_object, B_FALSE);
4863 	if (error != 0 && error != ENOENT)
4864 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4865 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4866 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4867 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4868 		    &spa->spa_l2cache.sav_config) != 0) {
4869 			spa_load_failed(spa, "error loading l2cache nvlist");
4870 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4871 		}
4872 
4873 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4874 		spa_load_l2cache(spa);
4875 		spa_config_exit(spa, SCL_ALL, FTAG);
4876 	} else if (error == 0) {
4877 		spa->spa_l2cache.sav_sync = B_TRUE;
4878 	}
4879 
4880 	return (0);
4881 }
4882 
4883 static int
4884 spa_ld_load_vdev_metadata(spa_t *spa)
4885 {
4886 	int error = 0;
4887 	vdev_t *rvd = spa->spa_root_vdev;
4888 
4889 	/*
4890 	 * If the 'multihost' property is set, then never allow a pool to
4891 	 * be imported when the system hostid is zero.  The exception to
4892 	 * this rule is zdb which is always allowed to access pools.
4893 	 */
4894 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4895 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4896 		fnvlist_add_uint64(spa->spa_load_info,
4897 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4898 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4899 	}
4900 
4901 	/*
4902 	 * If the 'autoreplace' property is set, then post a resource notifying
4903 	 * the ZFS DE that it should not issue any faults for unopenable
4904 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
4905 	 * unopenable vdevs so that the normal autoreplace handler can take
4906 	 * over.
4907 	 */
4908 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4909 		spa_check_removed(spa->spa_root_vdev);
4910 		/*
4911 		 * For the import case, this is done in spa_import(), because
4912 		 * at this point we're using the spare definitions from
4913 		 * the MOS config, not necessarily from the userland config.
4914 		 */
4915 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4916 			spa_aux_check_removed(&spa->spa_spares);
4917 			spa_aux_check_removed(&spa->spa_l2cache);
4918 		}
4919 	}
4920 
4921 	/*
4922 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4923 	 */
4924 	error = vdev_load(rvd);
4925 	if (error != 0) {
4926 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4927 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4928 	}
4929 
4930 	error = spa_ld_log_spacemaps(spa);
4931 	if (error != 0) {
4932 		spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4933 		    error);
4934 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4935 	}
4936 
4937 	/*
4938 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4939 	 */
4940 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4941 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4942 	spa_config_exit(spa, SCL_ALL, FTAG);
4943 
4944 	return (0);
4945 }
4946 
4947 static int
4948 spa_ld_load_dedup_tables(spa_t *spa)
4949 {
4950 	int error = 0;
4951 	vdev_t *rvd = spa->spa_root_vdev;
4952 
4953 	error = ddt_load(spa);
4954 	if (error != 0) {
4955 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4956 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4957 	}
4958 
4959 	return (0);
4960 }
4961 
4962 static int
4963 spa_ld_load_brt(spa_t *spa)
4964 {
4965 	int error = 0;
4966 	vdev_t *rvd = spa->spa_root_vdev;
4967 
4968 	error = brt_load(spa);
4969 	if (error != 0) {
4970 		spa_load_failed(spa, "brt_load failed [error=%d]", error);
4971 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4972 	}
4973 
4974 	return (0);
4975 }
4976 
4977 static int
4978 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4979 {
4980 	vdev_t *rvd = spa->spa_root_vdev;
4981 
4982 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4983 		boolean_t missing = spa_check_logs(spa);
4984 		if (missing) {
4985 			if (spa->spa_missing_tvds != 0) {
4986 				spa_load_note(spa, "spa_check_logs failed "
4987 				    "so dropping the logs");
4988 			} else {
4989 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4990 				spa_load_failed(spa, "spa_check_logs failed");
4991 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4992 				    ENXIO));
4993 			}
4994 		}
4995 	}
4996 
4997 	return (0);
4998 }
4999 
5000 static int
5001 spa_ld_verify_pool_data(spa_t *spa)
5002 {
5003 	int error = 0;
5004 	vdev_t *rvd = spa->spa_root_vdev;
5005 
5006 	/*
5007 	 * We've successfully opened the pool, verify that we're ready
5008 	 * to start pushing transactions.
5009 	 */
5010 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
5011 		error = spa_load_verify(spa);
5012 		if (error != 0) {
5013 			spa_load_failed(spa, "spa_load_verify failed "
5014 			    "[error=%d]", error);
5015 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
5016 			    error));
5017 		}
5018 	}
5019 
5020 	return (0);
5021 }
5022 
5023 static void
5024 spa_ld_claim_log_blocks(spa_t *spa)
5025 {
5026 	dmu_tx_t *tx;
5027 	dsl_pool_t *dp = spa_get_dsl(spa);
5028 
5029 	/*
5030 	 * Claim log blocks that haven't been committed yet.
5031 	 * This must all happen in a single txg.
5032 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
5033 	 * invoked from zil_claim_log_block()'s i/o done callback.
5034 	 * Price of rollback is that we abandon the log.
5035 	 */
5036 	spa->spa_claiming = B_TRUE;
5037 
5038 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
5039 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
5040 	    zil_claim, tx, DS_FIND_CHILDREN);
5041 	dmu_tx_commit(tx);
5042 
5043 	spa->spa_claiming = B_FALSE;
5044 
5045 	spa_set_log_state(spa, SPA_LOG_GOOD);
5046 }
5047 
5048 static void
5049 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
5050     boolean_t update_config_cache)
5051 {
5052 	vdev_t *rvd = spa->spa_root_vdev;
5053 	int need_update = B_FALSE;
5054 
5055 	/*
5056 	 * If the config cache is stale, or we have uninitialized
5057 	 * metaslabs (see spa_vdev_add()), then update the config.
5058 	 *
5059 	 * If this is a verbatim import, trust the current
5060 	 * in-core spa_config and update the disk labels.
5061 	 */
5062 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
5063 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
5064 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
5065 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
5066 		need_update = B_TRUE;
5067 
5068 	for (int c = 0; c < rvd->vdev_children; c++)
5069 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
5070 			need_update = B_TRUE;
5071 
5072 	/*
5073 	 * Update the config cache asynchronously in case we're the
5074 	 * root pool, in which case the config cache isn't writable yet.
5075 	 */
5076 	if (need_update)
5077 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
5078 }
5079 
5080 static void
5081 spa_ld_prepare_for_reload(spa_t *spa)
5082 {
5083 	spa_mode_t mode = spa->spa_mode;
5084 	int async_suspended = spa->spa_async_suspended;
5085 
5086 	spa_unload(spa);
5087 	spa_deactivate(spa);
5088 	spa_activate(spa, mode);
5089 
5090 	/*
5091 	 * We save the value of spa_async_suspended as it gets reset to 0 by
5092 	 * spa_unload(). We want to restore it back to the original value before
5093 	 * returning as we might be calling spa_async_resume() later.
5094 	 */
5095 	spa->spa_async_suspended = async_suspended;
5096 }
5097 
5098 static int
5099 spa_ld_read_checkpoint_txg(spa_t *spa)
5100 {
5101 	uberblock_t checkpoint;
5102 	int error = 0;
5103 
5104 	ASSERT0(spa->spa_checkpoint_txg);
5105 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
5106 	    spa->spa_load_thread == curthread);
5107 
5108 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5109 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5110 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5111 
5112 	if (error == ENOENT)
5113 		return (0);
5114 
5115 	if (error != 0)
5116 		return (error);
5117 
5118 	ASSERT3U(checkpoint.ub_txg, !=, 0);
5119 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
5120 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
5121 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
5122 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
5123 
5124 	return (0);
5125 }
5126 
5127 static int
5128 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
5129 {
5130 	int error = 0;
5131 
5132 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5133 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5134 
5135 	/*
5136 	 * Never trust the config that is provided unless we are assembling
5137 	 * a pool following a split.
5138 	 * This means don't trust blkptrs and the vdev tree in general. This
5139 	 * also effectively puts the spa in read-only mode since
5140 	 * spa_writeable() checks for spa_trust_config to be true.
5141 	 * We will later load a trusted config from the MOS.
5142 	 */
5143 	if (type != SPA_IMPORT_ASSEMBLE)
5144 		spa->spa_trust_config = B_FALSE;
5145 
5146 	/*
5147 	 * Parse the config provided to create a vdev tree.
5148 	 */
5149 	error = spa_ld_parse_config(spa, type);
5150 	if (error != 0)
5151 		return (error);
5152 
5153 	spa_import_progress_add(spa);
5154 
5155 	/*
5156 	 * Now that we have the vdev tree, try to open each vdev. This involves
5157 	 * opening the underlying physical device, retrieving its geometry and
5158 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
5159 	 * based on the success of those operations. After this we'll be ready
5160 	 * to read from the vdevs.
5161 	 */
5162 	error = spa_ld_open_vdevs(spa);
5163 	if (error != 0)
5164 		return (error);
5165 
5166 	/*
5167 	 * Read the label of each vdev and make sure that the GUIDs stored
5168 	 * there match the GUIDs in the config provided.
5169 	 * If we're assembling a new pool that's been split off from an
5170 	 * existing pool, the labels haven't yet been updated so we skip
5171 	 * validation for now.
5172 	 */
5173 	if (type != SPA_IMPORT_ASSEMBLE) {
5174 		error = spa_ld_validate_vdevs(spa);
5175 		if (error != 0)
5176 			return (error);
5177 	}
5178 
5179 	/*
5180 	 * Read all vdev labels to find the best uberblock (i.e. latest,
5181 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
5182 	 * get the list of features required to read blkptrs in the MOS from
5183 	 * the vdev label with the best uberblock and verify that our version
5184 	 * of zfs supports them all.
5185 	 */
5186 	error = spa_ld_select_uberblock(spa, type);
5187 	if (error != 0)
5188 		return (error);
5189 
5190 	/*
5191 	 * Pass that uberblock to the dsl_pool layer which will open the root
5192 	 * blkptr. This blkptr points to the latest version of the MOS and will
5193 	 * allow us to read its contents.
5194 	 */
5195 	error = spa_ld_open_rootbp(spa);
5196 	if (error != 0)
5197 		return (error);
5198 
5199 	return (0);
5200 }
5201 
5202 static int
5203 spa_ld_checkpoint_rewind(spa_t *spa)
5204 {
5205 	uberblock_t checkpoint;
5206 	int error = 0;
5207 
5208 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5209 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5210 
5211 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5212 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5213 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5214 
5215 	if (error != 0) {
5216 		spa_load_failed(spa, "unable to retrieve checkpointed "
5217 		    "uberblock from the MOS config [error=%d]", error);
5218 
5219 		if (error == ENOENT)
5220 			error = ZFS_ERR_NO_CHECKPOINT;
5221 
5222 		return (error);
5223 	}
5224 
5225 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
5226 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
5227 
5228 	/*
5229 	 * We need to update the txg and timestamp of the checkpointed
5230 	 * uberblock to be higher than the latest one. This ensures that
5231 	 * the checkpointed uberblock is selected if we were to close and
5232 	 * reopen the pool right after we've written it in the vdev labels.
5233 	 * (also see block comment in vdev_uberblock_compare)
5234 	 */
5235 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
5236 	checkpoint.ub_timestamp = gethrestime_sec();
5237 
5238 	/*
5239 	 * Set current uberblock to be the checkpointed uberblock.
5240 	 */
5241 	spa->spa_uberblock = checkpoint;
5242 
5243 	/*
5244 	 * If we are doing a normal rewind, then the pool is open for
5245 	 * writing and we sync the "updated" checkpointed uberblock to
5246 	 * disk. Once this is done, we've basically rewound the whole
5247 	 * pool and there is no way back.
5248 	 *
5249 	 * There are cases when we don't want to attempt and sync the
5250 	 * checkpointed uberblock to disk because we are opening a
5251 	 * pool as read-only. Specifically, verifying the checkpointed
5252 	 * state with zdb, and importing the checkpointed state to get
5253 	 * a "preview" of its content.
5254 	 */
5255 	if (spa_writeable(spa)) {
5256 		vdev_t *rvd = spa->spa_root_vdev;
5257 
5258 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5259 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
5260 		int svdcount = 0;
5261 		int children = rvd->vdev_children;
5262 		int c0 = random_in_range(children);
5263 
5264 		for (int c = 0; c < children; c++) {
5265 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
5266 
5267 			/* Stop when revisiting the first vdev */
5268 			if (c > 0 && svd[0] == vd)
5269 				break;
5270 
5271 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
5272 			    !vdev_is_concrete(vd))
5273 				continue;
5274 
5275 			svd[svdcount++] = vd;
5276 			if (svdcount == SPA_SYNC_MIN_VDEVS)
5277 				break;
5278 		}
5279 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
5280 		if (error == 0)
5281 			spa->spa_last_synced_guid = rvd->vdev_guid;
5282 		spa_config_exit(spa, SCL_ALL, FTAG);
5283 
5284 		if (error != 0) {
5285 			spa_load_failed(spa, "failed to write checkpointed "
5286 			    "uberblock to the vdev labels [error=%d]", error);
5287 			return (error);
5288 		}
5289 	}
5290 
5291 	return (0);
5292 }
5293 
5294 static int
5295 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
5296     boolean_t *update_config_cache)
5297 {
5298 	int error;
5299 
5300 	/*
5301 	 * Parse the config for pool, open and validate vdevs,
5302 	 * select an uberblock, and use that uberblock to open
5303 	 * the MOS.
5304 	 */
5305 	error = spa_ld_mos_init(spa, type);
5306 	if (error != 0)
5307 		return (error);
5308 
5309 	/*
5310 	 * Retrieve the trusted config stored in the MOS and use it to create
5311 	 * a new, exact version of the vdev tree, then reopen all vdevs.
5312 	 */
5313 	error = spa_ld_trusted_config(spa, type, B_FALSE);
5314 	if (error == EAGAIN) {
5315 		if (update_config_cache != NULL)
5316 			*update_config_cache = B_TRUE;
5317 
5318 		/*
5319 		 * Redo the loading process with the trusted config if it is
5320 		 * too different from the untrusted config.
5321 		 */
5322 		spa_ld_prepare_for_reload(spa);
5323 		spa_load_note(spa, "RELOADING");
5324 		error = spa_ld_mos_init(spa, type);
5325 		if (error != 0)
5326 			return (error);
5327 
5328 		error = spa_ld_trusted_config(spa, type, B_TRUE);
5329 		if (error != 0)
5330 			return (error);
5331 
5332 	} else if (error != 0) {
5333 		return (error);
5334 	}
5335 
5336 	return (0);
5337 }
5338 
5339 /*
5340  * Load an existing storage pool, using the config provided. This config
5341  * describes which vdevs are part of the pool and is later validated against
5342  * partial configs present in each vdev's label and an entire copy of the
5343  * config stored in the MOS.
5344  */
5345 static int
5346 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
5347 {
5348 	int error = 0;
5349 	boolean_t missing_feat_write = B_FALSE;
5350 	boolean_t checkpoint_rewind =
5351 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5352 	boolean_t update_config_cache = B_FALSE;
5353 	hrtime_t load_start = gethrtime();
5354 
5355 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5356 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5357 
5358 	spa_load_note(spa, "LOADING");
5359 
5360 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
5361 	if (error != 0)
5362 		return (error);
5363 
5364 	/*
5365 	 * If we are rewinding to the checkpoint then we need to repeat
5366 	 * everything we've done so far in this function but this time
5367 	 * selecting the checkpointed uberblock and using that to open
5368 	 * the MOS.
5369 	 */
5370 	if (checkpoint_rewind) {
5371 		/*
5372 		 * If we are rewinding to the checkpoint update config cache
5373 		 * anyway.
5374 		 */
5375 		update_config_cache = B_TRUE;
5376 
5377 		/*
5378 		 * Extract the checkpointed uberblock from the current MOS
5379 		 * and use this as the pool's uberblock from now on. If the
5380 		 * pool is imported as writeable we also write the checkpoint
5381 		 * uberblock to the labels, making the rewind permanent.
5382 		 */
5383 		error = spa_ld_checkpoint_rewind(spa);
5384 		if (error != 0)
5385 			return (error);
5386 
5387 		/*
5388 		 * Redo the loading process again with the
5389 		 * checkpointed uberblock.
5390 		 */
5391 		spa_ld_prepare_for_reload(spa);
5392 		spa_load_note(spa, "LOADING checkpointed uberblock");
5393 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
5394 		if (error != 0)
5395 			return (error);
5396 	}
5397 
5398 	/*
5399 	 * Drop the namespace lock for the rest of the function.
5400 	 */
5401 	spa->spa_load_thread = curthread;
5402 	mutex_exit(&spa_namespace_lock);
5403 
5404 	/*
5405 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
5406 	 */
5407 	spa_import_progress_set_notes(spa, "Loading checkpoint txg");
5408 	error = spa_ld_read_checkpoint_txg(spa);
5409 	if (error != 0)
5410 		goto fail;
5411 
5412 	/*
5413 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
5414 	 * from the pool and their contents were re-mapped to other vdevs. Note
5415 	 * that everything that we read before this step must have been
5416 	 * rewritten on concrete vdevs after the last device removal was
5417 	 * initiated. Otherwise we could be reading from indirect vdevs before
5418 	 * we have loaded their mappings.
5419 	 */
5420 	spa_import_progress_set_notes(spa, "Loading indirect vdev metadata");
5421 	error = spa_ld_open_indirect_vdev_metadata(spa);
5422 	if (error != 0)
5423 		goto fail;
5424 
5425 	/*
5426 	 * Retrieve the full list of active features from the MOS and check if
5427 	 * they are all supported.
5428 	 */
5429 	spa_import_progress_set_notes(spa, "Checking feature flags");
5430 	error = spa_ld_check_features(spa, &missing_feat_write);
5431 	if (error != 0)
5432 		goto fail;
5433 
5434 	/*
5435 	 * Load several special directories from the MOS needed by the dsl_pool
5436 	 * layer.
5437 	 */
5438 	spa_import_progress_set_notes(spa, "Loading special MOS directories");
5439 	error = spa_ld_load_special_directories(spa);
5440 	if (error != 0)
5441 		goto fail;
5442 
5443 	/*
5444 	 * Retrieve pool properties from the MOS.
5445 	 */
5446 	spa_import_progress_set_notes(spa, "Loading properties");
5447 	error = spa_ld_get_props(spa);
5448 	if (error != 0)
5449 		goto fail;
5450 
5451 	/*
5452 	 * Retrieve the list of auxiliary devices - cache devices and spares -
5453 	 * and open them.
5454 	 */
5455 	spa_import_progress_set_notes(spa, "Loading AUX vdevs");
5456 	error = spa_ld_open_aux_vdevs(spa, type);
5457 	if (error != 0)
5458 		goto fail;
5459 
5460 	/*
5461 	 * Load the metadata for all vdevs. Also check if unopenable devices
5462 	 * should be autoreplaced.
5463 	 */
5464 	spa_import_progress_set_notes(spa, "Loading vdev metadata");
5465 	error = spa_ld_load_vdev_metadata(spa);
5466 	if (error != 0)
5467 		goto fail;
5468 
5469 	spa_import_progress_set_notes(spa, "Loading dedup tables");
5470 	error = spa_ld_load_dedup_tables(spa);
5471 	if (error != 0)
5472 		goto fail;
5473 
5474 	spa_import_progress_set_notes(spa, "Loading BRT");
5475 	error = spa_ld_load_brt(spa);
5476 	if (error != 0)
5477 		goto fail;
5478 
5479 	/*
5480 	 * Verify the logs now to make sure we don't have any unexpected errors
5481 	 * when we claim log blocks later.
5482 	 */
5483 	spa_import_progress_set_notes(spa, "Verifying Log Devices");
5484 	error = spa_ld_verify_logs(spa, type, ereport);
5485 	if (error != 0)
5486 		goto fail;
5487 
5488 	if (missing_feat_write) {
5489 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5490 
5491 		/*
5492 		 * At this point, we know that we can open the pool in
5493 		 * read-only mode but not read-write mode. We now have enough
5494 		 * information and can return to userland.
5495 		 */
5496 		error = spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5497 		    ENOTSUP);
5498 		goto fail;
5499 	}
5500 
5501 	/*
5502 	 * Traverse the last txgs to make sure the pool was left off in a safe
5503 	 * state. When performing an extreme rewind, we verify the whole pool,
5504 	 * which can take a very long time.
5505 	 */
5506 	spa_import_progress_set_notes(spa, "Verifying pool data");
5507 	error = spa_ld_verify_pool_data(spa);
5508 	if (error != 0)
5509 		goto fail;
5510 
5511 	/*
5512 	 * Calculate the deflated space for the pool. This must be done before
5513 	 * we write anything to the pool because we'd need to update the space
5514 	 * accounting using the deflated sizes.
5515 	 */
5516 	spa_import_progress_set_notes(spa, "Calculating deflated space");
5517 	spa_update_dspace(spa);
5518 
5519 	/*
5520 	 * We have now retrieved all the information we needed to open the
5521 	 * pool. If we are importing the pool in read-write mode, a few
5522 	 * additional steps must be performed to finish the import.
5523 	 */
5524 	spa_import_progress_set_notes(spa, "Starting import");
5525 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5526 	    spa->spa_load_max_txg == UINT64_MAX)) {
5527 		uint64_t config_cache_txg = spa->spa_config_txg;
5528 
5529 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5530 
5531 		/*
5532 		 * Before we do any zio_write's, complete the raidz expansion
5533 		 * scratch space copying, if necessary.
5534 		 */
5535 		if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID)
5536 			vdev_raidz_reflow_copy_scratch(spa);
5537 
5538 		/*
5539 		 * In case of a checkpoint rewind, log the original txg
5540 		 * of the checkpointed uberblock.
5541 		 */
5542 		if (checkpoint_rewind) {
5543 			spa_history_log_internal(spa, "checkpoint rewind",
5544 			    NULL, "rewound state to txg=%llu",
5545 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5546 		}
5547 
5548 		spa_import_progress_set_notes(spa, "Claiming ZIL blocks");
5549 		/*
5550 		 * Traverse the ZIL and claim all blocks.
5551 		 */
5552 		spa_ld_claim_log_blocks(spa);
5553 
5554 		/*
5555 		 * Kick-off the syncing thread.
5556 		 */
5557 		spa->spa_sync_on = B_TRUE;
5558 		txg_sync_start(spa->spa_dsl_pool);
5559 		mmp_thread_start(spa);
5560 
5561 		/*
5562 		 * Wait for all claims to sync.  We sync up to the highest
5563 		 * claimed log block birth time so that claimed log blocks
5564 		 * don't appear to be from the future.  spa_claim_max_txg
5565 		 * will have been set for us by ZIL traversal operations
5566 		 * performed above.
5567 		 */
5568 		spa_import_progress_set_notes(spa, "Syncing ZIL claims");
5569 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5570 
5571 		/*
5572 		 * Check if we need to request an update of the config. On the
5573 		 * next sync, we would update the config stored in vdev labels
5574 		 * and the cachefile (by default /etc/zfs/zpool.cache).
5575 		 */
5576 		spa_import_progress_set_notes(spa, "Updating configs");
5577 		spa_ld_check_for_config_update(spa, config_cache_txg,
5578 		    update_config_cache);
5579 
5580 		/*
5581 		 * Check if a rebuild was in progress and if so resume it.
5582 		 * Then check all DTLs to see if anything needs resilvering.
5583 		 * The resilver will be deferred if a rebuild was started.
5584 		 */
5585 		spa_import_progress_set_notes(spa, "Starting resilvers");
5586 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
5587 			vdev_rebuild_restart(spa);
5588 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5589 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5590 			spa_async_request(spa, SPA_ASYNC_RESILVER);
5591 		}
5592 
5593 		/*
5594 		 * Log the fact that we booted up (so that we can detect if
5595 		 * we rebooted in the middle of an operation).
5596 		 */
5597 		spa_history_log_version(spa, "open", NULL);
5598 
5599 		spa_import_progress_set_notes(spa,
5600 		    "Restarting device removals");
5601 		spa_restart_removal(spa);
5602 		spa_spawn_aux_threads(spa);
5603 
5604 		/*
5605 		 * Delete any inconsistent datasets.
5606 		 *
5607 		 * Note:
5608 		 * Since we may be issuing deletes for clones here,
5609 		 * we make sure to do so after we've spawned all the
5610 		 * auxiliary threads above (from which the livelist
5611 		 * deletion zthr is part of).
5612 		 */
5613 		spa_import_progress_set_notes(spa,
5614 		    "Cleaning up inconsistent objsets");
5615 		(void) dmu_objset_find(spa_name(spa),
5616 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5617 
5618 		/*
5619 		 * Clean up any stale temporary dataset userrefs.
5620 		 */
5621 		spa_import_progress_set_notes(spa,
5622 		    "Cleaning up temporary userrefs");
5623 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5624 
5625 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5626 		spa_import_progress_set_notes(spa, "Restarting initialize");
5627 		vdev_initialize_restart(spa->spa_root_vdev);
5628 		spa_import_progress_set_notes(spa, "Restarting TRIM");
5629 		vdev_trim_restart(spa->spa_root_vdev);
5630 		vdev_autotrim_restart(spa);
5631 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5632 		spa_import_progress_set_notes(spa, "Finished importing");
5633 	}
5634 	zio_handle_import_delay(spa, gethrtime() - load_start);
5635 
5636 	spa_import_progress_remove(spa_guid(spa));
5637 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5638 
5639 	spa_load_note(spa, "LOADED");
5640 fail:
5641 	mutex_enter(&spa_namespace_lock);
5642 	spa->spa_load_thread = NULL;
5643 	cv_broadcast(&spa_namespace_cv);
5644 
5645 	return (error);
5646 
5647 }
5648 
5649 static int
5650 spa_load_retry(spa_t *spa, spa_load_state_t state)
5651 {
5652 	spa_mode_t mode = spa->spa_mode;
5653 
5654 	spa_unload(spa);
5655 	spa_deactivate(spa);
5656 
5657 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5658 
5659 	spa_activate(spa, mode);
5660 	spa_async_suspend(spa);
5661 
5662 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5663 	    (u_longlong_t)spa->spa_load_max_txg);
5664 
5665 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5666 }
5667 
5668 /*
5669  * If spa_load() fails this function will try loading prior txg's. If
5670  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5671  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5672  * function will not rewind the pool and will return the same error as
5673  * spa_load().
5674  */
5675 static int
5676 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5677     int rewind_flags)
5678 {
5679 	nvlist_t *loadinfo = NULL;
5680 	nvlist_t *config = NULL;
5681 	int load_error, rewind_error;
5682 	uint64_t safe_rewind_txg;
5683 	uint64_t min_txg;
5684 
5685 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5686 		spa->spa_load_max_txg = spa->spa_load_txg;
5687 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5688 	} else {
5689 		spa->spa_load_max_txg = max_request;
5690 		if (max_request != UINT64_MAX)
5691 			spa->spa_extreme_rewind = B_TRUE;
5692 	}
5693 
5694 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5695 	if (load_error == 0)
5696 		return (0);
5697 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5698 		/*
5699 		 * When attempting checkpoint-rewind on a pool with no
5700 		 * checkpoint, we should not attempt to load uberblocks
5701 		 * from previous txgs when spa_load fails.
5702 		 */
5703 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5704 		spa_import_progress_remove(spa_guid(spa));
5705 		return (load_error);
5706 	}
5707 
5708 	if (spa->spa_root_vdev != NULL)
5709 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5710 
5711 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5712 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5713 
5714 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
5715 		nvlist_free(config);
5716 		spa_import_progress_remove(spa_guid(spa));
5717 		return (load_error);
5718 	}
5719 
5720 	if (state == SPA_LOAD_RECOVER) {
5721 		/* Price of rolling back is discarding txgs, including log */
5722 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5723 	} else {
5724 		/*
5725 		 * If we aren't rolling back save the load info from our first
5726 		 * import attempt so that we can restore it after attempting
5727 		 * to rewind.
5728 		 */
5729 		loadinfo = spa->spa_load_info;
5730 		spa->spa_load_info = fnvlist_alloc();
5731 	}
5732 
5733 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5734 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5735 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5736 	    TXG_INITIAL : safe_rewind_txg;
5737 
5738 	/*
5739 	 * Continue as long as we're finding errors, we're still within
5740 	 * the acceptable rewind range, and we're still finding uberblocks
5741 	 */
5742 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5743 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5744 		if (spa->spa_load_max_txg < safe_rewind_txg)
5745 			spa->spa_extreme_rewind = B_TRUE;
5746 		rewind_error = spa_load_retry(spa, state);
5747 	}
5748 
5749 	spa->spa_extreme_rewind = B_FALSE;
5750 	spa->spa_load_max_txg = UINT64_MAX;
5751 
5752 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5753 		spa_config_set(spa, config);
5754 	else
5755 		nvlist_free(config);
5756 
5757 	if (state == SPA_LOAD_RECOVER) {
5758 		ASSERT3P(loadinfo, ==, NULL);
5759 		spa_import_progress_remove(spa_guid(spa));
5760 		return (rewind_error);
5761 	} else {
5762 		/* Store the rewind info as part of the initial load info */
5763 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5764 		    spa->spa_load_info);
5765 
5766 		/* Restore the initial load info */
5767 		fnvlist_free(spa->spa_load_info);
5768 		spa->spa_load_info = loadinfo;
5769 
5770 		spa_import_progress_remove(spa_guid(spa));
5771 		return (load_error);
5772 	}
5773 }
5774 
5775 /*
5776  * Pool Open/Import
5777  *
5778  * The import case is identical to an open except that the configuration is sent
5779  * down from userland, instead of grabbed from the configuration cache.  For the
5780  * case of an open, the pool configuration will exist in the
5781  * POOL_STATE_UNINITIALIZED state.
5782  *
5783  * The stats information (gen/count/ustats) is used to gather vdev statistics at
5784  * the same time open the pool, without having to keep around the spa_t in some
5785  * ambiguous state.
5786  */
5787 static int
5788 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5789     nvlist_t *nvpolicy, nvlist_t **config)
5790 {
5791 	spa_t *spa;
5792 	spa_load_state_t state = SPA_LOAD_OPEN;
5793 	int error;
5794 	int locked = B_FALSE;
5795 	int firstopen = B_FALSE;
5796 
5797 	*spapp = NULL;
5798 
5799 	/*
5800 	 * As disgusting as this is, we need to support recursive calls to this
5801 	 * function because dsl_dir_open() is called during spa_load(), and ends
5802 	 * up calling spa_open() again.  The real fix is to figure out how to
5803 	 * avoid dsl_dir_open() calling this in the first place.
5804 	 */
5805 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5806 		mutex_enter(&spa_namespace_lock);
5807 		locked = B_TRUE;
5808 	}
5809 
5810 	if ((spa = spa_lookup(pool)) == NULL) {
5811 		if (locked)
5812 			mutex_exit(&spa_namespace_lock);
5813 		return (SET_ERROR(ENOENT));
5814 	}
5815 
5816 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5817 		zpool_load_policy_t policy;
5818 
5819 		firstopen = B_TRUE;
5820 
5821 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5822 		    &policy);
5823 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5824 			state = SPA_LOAD_RECOVER;
5825 
5826 		spa_activate(spa, spa_mode_global);
5827 
5828 		if (state != SPA_LOAD_RECOVER)
5829 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5830 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5831 
5832 		zfs_dbgmsg("spa_open_common: opening %s", pool);
5833 		error = spa_load_best(spa, state, policy.zlp_txg,
5834 		    policy.zlp_rewind);
5835 
5836 		if (error == EBADF) {
5837 			/*
5838 			 * If vdev_validate() returns failure (indicated by
5839 			 * EBADF), it indicates that one of the vdevs indicates
5840 			 * that the pool has been exported or destroyed.  If
5841 			 * this is the case, the config cache is out of sync and
5842 			 * we should remove the pool from the namespace.
5843 			 */
5844 			spa_unload(spa);
5845 			spa_deactivate(spa);
5846 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5847 			spa_remove(spa);
5848 			if (locked)
5849 				mutex_exit(&spa_namespace_lock);
5850 			return (SET_ERROR(ENOENT));
5851 		}
5852 
5853 		if (error) {
5854 			/*
5855 			 * We can't open the pool, but we still have useful
5856 			 * information: the state of each vdev after the
5857 			 * attempted vdev_open().  Return this to the user.
5858 			 */
5859 			if (config != NULL && spa->spa_config) {
5860 				*config = fnvlist_dup(spa->spa_config);
5861 				fnvlist_add_nvlist(*config,
5862 				    ZPOOL_CONFIG_LOAD_INFO,
5863 				    spa->spa_load_info);
5864 			}
5865 			spa_unload(spa);
5866 			spa_deactivate(spa);
5867 			spa->spa_last_open_failed = error;
5868 			if (locked)
5869 				mutex_exit(&spa_namespace_lock);
5870 			*spapp = NULL;
5871 			return (error);
5872 		}
5873 	}
5874 
5875 	spa_open_ref(spa, tag);
5876 
5877 	if (config != NULL)
5878 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5879 
5880 	/*
5881 	 * If we've recovered the pool, pass back any information we
5882 	 * gathered while doing the load.
5883 	 */
5884 	if (state == SPA_LOAD_RECOVER && config != NULL) {
5885 		fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5886 		    spa->spa_load_info);
5887 	}
5888 
5889 	if (locked) {
5890 		spa->spa_last_open_failed = 0;
5891 		spa->spa_last_ubsync_txg = 0;
5892 		spa->spa_load_txg = 0;
5893 		mutex_exit(&spa_namespace_lock);
5894 	}
5895 
5896 	if (firstopen)
5897 		zvol_create_minors_recursive(spa_name(spa));
5898 
5899 	*spapp = spa;
5900 
5901 	return (0);
5902 }
5903 
5904 int
5905 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5906     nvlist_t *policy, nvlist_t **config)
5907 {
5908 	return (spa_open_common(name, spapp, tag, policy, config));
5909 }
5910 
5911 int
5912 spa_open(const char *name, spa_t **spapp, const void *tag)
5913 {
5914 	return (spa_open_common(name, spapp, tag, NULL, NULL));
5915 }
5916 
5917 /*
5918  * Lookup the given spa_t, incrementing the inject count in the process,
5919  * preventing it from being exported or destroyed.
5920  */
5921 spa_t *
5922 spa_inject_addref(char *name)
5923 {
5924 	spa_t *spa;
5925 
5926 	mutex_enter(&spa_namespace_lock);
5927 	if ((spa = spa_lookup(name)) == NULL) {
5928 		mutex_exit(&spa_namespace_lock);
5929 		return (NULL);
5930 	}
5931 	spa->spa_inject_ref++;
5932 	mutex_exit(&spa_namespace_lock);
5933 
5934 	return (spa);
5935 }
5936 
5937 void
5938 spa_inject_delref(spa_t *spa)
5939 {
5940 	mutex_enter(&spa_namespace_lock);
5941 	spa->spa_inject_ref--;
5942 	mutex_exit(&spa_namespace_lock);
5943 }
5944 
5945 /*
5946  * Add spares device information to the nvlist.
5947  */
5948 static void
5949 spa_add_spares(spa_t *spa, nvlist_t *config)
5950 {
5951 	nvlist_t **spares;
5952 	uint_t i, nspares;
5953 	nvlist_t *nvroot;
5954 	uint64_t guid;
5955 	vdev_stat_t *vs;
5956 	uint_t vsc;
5957 	uint64_t pool;
5958 
5959 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5960 
5961 	if (spa->spa_spares.sav_count == 0)
5962 		return;
5963 
5964 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5965 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5966 	    ZPOOL_CONFIG_SPARES, &spares, &nspares));
5967 	if (nspares != 0) {
5968 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5969 		    (const nvlist_t * const *)spares, nspares);
5970 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5971 		    &spares, &nspares));
5972 
5973 		/*
5974 		 * Go through and find any spares which have since been
5975 		 * repurposed as an active spare.  If this is the case, update
5976 		 * their status appropriately.
5977 		 */
5978 		for (i = 0; i < nspares; i++) {
5979 			guid = fnvlist_lookup_uint64(spares[i],
5980 			    ZPOOL_CONFIG_GUID);
5981 			VERIFY0(nvlist_lookup_uint64_array(spares[i],
5982 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5983 			if (spa_spare_exists(guid, &pool, NULL) &&
5984 			    pool != 0ULL) {
5985 				vs->vs_state = VDEV_STATE_CANT_OPEN;
5986 				vs->vs_aux = VDEV_AUX_SPARED;
5987 			} else {
5988 				vs->vs_state =
5989 				    spa->spa_spares.sav_vdevs[i]->vdev_state;
5990 			}
5991 		}
5992 	}
5993 }
5994 
5995 /*
5996  * Add l2cache device information to the nvlist, including vdev stats.
5997  */
5998 static void
5999 spa_add_l2cache(spa_t *spa, nvlist_t *config)
6000 {
6001 	nvlist_t **l2cache;
6002 	uint_t i, j, nl2cache;
6003 	nvlist_t *nvroot;
6004 	uint64_t guid;
6005 	vdev_t *vd;
6006 	vdev_stat_t *vs;
6007 	uint_t vsc;
6008 
6009 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6010 
6011 	if (spa->spa_l2cache.sav_count == 0)
6012 		return;
6013 
6014 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6015 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
6016 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
6017 	if (nl2cache != 0) {
6018 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6019 		    (const nvlist_t * const *)l2cache, nl2cache);
6020 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6021 		    &l2cache, &nl2cache));
6022 
6023 		/*
6024 		 * Update level 2 cache device stats.
6025 		 */
6026 
6027 		for (i = 0; i < nl2cache; i++) {
6028 			guid = fnvlist_lookup_uint64(l2cache[i],
6029 			    ZPOOL_CONFIG_GUID);
6030 
6031 			vd = NULL;
6032 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
6033 				if (guid ==
6034 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
6035 					vd = spa->spa_l2cache.sav_vdevs[j];
6036 					break;
6037 				}
6038 			}
6039 			ASSERT(vd != NULL);
6040 
6041 			VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
6042 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
6043 			vdev_get_stats(vd, vs);
6044 			vdev_config_generate_stats(vd, l2cache[i]);
6045 
6046 		}
6047 	}
6048 }
6049 
6050 static void
6051 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
6052 {
6053 	zap_cursor_t zc;
6054 	zap_attribute_t *za = zap_attribute_alloc();
6055 
6056 	if (spa->spa_feat_for_read_obj != 0) {
6057 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6058 		    spa->spa_feat_for_read_obj);
6059 		    zap_cursor_retrieve(&zc, za) == 0;
6060 		    zap_cursor_advance(&zc)) {
6061 			ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6062 			    za->za_num_integers == 1);
6063 			VERIFY0(nvlist_add_uint64(features, za->za_name,
6064 			    za->za_first_integer));
6065 		}
6066 		zap_cursor_fini(&zc);
6067 	}
6068 
6069 	if (spa->spa_feat_for_write_obj != 0) {
6070 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6071 		    spa->spa_feat_for_write_obj);
6072 		    zap_cursor_retrieve(&zc, za) == 0;
6073 		    zap_cursor_advance(&zc)) {
6074 			ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6075 			    za->za_num_integers == 1);
6076 			VERIFY0(nvlist_add_uint64(features, za->za_name,
6077 			    za->za_first_integer));
6078 		}
6079 		zap_cursor_fini(&zc);
6080 	}
6081 	zap_attribute_free(za);
6082 }
6083 
6084 static void
6085 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
6086 {
6087 	int i;
6088 
6089 	for (i = 0; i < SPA_FEATURES; i++) {
6090 		zfeature_info_t feature = spa_feature_table[i];
6091 		uint64_t refcount;
6092 
6093 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
6094 			continue;
6095 
6096 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
6097 	}
6098 }
6099 
6100 /*
6101  * Store a list of pool features and their reference counts in the
6102  * config.
6103  *
6104  * The first time this is called on a spa, allocate a new nvlist, fetch
6105  * the pool features and reference counts from disk, then save the list
6106  * in the spa. In subsequent calls on the same spa use the saved nvlist
6107  * and refresh its values from the cached reference counts.  This
6108  * ensures we don't block here on I/O on a suspended pool so 'zpool
6109  * clear' can resume the pool.
6110  */
6111 static void
6112 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
6113 {
6114 	nvlist_t *features;
6115 
6116 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6117 
6118 	mutex_enter(&spa->spa_feat_stats_lock);
6119 	features = spa->spa_feat_stats;
6120 
6121 	if (features != NULL) {
6122 		spa_feature_stats_from_cache(spa, features);
6123 	} else {
6124 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
6125 		spa->spa_feat_stats = features;
6126 		spa_feature_stats_from_disk(spa, features);
6127 	}
6128 
6129 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
6130 	    features));
6131 
6132 	mutex_exit(&spa->spa_feat_stats_lock);
6133 }
6134 
6135 int
6136 spa_get_stats(const char *name, nvlist_t **config,
6137     char *altroot, size_t buflen)
6138 {
6139 	int error;
6140 	spa_t *spa;
6141 
6142 	*config = NULL;
6143 	error = spa_open_common(name, &spa, FTAG, NULL, config);
6144 
6145 	if (spa != NULL) {
6146 		/*
6147 		 * This still leaves a window of inconsistency where the spares
6148 		 * or l2cache devices could change and the config would be
6149 		 * self-inconsistent.
6150 		 */
6151 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6152 
6153 		if (*config != NULL) {
6154 			uint64_t loadtimes[2];
6155 
6156 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
6157 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
6158 			fnvlist_add_uint64_array(*config,
6159 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
6160 
6161 			fnvlist_add_uint64(*config,
6162 			    ZPOOL_CONFIG_ERRCOUNT,
6163 			    spa_approx_errlog_size(spa));
6164 
6165 			if (spa_suspended(spa)) {
6166 				fnvlist_add_uint64(*config,
6167 				    ZPOOL_CONFIG_SUSPENDED,
6168 				    spa->spa_failmode);
6169 				fnvlist_add_uint64(*config,
6170 				    ZPOOL_CONFIG_SUSPENDED_REASON,
6171 				    spa->spa_suspended);
6172 			}
6173 
6174 			spa_add_spares(spa, *config);
6175 			spa_add_l2cache(spa, *config);
6176 			spa_add_feature_stats(spa, *config);
6177 		}
6178 	}
6179 
6180 	/*
6181 	 * We want to get the alternate root even for faulted pools, so we cheat
6182 	 * and call spa_lookup() directly.
6183 	 */
6184 	if (altroot) {
6185 		if (spa == NULL) {
6186 			mutex_enter(&spa_namespace_lock);
6187 			spa = spa_lookup(name);
6188 			if (spa)
6189 				spa_altroot(spa, altroot, buflen);
6190 			else
6191 				altroot[0] = '\0';
6192 			spa = NULL;
6193 			mutex_exit(&spa_namespace_lock);
6194 		} else {
6195 			spa_altroot(spa, altroot, buflen);
6196 		}
6197 	}
6198 
6199 	if (spa != NULL) {
6200 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6201 		spa_close(spa, FTAG);
6202 	}
6203 
6204 	return (error);
6205 }
6206 
6207 /*
6208  * Validate that the auxiliary device array is well formed.  We must have an
6209  * array of nvlists, each which describes a valid leaf vdev.  If this is an
6210  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
6211  * specified, as long as they are well-formed.
6212  */
6213 static int
6214 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
6215     spa_aux_vdev_t *sav, const char *config, uint64_t version,
6216     vdev_labeltype_t label)
6217 {
6218 	nvlist_t **dev;
6219 	uint_t i, ndev;
6220 	vdev_t *vd;
6221 	int error;
6222 
6223 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6224 
6225 	/*
6226 	 * It's acceptable to have no devs specified.
6227 	 */
6228 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
6229 		return (0);
6230 
6231 	if (ndev == 0)
6232 		return (SET_ERROR(EINVAL));
6233 
6234 	/*
6235 	 * Make sure the pool is formatted with a version that supports this
6236 	 * device type.
6237 	 */
6238 	if (spa_version(spa) < version)
6239 		return (SET_ERROR(ENOTSUP));
6240 
6241 	/*
6242 	 * Set the pending device list so we correctly handle device in-use
6243 	 * checking.
6244 	 */
6245 	sav->sav_pending = dev;
6246 	sav->sav_npending = ndev;
6247 
6248 	for (i = 0; i < ndev; i++) {
6249 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
6250 		    mode)) != 0)
6251 			goto out;
6252 
6253 		if (!vd->vdev_ops->vdev_op_leaf) {
6254 			vdev_free(vd);
6255 			error = SET_ERROR(EINVAL);
6256 			goto out;
6257 		}
6258 
6259 		vd->vdev_top = vd;
6260 
6261 		if ((error = vdev_open(vd)) == 0 &&
6262 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
6263 			fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
6264 			    vd->vdev_guid);
6265 		}
6266 
6267 		vdev_free(vd);
6268 
6269 		if (error &&
6270 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
6271 			goto out;
6272 		else
6273 			error = 0;
6274 	}
6275 
6276 out:
6277 	sav->sav_pending = NULL;
6278 	sav->sav_npending = 0;
6279 	return (error);
6280 }
6281 
6282 static int
6283 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
6284 {
6285 	int error;
6286 
6287 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6288 
6289 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6290 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
6291 	    VDEV_LABEL_SPARE)) != 0) {
6292 		return (error);
6293 	}
6294 
6295 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6296 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
6297 	    VDEV_LABEL_L2CACHE));
6298 }
6299 
6300 static void
6301 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
6302     const char *config)
6303 {
6304 	int i;
6305 
6306 	if (sav->sav_config != NULL) {
6307 		nvlist_t **olddevs;
6308 		uint_t oldndevs;
6309 		nvlist_t **newdevs;
6310 
6311 		/*
6312 		 * Generate new dev list by concatenating with the
6313 		 * current dev list.
6314 		 */
6315 		VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
6316 		    &olddevs, &oldndevs));
6317 
6318 		newdevs = kmem_alloc(sizeof (void *) *
6319 		    (ndevs + oldndevs), KM_SLEEP);
6320 		for (i = 0; i < oldndevs; i++)
6321 			newdevs[i] = fnvlist_dup(olddevs[i]);
6322 		for (i = 0; i < ndevs; i++)
6323 			newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
6324 
6325 		fnvlist_remove(sav->sav_config, config);
6326 
6327 		fnvlist_add_nvlist_array(sav->sav_config, config,
6328 		    (const nvlist_t * const *)newdevs, ndevs + oldndevs);
6329 		for (i = 0; i < oldndevs + ndevs; i++)
6330 			nvlist_free(newdevs[i]);
6331 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
6332 	} else {
6333 		/*
6334 		 * Generate a new dev list.
6335 		 */
6336 		sav->sav_config = fnvlist_alloc();
6337 		fnvlist_add_nvlist_array(sav->sav_config, config,
6338 		    (const nvlist_t * const *)devs, ndevs);
6339 	}
6340 }
6341 
6342 /*
6343  * Stop and drop level 2 ARC devices
6344  */
6345 void
6346 spa_l2cache_drop(spa_t *spa)
6347 {
6348 	vdev_t *vd;
6349 	int i;
6350 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
6351 
6352 	for (i = 0; i < sav->sav_count; i++) {
6353 		uint64_t pool;
6354 
6355 		vd = sav->sav_vdevs[i];
6356 		ASSERT(vd != NULL);
6357 
6358 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
6359 		    pool != 0ULL && l2arc_vdev_present(vd))
6360 			l2arc_remove_vdev(vd);
6361 	}
6362 }
6363 
6364 /*
6365  * Verify encryption parameters for spa creation. If we are encrypting, we must
6366  * have the encryption feature flag enabled.
6367  */
6368 static int
6369 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
6370     boolean_t has_encryption)
6371 {
6372 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
6373 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
6374 	    !has_encryption)
6375 		return (SET_ERROR(ENOTSUP));
6376 
6377 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
6378 }
6379 
6380 /*
6381  * Pool Creation
6382  */
6383 int
6384 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
6385     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
6386 {
6387 	spa_t *spa;
6388 	const char *altroot = NULL;
6389 	vdev_t *rvd;
6390 	dsl_pool_t *dp;
6391 	dmu_tx_t *tx;
6392 	int error = 0;
6393 	uint64_t txg = TXG_INITIAL;
6394 	nvlist_t **spares, **l2cache;
6395 	uint_t nspares, nl2cache;
6396 	uint64_t version, obj, ndraid = 0;
6397 	boolean_t has_features;
6398 	boolean_t has_encryption;
6399 	boolean_t has_allocclass;
6400 	spa_feature_t feat;
6401 	const char *feat_name;
6402 	const char *poolname;
6403 	nvlist_t *nvl;
6404 
6405 	if (props == NULL ||
6406 	    nvlist_lookup_string(props,
6407 	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
6408 		poolname = (char *)pool;
6409 
6410 	/*
6411 	 * If this pool already exists, return failure.
6412 	 */
6413 	mutex_enter(&spa_namespace_lock);
6414 	if (spa_lookup(poolname) != NULL) {
6415 		mutex_exit(&spa_namespace_lock);
6416 		return (SET_ERROR(EEXIST));
6417 	}
6418 
6419 	/*
6420 	 * Allocate a new spa_t structure.
6421 	 */
6422 	nvl = fnvlist_alloc();
6423 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
6424 	(void) nvlist_lookup_string(props,
6425 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6426 	spa = spa_add(poolname, nvl, altroot);
6427 	fnvlist_free(nvl);
6428 	spa_activate(spa, spa_mode_global);
6429 
6430 	if (props && (error = spa_prop_validate(spa, props))) {
6431 		spa_deactivate(spa);
6432 		spa_remove(spa);
6433 		mutex_exit(&spa_namespace_lock);
6434 		return (error);
6435 	}
6436 
6437 	/*
6438 	 * Temporary pool names should never be written to disk.
6439 	 */
6440 	if (poolname != pool)
6441 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
6442 
6443 	has_features = B_FALSE;
6444 	has_encryption = B_FALSE;
6445 	has_allocclass = B_FALSE;
6446 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
6447 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
6448 		if (zpool_prop_feature(nvpair_name(elem))) {
6449 			has_features = B_TRUE;
6450 
6451 			feat_name = strchr(nvpair_name(elem), '@') + 1;
6452 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
6453 			if (feat == SPA_FEATURE_ENCRYPTION)
6454 				has_encryption = B_TRUE;
6455 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
6456 				has_allocclass = B_TRUE;
6457 		}
6458 	}
6459 
6460 	/* verify encryption params, if they were provided */
6461 	if (dcp != NULL) {
6462 		error = spa_create_check_encryption_params(dcp, has_encryption);
6463 		if (error != 0) {
6464 			spa_deactivate(spa);
6465 			spa_remove(spa);
6466 			mutex_exit(&spa_namespace_lock);
6467 			return (error);
6468 		}
6469 	}
6470 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
6471 		spa_deactivate(spa);
6472 		spa_remove(spa);
6473 		mutex_exit(&spa_namespace_lock);
6474 		return (ENOTSUP);
6475 	}
6476 
6477 	if (has_features || nvlist_lookup_uint64(props,
6478 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
6479 		version = SPA_VERSION;
6480 	}
6481 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6482 
6483 	spa->spa_first_txg = txg;
6484 	spa->spa_uberblock.ub_txg = txg - 1;
6485 	spa->spa_uberblock.ub_version = version;
6486 	spa->spa_ubsync = spa->spa_uberblock;
6487 	spa->spa_load_state = SPA_LOAD_CREATE;
6488 	spa->spa_removing_phys.sr_state = DSS_NONE;
6489 	spa->spa_removing_phys.sr_removing_vdev = -1;
6490 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
6491 	spa->spa_indirect_vdevs_loaded = B_TRUE;
6492 
6493 	/*
6494 	 * Create "The Godfather" zio to hold all async IOs
6495 	 */
6496 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
6497 	    KM_SLEEP);
6498 	for (int i = 0; i < max_ncpus; i++) {
6499 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
6500 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6501 		    ZIO_FLAG_GODFATHER);
6502 	}
6503 
6504 	/*
6505 	 * Create the root vdev.
6506 	 */
6507 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6508 
6509 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6510 
6511 	ASSERT(error != 0 || rvd != NULL);
6512 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6513 
6514 	if (error == 0 && !zfs_allocatable_devs(nvroot))
6515 		error = SET_ERROR(EINVAL);
6516 
6517 	if (error == 0 &&
6518 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6519 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6520 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6521 		/*
6522 		 * instantiate the metaslab groups (this will dirty the vdevs)
6523 		 * we can no longer error exit past this point
6524 		 */
6525 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6526 			vdev_t *vd = rvd->vdev_child[c];
6527 
6528 			vdev_metaslab_set_size(vd);
6529 			vdev_expand(vd, txg);
6530 		}
6531 	}
6532 
6533 	spa_config_exit(spa, SCL_ALL, FTAG);
6534 
6535 	if (error != 0) {
6536 		spa_unload(spa);
6537 		spa_deactivate(spa);
6538 		spa_remove(spa);
6539 		mutex_exit(&spa_namespace_lock);
6540 		return (error);
6541 	}
6542 
6543 	/*
6544 	 * Get the list of spares, if specified.
6545 	 */
6546 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6547 	    &spares, &nspares) == 0) {
6548 		spa->spa_spares.sav_config = fnvlist_alloc();
6549 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6550 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6551 		    nspares);
6552 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6553 		spa_load_spares(spa);
6554 		spa_config_exit(spa, SCL_ALL, FTAG);
6555 		spa->spa_spares.sav_sync = B_TRUE;
6556 	}
6557 
6558 	/*
6559 	 * Get the list of level 2 cache devices, if specified.
6560 	 */
6561 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6562 	    &l2cache, &nl2cache) == 0) {
6563 		VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6564 		    NV_UNIQUE_NAME, KM_SLEEP));
6565 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6566 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6567 		    nl2cache);
6568 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6569 		spa_load_l2cache(spa);
6570 		spa_config_exit(spa, SCL_ALL, FTAG);
6571 		spa->spa_l2cache.sav_sync = B_TRUE;
6572 	}
6573 
6574 	spa->spa_is_initializing = B_TRUE;
6575 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6576 	spa->spa_is_initializing = B_FALSE;
6577 
6578 	/*
6579 	 * Create DDTs (dedup tables).
6580 	 */
6581 	ddt_create(spa);
6582 	/*
6583 	 * Create BRT table and BRT table object.
6584 	 */
6585 	brt_create(spa);
6586 
6587 	spa_update_dspace(spa);
6588 
6589 	tx = dmu_tx_create_assigned(dp, txg);
6590 
6591 	/*
6592 	 * Create the pool's history object.
6593 	 */
6594 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6595 		spa_history_create_obj(spa, tx);
6596 
6597 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6598 	spa_history_log_version(spa, "create", tx);
6599 
6600 	/*
6601 	 * Create the pool config object.
6602 	 */
6603 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6604 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6605 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6606 
6607 	if (zap_add(spa->spa_meta_objset,
6608 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6609 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6610 		cmn_err(CE_PANIC, "failed to add pool config");
6611 	}
6612 
6613 	if (zap_add(spa->spa_meta_objset,
6614 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6615 	    sizeof (uint64_t), 1, &version, tx) != 0) {
6616 		cmn_err(CE_PANIC, "failed to add pool version");
6617 	}
6618 
6619 	/* Newly created pools with the right version are always deflated. */
6620 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6621 		spa->spa_deflate = TRUE;
6622 		if (zap_add(spa->spa_meta_objset,
6623 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6624 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6625 			cmn_err(CE_PANIC, "failed to add deflate");
6626 		}
6627 	}
6628 
6629 	/*
6630 	 * Create the deferred-free bpobj.  Turn off compression
6631 	 * because sync-to-convergence takes longer if the blocksize
6632 	 * keeps changing.
6633 	 */
6634 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6635 	dmu_object_set_compress(spa->spa_meta_objset, obj,
6636 	    ZIO_COMPRESS_OFF, tx);
6637 	if (zap_add(spa->spa_meta_objset,
6638 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6639 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
6640 		cmn_err(CE_PANIC, "failed to add bpobj");
6641 	}
6642 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6643 	    spa->spa_meta_objset, obj));
6644 
6645 	/*
6646 	 * Generate some random noise for salted checksums to operate on.
6647 	 */
6648 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6649 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
6650 
6651 	/*
6652 	 * Set pool properties.
6653 	 */
6654 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6655 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6656 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6657 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6658 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6659 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6660 	spa->spa_dedup_table_quota =
6661 	    zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_TABLE_QUOTA);
6662 
6663 	if (props != NULL) {
6664 		spa_configfile_set(spa, props, B_FALSE);
6665 		spa_sync_props(props, tx);
6666 	}
6667 
6668 	for (int i = 0; i < ndraid; i++)
6669 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6670 
6671 	dmu_tx_commit(tx);
6672 
6673 	spa->spa_sync_on = B_TRUE;
6674 	txg_sync_start(dp);
6675 	mmp_thread_start(spa);
6676 	txg_wait_synced(dp, txg);
6677 
6678 	spa_spawn_aux_threads(spa);
6679 
6680 	spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6681 
6682 	/*
6683 	 * Don't count references from objsets that are already closed
6684 	 * and are making their way through the eviction process.
6685 	 */
6686 	spa_evicting_os_wait(spa);
6687 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6688 	spa->spa_load_state = SPA_LOAD_NONE;
6689 
6690 	spa_import_os(spa);
6691 
6692 	mutex_exit(&spa_namespace_lock);
6693 
6694 	return (0);
6695 }
6696 
6697 /*
6698  * Import a non-root pool into the system.
6699  */
6700 int
6701 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6702 {
6703 	spa_t *spa;
6704 	const char *altroot = NULL;
6705 	spa_load_state_t state = SPA_LOAD_IMPORT;
6706 	zpool_load_policy_t policy;
6707 	spa_mode_t mode = spa_mode_global;
6708 	uint64_t readonly = B_FALSE;
6709 	int error;
6710 	nvlist_t *nvroot;
6711 	nvlist_t **spares, **l2cache;
6712 	uint_t nspares, nl2cache;
6713 
6714 	/*
6715 	 * If a pool with this name exists, return failure.
6716 	 */
6717 	mutex_enter(&spa_namespace_lock);
6718 	if (spa_lookup(pool) != NULL) {
6719 		mutex_exit(&spa_namespace_lock);
6720 		return (SET_ERROR(EEXIST));
6721 	}
6722 
6723 	/*
6724 	 * Create and initialize the spa structure.
6725 	 */
6726 	(void) nvlist_lookup_string(props,
6727 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6728 	(void) nvlist_lookup_uint64(props,
6729 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6730 	if (readonly)
6731 		mode = SPA_MODE_READ;
6732 	spa = spa_add(pool, config, altroot);
6733 	spa->spa_import_flags = flags;
6734 
6735 	/*
6736 	 * Verbatim import - Take a pool and insert it into the namespace
6737 	 * as if it had been loaded at boot.
6738 	 */
6739 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6740 		if (props != NULL)
6741 			spa_configfile_set(spa, props, B_FALSE);
6742 
6743 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6744 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6745 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6746 		mutex_exit(&spa_namespace_lock);
6747 		return (0);
6748 	}
6749 
6750 	spa_activate(spa, mode);
6751 
6752 	/*
6753 	 * Don't start async tasks until we know everything is healthy.
6754 	 */
6755 	spa_async_suspend(spa);
6756 
6757 	zpool_get_load_policy(config, &policy);
6758 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6759 		state = SPA_LOAD_RECOVER;
6760 
6761 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6762 
6763 	if (state != SPA_LOAD_RECOVER) {
6764 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6765 		zfs_dbgmsg("spa_import: importing %s", pool);
6766 	} else {
6767 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6768 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6769 	}
6770 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6771 
6772 	/*
6773 	 * Propagate anything learned while loading the pool and pass it
6774 	 * back to caller (i.e. rewind info, missing devices, etc).
6775 	 */
6776 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6777 
6778 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6779 	/*
6780 	 * Toss any existing sparelist, as it doesn't have any validity
6781 	 * anymore, and conflicts with spa_has_spare().
6782 	 */
6783 	if (spa->spa_spares.sav_config) {
6784 		nvlist_free(spa->spa_spares.sav_config);
6785 		spa->spa_spares.sav_config = NULL;
6786 		spa_load_spares(spa);
6787 	}
6788 	if (spa->spa_l2cache.sav_config) {
6789 		nvlist_free(spa->spa_l2cache.sav_config);
6790 		spa->spa_l2cache.sav_config = NULL;
6791 		spa_load_l2cache(spa);
6792 	}
6793 
6794 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6795 	spa_config_exit(spa, SCL_ALL, FTAG);
6796 
6797 	if (props != NULL)
6798 		spa_configfile_set(spa, props, B_FALSE);
6799 
6800 	if (error != 0 || (props && spa_writeable(spa) &&
6801 	    (error = spa_prop_set(spa, props)))) {
6802 		spa_unload(spa);
6803 		spa_deactivate(spa);
6804 		spa_remove(spa);
6805 		mutex_exit(&spa_namespace_lock);
6806 		return (error);
6807 	}
6808 
6809 	spa_async_resume(spa);
6810 
6811 	/*
6812 	 * Override any spares and level 2 cache devices as specified by
6813 	 * the user, as these may have correct device names/devids, etc.
6814 	 */
6815 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6816 	    &spares, &nspares) == 0) {
6817 		if (spa->spa_spares.sav_config)
6818 			fnvlist_remove(spa->spa_spares.sav_config,
6819 			    ZPOOL_CONFIG_SPARES);
6820 		else
6821 			spa->spa_spares.sav_config = fnvlist_alloc();
6822 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6823 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6824 		    nspares);
6825 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6826 		spa_load_spares(spa);
6827 		spa_config_exit(spa, SCL_ALL, FTAG);
6828 		spa->spa_spares.sav_sync = B_TRUE;
6829 		spa->spa_spares.sav_label_sync = B_TRUE;
6830 	}
6831 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6832 	    &l2cache, &nl2cache) == 0) {
6833 		if (spa->spa_l2cache.sav_config)
6834 			fnvlist_remove(spa->spa_l2cache.sav_config,
6835 			    ZPOOL_CONFIG_L2CACHE);
6836 		else
6837 			spa->spa_l2cache.sav_config = fnvlist_alloc();
6838 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6839 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6840 		    nl2cache);
6841 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6842 		spa_load_l2cache(spa);
6843 		spa_config_exit(spa, SCL_ALL, FTAG);
6844 		spa->spa_l2cache.sav_sync = B_TRUE;
6845 		spa->spa_l2cache.sav_label_sync = B_TRUE;
6846 	}
6847 
6848 	/*
6849 	 * Check for any removed devices.
6850 	 */
6851 	if (spa->spa_autoreplace) {
6852 		spa_aux_check_removed(&spa->spa_spares);
6853 		spa_aux_check_removed(&spa->spa_l2cache);
6854 	}
6855 
6856 	if (spa_writeable(spa)) {
6857 		/*
6858 		 * Update the config cache to include the newly-imported pool.
6859 		 */
6860 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6861 	}
6862 
6863 	/*
6864 	 * It's possible that the pool was expanded while it was exported.
6865 	 * We kick off an async task to handle this for us.
6866 	 */
6867 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6868 
6869 	spa_history_log_version(spa, "import", NULL);
6870 
6871 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6872 
6873 	mutex_exit(&spa_namespace_lock);
6874 
6875 	zvol_create_minors_recursive(pool);
6876 
6877 	spa_import_os(spa);
6878 
6879 	return (0);
6880 }
6881 
6882 nvlist_t *
6883 spa_tryimport(nvlist_t *tryconfig)
6884 {
6885 	nvlist_t *config = NULL;
6886 	const char *poolname, *cachefile;
6887 	spa_t *spa;
6888 	uint64_t state;
6889 	int error;
6890 	zpool_load_policy_t policy;
6891 
6892 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6893 		return (NULL);
6894 
6895 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6896 		return (NULL);
6897 
6898 	/*
6899 	 * Create and initialize the spa structure.
6900 	 */
6901 	char *name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6902 	(void) snprintf(name, MAXPATHLEN, "%s-%llx-%s",
6903 	    TRYIMPORT_NAME, (u_longlong_t)(uintptr_t)curthread, poolname);
6904 
6905 	mutex_enter(&spa_namespace_lock);
6906 	spa = spa_add(name, tryconfig, NULL);
6907 	spa_activate(spa, SPA_MODE_READ);
6908 	kmem_free(name, MAXPATHLEN);
6909 
6910 	/*
6911 	 * Rewind pool if a max txg was provided.
6912 	 */
6913 	zpool_get_load_policy(spa->spa_config, &policy);
6914 	if (policy.zlp_txg != UINT64_MAX) {
6915 		spa->spa_load_max_txg = policy.zlp_txg;
6916 		spa->spa_extreme_rewind = B_TRUE;
6917 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6918 		    poolname, (longlong_t)policy.zlp_txg);
6919 	} else {
6920 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6921 	}
6922 
6923 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6924 	    == 0) {
6925 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6926 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6927 	} else {
6928 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6929 	}
6930 
6931 	/*
6932 	 * spa_import() relies on a pool config fetched by spa_try_import()
6933 	 * for spare/cache devices. Import flags are not passed to
6934 	 * spa_tryimport(), which makes it return early due to a missing log
6935 	 * device and missing retrieving the cache device and spare eventually.
6936 	 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
6937 	 * the correct configuration regardless of the missing log device.
6938 	 */
6939 	spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
6940 
6941 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6942 
6943 	/*
6944 	 * If 'tryconfig' was at least parsable, return the current config.
6945 	 */
6946 	if (spa->spa_root_vdev != NULL) {
6947 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6948 		fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6949 		fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6950 		fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6951 		    spa->spa_uberblock.ub_timestamp);
6952 		fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6953 		    spa->spa_load_info);
6954 		fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6955 		    spa->spa_errata);
6956 
6957 		/*
6958 		 * If the bootfs property exists on this pool then we
6959 		 * copy it out so that external consumers can tell which
6960 		 * pools are bootable.
6961 		 */
6962 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
6963 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6964 
6965 			/*
6966 			 * We have to play games with the name since the
6967 			 * pool was opened as TRYIMPORT_NAME.
6968 			 */
6969 			if (dsl_dsobj_to_dsname(spa_name(spa),
6970 			    spa->spa_bootfs, tmpname) == 0) {
6971 				char *cp;
6972 				char *dsname;
6973 
6974 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6975 
6976 				cp = strchr(tmpname, '/');
6977 				if (cp == NULL) {
6978 					(void) strlcpy(dsname, tmpname,
6979 					    MAXPATHLEN);
6980 				} else {
6981 					(void) snprintf(dsname, MAXPATHLEN,
6982 					    "%s/%s", poolname, ++cp);
6983 				}
6984 				fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6985 				    dsname);
6986 				kmem_free(dsname, MAXPATHLEN);
6987 			}
6988 			kmem_free(tmpname, MAXPATHLEN);
6989 		}
6990 
6991 		/*
6992 		 * Add the list of hot spares and level 2 cache devices.
6993 		 */
6994 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6995 		spa_add_spares(spa, config);
6996 		spa_add_l2cache(spa, config);
6997 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6998 	}
6999 
7000 	spa_unload(spa);
7001 	spa_deactivate(spa);
7002 	spa_remove(spa);
7003 	mutex_exit(&spa_namespace_lock);
7004 
7005 	return (config);
7006 }
7007 
7008 /*
7009  * Pool export/destroy
7010  *
7011  * The act of destroying or exporting a pool is very simple.  We make sure there
7012  * is no more pending I/O and any references to the pool are gone.  Then, we
7013  * update the pool state and sync all the labels to disk, removing the
7014  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
7015  * we don't sync the labels or remove the configuration cache.
7016  */
7017 static int
7018 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
7019     boolean_t force, boolean_t hardforce)
7020 {
7021 	int error = 0;
7022 	spa_t *spa;
7023 	hrtime_t export_start = gethrtime();
7024 
7025 	if (oldconfig)
7026 		*oldconfig = NULL;
7027 
7028 	if (!(spa_mode_global & SPA_MODE_WRITE))
7029 		return (SET_ERROR(EROFS));
7030 
7031 	mutex_enter(&spa_namespace_lock);
7032 	if ((spa = spa_lookup(pool)) == NULL) {
7033 		mutex_exit(&spa_namespace_lock);
7034 		return (SET_ERROR(ENOENT));
7035 	}
7036 
7037 	if (spa->spa_is_exporting) {
7038 		/* the pool is being exported by another thread */
7039 		mutex_exit(&spa_namespace_lock);
7040 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
7041 	}
7042 	spa->spa_is_exporting = B_TRUE;
7043 
7044 	/*
7045 	 * Put a hold on the pool, drop the namespace lock, stop async tasks
7046 	 * and see if we can export.
7047 	 */
7048 	spa_open_ref(spa, FTAG);
7049 	mutex_exit(&spa_namespace_lock);
7050 	spa_async_suspend(spa);
7051 	if (spa->spa_zvol_taskq) {
7052 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
7053 		taskq_wait(spa->spa_zvol_taskq);
7054 	}
7055 	mutex_enter(&spa_namespace_lock);
7056 	spa->spa_export_thread = curthread;
7057 	spa_close(spa, FTAG);
7058 
7059 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
7060 		mutex_exit(&spa_namespace_lock);
7061 		goto export_spa;
7062 	}
7063 
7064 	/*
7065 	 * The pool will be in core if it's openable, in which case we can
7066 	 * modify its state.  Objsets may be open only because they're dirty,
7067 	 * so we have to force it to sync before checking spa_refcnt.
7068 	 */
7069 	if (spa->spa_sync_on) {
7070 		txg_wait_synced(spa->spa_dsl_pool, 0);
7071 		spa_evicting_os_wait(spa);
7072 	}
7073 
7074 	/*
7075 	 * A pool cannot be exported or destroyed if there are active
7076 	 * references.  If we are resetting a pool, allow references by
7077 	 * fault injection handlers.
7078 	 */
7079 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
7080 		error = SET_ERROR(EBUSY);
7081 		goto fail;
7082 	}
7083 
7084 	mutex_exit(&spa_namespace_lock);
7085 	/*
7086 	 * At this point we no longer hold the spa_namespace_lock and
7087 	 * there were no references on the spa. Future spa_lookups will
7088 	 * notice the spa->spa_export_thread and wait until we signal
7089 	 * that we are finshed.
7090 	 */
7091 
7092 	if (spa->spa_sync_on) {
7093 		vdev_t *rvd = spa->spa_root_vdev;
7094 		/*
7095 		 * A pool cannot be exported if it has an active shared spare.
7096 		 * This is to prevent other pools stealing the active spare
7097 		 * from an exported pool. At user's own will, such pool can
7098 		 * be forcedly exported.
7099 		 */
7100 		if (!force && new_state == POOL_STATE_EXPORTED &&
7101 		    spa_has_active_shared_spare(spa)) {
7102 			error = SET_ERROR(EXDEV);
7103 			mutex_enter(&spa_namespace_lock);
7104 			goto fail;
7105 		}
7106 
7107 		/*
7108 		 * We're about to export or destroy this pool. Make sure
7109 		 * we stop all initialization and trim activity here before
7110 		 * we set the spa_final_txg. This will ensure that all
7111 		 * dirty data resulting from the initialization is
7112 		 * committed to disk before we unload the pool.
7113 		 */
7114 		vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
7115 		vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
7116 		vdev_autotrim_stop_all(spa);
7117 		vdev_rebuild_stop_all(spa);
7118 
7119 		/*
7120 		 * We want this to be reflected on every label,
7121 		 * so mark them all dirty.  spa_unload() will do the
7122 		 * final sync that pushes these changes out.
7123 		 */
7124 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7125 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7126 			spa->spa_state = new_state;
7127 			vdev_config_dirty(rvd);
7128 			spa_config_exit(spa, SCL_ALL, FTAG);
7129 		}
7130 
7131 		/*
7132 		 * If the log space map feature is enabled and the pool is
7133 		 * getting exported (but not destroyed), we want to spend some
7134 		 * time flushing as many metaslabs as we can in an attempt to
7135 		 * destroy log space maps and save import time. This has to be
7136 		 * done before we set the spa_final_txg, otherwise
7137 		 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
7138 		 * spa_should_flush_logs_on_unload() should be called after
7139 		 * spa_state has been set to the new_state.
7140 		 */
7141 		if (spa_should_flush_logs_on_unload(spa))
7142 			spa_unload_log_sm_flush_all(spa);
7143 
7144 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7145 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7146 			spa->spa_final_txg = spa_last_synced_txg(spa) +
7147 			    TXG_DEFER_SIZE + 1;
7148 			spa_config_exit(spa, SCL_ALL, FTAG);
7149 		}
7150 	}
7151 
7152 export_spa:
7153 	spa_export_os(spa);
7154 
7155 	if (new_state == POOL_STATE_DESTROYED)
7156 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
7157 	else if (new_state == POOL_STATE_EXPORTED)
7158 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
7159 
7160 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7161 		spa_unload(spa);
7162 		spa_deactivate(spa);
7163 	}
7164 
7165 	if (oldconfig && spa->spa_config)
7166 		*oldconfig = fnvlist_dup(spa->spa_config);
7167 
7168 	if (new_state == POOL_STATE_EXPORTED)
7169 		zio_handle_export_delay(spa, gethrtime() - export_start);
7170 
7171 	/*
7172 	 * Take the namespace lock for the actual spa_t removal
7173 	 */
7174 	mutex_enter(&spa_namespace_lock);
7175 	if (new_state != POOL_STATE_UNINITIALIZED) {
7176 		if (!hardforce)
7177 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
7178 		spa_remove(spa);
7179 	} else {
7180 		/*
7181 		 * If spa_remove() is not called for this spa_t and
7182 		 * there is any possibility that it can be reused,
7183 		 * we make sure to reset the exporting flag.
7184 		 */
7185 		spa->spa_is_exporting = B_FALSE;
7186 		spa->spa_export_thread = NULL;
7187 	}
7188 
7189 	/*
7190 	 * Wake up any waiters in spa_lookup()
7191 	 */
7192 	cv_broadcast(&spa_namespace_cv);
7193 	mutex_exit(&spa_namespace_lock);
7194 	return (0);
7195 
7196 fail:
7197 	spa->spa_is_exporting = B_FALSE;
7198 	spa->spa_export_thread = NULL;
7199 
7200 	spa_async_resume(spa);
7201 	/*
7202 	 * Wake up any waiters in spa_lookup()
7203 	 */
7204 	cv_broadcast(&spa_namespace_cv);
7205 	mutex_exit(&spa_namespace_lock);
7206 	return (error);
7207 }
7208 
7209 /*
7210  * Destroy a storage pool.
7211  */
7212 int
7213 spa_destroy(const char *pool)
7214 {
7215 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
7216 	    B_FALSE, B_FALSE));
7217 }
7218 
7219 /*
7220  * Export a storage pool.
7221  */
7222 int
7223 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
7224     boolean_t hardforce)
7225 {
7226 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
7227 	    force, hardforce));
7228 }
7229 
7230 /*
7231  * Similar to spa_export(), this unloads the spa_t without actually removing it
7232  * from the namespace in any way.
7233  */
7234 int
7235 spa_reset(const char *pool)
7236 {
7237 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
7238 	    B_FALSE, B_FALSE));
7239 }
7240 
7241 /*
7242  * ==========================================================================
7243  * Device manipulation
7244  * ==========================================================================
7245  */
7246 
7247 /*
7248  * This is called as a synctask to increment the draid feature flag
7249  */
7250 static void
7251 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
7252 {
7253 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7254 	int draid = (int)(uintptr_t)arg;
7255 
7256 	for (int c = 0; c < draid; c++)
7257 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
7258 }
7259 
7260 /*
7261  * Add a device to a storage pool.
7262  */
7263 int
7264 spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift)
7265 {
7266 	uint64_t txg, ndraid = 0;
7267 	int error;
7268 	vdev_t *rvd = spa->spa_root_vdev;
7269 	vdev_t *vd, *tvd;
7270 	nvlist_t **spares, **l2cache;
7271 	uint_t nspares, nl2cache;
7272 
7273 	ASSERT(spa_writeable(spa));
7274 
7275 	txg = spa_vdev_enter(spa);
7276 
7277 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
7278 	    VDEV_ALLOC_ADD)) != 0)
7279 		return (spa_vdev_exit(spa, NULL, txg, error));
7280 
7281 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
7282 
7283 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
7284 	    &nspares) != 0)
7285 		nspares = 0;
7286 
7287 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
7288 	    &nl2cache) != 0)
7289 		nl2cache = 0;
7290 
7291 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
7292 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
7293 
7294 	if (vd->vdev_children != 0 &&
7295 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
7296 		return (spa_vdev_exit(spa, vd, txg, error));
7297 	}
7298 
7299 	/*
7300 	 * The virtual dRAID spares must be added after vdev tree is created
7301 	 * and the vdev guids are generated.  The guid of their associated
7302 	 * dRAID is stored in the config and used when opening the spare.
7303 	 */
7304 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
7305 	    rvd->vdev_children)) == 0) {
7306 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
7307 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
7308 			nspares = 0;
7309 	} else {
7310 		return (spa_vdev_exit(spa, vd, txg, error));
7311 	}
7312 
7313 	/*
7314 	 * We must validate the spares and l2cache devices after checking the
7315 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
7316 	 */
7317 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
7318 		return (spa_vdev_exit(spa, vd, txg, error));
7319 
7320 	/*
7321 	 * If we are in the middle of a device removal, we can only add
7322 	 * devices which match the existing devices in the pool.
7323 	 * If we are in the middle of a removal, or have some indirect
7324 	 * vdevs, we can not add raidz or dRAID top levels.
7325 	 */
7326 	if (spa->spa_vdev_removal != NULL ||
7327 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7328 		for (int c = 0; c < vd->vdev_children; c++) {
7329 			tvd = vd->vdev_child[c];
7330 			if (spa->spa_vdev_removal != NULL &&
7331 			    tvd->vdev_ashift != spa->spa_max_ashift) {
7332 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
7333 			}
7334 			/* Fail if top level vdev is raidz or a dRAID */
7335 			if (vdev_get_nparity(tvd) != 0)
7336 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
7337 
7338 			/*
7339 			 * Need the top level mirror to be
7340 			 * a mirror of leaf vdevs only
7341 			 */
7342 			if (tvd->vdev_ops == &vdev_mirror_ops) {
7343 				for (uint64_t cid = 0;
7344 				    cid < tvd->vdev_children; cid++) {
7345 					vdev_t *cvd = tvd->vdev_child[cid];
7346 					if (!cvd->vdev_ops->vdev_op_leaf) {
7347 						return (spa_vdev_exit(spa, vd,
7348 						    txg, EINVAL));
7349 					}
7350 				}
7351 			}
7352 		}
7353 	}
7354 
7355 	if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) {
7356 		for (int c = 0; c < vd->vdev_children; c++) {
7357 			tvd = vd->vdev_child[c];
7358 			if (tvd->vdev_ashift != spa->spa_max_ashift) {
7359 				return (spa_vdev_exit(spa, vd, txg,
7360 				    ZFS_ERR_ASHIFT_MISMATCH));
7361 			}
7362 		}
7363 	}
7364 
7365 	for (int c = 0; c < vd->vdev_children; c++) {
7366 		tvd = vd->vdev_child[c];
7367 		vdev_remove_child(vd, tvd);
7368 		tvd->vdev_id = rvd->vdev_children;
7369 		vdev_add_child(rvd, tvd);
7370 		vdev_config_dirty(tvd);
7371 	}
7372 
7373 	if (nspares != 0) {
7374 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
7375 		    ZPOOL_CONFIG_SPARES);
7376 		spa_load_spares(spa);
7377 		spa->spa_spares.sav_sync = B_TRUE;
7378 	}
7379 
7380 	if (nl2cache != 0) {
7381 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
7382 		    ZPOOL_CONFIG_L2CACHE);
7383 		spa_load_l2cache(spa);
7384 		spa->spa_l2cache.sav_sync = B_TRUE;
7385 	}
7386 
7387 	/*
7388 	 * We can't increment a feature while holding spa_vdev so we
7389 	 * have to do it in a synctask.
7390 	 */
7391 	if (ndraid != 0) {
7392 		dmu_tx_t *tx;
7393 
7394 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
7395 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
7396 		    (void *)(uintptr_t)ndraid, tx);
7397 		dmu_tx_commit(tx);
7398 	}
7399 
7400 	/*
7401 	 * We have to be careful when adding new vdevs to an existing pool.
7402 	 * If other threads start allocating from these vdevs before we
7403 	 * sync the config cache, and we lose power, then upon reboot we may
7404 	 * fail to open the pool because there are DVAs that the config cache
7405 	 * can't translate.  Therefore, we first add the vdevs without
7406 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
7407 	 * and then let spa_config_update() initialize the new metaslabs.
7408 	 *
7409 	 * spa_load() checks for added-but-not-initialized vdevs, so that
7410 	 * if we lose power at any point in this sequence, the remaining
7411 	 * steps will be completed the next time we load the pool.
7412 	 */
7413 	(void) spa_vdev_exit(spa, vd, txg, 0);
7414 
7415 	mutex_enter(&spa_namespace_lock);
7416 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7417 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
7418 	mutex_exit(&spa_namespace_lock);
7419 
7420 	return (0);
7421 }
7422 
7423 /*
7424  * Attach a device to a vdev specified by its guid.  The vdev type can be
7425  * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a
7426  * single device). When the vdev is a single device, a mirror vdev will be
7427  * automatically inserted.
7428  *
7429  * If 'replacing' is specified, the new device is intended to replace the
7430  * existing device; in this case the two devices are made into their own
7431  * mirror using the 'replacing' vdev, which is functionally identical to
7432  * the mirror vdev (it actually reuses all the same ops) but has a few
7433  * extra rules: you can't attach to it after it's been created, and upon
7434  * completion of resilvering, the first disk (the one being replaced)
7435  * is automatically detached.
7436  *
7437  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
7438  * should be performed instead of traditional healing reconstruction.  From
7439  * an administrators perspective these are both resilver operations.
7440  */
7441 int
7442 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
7443     int rebuild)
7444 {
7445 	uint64_t txg, dtl_max_txg;
7446 	vdev_t *rvd = spa->spa_root_vdev;
7447 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
7448 	vdev_ops_t *pvops;
7449 	char *oldvdpath, *newvdpath;
7450 	int newvd_isspare = B_FALSE;
7451 	int error;
7452 
7453 	ASSERT(spa_writeable(spa));
7454 
7455 	txg = spa_vdev_enter(spa);
7456 
7457 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
7458 
7459 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7460 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7461 		error = (spa_has_checkpoint(spa)) ?
7462 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7463 		return (spa_vdev_exit(spa, NULL, txg, error));
7464 	}
7465 
7466 	if (rebuild) {
7467 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
7468 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7469 
7470 		if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
7471 		    dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
7472 			return (spa_vdev_exit(spa, NULL, txg,
7473 			    ZFS_ERR_RESILVER_IN_PROGRESS));
7474 		}
7475 	} else {
7476 		if (vdev_rebuild_active(rvd))
7477 			return (spa_vdev_exit(spa, NULL, txg,
7478 			    ZFS_ERR_REBUILD_IN_PROGRESS));
7479 	}
7480 
7481 	if (spa->spa_vdev_removal != NULL) {
7482 		return (spa_vdev_exit(spa, NULL, txg,
7483 		    ZFS_ERR_DEVRM_IN_PROGRESS));
7484 	}
7485 
7486 	if (oldvd == NULL)
7487 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7488 
7489 	boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops;
7490 
7491 	if (raidz) {
7492 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION))
7493 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7494 
7495 		/*
7496 		 * Can't expand a raidz while prior expand is in progress.
7497 		 */
7498 		if (spa->spa_raidz_expand != NULL) {
7499 			return (spa_vdev_exit(spa, NULL, txg,
7500 			    ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS));
7501 		}
7502 	} else if (!oldvd->vdev_ops->vdev_op_leaf) {
7503 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7504 	}
7505 
7506 	if (raidz)
7507 		pvd = oldvd;
7508 	else
7509 		pvd = oldvd->vdev_parent;
7510 
7511 	if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
7512 	    VDEV_ALLOC_ATTACH) != 0)
7513 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7514 
7515 	if (newrootvd->vdev_children != 1)
7516 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7517 
7518 	newvd = newrootvd->vdev_child[0];
7519 
7520 	if (!newvd->vdev_ops->vdev_op_leaf)
7521 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7522 
7523 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
7524 		return (spa_vdev_exit(spa, newrootvd, txg, error));
7525 
7526 	/*
7527 	 * log, dedup and special vdevs should not be replaced by spares.
7528 	 */
7529 	if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
7530 	    oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
7531 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7532 	}
7533 
7534 	/*
7535 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
7536 	 */
7537 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
7538 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
7539 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7540 	}
7541 
7542 	if (rebuild) {
7543 		/*
7544 		 * For rebuilds, the top vdev must support reconstruction
7545 		 * using only space maps.  This means the only allowable
7546 		 * vdevs types are the root vdev, a mirror, or dRAID.
7547 		 */
7548 		tvd = pvd;
7549 		if (pvd->vdev_top != NULL)
7550 			tvd = pvd->vdev_top;
7551 
7552 		if (tvd->vdev_ops != &vdev_mirror_ops &&
7553 		    tvd->vdev_ops != &vdev_root_ops &&
7554 		    tvd->vdev_ops != &vdev_draid_ops) {
7555 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7556 		}
7557 	}
7558 
7559 	if (!replacing) {
7560 		/*
7561 		 * For attach, the only allowable parent is a mirror or
7562 		 * the root vdev. A raidz vdev can be attached to, but
7563 		 * you cannot attach to a raidz child.
7564 		 */
7565 		if (pvd->vdev_ops != &vdev_mirror_ops &&
7566 		    pvd->vdev_ops != &vdev_root_ops &&
7567 		    !raidz)
7568 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7569 
7570 		pvops = &vdev_mirror_ops;
7571 	} else {
7572 		/*
7573 		 * Active hot spares can only be replaced by inactive hot
7574 		 * spares.
7575 		 */
7576 		if (pvd->vdev_ops == &vdev_spare_ops &&
7577 		    oldvd->vdev_isspare &&
7578 		    !spa_has_spare(spa, newvd->vdev_guid))
7579 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7580 
7581 		/*
7582 		 * If the source is a hot spare, and the parent isn't already a
7583 		 * spare, then we want to create a new hot spare.  Otherwise, we
7584 		 * want to create a replacing vdev.  The user is not allowed to
7585 		 * attach to a spared vdev child unless the 'isspare' state is
7586 		 * the same (spare replaces spare, non-spare replaces
7587 		 * non-spare).
7588 		 */
7589 		if (pvd->vdev_ops == &vdev_replacing_ops &&
7590 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7591 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7592 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
7593 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
7594 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7595 		}
7596 
7597 		if (newvd->vdev_isspare)
7598 			pvops = &vdev_spare_ops;
7599 		else
7600 			pvops = &vdev_replacing_ops;
7601 	}
7602 
7603 	/*
7604 	 * Make sure the new device is big enough.
7605 	 */
7606 	vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd;
7607 	if (newvd->vdev_asize < vdev_get_min_asize(min_vdev))
7608 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7609 
7610 	/*
7611 	 * The new device cannot have a higher alignment requirement
7612 	 * than the top-level vdev.
7613 	 */
7614 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) {
7615 		return (spa_vdev_exit(spa, newrootvd, txg,
7616 		    ZFS_ERR_ASHIFT_MISMATCH));
7617 	}
7618 
7619 	/*
7620 	 * RAIDZ-expansion-specific checks.
7621 	 */
7622 	if (raidz) {
7623 		if (vdev_raidz_attach_check(newvd) != 0)
7624 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7625 
7626 		/*
7627 		 * Fail early if a child is not healthy or being replaced
7628 		 */
7629 		for (int i = 0; i < oldvd->vdev_children; i++) {
7630 			if (vdev_is_dead(oldvd->vdev_child[i]) ||
7631 			    !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) {
7632 				return (spa_vdev_exit(spa, newrootvd, txg,
7633 				    ENXIO));
7634 			}
7635 			/* Also fail if reserved boot area is in-use */
7636 			if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i])
7637 			    != 0) {
7638 				return (spa_vdev_exit(spa, newrootvd, txg,
7639 				    EADDRINUSE));
7640 			}
7641 		}
7642 	}
7643 
7644 	if (raidz) {
7645 		/*
7646 		 * Note: oldvdpath is freed by spa_strfree(),  but
7647 		 * kmem_asprintf() is freed by kmem_strfree(), so we have to
7648 		 * move it to a spa_strdup-ed string.
7649 		 */
7650 		char *tmp = kmem_asprintf("raidz%u-%u",
7651 		    (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id);
7652 		oldvdpath = spa_strdup(tmp);
7653 		kmem_strfree(tmp);
7654 	} else {
7655 		oldvdpath = spa_strdup(oldvd->vdev_path);
7656 	}
7657 	newvdpath = spa_strdup(newvd->vdev_path);
7658 
7659 	/*
7660 	 * If this is an in-place replacement, update oldvd's path and devid
7661 	 * to make it distinguishable from newvd, and unopenable from now on.
7662 	 */
7663 	if (strcmp(oldvdpath, newvdpath) == 0) {
7664 		spa_strfree(oldvd->vdev_path);
7665 		oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5,
7666 		    KM_SLEEP);
7667 		(void) sprintf(oldvd->vdev_path, "%s/old",
7668 		    newvdpath);
7669 		if (oldvd->vdev_devid != NULL) {
7670 			spa_strfree(oldvd->vdev_devid);
7671 			oldvd->vdev_devid = NULL;
7672 		}
7673 		spa_strfree(oldvdpath);
7674 		oldvdpath = spa_strdup(oldvd->vdev_path);
7675 	}
7676 
7677 	/*
7678 	 * If the parent is not a mirror, or if we're replacing, insert the new
7679 	 * mirror/replacing/spare vdev above oldvd.
7680 	 */
7681 	if (!raidz && pvd->vdev_ops != pvops) {
7682 		pvd = vdev_add_parent(oldvd, pvops);
7683 		ASSERT(pvd->vdev_ops == pvops);
7684 		ASSERT(oldvd->vdev_parent == pvd);
7685 	}
7686 
7687 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
7688 
7689 	/*
7690 	 * Extract the new device from its root and add it to pvd.
7691 	 */
7692 	vdev_remove_child(newrootvd, newvd);
7693 	newvd->vdev_id = pvd->vdev_children;
7694 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
7695 	vdev_add_child(pvd, newvd);
7696 
7697 	/*
7698 	 * Reevaluate the parent vdev state.
7699 	 */
7700 	vdev_propagate_state(pvd);
7701 
7702 	tvd = newvd->vdev_top;
7703 	ASSERT(pvd->vdev_top == tvd);
7704 	ASSERT(tvd->vdev_parent == rvd);
7705 
7706 	vdev_config_dirty(tvd);
7707 
7708 	/*
7709 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7710 	 * for any dmu_sync-ed blocks.  It will propagate upward when
7711 	 * spa_vdev_exit() calls vdev_dtl_reassess().
7712 	 */
7713 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7714 
7715 	if (raidz) {
7716 		/*
7717 		 * Wait for the youngest allocations and frees to sync,
7718 		 * and then wait for the deferral of those frees to finish.
7719 		 */
7720 		spa_vdev_config_exit(spa, NULL,
7721 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
7722 
7723 		vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE);
7724 		vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE);
7725 		vdev_autotrim_stop_wait(tvd);
7726 
7727 		dtl_max_txg = spa_vdev_config_enter(spa);
7728 
7729 		tvd->vdev_rz_expanding = B_TRUE;
7730 
7731 		vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg);
7732 		vdev_config_dirty(tvd);
7733 
7734 		dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
7735 		    dtl_max_txg);
7736 		dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync,
7737 		    newvd, tx);
7738 		dmu_tx_commit(tx);
7739 	} else {
7740 		vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
7741 		    dtl_max_txg - TXG_INITIAL);
7742 
7743 		if (newvd->vdev_isspare) {
7744 			spa_spare_activate(newvd);
7745 			spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7746 		}
7747 
7748 		newvd_isspare = newvd->vdev_isspare;
7749 
7750 		/*
7751 		 * Mark newvd's DTL dirty in this txg.
7752 		 */
7753 		vdev_dirty(tvd, VDD_DTL, newvd, txg);
7754 
7755 		/*
7756 		 * Schedule the resilver or rebuild to restart in the future.
7757 		 * We do this to ensure that dmu_sync-ed blocks have been
7758 		 * stitched into the respective datasets.
7759 		 */
7760 		if (rebuild) {
7761 			newvd->vdev_rebuild_txg = txg;
7762 
7763 			vdev_rebuild(tvd);
7764 		} else {
7765 			newvd->vdev_resilver_txg = txg;
7766 
7767 			if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7768 			    spa_feature_is_enabled(spa,
7769 			    SPA_FEATURE_RESILVER_DEFER)) {
7770 				vdev_defer_resilver(newvd);
7771 			} else {
7772 				dsl_scan_restart_resilver(spa->spa_dsl_pool,
7773 				    dtl_max_txg);
7774 			}
7775 		}
7776 	}
7777 
7778 	if (spa->spa_bootfs)
7779 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7780 
7781 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7782 
7783 	/*
7784 	 * Commit the config
7785 	 */
7786 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7787 
7788 	spa_history_log_internal(spa, "vdev attach", NULL,
7789 	    "%s vdev=%s %s vdev=%s",
7790 	    replacing && newvd_isspare ? "spare in" :
7791 	    replacing ? "replace" : "attach", newvdpath,
7792 	    replacing ? "for" : "to", oldvdpath);
7793 
7794 	spa_strfree(oldvdpath);
7795 	spa_strfree(newvdpath);
7796 
7797 	return (0);
7798 }
7799 
7800 /*
7801  * Detach a device from a mirror or replacing vdev.
7802  *
7803  * If 'replace_done' is specified, only detach if the parent
7804  * is a replacing or a spare vdev.
7805  */
7806 int
7807 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7808 {
7809 	uint64_t txg;
7810 	int error;
7811 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7812 	vdev_t *vd, *pvd, *cvd, *tvd;
7813 	boolean_t unspare = B_FALSE;
7814 	uint64_t unspare_guid = 0;
7815 	char *vdpath;
7816 
7817 	ASSERT(spa_writeable(spa));
7818 
7819 	txg = spa_vdev_detach_enter(spa, guid);
7820 
7821 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7822 
7823 	/*
7824 	 * Besides being called directly from the userland through the
7825 	 * ioctl interface, spa_vdev_detach() can be potentially called
7826 	 * at the end of spa_vdev_resilver_done().
7827 	 *
7828 	 * In the regular case, when we have a checkpoint this shouldn't
7829 	 * happen as we never empty the DTLs of a vdev during the scrub
7830 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7831 	 * should never get here when we have a checkpoint.
7832 	 *
7833 	 * That said, even in a case when we checkpoint the pool exactly
7834 	 * as spa_vdev_resilver_done() calls this function everything
7835 	 * should be fine as the resilver will return right away.
7836 	 */
7837 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7838 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7839 		error = (spa_has_checkpoint(spa)) ?
7840 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7841 		return (spa_vdev_exit(spa, NULL, txg, error));
7842 	}
7843 
7844 	if (vd == NULL)
7845 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7846 
7847 	if (!vd->vdev_ops->vdev_op_leaf)
7848 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7849 
7850 	pvd = vd->vdev_parent;
7851 
7852 	/*
7853 	 * If the parent/child relationship is not as expected, don't do it.
7854 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7855 	 * vdev that's replacing B with C.  The user's intent in replacing
7856 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
7857 	 * the replace by detaching C, the expected behavior is to end up
7858 	 * M(A,B).  But suppose that right after deciding to detach C,
7859 	 * the replacement of B completes.  We would have M(A,C), and then
7860 	 * ask to detach C, which would leave us with just A -- not what
7861 	 * the user wanted.  To prevent this, we make sure that the
7862 	 * parent/child relationship hasn't changed -- in this example,
7863 	 * that C's parent is still the replacing vdev R.
7864 	 */
7865 	if (pvd->vdev_guid != pguid && pguid != 0)
7866 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7867 
7868 	/*
7869 	 * Only 'replacing' or 'spare' vdevs can be replaced.
7870 	 */
7871 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7872 	    pvd->vdev_ops != &vdev_spare_ops)
7873 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7874 
7875 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7876 	    spa_version(spa) >= SPA_VERSION_SPARES);
7877 
7878 	/*
7879 	 * Only mirror, replacing, and spare vdevs support detach.
7880 	 */
7881 	if (pvd->vdev_ops != &vdev_replacing_ops &&
7882 	    pvd->vdev_ops != &vdev_mirror_ops &&
7883 	    pvd->vdev_ops != &vdev_spare_ops)
7884 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7885 
7886 	/*
7887 	 * If this device has the only valid copy of some data,
7888 	 * we cannot safely detach it.
7889 	 */
7890 	if (vdev_dtl_required(vd))
7891 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7892 
7893 	ASSERT(pvd->vdev_children >= 2);
7894 
7895 	/*
7896 	 * If we are detaching the second disk from a replacing vdev, then
7897 	 * check to see if we changed the original vdev's path to have "/old"
7898 	 * at the end in spa_vdev_attach().  If so, undo that change now.
7899 	 */
7900 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7901 	    vd->vdev_path != NULL) {
7902 		size_t len = strlen(vd->vdev_path);
7903 
7904 		for (int c = 0; c < pvd->vdev_children; c++) {
7905 			cvd = pvd->vdev_child[c];
7906 
7907 			if (cvd == vd || cvd->vdev_path == NULL)
7908 				continue;
7909 
7910 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7911 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
7912 				spa_strfree(cvd->vdev_path);
7913 				cvd->vdev_path = spa_strdup(vd->vdev_path);
7914 				break;
7915 			}
7916 		}
7917 	}
7918 
7919 	/*
7920 	 * If we are detaching the original disk from a normal spare, then it
7921 	 * implies that the spare should become a real disk, and be removed
7922 	 * from the active spare list for the pool.  dRAID spares on the
7923 	 * other hand are coupled to the pool and thus should never be removed
7924 	 * from the spares list.
7925 	 */
7926 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7927 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7928 
7929 		if (last_cvd->vdev_isspare &&
7930 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7931 			unspare = B_TRUE;
7932 		}
7933 	}
7934 
7935 	/*
7936 	 * Erase the disk labels so the disk can be used for other things.
7937 	 * This must be done after all other error cases are handled,
7938 	 * but before we disembowel vd (so we can still do I/O to it).
7939 	 * But if we can't do it, don't treat the error as fatal --
7940 	 * it may be that the unwritability of the disk is the reason
7941 	 * it's being detached!
7942 	 */
7943 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7944 
7945 	/*
7946 	 * Remove vd from its parent and compact the parent's children.
7947 	 */
7948 	vdev_remove_child(pvd, vd);
7949 	vdev_compact_children(pvd);
7950 
7951 	/*
7952 	 * Remember one of the remaining children so we can get tvd below.
7953 	 */
7954 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
7955 
7956 	/*
7957 	 * If we need to remove the remaining child from the list of hot spares,
7958 	 * do it now, marking the vdev as no longer a spare in the process.
7959 	 * We must do this before vdev_remove_parent(), because that can
7960 	 * change the GUID if it creates a new toplevel GUID.  For a similar
7961 	 * reason, we must remove the spare now, in the same txg as the detach;
7962 	 * otherwise someone could attach a new sibling, change the GUID, and
7963 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7964 	 */
7965 	if (unspare) {
7966 		ASSERT(cvd->vdev_isspare);
7967 		spa_spare_remove(cvd);
7968 		unspare_guid = cvd->vdev_guid;
7969 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7970 		cvd->vdev_unspare = B_TRUE;
7971 	}
7972 
7973 	/*
7974 	 * If the parent mirror/replacing vdev only has one child,
7975 	 * the parent is no longer needed.  Remove it from the tree.
7976 	 */
7977 	if (pvd->vdev_children == 1) {
7978 		if (pvd->vdev_ops == &vdev_spare_ops)
7979 			cvd->vdev_unspare = B_FALSE;
7980 		vdev_remove_parent(cvd);
7981 	}
7982 
7983 	/*
7984 	 * We don't set tvd until now because the parent we just removed
7985 	 * may have been the previous top-level vdev.
7986 	 */
7987 	tvd = cvd->vdev_top;
7988 	ASSERT(tvd->vdev_parent == rvd);
7989 
7990 	/*
7991 	 * Reevaluate the parent vdev state.
7992 	 */
7993 	vdev_propagate_state(cvd);
7994 
7995 	/*
7996 	 * If the 'autoexpand' property is set on the pool then automatically
7997 	 * try to expand the size of the pool. For example if the device we
7998 	 * just detached was smaller than the others, it may be possible to
7999 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
8000 	 * first so that we can obtain the updated sizes of the leaf vdevs.
8001 	 */
8002 	if (spa->spa_autoexpand) {
8003 		vdev_reopen(tvd);
8004 		vdev_expand(tvd, txg);
8005 	}
8006 
8007 	vdev_config_dirty(tvd);
8008 
8009 	/*
8010 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
8011 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
8012 	 * But first make sure we're not on any *other* txg's DTL list, to
8013 	 * prevent vd from being accessed after it's freed.
8014 	 */
8015 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
8016 	for (int t = 0; t < TXG_SIZE; t++)
8017 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
8018 	vd->vdev_detached = B_TRUE;
8019 	vdev_dirty(tvd, VDD_DTL, vd, txg);
8020 
8021 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
8022 	spa_notify_waiters(spa);
8023 
8024 	/* hang on to the spa before we release the lock */
8025 	spa_open_ref(spa, FTAG);
8026 
8027 	error = spa_vdev_exit(spa, vd, txg, 0);
8028 
8029 	spa_history_log_internal(spa, "detach", NULL,
8030 	    "vdev=%s", vdpath);
8031 	spa_strfree(vdpath);
8032 
8033 	/*
8034 	 * If this was the removal of the original device in a hot spare vdev,
8035 	 * then we want to go through and remove the device from the hot spare
8036 	 * list of every other pool.
8037 	 */
8038 	if (unspare) {
8039 		spa_t *altspa = NULL;
8040 
8041 		mutex_enter(&spa_namespace_lock);
8042 		while ((altspa = spa_next(altspa)) != NULL) {
8043 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
8044 			    altspa == spa)
8045 				continue;
8046 
8047 			spa_open_ref(altspa, FTAG);
8048 			mutex_exit(&spa_namespace_lock);
8049 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
8050 			mutex_enter(&spa_namespace_lock);
8051 			spa_close(altspa, FTAG);
8052 		}
8053 		mutex_exit(&spa_namespace_lock);
8054 
8055 		/* search the rest of the vdevs for spares to remove */
8056 		spa_vdev_resilver_done(spa);
8057 	}
8058 
8059 	/* all done with the spa; OK to release */
8060 	mutex_enter(&spa_namespace_lock);
8061 	spa_close(spa, FTAG);
8062 	mutex_exit(&spa_namespace_lock);
8063 
8064 	return (error);
8065 }
8066 
8067 static int
8068 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8069     list_t *vd_list)
8070 {
8071 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8072 
8073 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8074 
8075 	/* Look up vdev and ensure it's a leaf. */
8076 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8077 	if (vd == NULL || vd->vdev_detached) {
8078 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8079 		return (SET_ERROR(ENODEV));
8080 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8081 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8082 		return (SET_ERROR(EINVAL));
8083 	} else if (!vdev_writeable(vd)) {
8084 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8085 		return (SET_ERROR(EROFS));
8086 	}
8087 	mutex_enter(&vd->vdev_initialize_lock);
8088 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8089 
8090 	/*
8091 	 * When we activate an initialize action we check to see
8092 	 * if the vdev_initialize_thread is NULL. We do this instead
8093 	 * of using the vdev_initialize_state since there might be
8094 	 * a previous initialization process which has completed but
8095 	 * the thread is not exited.
8096 	 */
8097 	if (cmd_type == POOL_INITIALIZE_START &&
8098 	    (vd->vdev_initialize_thread != NULL ||
8099 	    vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) {
8100 		mutex_exit(&vd->vdev_initialize_lock);
8101 		return (SET_ERROR(EBUSY));
8102 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
8103 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
8104 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
8105 		mutex_exit(&vd->vdev_initialize_lock);
8106 		return (SET_ERROR(ESRCH));
8107 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
8108 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
8109 		mutex_exit(&vd->vdev_initialize_lock);
8110 		return (SET_ERROR(ESRCH));
8111 	} else if (cmd_type == POOL_INITIALIZE_UNINIT &&
8112 	    vd->vdev_initialize_thread != NULL) {
8113 		mutex_exit(&vd->vdev_initialize_lock);
8114 		return (SET_ERROR(EBUSY));
8115 	}
8116 
8117 	switch (cmd_type) {
8118 	case POOL_INITIALIZE_START:
8119 		vdev_initialize(vd);
8120 		break;
8121 	case POOL_INITIALIZE_CANCEL:
8122 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
8123 		break;
8124 	case POOL_INITIALIZE_SUSPEND:
8125 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
8126 		break;
8127 	case POOL_INITIALIZE_UNINIT:
8128 		vdev_uninitialize(vd);
8129 		break;
8130 	default:
8131 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8132 	}
8133 	mutex_exit(&vd->vdev_initialize_lock);
8134 
8135 	return (0);
8136 }
8137 
8138 int
8139 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
8140     nvlist_t *vdev_errlist)
8141 {
8142 	int total_errors = 0;
8143 	list_t vd_list;
8144 
8145 	list_create(&vd_list, sizeof (vdev_t),
8146 	    offsetof(vdev_t, vdev_initialize_node));
8147 
8148 	/*
8149 	 * We hold the namespace lock through the whole function
8150 	 * to prevent any changes to the pool while we're starting or
8151 	 * stopping initialization. The config and state locks are held so that
8152 	 * we can properly assess the vdev state before we commit to
8153 	 * the initializing operation.
8154 	 */
8155 	mutex_enter(&spa_namespace_lock);
8156 
8157 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8158 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8159 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
8160 
8161 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
8162 		    &vd_list);
8163 		if (error != 0) {
8164 			char guid_as_str[MAXNAMELEN];
8165 
8166 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
8167 			    "%llu", (unsigned long long)vdev_guid);
8168 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8169 			total_errors++;
8170 		}
8171 	}
8172 
8173 	/* Wait for all initialize threads to stop. */
8174 	vdev_initialize_stop_wait(spa, &vd_list);
8175 
8176 	/* Sync out the initializing state */
8177 	txg_wait_synced(spa->spa_dsl_pool, 0);
8178 	mutex_exit(&spa_namespace_lock);
8179 
8180 	list_destroy(&vd_list);
8181 
8182 	return (total_errors);
8183 }
8184 
8185 static int
8186 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8187     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
8188 {
8189 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8190 
8191 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8192 
8193 	/* Look up vdev and ensure it's a leaf. */
8194 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8195 	if (vd == NULL || vd->vdev_detached) {
8196 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8197 		return (SET_ERROR(ENODEV));
8198 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8199 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8200 		return (SET_ERROR(EINVAL));
8201 	} else if (!vdev_writeable(vd)) {
8202 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8203 		return (SET_ERROR(EROFS));
8204 	} else if (!vd->vdev_has_trim) {
8205 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8206 		return (SET_ERROR(EOPNOTSUPP));
8207 	} else if (secure && !vd->vdev_has_securetrim) {
8208 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8209 		return (SET_ERROR(EOPNOTSUPP));
8210 	}
8211 	mutex_enter(&vd->vdev_trim_lock);
8212 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8213 
8214 	/*
8215 	 * When we activate a TRIM action we check to see if the
8216 	 * vdev_trim_thread is NULL. We do this instead of using the
8217 	 * vdev_trim_state since there might be a previous TRIM process
8218 	 * which has completed but the thread is not exited.
8219 	 */
8220 	if (cmd_type == POOL_TRIM_START &&
8221 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing ||
8222 	    vd->vdev_top->vdev_rz_expanding)) {
8223 		mutex_exit(&vd->vdev_trim_lock);
8224 		return (SET_ERROR(EBUSY));
8225 	} else if (cmd_type == POOL_TRIM_CANCEL &&
8226 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
8227 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
8228 		mutex_exit(&vd->vdev_trim_lock);
8229 		return (SET_ERROR(ESRCH));
8230 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
8231 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
8232 		mutex_exit(&vd->vdev_trim_lock);
8233 		return (SET_ERROR(ESRCH));
8234 	}
8235 
8236 	switch (cmd_type) {
8237 	case POOL_TRIM_START:
8238 		vdev_trim(vd, rate, partial, secure);
8239 		break;
8240 	case POOL_TRIM_CANCEL:
8241 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
8242 		break;
8243 	case POOL_TRIM_SUSPEND:
8244 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
8245 		break;
8246 	default:
8247 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8248 	}
8249 	mutex_exit(&vd->vdev_trim_lock);
8250 
8251 	return (0);
8252 }
8253 
8254 /*
8255  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
8256  * TRIM threads for each child vdev.  These threads pass over all of the free
8257  * space in the vdev's metaslabs and issues TRIM commands for that space.
8258  */
8259 int
8260 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
8261     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
8262 {
8263 	int total_errors = 0;
8264 	list_t vd_list;
8265 
8266 	list_create(&vd_list, sizeof (vdev_t),
8267 	    offsetof(vdev_t, vdev_trim_node));
8268 
8269 	/*
8270 	 * We hold the namespace lock through the whole function
8271 	 * to prevent any changes to the pool while we're starting or
8272 	 * stopping TRIM. The config and state locks are held so that
8273 	 * we can properly assess the vdev state before we commit to
8274 	 * the TRIM operation.
8275 	 */
8276 	mutex_enter(&spa_namespace_lock);
8277 
8278 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8279 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8280 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
8281 
8282 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
8283 		    rate, partial, secure, &vd_list);
8284 		if (error != 0) {
8285 			char guid_as_str[MAXNAMELEN];
8286 
8287 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
8288 			    "%llu", (unsigned long long)vdev_guid);
8289 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8290 			total_errors++;
8291 		}
8292 	}
8293 
8294 	/* Wait for all TRIM threads to stop. */
8295 	vdev_trim_stop_wait(spa, &vd_list);
8296 
8297 	/* Sync out the TRIM state */
8298 	txg_wait_synced(spa->spa_dsl_pool, 0);
8299 	mutex_exit(&spa_namespace_lock);
8300 
8301 	list_destroy(&vd_list);
8302 
8303 	return (total_errors);
8304 }
8305 
8306 /*
8307  * Split a set of devices from their mirrors, and create a new pool from them.
8308  */
8309 int
8310 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
8311     nvlist_t *props, boolean_t exp)
8312 {
8313 	int error = 0;
8314 	uint64_t txg, *glist;
8315 	spa_t *newspa;
8316 	uint_t c, children, lastlog;
8317 	nvlist_t **child, *nvl, *tmp;
8318 	dmu_tx_t *tx;
8319 	const char *altroot = NULL;
8320 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
8321 	boolean_t activate_slog;
8322 
8323 	ASSERT(spa_writeable(spa));
8324 
8325 	txg = spa_vdev_enter(spa);
8326 
8327 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8328 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8329 		error = (spa_has_checkpoint(spa)) ?
8330 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8331 		return (spa_vdev_exit(spa, NULL, txg, error));
8332 	}
8333 
8334 	/* clear the log and flush everything up to now */
8335 	activate_slog = spa_passivate_log(spa);
8336 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8337 	error = spa_reset_logs(spa);
8338 	txg = spa_vdev_config_enter(spa);
8339 
8340 	if (activate_slog)
8341 		spa_activate_log(spa);
8342 
8343 	if (error != 0)
8344 		return (spa_vdev_exit(spa, NULL, txg, error));
8345 
8346 	/* check new spa name before going any further */
8347 	if (spa_lookup(newname) != NULL)
8348 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
8349 
8350 	/*
8351 	 * scan through all the children to ensure they're all mirrors
8352 	 */
8353 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
8354 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
8355 	    &children) != 0)
8356 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8357 
8358 	/* first, check to ensure we've got the right child count */
8359 	rvd = spa->spa_root_vdev;
8360 	lastlog = 0;
8361 	for (c = 0; c < rvd->vdev_children; c++) {
8362 		vdev_t *vd = rvd->vdev_child[c];
8363 
8364 		/* don't count the holes & logs as children */
8365 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
8366 		    !vdev_is_concrete(vd))) {
8367 			if (lastlog == 0)
8368 				lastlog = c;
8369 			continue;
8370 		}
8371 
8372 		lastlog = 0;
8373 	}
8374 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
8375 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8376 
8377 	/* next, ensure no spare or cache devices are part of the split */
8378 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
8379 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
8380 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8381 
8382 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
8383 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
8384 
8385 	/* then, loop over each vdev and validate it */
8386 	for (c = 0; c < children; c++) {
8387 		uint64_t is_hole = 0;
8388 
8389 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
8390 		    &is_hole);
8391 
8392 		if (is_hole != 0) {
8393 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
8394 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
8395 				continue;
8396 			} else {
8397 				error = SET_ERROR(EINVAL);
8398 				break;
8399 			}
8400 		}
8401 
8402 		/* deal with indirect vdevs */
8403 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
8404 		    &vdev_indirect_ops)
8405 			continue;
8406 
8407 		/* which disk is going to be split? */
8408 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
8409 		    &glist[c]) != 0) {
8410 			error = SET_ERROR(EINVAL);
8411 			break;
8412 		}
8413 
8414 		/* look it up in the spa */
8415 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
8416 		if (vml[c] == NULL) {
8417 			error = SET_ERROR(ENODEV);
8418 			break;
8419 		}
8420 
8421 		/* make sure there's nothing stopping the split */
8422 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
8423 		    vml[c]->vdev_islog ||
8424 		    !vdev_is_concrete(vml[c]) ||
8425 		    vml[c]->vdev_isspare ||
8426 		    vml[c]->vdev_isl2cache ||
8427 		    !vdev_writeable(vml[c]) ||
8428 		    vml[c]->vdev_children != 0 ||
8429 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
8430 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
8431 			error = SET_ERROR(EINVAL);
8432 			break;
8433 		}
8434 
8435 		if (vdev_dtl_required(vml[c]) ||
8436 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
8437 			error = SET_ERROR(EBUSY);
8438 			break;
8439 		}
8440 
8441 		/* we need certain info from the top level */
8442 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
8443 		    vml[c]->vdev_top->vdev_ms_array);
8444 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
8445 		    vml[c]->vdev_top->vdev_ms_shift);
8446 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
8447 		    vml[c]->vdev_top->vdev_asize);
8448 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
8449 		    vml[c]->vdev_top->vdev_ashift);
8450 
8451 		/* transfer per-vdev ZAPs */
8452 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
8453 		VERIFY0(nvlist_add_uint64(child[c],
8454 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
8455 
8456 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
8457 		VERIFY0(nvlist_add_uint64(child[c],
8458 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
8459 		    vml[c]->vdev_parent->vdev_top_zap));
8460 	}
8461 
8462 	if (error != 0) {
8463 		kmem_free(vml, children * sizeof (vdev_t *));
8464 		kmem_free(glist, children * sizeof (uint64_t));
8465 		return (spa_vdev_exit(spa, NULL, txg, error));
8466 	}
8467 
8468 	/* stop writers from using the disks */
8469 	for (c = 0; c < children; c++) {
8470 		if (vml[c] != NULL)
8471 			vml[c]->vdev_offline = B_TRUE;
8472 	}
8473 	vdev_reopen(spa->spa_root_vdev);
8474 
8475 	/*
8476 	 * Temporarily record the splitting vdevs in the spa config.  This
8477 	 * will disappear once the config is regenerated.
8478 	 */
8479 	nvl = fnvlist_alloc();
8480 	fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
8481 	kmem_free(glist, children * sizeof (uint64_t));
8482 
8483 	mutex_enter(&spa->spa_props_lock);
8484 	fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
8485 	mutex_exit(&spa->spa_props_lock);
8486 	spa->spa_config_splitting = nvl;
8487 	vdev_config_dirty(spa->spa_root_vdev);
8488 
8489 	/* configure and create the new pool */
8490 	fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
8491 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
8492 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
8493 	fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
8494 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
8495 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
8496 	    spa_generate_guid(NULL));
8497 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
8498 	(void) nvlist_lookup_string(props,
8499 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
8500 
8501 	/* add the new pool to the namespace */
8502 	newspa = spa_add(newname, config, altroot);
8503 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
8504 	newspa->spa_config_txg = spa->spa_config_txg;
8505 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
8506 
8507 	/* release the spa config lock, retaining the namespace lock */
8508 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8509 
8510 	if (zio_injection_enabled)
8511 		zio_handle_panic_injection(spa, FTAG, 1);
8512 
8513 	spa_activate(newspa, spa_mode_global);
8514 	spa_async_suspend(newspa);
8515 
8516 	/*
8517 	 * Temporarily stop the initializing and TRIM activity.  We set the
8518 	 * state to ACTIVE so that we know to resume initializing or TRIM
8519 	 * once the split has completed.
8520 	 */
8521 	list_t vd_initialize_list;
8522 	list_create(&vd_initialize_list, sizeof (vdev_t),
8523 	    offsetof(vdev_t, vdev_initialize_node));
8524 
8525 	list_t vd_trim_list;
8526 	list_create(&vd_trim_list, sizeof (vdev_t),
8527 	    offsetof(vdev_t, vdev_trim_node));
8528 
8529 	for (c = 0; c < children; c++) {
8530 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8531 			mutex_enter(&vml[c]->vdev_initialize_lock);
8532 			vdev_initialize_stop(vml[c],
8533 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
8534 			mutex_exit(&vml[c]->vdev_initialize_lock);
8535 
8536 			mutex_enter(&vml[c]->vdev_trim_lock);
8537 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
8538 			mutex_exit(&vml[c]->vdev_trim_lock);
8539 		}
8540 	}
8541 
8542 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
8543 	vdev_trim_stop_wait(spa, &vd_trim_list);
8544 
8545 	list_destroy(&vd_initialize_list);
8546 	list_destroy(&vd_trim_list);
8547 
8548 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
8549 	newspa->spa_is_splitting = B_TRUE;
8550 
8551 	/* create the new pool from the disks of the original pool */
8552 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
8553 	if (error)
8554 		goto out;
8555 
8556 	/* if that worked, generate a real config for the new pool */
8557 	if (newspa->spa_root_vdev != NULL) {
8558 		newspa->spa_config_splitting = fnvlist_alloc();
8559 		fnvlist_add_uint64(newspa->spa_config_splitting,
8560 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
8561 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
8562 		    B_TRUE));
8563 	}
8564 
8565 	/* set the props */
8566 	if (props != NULL) {
8567 		spa_configfile_set(newspa, props, B_FALSE);
8568 		error = spa_prop_set(newspa, props);
8569 		if (error)
8570 			goto out;
8571 	}
8572 
8573 	/* flush everything */
8574 	txg = spa_vdev_config_enter(newspa);
8575 	vdev_config_dirty(newspa->spa_root_vdev);
8576 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
8577 
8578 	if (zio_injection_enabled)
8579 		zio_handle_panic_injection(spa, FTAG, 2);
8580 
8581 	spa_async_resume(newspa);
8582 
8583 	/* finally, update the original pool's config */
8584 	txg = spa_vdev_config_enter(spa);
8585 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
8586 	error = dmu_tx_assign(tx, TXG_WAIT);
8587 	if (error != 0)
8588 		dmu_tx_abort(tx);
8589 	for (c = 0; c < children; c++) {
8590 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8591 			vdev_t *tvd = vml[c]->vdev_top;
8592 
8593 			/*
8594 			 * Need to be sure the detachable VDEV is not
8595 			 * on any *other* txg's DTL list to prevent it
8596 			 * from being accessed after it's freed.
8597 			 */
8598 			for (int t = 0; t < TXG_SIZE; t++) {
8599 				(void) txg_list_remove_this(
8600 				    &tvd->vdev_dtl_list, vml[c], t);
8601 			}
8602 
8603 			vdev_split(vml[c]);
8604 			if (error == 0)
8605 				spa_history_log_internal(spa, "detach", tx,
8606 				    "vdev=%s", vml[c]->vdev_path);
8607 
8608 			vdev_free(vml[c]);
8609 		}
8610 	}
8611 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
8612 	vdev_config_dirty(spa->spa_root_vdev);
8613 	spa->spa_config_splitting = NULL;
8614 	nvlist_free(nvl);
8615 	if (error == 0)
8616 		dmu_tx_commit(tx);
8617 	(void) spa_vdev_exit(spa, NULL, txg, 0);
8618 
8619 	if (zio_injection_enabled)
8620 		zio_handle_panic_injection(spa, FTAG, 3);
8621 
8622 	/* split is complete; log a history record */
8623 	spa_history_log_internal(newspa, "split", NULL,
8624 	    "from pool %s", spa_name(spa));
8625 
8626 	newspa->spa_is_splitting = B_FALSE;
8627 	kmem_free(vml, children * sizeof (vdev_t *));
8628 
8629 	/* if we're not going to mount the filesystems in userland, export */
8630 	if (exp)
8631 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
8632 		    B_FALSE, B_FALSE);
8633 
8634 	return (error);
8635 
8636 out:
8637 	spa_unload(newspa);
8638 	spa_deactivate(newspa);
8639 	spa_remove(newspa);
8640 
8641 	txg = spa_vdev_config_enter(spa);
8642 
8643 	/* re-online all offlined disks */
8644 	for (c = 0; c < children; c++) {
8645 		if (vml[c] != NULL)
8646 			vml[c]->vdev_offline = B_FALSE;
8647 	}
8648 
8649 	/* restart initializing or trimming disks as necessary */
8650 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
8651 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
8652 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
8653 
8654 	vdev_reopen(spa->spa_root_vdev);
8655 
8656 	nvlist_free(spa->spa_config_splitting);
8657 	spa->spa_config_splitting = NULL;
8658 	(void) spa_vdev_exit(spa, NULL, txg, error);
8659 
8660 	kmem_free(vml, children * sizeof (vdev_t *));
8661 	return (error);
8662 }
8663 
8664 /*
8665  * Find any device that's done replacing, or a vdev marked 'unspare' that's
8666  * currently spared, so we can detach it.
8667  */
8668 static vdev_t *
8669 spa_vdev_resilver_done_hunt(vdev_t *vd)
8670 {
8671 	vdev_t *newvd, *oldvd;
8672 
8673 	for (int c = 0; c < vd->vdev_children; c++) {
8674 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8675 		if (oldvd != NULL)
8676 			return (oldvd);
8677 	}
8678 
8679 	/*
8680 	 * Check for a completed replacement.  We always consider the first
8681 	 * vdev in the list to be the oldest vdev, and the last one to be
8682 	 * the newest (see spa_vdev_attach() for how that works).  In
8683 	 * the case where the newest vdev is faulted, we will not automatically
8684 	 * remove it after a resilver completes.  This is OK as it will require
8685 	 * user intervention to determine which disk the admin wishes to keep.
8686 	 */
8687 	if (vd->vdev_ops == &vdev_replacing_ops) {
8688 		ASSERT(vd->vdev_children > 1);
8689 
8690 		newvd = vd->vdev_child[vd->vdev_children - 1];
8691 		oldvd = vd->vdev_child[0];
8692 
8693 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8694 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8695 		    !vdev_dtl_required(oldvd))
8696 			return (oldvd);
8697 	}
8698 
8699 	/*
8700 	 * Check for a completed resilver with the 'unspare' flag set.
8701 	 * Also potentially update faulted state.
8702 	 */
8703 	if (vd->vdev_ops == &vdev_spare_ops) {
8704 		vdev_t *first = vd->vdev_child[0];
8705 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8706 
8707 		if (last->vdev_unspare) {
8708 			oldvd = first;
8709 			newvd = last;
8710 		} else if (first->vdev_unspare) {
8711 			oldvd = last;
8712 			newvd = first;
8713 		} else {
8714 			oldvd = NULL;
8715 		}
8716 
8717 		if (oldvd != NULL &&
8718 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
8719 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8720 		    !vdev_dtl_required(oldvd))
8721 			return (oldvd);
8722 
8723 		vdev_propagate_state(vd);
8724 
8725 		/*
8726 		 * If there are more than two spares attached to a disk,
8727 		 * and those spares are not required, then we want to
8728 		 * attempt to free them up now so that they can be used
8729 		 * by other pools.  Once we're back down to a single
8730 		 * disk+spare, we stop removing them.
8731 		 */
8732 		if (vd->vdev_children > 2) {
8733 			newvd = vd->vdev_child[1];
8734 
8735 			if (newvd->vdev_isspare && last->vdev_isspare &&
8736 			    vdev_dtl_empty(last, DTL_MISSING) &&
8737 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
8738 			    !vdev_dtl_required(newvd))
8739 				return (newvd);
8740 		}
8741 	}
8742 
8743 	return (NULL);
8744 }
8745 
8746 static void
8747 spa_vdev_resilver_done(spa_t *spa)
8748 {
8749 	vdev_t *vd, *pvd, *ppvd;
8750 	uint64_t guid, sguid, pguid, ppguid;
8751 
8752 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8753 
8754 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8755 		pvd = vd->vdev_parent;
8756 		ppvd = pvd->vdev_parent;
8757 		guid = vd->vdev_guid;
8758 		pguid = pvd->vdev_guid;
8759 		ppguid = ppvd->vdev_guid;
8760 		sguid = 0;
8761 		/*
8762 		 * If we have just finished replacing a hot spared device, then
8763 		 * we need to detach the parent's first child (the original hot
8764 		 * spare) as well.
8765 		 */
8766 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8767 		    ppvd->vdev_children == 2) {
8768 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8769 			sguid = ppvd->vdev_child[1]->vdev_guid;
8770 		}
8771 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8772 
8773 		spa_config_exit(spa, SCL_ALL, FTAG);
8774 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8775 			return;
8776 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8777 			return;
8778 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8779 	}
8780 
8781 	spa_config_exit(spa, SCL_ALL, FTAG);
8782 
8783 	/*
8784 	 * If a detach was not performed above replace waiters will not have
8785 	 * been notified.  In which case we must do so now.
8786 	 */
8787 	spa_notify_waiters(spa);
8788 }
8789 
8790 /*
8791  * Update the stored path or FRU for this vdev.
8792  */
8793 static int
8794 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8795     boolean_t ispath)
8796 {
8797 	vdev_t *vd;
8798 	boolean_t sync = B_FALSE;
8799 
8800 	ASSERT(spa_writeable(spa));
8801 
8802 	spa_vdev_state_enter(spa, SCL_ALL);
8803 
8804 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8805 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
8806 
8807 	if (!vd->vdev_ops->vdev_op_leaf)
8808 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8809 
8810 	if (ispath) {
8811 		if (strcmp(value, vd->vdev_path) != 0) {
8812 			spa_strfree(vd->vdev_path);
8813 			vd->vdev_path = spa_strdup(value);
8814 			sync = B_TRUE;
8815 		}
8816 	} else {
8817 		if (vd->vdev_fru == NULL) {
8818 			vd->vdev_fru = spa_strdup(value);
8819 			sync = B_TRUE;
8820 		} else if (strcmp(value, vd->vdev_fru) != 0) {
8821 			spa_strfree(vd->vdev_fru);
8822 			vd->vdev_fru = spa_strdup(value);
8823 			sync = B_TRUE;
8824 		}
8825 	}
8826 
8827 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8828 }
8829 
8830 int
8831 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8832 {
8833 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8834 }
8835 
8836 int
8837 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8838 {
8839 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8840 }
8841 
8842 /*
8843  * ==========================================================================
8844  * SPA Scanning
8845  * ==========================================================================
8846  */
8847 int
8848 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8849 {
8850 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8851 
8852 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8853 		return (SET_ERROR(EBUSY));
8854 
8855 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8856 }
8857 
8858 int
8859 spa_scan_stop(spa_t *spa)
8860 {
8861 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8862 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8863 		return (SET_ERROR(EBUSY));
8864 
8865 	return (dsl_scan_cancel(spa->spa_dsl_pool));
8866 }
8867 
8868 int
8869 spa_scan(spa_t *spa, pool_scan_func_t func)
8870 {
8871 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8872 
8873 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8874 		return (SET_ERROR(ENOTSUP));
8875 
8876 	if (func == POOL_SCAN_RESILVER &&
8877 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8878 		return (SET_ERROR(ENOTSUP));
8879 
8880 	/*
8881 	 * If a resilver was requested, but there is no DTL on a
8882 	 * writeable leaf device, we have nothing to do.
8883 	 */
8884 	if (func == POOL_SCAN_RESILVER &&
8885 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8886 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8887 		return (0);
8888 	}
8889 
8890 	if (func == POOL_SCAN_ERRORSCRUB &&
8891 	    !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
8892 		return (SET_ERROR(ENOTSUP));
8893 
8894 	return (dsl_scan(spa->spa_dsl_pool, func));
8895 }
8896 
8897 /*
8898  * ==========================================================================
8899  * SPA async task processing
8900  * ==========================================================================
8901  */
8902 
8903 static void
8904 spa_async_remove(spa_t *spa, vdev_t *vd)
8905 {
8906 	if (vd->vdev_remove_wanted) {
8907 		vd->vdev_remove_wanted = B_FALSE;
8908 		vd->vdev_delayed_close = B_FALSE;
8909 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8910 
8911 		/*
8912 		 * We want to clear the stats, but we don't want to do a full
8913 		 * vdev_clear() as that will cause us to throw away
8914 		 * degraded/faulted state as well as attempt to reopen the
8915 		 * device, all of which is a waste.
8916 		 */
8917 		vd->vdev_stat.vs_read_errors = 0;
8918 		vd->vdev_stat.vs_write_errors = 0;
8919 		vd->vdev_stat.vs_checksum_errors = 0;
8920 
8921 		vdev_state_dirty(vd->vdev_top);
8922 
8923 		/* Tell userspace that the vdev is gone. */
8924 		zfs_post_remove(spa, vd);
8925 	}
8926 
8927 	for (int c = 0; c < vd->vdev_children; c++)
8928 		spa_async_remove(spa, vd->vdev_child[c]);
8929 }
8930 
8931 static void
8932 spa_async_fault_vdev(spa_t *spa, vdev_t *vd)
8933 {
8934 	if (vd->vdev_fault_wanted) {
8935 		vd->vdev_fault_wanted = B_FALSE;
8936 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
8937 		    VDEV_AUX_ERR_EXCEEDED);
8938 	}
8939 
8940 	for (int c = 0; c < vd->vdev_children; c++)
8941 		spa_async_fault_vdev(spa, vd->vdev_child[c]);
8942 }
8943 
8944 static void
8945 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8946 {
8947 	if (!spa->spa_autoexpand)
8948 		return;
8949 
8950 	for (int c = 0; c < vd->vdev_children; c++) {
8951 		vdev_t *cvd = vd->vdev_child[c];
8952 		spa_async_autoexpand(spa, cvd);
8953 	}
8954 
8955 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8956 		return;
8957 
8958 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8959 }
8960 
8961 static __attribute__((noreturn)) void
8962 spa_async_thread(void *arg)
8963 {
8964 	spa_t *spa = (spa_t *)arg;
8965 	dsl_pool_t *dp = spa->spa_dsl_pool;
8966 	int tasks;
8967 
8968 	ASSERT(spa->spa_sync_on);
8969 
8970 	mutex_enter(&spa->spa_async_lock);
8971 	tasks = spa->spa_async_tasks;
8972 	spa->spa_async_tasks = 0;
8973 	mutex_exit(&spa->spa_async_lock);
8974 
8975 	/*
8976 	 * See if the config needs to be updated.
8977 	 */
8978 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8979 		uint64_t old_space, new_space;
8980 
8981 		mutex_enter(&spa_namespace_lock);
8982 		old_space = metaslab_class_get_space(spa_normal_class(spa));
8983 		old_space += metaslab_class_get_space(spa_special_class(spa));
8984 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
8985 		old_space += metaslab_class_get_space(
8986 		    spa_embedded_log_class(spa));
8987 
8988 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8989 
8990 		new_space = metaslab_class_get_space(spa_normal_class(spa));
8991 		new_space += metaslab_class_get_space(spa_special_class(spa));
8992 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
8993 		new_space += metaslab_class_get_space(
8994 		    spa_embedded_log_class(spa));
8995 		mutex_exit(&spa_namespace_lock);
8996 
8997 		/*
8998 		 * If the pool grew as a result of the config update,
8999 		 * then log an internal history event.
9000 		 */
9001 		if (new_space != old_space) {
9002 			spa_history_log_internal(spa, "vdev online", NULL,
9003 			    "pool '%s' size: %llu(+%llu)",
9004 			    spa_name(spa), (u_longlong_t)new_space,
9005 			    (u_longlong_t)(new_space - old_space));
9006 		}
9007 	}
9008 
9009 	/*
9010 	 * See if any devices need to be marked REMOVED.
9011 	 */
9012 	if (tasks & SPA_ASYNC_REMOVE) {
9013 		spa_vdev_state_enter(spa, SCL_NONE);
9014 		spa_async_remove(spa, spa->spa_root_vdev);
9015 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
9016 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
9017 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
9018 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
9019 		(void) spa_vdev_state_exit(spa, NULL, 0);
9020 	}
9021 
9022 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
9023 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9024 		spa_async_autoexpand(spa, spa->spa_root_vdev);
9025 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9026 	}
9027 
9028 	/*
9029 	 * See if any devices need to be marked faulted.
9030 	 */
9031 	if (tasks & SPA_ASYNC_FAULT_VDEV) {
9032 		spa_vdev_state_enter(spa, SCL_NONE);
9033 		spa_async_fault_vdev(spa, spa->spa_root_vdev);
9034 		(void) spa_vdev_state_exit(spa, NULL, 0);
9035 	}
9036 
9037 	/*
9038 	 * If any devices are done replacing, detach them.
9039 	 */
9040 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
9041 	    tasks & SPA_ASYNC_REBUILD_DONE ||
9042 	    tasks & SPA_ASYNC_DETACH_SPARE) {
9043 		spa_vdev_resilver_done(spa);
9044 	}
9045 
9046 	/*
9047 	 * Kick off a resilver.
9048 	 */
9049 	if (tasks & SPA_ASYNC_RESILVER &&
9050 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
9051 	    (!dsl_scan_resilvering(dp) ||
9052 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
9053 		dsl_scan_restart_resilver(dp, 0);
9054 
9055 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
9056 		mutex_enter(&spa_namespace_lock);
9057 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9058 		vdev_initialize_restart(spa->spa_root_vdev);
9059 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9060 		mutex_exit(&spa_namespace_lock);
9061 	}
9062 
9063 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
9064 		mutex_enter(&spa_namespace_lock);
9065 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9066 		vdev_trim_restart(spa->spa_root_vdev);
9067 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9068 		mutex_exit(&spa_namespace_lock);
9069 	}
9070 
9071 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
9072 		mutex_enter(&spa_namespace_lock);
9073 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9074 		vdev_autotrim_restart(spa);
9075 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9076 		mutex_exit(&spa_namespace_lock);
9077 	}
9078 
9079 	/*
9080 	 * Kick off L2 cache whole device TRIM.
9081 	 */
9082 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
9083 		mutex_enter(&spa_namespace_lock);
9084 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9085 		vdev_trim_l2arc(spa);
9086 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9087 		mutex_exit(&spa_namespace_lock);
9088 	}
9089 
9090 	/*
9091 	 * Kick off L2 cache rebuilding.
9092 	 */
9093 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
9094 		mutex_enter(&spa_namespace_lock);
9095 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
9096 		l2arc_spa_rebuild_start(spa);
9097 		spa_config_exit(spa, SCL_L2ARC, FTAG);
9098 		mutex_exit(&spa_namespace_lock);
9099 	}
9100 
9101 	/*
9102 	 * Let the world know that we're done.
9103 	 */
9104 	mutex_enter(&spa->spa_async_lock);
9105 	spa->spa_async_thread = NULL;
9106 	cv_broadcast(&spa->spa_async_cv);
9107 	mutex_exit(&spa->spa_async_lock);
9108 	thread_exit();
9109 }
9110 
9111 void
9112 spa_async_suspend(spa_t *spa)
9113 {
9114 	mutex_enter(&spa->spa_async_lock);
9115 	spa->spa_async_suspended++;
9116 	while (spa->spa_async_thread != NULL)
9117 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
9118 	mutex_exit(&spa->spa_async_lock);
9119 
9120 	spa_vdev_remove_suspend(spa);
9121 
9122 	zthr_t *condense_thread = spa->spa_condense_zthr;
9123 	if (condense_thread != NULL)
9124 		zthr_cancel(condense_thread);
9125 
9126 	zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9127 	if (raidz_expand_thread != NULL)
9128 		zthr_cancel(raidz_expand_thread);
9129 
9130 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9131 	if (discard_thread != NULL)
9132 		zthr_cancel(discard_thread);
9133 
9134 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9135 	if (ll_delete_thread != NULL)
9136 		zthr_cancel(ll_delete_thread);
9137 
9138 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9139 	if (ll_condense_thread != NULL)
9140 		zthr_cancel(ll_condense_thread);
9141 }
9142 
9143 void
9144 spa_async_resume(spa_t *spa)
9145 {
9146 	mutex_enter(&spa->spa_async_lock);
9147 	ASSERT(spa->spa_async_suspended != 0);
9148 	spa->spa_async_suspended--;
9149 	mutex_exit(&spa->spa_async_lock);
9150 	spa_restart_removal(spa);
9151 
9152 	zthr_t *condense_thread = spa->spa_condense_zthr;
9153 	if (condense_thread != NULL)
9154 		zthr_resume(condense_thread);
9155 
9156 	zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9157 	if (raidz_expand_thread != NULL)
9158 		zthr_resume(raidz_expand_thread);
9159 
9160 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9161 	if (discard_thread != NULL)
9162 		zthr_resume(discard_thread);
9163 
9164 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9165 	if (ll_delete_thread != NULL)
9166 		zthr_resume(ll_delete_thread);
9167 
9168 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9169 	if (ll_condense_thread != NULL)
9170 		zthr_resume(ll_condense_thread);
9171 }
9172 
9173 static boolean_t
9174 spa_async_tasks_pending(spa_t *spa)
9175 {
9176 	uint_t non_config_tasks;
9177 	uint_t config_task;
9178 	boolean_t config_task_suspended;
9179 
9180 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
9181 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
9182 	if (spa->spa_ccw_fail_time == 0) {
9183 		config_task_suspended = B_FALSE;
9184 	} else {
9185 		config_task_suspended =
9186 		    (gethrtime() - spa->spa_ccw_fail_time) <
9187 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
9188 	}
9189 
9190 	return (non_config_tasks || (config_task && !config_task_suspended));
9191 }
9192 
9193 static void
9194 spa_async_dispatch(spa_t *spa)
9195 {
9196 	mutex_enter(&spa->spa_async_lock);
9197 	if (spa_async_tasks_pending(spa) &&
9198 	    !spa->spa_async_suspended &&
9199 	    spa->spa_async_thread == NULL)
9200 		spa->spa_async_thread = thread_create(NULL, 0,
9201 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
9202 	mutex_exit(&spa->spa_async_lock);
9203 }
9204 
9205 void
9206 spa_async_request(spa_t *spa, int task)
9207 {
9208 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
9209 	mutex_enter(&spa->spa_async_lock);
9210 	spa->spa_async_tasks |= task;
9211 	mutex_exit(&spa->spa_async_lock);
9212 }
9213 
9214 int
9215 spa_async_tasks(spa_t *spa)
9216 {
9217 	return (spa->spa_async_tasks);
9218 }
9219 
9220 /*
9221  * ==========================================================================
9222  * SPA syncing routines
9223  * ==========================================================================
9224  */
9225 
9226 
9227 static int
9228 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9229     dmu_tx_t *tx)
9230 {
9231 	bpobj_t *bpo = arg;
9232 	bpobj_enqueue(bpo, bp, bp_freed, tx);
9233 	return (0);
9234 }
9235 
9236 int
9237 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9238 {
9239 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
9240 }
9241 
9242 int
9243 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9244 {
9245 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
9246 }
9247 
9248 static int
9249 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9250 {
9251 	zio_t *pio = arg;
9252 
9253 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
9254 	    pio->io_flags));
9255 	return (0);
9256 }
9257 
9258 static int
9259 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9260     dmu_tx_t *tx)
9261 {
9262 	ASSERT(!bp_freed);
9263 	return (spa_free_sync_cb(arg, bp, tx));
9264 }
9265 
9266 /*
9267  * Note: this simple function is not inlined to make it easier to dtrace the
9268  * amount of time spent syncing frees.
9269  */
9270 static void
9271 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
9272 {
9273 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
9274 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
9275 	VERIFY(zio_wait(zio) == 0);
9276 }
9277 
9278 /*
9279  * Note: this simple function is not inlined to make it easier to dtrace the
9280  * amount of time spent syncing deferred frees.
9281  */
9282 static void
9283 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
9284 {
9285 	if (spa_sync_pass(spa) != 1)
9286 		return;
9287 
9288 	/*
9289 	 * Note:
9290 	 * If the log space map feature is active, we stop deferring
9291 	 * frees to the next TXG and therefore running this function
9292 	 * would be considered a no-op as spa_deferred_bpobj should
9293 	 * not have any entries.
9294 	 *
9295 	 * That said we run this function anyway (instead of returning
9296 	 * immediately) for the edge-case scenario where we just
9297 	 * activated the log space map feature in this TXG but we have
9298 	 * deferred frees from the previous TXG.
9299 	 */
9300 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
9301 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
9302 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
9303 	VERIFY0(zio_wait(zio));
9304 }
9305 
9306 static void
9307 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
9308 {
9309 	char *packed = NULL;
9310 	size_t bufsize;
9311 	size_t nvsize = 0;
9312 	dmu_buf_t *db;
9313 
9314 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
9315 
9316 	/*
9317 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
9318 	 * information.  This avoids the dmu_buf_will_dirty() path and
9319 	 * saves us a pre-read to get data we don't actually care about.
9320 	 */
9321 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
9322 	packed = vmem_alloc(bufsize, KM_SLEEP);
9323 
9324 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
9325 	    KM_SLEEP) == 0);
9326 	memset(packed + nvsize, 0, bufsize - nvsize);
9327 
9328 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
9329 
9330 	vmem_free(packed, bufsize);
9331 
9332 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
9333 	dmu_buf_will_dirty(db, tx);
9334 	*(uint64_t *)db->db_data = nvsize;
9335 	dmu_buf_rele(db, FTAG);
9336 }
9337 
9338 static void
9339 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
9340     const char *config, const char *entry)
9341 {
9342 	nvlist_t *nvroot;
9343 	nvlist_t **list;
9344 	int i;
9345 
9346 	if (!sav->sav_sync)
9347 		return;
9348 
9349 	/*
9350 	 * Update the MOS nvlist describing the list of available devices.
9351 	 * spa_validate_aux() will have already made sure this nvlist is
9352 	 * valid and the vdevs are labeled appropriately.
9353 	 */
9354 	if (sav->sav_object == 0) {
9355 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
9356 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
9357 		    sizeof (uint64_t), tx);
9358 		VERIFY(zap_update(spa->spa_meta_objset,
9359 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
9360 		    &sav->sav_object, tx) == 0);
9361 	}
9362 
9363 	nvroot = fnvlist_alloc();
9364 	if (sav->sav_count == 0) {
9365 		fnvlist_add_nvlist_array(nvroot, config,
9366 		    (const nvlist_t * const *)NULL, 0);
9367 	} else {
9368 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
9369 		for (i = 0; i < sav->sav_count; i++)
9370 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
9371 			    B_FALSE, VDEV_CONFIG_L2CACHE);
9372 		fnvlist_add_nvlist_array(nvroot, config,
9373 		    (const nvlist_t * const *)list, sav->sav_count);
9374 		for (i = 0; i < sav->sav_count; i++)
9375 			nvlist_free(list[i]);
9376 		kmem_free(list, sav->sav_count * sizeof (void *));
9377 	}
9378 
9379 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
9380 	nvlist_free(nvroot);
9381 
9382 	sav->sav_sync = B_FALSE;
9383 }
9384 
9385 /*
9386  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
9387  * The all-vdev ZAP must be empty.
9388  */
9389 static void
9390 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
9391 {
9392 	spa_t *spa = vd->vdev_spa;
9393 
9394 	if (vd->vdev_root_zap != 0 &&
9395 	    spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
9396 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9397 		    vd->vdev_root_zap, tx));
9398 	}
9399 	if (vd->vdev_top_zap != 0) {
9400 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9401 		    vd->vdev_top_zap, tx));
9402 	}
9403 	if (vd->vdev_leaf_zap != 0) {
9404 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9405 		    vd->vdev_leaf_zap, tx));
9406 	}
9407 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
9408 		spa_avz_build(vd->vdev_child[i], avz, tx);
9409 	}
9410 }
9411 
9412 static void
9413 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
9414 {
9415 	nvlist_t *config;
9416 
9417 	/*
9418 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
9419 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
9420 	 * Similarly, if the pool is being assembled (e.g. after a split), we
9421 	 * need to rebuild the AVZ although the config may not be dirty.
9422 	 */
9423 	if (list_is_empty(&spa->spa_config_dirty_list) &&
9424 	    spa->spa_avz_action == AVZ_ACTION_NONE)
9425 		return;
9426 
9427 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9428 
9429 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
9430 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
9431 	    spa->spa_all_vdev_zaps != 0);
9432 
9433 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
9434 		/* Make and build the new AVZ */
9435 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
9436 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
9437 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
9438 
9439 		/* Diff old AVZ with new one */
9440 		zap_cursor_t zc;
9441 		zap_attribute_t *za = zap_attribute_alloc();
9442 
9443 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
9444 		    spa->spa_all_vdev_zaps);
9445 		    zap_cursor_retrieve(&zc, za) == 0;
9446 		    zap_cursor_advance(&zc)) {
9447 			uint64_t vdzap = za->za_first_integer;
9448 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
9449 			    vdzap) == ENOENT) {
9450 				/*
9451 				 * ZAP is listed in old AVZ but not in new one;
9452 				 * destroy it
9453 				 */
9454 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
9455 				    tx));
9456 			}
9457 		}
9458 
9459 		zap_cursor_fini(&zc);
9460 		zap_attribute_free(za);
9461 
9462 		/* Destroy the old AVZ */
9463 		VERIFY0(zap_destroy(spa->spa_meta_objset,
9464 		    spa->spa_all_vdev_zaps, tx));
9465 
9466 		/* Replace the old AVZ in the dir obj with the new one */
9467 		VERIFY0(zap_update(spa->spa_meta_objset,
9468 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
9469 		    sizeof (new_avz), 1, &new_avz, tx));
9470 
9471 		spa->spa_all_vdev_zaps = new_avz;
9472 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
9473 		zap_cursor_t zc;
9474 		zap_attribute_t *za = zap_attribute_alloc();
9475 
9476 		/* Walk through the AVZ and destroy all listed ZAPs */
9477 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
9478 		    spa->spa_all_vdev_zaps);
9479 		    zap_cursor_retrieve(&zc, za) == 0;
9480 		    zap_cursor_advance(&zc)) {
9481 			uint64_t zap = za->za_first_integer;
9482 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
9483 		}
9484 
9485 		zap_cursor_fini(&zc);
9486 		zap_attribute_free(za);
9487 
9488 		/* Destroy and unlink the AVZ itself */
9489 		VERIFY0(zap_destroy(spa->spa_meta_objset,
9490 		    spa->spa_all_vdev_zaps, tx));
9491 		VERIFY0(zap_remove(spa->spa_meta_objset,
9492 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
9493 		spa->spa_all_vdev_zaps = 0;
9494 	}
9495 
9496 	if (spa->spa_all_vdev_zaps == 0) {
9497 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
9498 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
9499 		    DMU_POOL_VDEV_ZAP_MAP, tx);
9500 	}
9501 	spa->spa_avz_action = AVZ_ACTION_NONE;
9502 
9503 	/* Create ZAPs for vdevs that don't have them. */
9504 	vdev_construct_zaps(spa->spa_root_vdev, tx);
9505 
9506 	config = spa_config_generate(spa, spa->spa_root_vdev,
9507 	    dmu_tx_get_txg(tx), B_FALSE);
9508 
9509 	/*
9510 	 * If we're upgrading the spa version then make sure that
9511 	 * the config object gets updated with the correct version.
9512 	 */
9513 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
9514 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
9515 		    spa->spa_uberblock.ub_version);
9516 
9517 	spa_config_exit(spa, SCL_STATE, FTAG);
9518 
9519 	nvlist_free(spa->spa_config_syncing);
9520 	spa->spa_config_syncing = config;
9521 
9522 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
9523 }
9524 
9525 static void
9526 spa_sync_version(void *arg, dmu_tx_t *tx)
9527 {
9528 	uint64_t *versionp = arg;
9529 	uint64_t version = *versionp;
9530 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9531 
9532 	/*
9533 	 * Setting the version is special cased when first creating the pool.
9534 	 */
9535 	ASSERT(tx->tx_txg != TXG_INITIAL);
9536 
9537 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
9538 	ASSERT(version >= spa_version(spa));
9539 
9540 	spa->spa_uberblock.ub_version = version;
9541 	vdev_config_dirty(spa->spa_root_vdev);
9542 	spa_history_log_internal(spa, "set", tx, "version=%lld",
9543 	    (longlong_t)version);
9544 }
9545 
9546 /*
9547  * Set zpool properties.
9548  */
9549 static void
9550 spa_sync_props(void *arg, dmu_tx_t *tx)
9551 {
9552 	nvlist_t *nvp = arg;
9553 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9554 	objset_t *mos = spa->spa_meta_objset;
9555 	nvpair_t *elem = NULL;
9556 
9557 	mutex_enter(&spa->spa_props_lock);
9558 
9559 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
9560 		uint64_t intval;
9561 		const char *strval, *fname;
9562 		zpool_prop_t prop;
9563 		const char *propname;
9564 		const char *elemname = nvpair_name(elem);
9565 		zprop_type_t proptype;
9566 		spa_feature_t fid;
9567 
9568 		switch (prop = zpool_name_to_prop(elemname)) {
9569 		case ZPOOL_PROP_VERSION:
9570 			intval = fnvpair_value_uint64(elem);
9571 			/*
9572 			 * The version is synced separately before other
9573 			 * properties and should be correct by now.
9574 			 */
9575 			ASSERT3U(spa_version(spa), >=, intval);
9576 			break;
9577 
9578 		case ZPOOL_PROP_ALTROOT:
9579 			/*
9580 			 * 'altroot' is a non-persistent property. It should
9581 			 * have been set temporarily at creation or import time.
9582 			 */
9583 			ASSERT(spa->spa_root != NULL);
9584 			break;
9585 
9586 		case ZPOOL_PROP_READONLY:
9587 		case ZPOOL_PROP_CACHEFILE:
9588 			/*
9589 			 * 'readonly' and 'cachefile' are also non-persistent
9590 			 * properties.
9591 			 */
9592 			break;
9593 		case ZPOOL_PROP_COMMENT:
9594 			strval = fnvpair_value_string(elem);
9595 			if (spa->spa_comment != NULL)
9596 				spa_strfree(spa->spa_comment);
9597 			spa->spa_comment = spa_strdup(strval);
9598 			/*
9599 			 * We need to dirty the configuration on all the vdevs
9600 			 * so that their labels get updated.  We also need to
9601 			 * update the cache file to keep it in sync with the
9602 			 * MOS version. It's unnecessary to do this for pool
9603 			 * creation since the vdev's configuration has already
9604 			 * been dirtied.
9605 			 */
9606 			if (tx->tx_txg != TXG_INITIAL) {
9607 				vdev_config_dirty(spa->spa_root_vdev);
9608 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9609 			}
9610 			spa_history_log_internal(spa, "set", tx,
9611 			    "%s=%s", elemname, strval);
9612 			break;
9613 		case ZPOOL_PROP_COMPATIBILITY:
9614 			strval = fnvpair_value_string(elem);
9615 			if (spa->spa_compatibility != NULL)
9616 				spa_strfree(spa->spa_compatibility);
9617 			spa->spa_compatibility = spa_strdup(strval);
9618 			/*
9619 			 * Dirty the configuration on vdevs as above.
9620 			 */
9621 			if (tx->tx_txg != TXG_INITIAL) {
9622 				vdev_config_dirty(spa->spa_root_vdev);
9623 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9624 			}
9625 
9626 			spa_history_log_internal(spa, "set", tx,
9627 			    "%s=%s", nvpair_name(elem), strval);
9628 			break;
9629 
9630 		case ZPOOL_PROP_INVAL:
9631 			if (zpool_prop_feature(elemname)) {
9632 				fname = strchr(elemname, '@') + 1;
9633 				VERIFY0(zfeature_lookup_name(fname, &fid));
9634 
9635 				spa_feature_enable(spa, fid, tx);
9636 				spa_history_log_internal(spa, "set", tx,
9637 				    "%s=enabled", elemname);
9638 				break;
9639 			} else if (!zfs_prop_user(elemname)) {
9640 				ASSERT(zpool_prop_feature(elemname));
9641 				break;
9642 			}
9643 			zfs_fallthrough;
9644 		default:
9645 			/*
9646 			 * Set pool property values in the poolprops mos object.
9647 			 */
9648 			if (spa->spa_pool_props_object == 0) {
9649 				spa->spa_pool_props_object =
9650 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
9651 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
9652 				    tx);
9653 			}
9654 
9655 			/* normalize the property name */
9656 			if (prop == ZPOOL_PROP_INVAL) {
9657 				propname = elemname;
9658 				proptype = PROP_TYPE_STRING;
9659 			} else {
9660 				propname = zpool_prop_to_name(prop);
9661 				proptype = zpool_prop_get_type(prop);
9662 			}
9663 
9664 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
9665 				ASSERT(proptype == PROP_TYPE_STRING);
9666 				strval = fnvpair_value_string(elem);
9667 				VERIFY0(zap_update(mos,
9668 				    spa->spa_pool_props_object, propname,
9669 				    1, strlen(strval) + 1, strval, tx));
9670 				spa_history_log_internal(spa, "set", tx,
9671 				    "%s=%s", elemname, strval);
9672 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
9673 				intval = fnvpair_value_uint64(elem);
9674 
9675 				if (proptype == PROP_TYPE_INDEX) {
9676 					const char *unused;
9677 					VERIFY0(zpool_prop_index_to_string(
9678 					    prop, intval, &unused));
9679 				}
9680 				VERIFY0(zap_update(mos,
9681 				    spa->spa_pool_props_object, propname,
9682 				    8, 1, &intval, tx));
9683 				spa_history_log_internal(spa, "set", tx,
9684 				    "%s=%lld", elemname,
9685 				    (longlong_t)intval);
9686 
9687 				switch (prop) {
9688 				case ZPOOL_PROP_DELEGATION:
9689 					spa->spa_delegation = intval;
9690 					break;
9691 				case ZPOOL_PROP_BOOTFS:
9692 					spa->spa_bootfs = intval;
9693 					break;
9694 				case ZPOOL_PROP_FAILUREMODE:
9695 					spa->spa_failmode = intval;
9696 					break;
9697 				case ZPOOL_PROP_AUTOTRIM:
9698 					spa->spa_autotrim = intval;
9699 					spa_async_request(spa,
9700 					    SPA_ASYNC_AUTOTRIM_RESTART);
9701 					break;
9702 				case ZPOOL_PROP_AUTOEXPAND:
9703 					spa->spa_autoexpand = intval;
9704 					if (tx->tx_txg != TXG_INITIAL)
9705 						spa_async_request(spa,
9706 						    SPA_ASYNC_AUTOEXPAND);
9707 					break;
9708 				case ZPOOL_PROP_MULTIHOST:
9709 					spa->spa_multihost = intval;
9710 					break;
9711 				case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
9712 					spa->spa_dedup_table_quota = intval;
9713 					break;
9714 				default:
9715 					break;
9716 				}
9717 			} else {
9718 				ASSERT(0); /* not allowed */
9719 			}
9720 		}
9721 
9722 	}
9723 
9724 	mutex_exit(&spa->spa_props_lock);
9725 }
9726 
9727 /*
9728  * Perform one-time upgrade on-disk changes.  spa_version() does not
9729  * reflect the new version this txg, so there must be no changes this
9730  * txg to anything that the upgrade code depends on after it executes.
9731  * Therefore this must be called after dsl_pool_sync() does the sync
9732  * tasks.
9733  */
9734 static void
9735 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
9736 {
9737 	if (spa_sync_pass(spa) != 1)
9738 		return;
9739 
9740 	dsl_pool_t *dp = spa->spa_dsl_pool;
9741 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
9742 
9743 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
9744 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
9745 		dsl_pool_create_origin(dp, tx);
9746 
9747 		/* Keeping the origin open increases spa_minref */
9748 		spa->spa_minref += 3;
9749 	}
9750 
9751 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
9752 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
9753 		dsl_pool_upgrade_clones(dp, tx);
9754 	}
9755 
9756 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
9757 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
9758 		dsl_pool_upgrade_dir_clones(dp, tx);
9759 
9760 		/* Keeping the freedir open increases spa_minref */
9761 		spa->spa_minref += 3;
9762 	}
9763 
9764 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
9765 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9766 		spa_feature_create_zap_objects(spa, tx);
9767 	}
9768 
9769 	/*
9770 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
9771 	 * when possibility to use lz4 compression for metadata was added
9772 	 * Old pools that have this feature enabled must be upgraded to have
9773 	 * this feature active
9774 	 */
9775 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9776 		boolean_t lz4_en = spa_feature_is_enabled(spa,
9777 		    SPA_FEATURE_LZ4_COMPRESS);
9778 		boolean_t lz4_ac = spa_feature_is_active(spa,
9779 		    SPA_FEATURE_LZ4_COMPRESS);
9780 
9781 		if (lz4_en && !lz4_ac)
9782 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9783 	}
9784 
9785 	/*
9786 	 * If we haven't written the salt, do so now.  Note that the
9787 	 * feature may not be activated yet, but that's fine since
9788 	 * the presence of this ZAP entry is backwards compatible.
9789 	 */
9790 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9791 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9792 		VERIFY0(zap_add(spa->spa_meta_objset,
9793 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9794 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
9795 		    spa->spa_cksum_salt.zcs_bytes, tx));
9796 	}
9797 
9798 	rrw_exit(&dp->dp_config_rwlock, FTAG);
9799 }
9800 
9801 static void
9802 vdev_indirect_state_sync_verify(vdev_t *vd)
9803 {
9804 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9805 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9806 
9807 	if (vd->vdev_ops == &vdev_indirect_ops) {
9808 		ASSERT(vim != NULL);
9809 		ASSERT(vib != NULL);
9810 	}
9811 
9812 	uint64_t obsolete_sm_object = 0;
9813 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9814 	if (obsolete_sm_object != 0) {
9815 		ASSERT(vd->vdev_obsolete_sm != NULL);
9816 		ASSERT(vd->vdev_removing ||
9817 		    vd->vdev_ops == &vdev_indirect_ops);
9818 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9819 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9820 		ASSERT3U(obsolete_sm_object, ==,
9821 		    space_map_object(vd->vdev_obsolete_sm));
9822 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9823 		    space_map_allocated(vd->vdev_obsolete_sm));
9824 	}
9825 	ASSERT(vd->vdev_obsolete_segments != NULL);
9826 
9827 	/*
9828 	 * Since frees / remaps to an indirect vdev can only
9829 	 * happen in syncing context, the obsolete segments
9830 	 * tree must be empty when we start syncing.
9831 	 */
9832 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9833 }
9834 
9835 /*
9836  * Set the top-level vdev's max queue depth. Evaluate each top-level's
9837  * async write queue depth in case it changed. The max queue depth will
9838  * not change in the middle of syncing out this txg.
9839  */
9840 static void
9841 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9842 {
9843 	ASSERT(spa_writeable(spa));
9844 
9845 	vdev_t *rvd = spa->spa_root_vdev;
9846 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9847 	    zfs_vdev_queue_depth_pct / 100;
9848 	metaslab_class_t *normal = spa_normal_class(spa);
9849 	metaslab_class_t *special = spa_special_class(spa);
9850 	metaslab_class_t *dedup = spa_dedup_class(spa);
9851 
9852 	uint64_t slots_per_allocator = 0;
9853 	for (int c = 0; c < rvd->vdev_children; c++) {
9854 		vdev_t *tvd = rvd->vdev_child[c];
9855 
9856 		metaslab_group_t *mg = tvd->vdev_mg;
9857 		if (mg == NULL || !metaslab_group_initialized(mg))
9858 			continue;
9859 
9860 		metaslab_class_t *mc = mg->mg_class;
9861 		if (mc != normal && mc != special && mc != dedup)
9862 			continue;
9863 
9864 		/*
9865 		 * It is safe to do a lock-free check here because only async
9866 		 * allocations look at mg_max_alloc_queue_depth, and async
9867 		 * allocations all happen from spa_sync().
9868 		 */
9869 		for (int i = 0; i < mg->mg_allocators; i++) {
9870 			ASSERT0(zfs_refcount_count(
9871 			    &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9872 		}
9873 		mg->mg_max_alloc_queue_depth = max_queue_depth;
9874 
9875 		for (int i = 0; i < mg->mg_allocators; i++) {
9876 			mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9877 			    zfs_vdev_def_queue_depth;
9878 		}
9879 		slots_per_allocator += zfs_vdev_def_queue_depth;
9880 	}
9881 
9882 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9883 		ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9884 		    mca_alloc_slots));
9885 		ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9886 		    mca_alloc_slots));
9887 		ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9888 		    mca_alloc_slots));
9889 		normal->mc_allocator[i].mca_alloc_max_slots =
9890 		    slots_per_allocator;
9891 		special->mc_allocator[i].mca_alloc_max_slots =
9892 		    slots_per_allocator;
9893 		dedup->mc_allocator[i].mca_alloc_max_slots =
9894 		    slots_per_allocator;
9895 	}
9896 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9897 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9898 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9899 }
9900 
9901 static void
9902 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9903 {
9904 	ASSERT(spa_writeable(spa));
9905 
9906 	vdev_t *rvd = spa->spa_root_vdev;
9907 	for (int c = 0; c < rvd->vdev_children; c++) {
9908 		vdev_t *vd = rvd->vdev_child[c];
9909 		vdev_indirect_state_sync_verify(vd);
9910 
9911 		if (vdev_indirect_should_condense(vd)) {
9912 			spa_condense_indirect_start_sync(vd, tx);
9913 			break;
9914 		}
9915 	}
9916 }
9917 
9918 static void
9919 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9920 {
9921 	objset_t *mos = spa->spa_meta_objset;
9922 	dsl_pool_t *dp = spa->spa_dsl_pool;
9923 	uint64_t txg = tx->tx_txg;
9924 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9925 
9926 	do {
9927 		int pass = ++spa->spa_sync_pass;
9928 
9929 		spa_sync_config_object(spa, tx);
9930 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9931 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9932 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9933 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9934 		spa_errlog_sync(spa, txg);
9935 		dsl_pool_sync(dp, txg);
9936 
9937 		if (pass < zfs_sync_pass_deferred_free ||
9938 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9939 			/*
9940 			 * If the log space map feature is active we don't
9941 			 * care about deferred frees and the deferred bpobj
9942 			 * as the log space map should effectively have the
9943 			 * same results (i.e. appending only to one object).
9944 			 */
9945 			spa_sync_frees(spa, free_bpl, tx);
9946 		} else {
9947 			/*
9948 			 * We can not defer frees in pass 1, because
9949 			 * we sync the deferred frees later in pass 1.
9950 			 */
9951 			ASSERT3U(pass, >, 1);
9952 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9953 			    &spa->spa_deferred_bpobj, tx);
9954 		}
9955 
9956 		brt_sync(spa, txg);
9957 		ddt_sync(spa, txg);
9958 		dsl_scan_sync(dp, tx);
9959 		dsl_errorscrub_sync(dp, tx);
9960 		svr_sync(spa, tx);
9961 		spa_sync_upgrades(spa, tx);
9962 
9963 		spa_flush_metaslabs(spa, tx);
9964 
9965 		vdev_t *vd = NULL;
9966 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9967 		    != NULL)
9968 			vdev_sync(vd, txg);
9969 
9970 		if (pass == 1) {
9971 			/*
9972 			 * dsl_pool_sync() -> dp_sync_tasks may have dirtied
9973 			 * the config. If that happens, this txg should not
9974 			 * be a no-op. So we must sync the config to the MOS
9975 			 * before checking for no-op.
9976 			 *
9977 			 * Note that when the config is dirty, it will
9978 			 * be written to the MOS (i.e. the MOS will be
9979 			 * dirtied) every time we call spa_sync_config_object()
9980 			 * in this txg.  Therefore we can't call this after
9981 			 * dsl_pool_sync() every pass, because it would
9982 			 * prevent us from converging, since we'd dirty
9983 			 * the MOS every pass.
9984 			 *
9985 			 * Sync tasks can only be processed in pass 1, so
9986 			 * there's no need to do this in later passes.
9987 			 */
9988 			spa_sync_config_object(spa, tx);
9989 		}
9990 
9991 		/*
9992 		 * Note: We need to check if the MOS is dirty because we could
9993 		 * have marked the MOS dirty without updating the uberblock
9994 		 * (e.g. if we have sync tasks but no dirty user data). We need
9995 		 * to check the uberblock's rootbp because it is updated if we
9996 		 * have synced out dirty data (though in this case the MOS will
9997 		 * most likely also be dirty due to second order effects, we
9998 		 * don't want to rely on that here).
9999 		 */
10000 		if (pass == 1 &&
10001 		    BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp) < txg &&
10002 		    !dmu_objset_is_dirty(mos, txg)) {
10003 			/*
10004 			 * Nothing changed on the first pass, therefore this
10005 			 * TXG is a no-op. Avoid syncing deferred frees, so
10006 			 * that we can keep this TXG as a no-op.
10007 			 */
10008 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10009 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10010 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
10011 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
10012 			break;
10013 		}
10014 
10015 		spa_sync_deferred_frees(spa, tx);
10016 	} while (dmu_objset_is_dirty(mos, txg));
10017 }
10018 
10019 /*
10020  * Rewrite the vdev configuration (which includes the uberblock) to
10021  * commit the transaction group.
10022  *
10023  * If there are no dirty vdevs, we sync the uberblock to a few random
10024  * top-level vdevs that are known to be visible in the config cache
10025  * (see spa_vdev_add() for a complete description). If there *are* dirty
10026  * vdevs, sync the uberblock to all vdevs.
10027  */
10028 static void
10029 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
10030 {
10031 	vdev_t *rvd = spa->spa_root_vdev;
10032 	uint64_t txg = tx->tx_txg;
10033 
10034 	for (;;) {
10035 		int error = 0;
10036 
10037 		/*
10038 		 * We hold SCL_STATE to prevent vdev open/close/etc.
10039 		 * while we're attempting to write the vdev labels.
10040 		 */
10041 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10042 
10043 		if (list_is_empty(&spa->spa_config_dirty_list)) {
10044 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
10045 			int svdcount = 0;
10046 			int children = rvd->vdev_children;
10047 			int c0 = random_in_range(children);
10048 
10049 			for (int c = 0; c < children; c++) {
10050 				vdev_t *vd =
10051 				    rvd->vdev_child[(c0 + c) % children];
10052 
10053 				/* Stop when revisiting the first vdev */
10054 				if (c > 0 && svd[0] == vd)
10055 					break;
10056 
10057 				if (vd->vdev_ms_array == 0 ||
10058 				    vd->vdev_islog ||
10059 				    !vdev_is_concrete(vd))
10060 					continue;
10061 
10062 				svd[svdcount++] = vd;
10063 				if (svdcount == SPA_SYNC_MIN_VDEVS)
10064 					break;
10065 			}
10066 			error = vdev_config_sync(svd, svdcount, txg);
10067 		} else {
10068 			error = vdev_config_sync(rvd->vdev_child,
10069 			    rvd->vdev_children, txg);
10070 		}
10071 
10072 		if (error == 0)
10073 			spa->spa_last_synced_guid = rvd->vdev_guid;
10074 
10075 		spa_config_exit(spa, SCL_STATE, FTAG);
10076 
10077 		if (error == 0)
10078 			break;
10079 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
10080 		zio_resume_wait(spa);
10081 	}
10082 }
10083 
10084 /*
10085  * Sync the specified transaction group.  New blocks may be dirtied as
10086  * part of the process, so we iterate until it converges.
10087  */
10088 void
10089 spa_sync(spa_t *spa, uint64_t txg)
10090 {
10091 	vdev_t *vd = NULL;
10092 
10093 	VERIFY(spa_writeable(spa));
10094 
10095 	/*
10096 	 * Wait for i/os issued in open context that need to complete
10097 	 * before this txg syncs.
10098 	 */
10099 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
10100 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
10101 	    ZIO_FLAG_CANFAIL);
10102 
10103 	/*
10104 	 * Now that there can be no more cloning in this transaction group,
10105 	 * but we are still before issuing frees, we can process pending BRT
10106 	 * updates.
10107 	 */
10108 	brt_pending_apply(spa, txg);
10109 
10110 	/*
10111 	 * Lock out configuration changes.
10112 	 */
10113 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
10114 
10115 	spa->spa_syncing_txg = txg;
10116 	spa->spa_sync_pass = 0;
10117 
10118 	for (int i = 0; i < spa->spa_alloc_count; i++) {
10119 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
10120 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10121 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
10122 	}
10123 
10124 	/*
10125 	 * If there are any pending vdev state changes, convert them
10126 	 * into config changes that go out with this transaction group.
10127 	 */
10128 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10129 	while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10130 		/* Avoid holding the write lock unless actually necessary */
10131 		if (vd->vdev_aux == NULL) {
10132 			vdev_state_clean(vd);
10133 			vdev_config_dirty(vd);
10134 			continue;
10135 		}
10136 		/*
10137 		 * We need the write lock here because, for aux vdevs,
10138 		 * calling vdev_config_dirty() modifies sav_config.
10139 		 * This is ugly and will become unnecessary when we
10140 		 * eliminate the aux vdev wart by integrating all vdevs
10141 		 * into the root vdev tree.
10142 		 */
10143 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10144 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
10145 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10146 			vdev_state_clean(vd);
10147 			vdev_config_dirty(vd);
10148 		}
10149 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10150 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10151 	}
10152 	spa_config_exit(spa, SCL_STATE, FTAG);
10153 
10154 	dsl_pool_t *dp = spa->spa_dsl_pool;
10155 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
10156 
10157 	spa->spa_sync_starttime = gethrtime();
10158 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10159 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
10160 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
10161 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
10162 
10163 	/*
10164 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
10165 	 * set spa_deflate if we have no raid-z vdevs.
10166 	 */
10167 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
10168 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
10169 		vdev_t *rvd = spa->spa_root_vdev;
10170 
10171 		int i;
10172 		for (i = 0; i < rvd->vdev_children; i++) {
10173 			vd = rvd->vdev_child[i];
10174 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
10175 				break;
10176 		}
10177 		if (i == rvd->vdev_children) {
10178 			spa->spa_deflate = TRUE;
10179 			VERIFY0(zap_add(spa->spa_meta_objset,
10180 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
10181 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
10182 		}
10183 	}
10184 
10185 	spa_sync_adjust_vdev_max_queue_depth(spa);
10186 
10187 	spa_sync_condense_indirect(spa, tx);
10188 
10189 	spa_sync_iterate_to_convergence(spa, tx);
10190 
10191 #ifdef ZFS_DEBUG
10192 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
10193 	/*
10194 	 * Make sure that the number of ZAPs for all the vdevs matches
10195 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
10196 	 * called if the config is dirty; otherwise there may be
10197 	 * outstanding AVZ operations that weren't completed in
10198 	 * spa_sync_config_object.
10199 	 */
10200 		uint64_t all_vdev_zap_entry_count;
10201 		ASSERT0(zap_count(spa->spa_meta_objset,
10202 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
10203 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
10204 		    all_vdev_zap_entry_count);
10205 	}
10206 #endif
10207 
10208 	if (spa->spa_vdev_removal != NULL) {
10209 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
10210 	}
10211 
10212 	spa_sync_rewrite_vdev_config(spa, tx);
10213 	dmu_tx_commit(tx);
10214 
10215 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10216 	spa->spa_deadman_tqid = 0;
10217 
10218 	/*
10219 	 * Clear the dirty config list.
10220 	 */
10221 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
10222 		vdev_config_clean(vd);
10223 
10224 	/*
10225 	 * Now that the new config has synced transactionally,
10226 	 * let it become visible to the config cache.
10227 	 */
10228 	if (spa->spa_config_syncing != NULL) {
10229 		spa_config_set(spa, spa->spa_config_syncing);
10230 		spa->spa_config_txg = txg;
10231 		spa->spa_config_syncing = NULL;
10232 	}
10233 
10234 	dsl_pool_sync_done(dp, txg);
10235 
10236 	for (int i = 0; i < spa->spa_alloc_count; i++) {
10237 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
10238 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10239 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
10240 	}
10241 
10242 	/*
10243 	 * Update usable space statistics.
10244 	 */
10245 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
10246 	    != NULL)
10247 		vdev_sync_done(vd, txg);
10248 
10249 	metaslab_class_evict_old(spa->spa_normal_class, txg);
10250 	metaslab_class_evict_old(spa->spa_log_class, txg);
10251 	/* spa_embedded_log_class has only one metaslab per vdev. */
10252 	metaslab_class_evict_old(spa->spa_special_class, txg);
10253 	metaslab_class_evict_old(spa->spa_dedup_class, txg);
10254 
10255 	spa_sync_close_syncing_log_sm(spa);
10256 
10257 	spa_update_dspace(spa);
10258 
10259 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
10260 		vdev_autotrim_kick(spa);
10261 
10262 	/*
10263 	 * It had better be the case that we didn't dirty anything
10264 	 * since vdev_config_sync().
10265 	 */
10266 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10267 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10268 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
10269 
10270 	while (zfs_pause_spa_sync)
10271 		delay(1);
10272 
10273 	spa->spa_sync_pass = 0;
10274 
10275 	/*
10276 	 * Update the last synced uberblock here. We want to do this at
10277 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
10278 	 * will be guaranteed that all the processing associated with
10279 	 * that txg has been completed.
10280 	 */
10281 	spa->spa_ubsync = spa->spa_uberblock;
10282 	spa_config_exit(spa, SCL_CONFIG, FTAG);
10283 
10284 	spa_handle_ignored_writes(spa);
10285 
10286 	/*
10287 	 * If any async tasks have been requested, kick them off.
10288 	 */
10289 	spa_async_dispatch(spa);
10290 }
10291 
10292 /*
10293  * Sync all pools.  We don't want to hold the namespace lock across these
10294  * operations, so we take a reference on the spa_t and drop the lock during the
10295  * sync.
10296  */
10297 void
10298 spa_sync_allpools(void)
10299 {
10300 	spa_t *spa = NULL;
10301 	mutex_enter(&spa_namespace_lock);
10302 	while ((spa = spa_next(spa)) != NULL) {
10303 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
10304 		    !spa_writeable(spa) || spa_suspended(spa))
10305 			continue;
10306 		spa_open_ref(spa, FTAG);
10307 		mutex_exit(&spa_namespace_lock);
10308 		txg_wait_synced(spa_get_dsl(spa), 0);
10309 		mutex_enter(&spa_namespace_lock);
10310 		spa_close(spa, FTAG);
10311 	}
10312 	mutex_exit(&spa_namespace_lock);
10313 }
10314 
10315 taskq_t *
10316 spa_sync_tq_create(spa_t *spa, const char *name)
10317 {
10318 	kthread_t **kthreads;
10319 
10320 	ASSERT(spa->spa_sync_tq == NULL);
10321 	ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus);
10322 
10323 	/*
10324 	 * - do not allow more allocators than cpus.
10325 	 * - there may be more cpus than allocators.
10326 	 * - do not allow more sync taskq threads than allocators or cpus.
10327 	 */
10328 	int nthreads = spa->spa_alloc_count;
10329 	spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) *
10330 	    nthreads, KM_SLEEP);
10331 
10332 	spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri,
10333 	    nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads);
10334 	VERIFY(spa->spa_sync_tq != NULL);
10335 	VERIFY(kthreads != NULL);
10336 
10337 	spa_syncthread_info_t *ti = spa->spa_syncthreads;
10338 	for (int i = 0; i < nthreads; i++, ti++) {
10339 		ti->sti_thread = kthreads[i];
10340 		ti->sti_allocator = i;
10341 	}
10342 
10343 	kmem_free(kthreads, sizeof (*kthreads) * nthreads);
10344 	return (spa->spa_sync_tq);
10345 }
10346 
10347 void
10348 spa_sync_tq_destroy(spa_t *spa)
10349 {
10350 	ASSERT(spa->spa_sync_tq != NULL);
10351 
10352 	taskq_wait(spa->spa_sync_tq);
10353 	taskq_destroy(spa->spa_sync_tq);
10354 	kmem_free(spa->spa_syncthreads,
10355 	    sizeof (spa_syncthread_info_t) * spa->spa_alloc_count);
10356 	spa->spa_sync_tq = NULL;
10357 }
10358 
10359 uint_t
10360 spa_acq_allocator(spa_t *spa)
10361 {
10362 	int i;
10363 
10364 	if (spa->spa_alloc_count == 1)
10365 		return (0);
10366 
10367 	mutex_enter(&spa->spa_allocs_use->sau_lock);
10368 	uint_t r = spa->spa_allocs_use->sau_rotor;
10369 	do {
10370 		if (++r == spa->spa_alloc_count)
10371 			r = 0;
10372 	} while (spa->spa_allocs_use->sau_inuse[r]);
10373 	spa->spa_allocs_use->sau_inuse[r] = B_TRUE;
10374 	spa->spa_allocs_use->sau_rotor = r;
10375 	mutex_exit(&spa->spa_allocs_use->sau_lock);
10376 
10377 	spa_syncthread_info_t *ti = spa->spa_syncthreads;
10378 	for (i = 0; i < spa->spa_alloc_count; i++, ti++) {
10379 		if (ti->sti_thread == curthread) {
10380 			ti->sti_allocator = r;
10381 			break;
10382 		}
10383 	}
10384 	ASSERT3S(i, <, spa->spa_alloc_count);
10385 	return (r);
10386 }
10387 
10388 void
10389 spa_rel_allocator(spa_t *spa, uint_t allocator)
10390 {
10391 	if (spa->spa_alloc_count > 1)
10392 		spa->spa_allocs_use->sau_inuse[allocator] = B_FALSE;
10393 }
10394 
10395 void
10396 spa_select_allocator(zio_t *zio)
10397 {
10398 	zbookmark_phys_t *bm = &zio->io_bookmark;
10399 	spa_t *spa = zio->io_spa;
10400 
10401 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
10402 
10403 	/*
10404 	 * A gang block (for example) may have inherited its parent's
10405 	 * allocator, in which case there is nothing further to do here.
10406 	 */
10407 	if (ZIO_HAS_ALLOCATOR(zio))
10408 		return;
10409 
10410 	ASSERT(spa != NULL);
10411 	ASSERT(bm != NULL);
10412 
10413 	/*
10414 	 * First try to use an allocator assigned to the syncthread, and set
10415 	 * the corresponding write issue taskq for the allocator.
10416 	 * Note, we must have an open pool to do this.
10417 	 */
10418 	if (spa->spa_sync_tq != NULL) {
10419 		spa_syncthread_info_t *ti = spa->spa_syncthreads;
10420 		for (int i = 0; i < spa->spa_alloc_count; i++, ti++) {
10421 			if (ti->sti_thread == curthread) {
10422 				zio->io_allocator = ti->sti_allocator;
10423 				return;
10424 			}
10425 		}
10426 	}
10427 
10428 	/*
10429 	 * We want to try to use as many allocators as possible to help improve
10430 	 * performance, but we also want logically adjacent IOs to be physically
10431 	 * adjacent to improve sequential read performance. We chunk each object
10432 	 * into 2^20 block regions, and then hash based on the objset, object,
10433 	 * level, and region to accomplish both of these goals.
10434 	 */
10435 	uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level,
10436 	    bm->zb_blkid >> 20);
10437 
10438 	zio->io_allocator = (uint_t)hv % spa->spa_alloc_count;
10439 }
10440 
10441 /*
10442  * ==========================================================================
10443  * Miscellaneous routines
10444  * ==========================================================================
10445  */
10446 
10447 /*
10448  * Remove all pools in the system.
10449  */
10450 void
10451 spa_evict_all(void)
10452 {
10453 	spa_t *spa;
10454 
10455 	/*
10456 	 * Remove all cached state.  All pools should be closed now,
10457 	 * so every spa in the AVL tree should be unreferenced.
10458 	 */
10459 	mutex_enter(&spa_namespace_lock);
10460 	while ((spa = spa_next(NULL)) != NULL) {
10461 		/*
10462 		 * Stop async tasks.  The async thread may need to detach
10463 		 * a device that's been replaced, which requires grabbing
10464 		 * spa_namespace_lock, so we must drop it here.
10465 		 */
10466 		spa_open_ref(spa, FTAG);
10467 		mutex_exit(&spa_namespace_lock);
10468 		spa_async_suspend(spa);
10469 		mutex_enter(&spa_namespace_lock);
10470 		spa_close(spa, FTAG);
10471 
10472 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
10473 			spa_unload(spa);
10474 			spa_deactivate(spa);
10475 		}
10476 		spa_remove(spa);
10477 	}
10478 	mutex_exit(&spa_namespace_lock);
10479 }
10480 
10481 vdev_t *
10482 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
10483 {
10484 	vdev_t *vd;
10485 	int i;
10486 
10487 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
10488 		return (vd);
10489 
10490 	if (aux) {
10491 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
10492 			vd = spa->spa_l2cache.sav_vdevs[i];
10493 			if (vd->vdev_guid == guid)
10494 				return (vd);
10495 		}
10496 
10497 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
10498 			vd = spa->spa_spares.sav_vdevs[i];
10499 			if (vd->vdev_guid == guid)
10500 				return (vd);
10501 		}
10502 	}
10503 
10504 	return (NULL);
10505 }
10506 
10507 void
10508 spa_upgrade(spa_t *spa, uint64_t version)
10509 {
10510 	ASSERT(spa_writeable(spa));
10511 
10512 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
10513 
10514 	/*
10515 	 * This should only be called for a non-faulted pool, and since a
10516 	 * future version would result in an unopenable pool, this shouldn't be
10517 	 * possible.
10518 	 */
10519 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
10520 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
10521 
10522 	spa->spa_uberblock.ub_version = version;
10523 	vdev_config_dirty(spa->spa_root_vdev);
10524 
10525 	spa_config_exit(spa, SCL_ALL, FTAG);
10526 
10527 	txg_wait_synced(spa_get_dsl(spa), 0);
10528 }
10529 
10530 static boolean_t
10531 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
10532 {
10533 	(void) spa;
10534 	int i;
10535 	uint64_t vdev_guid;
10536 
10537 	for (i = 0; i < sav->sav_count; i++)
10538 		if (sav->sav_vdevs[i]->vdev_guid == guid)
10539 			return (B_TRUE);
10540 
10541 	for (i = 0; i < sav->sav_npending; i++) {
10542 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
10543 		    &vdev_guid) == 0 && vdev_guid == guid)
10544 			return (B_TRUE);
10545 	}
10546 
10547 	return (B_FALSE);
10548 }
10549 
10550 boolean_t
10551 spa_has_l2cache(spa_t *spa, uint64_t guid)
10552 {
10553 	return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
10554 }
10555 
10556 boolean_t
10557 spa_has_spare(spa_t *spa, uint64_t guid)
10558 {
10559 	return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
10560 }
10561 
10562 /*
10563  * Check if a pool has an active shared spare device.
10564  * Note: reference count of an active spare is 2, as a spare and as a replace
10565  */
10566 static boolean_t
10567 spa_has_active_shared_spare(spa_t *spa)
10568 {
10569 	int i, refcnt;
10570 	uint64_t pool;
10571 	spa_aux_vdev_t *sav = &spa->spa_spares;
10572 
10573 	for (i = 0; i < sav->sav_count; i++) {
10574 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
10575 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
10576 		    refcnt > 2)
10577 			return (B_TRUE);
10578 	}
10579 
10580 	return (B_FALSE);
10581 }
10582 
10583 uint64_t
10584 spa_total_metaslabs(spa_t *spa)
10585 {
10586 	vdev_t *rvd = spa->spa_root_vdev;
10587 
10588 	uint64_t m = 0;
10589 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
10590 		vdev_t *vd = rvd->vdev_child[c];
10591 		if (!vdev_is_concrete(vd))
10592 			continue;
10593 		m += vd->vdev_ms_count;
10594 	}
10595 	return (m);
10596 }
10597 
10598 /*
10599  * Notify any waiting threads that some activity has switched from being in-
10600  * progress to not-in-progress so that the thread can wake up and determine
10601  * whether it is finished waiting.
10602  */
10603 void
10604 spa_notify_waiters(spa_t *spa)
10605 {
10606 	/*
10607 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
10608 	 * happening between the waiting thread's check and cv_wait.
10609 	 */
10610 	mutex_enter(&spa->spa_activities_lock);
10611 	cv_broadcast(&spa->spa_activities_cv);
10612 	mutex_exit(&spa->spa_activities_lock);
10613 }
10614 
10615 /*
10616  * Notify any waiting threads that the pool is exporting, and then block until
10617  * they are finished using the spa_t.
10618  */
10619 void
10620 spa_wake_waiters(spa_t *spa)
10621 {
10622 	mutex_enter(&spa->spa_activities_lock);
10623 	spa->spa_waiters_cancel = B_TRUE;
10624 	cv_broadcast(&spa->spa_activities_cv);
10625 	while (spa->spa_waiters != 0)
10626 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
10627 	spa->spa_waiters_cancel = B_FALSE;
10628 	mutex_exit(&spa->spa_activities_lock);
10629 }
10630 
10631 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
10632 static boolean_t
10633 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
10634 {
10635 	spa_t *spa = vd->vdev_spa;
10636 
10637 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
10638 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10639 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
10640 	    activity == ZPOOL_WAIT_TRIM);
10641 
10642 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
10643 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
10644 
10645 	mutex_exit(&spa->spa_activities_lock);
10646 	mutex_enter(lock);
10647 	mutex_enter(&spa->spa_activities_lock);
10648 
10649 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
10650 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
10651 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
10652 	mutex_exit(lock);
10653 
10654 	if (in_progress)
10655 		return (B_TRUE);
10656 
10657 	for (int i = 0; i < vd->vdev_children; i++) {
10658 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
10659 		    activity))
10660 			return (B_TRUE);
10661 	}
10662 
10663 	return (B_FALSE);
10664 }
10665 
10666 /*
10667  * If use_guid is true, this checks whether the vdev specified by guid is
10668  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
10669  * is being initialized/trimmed. The caller must hold the config lock and
10670  * spa_activities_lock.
10671  */
10672 static int
10673 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
10674     zpool_wait_activity_t activity, boolean_t *in_progress)
10675 {
10676 	mutex_exit(&spa->spa_activities_lock);
10677 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10678 	mutex_enter(&spa->spa_activities_lock);
10679 
10680 	vdev_t *vd;
10681 	if (use_guid) {
10682 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
10683 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
10684 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10685 			return (EINVAL);
10686 		}
10687 	} else {
10688 		vd = spa->spa_root_vdev;
10689 	}
10690 
10691 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
10692 
10693 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10694 	return (0);
10695 }
10696 
10697 /*
10698  * Locking for waiting threads
10699  * ---------------------------
10700  *
10701  * Waiting threads need a way to check whether a given activity is in progress,
10702  * and then, if it is, wait for it to complete. Each activity will have some
10703  * in-memory representation of the relevant on-disk state which can be used to
10704  * determine whether or not the activity is in progress. The in-memory state and
10705  * the locking used to protect it will be different for each activity, and may
10706  * not be suitable for use with a cvar (e.g., some state is protected by the
10707  * config lock). To allow waiting threads to wait without any races, another
10708  * lock, spa_activities_lock, is used.
10709  *
10710  * When the state is checked, both the activity-specific lock (if there is one)
10711  * and spa_activities_lock are held. In some cases, the activity-specific lock
10712  * is acquired explicitly (e.g. the config lock). In others, the locking is
10713  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
10714  * thread releases the activity-specific lock and, if the activity is in
10715  * progress, then cv_waits using spa_activities_lock.
10716  *
10717  * The waiting thread is woken when another thread, one completing some
10718  * activity, updates the state of the activity and then calls
10719  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
10720  * needs to hold its activity-specific lock when updating the state, and this
10721  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
10722  *
10723  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
10724  * and because it is held when the waiting thread checks the state of the
10725  * activity, it can never be the case that the completing thread both updates
10726  * the activity state and cv_broadcasts in between the waiting thread's check
10727  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
10728  *
10729  * In order to prevent deadlock, when the waiting thread does its check, in some
10730  * cases it will temporarily drop spa_activities_lock in order to acquire the
10731  * activity-specific lock. The order in which spa_activities_lock and the
10732  * activity specific lock are acquired in the waiting thread is determined by
10733  * the order in which they are acquired in the completing thread; if the
10734  * completing thread calls spa_notify_waiters with the activity-specific lock
10735  * held, then the waiting thread must also acquire the activity-specific lock
10736  * first.
10737  */
10738 
10739 static int
10740 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
10741     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
10742 {
10743 	int error = 0;
10744 
10745 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10746 
10747 	switch (activity) {
10748 	case ZPOOL_WAIT_CKPT_DISCARD:
10749 		*in_progress =
10750 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
10751 		    zap_contains(spa_meta_objset(spa),
10752 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
10753 		    ENOENT);
10754 		break;
10755 	case ZPOOL_WAIT_FREE:
10756 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
10757 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
10758 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
10759 		    spa_livelist_delete_check(spa));
10760 		break;
10761 	case ZPOOL_WAIT_INITIALIZE:
10762 	case ZPOOL_WAIT_TRIM:
10763 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
10764 		    activity, in_progress);
10765 		break;
10766 	case ZPOOL_WAIT_REPLACE:
10767 		mutex_exit(&spa->spa_activities_lock);
10768 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10769 		mutex_enter(&spa->spa_activities_lock);
10770 
10771 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
10772 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10773 		break;
10774 	case ZPOOL_WAIT_REMOVE:
10775 		*in_progress = (spa->spa_removing_phys.sr_state ==
10776 		    DSS_SCANNING);
10777 		break;
10778 	case ZPOOL_WAIT_RESILVER:
10779 		*in_progress = vdev_rebuild_active(spa->spa_root_vdev);
10780 		if (*in_progress)
10781 			break;
10782 		zfs_fallthrough;
10783 	case ZPOOL_WAIT_SCRUB:
10784 	{
10785 		boolean_t scanning, paused, is_scrub;
10786 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
10787 
10788 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
10789 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
10790 		paused = dsl_scan_is_paused_scrub(scn);
10791 		*in_progress = (scanning && !paused &&
10792 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
10793 		break;
10794 	}
10795 	case ZPOOL_WAIT_RAIDZ_EXPAND:
10796 	{
10797 		vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
10798 		*in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING);
10799 		break;
10800 	}
10801 	default:
10802 		panic("unrecognized value for activity %d", activity);
10803 	}
10804 
10805 	return (error);
10806 }
10807 
10808 static int
10809 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
10810     boolean_t use_tag, uint64_t tag, boolean_t *waited)
10811 {
10812 	/*
10813 	 * The tag is used to distinguish between instances of an activity.
10814 	 * 'initialize' and 'trim' are the only activities that we use this for.
10815 	 * The other activities can only have a single instance in progress in a
10816 	 * pool at one time, making the tag unnecessary.
10817 	 *
10818 	 * There can be multiple devices being replaced at once, but since they
10819 	 * all finish once resilvering finishes, we don't bother keeping track
10820 	 * of them individually, we just wait for them all to finish.
10821 	 */
10822 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
10823 	    activity != ZPOOL_WAIT_TRIM)
10824 		return (EINVAL);
10825 
10826 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
10827 		return (EINVAL);
10828 
10829 	spa_t *spa;
10830 	int error = spa_open(pool, &spa, FTAG);
10831 	if (error != 0)
10832 		return (error);
10833 
10834 	/*
10835 	 * Increment the spa's waiter count so that we can call spa_close and
10836 	 * still ensure that the spa_t doesn't get freed before this thread is
10837 	 * finished with it when the pool is exported. We want to call spa_close
10838 	 * before we start waiting because otherwise the additional ref would
10839 	 * prevent the pool from being exported or destroyed throughout the
10840 	 * potentially long wait.
10841 	 */
10842 	mutex_enter(&spa->spa_activities_lock);
10843 	spa->spa_waiters++;
10844 	spa_close(spa, FTAG);
10845 
10846 	*waited = B_FALSE;
10847 	for (;;) {
10848 		boolean_t in_progress;
10849 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
10850 		    &in_progress);
10851 
10852 		if (error || !in_progress || spa->spa_waiters_cancel)
10853 			break;
10854 
10855 		*waited = B_TRUE;
10856 
10857 		if (cv_wait_sig(&spa->spa_activities_cv,
10858 		    &spa->spa_activities_lock) == 0) {
10859 			error = EINTR;
10860 			break;
10861 		}
10862 	}
10863 
10864 	spa->spa_waiters--;
10865 	cv_signal(&spa->spa_waiters_cv);
10866 	mutex_exit(&spa->spa_activities_lock);
10867 
10868 	return (error);
10869 }
10870 
10871 /*
10872  * Wait for a particular instance of the specified activity to complete, where
10873  * the instance is identified by 'tag'
10874  */
10875 int
10876 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
10877     boolean_t *waited)
10878 {
10879 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
10880 }
10881 
10882 /*
10883  * Wait for all instances of the specified activity complete
10884  */
10885 int
10886 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
10887 {
10888 
10889 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
10890 }
10891 
10892 sysevent_t *
10893 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10894 {
10895 	sysevent_t *ev = NULL;
10896 #ifdef _KERNEL
10897 	nvlist_t *resource;
10898 
10899 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
10900 	if (resource) {
10901 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
10902 		ev->resource = resource;
10903 	}
10904 #else
10905 	(void) spa, (void) vd, (void) hist_nvl, (void) name;
10906 #endif
10907 	return (ev);
10908 }
10909 
10910 void
10911 spa_event_post(sysevent_t *ev)
10912 {
10913 #ifdef _KERNEL
10914 	if (ev) {
10915 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
10916 		kmem_free(ev, sizeof (*ev));
10917 	}
10918 #else
10919 	(void) ev;
10920 #endif
10921 }
10922 
10923 /*
10924  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
10925  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
10926  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
10927  * in the userland libzpool, as we don't want consumers to misinterpret ztest
10928  * or zdb as real changes.
10929  */
10930 void
10931 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10932 {
10933 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
10934 }
10935 
10936 /* state manipulation functions */
10937 EXPORT_SYMBOL(spa_open);
10938 EXPORT_SYMBOL(spa_open_rewind);
10939 EXPORT_SYMBOL(spa_get_stats);
10940 EXPORT_SYMBOL(spa_create);
10941 EXPORT_SYMBOL(spa_import);
10942 EXPORT_SYMBOL(spa_tryimport);
10943 EXPORT_SYMBOL(spa_destroy);
10944 EXPORT_SYMBOL(spa_export);
10945 EXPORT_SYMBOL(spa_reset);
10946 EXPORT_SYMBOL(spa_async_request);
10947 EXPORT_SYMBOL(spa_async_suspend);
10948 EXPORT_SYMBOL(spa_async_resume);
10949 EXPORT_SYMBOL(spa_inject_addref);
10950 EXPORT_SYMBOL(spa_inject_delref);
10951 EXPORT_SYMBOL(spa_scan_stat_init);
10952 EXPORT_SYMBOL(spa_scan_get_stats);
10953 
10954 /* device manipulation */
10955 EXPORT_SYMBOL(spa_vdev_add);
10956 EXPORT_SYMBOL(spa_vdev_attach);
10957 EXPORT_SYMBOL(spa_vdev_detach);
10958 EXPORT_SYMBOL(spa_vdev_setpath);
10959 EXPORT_SYMBOL(spa_vdev_setfru);
10960 EXPORT_SYMBOL(spa_vdev_split_mirror);
10961 
10962 /* spare statech is global across all pools) */
10963 EXPORT_SYMBOL(spa_spare_add);
10964 EXPORT_SYMBOL(spa_spare_remove);
10965 EXPORT_SYMBOL(spa_spare_exists);
10966 EXPORT_SYMBOL(spa_spare_activate);
10967 
10968 /* L2ARC statech is global across all pools) */
10969 EXPORT_SYMBOL(spa_l2cache_add);
10970 EXPORT_SYMBOL(spa_l2cache_remove);
10971 EXPORT_SYMBOL(spa_l2cache_exists);
10972 EXPORT_SYMBOL(spa_l2cache_activate);
10973 EXPORT_SYMBOL(spa_l2cache_drop);
10974 
10975 /* scanning */
10976 EXPORT_SYMBOL(spa_scan);
10977 EXPORT_SYMBOL(spa_scan_stop);
10978 
10979 /* spa syncing */
10980 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
10981 EXPORT_SYMBOL(spa_sync_allpools);
10982 
10983 /* properties */
10984 EXPORT_SYMBOL(spa_prop_set);
10985 EXPORT_SYMBOL(spa_prop_get);
10986 EXPORT_SYMBOL(spa_prop_clear_bootfs);
10987 
10988 /* asynchronous event notification */
10989 EXPORT_SYMBOL(spa_event_notify);
10990 
10991 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
10992 	"Percentage of CPUs to run a metaslab preload taskq");
10993 
10994 /* BEGIN CSTYLED */
10995 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10996 	"log2 fraction of arc that can be used by inflight I/Os when "
10997 	"verifying pool during import");
10998 /* END CSTYLED */
10999 
11000 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
11001 	"Set to traverse metadata on pool import");
11002 
11003 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
11004 	"Set to traverse data on pool import");
11005 
11006 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
11007 	"Print vdev tree to zfs_dbgmsg during pool import");
11008 
11009 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RW,
11010 	"Percentage of CPUs to run an IO worker thread");
11011 
11012 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RW,
11013 	"Number of threads per IO worker taskqueue");
11014 
11015 /* BEGIN CSTYLED */
11016 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
11017 	"Allow importing pool with up to this number of missing top-level "
11018 	"vdevs (in read-only mode)");
11019 /* END CSTYLED */
11020 
11021 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
11022 	ZMOD_RW, "Set the livelist condense zthr to pause");
11023 
11024 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
11025 	ZMOD_RW, "Set the livelist condense synctask to pause");
11026 
11027 /* BEGIN CSTYLED */
11028 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
11029 	INT, ZMOD_RW,
11030 	"Whether livelist condensing was canceled in the synctask");
11031 
11032 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
11033 	INT, ZMOD_RW,
11034 	"Whether livelist condensing was canceled in the zthr function");
11035 
11036 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
11037 	ZMOD_RW,
11038 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
11039 	"was being condensed");
11040 
11041 #ifdef _KERNEL
11042 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read,
11043 	spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RW,
11044 	"Configure IO queues for read IO");
11045 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write,
11046 	spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RW,
11047 	"Configure IO queues for write IO");
11048 #endif
11049 /* END CSTYLED */
11050 
11051 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_write_tpq, UINT, ZMOD_RW,
11052 	"Number of CPUs per write issue taskq");
11053