1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33 * Copyright 2017 Joyent, Inc.
34 * Copyright (c) 2017, Intel Corporation.
35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
37 * Copyright (c) 2023, 2024, Klara Inc.
38 */
39
40 /*
41 * SPA: Storage Pool Allocator
42 *
43 * This file contains all the routines used when modifying on-disk SPA state.
44 * This includes opening, importing, destroying, exporting a pool, and syncing a
45 * pool.
46 */
47
48 #include <sys/zfs_context.h>
49 #include <sys/fm/fs/zfs.h>
50 #include <sys/spa_impl.h>
51 #include <sys/zio.h>
52 #include <sys/zio_checksum.h>
53 #include <sys/dmu.h>
54 #include <sys/dmu_tx.h>
55 #include <sys/zap.h>
56 #include <sys/zil.h>
57 #include <sys/brt.h>
58 #include <sys/ddt.h>
59 #include <sys/vdev_impl.h>
60 #include <sys/vdev_removal.h>
61 #include <sys/vdev_indirect_mapping.h>
62 #include <sys/vdev_indirect_births.h>
63 #include <sys/vdev_initialize.h>
64 #include <sys/vdev_rebuild.h>
65 #include <sys/vdev_trim.h>
66 #include <sys/vdev_disk.h>
67 #include <sys/vdev_raidz.h>
68 #include <sys/vdev_draid.h>
69 #include <sys/metaslab.h>
70 #include <sys/metaslab_impl.h>
71 #include <sys/mmp.h>
72 #include <sys/uberblock_impl.h>
73 #include <sys/txg.h>
74 #include <sys/avl.h>
75 #include <sys/bpobj.h>
76 #include <sys/dmu_traverse.h>
77 #include <sys/dmu_objset.h>
78 #include <sys/unique.h>
79 #include <sys/dsl_pool.h>
80 #include <sys/dsl_dataset.h>
81 #include <sys/dsl_dir.h>
82 #include <sys/dsl_prop.h>
83 #include <sys/dsl_synctask.h>
84 #include <sys/fs/zfs.h>
85 #include <sys/arc.h>
86 #include <sys/callb.h>
87 #include <sys/systeminfo.h>
88 #include <sys/zfs_ioctl.h>
89 #include <sys/dsl_scan.h>
90 #include <sys/zfeature.h>
91 #include <sys/dsl_destroy.h>
92 #include <sys/zvol.h>
93
94 #ifdef _KERNEL
95 #include <sys/fm/protocol.h>
96 #include <sys/fm/util.h>
97 #include <sys/callb.h>
98 #include <sys/zone.h>
99 #include <sys/vmsystm.h>
100 #endif /* _KERNEL */
101
102 #include "zfs_prop.h"
103 #include "zfs_comutil.h"
104 #include <cityhash.h>
105
106 /*
107 * spa_thread() existed on Illumos as a parent thread for the various worker
108 * threads that actually run the pool, as a way to both reference the entire
109 * pool work as a single object, and to share properties like scheduling
110 * options. It has not yet been adapted to Linux or FreeBSD. This define is
111 * used to mark related parts of the code to make things easier for the reader,
112 * and to compile this code out. It can be removed when someone implements it,
113 * moves it to some Illumos-specific place, or removes it entirely.
114 */
115 #undef HAVE_SPA_THREAD
116
117 /*
118 * The "System Duty Cycle" scheduling class is an Illumos feature to help
119 * prevent CPU-intensive kernel threads from affecting latency on interactive
120 * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is
121 * gated behind a define. On Illumos SDC depends on spa_thread(), but
122 * spa_thread() also has other uses, so this is a separate define.
123 */
124 #undef HAVE_SYSDC
125
126 /*
127 * The interval, in seconds, at which failed configuration cache file writes
128 * should be retried.
129 */
130 int zfs_ccw_retry_interval = 300;
131
132 typedef enum zti_modes {
133 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
134 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */
135 ZTI_MODE_SYNC, /* sync thread assigned */
136 ZTI_MODE_NULL, /* don't create a taskq */
137 ZTI_NMODES
138 } zti_modes_t;
139
140 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
141 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
142 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 }
143 #define ZTI_SYNC { ZTI_MODE_SYNC, 0, 1 }
144 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
145
146 #define ZTI_N(n) ZTI_P(n, 1)
147 #define ZTI_ONE ZTI_N(1)
148
149 typedef struct zio_taskq_info {
150 zti_modes_t zti_mode;
151 uint_t zti_value;
152 uint_t zti_count;
153 } zio_taskq_info_t;
154
155 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
156 "iss", "iss_h", "int", "int_h"
157 };
158
159 /*
160 * This table defines the taskq settings for each ZFS I/O type. When
161 * initializing a pool, we use this table to create an appropriately sized
162 * taskq. Some operations are low volume and therefore have a small, static
163 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
164 * macros. Other operations process a large amount of data; the ZTI_SCALE
165 * macro causes us to create a taskq oriented for throughput. Some operations
166 * are so high frequency and short-lived that the taskq itself can become a
167 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
168 * additional degree of parallelism specified by the number of threads per-
169 * taskq and the number of taskqs; when dispatching an event in this case, the
170 * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs
171 * that scales with the number of CPUs.
172 *
173 * The different taskq priorities are to handle the different contexts (issue
174 * and interrupt) and then to reserve threads for high priority I/Os that
175 * need to be handled with minimum delay. Illumos taskq has unfair TQ_FRONT
176 * implementation, so separate high priority threads are used there.
177 */
178 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
179 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
180 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
181 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */
182 #ifdef illumos
183 { ZTI_SYNC, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */
184 #else
185 { ZTI_SYNC, ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* WRITE */
186 #endif
187 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
188 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
189 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FLUSH */
190 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
191 };
192
193 static void spa_sync_version(void *arg, dmu_tx_t *tx);
194 static void spa_sync_props(void *arg, dmu_tx_t *tx);
195 static boolean_t spa_has_active_shared_spare(spa_t *spa);
196 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
197 const char **ereport);
198 static void spa_vdev_resilver_done(spa_t *spa);
199
200 /*
201 * Percentage of all CPUs that can be used by the metaslab preload taskq.
202 */
203 static uint_t metaslab_preload_pct = 50;
204
205 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */
206 static uint_t zio_taskq_batch_tpq; /* threads per taskq */
207
208 #ifdef HAVE_SYSDC
209 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
210 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */
211 #endif
212
213 #ifdef HAVE_SPA_THREAD
214 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
215 #endif
216
217 static uint_t zio_taskq_write_tpq = 16;
218
219 /*
220 * Report any spa_load_verify errors found, but do not fail spa_load.
221 * This is used by zdb to analyze non-idle pools.
222 */
223 boolean_t spa_load_verify_dryrun = B_FALSE;
224
225 /*
226 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
227 * This is used by zdb for spacemaps verification.
228 */
229 boolean_t spa_mode_readable_spacemaps = B_FALSE;
230
231 /*
232 * This (illegal) pool name is used when temporarily importing a spa_t in order
233 * to get the vdev stats associated with the imported devices.
234 */
235 #define TRYIMPORT_NAME "$import"
236
237 /*
238 * For debugging purposes: print out vdev tree during pool import.
239 */
240 static int spa_load_print_vdev_tree = B_FALSE;
241
242 /*
243 * A non-zero value for zfs_max_missing_tvds means that we allow importing
244 * pools with missing top-level vdevs. This is strictly intended for advanced
245 * pool recovery cases since missing data is almost inevitable. Pools with
246 * missing devices can only be imported read-only for safety reasons, and their
247 * fail-mode will be automatically set to "continue".
248 *
249 * With 1 missing vdev we should be able to import the pool and mount all
250 * datasets. User data that was not modified after the missing device has been
251 * added should be recoverable. This means that snapshots created prior to the
252 * addition of that device should be completely intact.
253 *
254 * With 2 missing vdevs, some datasets may fail to mount since there are
255 * dataset statistics that are stored as regular metadata. Some data might be
256 * recoverable if those vdevs were added recently.
257 *
258 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
259 * may be missing entirely. Chances of data recovery are very low. Note that
260 * there are also risks of performing an inadvertent rewind as we might be
261 * missing all the vdevs with the latest uberblocks.
262 */
263 uint64_t zfs_max_missing_tvds = 0;
264
265 /*
266 * The parameters below are similar to zfs_max_missing_tvds but are only
267 * intended for a preliminary open of the pool with an untrusted config which
268 * might be incomplete or out-dated.
269 *
270 * We are more tolerant for pools opened from a cachefile since we could have
271 * an out-dated cachefile where a device removal was not registered.
272 * We could have set the limit arbitrarily high but in the case where devices
273 * are really missing we would want to return the proper error codes; we chose
274 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
275 * and we get a chance to retrieve the trusted config.
276 */
277 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
278
279 /*
280 * In the case where config was assembled by scanning device paths (/dev/dsks
281 * by default) we are less tolerant since all the existing devices should have
282 * been detected and we want spa_load to return the right error codes.
283 */
284 uint64_t zfs_max_missing_tvds_scan = 0;
285
286 /*
287 * Debugging aid that pauses spa_sync() towards the end.
288 */
289 static const boolean_t zfs_pause_spa_sync = B_FALSE;
290
291 /*
292 * Variables to indicate the livelist condense zthr func should wait at certain
293 * points for the livelist to be removed - used to test condense/destroy races
294 */
295 static int zfs_livelist_condense_zthr_pause = 0;
296 static int zfs_livelist_condense_sync_pause = 0;
297
298 /*
299 * Variables to track whether or not condense cancellation has been
300 * triggered in testing.
301 */
302 static int zfs_livelist_condense_sync_cancel = 0;
303 static int zfs_livelist_condense_zthr_cancel = 0;
304
305 /*
306 * Variable to track whether or not extra ALLOC blkptrs were added to a
307 * livelist entry while it was being condensed (caused by the way we track
308 * remapped blkptrs in dbuf_remap_impl)
309 */
310 static int zfs_livelist_condense_new_alloc = 0;
311
312 /*
313 * ==========================================================================
314 * SPA properties routines
315 * ==========================================================================
316 */
317
318 /*
319 * Add a (source=src, propname=propval) list to an nvlist.
320 */
321 static void
spa_prop_add_list(nvlist_t * nvl,zpool_prop_t prop,const char * strval,uint64_t intval,zprop_source_t src)322 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
323 uint64_t intval, zprop_source_t src)
324 {
325 const char *propname = zpool_prop_to_name(prop);
326 nvlist_t *propval;
327
328 propval = fnvlist_alloc();
329 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
330
331 if (strval != NULL)
332 fnvlist_add_string(propval, ZPROP_VALUE, strval);
333 else
334 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
335
336 fnvlist_add_nvlist(nvl, propname, propval);
337 nvlist_free(propval);
338 }
339
340 static int
spa_prop_add(spa_t * spa,const char * propname,nvlist_t * outnvl)341 spa_prop_add(spa_t *spa, const char *propname, nvlist_t *outnvl)
342 {
343 zpool_prop_t prop = zpool_name_to_prop(propname);
344 zprop_source_t src = ZPROP_SRC_NONE;
345 uint64_t intval;
346 int err;
347
348 /*
349 * NB: Not all properties lookups via this API require
350 * the spa props lock, so they must explicitly grab it here.
351 */
352 switch (prop) {
353 case ZPOOL_PROP_DEDUPCACHED:
354 err = ddt_get_pool_dedup_cached(spa, &intval);
355 if (err != 0)
356 return (SET_ERROR(err));
357 break;
358 default:
359 return (SET_ERROR(EINVAL));
360 }
361
362 spa_prop_add_list(outnvl, prop, NULL, intval, src);
363
364 return (0);
365 }
366
367 int
spa_prop_get_nvlist(spa_t * spa,char ** props,unsigned int n_props,nvlist_t * outnvl)368 spa_prop_get_nvlist(spa_t *spa, char **props, unsigned int n_props,
369 nvlist_t *outnvl)
370 {
371 int err = 0;
372
373 if (props == NULL)
374 return (0);
375
376 for (unsigned int i = 0; i < n_props && err == 0; i++) {
377 err = spa_prop_add(spa, props[i], outnvl);
378 }
379
380 return (err);
381 }
382
383 /*
384 * Add a user property (source=src, propname=propval) to an nvlist.
385 */
386 static void
spa_prop_add_user(nvlist_t * nvl,const char * propname,char * strval,zprop_source_t src)387 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
388 zprop_source_t src)
389 {
390 nvlist_t *propval;
391
392 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
393 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
394 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
395 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
396 nvlist_free(propval);
397 }
398
399 /*
400 * Get property values from the spa configuration.
401 */
402 static void
spa_prop_get_config(spa_t * spa,nvlist_t * nv)403 spa_prop_get_config(spa_t *spa, nvlist_t *nv)
404 {
405 vdev_t *rvd = spa->spa_root_vdev;
406 dsl_pool_t *pool = spa->spa_dsl_pool;
407 uint64_t size, alloc, cap, version;
408 const zprop_source_t src = ZPROP_SRC_NONE;
409 spa_config_dirent_t *dp;
410 metaslab_class_t *mc = spa_normal_class(spa);
411
412 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
413
414 if (rvd != NULL) {
415 alloc = metaslab_class_get_alloc(mc);
416 alloc += metaslab_class_get_alloc(spa_special_class(spa));
417 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
418 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
419
420 size = metaslab_class_get_space(mc);
421 size += metaslab_class_get_space(spa_special_class(spa));
422 size += metaslab_class_get_space(spa_dedup_class(spa));
423 size += metaslab_class_get_space(spa_embedded_log_class(spa));
424
425 spa_prop_add_list(nv, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
426 spa_prop_add_list(nv, ZPOOL_PROP_SIZE, NULL, size, src);
427 spa_prop_add_list(nv, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
428 spa_prop_add_list(nv, ZPOOL_PROP_FREE, NULL,
429 size - alloc, src);
430 spa_prop_add_list(nv, ZPOOL_PROP_CHECKPOINT, NULL,
431 spa->spa_checkpoint_info.sci_dspace, src);
432
433 spa_prop_add_list(nv, ZPOOL_PROP_FRAGMENTATION, NULL,
434 metaslab_class_fragmentation(mc), src);
435 spa_prop_add_list(nv, ZPOOL_PROP_EXPANDSZ, NULL,
436 metaslab_class_expandable_space(mc), src);
437 spa_prop_add_list(nv, ZPOOL_PROP_READONLY, NULL,
438 (spa_mode(spa) == SPA_MODE_READ), src);
439
440 cap = (size == 0) ? 0 : (alloc * 100 / size);
441 spa_prop_add_list(nv, ZPOOL_PROP_CAPACITY, NULL, cap, src);
442
443 spa_prop_add_list(nv, ZPOOL_PROP_DEDUPRATIO, NULL,
444 ddt_get_pool_dedup_ratio(spa), src);
445 spa_prop_add_list(nv, ZPOOL_PROP_BCLONEUSED, NULL,
446 brt_get_used(spa), src);
447 spa_prop_add_list(nv, ZPOOL_PROP_BCLONESAVED, NULL,
448 brt_get_saved(spa), src);
449 spa_prop_add_list(nv, ZPOOL_PROP_BCLONERATIO, NULL,
450 brt_get_ratio(spa), src);
451
452 spa_prop_add_list(nv, ZPOOL_PROP_DEDUP_TABLE_SIZE, NULL,
453 ddt_get_ddt_dsize(spa), src);
454
455 spa_prop_add_list(nv, ZPOOL_PROP_HEALTH, NULL,
456 rvd->vdev_state, src);
457
458 version = spa_version(spa);
459 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
460 spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
461 version, ZPROP_SRC_DEFAULT);
462 } else {
463 spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
464 version, ZPROP_SRC_LOCAL);
465 }
466 spa_prop_add_list(nv, ZPOOL_PROP_LOAD_GUID,
467 NULL, spa_load_guid(spa), src);
468 }
469
470 if (pool != NULL) {
471 /*
472 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
473 * when opening pools before this version freedir will be NULL.
474 */
475 if (pool->dp_free_dir != NULL) {
476 spa_prop_add_list(nv, ZPOOL_PROP_FREEING, NULL,
477 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
478 src);
479 } else {
480 spa_prop_add_list(nv, ZPOOL_PROP_FREEING,
481 NULL, 0, src);
482 }
483
484 if (pool->dp_leak_dir != NULL) {
485 spa_prop_add_list(nv, ZPOOL_PROP_LEAKED, NULL,
486 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
487 src);
488 } else {
489 spa_prop_add_list(nv, ZPOOL_PROP_LEAKED,
490 NULL, 0, src);
491 }
492 }
493
494 spa_prop_add_list(nv, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
495
496 if (spa->spa_comment != NULL) {
497 spa_prop_add_list(nv, ZPOOL_PROP_COMMENT, spa->spa_comment,
498 0, ZPROP_SRC_LOCAL);
499 }
500
501 if (spa->spa_compatibility != NULL) {
502 spa_prop_add_list(nv, ZPOOL_PROP_COMPATIBILITY,
503 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
504 }
505
506 if (spa->spa_root != NULL)
507 spa_prop_add_list(nv, ZPOOL_PROP_ALTROOT, spa->spa_root,
508 0, ZPROP_SRC_LOCAL);
509
510 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
511 spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
512 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
513 } else {
514 spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
515 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
516 }
517
518 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
519 spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
520 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
521 } else {
522 spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
523 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
524 }
525
526 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
527 if (dp->scd_path == NULL) {
528 spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
529 "none", 0, ZPROP_SRC_LOCAL);
530 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
531 spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
532 dp->scd_path, 0, ZPROP_SRC_LOCAL);
533 }
534 }
535 }
536
537 /*
538 * Get zpool property values.
539 */
540 int
spa_prop_get(spa_t * spa,nvlist_t * nv)541 spa_prop_get(spa_t *spa, nvlist_t *nv)
542 {
543 objset_t *mos = spa->spa_meta_objset;
544 zap_cursor_t zc;
545 zap_attribute_t *za;
546 dsl_pool_t *dp;
547 int err = 0;
548
549 dp = spa_get_dsl(spa);
550 dsl_pool_config_enter(dp, FTAG);
551 za = zap_attribute_alloc();
552 mutex_enter(&spa->spa_props_lock);
553
554 /*
555 * Get properties from the spa config.
556 */
557 spa_prop_get_config(spa, nv);
558
559 /* If no pool property object, no more prop to get. */
560 if (mos == NULL || spa->spa_pool_props_object == 0)
561 goto out;
562
563 /*
564 * Get properties from the MOS pool property object.
565 */
566 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
567 (err = zap_cursor_retrieve(&zc, za)) == 0;
568 zap_cursor_advance(&zc)) {
569 uint64_t intval = 0;
570 char *strval = NULL;
571 zprop_source_t src = ZPROP_SRC_DEFAULT;
572 zpool_prop_t prop;
573
574 if ((prop = zpool_name_to_prop(za->za_name)) ==
575 ZPOOL_PROP_INVAL && !zfs_prop_user(za->za_name))
576 continue;
577
578 switch (za->za_integer_length) {
579 case 8:
580 /* integer property */
581 if (za->za_first_integer !=
582 zpool_prop_default_numeric(prop))
583 src = ZPROP_SRC_LOCAL;
584
585 if (prop == ZPOOL_PROP_BOOTFS) {
586 dsl_dataset_t *ds = NULL;
587
588 err = dsl_dataset_hold_obj(dp,
589 za->za_first_integer, FTAG, &ds);
590 if (err != 0)
591 break;
592
593 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
594 KM_SLEEP);
595 dsl_dataset_name(ds, strval);
596 dsl_dataset_rele(ds, FTAG);
597 } else {
598 strval = NULL;
599 intval = za->za_first_integer;
600 }
601
602 spa_prop_add_list(nv, prop, strval, intval, src);
603
604 if (strval != NULL)
605 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
606
607 break;
608
609 case 1:
610 /* string property */
611 strval = kmem_alloc(za->za_num_integers, KM_SLEEP);
612 err = zap_lookup(mos, spa->spa_pool_props_object,
613 za->za_name, 1, za->za_num_integers, strval);
614 if (err) {
615 kmem_free(strval, za->za_num_integers);
616 break;
617 }
618 if (prop != ZPOOL_PROP_INVAL) {
619 spa_prop_add_list(nv, prop, strval, 0, src);
620 } else {
621 src = ZPROP_SRC_LOCAL;
622 spa_prop_add_user(nv, za->za_name, strval,
623 src);
624 }
625 kmem_free(strval, za->za_num_integers);
626 break;
627
628 default:
629 break;
630 }
631 }
632 zap_cursor_fini(&zc);
633 out:
634 mutex_exit(&spa->spa_props_lock);
635 dsl_pool_config_exit(dp, FTAG);
636 zap_attribute_free(za);
637
638 if (err && err != ENOENT)
639 return (err);
640
641 return (0);
642 }
643
644 /*
645 * Validate the given pool properties nvlist and modify the list
646 * for the property values to be set.
647 */
648 static int
spa_prop_validate(spa_t * spa,nvlist_t * props)649 spa_prop_validate(spa_t *spa, nvlist_t *props)
650 {
651 nvpair_t *elem;
652 int error = 0, reset_bootfs = 0;
653 uint64_t objnum = 0;
654 boolean_t has_feature = B_FALSE;
655
656 elem = NULL;
657 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
658 uint64_t intval;
659 const char *strval, *slash, *check, *fname;
660 const char *propname = nvpair_name(elem);
661 zpool_prop_t prop = zpool_name_to_prop(propname);
662
663 switch (prop) {
664 case ZPOOL_PROP_INVAL:
665 /*
666 * Sanitize the input.
667 */
668 if (zfs_prop_user(propname)) {
669 if (strlen(propname) >= ZAP_MAXNAMELEN) {
670 error = SET_ERROR(ENAMETOOLONG);
671 break;
672 }
673
674 if (strlen(fnvpair_value_string(elem)) >=
675 ZAP_MAXVALUELEN) {
676 error = SET_ERROR(E2BIG);
677 break;
678 }
679 } else if (zpool_prop_feature(propname)) {
680 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
681 error = SET_ERROR(EINVAL);
682 break;
683 }
684
685 if (nvpair_value_uint64(elem, &intval) != 0) {
686 error = SET_ERROR(EINVAL);
687 break;
688 }
689
690 if (intval != 0) {
691 error = SET_ERROR(EINVAL);
692 break;
693 }
694
695 fname = strchr(propname, '@') + 1;
696 if (zfeature_lookup_name(fname, NULL) != 0) {
697 error = SET_ERROR(EINVAL);
698 break;
699 }
700
701 has_feature = B_TRUE;
702 } else {
703 error = SET_ERROR(EINVAL);
704 break;
705 }
706 break;
707
708 case ZPOOL_PROP_VERSION:
709 error = nvpair_value_uint64(elem, &intval);
710 if (!error &&
711 (intval < spa_version(spa) ||
712 intval > SPA_VERSION_BEFORE_FEATURES ||
713 has_feature))
714 error = SET_ERROR(EINVAL);
715 break;
716
717 case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
718 error = nvpair_value_uint64(elem, &intval);
719 break;
720
721 case ZPOOL_PROP_DELEGATION:
722 case ZPOOL_PROP_AUTOREPLACE:
723 case ZPOOL_PROP_LISTSNAPS:
724 case ZPOOL_PROP_AUTOEXPAND:
725 case ZPOOL_PROP_AUTOTRIM:
726 error = nvpair_value_uint64(elem, &intval);
727 if (!error && intval > 1)
728 error = SET_ERROR(EINVAL);
729 break;
730
731 case ZPOOL_PROP_MULTIHOST:
732 error = nvpair_value_uint64(elem, &intval);
733 if (!error && intval > 1)
734 error = SET_ERROR(EINVAL);
735
736 if (!error) {
737 uint32_t hostid = zone_get_hostid(NULL);
738 if (hostid)
739 spa->spa_hostid = hostid;
740 else
741 error = SET_ERROR(ENOTSUP);
742 }
743
744 break;
745
746 case ZPOOL_PROP_BOOTFS:
747 /*
748 * If the pool version is less than SPA_VERSION_BOOTFS,
749 * or the pool is still being created (version == 0),
750 * the bootfs property cannot be set.
751 */
752 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
753 error = SET_ERROR(ENOTSUP);
754 break;
755 }
756
757 /*
758 * Make sure the vdev config is bootable
759 */
760 if (!vdev_is_bootable(spa->spa_root_vdev)) {
761 error = SET_ERROR(ENOTSUP);
762 break;
763 }
764
765 reset_bootfs = 1;
766
767 error = nvpair_value_string(elem, &strval);
768
769 if (!error) {
770 objset_t *os;
771
772 if (strval == NULL || strval[0] == '\0') {
773 objnum = zpool_prop_default_numeric(
774 ZPOOL_PROP_BOOTFS);
775 break;
776 }
777
778 error = dmu_objset_hold(strval, FTAG, &os);
779 if (error != 0)
780 break;
781
782 /* Must be ZPL. */
783 if (dmu_objset_type(os) != DMU_OST_ZFS) {
784 error = SET_ERROR(ENOTSUP);
785 } else {
786 objnum = dmu_objset_id(os);
787 }
788 dmu_objset_rele(os, FTAG);
789 }
790 break;
791
792 case ZPOOL_PROP_FAILUREMODE:
793 error = nvpair_value_uint64(elem, &intval);
794 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
795 error = SET_ERROR(EINVAL);
796
797 /*
798 * This is a special case which only occurs when
799 * the pool has completely failed. This allows
800 * the user to change the in-core failmode property
801 * without syncing it out to disk (I/Os might
802 * currently be blocked). We do this by returning
803 * EIO to the caller (spa_prop_set) to trick it
804 * into thinking we encountered a property validation
805 * error.
806 */
807 if (!error && spa_suspended(spa)) {
808 spa->spa_failmode = intval;
809 error = SET_ERROR(EIO);
810 }
811 break;
812
813 case ZPOOL_PROP_CACHEFILE:
814 if ((error = nvpair_value_string(elem, &strval)) != 0)
815 break;
816
817 if (strval[0] == '\0')
818 break;
819
820 if (strcmp(strval, "none") == 0)
821 break;
822
823 if (strval[0] != '/') {
824 error = SET_ERROR(EINVAL);
825 break;
826 }
827
828 slash = strrchr(strval, '/');
829 ASSERT(slash != NULL);
830
831 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
832 strcmp(slash, "/..") == 0)
833 error = SET_ERROR(EINVAL);
834 break;
835
836 case ZPOOL_PROP_COMMENT:
837 if ((error = nvpair_value_string(elem, &strval)) != 0)
838 break;
839 for (check = strval; *check != '\0'; check++) {
840 if (!isprint(*check)) {
841 error = SET_ERROR(EINVAL);
842 break;
843 }
844 }
845 if (strlen(strval) > ZPROP_MAX_COMMENT)
846 error = SET_ERROR(E2BIG);
847 break;
848
849 default:
850 break;
851 }
852
853 if (error)
854 break;
855 }
856
857 (void) nvlist_remove_all(props,
858 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
859
860 if (!error && reset_bootfs) {
861 error = nvlist_remove(props,
862 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
863
864 if (!error) {
865 error = nvlist_add_uint64(props,
866 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
867 }
868 }
869
870 return (error);
871 }
872
873 void
spa_configfile_set(spa_t * spa,nvlist_t * nvp,boolean_t need_sync)874 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
875 {
876 const char *cachefile;
877 spa_config_dirent_t *dp;
878
879 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
880 &cachefile) != 0)
881 return;
882
883 dp = kmem_alloc(sizeof (spa_config_dirent_t),
884 KM_SLEEP);
885
886 if (cachefile[0] == '\0')
887 dp->scd_path = spa_strdup(spa_config_path);
888 else if (strcmp(cachefile, "none") == 0)
889 dp->scd_path = NULL;
890 else
891 dp->scd_path = spa_strdup(cachefile);
892
893 list_insert_head(&spa->spa_config_list, dp);
894 if (need_sync)
895 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
896 }
897
898 int
spa_prop_set(spa_t * spa,nvlist_t * nvp)899 spa_prop_set(spa_t *spa, nvlist_t *nvp)
900 {
901 int error;
902 nvpair_t *elem = NULL;
903 boolean_t need_sync = B_FALSE;
904
905 if ((error = spa_prop_validate(spa, nvp)) != 0)
906 return (error);
907
908 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
909 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
910
911 if (prop == ZPOOL_PROP_CACHEFILE ||
912 prop == ZPOOL_PROP_ALTROOT ||
913 prop == ZPOOL_PROP_READONLY)
914 continue;
915
916 if (prop == ZPOOL_PROP_INVAL &&
917 zfs_prop_user(nvpair_name(elem))) {
918 need_sync = B_TRUE;
919 break;
920 }
921
922 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
923 uint64_t ver = 0;
924
925 if (prop == ZPOOL_PROP_VERSION) {
926 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
927 } else {
928 ASSERT(zpool_prop_feature(nvpair_name(elem)));
929 ver = SPA_VERSION_FEATURES;
930 need_sync = B_TRUE;
931 }
932
933 /* Save time if the version is already set. */
934 if (ver == spa_version(spa))
935 continue;
936
937 /*
938 * In addition to the pool directory object, we might
939 * create the pool properties object, the features for
940 * read object, the features for write object, or the
941 * feature descriptions object.
942 */
943 error = dsl_sync_task(spa->spa_name, NULL,
944 spa_sync_version, &ver,
945 6, ZFS_SPACE_CHECK_RESERVED);
946 if (error)
947 return (error);
948 continue;
949 }
950
951 need_sync = B_TRUE;
952 break;
953 }
954
955 if (need_sync) {
956 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
957 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
958 }
959
960 return (0);
961 }
962
963 /*
964 * If the bootfs property value is dsobj, clear it.
965 */
966 void
spa_prop_clear_bootfs(spa_t * spa,uint64_t dsobj,dmu_tx_t * tx)967 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
968 {
969 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
970 VERIFY(zap_remove(spa->spa_meta_objset,
971 spa->spa_pool_props_object,
972 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
973 spa->spa_bootfs = 0;
974 }
975 }
976
977 static int
spa_change_guid_check(void * arg,dmu_tx_t * tx)978 spa_change_guid_check(void *arg, dmu_tx_t *tx)
979 {
980 uint64_t *newguid __maybe_unused = arg;
981 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
982 vdev_t *rvd = spa->spa_root_vdev;
983 uint64_t vdev_state;
984
985 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
986 int error = (spa_has_checkpoint(spa)) ?
987 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
988 return (SET_ERROR(error));
989 }
990
991 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
992 vdev_state = rvd->vdev_state;
993 spa_config_exit(spa, SCL_STATE, FTAG);
994
995 if (vdev_state != VDEV_STATE_HEALTHY)
996 return (SET_ERROR(ENXIO));
997
998 ASSERT3U(spa_guid(spa), !=, *newguid);
999
1000 return (0);
1001 }
1002
1003 static void
spa_change_guid_sync(void * arg,dmu_tx_t * tx)1004 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
1005 {
1006 uint64_t *newguid = arg;
1007 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1008 uint64_t oldguid;
1009 vdev_t *rvd = spa->spa_root_vdev;
1010
1011 oldguid = spa_guid(spa);
1012
1013 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1014 rvd->vdev_guid = *newguid;
1015 rvd->vdev_guid_sum += (*newguid - oldguid);
1016 vdev_config_dirty(rvd);
1017 spa_config_exit(spa, SCL_STATE, FTAG);
1018
1019 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
1020 (u_longlong_t)oldguid, (u_longlong_t)*newguid);
1021 }
1022
1023 /*
1024 * Change the GUID for the pool. This is done so that we can later
1025 * re-import a pool built from a clone of our own vdevs. We will modify
1026 * the root vdev's guid, our own pool guid, and then mark all of our
1027 * vdevs dirty. Note that we must make sure that all our vdevs are
1028 * online when we do this, or else any vdevs that weren't present
1029 * would be orphaned from our pool. We are also going to issue a
1030 * sysevent to update any watchers.
1031 *
1032 * The GUID of the pool will be changed to the value pointed to by guidp.
1033 * The GUID may not be set to the reserverd value of 0.
1034 * The new GUID will be generated if guidp is NULL.
1035 */
1036 int
spa_change_guid(spa_t * spa,const uint64_t * guidp)1037 spa_change_guid(spa_t *spa, const uint64_t *guidp)
1038 {
1039 uint64_t guid;
1040 int error;
1041
1042 mutex_enter(&spa->spa_vdev_top_lock);
1043 mutex_enter(&spa_namespace_lock);
1044
1045 if (guidp != NULL) {
1046 guid = *guidp;
1047 if (guid == 0) {
1048 error = SET_ERROR(EINVAL);
1049 goto out;
1050 }
1051
1052 if (spa_guid_exists(guid, 0)) {
1053 error = SET_ERROR(EEXIST);
1054 goto out;
1055 }
1056 } else {
1057 guid = spa_generate_guid(NULL);
1058 }
1059
1060 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
1061 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
1062
1063 if (error == 0) {
1064 /*
1065 * Clear the kobj flag from all the vdevs to allow
1066 * vdev_cache_process_kobj_evt() to post events to all the
1067 * vdevs since GUID is updated.
1068 */
1069 vdev_clear_kobj_evt(spa->spa_root_vdev);
1070 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
1071 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
1072
1073 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1074 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
1075 }
1076
1077 out:
1078 mutex_exit(&spa_namespace_lock);
1079 mutex_exit(&spa->spa_vdev_top_lock);
1080
1081 return (error);
1082 }
1083
1084 /*
1085 * ==========================================================================
1086 * SPA state manipulation (open/create/destroy/import/export)
1087 * ==========================================================================
1088 */
1089
1090 static int
spa_error_entry_compare(const void * a,const void * b)1091 spa_error_entry_compare(const void *a, const void *b)
1092 {
1093 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
1094 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
1095 int ret;
1096
1097 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
1098 sizeof (zbookmark_phys_t));
1099
1100 return (TREE_ISIGN(ret));
1101 }
1102
1103 /*
1104 * Utility function which retrieves copies of the current logs and
1105 * re-initializes them in the process.
1106 */
1107 void
spa_get_errlists(spa_t * spa,avl_tree_t * last,avl_tree_t * scrub)1108 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1109 {
1110 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1111
1112 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1113 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1114
1115 avl_create(&spa->spa_errlist_scrub,
1116 spa_error_entry_compare, sizeof (spa_error_entry_t),
1117 offsetof(spa_error_entry_t, se_avl));
1118 avl_create(&spa->spa_errlist_last,
1119 spa_error_entry_compare, sizeof (spa_error_entry_t),
1120 offsetof(spa_error_entry_t, se_avl));
1121 }
1122
1123 static void
spa_taskqs_init(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1124 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1125 {
1126 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1127 enum zti_modes mode = ztip->zti_mode;
1128 uint_t value = ztip->zti_value;
1129 uint_t count = ztip->zti_count;
1130 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1131 uint_t cpus, flags = TASKQ_DYNAMIC;
1132
1133 switch (mode) {
1134 case ZTI_MODE_FIXED:
1135 ASSERT3U(value, >, 0);
1136 break;
1137
1138 case ZTI_MODE_SYNC:
1139
1140 /*
1141 * Create one wr_iss taskq for every 'zio_taskq_write_tpq' CPUs,
1142 * not to exceed the number of spa allocators, and align to it.
1143 */
1144 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1145 count = MAX(1, cpus / MAX(1, zio_taskq_write_tpq));
1146 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1147 count = MIN(count, spa->spa_alloc_count);
1148 while (spa->spa_alloc_count % count != 0 &&
1149 spa->spa_alloc_count < count * 2)
1150 count--;
1151
1152 /*
1153 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no
1154 * single taskq may have more threads than 100% of online cpus.
1155 */
1156 value = (zio_taskq_batch_pct + count / 2) / count;
1157 value = MIN(value, 100);
1158 flags |= TASKQ_THREADS_CPU_PCT;
1159 break;
1160
1161 case ZTI_MODE_SCALE:
1162 flags |= TASKQ_THREADS_CPU_PCT;
1163 /*
1164 * We want more taskqs to reduce lock contention, but we want
1165 * less for better request ordering and CPU utilization.
1166 */
1167 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1168 if (zio_taskq_batch_tpq > 0) {
1169 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1170 zio_taskq_batch_tpq);
1171 } else {
1172 /*
1173 * Prefer 6 threads per taskq, but no more taskqs
1174 * than threads in them on large systems. For 80%:
1175 *
1176 * taskq taskq total
1177 * cpus taskqs percent threads threads
1178 * ------- ------- ------- ------- -------
1179 * 1 1 80% 1 1
1180 * 2 1 80% 1 1
1181 * 4 1 80% 3 3
1182 * 8 2 40% 3 6
1183 * 16 3 27% 4 12
1184 * 32 5 16% 5 25
1185 * 64 7 11% 7 49
1186 * 128 10 8% 10 100
1187 * 256 14 6% 15 210
1188 */
1189 count = 1 + cpus / 6;
1190 while (count * count > cpus)
1191 count--;
1192 }
1193 /* Limit each taskq within 100% to not trigger assertion. */
1194 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1195 value = (zio_taskq_batch_pct + count / 2) / count;
1196 break;
1197
1198 case ZTI_MODE_NULL:
1199 tqs->stqs_count = 0;
1200 tqs->stqs_taskq = NULL;
1201 return;
1202
1203 default:
1204 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1205 "spa_taskqs_init()",
1206 zio_type_name[t], zio_taskq_types[q], mode, value);
1207 break;
1208 }
1209
1210 ASSERT3U(count, >, 0);
1211 tqs->stqs_count = count;
1212 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1213
1214 for (uint_t i = 0; i < count; i++) {
1215 taskq_t *tq;
1216 char name[32];
1217
1218 if (count > 1)
1219 (void) snprintf(name, sizeof (name), "%s_%s_%u",
1220 zio_type_name[t], zio_taskq_types[q], i);
1221 else
1222 (void) snprintf(name, sizeof (name), "%s_%s",
1223 zio_type_name[t], zio_taskq_types[q]);
1224
1225 #ifdef HAVE_SYSDC
1226 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1227 (void) zio_taskq_basedc;
1228 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1229 spa->spa_proc, zio_taskq_basedc, flags);
1230 } else {
1231 #endif
1232 pri_t pri = maxclsyspri;
1233 /*
1234 * The write issue taskq can be extremely CPU
1235 * intensive. Run it at slightly less important
1236 * priority than the other taskqs.
1237 *
1238 * Under Linux and FreeBSD this means incrementing
1239 * the priority value as opposed to platforms like
1240 * illumos where it should be decremented.
1241 *
1242 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1243 * are equal then a difference between them is
1244 * insignificant.
1245 */
1246 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1247 #if defined(__linux__)
1248 pri++;
1249 #elif defined(__FreeBSD__)
1250 pri += 4;
1251 #else
1252 #error "unknown OS"
1253 #endif
1254 }
1255 tq = taskq_create_proc(name, value, pri, 50,
1256 INT_MAX, spa->spa_proc, flags);
1257 #ifdef HAVE_SYSDC
1258 }
1259 #endif
1260
1261 tqs->stqs_taskq[i] = tq;
1262 }
1263 }
1264
1265 static void
spa_taskqs_fini(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1266 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1267 {
1268 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1269
1270 if (tqs->stqs_taskq == NULL) {
1271 ASSERT3U(tqs->stqs_count, ==, 0);
1272 return;
1273 }
1274
1275 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1276 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1277 taskq_destroy(tqs->stqs_taskq[i]);
1278 }
1279
1280 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1281 tqs->stqs_taskq = NULL;
1282 }
1283
1284 #ifdef _KERNEL
1285 /*
1286 * The READ and WRITE rows of zio_taskqs are configurable at module load time
1287 * by setting zio_taskq_read or zio_taskq_write.
1288 *
1289 * Example (the defaults for READ and WRITE)
1290 * zio_taskq_read='fixed,1,8 null scale null'
1291 * zio_taskq_write='sync null scale null'
1292 *
1293 * Each sets the entire row at a time.
1294 *
1295 * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number
1296 * of threads per taskq.
1297 *
1298 * 'null' can only be set on the high-priority queues (queue selection for
1299 * high-priority queues will fall back to the regular queue if the high-pri
1300 * is NULL.
1301 */
1302 static const char *const modes[ZTI_NMODES] = {
1303 "fixed", "scale", "sync", "null"
1304 };
1305
1306 /* Parse the incoming config string. Modifies cfg */
1307 static int
spa_taskq_param_set(zio_type_t t,char * cfg)1308 spa_taskq_param_set(zio_type_t t, char *cfg)
1309 {
1310 int err = 0;
1311
1312 zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}};
1313
1314 char *next = cfg, *tok, *c;
1315
1316 /*
1317 * Parse out each element from the string and fill `row`. The entire
1318 * row has to be set at once, so any errors are flagged by just
1319 * breaking out of this loop early.
1320 */
1321 uint_t q;
1322 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1323 /* `next` is the start of the config */
1324 if (next == NULL)
1325 break;
1326
1327 /* Eat up leading space */
1328 while (isspace(*next))
1329 next++;
1330 if (*next == '\0')
1331 break;
1332
1333 /* Mode ends at space or end of string */
1334 tok = next;
1335 next = strchr(tok, ' ');
1336 if (next != NULL) *next++ = '\0';
1337
1338 /* Parameters start after a comma */
1339 c = strchr(tok, ',');
1340 if (c != NULL) *c++ = '\0';
1341
1342 /* Match mode string */
1343 uint_t mode;
1344 for (mode = 0; mode < ZTI_NMODES; mode++)
1345 if (strcmp(tok, modes[mode]) == 0)
1346 break;
1347 if (mode == ZTI_NMODES)
1348 break;
1349
1350 /* Invalid canary */
1351 row[q].zti_mode = ZTI_NMODES;
1352
1353 /* Per-mode setup */
1354 switch (mode) {
1355
1356 /*
1357 * FIXED is parameterised: number of queues, and number of
1358 * threads per queue.
1359 */
1360 case ZTI_MODE_FIXED: {
1361 /* No parameters? */
1362 if (c == NULL || *c == '\0')
1363 break;
1364
1365 /* Find next parameter */
1366 tok = c;
1367 c = strchr(tok, ',');
1368 if (c == NULL)
1369 break;
1370
1371 /* Take digits and convert */
1372 unsigned long long nq;
1373 if (!(isdigit(*tok)))
1374 break;
1375 err = ddi_strtoull(tok, &tok, 10, &nq);
1376 /* Must succeed and also end at the next param sep */
1377 if (err != 0 || tok != c)
1378 break;
1379
1380 /* Move past the comma */
1381 tok++;
1382 /* Need another number */
1383 if (!(isdigit(*tok)))
1384 break;
1385 /* Remember start to make sure we moved */
1386 c = tok;
1387
1388 /* Take digits */
1389 unsigned long long ntpq;
1390 err = ddi_strtoull(tok, &tok, 10, &ntpq);
1391 /* Must succeed, and moved forward */
1392 if (err != 0 || tok == c || *tok != '\0')
1393 break;
1394
1395 /*
1396 * sanity; zero queues/threads make no sense, and
1397 * 16K is almost certainly more than anyone will ever
1398 * need and avoids silly numbers like UINT32_MAX
1399 */
1400 if (nq == 0 || nq >= 16384 ||
1401 ntpq == 0 || ntpq >= 16384)
1402 break;
1403
1404 const zio_taskq_info_t zti = ZTI_P(ntpq, nq);
1405 row[q] = zti;
1406 break;
1407 }
1408
1409 case ZTI_MODE_SCALE: {
1410 const zio_taskq_info_t zti = ZTI_SCALE;
1411 row[q] = zti;
1412 break;
1413 }
1414
1415 case ZTI_MODE_SYNC: {
1416 const zio_taskq_info_t zti = ZTI_SYNC;
1417 row[q] = zti;
1418 break;
1419 }
1420
1421 case ZTI_MODE_NULL: {
1422 /*
1423 * Can only null the high-priority queues; the general-
1424 * purpose ones have to exist.
1425 */
1426 if (q != ZIO_TASKQ_ISSUE_HIGH &&
1427 q != ZIO_TASKQ_INTERRUPT_HIGH)
1428 break;
1429
1430 const zio_taskq_info_t zti = ZTI_NULL;
1431 row[q] = zti;
1432 break;
1433 }
1434
1435 default:
1436 break;
1437 }
1438
1439 /* Ensure we set a mode */
1440 if (row[q].zti_mode == ZTI_NMODES)
1441 break;
1442 }
1443
1444 /* Didn't get a full row, fail */
1445 if (q < ZIO_TASKQ_TYPES)
1446 return (SET_ERROR(EINVAL));
1447
1448 /* Eat trailing space */
1449 if (next != NULL)
1450 while (isspace(*next))
1451 next++;
1452
1453 /* If there's anything left over then fail */
1454 if (next != NULL && *next != '\0')
1455 return (SET_ERROR(EINVAL));
1456
1457 /* Success! Copy it into the real config */
1458 for (q = 0; q < ZIO_TASKQ_TYPES; q++)
1459 zio_taskqs[t][q] = row[q];
1460
1461 return (0);
1462 }
1463
1464 static int
spa_taskq_param_get(zio_type_t t,char * buf,boolean_t add_newline)1465 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline)
1466 {
1467 int pos = 0;
1468
1469 /* Build paramater string from live config */
1470 const char *sep = "";
1471 for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) {
1472 const zio_taskq_info_t *zti = &zio_taskqs[t][q];
1473 if (zti->zti_mode == ZTI_MODE_FIXED)
1474 pos += sprintf(&buf[pos], "%s%s,%u,%u", sep,
1475 modes[zti->zti_mode], zti->zti_count,
1476 zti->zti_value);
1477 else
1478 pos += sprintf(&buf[pos], "%s%s", sep,
1479 modes[zti->zti_mode]);
1480 sep = " ";
1481 }
1482
1483 if (add_newline)
1484 buf[pos++] = '\n';
1485 buf[pos] = '\0';
1486
1487 return (pos);
1488 }
1489
1490 #ifdef __linux__
1491 static int
spa_taskq_read_param_set(const char * val,zfs_kernel_param_t * kp)1492 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp)
1493 {
1494 char *cfg = kmem_strdup(val);
1495 int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg);
1496 kmem_free(cfg, strlen(val)+1);
1497 return (-err);
1498 }
1499 static int
spa_taskq_read_param_get(char * buf,zfs_kernel_param_t * kp)1500 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp)
1501 {
1502 return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE));
1503 }
1504
1505 static int
spa_taskq_write_param_set(const char * val,zfs_kernel_param_t * kp)1506 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp)
1507 {
1508 char *cfg = kmem_strdup(val);
1509 int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg);
1510 kmem_free(cfg, strlen(val)+1);
1511 return (-err);
1512 }
1513 static int
spa_taskq_write_param_get(char * buf,zfs_kernel_param_t * kp)1514 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp)
1515 {
1516 return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE));
1517 }
1518 #else
1519 /*
1520 * On FreeBSD load-time parameters can be set up before malloc() is available,
1521 * so we have to do all the parsing work on the stack.
1522 */
1523 #define SPA_TASKQ_PARAM_MAX (128)
1524
1525 static int
spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)1526 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)
1527 {
1528 char buf[SPA_TASKQ_PARAM_MAX];
1529 int err;
1530
1531 (void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE);
1532 err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1533 if (err || req->newptr == NULL)
1534 return (err);
1535 return (spa_taskq_param_set(ZIO_TYPE_READ, buf));
1536 }
1537
1538 static int
spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)1539 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)
1540 {
1541 char buf[SPA_TASKQ_PARAM_MAX];
1542 int err;
1543
1544 (void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE);
1545 err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1546 if (err || req->newptr == NULL)
1547 return (err);
1548 return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf));
1549 }
1550 #endif
1551 #endif /* _KERNEL */
1552
1553 /*
1554 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1555 * Note that a type may have multiple discrete taskqs to avoid lock contention
1556 * on the taskq itself.
1557 */
1558 void
spa_taskq_dispatch(spa_t * spa,zio_type_t t,zio_taskq_type_t q,task_func_t * func,zio_t * zio,boolean_t cutinline)1559 spa_taskq_dispatch(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1560 task_func_t *func, zio_t *zio, boolean_t cutinline)
1561 {
1562 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1563 taskq_t *tq;
1564
1565 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1566 ASSERT3U(tqs->stqs_count, !=, 0);
1567
1568 /*
1569 * NB: We are assuming that the zio can only be dispatched
1570 * to a single taskq at a time. It would be a grievous error
1571 * to dispatch the zio to another taskq at the same time.
1572 */
1573 ASSERT(zio);
1574 ASSERT(taskq_empty_ent(&zio->io_tqent));
1575
1576 if (tqs->stqs_count == 1) {
1577 tq = tqs->stqs_taskq[0];
1578 } else if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) &&
1579 ZIO_HAS_ALLOCATOR(zio)) {
1580 tq = tqs->stqs_taskq[zio->io_allocator % tqs->stqs_count];
1581 } else {
1582 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1583 }
1584
1585 taskq_dispatch_ent(tq, func, zio, cutinline ? TQ_FRONT : 0,
1586 &zio->io_tqent);
1587 }
1588
1589 static void
spa_create_zio_taskqs(spa_t * spa)1590 spa_create_zio_taskqs(spa_t *spa)
1591 {
1592 for (int t = 0; t < ZIO_TYPES; t++) {
1593 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1594 spa_taskqs_init(spa, t, q);
1595 }
1596 }
1597 }
1598
1599 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1600 static void
spa_thread(void * arg)1601 spa_thread(void *arg)
1602 {
1603 psetid_t zio_taskq_psrset_bind = PS_NONE;
1604 callb_cpr_t cprinfo;
1605
1606 spa_t *spa = arg;
1607 user_t *pu = PTOU(curproc);
1608
1609 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1610 spa->spa_name);
1611
1612 ASSERT(curproc != &p0);
1613 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1614 "zpool-%s", spa->spa_name);
1615 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1616
1617 /* bind this thread to the requested psrset */
1618 if (zio_taskq_psrset_bind != PS_NONE) {
1619 pool_lock();
1620 mutex_enter(&cpu_lock);
1621 mutex_enter(&pidlock);
1622 mutex_enter(&curproc->p_lock);
1623
1624 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1625 0, NULL, NULL) == 0) {
1626 curthread->t_bind_pset = zio_taskq_psrset_bind;
1627 } else {
1628 cmn_err(CE_WARN,
1629 "Couldn't bind process for zfs pool \"%s\" to "
1630 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1631 }
1632
1633 mutex_exit(&curproc->p_lock);
1634 mutex_exit(&pidlock);
1635 mutex_exit(&cpu_lock);
1636 pool_unlock();
1637 }
1638
1639 #ifdef HAVE_SYSDC
1640 if (zio_taskq_sysdc) {
1641 sysdc_thread_enter(curthread, 100, 0);
1642 }
1643 #endif
1644
1645 spa->spa_proc = curproc;
1646 spa->spa_did = curthread->t_did;
1647
1648 spa_create_zio_taskqs(spa);
1649
1650 mutex_enter(&spa->spa_proc_lock);
1651 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1652
1653 spa->spa_proc_state = SPA_PROC_ACTIVE;
1654 cv_broadcast(&spa->spa_proc_cv);
1655
1656 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1657 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1658 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1659 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1660
1661 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1662 spa->spa_proc_state = SPA_PROC_GONE;
1663 spa->spa_proc = &p0;
1664 cv_broadcast(&spa->spa_proc_cv);
1665 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1666
1667 mutex_enter(&curproc->p_lock);
1668 lwp_exit();
1669 }
1670 #endif
1671
1672 extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1673
1674 /*
1675 * Activate an uninitialized pool.
1676 */
1677 static void
spa_activate(spa_t * spa,spa_mode_t mode)1678 spa_activate(spa_t *spa, spa_mode_t mode)
1679 {
1680 metaslab_ops_t *msp = metaslab_allocator(spa);
1681 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1682
1683 spa->spa_state = POOL_STATE_ACTIVE;
1684 spa->spa_mode = mode;
1685 spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1686
1687 spa->spa_normal_class = metaslab_class_create(spa, msp);
1688 spa->spa_log_class = metaslab_class_create(spa, msp);
1689 spa->spa_embedded_log_class = metaslab_class_create(spa, msp);
1690 spa->spa_special_class = metaslab_class_create(spa, msp);
1691 spa->spa_dedup_class = metaslab_class_create(spa, msp);
1692
1693 /* Try to create a covering process */
1694 mutex_enter(&spa->spa_proc_lock);
1695 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1696 ASSERT(spa->spa_proc == &p0);
1697 spa->spa_did = 0;
1698
1699 #ifdef HAVE_SPA_THREAD
1700 /* Only create a process if we're going to be around a while. */
1701 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1702 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1703 NULL, 0) == 0) {
1704 spa->spa_proc_state = SPA_PROC_CREATED;
1705 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1706 cv_wait(&spa->spa_proc_cv,
1707 &spa->spa_proc_lock);
1708 }
1709 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1710 ASSERT(spa->spa_proc != &p0);
1711 ASSERT(spa->spa_did != 0);
1712 } else {
1713 #ifdef _KERNEL
1714 cmn_err(CE_WARN,
1715 "Couldn't create process for zfs pool \"%s\"\n",
1716 spa->spa_name);
1717 #endif
1718 }
1719 }
1720 #endif /* HAVE_SPA_THREAD */
1721 mutex_exit(&spa->spa_proc_lock);
1722
1723 /* If we didn't create a process, we need to create our taskqs. */
1724 if (spa->spa_proc == &p0) {
1725 spa_create_zio_taskqs(spa);
1726 }
1727
1728 for (size_t i = 0; i < TXG_SIZE; i++) {
1729 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1730 ZIO_FLAG_CANFAIL);
1731 }
1732
1733 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1734 offsetof(vdev_t, vdev_config_dirty_node));
1735 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1736 offsetof(objset_t, os_evicting_node));
1737 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1738 offsetof(vdev_t, vdev_state_dirty_node));
1739
1740 txg_list_create(&spa->spa_vdev_txg_list, spa,
1741 offsetof(struct vdev, vdev_txg_node));
1742
1743 avl_create(&spa->spa_errlist_scrub,
1744 spa_error_entry_compare, sizeof (spa_error_entry_t),
1745 offsetof(spa_error_entry_t, se_avl));
1746 avl_create(&spa->spa_errlist_last,
1747 spa_error_entry_compare, sizeof (spa_error_entry_t),
1748 offsetof(spa_error_entry_t, se_avl));
1749 avl_create(&spa->spa_errlist_healed,
1750 spa_error_entry_compare, sizeof (spa_error_entry_t),
1751 offsetof(spa_error_entry_t, se_avl));
1752
1753 spa_activate_os(spa);
1754
1755 spa_keystore_init(&spa->spa_keystore);
1756
1757 /*
1758 * This taskq is used to perform zvol-minor-related tasks
1759 * asynchronously. This has several advantages, including easy
1760 * resolution of various deadlocks.
1761 *
1762 * The taskq must be single threaded to ensure tasks are always
1763 * processed in the order in which they were dispatched.
1764 *
1765 * A taskq per pool allows one to keep the pools independent.
1766 * This way if one pool is suspended, it will not impact another.
1767 *
1768 * The preferred location to dispatch a zvol minor task is a sync
1769 * task. In this context, there is easy access to the spa_t and minimal
1770 * error handling is required because the sync task must succeed.
1771 */
1772 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1773 1, INT_MAX, 0);
1774
1775 /*
1776 * The taskq to preload metaslabs.
1777 */
1778 spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1779 metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1780 TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1781
1782 /*
1783 * Taskq dedicated to prefetcher threads: this is used to prevent the
1784 * pool traverse code from monopolizing the global (and limited)
1785 * system_taskq by inappropriately scheduling long running tasks on it.
1786 */
1787 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1788 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1789
1790 /*
1791 * The taskq to upgrade datasets in this pool. Currently used by
1792 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1793 */
1794 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1795 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1796 }
1797
1798 /*
1799 * Opposite of spa_activate().
1800 */
1801 static void
spa_deactivate(spa_t * spa)1802 spa_deactivate(spa_t *spa)
1803 {
1804 ASSERT(spa->spa_sync_on == B_FALSE);
1805 ASSERT(spa->spa_dsl_pool == NULL);
1806 ASSERT(spa->spa_root_vdev == NULL);
1807 ASSERT(spa->spa_async_zio_root == NULL);
1808 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1809
1810 spa_evicting_os_wait(spa);
1811
1812 if (spa->spa_zvol_taskq) {
1813 taskq_destroy(spa->spa_zvol_taskq);
1814 spa->spa_zvol_taskq = NULL;
1815 }
1816
1817 if (spa->spa_metaslab_taskq) {
1818 taskq_destroy(spa->spa_metaslab_taskq);
1819 spa->spa_metaslab_taskq = NULL;
1820 }
1821
1822 if (spa->spa_prefetch_taskq) {
1823 taskq_destroy(spa->spa_prefetch_taskq);
1824 spa->spa_prefetch_taskq = NULL;
1825 }
1826
1827 if (spa->spa_upgrade_taskq) {
1828 taskq_destroy(spa->spa_upgrade_taskq);
1829 spa->spa_upgrade_taskq = NULL;
1830 }
1831
1832 txg_list_destroy(&spa->spa_vdev_txg_list);
1833
1834 list_destroy(&spa->spa_config_dirty_list);
1835 list_destroy(&spa->spa_evicting_os_list);
1836 list_destroy(&spa->spa_state_dirty_list);
1837
1838 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1839
1840 for (int t = 0; t < ZIO_TYPES; t++) {
1841 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1842 spa_taskqs_fini(spa, t, q);
1843 }
1844 }
1845
1846 for (size_t i = 0; i < TXG_SIZE; i++) {
1847 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1848 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1849 spa->spa_txg_zio[i] = NULL;
1850 }
1851
1852 metaslab_class_destroy(spa->spa_normal_class);
1853 spa->spa_normal_class = NULL;
1854
1855 metaslab_class_destroy(spa->spa_log_class);
1856 spa->spa_log_class = NULL;
1857
1858 metaslab_class_destroy(spa->spa_embedded_log_class);
1859 spa->spa_embedded_log_class = NULL;
1860
1861 metaslab_class_destroy(spa->spa_special_class);
1862 spa->spa_special_class = NULL;
1863
1864 metaslab_class_destroy(spa->spa_dedup_class);
1865 spa->spa_dedup_class = NULL;
1866
1867 /*
1868 * If this was part of an import or the open otherwise failed, we may
1869 * still have errors left in the queues. Empty them just in case.
1870 */
1871 spa_errlog_drain(spa);
1872 avl_destroy(&spa->spa_errlist_scrub);
1873 avl_destroy(&spa->spa_errlist_last);
1874 avl_destroy(&spa->spa_errlist_healed);
1875
1876 spa_keystore_fini(&spa->spa_keystore);
1877
1878 spa->spa_state = POOL_STATE_UNINITIALIZED;
1879
1880 mutex_enter(&spa->spa_proc_lock);
1881 if (spa->spa_proc_state != SPA_PROC_NONE) {
1882 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1883 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1884 cv_broadcast(&spa->spa_proc_cv);
1885 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1886 ASSERT(spa->spa_proc != &p0);
1887 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1888 }
1889 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1890 spa->spa_proc_state = SPA_PROC_NONE;
1891 }
1892 ASSERT(spa->spa_proc == &p0);
1893 mutex_exit(&spa->spa_proc_lock);
1894
1895 /*
1896 * We want to make sure spa_thread() has actually exited the ZFS
1897 * module, so that the module can't be unloaded out from underneath
1898 * it.
1899 */
1900 if (spa->spa_did != 0) {
1901 thread_join(spa->spa_did);
1902 spa->spa_did = 0;
1903 }
1904
1905 spa_deactivate_os(spa);
1906
1907 }
1908
1909 /*
1910 * Verify a pool configuration, and construct the vdev tree appropriately. This
1911 * will create all the necessary vdevs in the appropriate layout, with each vdev
1912 * in the CLOSED state. This will prep the pool before open/creation/import.
1913 * All vdev validation is done by the vdev_alloc() routine.
1914 */
1915 int
spa_config_parse(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int atype)1916 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1917 uint_t id, int atype)
1918 {
1919 nvlist_t **child;
1920 uint_t children;
1921 int error;
1922
1923 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1924 return (error);
1925
1926 if ((*vdp)->vdev_ops->vdev_op_leaf)
1927 return (0);
1928
1929 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1930 &child, &children);
1931
1932 if (error == ENOENT)
1933 return (0);
1934
1935 if (error) {
1936 vdev_free(*vdp);
1937 *vdp = NULL;
1938 return (SET_ERROR(EINVAL));
1939 }
1940
1941 for (int c = 0; c < children; c++) {
1942 vdev_t *vd;
1943 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1944 atype)) != 0) {
1945 vdev_free(*vdp);
1946 *vdp = NULL;
1947 return (error);
1948 }
1949 }
1950
1951 ASSERT(*vdp != NULL);
1952
1953 return (0);
1954 }
1955
1956 static boolean_t
spa_should_flush_logs_on_unload(spa_t * spa)1957 spa_should_flush_logs_on_unload(spa_t *spa)
1958 {
1959 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1960 return (B_FALSE);
1961
1962 if (!spa_writeable(spa))
1963 return (B_FALSE);
1964
1965 if (!spa->spa_sync_on)
1966 return (B_FALSE);
1967
1968 if (spa_state(spa) != POOL_STATE_EXPORTED)
1969 return (B_FALSE);
1970
1971 if (zfs_keep_log_spacemaps_at_export)
1972 return (B_FALSE);
1973
1974 return (B_TRUE);
1975 }
1976
1977 /*
1978 * Opens a transaction that will set the flag that will instruct
1979 * spa_sync to attempt to flush all the metaslabs for that txg.
1980 */
1981 static void
spa_unload_log_sm_flush_all(spa_t * spa)1982 spa_unload_log_sm_flush_all(spa_t *spa)
1983 {
1984 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1985 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1986
1987 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1988 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1989
1990 dmu_tx_commit(tx);
1991 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1992 }
1993
1994 static void
spa_unload_log_sm_metadata(spa_t * spa)1995 spa_unload_log_sm_metadata(spa_t *spa)
1996 {
1997 void *cookie = NULL;
1998 spa_log_sm_t *sls;
1999 log_summary_entry_t *e;
2000
2001 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
2002 &cookie)) != NULL) {
2003 VERIFY0(sls->sls_mscount);
2004 kmem_free(sls, sizeof (spa_log_sm_t));
2005 }
2006
2007 while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
2008 VERIFY0(e->lse_mscount);
2009 kmem_free(e, sizeof (log_summary_entry_t));
2010 }
2011
2012 spa->spa_unflushed_stats.sus_nblocks = 0;
2013 spa->spa_unflushed_stats.sus_memused = 0;
2014 spa->spa_unflushed_stats.sus_blocklimit = 0;
2015 }
2016
2017 static void
spa_destroy_aux_threads(spa_t * spa)2018 spa_destroy_aux_threads(spa_t *spa)
2019 {
2020 if (spa->spa_condense_zthr != NULL) {
2021 zthr_destroy(spa->spa_condense_zthr);
2022 spa->spa_condense_zthr = NULL;
2023 }
2024 if (spa->spa_checkpoint_discard_zthr != NULL) {
2025 zthr_destroy(spa->spa_checkpoint_discard_zthr);
2026 spa->spa_checkpoint_discard_zthr = NULL;
2027 }
2028 if (spa->spa_livelist_delete_zthr != NULL) {
2029 zthr_destroy(spa->spa_livelist_delete_zthr);
2030 spa->spa_livelist_delete_zthr = NULL;
2031 }
2032 if (spa->spa_livelist_condense_zthr != NULL) {
2033 zthr_destroy(spa->spa_livelist_condense_zthr);
2034 spa->spa_livelist_condense_zthr = NULL;
2035 }
2036 if (spa->spa_raidz_expand_zthr != NULL) {
2037 zthr_destroy(spa->spa_raidz_expand_zthr);
2038 spa->spa_raidz_expand_zthr = NULL;
2039 }
2040 }
2041
2042 /*
2043 * Opposite of spa_load().
2044 */
2045 static void
spa_unload(spa_t * spa)2046 spa_unload(spa_t *spa)
2047 {
2048 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
2049 spa->spa_export_thread == curthread);
2050 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
2051
2052 spa_import_progress_remove(spa_guid(spa));
2053 spa_load_note(spa, "UNLOADING");
2054
2055 spa_wake_waiters(spa);
2056
2057 /*
2058 * If we have set the spa_final_txg, we have already performed the
2059 * tasks below in spa_export_common(). We should not redo it here since
2060 * we delay the final TXGs beyond what spa_final_txg is set at.
2061 */
2062 if (spa->spa_final_txg == UINT64_MAX) {
2063 /*
2064 * If the log space map feature is enabled and the pool is
2065 * getting exported (but not destroyed), we want to spend some
2066 * time flushing as many metaslabs as we can in an attempt to
2067 * destroy log space maps and save import time.
2068 */
2069 if (spa_should_flush_logs_on_unload(spa))
2070 spa_unload_log_sm_flush_all(spa);
2071
2072 /*
2073 * Stop async tasks.
2074 */
2075 spa_async_suspend(spa);
2076
2077 if (spa->spa_root_vdev) {
2078 vdev_t *root_vdev = spa->spa_root_vdev;
2079 vdev_initialize_stop_all(root_vdev,
2080 VDEV_INITIALIZE_ACTIVE);
2081 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
2082 vdev_autotrim_stop_all(spa);
2083 vdev_rebuild_stop_all(spa);
2084 }
2085 }
2086
2087 /*
2088 * Stop syncing.
2089 */
2090 if (spa->spa_sync_on) {
2091 txg_sync_stop(spa->spa_dsl_pool);
2092 spa->spa_sync_on = B_FALSE;
2093 }
2094
2095 /*
2096 * This ensures that there is no async metaslab prefetching
2097 * while we attempt to unload the spa.
2098 */
2099 taskq_wait(spa->spa_metaslab_taskq);
2100
2101 if (spa->spa_mmp.mmp_thread)
2102 mmp_thread_stop(spa);
2103
2104 /*
2105 * Wait for any outstanding async I/O to complete.
2106 */
2107 if (spa->spa_async_zio_root != NULL) {
2108 for (int i = 0; i < max_ncpus; i++)
2109 (void) zio_wait(spa->spa_async_zio_root[i]);
2110 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
2111 spa->spa_async_zio_root = NULL;
2112 }
2113
2114 if (spa->spa_vdev_removal != NULL) {
2115 spa_vdev_removal_destroy(spa->spa_vdev_removal);
2116 spa->spa_vdev_removal = NULL;
2117 }
2118
2119 spa_destroy_aux_threads(spa);
2120
2121 spa_condense_fini(spa);
2122
2123 bpobj_close(&spa->spa_deferred_bpobj);
2124
2125 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
2126
2127 /*
2128 * Close all vdevs.
2129 */
2130 if (spa->spa_root_vdev)
2131 vdev_free(spa->spa_root_vdev);
2132 ASSERT(spa->spa_root_vdev == NULL);
2133
2134 /*
2135 * Close the dsl pool.
2136 */
2137 if (spa->spa_dsl_pool) {
2138 dsl_pool_close(spa->spa_dsl_pool);
2139 spa->spa_dsl_pool = NULL;
2140 spa->spa_meta_objset = NULL;
2141 }
2142
2143 ddt_unload(spa);
2144 brt_unload(spa);
2145 spa_unload_log_sm_metadata(spa);
2146
2147 /*
2148 * Drop and purge level 2 cache
2149 */
2150 spa_l2cache_drop(spa);
2151
2152 if (spa->spa_spares.sav_vdevs) {
2153 for (int i = 0; i < spa->spa_spares.sav_count; i++)
2154 vdev_free(spa->spa_spares.sav_vdevs[i]);
2155 kmem_free(spa->spa_spares.sav_vdevs,
2156 spa->spa_spares.sav_count * sizeof (void *));
2157 spa->spa_spares.sav_vdevs = NULL;
2158 }
2159 if (spa->spa_spares.sav_config) {
2160 nvlist_free(spa->spa_spares.sav_config);
2161 spa->spa_spares.sav_config = NULL;
2162 }
2163 spa->spa_spares.sav_count = 0;
2164
2165 if (spa->spa_l2cache.sav_vdevs) {
2166 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
2167 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
2168 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
2169 }
2170 kmem_free(spa->spa_l2cache.sav_vdevs,
2171 spa->spa_l2cache.sav_count * sizeof (void *));
2172 spa->spa_l2cache.sav_vdevs = NULL;
2173 }
2174 if (spa->spa_l2cache.sav_config) {
2175 nvlist_free(spa->spa_l2cache.sav_config);
2176 spa->spa_l2cache.sav_config = NULL;
2177 }
2178 spa->spa_l2cache.sav_count = 0;
2179
2180 spa->spa_async_suspended = 0;
2181
2182 spa->spa_indirect_vdevs_loaded = B_FALSE;
2183
2184 if (spa->spa_comment != NULL) {
2185 spa_strfree(spa->spa_comment);
2186 spa->spa_comment = NULL;
2187 }
2188 if (spa->spa_compatibility != NULL) {
2189 spa_strfree(spa->spa_compatibility);
2190 spa->spa_compatibility = NULL;
2191 }
2192
2193 spa->spa_raidz_expand = NULL;
2194
2195 spa_config_exit(spa, SCL_ALL, spa);
2196 }
2197
2198 /*
2199 * Load (or re-load) the current list of vdevs describing the active spares for
2200 * this pool. When this is called, we have some form of basic information in
2201 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
2202 * then re-generate a more complete list including status information.
2203 */
2204 void
spa_load_spares(spa_t * spa)2205 spa_load_spares(spa_t *spa)
2206 {
2207 nvlist_t **spares;
2208 uint_t nspares;
2209 int i;
2210 vdev_t *vd, *tvd;
2211
2212 #ifndef _KERNEL
2213 /*
2214 * zdb opens both the current state of the pool and the
2215 * checkpointed state (if present), with a different spa_t.
2216 *
2217 * As spare vdevs are shared among open pools, we skip loading
2218 * them when we load the checkpointed state of the pool.
2219 */
2220 if (!spa_writeable(spa))
2221 return;
2222 #endif
2223
2224 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2225
2226 /*
2227 * First, close and free any existing spare vdevs.
2228 */
2229 if (spa->spa_spares.sav_vdevs) {
2230 for (i = 0; i < spa->spa_spares.sav_count; i++) {
2231 vd = spa->spa_spares.sav_vdevs[i];
2232
2233 /* Undo the call to spa_activate() below */
2234 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2235 B_FALSE)) != NULL && tvd->vdev_isspare)
2236 spa_spare_remove(tvd);
2237 vdev_close(vd);
2238 vdev_free(vd);
2239 }
2240
2241 kmem_free(spa->spa_spares.sav_vdevs,
2242 spa->spa_spares.sav_count * sizeof (void *));
2243 }
2244
2245 if (spa->spa_spares.sav_config == NULL)
2246 nspares = 0;
2247 else
2248 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2249 ZPOOL_CONFIG_SPARES, &spares, &nspares));
2250
2251 spa->spa_spares.sav_count = (int)nspares;
2252 spa->spa_spares.sav_vdevs = NULL;
2253
2254 if (nspares == 0)
2255 return;
2256
2257 /*
2258 * Construct the array of vdevs, opening them to get status in the
2259 * process. For each spare, there is potentially two different vdev_t
2260 * structures associated with it: one in the list of spares (used only
2261 * for basic validation purposes) and one in the active vdev
2262 * configuration (if it's spared in). During this phase we open and
2263 * validate each vdev on the spare list. If the vdev also exists in the
2264 * active configuration, then we also mark this vdev as an active spare.
2265 */
2266 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
2267 KM_SLEEP);
2268 for (i = 0; i < spa->spa_spares.sav_count; i++) {
2269 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
2270 VDEV_ALLOC_SPARE) == 0);
2271 ASSERT(vd != NULL);
2272
2273 spa->spa_spares.sav_vdevs[i] = vd;
2274
2275 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2276 B_FALSE)) != NULL) {
2277 if (!tvd->vdev_isspare)
2278 spa_spare_add(tvd);
2279
2280 /*
2281 * We only mark the spare active if we were successfully
2282 * able to load the vdev. Otherwise, importing a pool
2283 * with a bad active spare would result in strange
2284 * behavior, because multiple pool would think the spare
2285 * is actively in use.
2286 *
2287 * There is a vulnerability here to an equally bizarre
2288 * circumstance, where a dead active spare is later
2289 * brought back to life (onlined or otherwise). Given
2290 * the rarity of this scenario, and the extra complexity
2291 * it adds, we ignore the possibility.
2292 */
2293 if (!vdev_is_dead(tvd))
2294 spa_spare_activate(tvd);
2295 }
2296
2297 vd->vdev_top = vd;
2298 vd->vdev_aux = &spa->spa_spares;
2299
2300 if (vdev_open(vd) != 0)
2301 continue;
2302
2303 if (vdev_validate_aux(vd) == 0)
2304 spa_spare_add(vd);
2305 }
2306
2307 /*
2308 * Recompute the stashed list of spares, with status information
2309 * this time.
2310 */
2311 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
2312
2313 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
2314 KM_SLEEP);
2315 for (i = 0; i < spa->spa_spares.sav_count; i++)
2316 spares[i] = vdev_config_generate(spa,
2317 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
2318 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
2319 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
2320 spa->spa_spares.sav_count);
2321 for (i = 0; i < spa->spa_spares.sav_count; i++)
2322 nvlist_free(spares[i]);
2323 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
2324 }
2325
2326 /*
2327 * Load (or re-load) the current list of vdevs describing the active l2cache for
2328 * this pool. When this is called, we have some form of basic information in
2329 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
2330 * then re-generate a more complete list including status information.
2331 * Devices which are already active have their details maintained, and are
2332 * not re-opened.
2333 */
2334 void
spa_load_l2cache(spa_t * spa)2335 spa_load_l2cache(spa_t *spa)
2336 {
2337 nvlist_t **l2cache = NULL;
2338 uint_t nl2cache;
2339 int i, j, oldnvdevs;
2340 uint64_t guid;
2341 vdev_t *vd, **oldvdevs, **newvdevs;
2342 spa_aux_vdev_t *sav = &spa->spa_l2cache;
2343
2344 #ifndef _KERNEL
2345 /*
2346 * zdb opens both the current state of the pool and the
2347 * checkpointed state (if present), with a different spa_t.
2348 *
2349 * As L2 caches are part of the ARC which is shared among open
2350 * pools, we skip loading them when we load the checkpointed
2351 * state of the pool.
2352 */
2353 if (!spa_writeable(spa))
2354 return;
2355 #endif
2356
2357 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2358
2359 oldvdevs = sav->sav_vdevs;
2360 oldnvdevs = sav->sav_count;
2361 sav->sav_vdevs = NULL;
2362 sav->sav_count = 0;
2363
2364 if (sav->sav_config == NULL) {
2365 nl2cache = 0;
2366 newvdevs = NULL;
2367 goto out;
2368 }
2369
2370 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
2371 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
2372 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
2373
2374 /*
2375 * Process new nvlist of vdevs.
2376 */
2377 for (i = 0; i < nl2cache; i++) {
2378 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2379
2380 newvdevs[i] = NULL;
2381 for (j = 0; j < oldnvdevs; j++) {
2382 vd = oldvdevs[j];
2383 if (vd != NULL && guid == vd->vdev_guid) {
2384 /*
2385 * Retain previous vdev for add/remove ops.
2386 */
2387 newvdevs[i] = vd;
2388 oldvdevs[j] = NULL;
2389 break;
2390 }
2391 }
2392
2393 if (newvdevs[i] == NULL) {
2394 /*
2395 * Create new vdev
2396 */
2397 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2398 VDEV_ALLOC_L2CACHE) == 0);
2399 ASSERT(vd != NULL);
2400 newvdevs[i] = vd;
2401
2402 /*
2403 * Commit this vdev as an l2cache device,
2404 * even if it fails to open.
2405 */
2406 spa_l2cache_add(vd);
2407
2408 vd->vdev_top = vd;
2409 vd->vdev_aux = sav;
2410
2411 spa_l2cache_activate(vd);
2412
2413 if (vdev_open(vd) != 0)
2414 continue;
2415
2416 (void) vdev_validate_aux(vd);
2417
2418 if (!vdev_is_dead(vd))
2419 l2arc_add_vdev(spa, vd);
2420
2421 /*
2422 * Upon cache device addition to a pool or pool
2423 * creation with a cache device or if the header
2424 * of the device is invalid we issue an async
2425 * TRIM command for the whole device which will
2426 * execute if l2arc_trim_ahead > 0.
2427 */
2428 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2429 }
2430 }
2431
2432 sav->sav_vdevs = newvdevs;
2433 sav->sav_count = (int)nl2cache;
2434
2435 /*
2436 * Recompute the stashed list of l2cache devices, with status
2437 * information this time.
2438 */
2439 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2440
2441 if (sav->sav_count > 0)
2442 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2443 KM_SLEEP);
2444 for (i = 0; i < sav->sav_count; i++)
2445 l2cache[i] = vdev_config_generate(spa,
2446 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2447 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2448 (const nvlist_t * const *)l2cache, sav->sav_count);
2449
2450 out:
2451 /*
2452 * Purge vdevs that were dropped
2453 */
2454 if (oldvdevs) {
2455 for (i = 0; i < oldnvdevs; i++) {
2456 uint64_t pool;
2457
2458 vd = oldvdevs[i];
2459 if (vd != NULL) {
2460 ASSERT(vd->vdev_isl2cache);
2461
2462 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2463 pool != 0ULL && l2arc_vdev_present(vd))
2464 l2arc_remove_vdev(vd);
2465 vdev_clear_stats(vd);
2466 vdev_free(vd);
2467 }
2468 }
2469
2470 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2471 }
2472
2473 for (i = 0; i < sav->sav_count; i++)
2474 nvlist_free(l2cache[i]);
2475 if (sav->sav_count)
2476 kmem_free(l2cache, sav->sav_count * sizeof (void *));
2477 }
2478
2479 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)2480 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2481 {
2482 dmu_buf_t *db;
2483 char *packed = NULL;
2484 size_t nvsize = 0;
2485 int error;
2486 *value = NULL;
2487
2488 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2489 if (error)
2490 return (error);
2491
2492 nvsize = *(uint64_t *)db->db_data;
2493 dmu_buf_rele(db, FTAG);
2494
2495 packed = vmem_alloc(nvsize, KM_SLEEP);
2496 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2497 DMU_READ_PREFETCH);
2498 if (error == 0)
2499 error = nvlist_unpack(packed, nvsize, value, 0);
2500 vmem_free(packed, nvsize);
2501
2502 return (error);
2503 }
2504
2505 /*
2506 * Concrete top-level vdevs that are not missing and are not logs. At every
2507 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2508 */
2509 static uint64_t
spa_healthy_core_tvds(spa_t * spa)2510 spa_healthy_core_tvds(spa_t *spa)
2511 {
2512 vdev_t *rvd = spa->spa_root_vdev;
2513 uint64_t tvds = 0;
2514
2515 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2516 vdev_t *vd = rvd->vdev_child[i];
2517 if (vd->vdev_islog)
2518 continue;
2519 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2520 tvds++;
2521 }
2522
2523 return (tvds);
2524 }
2525
2526 /*
2527 * Checks to see if the given vdev could not be opened, in which case we post a
2528 * sysevent to notify the autoreplace code that the device has been removed.
2529 */
2530 static void
spa_check_removed(vdev_t * vd)2531 spa_check_removed(vdev_t *vd)
2532 {
2533 for (uint64_t c = 0; c < vd->vdev_children; c++)
2534 spa_check_removed(vd->vdev_child[c]);
2535
2536 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2537 vdev_is_concrete(vd)) {
2538 zfs_post_autoreplace(vd->vdev_spa, vd);
2539 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2540 }
2541 }
2542
2543 static int
spa_check_for_missing_logs(spa_t * spa)2544 spa_check_for_missing_logs(spa_t *spa)
2545 {
2546 vdev_t *rvd = spa->spa_root_vdev;
2547
2548 /*
2549 * If we're doing a normal import, then build up any additional
2550 * diagnostic information about missing log devices.
2551 * We'll pass this up to the user for further processing.
2552 */
2553 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2554 nvlist_t **child, *nv;
2555 uint64_t idx = 0;
2556
2557 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2558 KM_SLEEP);
2559 nv = fnvlist_alloc();
2560
2561 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2562 vdev_t *tvd = rvd->vdev_child[c];
2563
2564 /*
2565 * We consider a device as missing only if it failed
2566 * to open (i.e. offline or faulted is not considered
2567 * as missing).
2568 */
2569 if (tvd->vdev_islog &&
2570 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2571 child[idx++] = vdev_config_generate(spa, tvd,
2572 B_FALSE, VDEV_CONFIG_MISSING);
2573 }
2574 }
2575
2576 if (idx > 0) {
2577 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2578 (const nvlist_t * const *)child, idx);
2579 fnvlist_add_nvlist(spa->spa_load_info,
2580 ZPOOL_CONFIG_MISSING_DEVICES, nv);
2581
2582 for (uint64_t i = 0; i < idx; i++)
2583 nvlist_free(child[i]);
2584 }
2585 nvlist_free(nv);
2586 kmem_free(child, rvd->vdev_children * sizeof (char **));
2587
2588 if (idx > 0) {
2589 spa_load_failed(spa, "some log devices are missing");
2590 vdev_dbgmsg_print_tree(rvd, 2);
2591 return (SET_ERROR(ENXIO));
2592 }
2593 } else {
2594 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2595 vdev_t *tvd = rvd->vdev_child[c];
2596
2597 if (tvd->vdev_islog &&
2598 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2599 spa_set_log_state(spa, SPA_LOG_CLEAR);
2600 spa_load_note(spa, "some log devices are "
2601 "missing, ZIL is dropped.");
2602 vdev_dbgmsg_print_tree(rvd, 2);
2603 break;
2604 }
2605 }
2606 }
2607
2608 return (0);
2609 }
2610
2611 /*
2612 * Check for missing log devices
2613 */
2614 static boolean_t
spa_check_logs(spa_t * spa)2615 spa_check_logs(spa_t *spa)
2616 {
2617 boolean_t rv = B_FALSE;
2618 dsl_pool_t *dp = spa_get_dsl(spa);
2619
2620 switch (spa->spa_log_state) {
2621 default:
2622 break;
2623 case SPA_LOG_MISSING:
2624 /* need to recheck in case slog has been restored */
2625 case SPA_LOG_UNKNOWN:
2626 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2627 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2628 if (rv)
2629 spa_set_log_state(spa, SPA_LOG_MISSING);
2630 break;
2631 }
2632 return (rv);
2633 }
2634
2635 /*
2636 * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2637 */
2638 static boolean_t
spa_passivate_log(spa_t * spa)2639 spa_passivate_log(spa_t *spa)
2640 {
2641 vdev_t *rvd = spa->spa_root_vdev;
2642 boolean_t slog_found = B_FALSE;
2643
2644 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2645
2646 for (int c = 0; c < rvd->vdev_children; c++) {
2647 vdev_t *tvd = rvd->vdev_child[c];
2648
2649 if (tvd->vdev_islog) {
2650 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2651 metaslab_group_passivate(tvd->vdev_mg);
2652 slog_found = B_TRUE;
2653 }
2654 }
2655
2656 return (slog_found);
2657 }
2658
2659 /*
2660 * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2661 */
2662 static void
spa_activate_log(spa_t * spa)2663 spa_activate_log(spa_t *spa)
2664 {
2665 vdev_t *rvd = spa->spa_root_vdev;
2666
2667 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2668
2669 for (int c = 0; c < rvd->vdev_children; c++) {
2670 vdev_t *tvd = rvd->vdev_child[c];
2671
2672 if (tvd->vdev_islog) {
2673 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2674 metaslab_group_activate(tvd->vdev_mg);
2675 }
2676 }
2677 }
2678
2679 int
spa_reset_logs(spa_t * spa)2680 spa_reset_logs(spa_t *spa)
2681 {
2682 int error;
2683
2684 error = dmu_objset_find(spa_name(spa), zil_reset,
2685 NULL, DS_FIND_CHILDREN);
2686 if (error == 0) {
2687 /*
2688 * We successfully offlined the log device, sync out the
2689 * current txg so that the "stubby" block can be removed
2690 * by zil_sync().
2691 */
2692 txg_wait_synced(spa->spa_dsl_pool, 0);
2693 }
2694 return (error);
2695 }
2696
2697 static void
spa_aux_check_removed(spa_aux_vdev_t * sav)2698 spa_aux_check_removed(spa_aux_vdev_t *sav)
2699 {
2700 for (int i = 0; i < sav->sav_count; i++)
2701 spa_check_removed(sav->sav_vdevs[i]);
2702 }
2703
2704 void
spa_claim_notify(zio_t * zio)2705 spa_claim_notify(zio_t *zio)
2706 {
2707 spa_t *spa = zio->io_spa;
2708
2709 if (zio->io_error)
2710 return;
2711
2712 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2713 if (spa->spa_claim_max_txg < BP_GET_LOGICAL_BIRTH(zio->io_bp))
2714 spa->spa_claim_max_txg = BP_GET_LOGICAL_BIRTH(zio->io_bp);
2715 mutex_exit(&spa->spa_props_lock);
2716 }
2717
2718 typedef struct spa_load_error {
2719 boolean_t sle_verify_data;
2720 uint64_t sle_meta_count;
2721 uint64_t sle_data_count;
2722 } spa_load_error_t;
2723
2724 static void
spa_load_verify_done(zio_t * zio)2725 spa_load_verify_done(zio_t *zio)
2726 {
2727 blkptr_t *bp = zio->io_bp;
2728 spa_load_error_t *sle = zio->io_private;
2729 dmu_object_type_t type = BP_GET_TYPE(bp);
2730 int error = zio->io_error;
2731 spa_t *spa = zio->io_spa;
2732
2733 abd_free(zio->io_abd);
2734 if (error) {
2735 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2736 type != DMU_OT_INTENT_LOG)
2737 atomic_inc_64(&sle->sle_meta_count);
2738 else
2739 atomic_inc_64(&sle->sle_data_count);
2740 }
2741
2742 mutex_enter(&spa->spa_scrub_lock);
2743 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2744 cv_broadcast(&spa->spa_scrub_io_cv);
2745 mutex_exit(&spa->spa_scrub_lock);
2746 }
2747
2748 /*
2749 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2750 * By default, we set it to 1/16th of the arc.
2751 */
2752 static uint_t spa_load_verify_shift = 4;
2753 static int spa_load_verify_metadata = B_TRUE;
2754 static int spa_load_verify_data = B_TRUE;
2755
2756 static int
spa_load_verify_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)2757 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2758 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2759 {
2760 zio_t *rio = arg;
2761 spa_load_error_t *sle = rio->io_private;
2762
2763 (void) zilog, (void) dnp;
2764
2765 /*
2766 * Note: normally this routine will not be called if
2767 * spa_load_verify_metadata is not set. However, it may be useful
2768 * to manually set the flag after the traversal has begun.
2769 */
2770 if (!spa_load_verify_metadata)
2771 return (0);
2772
2773 /*
2774 * Sanity check the block pointer in order to detect obvious damage
2775 * before using the contents in subsequent checks or in zio_read().
2776 * When damaged consider it to be a metadata error since we cannot
2777 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2778 */
2779 if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2780 atomic_inc_64(&sle->sle_meta_count);
2781 return (0);
2782 }
2783
2784 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2785 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2786 return (0);
2787
2788 if (!BP_IS_METADATA(bp) &&
2789 (!spa_load_verify_data || !sle->sle_verify_data))
2790 return (0);
2791
2792 uint64_t maxinflight_bytes =
2793 arc_target_bytes() >> spa_load_verify_shift;
2794 size_t size = BP_GET_PSIZE(bp);
2795
2796 mutex_enter(&spa->spa_scrub_lock);
2797 while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2798 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2799 spa->spa_load_verify_bytes += size;
2800 mutex_exit(&spa->spa_scrub_lock);
2801
2802 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2803 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2804 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2805 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2806 return (0);
2807 }
2808
2809 static int
verify_dataset_name_len(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)2810 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2811 {
2812 (void) dp, (void) arg;
2813
2814 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2815 return (SET_ERROR(ENAMETOOLONG));
2816
2817 return (0);
2818 }
2819
2820 static int
spa_load_verify(spa_t * spa)2821 spa_load_verify(spa_t *spa)
2822 {
2823 zio_t *rio;
2824 spa_load_error_t sle = { 0 };
2825 zpool_load_policy_t policy;
2826 boolean_t verify_ok = B_FALSE;
2827 int error = 0;
2828
2829 zpool_get_load_policy(spa->spa_config, &policy);
2830
2831 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2832 policy.zlp_maxmeta == UINT64_MAX)
2833 return (0);
2834
2835 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2836 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2837 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2838 DS_FIND_CHILDREN);
2839 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2840 if (error != 0)
2841 return (error);
2842
2843 /*
2844 * Verify data only if we are rewinding or error limit was set.
2845 * Otherwise nothing except dbgmsg care about it to waste time.
2846 */
2847 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2848 (policy.zlp_maxdata < UINT64_MAX);
2849
2850 rio = zio_root(spa, NULL, &sle,
2851 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2852
2853 if (spa_load_verify_metadata) {
2854 if (spa->spa_extreme_rewind) {
2855 spa_load_note(spa, "performing a complete scan of the "
2856 "pool since extreme rewind is on. This may take "
2857 "a very long time.\n (spa_load_verify_data=%u, "
2858 "spa_load_verify_metadata=%u)",
2859 spa_load_verify_data, spa_load_verify_metadata);
2860 }
2861
2862 error = traverse_pool(spa, spa->spa_verify_min_txg,
2863 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2864 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2865 }
2866
2867 (void) zio_wait(rio);
2868 ASSERT0(spa->spa_load_verify_bytes);
2869
2870 spa->spa_load_meta_errors = sle.sle_meta_count;
2871 spa->spa_load_data_errors = sle.sle_data_count;
2872
2873 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2874 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2875 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2876 (u_longlong_t)sle.sle_data_count);
2877 }
2878
2879 if (spa_load_verify_dryrun ||
2880 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2881 sle.sle_data_count <= policy.zlp_maxdata)) {
2882 int64_t loss = 0;
2883
2884 verify_ok = B_TRUE;
2885 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2886 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2887
2888 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2889 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2890 spa->spa_load_txg_ts);
2891 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2892 loss);
2893 fnvlist_add_uint64(spa->spa_load_info,
2894 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2895 fnvlist_add_uint64(spa->spa_load_info,
2896 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2897 } else {
2898 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2899 }
2900
2901 if (spa_load_verify_dryrun)
2902 return (0);
2903
2904 if (error) {
2905 if (error != ENXIO && error != EIO)
2906 error = SET_ERROR(EIO);
2907 return (error);
2908 }
2909
2910 return (verify_ok ? 0 : EIO);
2911 }
2912
2913 /*
2914 * Find a value in the pool props object.
2915 */
2916 static void
spa_prop_find(spa_t * spa,zpool_prop_t prop,uint64_t * val)2917 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2918 {
2919 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2920 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2921 }
2922
2923 /*
2924 * Find a value in the pool directory object.
2925 */
2926 static int
spa_dir_prop(spa_t * spa,const char * name,uint64_t * val,boolean_t log_enoent)2927 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2928 {
2929 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2930 name, sizeof (uint64_t), 1, val);
2931
2932 if (error != 0 && (error != ENOENT || log_enoent)) {
2933 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2934 "[error=%d]", name, error);
2935 }
2936
2937 return (error);
2938 }
2939
2940 static int
spa_vdev_err(vdev_t * vdev,vdev_aux_t aux,int err)2941 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2942 {
2943 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2944 return (SET_ERROR(err));
2945 }
2946
2947 boolean_t
spa_livelist_delete_check(spa_t * spa)2948 spa_livelist_delete_check(spa_t *spa)
2949 {
2950 return (spa->spa_livelists_to_delete != 0);
2951 }
2952
2953 static boolean_t
spa_livelist_delete_cb_check(void * arg,zthr_t * z)2954 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2955 {
2956 (void) z;
2957 spa_t *spa = arg;
2958 return (spa_livelist_delete_check(spa));
2959 }
2960
2961 static int
delete_blkptr_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)2962 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2963 {
2964 spa_t *spa = arg;
2965 zio_free(spa, tx->tx_txg, bp);
2966 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2967 -bp_get_dsize_sync(spa, bp),
2968 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2969 return (0);
2970 }
2971
2972 static int
dsl_get_next_livelist_obj(objset_t * os,uint64_t zap_obj,uint64_t * llp)2973 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2974 {
2975 int err;
2976 zap_cursor_t zc;
2977 zap_attribute_t *za = zap_attribute_alloc();
2978 zap_cursor_init(&zc, os, zap_obj);
2979 err = zap_cursor_retrieve(&zc, za);
2980 zap_cursor_fini(&zc);
2981 if (err == 0)
2982 *llp = za->za_first_integer;
2983 zap_attribute_free(za);
2984 return (err);
2985 }
2986
2987 /*
2988 * Components of livelist deletion that must be performed in syncing
2989 * context: freeing block pointers and updating the pool-wide data
2990 * structures to indicate how much work is left to do
2991 */
2992 typedef struct sublist_delete_arg {
2993 spa_t *spa;
2994 dsl_deadlist_t *ll;
2995 uint64_t key;
2996 bplist_t *to_free;
2997 } sublist_delete_arg_t;
2998
2999 static void
sublist_delete_sync(void * arg,dmu_tx_t * tx)3000 sublist_delete_sync(void *arg, dmu_tx_t *tx)
3001 {
3002 sublist_delete_arg_t *sda = arg;
3003 spa_t *spa = sda->spa;
3004 dsl_deadlist_t *ll = sda->ll;
3005 uint64_t key = sda->key;
3006 bplist_t *to_free = sda->to_free;
3007
3008 bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
3009 dsl_deadlist_remove_entry(ll, key, tx);
3010 }
3011
3012 typedef struct livelist_delete_arg {
3013 spa_t *spa;
3014 uint64_t ll_obj;
3015 uint64_t zap_obj;
3016 } livelist_delete_arg_t;
3017
3018 static void
livelist_delete_sync(void * arg,dmu_tx_t * tx)3019 livelist_delete_sync(void *arg, dmu_tx_t *tx)
3020 {
3021 livelist_delete_arg_t *lda = arg;
3022 spa_t *spa = lda->spa;
3023 uint64_t ll_obj = lda->ll_obj;
3024 uint64_t zap_obj = lda->zap_obj;
3025 objset_t *mos = spa->spa_meta_objset;
3026 uint64_t count;
3027
3028 /* free the livelist and decrement the feature count */
3029 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
3030 dsl_deadlist_free(mos, ll_obj, tx);
3031 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
3032 VERIFY0(zap_count(mos, zap_obj, &count));
3033 if (count == 0) {
3034 /* no more livelists to delete */
3035 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
3036 DMU_POOL_DELETED_CLONES, tx));
3037 VERIFY0(zap_destroy(mos, zap_obj, tx));
3038 spa->spa_livelists_to_delete = 0;
3039 spa_notify_waiters(spa);
3040 }
3041 }
3042
3043 /*
3044 * Load in the value for the livelist to be removed and open it. Then,
3045 * load its first sublist and determine which block pointers should actually
3046 * be freed. Then, call a synctask which performs the actual frees and updates
3047 * the pool-wide livelist data.
3048 */
3049 static void
spa_livelist_delete_cb(void * arg,zthr_t * z)3050 spa_livelist_delete_cb(void *arg, zthr_t *z)
3051 {
3052 spa_t *spa = arg;
3053 uint64_t ll_obj = 0, count;
3054 objset_t *mos = spa->spa_meta_objset;
3055 uint64_t zap_obj = spa->spa_livelists_to_delete;
3056 /*
3057 * Determine the next livelist to delete. This function should only
3058 * be called if there is at least one deleted clone.
3059 */
3060 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
3061 VERIFY0(zap_count(mos, ll_obj, &count));
3062 if (count > 0) {
3063 dsl_deadlist_t *ll;
3064 dsl_deadlist_entry_t *dle;
3065 bplist_t to_free;
3066 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
3067 dsl_deadlist_open(ll, mos, ll_obj);
3068 dle = dsl_deadlist_first(ll);
3069 ASSERT3P(dle, !=, NULL);
3070 bplist_create(&to_free);
3071 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
3072 z, NULL);
3073 if (err == 0) {
3074 sublist_delete_arg_t sync_arg = {
3075 .spa = spa,
3076 .ll = ll,
3077 .key = dle->dle_mintxg,
3078 .to_free = &to_free
3079 };
3080 zfs_dbgmsg("deleting sublist (id %llu) from"
3081 " livelist %llu, %lld remaining",
3082 (u_longlong_t)dle->dle_bpobj.bpo_object,
3083 (u_longlong_t)ll_obj, (longlong_t)count - 1);
3084 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
3085 sublist_delete_sync, &sync_arg, 0,
3086 ZFS_SPACE_CHECK_DESTROY));
3087 } else {
3088 VERIFY3U(err, ==, EINTR);
3089 }
3090 bplist_clear(&to_free);
3091 bplist_destroy(&to_free);
3092 dsl_deadlist_close(ll);
3093 kmem_free(ll, sizeof (dsl_deadlist_t));
3094 } else {
3095 livelist_delete_arg_t sync_arg = {
3096 .spa = spa,
3097 .ll_obj = ll_obj,
3098 .zap_obj = zap_obj
3099 };
3100 zfs_dbgmsg("deletion of livelist %llu completed",
3101 (u_longlong_t)ll_obj);
3102 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
3103 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
3104 }
3105 }
3106
3107 static void
spa_start_livelist_destroy_thread(spa_t * spa)3108 spa_start_livelist_destroy_thread(spa_t *spa)
3109 {
3110 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
3111 spa->spa_livelist_delete_zthr =
3112 zthr_create("z_livelist_destroy",
3113 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
3114 minclsyspri);
3115 }
3116
3117 typedef struct livelist_new_arg {
3118 bplist_t *allocs;
3119 bplist_t *frees;
3120 } livelist_new_arg_t;
3121
3122 static int
livelist_track_new_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3123 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3124 dmu_tx_t *tx)
3125 {
3126 ASSERT(tx == NULL);
3127 livelist_new_arg_t *lna = arg;
3128 if (bp_freed) {
3129 bplist_append(lna->frees, bp);
3130 } else {
3131 bplist_append(lna->allocs, bp);
3132 zfs_livelist_condense_new_alloc++;
3133 }
3134 return (0);
3135 }
3136
3137 typedef struct livelist_condense_arg {
3138 spa_t *spa;
3139 bplist_t to_keep;
3140 uint64_t first_size;
3141 uint64_t next_size;
3142 } livelist_condense_arg_t;
3143
3144 static void
spa_livelist_condense_sync(void * arg,dmu_tx_t * tx)3145 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
3146 {
3147 livelist_condense_arg_t *lca = arg;
3148 spa_t *spa = lca->spa;
3149 bplist_t new_frees;
3150 dsl_dataset_t *ds = spa->spa_to_condense.ds;
3151
3152 /* Have we been cancelled? */
3153 if (spa->spa_to_condense.cancelled) {
3154 zfs_livelist_condense_sync_cancel++;
3155 goto out;
3156 }
3157
3158 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3159 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3160 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
3161
3162 /*
3163 * It's possible that the livelist was changed while the zthr was
3164 * running. Therefore, we need to check for new blkptrs in the two
3165 * entries being condensed and continue to track them in the livelist.
3166 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
3167 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
3168 * we need to sort them into two different bplists.
3169 */
3170 uint64_t first_obj = first->dle_bpobj.bpo_object;
3171 uint64_t next_obj = next->dle_bpobj.bpo_object;
3172 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3173 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3174
3175 bplist_create(&new_frees);
3176 livelist_new_arg_t new_bps = {
3177 .allocs = &lca->to_keep,
3178 .frees = &new_frees,
3179 };
3180
3181 if (cur_first_size > lca->first_size) {
3182 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
3183 livelist_track_new_cb, &new_bps, lca->first_size));
3184 }
3185 if (cur_next_size > lca->next_size) {
3186 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
3187 livelist_track_new_cb, &new_bps, lca->next_size));
3188 }
3189
3190 dsl_deadlist_clear_entry(first, ll, tx);
3191 ASSERT(bpobj_is_empty(&first->dle_bpobj));
3192 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
3193
3194 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
3195 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
3196 bplist_destroy(&new_frees);
3197
3198 char dsname[ZFS_MAX_DATASET_NAME_LEN];
3199 dsl_dataset_name(ds, dsname);
3200 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
3201 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
3202 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
3203 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
3204 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
3205 (u_longlong_t)cur_next_size,
3206 (u_longlong_t)first->dle_bpobj.bpo_object,
3207 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
3208 out:
3209 dmu_buf_rele(ds->ds_dbuf, spa);
3210 spa->spa_to_condense.ds = NULL;
3211 bplist_clear(&lca->to_keep);
3212 bplist_destroy(&lca->to_keep);
3213 kmem_free(lca, sizeof (livelist_condense_arg_t));
3214 spa->spa_to_condense.syncing = B_FALSE;
3215 }
3216
3217 static void
spa_livelist_condense_cb(void * arg,zthr_t * t)3218 spa_livelist_condense_cb(void *arg, zthr_t *t)
3219 {
3220 while (zfs_livelist_condense_zthr_pause &&
3221 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3222 delay(1);
3223
3224 spa_t *spa = arg;
3225 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3226 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3227 uint64_t first_size, next_size;
3228
3229 livelist_condense_arg_t *lca =
3230 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
3231 bplist_create(&lca->to_keep);
3232
3233 /*
3234 * Process the livelists (matching FREEs and ALLOCs) in open context
3235 * so we have minimal work in syncing context to condense.
3236 *
3237 * We save bpobj sizes (first_size and next_size) to use later in
3238 * syncing context to determine if entries were added to these sublists
3239 * while in open context. This is possible because the clone is still
3240 * active and open for normal writes and we want to make sure the new,
3241 * unprocessed blockpointers are inserted into the livelist normally.
3242 *
3243 * Note that dsl_process_sub_livelist() both stores the size number of
3244 * blockpointers and iterates over them while the bpobj's lock held, so
3245 * the sizes returned to us are consistent which what was actually
3246 * processed.
3247 */
3248 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
3249 &first_size);
3250 if (err == 0)
3251 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
3252 t, &next_size);
3253
3254 if (err == 0) {
3255 while (zfs_livelist_condense_sync_pause &&
3256 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3257 delay(1);
3258
3259 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3260 dmu_tx_mark_netfree(tx);
3261 dmu_tx_hold_space(tx, 1);
3262 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
3263 if (err == 0) {
3264 /*
3265 * Prevent the condense zthr restarting before
3266 * the synctask completes.
3267 */
3268 spa->spa_to_condense.syncing = B_TRUE;
3269 lca->spa = spa;
3270 lca->first_size = first_size;
3271 lca->next_size = next_size;
3272 dsl_sync_task_nowait(spa_get_dsl(spa),
3273 spa_livelist_condense_sync, lca, tx);
3274 dmu_tx_commit(tx);
3275 return;
3276 }
3277 }
3278 /*
3279 * Condensing can not continue: either it was externally stopped or
3280 * we were unable to assign to a tx because the pool has run out of
3281 * space. In the second case, we'll just end up trying to condense
3282 * again in a later txg.
3283 */
3284 ASSERT(err != 0);
3285 bplist_clear(&lca->to_keep);
3286 bplist_destroy(&lca->to_keep);
3287 kmem_free(lca, sizeof (livelist_condense_arg_t));
3288 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
3289 spa->spa_to_condense.ds = NULL;
3290 if (err == EINTR)
3291 zfs_livelist_condense_zthr_cancel++;
3292 }
3293
3294 /*
3295 * Check that there is something to condense but that a condense is not
3296 * already in progress and that condensing has not been cancelled.
3297 */
3298 static boolean_t
spa_livelist_condense_cb_check(void * arg,zthr_t * z)3299 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
3300 {
3301 (void) z;
3302 spa_t *spa = arg;
3303 if ((spa->spa_to_condense.ds != NULL) &&
3304 (spa->spa_to_condense.syncing == B_FALSE) &&
3305 (spa->spa_to_condense.cancelled == B_FALSE)) {
3306 return (B_TRUE);
3307 }
3308 return (B_FALSE);
3309 }
3310
3311 static void
spa_start_livelist_condensing_thread(spa_t * spa)3312 spa_start_livelist_condensing_thread(spa_t *spa)
3313 {
3314 spa->spa_to_condense.ds = NULL;
3315 spa->spa_to_condense.first = NULL;
3316 spa->spa_to_condense.next = NULL;
3317 spa->spa_to_condense.syncing = B_FALSE;
3318 spa->spa_to_condense.cancelled = B_FALSE;
3319
3320 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
3321 spa->spa_livelist_condense_zthr =
3322 zthr_create("z_livelist_condense",
3323 spa_livelist_condense_cb_check,
3324 spa_livelist_condense_cb, spa, minclsyspri);
3325 }
3326
3327 static void
spa_spawn_aux_threads(spa_t * spa)3328 spa_spawn_aux_threads(spa_t *spa)
3329 {
3330 ASSERT(spa_writeable(spa));
3331
3332 spa_start_raidz_expansion_thread(spa);
3333 spa_start_indirect_condensing_thread(spa);
3334 spa_start_livelist_destroy_thread(spa);
3335 spa_start_livelist_condensing_thread(spa);
3336
3337 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
3338 spa->spa_checkpoint_discard_zthr =
3339 zthr_create("z_checkpoint_discard",
3340 spa_checkpoint_discard_thread_check,
3341 spa_checkpoint_discard_thread, spa, minclsyspri);
3342 }
3343
3344 /*
3345 * Fix up config after a partly-completed split. This is done with the
3346 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
3347 * pool have that entry in their config, but only the splitting one contains
3348 * a list of all the guids of the vdevs that are being split off.
3349 *
3350 * This function determines what to do with that list: either rejoin
3351 * all the disks to the pool, or complete the splitting process. To attempt
3352 * the rejoin, each disk that is offlined is marked online again, and
3353 * we do a reopen() call. If the vdev label for every disk that was
3354 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
3355 * then we call vdev_split() on each disk, and complete the split.
3356 *
3357 * Otherwise we leave the config alone, with all the vdevs in place in
3358 * the original pool.
3359 */
3360 static void
spa_try_repair(spa_t * spa,nvlist_t * config)3361 spa_try_repair(spa_t *spa, nvlist_t *config)
3362 {
3363 uint_t extracted;
3364 uint64_t *glist;
3365 uint_t i, gcount;
3366 nvlist_t *nvl;
3367 vdev_t **vd;
3368 boolean_t attempt_reopen;
3369
3370 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
3371 return;
3372
3373 /* check that the config is complete */
3374 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3375 &glist, &gcount) != 0)
3376 return;
3377
3378 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3379
3380 /* attempt to online all the vdevs & validate */
3381 attempt_reopen = B_TRUE;
3382 for (i = 0; i < gcount; i++) {
3383 if (glist[i] == 0) /* vdev is hole */
3384 continue;
3385
3386 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3387 if (vd[i] == NULL) {
3388 /*
3389 * Don't bother attempting to reopen the disks;
3390 * just do the split.
3391 */
3392 attempt_reopen = B_FALSE;
3393 } else {
3394 /* attempt to re-online it */
3395 vd[i]->vdev_offline = B_FALSE;
3396 }
3397 }
3398
3399 if (attempt_reopen) {
3400 vdev_reopen(spa->spa_root_vdev);
3401
3402 /* check each device to see what state it's in */
3403 for (extracted = 0, i = 0; i < gcount; i++) {
3404 if (vd[i] != NULL &&
3405 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3406 break;
3407 ++extracted;
3408 }
3409 }
3410
3411 /*
3412 * If every disk has been moved to the new pool, or if we never
3413 * even attempted to look at them, then we split them off for
3414 * good.
3415 */
3416 if (!attempt_reopen || gcount == extracted) {
3417 for (i = 0; i < gcount; i++)
3418 if (vd[i] != NULL)
3419 vdev_split(vd[i]);
3420 vdev_reopen(spa->spa_root_vdev);
3421 }
3422
3423 kmem_free(vd, gcount * sizeof (vdev_t *));
3424 }
3425
3426 static int
spa_load(spa_t * spa,spa_load_state_t state,spa_import_type_t type)3427 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3428 {
3429 const char *ereport = FM_EREPORT_ZFS_POOL;
3430 int error;
3431
3432 spa->spa_load_state = state;
3433 (void) spa_import_progress_set_state(spa_guid(spa),
3434 spa_load_state(spa));
3435 spa_import_progress_set_notes(spa, "spa_load()");
3436
3437 gethrestime(&spa->spa_loaded_ts);
3438 error = spa_load_impl(spa, type, &ereport);
3439
3440 /*
3441 * Don't count references from objsets that are already closed
3442 * and are making their way through the eviction process.
3443 */
3444 spa_evicting_os_wait(spa);
3445 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3446 if (error) {
3447 if (error != EEXIST) {
3448 spa->spa_loaded_ts.tv_sec = 0;
3449 spa->spa_loaded_ts.tv_nsec = 0;
3450 }
3451 if (error != EBADF) {
3452 (void) zfs_ereport_post(ereport, spa,
3453 NULL, NULL, NULL, 0);
3454 }
3455 }
3456 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3457 spa->spa_ena = 0;
3458
3459 (void) spa_import_progress_set_state(spa_guid(spa),
3460 spa_load_state(spa));
3461
3462 return (error);
3463 }
3464
3465 #ifdef ZFS_DEBUG
3466 /*
3467 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3468 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3469 * spa's per-vdev ZAP list.
3470 */
3471 static uint64_t
vdev_count_verify_zaps(vdev_t * vd)3472 vdev_count_verify_zaps(vdev_t *vd)
3473 {
3474 spa_t *spa = vd->vdev_spa;
3475 uint64_t total = 0;
3476
3477 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3478 vd->vdev_root_zap != 0) {
3479 total++;
3480 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3481 spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3482 }
3483 if (vd->vdev_top_zap != 0) {
3484 total++;
3485 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3486 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3487 }
3488 if (vd->vdev_leaf_zap != 0) {
3489 total++;
3490 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3491 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3492 }
3493
3494 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3495 total += vdev_count_verify_zaps(vd->vdev_child[i]);
3496 }
3497
3498 return (total);
3499 }
3500 #else
3501 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3502 #endif
3503
3504 /*
3505 * Determine whether the activity check is required.
3506 */
3507 static boolean_t
spa_activity_check_required(spa_t * spa,uberblock_t * ub,nvlist_t * label,nvlist_t * config)3508 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3509 nvlist_t *config)
3510 {
3511 uint64_t state = 0;
3512 uint64_t hostid = 0;
3513 uint64_t tryconfig_txg = 0;
3514 uint64_t tryconfig_timestamp = 0;
3515 uint16_t tryconfig_mmp_seq = 0;
3516 nvlist_t *nvinfo;
3517
3518 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3519 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3520 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3521 &tryconfig_txg);
3522 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3523 &tryconfig_timestamp);
3524 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3525 &tryconfig_mmp_seq);
3526 }
3527
3528 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3529
3530 /*
3531 * Disable the MMP activity check - This is used by zdb which
3532 * is intended to be used on potentially active pools.
3533 */
3534 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3535 return (B_FALSE);
3536
3537 /*
3538 * Skip the activity check when the MMP feature is disabled.
3539 */
3540 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3541 return (B_FALSE);
3542
3543 /*
3544 * If the tryconfig_ values are nonzero, they are the results of an
3545 * earlier tryimport. If they all match the uberblock we just found,
3546 * then the pool has not changed and we return false so we do not test
3547 * a second time.
3548 */
3549 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3550 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3551 tryconfig_mmp_seq && tryconfig_mmp_seq ==
3552 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3553 return (B_FALSE);
3554
3555 /*
3556 * Allow the activity check to be skipped when importing the pool
3557 * on the same host which last imported it. Since the hostid from
3558 * configuration may be stale use the one read from the label.
3559 */
3560 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3561 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3562
3563 if (hostid == spa_get_hostid(spa))
3564 return (B_FALSE);
3565
3566 /*
3567 * Skip the activity test when the pool was cleanly exported.
3568 */
3569 if (state != POOL_STATE_ACTIVE)
3570 return (B_FALSE);
3571
3572 return (B_TRUE);
3573 }
3574
3575 /*
3576 * Nanoseconds the activity check must watch for changes on-disk.
3577 */
3578 static uint64_t
spa_activity_check_duration(spa_t * spa,uberblock_t * ub)3579 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3580 {
3581 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3582 uint64_t multihost_interval = MSEC2NSEC(
3583 MMP_INTERVAL_OK(zfs_multihost_interval));
3584 uint64_t import_delay = MAX(NANOSEC, import_intervals *
3585 multihost_interval);
3586
3587 /*
3588 * Local tunables determine a minimum duration except for the case
3589 * where we know when the remote host will suspend the pool if MMP
3590 * writes do not land.
3591 *
3592 * See Big Theory comment at the top of mmp.c for the reasoning behind
3593 * these cases and times.
3594 */
3595
3596 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3597
3598 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3599 MMP_FAIL_INT(ub) > 0) {
3600
3601 /* MMP on remote host will suspend pool after failed writes */
3602 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3603 MMP_IMPORT_SAFETY_FACTOR / 100;
3604
3605 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3606 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3607 "import_intervals=%llu", (u_longlong_t)import_delay,
3608 (u_longlong_t)MMP_FAIL_INT(ub),
3609 (u_longlong_t)MMP_INTERVAL(ub),
3610 (u_longlong_t)import_intervals);
3611
3612 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3613 MMP_FAIL_INT(ub) == 0) {
3614
3615 /* MMP on remote host will never suspend pool */
3616 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3617 ub->ub_mmp_delay) * import_intervals);
3618
3619 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3620 "mmp_interval=%llu ub_mmp_delay=%llu "
3621 "import_intervals=%llu", (u_longlong_t)import_delay,
3622 (u_longlong_t)MMP_INTERVAL(ub),
3623 (u_longlong_t)ub->ub_mmp_delay,
3624 (u_longlong_t)import_intervals);
3625
3626 } else if (MMP_VALID(ub)) {
3627 /*
3628 * zfs-0.7 compatibility case
3629 */
3630
3631 import_delay = MAX(import_delay, (multihost_interval +
3632 ub->ub_mmp_delay) * import_intervals);
3633
3634 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3635 "import_intervals=%llu leaves=%u",
3636 (u_longlong_t)import_delay,
3637 (u_longlong_t)ub->ub_mmp_delay,
3638 (u_longlong_t)import_intervals,
3639 vdev_count_leaves(spa));
3640 } else {
3641 /* Using local tunings is the only reasonable option */
3642 zfs_dbgmsg("pool last imported on non-MMP aware "
3643 "host using import_delay=%llu multihost_interval=%llu "
3644 "import_intervals=%llu", (u_longlong_t)import_delay,
3645 (u_longlong_t)multihost_interval,
3646 (u_longlong_t)import_intervals);
3647 }
3648
3649 return (import_delay);
3650 }
3651
3652 /*
3653 * Remote host activity check.
3654 *
3655 * error results:
3656 * 0 - no activity detected
3657 * EREMOTEIO - remote activity detected
3658 * EINTR - user canceled the operation
3659 */
3660 static int
spa_activity_check(spa_t * spa,uberblock_t * ub,nvlist_t * config,boolean_t importing)3661 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config,
3662 boolean_t importing)
3663 {
3664 uint64_t txg = ub->ub_txg;
3665 uint64_t timestamp = ub->ub_timestamp;
3666 uint64_t mmp_config = ub->ub_mmp_config;
3667 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3668 uint64_t import_delay;
3669 hrtime_t import_expire, now;
3670 nvlist_t *mmp_label = NULL;
3671 vdev_t *rvd = spa->spa_root_vdev;
3672 kcondvar_t cv;
3673 kmutex_t mtx;
3674 int error = 0;
3675
3676 cv_init(&cv, NULL, CV_DEFAULT, NULL);
3677 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3678 mutex_enter(&mtx);
3679
3680 /*
3681 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3682 * during the earlier tryimport. If the txg recorded there is 0 then
3683 * the pool is known to be active on another host.
3684 *
3685 * Otherwise, the pool might be in use on another host. Check for
3686 * changes in the uberblocks on disk if necessary.
3687 */
3688 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3689 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3690 ZPOOL_CONFIG_LOAD_INFO);
3691
3692 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3693 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3694 vdev_uberblock_load(rvd, ub, &mmp_label);
3695 error = SET_ERROR(EREMOTEIO);
3696 goto out;
3697 }
3698 }
3699
3700 import_delay = spa_activity_check_duration(spa, ub);
3701
3702 /* Add a small random factor in case of simultaneous imports (0-25%) */
3703 import_delay += import_delay * random_in_range(250) / 1000;
3704
3705 import_expire = gethrtime() + import_delay;
3706
3707 if (importing) {
3708 spa_import_progress_set_notes(spa, "Checking MMP activity, "
3709 "waiting %llu ms", (u_longlong_t)NSEC2MSEC(import_delay));
3710 }
3711
3712 int iterations = 0;
3713 while ((now = gethrtime()) < import_expire) {
3714 if (importing && iterations++ % 30 == 0) {
3715 spa_import_progress_set_notes(spa, "Checking MMP "
3716 "activity, %llu ms remaining",
3717 (u_longlong_t)NSEC2MSEC(import_expire - now));
3718 }
3719
3720 if (importing) {
3721 (void) spa_import_progress_set_mmp_check(spa_guid(spa),
3722 NSEC2SEC(import_expire - gethrtime()));
3723 }
3724
3725 vdev_uberblock_load(rvd, ub, &mmp_label);
3726
3727 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3728 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3729 zfs_dbgmsg("multihost activity detected "
3730 "txg %llu ub_txg %llu "
3731 "timestamp %llu ub_timestamp %llu "
3732 "mmp_config %#llx ub_mmp_config %#llx",
3733 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3734 (u_longlong_t)timestamp,
3735 (u_longlong_t)ub->ub_timestamp,
3736 (u_longlong_t)mmp_config,
3737 (u_longlong_t)ub->ub_mmp_config);
3738
3739 error = SET_ERROR(EREMOTEIO);
3740 break;
3741 }
3742
3743 if (mmp_label) {
3744 nvlist_free(mmp_label);
3745 mmp_label = NULL;
3746 }
3747
3748 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3749 if (error != -1) {
3750 error = SET_ERROR(EINTR);
3751 break;
3752 }
3753 error = 0;
3754 }
3755
3756 out:
3757 mutex_exit(&mtx);
3758 mutex_destroy(&mtx);
3759 cv_destroy(&cv);
3760
3761 /*
3762 * If the pool is determined to be active store the status in the
3763 * spa->spa_load_info nvlist. If the remote hostname or hostid are
3764 * available from configuration read from disk store them as well.
3765 * This allows 'zpool import' to generate a more useful message.
3766 *
3767 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
3768 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3769 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
3770 */
3771 if (error == EREMOTEIO) {
3772 const char *hostname = "<unknown>";
3773 uint64_t hostid = 0;
3774
3775 if (mmp_label) {
3776 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3777 hostname = fnvlist_lookup_string(mmp_label,
3778 ZPOOL_CONFIG_HOSTNAME);
3779 fnvlist_add_string(spa->spa_load_info,
3780 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3781 }
3782
3783 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3784 hostid = fnvlist_lookup_uint64(mmp_label,
3785 ZPOOL_CONFIG_HOSTID);
3786 fnvlist_add_uint64(spa->spa_load_info,
3787 ZPOOL_CONFIG_MMP_HOSTID, hostid);
3788 }
3789 }
3790
3791 fnvlist_add_uint64(spa->spa_load_info,
3792 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3793 fnvlist_add_uint64(spa->spa_load_info,
3794 ZPOOL_CONFIG_MMP_TXG, 0);
3795
3796 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3797 }
3798
3799 if (mmp_label)
3800 nvlist_free(mmp_label);
3801
3802 return (error);
3803 }
3804
3805 /*
3806 * Called from zfs_ioc_clear for a pool that was suspended
3807 * after failing mmp write checks.
3808 */
3809 boolean_t
spa_mmp_remote_host_activity(spa_t * spa)3810 spa_mmp_remote_host_activity(spa_t *spa)
3811 {
3812 ASSERT(spa_multihost(spa) && spa_suspended(spa));
3813
3814 nvlist_t *best_label;
3815 uberblock_t best_ub;
3816
3817 /*
3818 * Locate the best uberblock on disk
3819 */
3820 vdev_uberblock_load(spa->spa_root_vdev, &best_ub, &best_label);
3821 if (best_label) {
3822 /*
3823 * confirm that the best hostid matches our hostid
3824 */
3825 if (nvlist_exists(best_label, ZPOOL_CONFIG_HOSTID) &&
3826 spa_get_hostid(spa) !=
3827 fnvlist_lookup_uint64(best_label, ZPOOL_CONFIG_HOSTID)) {
3828 nvlist_free(best_label);
3829 return (B_TRUE);
3830 }
3831 nvlist_free(best_label);
3832 } else {
3833 return (B_TRUE);
3834 }
3835
3836 if (!MMP_VALID(&best_ub) ||
3837 !MMP_FAIL_INT_VALID(&best_ub) ||
3838 MMP_FAIL_INT(&best_ub) == 0) {
3839 return (B_TRUE);
3840 }
3841
3842 if (best_ub.ub_txg != spa->spa_uberblock.ub_txg ||
3843 best_ub.ub_timestamp != spa->spa_uberblock.ub_timestamp) {
3844 zfs_dbgmsg("txg mismatch detected during pool clear "
3845 "txg %llu ub_txg %llu timestamp %llu ub_timestamp %llu",
3846 (u_longlong_t)spa->spa_uberblock.ub_txg,
3847 (u_longlong_t)best_ub.ub_txg,
3848 (u_longlong_t)spa->spa_uberblock.ub_timestamp,
3849 (u_longlong_t)best_ub.ub_timestamp);
3850 return (B_TRUE);
3851 }
3852
3853 /*
3854 * Perform an activity check looking for any remote writer
3855 */
3856 return (spa_activity_check(spa, &spa->spa_uberblock, spa->spa_config,
3857 B_FALSE) != 0);
3858 }
3859
3860 static int
spa_verify_host(spa_t * spa,nvlist_t * mos_config)3861 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3862 {
3863 uint64_t hostid;
3864 const char *hostname;
3865 uint64_t myhostid = 0;
3866
3867 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3868 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3869 hostname = fnvlist_lookup_string(mos_config,
3870 ZPOOL_CONFIG_HOSTNAME);
3871
3872 myhostid = zone_get_hostid(NULL);
3873
3874 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3875 cmn_err(CE_WARN, "pool '%s' could not be "
3876 "loaded as it was last accessed by "
3877 "another system (host: %s hostid: 0x%llx). "
3878 "See: https://openzfs.github.io/openzfs-docs/msg/"
3879 "ZFS-8000-EY",
3880 spa_name(spa), hostname, (u_longlong_t)hostid);
3881 spa_load_failed(spa, "hostid verification failed: pool "
3882 "last accessed by host: %s (hostid: 0x%llx)",
3883 hostname, (u_longlong_t)hostid);
3884 return (SET_ERROR(EBADF));
3885 }
3886 }
3887
3888 return (0);
3889 }
3890
3891 static int
spa_ld_parse_config(spa_t * spa,spa_import_type_t type)3892 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3893 {
3894 int error = 0;
3895 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3896 int parse;
3897 vdev_t *rvd;
3898 uint64_t pool_guid;
3899 const char *comment;
3900 const char *compatibility;
3901
3902 /*
3903 * Versioning wasn't explicitly added to the label until later, so if
3904 * it's not present treat it as the initial version.
3905 */
3906 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3907 &spa->spa_ubsync.ub_version) != 0)
3908 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3909
3910 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3911 spa_load_failed(spa, "invalid config provided: '%s' missing",
3912 ZPOOL_CONFIG_POOL_GUID);
3913 return (SET_ERROR(EINVAL));
3914 }
3915
3916 /*
3917 * If we are doing an import, ensure that the pool is not already
3918 * imported by checking if its pool guid already exists in the
3919 * spa namespace.
3920 *
3921 * The only case that we allow an already imported pool to be
3922 * imported again, is when the pool is checkpointed and we want to
3923 * look at its checkpointed state from userland tools like zdb.
3924 */
3925 #ifdef _KERNEL
3926 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3927 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3928 spa_guid_exists(pool_guid, 0)) {
3929 #else
3930 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3931 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3932 spa_guid_exists(pool_guid, 0) &&
3933 !spa_importing_readonly_checkpoint(spa)) {
3934 #endif
3935 spa_load_failed(spa, "a pool with guid %llu is already open",
3936 (u_longlong_t)pool_guid);
3937 return (SET_ERROR(EEXIST));
3938 }
3939
3940 spa->spa_config_guid = pool_guid;
3941
3942 nvlist_free(spa->spa_load_info);
3943 spa->spa_load_info = fnvlist_alloc();
3944
3945 ASSERT(spa->spa_comment == NULL);
3946 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3947 spa->spa_comment = spa_strdup(comment);
3948
3949 ASSERT(spa->spa_compatibility == NULL);
3950 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3951 &compatibility) == 0)
3952 spa->spa_compatibility = spa_strdup(compatibility);
3953
3954 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3955 &spa->spa_config_txg);
3956
3957 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3958 spa->spa_config_splitting = fnvlist_dup(nvl);
3959
3960 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3961 spa_load_failed(spa, "invalid config provided: '%s' missing",
3962 ZPOOL_CONFIG_VDEV_TREE);
3963 return (SET_ERROR(EINVAL));
3964 }
3965
3966 /*
3967 * Create "The Godfather" zio to hold all async IOs
3968 */
3969 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3970 KM_SLEEP);
3971 for (int i = 0; i < max_ncpus; i++) {
3972 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3973 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3974 ZIO_FLAG_GODFATHER);
3975 }
3976
3977 /*
3978 * Parse the configuration into a vdev tree. We explicitly set the
3979 * value that will be returned by spa_version() since parsing the
3980 * configuration requires knowing the version number.
3981 */
3982 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3983 parse = (type == SPA_IMPORT_EXISTING ?
3984 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3985 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3986 spa_config_exit(spa, SCL_ALL, FTAG);
3987
3988 if (error != 0) {
3989 spa_load_failed(spa, "unable to parse config [error=%d]",
3990 error);
3991 return (error);
3992 }
3993
3994 ASSERT(spa->spa_root_vdev == rvd);
3995 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3996 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3997
3998 if (type != SPA_IMPORT_ASSEMBLE) {
3999 ASSERT(spa_guid(spa) == pool_guid);
4000 }
4001
4002 return (0);
4003 }
4004
4005 /*
4006 * Recursively open all vdevs in the vdev tree. This function is called twice:
4007 * first with the untrusted config, then with the trusted config.
4008 */
4009 static int
4010 spa_ld_open_vdevs(spa_t *spa)
4011 {
4012 int error = 0;
4013
4014 /*
4015 * spa_missing_tvds_allowed defines how many top-level vdevs can be
4016 * missing/unopenable for the root vdev to be still considered openable.
4017 */
4018 if (spa->spa_trust_config) {
4019 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
4020 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
4021 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
4022 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
4023 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
4024 } else {
4025 spa->spa_missing_tvds_allowed = 0;
4026 }
4027
4028 spa->spa_missing_tvds_allowed =
4029 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
4030
4031 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4032 error = vdev_open(spa->spa_root_vdev);
4033 spa_config_exit(spa, SCL_ALL, FTAG);
4034
4035 if (spa->spa_missing_tvds != 0) {
4036 spa_load_note(spa, "vdev tree has %lld missing top-level "
4037 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
4038 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
4039 /*
4040 * Although theoretically we could allow users to open
4041 * incomplete pools in RW mode, we'd need to add a lot
4042 * of extra logic (e.g. adjust pool space to account
4043 * for missing vdevs).
4044 * This limitation also prevents users from accidentally
4045 * opening the pool in RW mode during data recovery and
4046 * damaging it further.
4047 */
4048 spa_load_note(spa, "pools with missing top-level "
4049 "vdevs can only be opened in read-only mode.");
4050 error = SET_ERROR(ENXIO);
4051 } else {
4052 spa_load_note(spa, "current settings allow for maximum "
4053 "%lld missing top-level vdevs at this stage.",
4054 (u_longlong_t)spa->spa_missing_tvds_allowed);
4055 }
4056 }
4057 if (error != 0) {
4058 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
4059 error);
4060 }
4061 if (spa->spa_missing_tvds != 0 || error != 0)
4062 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
4063
4064 return (error);
4065 }
4066
4067 /*
4068 * We need to validate the vdev labels against the configuration that
4069 * we have in hand. This function is called twice: first with an untrusted
4070 * config, then with a trusted config. The validation is more strict when the
4071 * config is trusted.
4072 */
4073 static int
4074 spa_ld_validate_vdevs(spa_t *spa)
4075 {
4076 int error = 0;
4077 vdev_t *rvd = spa->spa_root_vdev;
4078
4079 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4080 error = vdev_validate(rvd);
4081 spa_config_exit(spa, SCL_ALL, FTAG);
4082
4083 if (error != 0) {
4084 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
4085 return (error);
4086 }
4087
4088 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
4089 spa_load_failed(spa, "cannot open vdev tree after invalidating "
4090 "some vdevs");
4091 vdev_dbgmsg_print_tree(rvd, 2);
4092 return (SET_ERROR(ENXIO));
4093 }
4094
4095 return (0);
4096 }
4097
4098 static void
4099 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
4100 {
4101 spa->spa_state = POOL_STATE_ACTIVE;
4102 spa->spa_ubsync = spa->spa_uberblock;
4103 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
4104 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
4105 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
4106 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
4107 spa->spa_claim_max_txg = spa->spa_first_txg;
4108 spa->spa_prev_software_version = ub->ub_software_version;
4109 }
4110
4111 static int
4112 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
4113 {
4114 vdev_t *rvd = spa->spa_root_vdev;
4115 nvlist_t *label;
4116 uberblock_t *ub = &spa->spa_uberblock;
4117 boolean_t activity_check = B_FALSE;
4118
4119 /*
4120 * If we are opening the checkpointed state of the pool by
4121 * rewinding to it, at this point we will have written the
4122 * checkpointed uberblock to the vdev labels, so searching
4123 * the labels will find the right uberblock. However, if
4124 * we are opening the checkpointed state read-only, we have
4125 * not modified the labels. Therefore, we must ignore the
4126 * labels and continue using the spa_uberblock that was set
4127 * by spa_ld_checkpoint_rewind.
4128 *
4129 * Note that it would be fine to ignore the labels when
4130 * rewinding (opening writeable) as well. However, if we
4131 * crash just after writing the labels, we will end up
4132 * searching the labels. Doing so in the common case means
4133 * that this code path gets exercised normally, rather than
4134 * just in the edge case.
4135 */
4136 if (ub->ub_checkpoint_txg != 0 &&
4137 spa_importing_readonly_checkpoint(spa)) {
4138 spa_ld_select_uberblock_done(spa, ub);
4139 return (0);
4140 }
4141
4142 /*
4143 * Find the best uberblock.
4144 */
4145 vdev_uberblock_load(rvd, ub, &label);
4146
4147 /*
4148 * If we weren't able to find a single valid uberblock, return failure.
4149 */
4150 if (ub->ub_txg == 0) {
4151 nvlist_free(label);
4152 spa_load_failed(spa, "no valid uberblock found");
4153 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
4154 }
4155
4156 if (spa->spa_load_max_txg != UINT64_MAX) {
4157 (void) spa_import_progress_set_max_txg(spa_guid(spa),
4158 (u_longlong_t)spa->spa_load_max_txg);
4159 }
4160 spa_load_note(spa, "using uberblock with txg=%llu",
4161 (u_longlong_t)ub->ub_txg);
4162 if (ub->ub_raidz_reflow_info != 0) {
4163 spa_load_note(spa, "uberblock raidz_reflow_info: "
4164 "state=%u offset=%llu",
4165 (int)RRSS_GET_STATE(ub),
4166 (u_longlong_t)RRSS_GET_OFFSET(ub));
4167 }
4168
4169
4170 /*
4171 * For pools which have the multihost property on determine if the
4172 * pool is truly inactive and can be safely imported. Prevent
4173 * hosts which don't have a hostid set from importing the pool.
4174 */
4175 activity_check = spa_activity_check_required(spa, ub, label,
4176 spa->spa_config);
4177 if (activity_check) {
4178 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
4179 spa_get_hostid(spa) == 0) {
4180 nvlist_free(label);
4181 fnvlist_add_uint64(spa->spa_load_info,
4182 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4183 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4184 }
4185
4186 int error =
4187 spa_activity_check(spa, ub, spa->spa_config, B_TRUE);
4188 if (error) {
4189 nvlist_free(label);
4190 return (error);
4191 }
4192
4193 fnvlist_add_uint64(spa->spa_load_info,
4194 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
4195 fnvlist_add_uint64(spa->spa_load_info,
4196 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
4197 fnvlist_add_uint16(spa->spa_load_info,
4198 ZPOOL_CONFIG_MMP_SEQ,
4199 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
4200 }
4201
4202 /*
4203 * If the pool has an unsupported version we can't open it.
4204 */
4205 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
4206 nvlist_free(label);
4207 spa_load_failed(spa, "version %llu is not supported",
4208 (u_longlong_t)ub->ub_version);
4209 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
4210 }
4211
4212 if (ub->ub_version >= SPA_VERSION_FEATURES) {
4213 nvlist_t *features;
4214
4215 /*
4216 * If we weren't able to find what's necessary for reading the
4217 * MOS in the label, return failure.
4218 */
4219 if (label == NULL) {
4220 spa_load_failed(spa, "label config unavailable");
4221 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4222 ENXIO));
4223 }
4224
4225 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
4226 &features) != 0) {
4227 nvlist_free(label);
4228 spa_load_failed(spa, "invalid label: '%s' missing",
4229 ZPOOL_CONFIG_FEATURES_FOR_READ);
4230 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4231 ENXIO));
4232 }
4233
4234 /*
4235 * Update our in-core representation with the definitive values
4236 * from the label.
4237 */
4238 nvlist_free(spa->spa_label_features);
4239 spa->spa_label_features = fnvlist_dup(features);
4240 }
4241
4242 nvlist_free(label);
4243
4244 /*
4245 * Look through entries in the label nvlist's features_for_read. If
4246 * there is a feature listed there which we don't understand then we
4247 * cannot open a pool.
4248 */
4249 if (ub->ub_version >= SPA_VERSION_FEATURES) {
4250 nvlist_t *unsup_feat;
4251
4252 unsup_feat = fnvlist_alloc();
4253
4254 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
4255 NULL); nvp != NULL;
4256 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
4257 if (!zfeature_is_supported(nvpair_name(nvp))) {
4258 fnvlist_add_string(unsup_feat,
4259 nvpair_name(nvp), "");
4260 }
4261 }
4262
4263 if (!nvlist_empty(unsup_feat)) {
4264 fnvlist_add_nvlist(spa->spa_load_info,
4265 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4266 nvlist_free(unsup_feat);
4267 spa_load_failed(spa, "some features are unsupported");
4268 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4269 ENOTSUP));
4270 }
4271
4272 nvlist_free(unsup_feat);
4273 }
4274
4275 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
4276 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4277 spa_try_repair(spa, spa->spa_config);
4278 spa_config_exit(spa, SCL_ALL, FTAG);
4279 nvlist_free(spa->spa_config_splitting);
4280 spa->spa_config_splitting = NULL;
4281 }
4282
4283 /*
4284 * Initialize internal SPA structures.
4285 */
4286 spa_ld_select_uberblock_done(spa, ub);
4287
4288 return (0);
4289 }
4290
4291 static int
4292 spa_ld_open_rootbp(spa_t *spa)
4293 {
4294 int error = 0;
4295 vdev_t *rvd = spa->spa_root_vdev;
4296
4297 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
4298 if (error != 0) {
4299 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
4300 "[error=%d]", error);
4301 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4302 }
4303 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
4304
4305 return (0);
4306 }
4307
4308 static int
4309 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
4310 boolean_t reloading)
4311 {
4312 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
4313 nvlist_t *nv, *mos_config, *policy;
4314 int error = 0, copy_error;
4315 uint64_t healthy_tvds, healthy_tvds_mos;
4316 uint64_t mos_config_txg;
4317
4318 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
4319 != 0)
4320 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4321
4322 /*
4323 * If we're assembling a pool from a split, the config provided is
4324 * already trusted so there is nothing to do.
4325 */
4326 if (type == SPA_IMPORT_ASSEMBLE)
4327 return (0);
4328
4329 healthy_tvds = spa_healthy_core_tvds(spa);
4330
4331 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
4332 != 0) {
4333 spa_load_failed(spa, "unable to retrieve MOS config");
4334 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4335 }
4336
4337 /*
4338 * If we are doing an open, pool owner wasn't verified yet, thus do
4339 * the verification here.
4340 */
4341 if (spa->spa_load_state == SPA_LOAD_OPEN) {
4342 error = spa_verify_host(spa, mos_config);
4343 if (error != 0) {
4344 nvlist_free(mos_config);
4345 return (error);
4346 }
4347 }
4348
4349 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
4350
4351 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4352
4353 /*
4354 * Build a new vdev tree from the trusted config
4355 */
4356 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
4357 if (error != 0) {
4358 nvlist_free(mos_config);
4359 spa_config_exit(spa, SCL_ALL, FTAG);
4360 spa_load_failed(spa, "spa_config_parse failed [error=%d]",
4361 error);
4362 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4363 }
4364
4365 /*
4366 * Vdev paths in the MOS may be obsolete. If the untrusted config was
4367 * obtained by scanning /dev/dsk, then it will have the right vdev
4368 * paths. We update the trusted MOS config with this information.
4369 * We first try to copy the paths with vdev_copy_path_strict, which
4370 * succeeds only when both configs have exactly the same vdev tree.
4371 * If that fails, we fall back to a more flexible method that has a
4372 * best effort policy.
4373 */
4374 copy_error = vdev_copy_path_strict(rvd, mrvd);
4375 if (copy_error != 0 || spa_load_print_vdev_tree) {
4376 spa_load_note(spa, "provided vdev tree:");
4377 vdev_dbgmsg_print_tree(rvd, 2);
4378 spa_load_note(spa, "MOS vdev tree:");
4379 vdev_dbgmsg_print_tree(mrvd, 2);
4380 }
4381 if (copy_error != 0) {
4382 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
4383 "back to vdev_copy_path_relaxed");
4384 vdev_copy_path_relaxed(rvd, mrvd);
4385 }
4386
4387 vdev_close(rvd);
4388 vdev_free(rvd);
4389 spa->spa_root_vdev = mrvd;
4390 rvd = mrvd;
4391 spa_config_exit(spa, SCL_ALL, FTAG);
4392
4393 /*
4394 * If 'zpool import' used a cached config, then the on-disk hostid and
4395 * hostname may be different to the cached config in ways that should
4396 * prevent import. Userspace can't discover this without a scan, but
4397 * we know, so we add these values to LOAD_INFO so the caller can know
4398 * the difference.
4399 *
4400 * Note that we have to do this before the config is regenerated,
4401 * because the new config will have the hostid and hostname for this
4402 * host, in readiness for import.
4403 */
4404 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
4405 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
4406 fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
4407 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
4408 fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
4409 fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
4410
4411 /*
4412 * We will use spa_config if we decide to reload the spa or if spa_load
4413 * fails and we rewind. We must thus regenerate the config using the
4414 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
4415 * pass settings on how to load the pool and is not stored in the MOS.
4416 * We copy it over to our new, trusted config.
4417 */
4418 mos_config_txg = fnvlist_lookup_uint64(mos_config,
4419 ZPOOL_CONFIG_POOL_TXG);
4420 nvlist_free(mos_config);
4421 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
4422 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
4423 &policy) == 0)
4424 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
4425 spa_config_set(spa, mos_config);
4426 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
4427
4428 /*
4429 * Now that we got the config from the MOS, we should be more strict
4430 * in checking blkptrs and can make assumptions about the consistency
4431 * of the vdev tree. spa_trust_config must be set to true before opening
4432 * vdevs in order for them to be writeable.
4433 */
4434 spa->spa_trust_config = B_TRUE;
4435
4436 /*
4437 * Open and validate the new vdev tree
4438 */
4439 error = spa_ld_open_vdevs(spa);
4440 if (error != 0)
4441 return (error);
4442
4443 error = spa_ld_validate_vdevs(spa);
4444 if (error != 0)
4445 return (error);
4446
4447 if (copy_error != 0 || spa_load_print_vdev_tree) {
4448 spa_load_note(spa, "final vdev tree:");
4449 vdev_dbgmsg_print_tree(rvd, 2);
4450 }
4451
4452 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
4453 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
4454 /*
4455 * Sanity check to make sure that we are indeed loading the
4456 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4457 * in the config provided and they happened to be the only ones
4458 * to have the latest uberblock, we could involuntarily perform
4459 * an extreme rewind.
4460 */
4461 healthy_tvds_mos = spa_healthy_core_tvds(spa);
4462 if (healthy_tvds_mos - healthy_tvds >=
4463 SPA_SYNC_MIN_VDEVS) {
4464 spa_load_note(spa, "config provided misses too many "
4465 "top-level vdevs compared to MOS (%lld vs %lld). ",
4466 (u_longlong_t)healthy_tvds,
4467 (u_longlong_t)healthy_tvds_mos);
4468 spa_load_note(spa, "vdev tree:");
4469 vdev_dbgmsg_print_tree(rvd, 2);
4470 if (reloading) {
4471 spa_load_failed(spa, "config was already "
4472 "provided from MOS. Aborting.");
4473 return (spa_vdev_err(rvd,
4474 VDEV_AUX_CORRUPT_DATA, EIO));
4475 }
4476 spa_load_note(spa, "spa must be reloaded using MOS "
4477 "config");
4478 return (SET_ERROR(EAGAIN));
4479 }
4480 }
4481
4482 error = spa_check_for_missing_logs(spa);
4483 if (error != 0)
4484 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4485
4486 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4487 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4488 "guid sum (%llu != %llu)",
4489 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4490 (u_longlong_t)rvd->vdev_guid_sum);
4491 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4492 ENXIO));
4493 }
4494
4495 return (0);
4496 }
4497
4498 static int
4499 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4500 {
4501 int error = 0;
4502 vdev_t *rvd = spa->spa_root_vdev;
4503
4504 /*
4505 * Everything that we read before spa_remove_init() must be stored
4506 * on concreted vdevs. Therefore we do this as early as possible.
4507 */
4508 error = spa_remove_init(spa);
4509 if (error != 0) {
4510 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4511 error);
4512 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4513 }
4514
4515 /*
4516 * Retrieve information needed to condense indirect vdev mappings.
4517 */
4518 error = spa_condense_init(spa);
4519 if (error != 0) {
4520 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4521 error);
4522 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4523 }
4524
4525 return (0);
4526 }
4527
4528 static int
4529 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4530 {
4531 int error = 0;
4532 vdev_t *rvd = spa->spa_root_vdev;
4533
4534 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4535 boolean_t missing_feat_read = B_FALSE;
4536 nvlist_t *unsup_feat, *enabled_feat;
4537
4538 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4539 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4540 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4541 }
4542
4543 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4544 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4545 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4546 }
4547
4548 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4549 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4550 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4551 }
4552
4553 enabled_feat = fnvlist_alloc();
4554 unsup_feat = fnvlist_alloc();
4555
4556 if (!spa_features_check(spa, B_FALSE,
4557 unsup_feat, enabled_feat))
4558 missing_feat_read = B_TRUE;
4559
4560 if (spa_writeable(spa) ||
4561 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4562 if (!spa_features_check(spa, B_TRUE,
4563 unsup_feat, enabled_feat)) {
4564 *missing_feat_writep = B_TRUE;
4565 }
4566 }
4567
4568 fnvlist_add_nvlist(spa->spa_load_info,
4569 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4570
4571 if (!nvlist_empty(unsup_feat)) {
4572 fnvlist_add_nvlist(spa->spa_load_info,
4573 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4574 }
4575
4576 fnvlist_free(enabled_feat);
4577 fnvlist_free(unsup_feat);
4578
4579 if (!missing_feat_read) {
4580 fnvlist_add_boolean(spa->spa_load_info,
4581 ZPOOL_CONFIG_CAN_RDONLY);
4582 }
4583
4584 /*
4585 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4586 * twofold: to determine whether the pool is available for
4587 * import in read-write mode and (if it is not) whether the
4588 * pool is available for import in read-only mode. If the pool
4589 * is available for import in read-write mode, it is displayed
4590 * as available in userland; if it is not available for import
4591 * in read-only mode, it is displayed as unavailable in
4592 * userland. If the pool is available for import in read-only
4593 * mode but not read-write mode, it is displayed as unavailable
4594 * in userland with a special note that the pool is actually
4595 * available for open in read-only mode.
4596 *
4597 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4598 * missing a feature for write, we must first determine whether
4599 * the pool can be opened read-only before returning to
4600 * userland in order to know whether to display the
4601 * abovementioned note.
4602 */
4603 if (missing_feat_read || (*missing_feat_writep &&
4604 spa_writeable(spa))) {
4605 spa_load_failed(spa, "pool uses unsupported features");
4606 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4607 ENOTSUP));
4608 }
4609
4610 /*
4611 * Load refcounts for ZFS features from disk into an in-memory
4612 * cache during SPA initialization.
4613 */
4614 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4615 uint64_t refcount;
4616
4617 error = feature_get_refcount_from_disk(spa,
4618 &spa_feature_table[i], &refcount);
4619 if (error == 0) {
4620 spa->spa_feat_refcount_cache[i] = refcount;
4621 } else if (error == ENOTSUP) {
4622 spa->spa_feat_refcount_cache[i] =
4623 SPA_FEATURE_DISABLED;
4624 } else {
4625 spa_load_failed(spa, "error getting refcount "
4626 "for feature %s [error=%d]",
4627 spa_feature_table[i].fi_guid, error);
4628 return (spa_vdev_err(rvd,
4629 VDEV_AUX_CORRUPT_DATA, EIO));
4630 }
4631 }
4632 }
4633
4634 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4635 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4636 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4637 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4638 }
4639
4640 /*
4641 * Encryption was added before bookmark_v2, even though bookmark_v2
4642 * is now a dependency. If this pool has encryption enabled without
4643 * bookmark_v2, trigger an errata message.
4644 */
4645 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4646 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4647 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4648 }
4649
4650 return (0);
4651 }
4652
4653 static int
4654 spa_ld_load_special_directories(spa_t *spa)
4655 {
4656 int error = 0;
4657 vdev_t *rvd = spa->spa_root_vdev;
4658
4659 spa->spa_is_initializing = B_TRUE;
4660 error = dsl_pool_open(spa->spa_dsl_pool);
4661 spa->spa_is_initializing = B_FALSE;
4662 if (error != 0) {
4663 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4664 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4665 }
4666
4667 return (0);
4668 }
4669
4670 static int
4671 spa_ld_get_props(spa_t *spa)
4672 {
4673 int error = 0;
4674 uint64_t obj;
4675 vdev_t *rvd = spa->spa_root_vdev;
4676
4677 /* Grab the checksum salt from the MOS. */
4678 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4679 DMU_POOL_CHECKSUM_SALT, 1,
4680 sizeof (spa->spa_cksum_salt.zcs_bytes),
4681 spa->spa_cksum_salt.zcs_bytes);
4682 if (error == ENOENT) {
4683 /* Generate a new salt for subsequent use */
4684 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4685 sizeof (spa->spa_cksum_salt.zcs_bytes));
4686 } else if (error != 0) {
4687 spa_load_failed(spa, "unable to retrieve checksum salt from "
4688 "MOS [error=%d]", error);
4689 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4690 }
4691
4692 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4693 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4694 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4695 if (error != 0) {
4696 spa_load_failed(spa, "error opening deferred-frees bpobj "
4697 "[error=%d]", error);
4698 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4699 }
4700
4701 /*
4702 * Load the bit that tells us to use the new accounting function
4703 * (raid-z deflation). If we have an older pool, this will not
4704 * be present.
4705 */
4706 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4707 if (error != 0 && error != ENOENT)
4708 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4709
4710 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4711 &spa->spa_creation_version, B_FALSE);
4712 if (error != 0 && error != ENOENT)
4713 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4714
4715 /*
4716 * Load the persistent error log. If we have an older pool, this will
4717 * not be present.
4718 */
4719 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4720 B_FALSE);
4721 if (error != 0 && error != ENOENT)
4722 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4723
4724 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4725 &spa->spa_errlog_scrub, B_FALSE);
4726 if (error != 0 && error != ENOENT)
4727 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4728
4729 /*
4730 * Load the livelist deletion field. If a livelist is queued for
4731 * deletion, indicate that in the spa
4732 */
4733 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4734 &spa->spa_livelists_to_delete, B_FALSE);
4735 if (error != 0 && error != ENOENT)
4736 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4737
4738 /*
4739 * Load the history object. If we have an older pool, this
4740 * will not be present.
4741 */
4742 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4743 if (error != 0 && error != ENOENT)
4744 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4745
4746 /*
4747 * Load the per-vdev ZAP map. If we have an older pool, this will not
4748 * be present; in this case, defer its creation to a later time to
4749 * avoid dirtying the MOS this early / out of sync context. See
4750 * spa_sync_config_object.
4751 */
4752
4753 /* The sentinel is only available in the MOS config. */
4754 nvlist_t *mos_config;
4755 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4756 spa_load_failed(spa, "unable to retrieve MOS config");
4757 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4758 }
4759
4760 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4761 &spa->spa_all_vdev_zaps, B_FALSE);
4762
4763 if (error == ENOENT) {
4764 VERIFY(!nvlist_exists(mos_config,
4765 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4766 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4767 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4768 } else if (error != 0) {
4769 nvlist_free(mos_config);
4770 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4771 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4772 /*
4773 * An older version of ZFS overwrote the sentinel value, so
4774 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4775 * destruction to later; see spa_sync_config_object.
4776 */
4777 spa->spa_avz_action = AVZ_ACTION_DESTROY;
4778 /*
4779 * We're assuming that no vdevs have had their ZAPs created
4780 * before this. Better be sure of it.
4781 */
4782 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4783 }
4784 nvlist_free(mos_config);
4785
4786 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4787
4788 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4789 B_FALSE);
4790 if (error && error != ENOENT)
4791 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4792
4793 if (error == 0) {
4794 uint64_t autoreplace = 0;
4795
4796 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4797 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4798 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4799 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4800 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4801 spa_prop_find(spa, ZPOOL_PROP_DEDUP_TABLE_QUOTA,
4802 &spa->spa_dedup_table_quota);
4803 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4804 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4805 spa->spa_autoreplace = (autoreplace != 0);
4806 }
4807
4808 /*
4809 * If we are importing a pool with missing top-level vdevs,
4810 * we enforce that the pool doesn't panic or get suspended on
4811 * error since the likelihood of missing data is extremely high.
4812 */
4813 if (spa->spa_missing_tvds > 0 &&
4814 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4815 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4816 spa_load_note(spa, "forcing failmode to 'continue' "
4817 "as some top level vdevs are missing");
4818 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4819 }
4820
4821 return (0);
4822 }
4823
4824 static int
4825 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4826 {
4827 int error = 0;
4828 vdev_t *rvd = spa->spa_root_vdev;
4829
4830 /*
4831 * If we're assembling the pool from the split-off vdevs of
4832 * an existing pool, we don't want to attach the spares & cache
4833 * devices.
4834 */
4835
4836 /*
4837 * Load any hot spares for this pool.
4838 */
4839 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4840 B_FALSE);
4841 if (error != 0 && error != ENOENT)
4842 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4843 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4844 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4845 if (load_nvlist(spa, spa->spa_spares.sav_object,
4846 &spa->spa_spares.sav_config) != 0) {
4847 spa_load_failed(spa, "error loading spares nvlist");
4848 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4849 }
4850
4851 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4852 spa_load_spares(spa);
4853 spa_config_exit(spa, SCL_ALL, FTAG);
4854 } else if (error == 0) {
4855 spa->spa_spares.sav_sync = B_TRUE;
4856 }
4857
4858 /*
4859 * Load any level 2 ARC devices for this pool.
4860 */
4861 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4862 &spa->spa_l2cache.sav_object, B_FALSE);
4863 if (error != 0 && error != ENOENT)
4864 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4865 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4866 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4867 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4868 &spa->spa_l2cache.sav_config) != 0) {
4869 spa_load_failed(spa, "error loading l2cache nvlist");
4870 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4871 }
4872
4873 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4874 spa_load_l2cache(spa);
4875 spa_config_exit(spa, SCL_ALL, FTAG);
4876 } else if (error == 0) {
4877 spa->spa_l2cache.sav_sync = B_TRUE;
4878 }
4879
4880 return (0);
4881 }
4882
4883 static int
4884 spa_ld_load_vdev_metadata(spa_t *spa)
4885 {
4886 int error = 0;
4887 vdev_t *rvd = spa->spa_root_vdev;
4888
4889 /*
4890 * If the 'multihost' property is set, then never allow a pool to
4891 * be imported when the system hostid is zero. The exception to
4892 * this rule is zdb which is always allowed to access pools.
4893 */
4894 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4895 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4896 fnvlist_add_uint64(spa->spa_load_info,
4897 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4898 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4899 }
4900
4901 /*
4902 * If the 'autoreplace' property is set, then post a resource notifying
4903 * the ZFS DE that it should not issue any faults for unopenable
4904 * devices. We also iterate over the vdevs, and post a sysevent for any
4905 * unopenable vdevs so that the normal autoreplace handler can take
4906 * over.
4907 */
4908 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4909 spa_check_removed(spa->spa_root_vdev);
4910 /*
4911 * For the import case, this is done in spa_import(), because
4912 * at this point we're using the spare definitions from
4913 * the MOS config, not necessarily from the userland config.
4914 */
4915 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4916 spa_aux_check_removed(&spa->spa_spares);
4917 spa_aux_check_removed(&spa->spa_l2cache);
4918 }
4919 }
4920
4921 /*
4922 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4923 */
4924 error = vdev_load(rvd);
4925 if (error != 0) {
4926 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4927 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4928 }
4929
4930 error = spa_ld_log_spacemaps(spa);
4931 if (error != 0) {
4932 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4933 error);
4934 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4935 }
4936
4937 /*
4938 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4939 */
4940 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4941 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4942 spa_config_exit(spa, SCL_ALL, FTAG);
4943
4944 return (0);
4945 }
4946
4947 static int
4948 spa_ld_load_dedup_tables(spa_t *spa)
4949 {
4950 int error = 0;
4951 vdev_t *rvd = spa->spa_root_vdev;
4952
4953 error = ddt_load(spa);
4954 if (error != 0) {
4955 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4956 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4957 }
4958
4959 return (0);
4960 }
4961
4962 static int
4963 spa_ld_load_brt(spa_t *spa)
4964 {
4965 int error = 0;
4966 vdev_t *rvd = spa->spa_root_vdev;
4967
4968 error = brt_load(spa);
4969 if (error != 0) {
4970 spa_load_failed(spa, "brt_load failed [error=%d]", error);
4971 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4972 }
4973
4974 return (0);
4975 }
4976
4977 static int
4978 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4979 {
4980 vdev_t *rvd = spa->spa_root_vdev;
4981
4982 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4983 boolean_t missing = spa_check_logs(spa);
4984 if (missing) {
4985 if (spa->spa_missing_tvds != 0) {
4986 spa_load_note(spa, "spa_check_logs failed "
4987 "so dropping the logs");
4988 } else {
4989 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4990 spa_load_failed(spa, "spa_check_logs failed");
4991 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4992 ENXIO));
4993 }
4994 }
4995 }
4996
4997 return (0);
4998 }
4999
5000 static int
5001 spa_ld_verify_pool_data(spa_t *spa)
5002 {
5003 int error = 0;
5004 vdev_t *rvd = spa->spa_root_vdev;
5005
5006 /*
5007 * We've successfully opened the pool, verify that we're ready
5008 * to start pushing transactions.
5009 */
5010 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
5011 error = spa_load_verify(spa);
5012 if (error != 0) {
5013 spa_load_failed(spa, "spa_load_verify failed "
5014 "[error=%d]", error);
5015 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
5016 error));
5017 }
5018 }
5019
5020 return (0);
5021 }
5022
5023 static void
5024 spa_ld_claim_log_blocks(spa_t *spa)
5025 {
5026 dmu_tx_t *tx;
5027 dsl_pool_t *dp = spa_get_dsl(spa);
5028
5029 /*
5030 * Claim log blocks that haven't been committed yet.
5031 * This must all happen in a single txg.
5032 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
5033 * invoked from zil_claim_log_block()'s i/o done callback.
5034 * Price of rollback is that we abandon the log.
5035 */
5036 spa->spa_claiming = B_TRUE;
5037
5038 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
5039 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
5040 zil_claim, tx, DS_FIND_CHILDREN);
5041 dmu_tx_commit(tx);
5042
5043 spa->spa_claiming = B_FALSE;
5044
5045 spa_set_log_state(spa, SPA_LOG_GOOD);
5046 }
5047
5048 static void
5049 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
5050 boolean_t update_config_cache)
5051 {
5052 vdev_t *rvd = spa->spa_root_vdev;
5053 int need_update = B_FALSE;
5054
5055 /*
5056 * If the config cache is stale, or we have uninitialized
5057 * metaslabs (see spa_vdev_add()), then update the config.
5058 *
5059 * If this is a verbatim import, trust the current
5060 * in-core spa_config and update the disk labels.
5061 */
5062 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
5063 spa->spa_load_state == SPA_LOAD_IMPORT ||
5064 spa->spa_load_state == SPA_LOAD_RECOVER ||
5065 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
5066 need_update = B_TRUE;
5067
5068 for (int c = 0; c < rvd->vdev_children; c++)
5069 if (rvd->vdev_child[c]->vdev_ms_array == 0)
5070 need_update = B_TRUE;
5071
5072 /*
5073 * Update the config cache asynchronously in case we're the
5074 * root pool, in which case the config cache isn't writable yet.
5075 */
5076 if (need_update)
5077 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
5078 }
5079
5080 static void
5081 spa_ld_prepare_for_reload(spa_t *spa)
5082 {
5083 spa_mode_t mode = spa->spa_mode;
5084 int async_suspended = spa->spa_async_suspended;
5085
5086 spa_unload(spa);
5087 spa_deactivate(spa);
5088 spa_activate(spa, mode);
5089
5090 /*
5091 * We save the value of spa_async_suspended as it gets reset to 0 by
5092 * spa_unload(). We want to restore it back to the original value before
5093 * returning as we might be calling spa_async_resume() later.
5094 */
5095 spa->spa_async_suspended = async_suspended;
5096 }
5097
5098 static int
5099 spa_ld_read_checkpoint_txg(spa_t *spa)
5100 {
5101 uberblock_t checkpoint;
5102 int error = 0;
5103
5104 ASSERT0(spa->spa_checkpoint_txg);
5105 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
5106 spa->spa_load_thread == curthread);
5107
5108 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5109 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5110 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5111
5112 if (error == ENOENT)
5113 return (0);
5114
5115 if (error != 0)
5116 return (error);
5117
5118 ASSERT3U(checkpoint.ub_txg, !=, 0);
5119 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
5120 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
5121 spa->spa_checkpoint_txg = checkpoint.ub_txg;
5122 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
5123
5124 return (0);
5125 }
5126
5127 static int
5128 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
5129 {
5130 int error = 0;
5131
5132 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5133 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5134
5135 /*
5136 * Never trust the config that is provided unless we are assembling
5137 * a pool following a split.
5138 * This means don't trust blkptrs and the vdev tree in general. This
5139 * also effectively puts the spa in read-only mode since
5140 * spa_writeable() checks for spa_trust_config to be true.
5141 * We will later load a trusted config from the MOS.
5142 */
5143 if (type != SPA_IMPORT_ASSEMBLE)
5144 spa->spa_trust_config = B_FALSE;
5145
5146 /*
5147 * Parse the config provided to create a vdev tree.
5148 */
5149 error = spa_ld_parse_config(spa, type);
5150 if (error != 0)
5151 return (error);
5152
5153 spa_import_progress_add(spa);
5154
5155 /*
5156 * Now that we have the vdev tree, try to open each vdev. This involves
5157 * opening the underlying physical device, retrieving its geometry and
5158 * probing the vdev with a dummy I/O. The state of each vdev will be set
5159 * based on the success of those operations. After this we'll be ready
5160 * to read from the vdevs.
5161 */
5162 error = spa_ld_open_vdevs(spa);
5163 if (error != 0)
5164 return (error);
5165
5166 /*
5167 * Read the label of each vdev and make sure that the GUIDs stored
5168 * there match the GUIDs in the config provided.
5169 * If we're assembling a new pool that's been split off from an
5170 * existing pool, the labels haven't yet been updated so we skip
5171 * validation for now.
5172 */
5173 if (type != SPA_IMPORT_ASSEMBLE) {
5174 error = spa_ld_validate_vdevs(spa);
5175 if (error != 0)
5176 return (error);
5177 }
5178
5179 /*
5180 * Read all vdev labels to find the best uberblock (i.e. latest,
5181 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
5182 * get the list of features required to read blkptrs in the MOS from
5183 * the vdev label with the best uberblock and verify that our version
5184 * of zfs supports them all.
5185 */
5186 error = spa_ld_select_uberblock(spa, type);
5187 if (error != 0)
5188 return (error);
5189
5190 /*
5191 * Pass that uberblock to the dsl_pool layer which will open the root
5192 * blkptr. This blkptr points to the latest version of the MOS and will
5193 * allow us to read its contents.
5194 */
5195 error = spa_ld_open_rootbp(spa);
5196 if (error != 0)
5197 return (error);
5198
5199 return (0);
5200 }
5201
5202 static int
5203 spa_ld_checkpoint_rewind(spa_t *spa)
5204 {
5205 uberblock_t checkpoint;
5206 int error = 0;
5207
5208 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5209 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5210
5211 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5212 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5213 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5214
5215 if (error != 0) {
5216 spa_load_failed(spa, "unable to retrieve checkpointed "
5217 "uberblock from the MOS config [error=%d]", error);
5218
5219 if (error == ENOENT)
5220 error = ZFS_ERR_NO_CHECKPOINT;
5221
5222 return (error);
5223 }
5224
5225 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
5226 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
5227
5228 /*
5229 * We need to update the txg and timestamp of the checkpointed
5230 * uberblock to be higher than the latest one. This ensures that
5231 * the checkpointed uberblock is selected if we were to close and
5232 * reopen the pool right after we've written it in the vdev labels.
5233 * (also see block comment in vdev_uberblock_compare)
5234 */
5235 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
5236 checkpoint.ub_timestamp = gethrestime_sec();
5237
5238 /*
5239 * Set current uberblock to be the checkpointed uberblock.
5240 */
5241 spa->spa_uberblock = checkpoint;
5242
5243 /*
5244 * If we are doing a normal rewind, then the pool is open for
5245 * writing and we sync the "updated" checkpointed uberblock to
5246 * disk. Once this is done, we've basically rewound the whole
5247 * pool and there is no way back.
5248 *
5249 * There are cases when we don't want to attempt and sync the
5250 * checkpointed uberblock to disk because we are opening a
5251 * pool as read-only. Specifically, verifying the checkpointed
5252 * state with zdb, and importing the checkpointed state to get
5253 * a "preview" of its content.
5254 */
5255 if (spa_writeable(spa)) {
5256 vdev_t *rvd = spa->spa_root_vdev;
5257
5258 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5259 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
5260 int svdcount = 0;
5261 int children = rvd->vdev_children;
5262 int c0 = random_in_range(children);
5263
5264 for (int c = 0; c < children; c++) {
5265 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
5266
5267 /* Stop when revisiting the first vdev */
5268 if (c > 0 && svd[0] == vd)
5269 break;
5270
5271 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
5272 !vdev_is_concrete(vd))
5273 continue;
5274
5275 svd[svdcount++] = vd;
5276 if (svdcount == SPA_SYNC_MIN_VDEVS)
5277 break;
5278 }
5279 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
5280 if (error == 0)
5281 spa->spa_last_synced_guid = rvd->vdev_guid;
5282 spa_config_exit(spa, SCL_ALL, FTAG);
5283
5284 if (error != 0) {
5285 spa_load_failed(spa, "failed to write checkpointed "
5286 "uberblock to the vdev labels [error=%d]", error);
5287 return (error);
5288 }
5289 }
5290
5291 return (0);
5292 }
5293
5294 static int
5295 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
5296 boolean_t *update_config_cache)
5297 {
5298 int error;
5299
5300 /*
5301 * Parse the config for pool, open and validate vdevs,
5302 * select an uberblock, and use that uberblock to open
5303 * the MOS.
5304 */
5305 error = spa_ld_mos_init(spa, type);
5306 if (error != 0)
5307 return (error);
5308
5309 /*
5310 * Retrieve the trusted config stored in the MOS and use it to create
5311 * a new, exact version of the vdev tree, then reopen all vdevs.
5312 */
5313 error = spa_ld_trusted_config(spa, type, B_FALSE);
5314 if (error == EAGAIN) {
5315 if (update_config_cache != NULL)
5316 *update_config_cache = B_TRUE;
5317
5318 /*
5319 * Redo the loading process with the trusted config if it is
5320 * too different from the untrusted config.
5321 */
5322 spa_ld_prepare_for_reload(spa);
5323 spa_load_note(spa, "RELOADING");
5324 error = spa_ld_mos_init(spa, type);
5325 if (error != 0)
5326 return (error);
5327
5328 error = spa_ld_trusted_config(spa, type, B_TRUE);
5329 if (error != 0)
5330 return (error);
5331
5332 } else if (error != 0) {
5333 return (error);
5334 }
5335
5336 return (0);
5337 }
5338
5339 /*
5340 * Load an existing storage pool, using the config provided. This config
5341 * describes which vdevs are part of the pool and is later validated against
5342 * partial configs present in each vdev's label and an entire copy of the
5343 * config stored in the MOS.
5344 */
5345 static int
5346 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
5347 {
5348 int error = 0;
5349 boolean_t missing_feat_write = B_FALSE;
5350 boolean_t checkpoint_rewind =
5351 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5352 boolean_t update_config_cache = B_FALSE;
5353 hrtime_t load_start = gethrtime();
5354
5355 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5356 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5357
5358 spa_load_note(spa, "LOADING");
5359
5360 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
5361 if (error != 0)
5362 return (error);
5363
5364 /*
5365 * If we are rewinding to the checkpoint then we need to repeat
5366 * everything we've done so far in this function but this time
5367 * selecting the checkpointed uberblock and using that to open
5368 * the MOS.
5369 */
5370 if (checkpoint_rewind) {
5371 /*
5372 * If we are rewinding to the checkpoint update config cache
5373 * anyway.
5374 */
5375 update_config_cache = B_TRUE;
5376
5377 /*
5378 * Extract the checkpointed uberblock from the current MOS
5379 * and use this as the pool's uberblock from now on. If the
5380 * pool is imported as writeable we also write the checkpoint
5381 * uberblock to the labels, making the rewind permanent.
5382 */
5383 error = spa_ld_checkpoint_rewind(spa);
5384 if (error != 0)
5385 return (error);
5386
5387 /*
5388 * Redo the loading process again with the
5389 * checkpointed uberblock.
5390 */
5391 spa_ld_prepare_for_reload(spa);
5392 spa_load_note(spa, "LOADING checkpointed uberblock");
5393 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
5394 if (error != 0)
5395 return (error);
5396 }
5397
5398 /*
5399 * Drop the namespace lock for the rest of the function.
5400 */
5401 spa->spa_load_thread = curthread;
5402 mutex_exit(&spa_namespace_lock);
5403
5404 /*
5405 * Retrieve the checkpoint txg if the pool has a checkpoint.
5406 */
5407 spa_import_progress_set_notes(spa, "Loading checkpoint txg");
5408 error = spa_ld_read_checkpoint_txg(spa);
5409 if (error != 0)
5410 goto fail;
5411
5412 /*
5413 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
5414 * from the pool and their contents were re-mapped to other vdevs. Note
5415 * that everything that we read before this step must have been
5416 * rewritten on concrete vdevs after the last device removal was
5417 * initiated. Otherwise we could be reading from indirect vdevs before
5418 * we have loaded their mappings.
5419 */
5420 spa_import_progress_set_notes(spa, "Loading indirect vdev metadata");
5421 error = spa_ld_open_indirect_vdev_metadata(spa);
5422 if (error != 0)
5423 goto fail;
5424
5425 /*
5426 * Retrieve the full list of active features from the MOS and check if
5427 * they are all supported.
5428 */
5429 spa_import_progress_set_notes(spa, "Checking feature flags");
5430 error = spa_ld_check_features(spa, &missing_feat_write);
5431 if (error != 0)
5432 goto fail;
5433
5434 /*
5435 * Load several special directories from the MOS needed by the dsl_pool
5436 * layer.
5437 */
5438 spa_import_progress_set_notes(spa, "Loading special MOS directories");
5439 error = spa_ld_load_special_directories(spa);
5440 if (error != 0)
5441 goto fail;
5442
5443 /*
5444 * Retrieve pool properties from the MOS.
5445 */
5446 spa_import_progress_set_notes(spa, "Loading properties");
5447 error = spa_ld_get_props(spa);
5448 if (error != 0)
5449 goto fail;
5450
5451 /*
5452 * Retrieve the list of auxiliary devices - cache devices and spares -
5453 * and open them.
5454 */
5455 spa_import_progress_set_notes(spa, "Loading AUX vdevs");
5456 error = spa_ld_open_aux_vdevs(spa, type);
5457 if (error != 0)
5458 goto fail;
5459
5460 /*
5461 * Load the metadata for all vdevs. Also check if unopenable devices
5462 * should be autoreplaced.
5463 */
5464 spa_import_progress_set_notes(spa, "Loading vdev metadata");
5465 error = spa_ld_load_vdev_metadata(spa);
5466 if (error != 0)
5467 goto fail;
5468
5469 spa_import_progress_set_notes(spa, "Loading dedup tables");
5470 error = spa_ld_load_dedup_tables(spa);
5471 if (error != 0)
5472 goto fail;
5473
5474 spa_import_progress_set_notes(spa, "Loading BRT");
5475 error = spa_ld_load_brt(spa);
5476 if (error != 0)
5477 goto fail;
5478
5479 /*
5480 * Verify the logs now to make sure we don't have any unexpected errors
5481 * when we claim log blocks later.
5482 */
5483 spa_import_progress_set_notes(spa, "Verifying Log Devices");
5484 error = spa_ld_verify_logs(spa, type, ereport);
5485 if (error != 0)
5486 goto fail;
5487
5488 if (missing_feat_write) {
5489 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5490
5491 /*
5492 * At this point, we know that we can open the pool in
5493 * read-only mode but not read-write mode. We now have enough
5494 * information and can return to userland.
5495 */
5496 error = spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5497 ENOTSUP);
5498 goto fail;
5499 }
5500
5501 /*
5502 * Traverse the last txgs to make sure the pool was left off in a safe
5503 * state. When performing an extreme rewind, we verify the whole pool,
5504 * which can take a very long time.
5505 */
5506 spa_import_progress_set_notes(spa, "Verifying pool data");
5507 error = spa_ld_verify_pool_data(spa);
5508 if (error != 0)
5509 goto fail;
5510
5511 /*
5512 * Calculate the deflated space for the pool. This must be done before
5513 * we write anything to the pool because we'd need to update the space
5514 * accounting using the deflated sizes.
5515 */
5516 spa_import_progress_set_notes(spa, "Calculating deflated space");
5517 spa_update_dspace(spa);
5518
5519 /*
5520 * We have now retrieved all the information we needed to open the
5521 * pool. If we are importing the pool in read-write mode, a few
5522 * additional steps must be performed to finish the import.
5523 */
5524 spa_import_progress_set_notes(spa, "Starting import");
5525 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5526 spa->spa_load_max_txg == UINT64_MAX)) {
5527 uint64_t config_cache_txg = spa->spa_config_txg;
5528
5529 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5530
5531 /*
5532 * Before we do any zio_write's, complete the raidz expansion
5533 * scratch space copying, if necessary.
5534 */
5535 if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID)
5536 vdev_raidz_reflow_copy_scratch(spa);
5537
5538 /*
5539 * In case of a checkpoint rewind, log the original txg
5540 * of the checkpointed uberblock.
5541 */
5542 if (checkpoint_rewind) {
5543 spa_history_log_internal(spa, "checkpoint rewind",
5544 NULL, "rewound state to txg=%llu",
5545 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5546 }
5547
5548 spa_import_progress_set_notes(spa, "Claiming ZIL blocks");
5549 /*
5550 * Traverse the ZIL and claim all blocks.
5551 */
5552 spa_ld_claim_log_blocks(spa);
5553
5554 /*
5555 * Kick-off the syncing thread.
5556 */
5557 spa->spa_sync_on = B_TRUE;
5558 txg_sync_start(spa->spa_dsl_pool);
5559 mmp_thread_start(spa);
5560
5561 /*
5562 * Wait for all claims to sync. We sync up to the highest
5563 * claimed log block birth time so that claimed log blocks
5564 * don't appear to be from the future. spa_claim_max_txg
5565 * will have been set for us by ZIL traversal operations
5566 * performed above.
5567 */
5568 spa_import_progress_set_notes(spa, "Syncing ZIL claims");
5569 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5570
5571 /*
5572 * Check if we need to request an update of the config. On the
5573 * next sync, we would update the config stored in vdev labels
5574 * and the cachefile (by default /etc/zfs/zpool.cache).
5575 */
5576 spa_import_progress_set_notes(spa, "Updating configs");
5577 spa_ld_check_for_config_update(spa, config_cache_txg,
5578 update_config_cache);
5579
5580 /*
5581 * Check if a rebuild was in progress and if so resume it.
5582 * Then check all DTLs to see if anything needs resilvering.
5583 * The resilver will be deferred if a rebuild was started.
5584 */
5585 spa_import_progress_set_notes(spa, "Starting resilvers");
5586 if (vdev_rebuild_active(spa->spa_root_vdev)) {
5587 vdev_rebuild_restart(spa);
5588 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5589 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5590 spa_async_request(spa, SPA_ASYNC_RESILVER);
5591 }
5592
5593 /*
5594 * Log the fact that we booted up (so that we can detect if
5595 * we rebooted in the middle of an operation).
5596 */
5597 spa_history_log_version(spa, "open", NULL);
5598
5599 spa_import_progress_set_notes(spa,
5600 "Restarting device removals");
5601 spa_restart_removal(spa);
5602 spa_spawn_aux_threads(spa);
5603
5604 /*
5605 * Delete any inconsistent datasets.
5606 *
5607 * Note:
5608 * Since we may be issuing deletes for clones here,
5609 * we make sure to do so after we've spawned all the
5610 * auxiliary threads above (from which the livelist
5611 * deletion zthr is part of).
5612 */
5613 spa_import_progress_set_notes(spa,
5614 "Cleaning up inconsistent objsets");
5615 (void) dmu_objset_find(spa_name(spa),
5616 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5617
5618 /*
5619 * Clean up any stale temporary dataset userrefs.
5620 */
5621 spa_import_progress_set_notes(spa,
5622 "Cleaning up temporary userrefs");
5623 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5624
5625 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5626 spa_import_progress_set_notes(spa, "Restarting initialize");
5627 vdev_initialize_restart(spa->spa_root_vdev);
5628 spa_import_progress_set_notes(spa, "Restarting TRIM");
5629 vdev_trim_restart(spa->spa_root_vdev);
5630 vdev_autotrim_restart(spa);
5631 spa_config_exit(spa, SCL_CONFIG, FTAG);
5632 spa_import_progress_set_notes(spa, "Finished importing");
5633 }
5634 zio_handle_import_delay(spa, gethrtime() - load_start);
5635
5636 spa_import_progress_remove(spa_guid(spa));
5637 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5638
5639 spa_load_note(spa, "LOADED");
5640 fail:
5641 mutex_enter(&spa_namespace_lock);
5642 spa->spa_load_thread = NULL;
5643 cv_broadcast(&spa_namespace_cv);
5644
5645 return (error);
5646
5647 }
5648
5649 static int
5650 spa_load_retry(spa_t *spa, spa_load_state_t state)
5651 {
5652 spa_mode_t mode = spa->spa_mode;
5653
5654 spa_unload(spa);
5655 spa_deactivate(spa);
5656
5657 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5658
5659 spa_activate(spa, mode);
5660 spa_async_suspend(spa);
5661
5662 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5663 (u_longlong_t)spa->spa_load_max_txg);
5664
5665 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5666 }
5667
5668 /*
5669 * If spa_load() fails this function will try loading prior txg's. If
5670 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5671 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5672 * function will not rewind the pool and will return the same error as
5673 * spa_load().
5674 */
5675 static int
5676 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5677 int rewind_flags)
5678 {
5679 nvlist_t *loadinfo = NULL;
5680 nvlist_t *config = NULL;
5681 int load_error, rewind_error;
5682 uint64_t safe_rewind_txg;
5683 uint64_t min_txg;
5684
5685 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5686 spa->spa_load_max_txg = spa->spa_load_txg;
5687 spa_set_log_state(spa, SPA_LOG_CLEAR);
5688 } else {
5689 spa->spa_load_max_txg = max_request;
5690 if (max_request != UINT64_MAX)
5691 spa->spa_extreme_rewind = B_TRUE;
5692 }
5693
5694 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5695 if (load_error == 0)
5696 return (0);
5697 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5698 /*
5699 * When attempting checkpoint-rewind on a pool with no
5700 * checkpoint, we should not attempt to load uberblocks
5701 * from previous txgs when spa_load fails.
5702 */
5703 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5704 spa_import_progress_remove(spa_guid(spa));
5705 return (load_error);
5706 }
5707
5708 if (spa->spa_root_vdev != NULL)
5709 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5710
5711 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5712 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5713
5714 if (rewind_flags & ZPOOL_NEVER_REWIND) {
5715 nvlist_free(config);
5716 spa_import_progress_remove(spa_guid(spa));
5717 return (load_error);
5718 }
5719
5720 if (state == SPA_LOAD_RECOVER) {
5721 /* Price of rolling back is discarding txgs, including log */
5722 spa_set_log_state(spa, SPA_LOG_CLEAR);
5723 } else {
5724 /*
5725 * If we aren't rolling back save the load info from our first
5726 * import attempt so that we can restore it after attempting
5727 * to rewind.
5728 */
5729 loadinfo = spa->spa_load_info;
5730 spa->spa_load_info = fnvlist_alloc();
5731 }
5732
5733 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5734 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5735 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5736 TXG_INITIAL : safe_rewind_txg;
5737
5738 /*
5739 * Continue as long as we're finding errors, we're still within
5740 * the acceptable rewind range, and we're still finding uberblocks
5741 */
5742 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5743 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5744 if (spa->spa_load_max_txg < safe_rewind_txg)
5745 spa->spa_extreme_rewind = B_TRUE;
5746 rewind_error = spa_load_retry(spa, state);
5747 }
5748
5749 spa->spa_extreme_rewind = B_FALSE;
5750 spa->spa_load_max_txg = UINT64_MAX;
5751
5752 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5753 spa_config_set(spa, config);
5754 else
5755 nvlist_free(config);
5756
5757 if (state == SPA_LOAD_RECOVER) {
5758 ASSERT3P(loadinfo, ==, NULL);
5759 spa_import_progress_remove(spa_guid(spa));
5760 return (rewind_error);
5761 } else {
5762 /* Store the rewind info as part of the initial load info */
5763 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5764 spa->spa_load_info);
5765
5766 /* Restore the initial load info */
5767 fnvlist_free(spa->spa_load_info);
5768 spa->spa_load_info = loadinfo;
5769
5770 spa_import_progress_remove(spa_guid(spa));
5771 return (load_error);
5772 }
5773 }
5774
5775 /*
5776 * Pool Open/Import
5777 *
5778 * The import case is identical to an open except that the configuration is sent
5779 * down from userland, instead of grabbed from the configuration cache. For the
5780 * case of an open, the pool configuration will exist in the
5781 * POOL_STATE_UNINITIALIZED state.
5782 *
5783 * The stats information (gen/count/ustats) is used to gather vdev statistics at
5784 * the same time open the pool, without having to keep around the spa_t in some
5785 * ambiguous state.
5786 */
5787 static int
5788 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5789 nvlist_t *nvpolicy, nvlist_t **config)
5790 {
5791 spa_t *spa;
5792 spa_load_state_t state = SPA_LOAD_OPEN;
5793 int error;
5794 int locked = B_FALSE;
5795 int firstopen = B_FALSE;
5796
5797 *spapp = NULL;
5798
5799 /*
5800 * As disgusting as this is, we need to support recursive calls to this
5801 * function because dsl_dir_open() is called during spa_load(), and ends
5802 * up calling spa_open() again. The real fix is to figure out how to
5803 * avoid dsl_dir_open() calling this in the first place.
5804 */
5805 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5806 mutex_enter(&spa_namespace_lock);
5807 locked = B_TRUE;
5808 }
5809
5810 if ((spa = spa_lookup(pool)) == NULL) {
5811 if (locked)
5812 mutex_exit(&spa_namespace_lock);
5813 return (SET_ERROR(ENOENT));
5814 }
5815
5816 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5817 zpool_load_policy_t policy;
5818
5819 firstopen = B_TRUE;
5820
5821 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5822 &policy);
5823 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5824 state = SPA_LOAD_RECOVER;
5825
5826 spa_activate(spa, spa_mode_global);
5827
5828 if (state != SPA_LOAD_RECOVER)
5829 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5830 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5831
5832 zfs_dbgmsg("spa_open_common: opening %s", pool);
5833 error = spa_load_best(spa, state, policy.zlp_txg,
5834 policy.zlp_rewind);
5835
5836 if (error == EBADF) {
5837 /*
5838 * If vdev_validate() returns failure (indicated by
5839 * EBADF), it indicates that one of the vdevs indicates
5840 * that the pool has been exported or destroyed. If
5841 * this is the case, the config cache is out of sync and
5842 * we should remove the pool from the namespace.
5843 */
5844 spa_unload(spa);
5845 spa_deactivate(spa);
5846 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5847 spa_remove(spa);
5848 if (locked)
5849 mutex_exit(&spa_namespace_lock);
5850 return (SET_ERROR(ENOENT));
5851 }
5852
5853 if (error) {
5854 /*
5855 * We can't open the pool, but we still have useful
5856 * information: the state of each vdev after the
5857 * attempted vdev_open(). Return this to the user.
5858 */
5859 if (config != NULL && spa->spa_config) {
5860 *config = fnvlist_dup(spa->spa_config);
5861 fnvlist_add_nvlist(*config,
5862 ZPOOL_CONFIG_LOAD_INFO,
5863 spa->spa_load_info);
5864 }
5865 spa_unload(spa);
5866 spa_deactivate(spa);
5867 spa->spa_last_open_failed = error;
5868 if (locked)
5869 mutex_exit(&spa_namespace_lock);
5870 *spapp = NULL;
5871 return (error);
5872 }
5873 }
5874
5875 spa_open_ref(spa, tag);
5876
5877 if (config != NULL)
5878 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5879
5880 /*
5881 * If we've recovered the pool, pass back any information we
5882 * gathered while doing the load.
5883 */
5884 if (state == SPA_LOAD_RECOVER && config != NULL) {
5885 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5886 spa->spa_load_info);
5887 }
5888
5889 if (locked) {
5890 spa->spa_last_open_failed = 0;
5891 spa->spa_last_ubsync_txg = 0;
5892 spa->spa_load_txg = 0;
5893 mutex_exit(&spa_namespace_lock);
5894 }
5895
5896 if (firstopen)
5897 zvol_create_minors_recursive(spa_name(spa));
5898
5899 *spapp = spa;
5900
5901 return (0);
5902 }
5903
5904 int
5905 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5906 nvlist_t *policy, nvlist_t **config)
5907 {
5908 return (spa_open_common(name, spapp, tag, policy, config));
5909 }
5910
5911 int
5912 spa_open(const char *name, spa_t **spapp, const void *tag)
5913 {
5914 return (spa_open_common(name, spapp, tag, NULL, NULL));
5915 }
5916
5917 /*
5918 * Lookup the given spa_t, incrementing the inject count in the process,
5919 * preventing it from being exported or destroyed.
5920 */
5921 spa_t *
5922 spa_inject_addref(char *name)
5923 {
5924 spa_t *spa;
5925
5926 mutex_enter(&spa_namespace_lock);
5927 if ((spa = spa_lookup(name)) == NULL) {
5928 mutex_exit(&spa_namespace_lock);
5929 return (NULL);
5930 }
5931 spa->spa_inject_ref++;
5932 mutex_exit(&spa_namespace_lock);
5933
5934 return (spa);
5935 }
5936
5937 void
5938 spa_inject_delref(spa_t *spa)
5939 {
5940 mutex_enter(&spa_namespace_lock);
5941 spa->spa_inject_ref--;
5942 mutex_exit(&spa_namespace_lock);
5943 }
5944
5945 /*
5946 * Add spares device information to the nvlist.
5947 */
5948 static void
5949 spa_add_spares(spa_t *spa, nvlist_t *config)
5950 {
5951 nvlist_t **spares;
5952 uint_t i, nspares;
5953 nvlist_t *nvroot;
5954 uint64_t guid;
5955 vdev_stat_t *vs;
5956 uint_t vsc;
5957 uint64_t pool;
5958
5959 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5960
5961 if (spa->spa_spares.sav_count == 0)
5962 return;
5963
5964 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5965 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5966 ZPOOL_CONFIG_SPARES, &spares, &nspares));
5967 if (nspares != 0) {
5968 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5969 (const nvlist_t * const *)spares, nspares);
5970 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5971 &spares, &nspares));
5972
5973 /*
5974 * Go through and find any spares which have since been
5975 * repurposed as an active spare. If this is the case, update
5976 * their status appropriately.
5977 */
5978 for (i = 0; i < nspares; i++) {
5979 guid = fnvlist_lookup_uint64(spares[i],
5980 ZPOOL_CONFIG_GUID);
5981 VERIFY0(nvlist_lookup_uint64_array(spares[i],
5982 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5983 if (spa_spare_exists(guid, &pool, NULL) &&
5984 pool != 0ULL) {
5985 vs->vs_state = VDEV_STATE_CANT_OPEN;
5986 vs->vs_aux = VDEV_AUX_SPARED;
5987 } else {
5988 vs->vs_state =
5989 spa->spa_spares.sav_vdevs[i]->vdev_state;
5990 }
5991 }
5992 }
5993 }
5994
5995 /*
5996 * Add l2cache device information to the nvlist, including vdev stats.
5997 */
5998 static void
5999 spa_add_l2cache(spa_t *spa, nvlist_t *config)
6000 {
6001 nvlist_t **l2cache;
6002 uint_t i, j, nl2cache;
6003 nvlist_t *nvroot;
6004 uint64_t guid;
6005 vdev_t *vd;
6006 vdev_stat_t *vs;
6007 uint_t vsc;
6008
6009 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6010
6011 if (spa->spa_l2cache.sav_count == 0)
6012 return;
6013
6014 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6015 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
6016 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
6017 if (nl2cache != 0) {
6018 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6019 (const nvlist_t * const *)l2cache, nl2cache);
6020 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6021 &l2cache, &nl2cache));
6022
6023 /*
6024 * Update level 2 cache device stats.
6025 */
6026
6027 for (i = 0; i < nl2cache; i++) {
6028 guid = fnvlist_lookup_uint64(l2cache[i],
6029 ZPOOL_CONFIG_GUID);
6030
6031 vd = NULL;
6032 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
6033 if (guid ==
6034 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
6035 vd = spa->spa_l2cache.sav_vdevs[j];
6036 break;
6037 }
6038 }
6039 ASSERT(vd != NULL);
6040
6041 VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
6042 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
6043 vdev_get_stats(vd, vs);
6044 vdev_config_generate_stats(vd, l2cache[i]);
6045
6046 }
6047 }
6048 }
6049
6050 static void
6051 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
6052 {
6053 zap_cursor_t zc;
6054 zap_attribute_t *za = zap_attribute_alloc();
6055
6056 if (spa->spa_feat_for_read_obj != 0) {
6057 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6058 spa->spa_feat_for_read_obj);
6059 zap_cursor_retrieve(&zc, za) == 0;
6060 zap_cursor_advance(&zc)) {
6061 ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6062 za->za_num_integers == 1);
6063 VERIFY0(nvlist_add_uint64(features, za->za_name,
6064 za->za_first_integer));
6065 }
6066 zap_cursor_fini(&zc);
6067 }
6068
6069 if (spa->spa_feat_for_write_obj != 0) {
6070 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6071 spa->spa_feat_for_write_obj);
6072 zap_cursor_retrieve(&zc, za) == 0;
6073 zap_cursor_advance(&zc)) {
6074 ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6075 za->za_num_integers == 1);
6076 VERIFY0(nvlist_add_uint64(features, za->za_name,
6077 za->za_first_integer));
6078 }
6079 zap_cursor_fini(&zc);
6080 }
6081 zap_attribute_free(za);
6082 }
6083
6084 static void
6085 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
6086 {
6087 int i;
6088
6089 for (i = 0; i < SPA_FEATURES; i++) {
6090 zfeature_info_t feature = spa_feature_table[i];
6091 uint64_t refcount;
6092
6093 if (feature_get_refcount(spa, &feature, &refcount) != 0)
6094 continue;
6095
6096 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
6097 }
6098 }
6099
6100 /*
6101 * Store a list of pool features and their reference counts in the
6102 * config.
6103 *
6104 * The first time this is called on a spa, allocate a new nvlist, fetch
6105 * the pool features and reference counts from disk, then save the list
6106 * in the spa. In subsequent calls on the same spa use the saved nvlist
6107 * and refresh its values from the cached reference counts. This
6108 * ensures we don't block here on I/O on a suspended pool so 'zpool
6109 * clear' can resume the pool.
6110 */
6111 static void
6112 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
6113 {
6114 nvlist_t *features;
6115
6116 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6117
6118 mutex_enter(&spa->spa_feat_stats_lock);
6119 features = spa->spa_feat_stats;
6120
6121 if (features != NULL) {
6122 spa_feature_stats_from_cache(spa, features);
6123 } else {
6124 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
6125 spa->spa_feat_stats = features;
6126 spa_feature_stats_from_disk(spa, features);
6127 }
6128
6129 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
6130 features));
6131
6132 mutex_exit(&spa->spa_feat_stats_lock);
6133 }
6134
6135 int
6136 spa_get_stats(const char *name, nvlist_t **config,
6137 char *altroot, size_t buflen)
6138 {
6139 int error;
6140 spa_t *spa;
6141
6142 *config = NULL;
6143 error = spa_open_common(name, &spa, FTAG, NULL, config);
6144
6145 if (spa != NULL) {
6146 /*
6147 * This still leaves a window of inconsistency where the spares
6148 * or l2cache devices could change and the config would be
6149 * self-inconsistent.
6150 */
6151 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6152
6153 if (*config != NULL) {
6154 uint64_t loadtimes[2];
6155
6156 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
6157 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
6158 fnvlist_add_uint64_array(*config,
6159 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
6160
6161 fnvlist_add_uint64(*config,
6162 ZPOOL_CONFIG_ERRCOUNT,
6163 spa_approx_errlog_size(spa));
6164
6165 if (spa_suspended(spa)) {
6166 fnvlist_add_uint64(*config,
6167 ZPOOL_CONFIG_SUSPENDED,
6168 spa->spa_failmode);
6169 fnvlist_add_uint64(*config,
6170 ZPOOL_CONFIG_SUSPENDED_REASON,
6171 spa->spa_suspended);
6172 }
6173
6174 spa_add_spares(spa, *config);
6175 spa_add_l2cache(spa, *config);
6176 spa_add_feature_stats(spa, *config);
6177 }
6178 }
6179
6180 /*
6181 * We want to get the alternate root even for faulted pools, so we cheat
6182 * and call spa_lookup() directly.
6183 */
6184 if (altroot) {
6185 if (spa == NULL) {
6186 mutex_enter(&spa_namespace_lock);
6187 spa = spa_lookup(name);
6188 if (spa)
6189 spa_altroot(spa, altroot, buflen);
6190 else
6191 altroot[0] = '\0';
6192 spa = NULL;
6193 mutex_exit(&spa_namespace_lock);
6194 } else {
6195 spa_altroot(spa, altroot, buflen);
6196 }
6197 }
6198
6199 if (spa != NULL) {
6200 spa_config_exit(spa, SCL_CONFIG, FTAG);
6201 spa_close(spa, FTAG);
6202 }
6203
6204 return (error);
6205 }
6206
6207 /*
6208 * Validate that the auxiliary device array is well formed. We must have an
6209 * array of nvlists, each which describes a valid leaf vdev. If this is an
6210 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
6211 * specified, as long as they are well-formed.
6212 */
6213 static int
6214 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
6215 spa_aux_vdev_t *sav, const char *config, uint64_t version,
6216 vdev_labeltype_t label)
6217 {
6218 nvlist_t **dev;
6219 uint_t i, ndev;
6220 vdev_t *vd;
6221 int error;
6222
6223 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6224
6225 /*
6226 * It's acceptable to have no devs specified.
6227 */
6228 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
6229 return (0);
6230
6231 if (ndev == 0)
6232 return (SET_ERROR(EINVAL));
6233
6234 /*
6235 * Make sure the pool is formatted with a version that supports this
6236 * device type.
6237 */
6238 if (spa_version(spa) < version)
6239 return (SET_ERROR(ENOTSUP));
6240
6241 /*
6242 * Set the pending device list so we correctly handle device in-use
6243 * checking.
6244 */
6245 sav->sav_pending = dev;
6246 sav->sav_npending = ndev;
6247
6248 for (i = 0; i < ndev; i++) {
6249 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
6250 mode)) != 0)
6251 goto out;
6252
6253 if (!vd->vdev_ops->vdev_op_leaf) {
6254 vdev_free(vd);
6255 error = SET_ERROR(EINVAL);
6256 goto out;
6257 }
6258
6259 vd->vdev_top = vd;
6260
6261 if ((error = vdev_open(vd)) == 0 &&
6262 (error = vdev_label_init(vd, crtxg, label)) == 0) {
6263 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
6264 vd->vdev_guid);
6265 }
6266
6267 vdev_free(vd);
6268
6269 if (error &&
6270 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
6271 goto out;
6272 else
6273 error = 0;
6274 }
6275
6276 out:
6277 sav->sav_pending = NULL;
6278 sav->sav_npending = 0;
6279 return (error);
6280 }
6281
6282 static int
6283 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
6284 {
6285 int error;
6286
6287 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6288
6289 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6290 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
6291 VDEV_LABEL_SPARE)) != 0) {
6292 return (error);
6293 }
6294
6295 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6296 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
6297 VDEV_LABEL_L2CACHE));
6298 }
6299
6300 static void
6301 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
6302 const char *config)
6303 {
6304 int i;
6305
6306 if (sav->sav_config != NULL) {
6307 nvlist_t **olddevs;
6308 uint_t oldndevs;
6309 nvlist_t **newdevs;
6310
6311 /*
6312 * Generate new dev list by concatenating with the
6313 * current dev list.
6314 */
6315 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
6316 &olddevs, &oldndevs));
6317
6318 newdevs = kmem_alloc(sizeof (void *) *
6319 (ndevs + oldndevs), KM_SLEEP);
6320 for (i = 0; i < oldndevs; i++)
6321 newdevs[i] = fnvlist_dup(olddevs[i]);
6322 for (i = 0; i < ndevs; i++)
6323 newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
6324
6325 fnvlist_remove(sav->sav_config, config);
6326
6327 fnvlist_add_nvlist_array(sav->sav_config, config,
6328 (const nvlist_t * const *)newdevs, ndevs + oldndevs);
6329 for (i = 0; i < oldndevs + ndevs; i++)
6330 nvlist_free(newdevs[i]);
6331 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
6332 } else {
6333 /*
6334 * Generate a new dev list.
6335 */
6336 sav->sav_config = fnvlist_alloc();
6337 fnvlist_add_nvlist_array(sav->sav_config, config,
6338 (const nvlist_t * const *)devs, ndevs);
6339 }
6340 }
6341
6342 /*
6343 * Stop and drop level 2 ARC devices
6344 */
6345 void
6346 spa_l2cache_drop(spa_t *spa)
6347 {
6348 vdev_t *vd;
6349 int i;
6350 spa_aux_vdev_t *sav = &spa->spa_l2cache;
6351
6352 for (i = 0; i < sav->sav_count; i++) {
6353 uint64_t pool;
6354
6355 vd = sav->sav_vdevs[i];
6356 ASSERT(vd != NULL);
6357
6358 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
6359 pool != 0ULL && l2arc_vdev_present(vd))
6360 l2arc_remove_vdev(vd);
6361 }
6362 }
6363
6364 /*
6365 * Verify encryption parameters for spa creation. If we are encrypting, we must
6366 * have the encryption feature flag enabled.
6367 */
6368 static int
6369 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
6370 boolean_t has_encryption)
6371 {
6372 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
6373 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
6374 !has_encryption)
6375 return (SET_ERROR(ENOTSUP));
6376
6377 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
6378 }
6379
6380 /*
6381 * Pool Creation
6382 */
6383 int
6384 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
6385 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
6386 {
6387 spa_t *spa;
6388 const char *altroot = NULL;
6389 vdev_t *rvd;
6390 dsl_pool_t *dp;
6391 dmu_tx_t *tx;
6392 int error = 0;
6393 uint64_t txg = TXG_INITIAL;
6394 nvlist_t **spares, **l2cache;
6395 uint_t nspares, nl2cache;
6396 uint64_t version, obj, ndraid = 0;
6397 boolean_t has_features;
6398 boolean_t has_encryption;
6399 boolean_t has_allocclass;
6400 spa_feature_t feat;
6401 const char *feat_name;
6402 const char *poolname;
6403 nvlist_t *nvl;
6404
6405 if (props == NULL ||
6406 nvlist_lookup_string(props,
6407 zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
6408 poolname = (char *)pool;
6409
6410 /*
6411 * If this pool already exists, return failure.
6412 */
6413 mutex_enter(&spa_namespace_lock);
6414 if (spa_lookup(poolname) != NULL) {
6415 mutex_exit(&spa_namespace_lock);
6416 return (SET_ERROR(EEXIST));
6417 }
6418
6419 /*
6420 * Allocate a new spa_t structure.
6421 */
6422 nvl = fnvlist_alloc();
6423 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
6424 (void) nvlist_lookup_string(props,
6425 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6426 spa = spa_add(poolname, nvl, altroot);
6427 fnvlist_free(nvl);
6428 spa_activate(spa, spa_mode_global);
6429
6430 if (props && (error = spa_prop_validate(spa, props))) {
6431 spa_deactivate(spa);
6432 spa_remove(spa);
6433 mutex_exit(&spa_namespace_lock);
6434 return (error);
6435 }
6436
6437 /*
6438 * Temporary pool names should never be written to disk.
6439 */
6440 if (poolname != pool)
6441 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
6442
6443 has_features = B_FALSE;
6444 has_encryption = B_FALSE;
6445 has_allocclass = B_FALSE;
6446 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
6447 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
6448 if (zpool_prop_feature(nvpair_name(elem))) {
6449 has_features = B_TRUE;
6450
6451 feat_name = strchr(nvpair_name(elem), '@') + 1;
6452 VERIFY0(zfeature_lookup_name(feat_name, &feat));
6453 if (feat == SPA_FEATURE_ENCRYPTION)
6454 has_encryption = B_TRUE;
6455 if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
6456 has_allocclass = B_TRUE;
6457 }
6458 }
6459
6460 /* verify encryption params, if they were provided */
6461 if (dcp != NULL) {
6462 error = spa_create_check_encryption_params(dcp, has_encryption);
6463 if (error != 0) {
6464 spa_deactivate(spa);
6465 spa_remove(spa);
6466 mutex_exit(&spa_namespace_lock);
6467 return (error);
6468 }
6469 }
6470 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
6471 spa_deactivate(spa);
6472 spa_remove(spa);
6473 mutex_exit(&spa_namespace_lock);
6474 return (ENOTSUP);
6475 }
6476
6477 if (has_features || nvlist_lookup_uint64(props,
6478 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
6479 version = SPA_VERSION;
6480 }
6481 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6482
6483 spa->spa_first_txg = txg;
6484 spa->spa_uberblock.ub_txg = txg - 1;
6485 spa->spa_uberblock.ub_version = version;
6486 spa->spa_ubsync = spa->spa_uberblock;
6487 spa->spa_load_state = SPA_LOAD_CREATE;
6488 spa->spa_removing_phys.sr_state = DSS_NONE;
6489 spa->spa_removing_phys.sr_removing_vdev = -1;
6490 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
6491 spa->spa_indirect_vdevs_loaded = B_TRUE;
6492
6493 /*
6494 * Create "The Godfather" zio to hold all async IOs
6495 */
6496 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
6497 KM_SLEEP);
6498 for (int i = 0; i < max_ncpus; i++) {
6499 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
6500 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6501 ZIO_FLAG_GODFATHER);
6502 }
6503
6504 /*
6505 * Create the root vdev.
6506 */
6507 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6508
6509 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6510
6511 ASSERT(error != 0 || rvd != NULL);
6512 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6513
6514 if (error == 0 && !zfs_allocatable_devs(nvroot))
6515 error = SET_ERROR(EINVAL);
6516
6517 if (error == 0 &&
6518 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6519 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6520 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6521 /*
6522 * instantiate the metaslab groups (this will dirty the vdevs)
6523 * we can no longer error exit past this point
6524 */
6525 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6526 vdev_t *vd = rvd->vdev_child[c];
6527
6528 vdev_metaslab_set_size(vd);
6529 vdev_expand(vd, txg);
6530 }
6531 }
6532
6533 spa_config_exit(spa, SCL_ALL, FTAG);
6534
6535 if (error != 0) {
6536 spa_unload(spa);
6537 spa_deactivate(spa);
6538 spa_remove(spa);
6539 mutex_exit(&spa_namespace_lock);
6540 return (error);
6541 }
6542
6543 /*
6544 * Get the list of spares, if specified.
6545 */
6546 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6547 &spares, &nspares) == 0) {
6548 spa->spa_spares.sav_config = fnvlist_alloc();
6549 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6550 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6551 nspares);
6552 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6553 spa_load_spares(spa);
6554 spa_config_exit(spa, SCL_ALL, FTAG);
6555 spa->spa_spares.sav_sync = B_TRUE;
6556 }
6557
6558 /*
6559 * Get the list of level 2 cache devices, if specified.
6560 */
6561 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6562 &l2cache, &nl2cache) == 0) {
6563 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6564 NV_UNIQUE_NAME, KM_SLEEP));
6565 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6566 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6567 nl2cache);
6568 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6569 spa_load_l2cache(spa);
6570 spa_config_exit(spa, SCL_ALL, FTAG);
6571 spa->spa_l2cache.sav_sync = B_TRUE;
6572 }
6573
6574 spa->spa_is_initializing = B_TRUE;
6575 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6576 spa->spa_is_initializing = B_FALSE;
6577
6578 /*
6579 * Create DDTs (dedup tables).
6580 */
6581 ddt_create(spa);
6582 /*
6583 * Create BRT table and BRT table object.
6584 */
6585 brt_create(spa);
6586
6587 spa_update_dspace(spa);
6588
6589 tx = dmu_tx_create_assigned(dp, txg);
6590
6591 /*
6592 * Create the pool's history object.
6593 */
6594 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6595 spa_history_create_obj(spa, tx);
6596
6597 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6598 spa_history_log_version(spa, "create", tx);
6599
6600 /*
6601 * Create the pool config object.
6602 */
6603 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6604 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6605 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6606
6607 if (zap_add(spa->spa_meta_objset,
6608 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6609 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6610 cmn_err(CE_PANIC, "failed to add pool config");
6611 }
6612
6613 if (zap_add(spa->spa_meta_objset,
6614 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6615 sizeof (uint64_t), 1, &version, tx) != 0) {
6616 cmn_err(CE_PANIC, "failed to add pool version");
6617 }
6618
6619 /* Newly created pools with the right version are always deflated. */
6620 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6621 spa->spa_deflate = TRUE;
6622 if (zap_add(spa->spa_meta_objset,
6623 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6624 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6625 cmn_err(CE_PANIC, "failed to add deflate");
6626 }
6627 }
6628
6629 /*
6630 * Create the deferred-free bpobj. Turn off compression
6631 * because sync-to-convergence takes longer if the blocksize
6632 * keeps changing.
6633 */
6634 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6635 dmu_object_set_compress(spa->spa_meta_objset, obj,
6636 ZIO_COMPRESS_OFF, tx);
6637 if (zap_add(spa->spa_meta_objset,
6638 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6639 sizeof (uint64_t), 1, &obj, tx) != 0) {
6640 cmn_err(CE_PANIC, "failed to add bpobj");
6641 }
6642 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6643 spa->spa_meta_objset, obj));
6644
6645 /*
6646 * Generate some random noise for salted checksums to operate on.
6647 */
6648 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6649 sizeof (spa->spa_cksum_salt.zcs_bytes));
6650
6651 /*
6652 * Set pool properties.
6653 */
6654 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6655 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6656 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6657 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6658 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6659 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6660 spa->spa_dedup_table_quota =
6661 zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_TABLE_QUOTA);
6662
6663 if (props != NULL) {
6664 spa_configfile_set(spa, props, B_FALSE);
6665 spa_sync_props(props, tx);
6666 }
6667
6668 for (int i = 0; i < ndraid; i++)
6669 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6670
6671 dmu_tx_commit(tx);
6672
6673 spa->spa_sync_on = B_TRUE;
6674 txg_sync_start(dp);
6675 mmp_thread_start(spa);
6676 txg_wait_synced(dp, txg);
6677
6678 spa_spawn_aux_threads(spa);
6679
6680 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6681
6682 /*
6683 * Don't count references from objsets that are already closed
6684 * and are making their way through the eviction process.
6685 */
6686 spa_evicting_os_wait(spa);
6687 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6688 spa->spa_load_state = SPA_LOAD_NONE;
6689
6690 spa_import_os(spa);
6691
6692 mutex_exit(&spa_namespace_lock);
6693
6694 return (0);
6695 }
6696
6697 /*
6698 * Import a non-root pool into the system.
6699 */
6700 int
6701 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6702 {
6703 spa_t *spa;
6704 const char *altroot = NULL;
6705 spa_load_state_t state = SPA_LOAD_IMPORT;
6706 zpool_load_policy_t policy;
6707 spa_mode_t mode = spa_mode_global;
6708 uint64_t readonly = B_FALSE;
6709 int error;
6710 nvlist_t *nvroot;
6711 nvlist_t **spares, **l2cache;
6712 uint_t nspares, nl2cache;
6713
6714 /*
6715 * If a pool with this name exists, return failure.
6716 */
6717 mutex_enter(&spa_namespace_lock);
6718 if (spa_lookup(pool) != NULL) {
6719 mutex_exit(&spa_namespace_lock);
6720 return (SET_ERROR(EEXIST));
6721 }
6722
6723 /*
6724 * Create and initialize the spa structure.
6725 */
6726 (void) nvlist_lookup_string(props,
6727 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6728 (void) nvlist_lookup_uint64(props,
6729 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6730 if (readonly)
6731 mode = SPA_MODE_READ;
6732 spa = spa_add(pool, config, altroot);
6733 spa->spa_import_flags = flags;
6734
6735 /*
6736 * Verbatim import - Take a pool and insert it into the namespace
6737 * as if it had been loaded at boot.
6738 */
6739 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6740 if (props != NULL)
6741 spa_configfile_set(spa, props, B_FALSE);
6742
6743 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6744 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6745 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6746 mutex_exit(&spa_namespace_lock);
6747 return (0);
6748 }
6749
6750 spa_activate(spa, mode);
6751
6752 /*
6753 * Don't start async tasks until we know everything is healthy.
6754 */
6755 spa_async_suspend(spa);
6756
6757 zpool_get_load_policy(config, &policy);
6758 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6759 state = SPA_LOAD_RECOVER;
6760
6761 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6762
6763 if (state != SPA_LOAD_RECOVER) {
6764 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6765 zfs_dbgmsg("spa_import: importing %s", pool);
6766 } else {
6767 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6768 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6769 }
6770 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6771
6772 /*
6773 * Propagate anything learned while loading the pool and pass it
6774 * back to caller (i.e. rewind info, missing devices, etc).
6775 */
6776 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6777
6778 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6779 /*
6780 * Toss any existing sparelist, as it doesn't have any validity
6781 * anymore, and conflicts with spa_has_spare().
6782 */
6783 if (spa->spa_spares.sav_config) {
6784 nvlist_free(spa->spa_spares.sav_config);
6785 spa->spa_spares.sav_config = NULL;
6786 spa_load_spares(spa);
6787 }
6788 if (spa->spa_l2cache.sav_config) {
6789 nvlist_free(spa->spa_l2cache.sav_config);
6790 spa->spa_l2cache.sav_config = NULL;
6791 spa_load_l2cache(spa);
6792 }
6793
6794 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6795 spa_config_exit(spa, SCL_ALL, FTAG);
6796
6797 if (props != NULL)
6798 spa_configfile_set(spa, props, B_FALSE);
6799
6800 if (error != 0 || (props && spa_writeable(spa) &&
6801 (error = spa_prop_set(spa, props)))) {
6802 spa_unload(spa);
6803 spa_deactivate(spa);
6804 spa_remove(spa);
6805 mutex_exit(&spa_namespace_lock);
6806 return (error);
6807 }
6808
6809 spa_async_resume(spa);
6810
6811 /*
6812 * Override any spares and level 2 cache devices as specified by
6813 * the user, as these may have correct device names/devids, etc.
6814 */
6815 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6816 &spares, &nspares) == 0) {
6817 if (spa->spa_spares.sav_config)
6818 fnvlist_remove(spa->spa_spares.sav_config,
6819 ZPOOL_CONFIG_SPARES);
6820 else
6821 spa->spa_spares.sav_config = fnvlist_alloc();
6822 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6823 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6824 nspares);
6825 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6826 spa_load_spares(spa);
6827 spa_config_exit(spa, SCL_ALL, FTAG);
6828 spa->spa_spares.sav_sync = B_TRUE;
6829 spa->spa_spares.sav_label_sync = B_TRUE;
6830 }
6831 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6832 &l2cache, &nl2cache) == 0) {
6833 if (spa->spa_l2cache.sav_config)
6834 fnvlist_remove(spa->spa_l2cache.sav_config,
6835 ZPOOL_CONFIG_L2CACHE);
6836 else
6837 spa->spa_l2cache.sav_config = fnvlist_alloc();
6838 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6839 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6840 nl2cache);
6841 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6842 spa_load_l2cache(spa);
6843 spa_config_exit(spa, SCL_ALL, FTAG);
6844 spa->spa_l2cache.sav_sync = B_TRUE;
6845 spa->spa_l2cache.sav_label_sync = B_TRUE;
6846 }
6847
6848 /*
6849 * Check for any removed devices.
6850 */
6851 if (spa->spa_autoreplace) {
6852 spa_aux_check_removed(&spa->spa_spares);
6853 spa_aux_check_removed(&spa->spa_l2cache);
6854 }
6855
6856 if (spa_writeable(spa)) {
6857 /*
6858 * Update the config cache to include the newly-imported pool.
6859 */
6860 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6861 }
6862
6863 /*
6864 * It's possible that the pool was expanded while it was exported.
6865 * We kick off an async task to handle this for us.
6866 */
6867 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6868
6869 spa_history_log_version(spa, "import", NULL);
6870
6871 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6872
6873 mutex_exit(&spa_namespace_lock);
6874
6875 zvol_create_minors_recursive(pool);
6876
6877 spa_import_os(spa);
6878
6879 return (0);
6880 }
6881
6882 nvlist_t *
6883 spa_tryimport(nvlist_t *tryconfig)
6884 {
6885 nvlist_t *config = NULL;
6886 const char *poolname, *cachefile;
6887 spa_t *spa;
6888 uint64_t state;
6889 int error;
6890 zpool_load_policy_t policy;
6891
6892 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6893 return (NULL);
6894
6895 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6896 return (NULL);
6897
6898 /*
6899 * Create and initialize the spa structure.
6900 */
6901 char *name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6902 (void) snprintf(name, MAXPATHLEN, "%s-%llx-%s",
6903 TRYIMPORT_NAME, (u_longlong_t)(uintptr_t)curthread, poolname);
6904
6905 mutex_enter(&spa_namespace_lock);
6906 spa = spa_add(name, tryconfig, NULL);
6907 spa_activate(spa, SPA_MODE_READ);
6908 kmem_free(name, MAXPATHLEN);
6909
6910 /*
6911 * Rewind pool if a max txg was provided.
6912 */
6913 zpool_get_load_policy(spa->spa_config, &policy);
6914 if (policy.zlp_txg != UINT64_MAX) {
6915 spa->spa_load_max_txg = policy.zlp_txg;
6916 spa->spa_extreme_rewind = B_TRUE;
6917 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6918 poolname, (longlong_t)policy.zlp_txg);
6919 } else {
6920 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6921 }
6922
6923 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6924 == 0) {
6925 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6926 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6927 } else {
6928 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6929 }
6930
6931 /*
6932 * spa_import() relies on a pool config fetched by spa_try_import()
6933 * for spare/cache devices. Import flags are not passed to
6934 * spa_tryimport(), which makes it return early due to a missing log
6935 * device and missing retrieving the cache device and spare eventually.
6936 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
6937 * the correct configuration regardless of the missing log device.
6938 */
6939 spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
6940
6941 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6942
6943 /*
6944 * If 'tryconfig' was at least parsable, return the current config.
6945 */
6946 if (spa->spa_root_vdev != NULL) {
6947 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6948 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6949 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6950 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6951 spa->spa_uberblock.ub_timestamp);
6952 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6953 spa->spa_load_info);
6954 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6955 spa->spa_errata);
6956
6957 /*
6958 * If the bootfs property exists on this pool then we
6959 * copy it out so that external consumers can tell which
6960 * pools are bootable.
6961 */
6962 if ((!error || error == EEXIST) && spa->spa_bootfs) {
6963 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6964
6965 /*
6966 * We have to play games with the name since the
6967 * pool was opened as TRYIMPORT_NAME.
6968 */
6969 if (dsl_dsobj_to_dsname(spa_name(spa),
6970 spa->spa_bootfs, tmpname) == 0) {
6971 char *cp;
6972 char *dsname;
6973
6974 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6975
6976 cp = strchr(tmpname, '/');
6977 if (cp == NULL) {
6978 (void) strlcpy(dsname, tmpname,
6979 MAXPATHLEN);
6980 } else {
6981 (void) snprintf(dsname, MAXPATHLEN,
6982 "%s/%s", poolname, ++cp);
6983 }
6984 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6985 dsname);
6986 kmem_free(dsname, MAXPATHLEN);
6987 }
6988 kmem_free(tmpname, MAXPATHLEN);
6989 }
6990
6991 /*
6992 * Add the list of hot spares and level 2 cache devices.
6993 */
6994 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6995 spa_add_spares(spa, config);
6996 spa_add_l2cache(spa, config);
6997 spa_config_exit(spa, SCL_CONFIG, FTAG);
6998 }
6999
7000 spa_unload(spa);
7001 spa_deactivate(spa);
7002 spa_remove(spa);
7003 mutex_exit(&spa_namespace_lock);
7004
7005 return (config);
7006 }
7007
7008 /*
7009 * Pool export/destroy
7010 *
7011 * The act of destroying or exporting a pool is very simple. We make sure there
7012 * is no more pending I/O and any references to the pool are gone. Then, we
7013 * update the pool state and sync all the labels to disk, removing the
7014 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
7015 * we don't sync the labels or remove the configuration cache.
7016 */
7017 static int
7018 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
7019 boolean_t force, boolean_t hardforce)
7020 {
7021 int error = 0;
7022 spa_t *spa;
7023 hrtime_t export_start = gethrtime();
7024
7025 if (oldconfig)
7026 *oldconfig = NULL;
7027
7028 if (!(spa_mode_global & SPA_MODE_WRITE))
7029 return (SET_ERROR(EROFS));
7030
7031 mutex_enter(&spa_namespace_lock);
7032 if ((spa = spa_lookup(pool)) == NULL) {
7033 mutex_exit(&spa_namespace_lock);
7034 return (SET_ERROR(ENOENT));
7035 }
7036
7037 if (spa->spa_is_exporting) {
7038 /* the pool is being exported by another thread */
7039 mutex_exit(&spa_namespace_lock);
7040 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
7041 }
7042 spa->spa_is_exporting = B_TRUE;
7043
7044 /*
7045 * Put a hold on the pool, drop the namespace lock, stop async tasks
7046 * and see if we can export.
7047 */
7048 spa_open_ref(spa, FTAG);
7049 mutex_exit(&spa_namespace_lock);
7050 spa_async_suspend(spa);
7051 if (spa->spa_zvol_taskq) {
7052 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
7053 taskq_wait(spa->spa_zvol_taskq);
7054 }
7055 mutex_enter(&spa_namespace_lock);
7056 spa->spa_export_thread = curthread;
7057 spa_close(spa, FTAG);
7058
7059 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
7060 mutex_exit(&spa_namespace_lock);
7061 goto export_spa;
7062 }
7063
7064 /*
7065 * The pool will be in core if it's openable, in which case we can
7066 * modify its state. Objsets may be open only because they're dirty,
7067 * so we have to force it to sync before checking spa_refcnt.
7068 */
7069 if (spa->spa_sync_on) {
7070 txg_wait_synced(spa->spa_dsl_pool, 0);
7071 spa_evicting_os_wait(spa);
7072 }
7073
7074 /*
7075 * A pool cannot be exported or destroyed if there are active
7076 * references. If we are resetting a pool, allow references by
7077 * fault injection handlers.
7078 */
7079 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
7080 error = SET_ERROR(EBUSY);
7081 goto fail;
7082 }
7083
7084 mutex_exit(&spa_namespace_lock);
7085 /*
7086 * At this point we no longer hold the spa_namespace_lock and
7087 * there were no references on the spa. Future spa_lookups will
7088 * notice the spa->spa_export_thread and wait until we signal
7089 * that we are finshed.
7090 */
7091
7092 if (spa->spa_sync_on) {
7093 vdev_t *rvd = spa->spa_root_vdev;
7094 /*
7095 * A pool cannot be exported if it has an active shared spare.
7096 * This is to prevent other pools stealing the active spare
7097 * from an exported pool. At user's own will, such pool can
7098 * be forcedly exported.
7099 */
7100 if (!force && new_state == POOL_STATE_EXPORTED &&
7101 spa_has_active_shared_spare(spa)) {
7102 error = SET_ERROR(EXDEV);
7103 mutex_enter(&spa_namespace_lock);
7104 goto fail;
7105 }
7106
7107 /*
7108 * We're about to export or destroy this pool. Make sure
7109 * we stop all initialization and trim activity here before
7110 * we set the spa_final_txg. This will ensure that all
7111 * dirty data resulting from the initialization is
7112 * committed to disk before we unload the pool.
7113 */
7114 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
7115 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
7116 vdev_autotrim_stop_all(spa);
7117 vdev_rebuild_stop_all(spa);
7118
7119 /*
7120 * We want this to be reflected on every label,
7121 * so mark them all dirty. spa_unload() will do the
7122 * final sync that pushes these changes out.
7123 */
7124 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7125 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7126 spa->spa_state = new_state;
7127 vdev_config_dirty(rvd);
7128 spa_config_exit(spa, SCL_ALL, FTAG);
7129 }
7130
7131 /*
7132 * If the log space map feature is enabled and the pool is
7133 * getting exported (but not destroyed), we want to spend some
7134 * time flushing as many metaslabs as we can in an attempt to
7135 * destroy log space maps and save import time. This has to be
7136 * done before we set the spa_final_txg, otherwise
7137 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
7138 * spa_should_flush_logs_on_unload() should be called after
7139 * spa_state has been set to the new_state.
7140 */
7141 if (spa_should_flush_logs_on_unload(spa))
7142 spa_unload_log_sm_flush_all(spa);
7143
7144 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7145 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7146 spa->spa_final_txg = spa_last_synced_txg(spa) +
7147 TXG_DEFER_SIZE + 1;
7148 spa_config_exit(spa, SCL_ALL, FTAG);
7149 }
7150 }
7151
7152 export_spa:
7153 spa_export_os(spa);
7154
7155 if (new_state == POOL_STATE_DESTROYED)
7156 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
7157 else if (new_state == POOL_STATE_EXPORTED)
7158 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
7159
7160 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7161 spa_unload(spa);
7162 spa_deactivate(spa);
7163 }
7164
7165 if (oldconfig && spa->spa_config)
7166 *oldconfig = fnvlist_dup(spa->spa_config);
7167
7168 if (new_state == POOL_STATE_EXPORTED)
7169 zio_handle_export_delay(spa, gethrtime() - export_start);
7170
7171 /*
7172 * Take the namespace lock for the actual spa_t removal
7173 */
7174 mutex_enter(&spa_namespace_lock);
7175 if (new_state != POOL_STATE_UNINITIALIZED) {
7176 if (!hardforce)
7177 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
7178 spa_remove(spa);
7179 } else {
7180 /*
7181 * If spa_remove() is not called for this spa_t and
7182 * there is any possibility that it can be reused,
7183 * we make sure to reset the exporting flag.
7184 */
7185 spa->spa_is_exporting = B_FALSE;
7186 spa->spa_export_thread = NULL;
7187 }
7188
7189 /*
7190 * Wake up any waiters in spa_lookup()
7191 */
7192 cv_broadcast(&spa_namespace_cv);
7193 mutex_exit(&spa_namespace_lock);
7194 return (0);
7195
7196 fail:
7197 spa->spa_is_exporting = B_FALSE;
7198 spa->spa_export_thread = NULL;
7199
7200 spa_async_resume(spa);
7201 /*
7202 * Wake up any waiters in spa_lookup()
7203 */
7204 cv_broadcast(&spa_namespace_cv);
7205 mutex_exit(&spa_namespace_lock);
7206 return (error);
7207 }
7208
7209 /*
7210 * Destroy a storage pool.
7211 */
7212 int
7213 spa_destroy(const char *pool)
7214 {
7215 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
7216 B_FALSE, B_FALSE));
7217 }
7218
7219 /*
7220 * Export a storage pool.
7221 */
7222 int
7223 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
7224 boolean_t hardforce)
7225 {
7226 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
7227 force, hardforce));
7228 }
7229
7230 /*
7231 * Similar to spa_export(), this unloads the spa_t without actually removing it
7232 * from the namespace in any way.
7233 */
7234 int
7235 spa_reset(const char *pool)
7236 {
7237 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
7238 B_FALSE, B_FALSE));
7239 }
7240
7241 /*
7242 * ==========================================================================
7243 * Device manipulation
7244 * ==========================================================================
7245 */
7246
7247 /*
7248 * This is called as a synctask to increment the draid feature flag
7249 */
7250 static void
7251 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
7252 {
7253 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7254 int draid = (int)(uintptr_t)arg;
7255
7256 for (int c = 0; c < draid; c++)
7257 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
7258 }
7259
7260 /*
7261 * Add a device to a storage pool.
7262 */
7263 int
7264 spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift)
7265 {
7266 uint64_t txg, ndraid = 0;
7267 int error;
7268 vdev_t *rvd = spa->spa_root_vdev;
7269 vdev_t *vd, *tvd;
7270 nvlist_t **spares, **l2cache;
7271 uint_t nspares, nl2cache;
7272
7273 ASSERT(spa_writeable(spa));
7274
7275 txg = spa_vdev_enter(spa);
7276
7277 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
7278 VDEV_ALLOC_ADD)) != 0)
7279 return (spa_vdev_exit(spa, NULL, txg, error));
7280
7281 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
7282
7283 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
7284 &nspares) != 0)
7285 nspares = 0;
7286
7287 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
7288 &nl2cache) != 0)
7289 nl2cache = 0;
7290
7291 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
7292 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7293
7294 if (vd->vdev_children != 0 &&
7295 (error = vdev_create(vd, txg, B_FALSE)) != 0) {
7296 return (spa_vdev_exit(spa, vd, txg, error));
7297 }
7298
7299 /*
7300 * The virtual dRAID spares must be added after vdev tree is created
7301 * and the vdev guids are generated. The guid of their associated
7302 * dRAID is stored in the config and used when opening the spare.
7303 */
7304 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
7305 rvd->vdev_children)) == 0) {
7306 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
7307 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
7308 nspares = 0;
7309 } else {
7310 return (spa_vdev_exit(spa, vd, txg, error));
7311 }
7312
7313 /*
7314 * We must validate the spares and l2cache devices after checking the
7315 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
7316 */
7317 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
7318 return (spa_vdev_exit(spa, vd, txg, error));
7319
7320 /*
7321 * If we are in the middle of a device removal, we can only add
7322 * devices which match the existing devices in the pool.
7323 * If we are in the middle of a removal, or have some indirect
7324 * vdevs, we can not add raidz or dRAID top levels.
7325 */
7326 if (spa->spa_vdev_removal != NULL ||
7327 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7328 for (int c = 0; c < vd->vdev_children; c++) {
7329 tvd = vd->vdev_child[c];
7330 if (spa->spa_vdev_removal != NULL &&
7331 tvd->vdev_ashift != spa->spa_max_ashift) {
7332 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7333 }
7334 /* Fail if top level vdev is raidz or a dRAID */
7335 if (vdev_get_nparity(tvd) != 0)
7336 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7337
7338 /*
7339 * Need the top level mirror to be
7340 * a mirror of leaf vdevs only
7341 */
7342 if (tvd->vdev_ops == &vdev_mirror_ops) {
7343 for (uint64_t cid = 0;
7344 cid < tvd->vdev_children; cid++) {
7345 vdev_t *cvd = tvd->vdev_child[cid];
7346 if (!cvd->vdev_ops->vdev_op_leaf) {
7347 return (spa_vdev_exit(spa, vd,
7348 txg, EINVAL));
7349 }
7350 }
7351 }
7352 }
7353 }
7354
7355 if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) {
7356 for (int c = 0; c < vd->vdev_children; c++) {
7357 tvd = vd->vdev_child[c];
7358 if (tvd->vdev_ashift != spa->spa_max_ashift) {
7359 return (spa_vdev_exit(spa, vd, txg,
7360 ZFS_ERR_ASHIFT_MISMATCH));
7361 }
7362 }
7363 }
7364
7365 for (int c = 0; c < vd->vdev_children; c++) {
7366 tvd = vd->vdev_child[c];
7367 vdev_remove_child(vd, tvd);
7368 tvd->vdev_id = rvd->vdev_children;
7369 vdev_add_child(rvd, tvd);
7370 vdev_config_dirty(tvd);
7371 }
7372
7373 if (nspares != 0) {
7374 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
7375 ZPOOL_CONFIG_SPARES);
7376 spa_load_spares(spa);
7377 spa->spa_spares.sav_sync = B_TRUE;
7378 }
7379
7380 if (nl2cache != 0) {
7381 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
7382 ZPOOL_CONFIG_L2CACHE);
7383 spa_load_l2cache(spa);
7384 spa->spa_l2cache.sav_sync = B_TRUE;
7385 }
7386
7387 /*
7388 * We can't increment a feature while holding spa_vdev so we
7389 * have to do it in a synctask.
7390 */
7391 if (ndraid != 0) {
7392 dmu_tx_t *tx;
7393
7394 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
7395 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
7396 (void *)(uintptr_t)ndraid, tx);
7397 dmu_tx_commit(tx);
7398 }
7399
7400 /*
7401 * We have to be careful when adding new vdevs to an existing pool.
7402 * If other threads start allocating from these vdevs before we
7403 * sync the config cache, and we lose power, then upon reboot we may
7404 * fail to open the pool because there are DVAs that the config cache
7405 * can't translate. Therefore, we first add the vdevs without
7406 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
7407 * and then let spa_config_update() initialize the new metaslabs.
7408 *
7409 * spa_load() checks for added-but-not-initialized vdevs, so that
7410 * if we lose power at any point in this sequence, the remaining
7411 * steps will be completed the next time we load the pool.
7412 */
7413 (void) spa_vdev_exit(spa, vd, txg, 0);
7414
7415 mutex_enter(&spa_namespace_lock);
7416 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7417 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
7418 mutex_exit(&spa_namespace_lock);
7419
7420 return (0);
7421 }
7422
7423 /*
7424 * Attach a device to a vdev specified by its guid. The vdev type can be
7425 * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a
7426 * single device). When the vdev is a single device, a mirror vdev will be
7427 * automatically inserted.
7428 *
7429 * If 'replacing' is specified, the new device is intended to replace the
7430 * existing device; in this case the two devices are made into their own
7431 * mirror using the 'replacing' vdev, which is functionally identical to
7432 * the mirror vdev (it actually reuses all the same ops) but has a few
7433 * extra rules: you can't attach to it after it's been created, and upon
7434 * completion of resilvering, the first disk (the one being replaced)
7435 * is automatically detached.
7436 *
7437 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
7438 * should be performed instead of traditional healing reconstruction. From
7439 * an administrators perspective these are both resilver operations.
7440 */
7441 int
7442 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
7443 int rebuild)
7444 {
7445 uint64_t txg, dtl_max_txg;
7446 vdev_t *rvd = spa->spa_root_vdev;
7447 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
7448 vdev_ops_t *pvops;
7449 char *oldvdpath, *newvdpath;
7450 int newvd_isspare = B_FALSE;
7451 int error;
7452
7453 ASSERT(spa_writeable(spa));
7454
7455 txg = spa_vdev_enter(spa);
7456
7457 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
7458
7459 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7460 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7461 error = (spa_has_checkpoint(spa)) ?
7462 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7463 return (spa_vdev_exit(spa, NULL, txg, error));
7464 }
7465
7466 if (rebuild) {
7467 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
7468 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7469
7470 if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
7471 dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
7472 return (spa_vdev_exit(spa, NULL, txg,
7473 ZFS_ERR_RESILVER_IN_PROGRESS));
7474 }
7475 } else {
7476 if (vdev_rebuild_active(rvd))
7477 return (spa_vdev_exit(spa, NULL, txg,
7478 ZFS_ERR_REBUILD_IN_PROGRESS));
7479 }
7480
7481 if (spa->spa_vdev_removal != NULL) {
7482 return (spa_vdev_exit(spa, NULL, txg,
7483 ZFS_ERR_DEVRM_IN_PROGRESS));
7484 }
7485
7486 if (oldvd == NULL)
7487 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7488
7489 boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops;
7490
7491 if (raidz) {
7492 if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION))
7493 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7494
7495 /*
7496 * Can't expand a raidz while prior expand is in progress.
7497 */
7498 if (spa->spa_raidz_expand != NULL) {
7499 return (spa_vdev_exit(spa, NULL, txg,
7500 ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS));
7501 }
7502 } else if (!oldvd->vdev_ops->vdev_op_leaf) {
7503 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7504 }
7505
7506 if (raidz)
7507 pvd = oldvd;
7508 else
7509 pvd = oldvd->vdev_parent;
7510
7511 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
7512 VDEV_ALLOC_ATTACH) != 0)
7513 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7514
7515 if (newrootvd->vdev_children != 1)
7516 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7517
7518 newvd = newrootvd->vdev_child[0];
7519
7520 if (!newvd->vdev_ops->vdev_op_leaf)
7521 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7522
7523 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
7524 return (spa_vdev_exit(spa, newrootvd, txg, error));
7525
7526 /*
7527 * log, dedup and special vdevs should not be replaced by spares.
7528 */
7529 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
7530 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
7531 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7532 }
7533
7534 /*
7535 * A dRAID spare can only replace a child of its parent dRAID vdev.
7536 */
7537 if (newvd->vdev_ops == &vdev_draid_spare_ops &&
7538 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
7539 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7540 }
7541
7542 if (rebuild) {
7543 /*
7544 * For rebuilds, the top vdev must support reconstruction
7545 * using only space maps. This means the only allowable
7546 * vdevs types are the root vdev, a mirror, or dRAID.
7547 */
7548 tvd = pvd;
7549 if (pvd->vdev_top != NULL)
7550 tvd = pvd->vdev_top;
7551
7552 if (tvd->vdev_ops != &vdev_mirror_ops &&
7553 tvd->vdev_ops != &vdev_root_ops &&
7554 tvd->vdev_ops != &vdev_draid_ops) {
7555 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7556 }
7557 }
7558
7559 if (!replacing) {
7560 /*
7561 * For attach, the only allowable parent is a mirror or
7562 * the root vdev. A raidz vdev can be attached to, but
7563 * you cannot attach to a raidz child.
7564 */
7565 if (pvd->vdev_ops != &vdev_mirror_ops &&
7566 pvd->vdev_ops != &vdev_root_ops &&
7567 !raidz)
7568 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7569
7570 pvops = &vdev_mirror_ops;
7571 } else {
7572 /*
7573 * Active hot spares can only be replaced by inactive hot
7574 * spares.
7575 */
7576 if (pvd->vdev_ops == &vdev_spare_ops &&
7577 oldvd->vdev_isspare &&
7578 !spa_has_spare(spa, newvd->vdev_guid))
7579 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7580
7581 /*
7582 * If the source is a hot spare, and the parent isn't already a
7583 * spare, then we want to create a new hot spare. Otherwise, we
7584 * want to create a replacing vdev. The user is not allowed to
7585 * attach to a spared vdev child unless the 'isspare' state is
7586 * the same (spare replaces spare, non-spare replaces
7587 * non-spare).
7588 */
7589 if (pvd->vdev_ops == &vdev_replacing_ops &&
7590 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7591 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7592 } else if (pvd->vdev_ops == &vdev_spare_ops &&
7593 newvd->vdev_isspare != oldvd->vdev_isspare) {
7594 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7595 }
7596
7597 if (newvd->vdev_isspare)
7598 pvops = &vdev_spare_ops;
7599 else
7600 pvops = &vdev_replacing_ops;
7601 }
7602
7603 /*
7604 * Make sure the new device is big enough.
7605 */
7606 vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd;
7607 if (newvd->vdev_asize < vdev_get_min_asize(min_vdev))
7608 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7609
7610 /*
7611 * The new device cannot have a higher alignment requirement
7612 * than the top-level vdev.
7613 */
7614 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) {
7615 return (spa_vdev_exit(spa, newrootvd, txg,
7616 ZFS_ERR_ASHIFT_MISMATCH));
7617 }
7618
7619 /*
7620 * RAIDZ-expansion-specific checks.
7621 */
7622 if (raidz) {
7623 if (vdev_raidz_attach_check(newvd) != 0)
7624 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7625
7626 /*
7627 * Fail early if a child is not healthy or being replaced
7628 */
7629 for (int i = 0; i < oldvd->vdev_children; i++) {
7630 if (vdev_is_dead(oldvd->vdev_child[i]) ||
7631 !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) {
7632 return (spa_vdev_exit(spa, newrootvd, txg,
7633 ENXIO));
7634 }
7635 /* Also fail if reserved boot area is in-use */
7636 if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i])
7637 != 0) {
7638 return (spa_vdev_exit(spa, newrootvd, txg,
7639 EADDRINUSE));
7640 }
7641 }
7642 }
7643
7644 if (raidz) {
7645 /*
7646 * Note: oldvdpath is freed by spa_strfree(), but
7647 * kmem_asprintf() is freed by kmem_strfree(), so we have to
7648 * move it to a spa_strdup-ed string.
7649 */
7650 char *tmp = kmem_asprintf("raidz%u-%u",
7651 (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id);
7652 oldvdpath = spa_strdup(tmp);
7653 kmem_strfree(tmp);
7654 } else {
7655 oldvdpath = spa_strdup(oldvd->vdev_path);
7656 }
7657 newvdpath = spa_strdup(newvd->vdev_path);
7658
7659 /*
7660 * If this is an in-place replacement, update oldvd's path and devid
7661 * to make it distinguishable from newvd, and unopenable from now on.
7662 */
7663 if (strcmp(oldvdpath, newvdpath) == 0) {
7664 spa_strfree(oldvd->vdev_path);
7665 oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5,
7666 KM_SLEEP);
7667 (void) sprintf(oldvd->vdev_path, "%s/old",
7668 newvdpath);
7669 if (oldvd->vdev_devid != NULL) {
7670 spa_strfree(oldvd->vdev_devid);
7671 oldvd->vdev_devid = NULL;
7672 }
7673 spa_strfree(oldvdpath);
7674 oldvdpath = spa_strdup(oldvd->vdev_path);
7675 }
7676
7677 /*
7678 * If the parent is not a mirror, or if we're replacing, insert the new
7679 * mirror/replacing/spare vdev above oldvd.
7680 */
7681 if (!raidz && pvd->vdev_ops != pvops) {
7682 pvd = vdev_add_parent(oldvd, pvops);
7683 ASSERT(pvd->vdev_ops == pvops);
7684 ASSERT(oldvd->vdev_parent == pvd);
7685 }
7686
7687 ASSERT(pvd->vdev_top->vdev_parent == rvd);
7688
7689 /*
7690 * Extract the new device from its root and add it to pvd.
7691 */
7692 vdev_remove_child(newrootvd, newvd);
7693 newvd->vdev_id = pvd->vdev_children;
7694 newvd->vdev_crtxg = oldvd->vdev_crtxg;
7695 vdev_add_child(pvd, newvd);
7696
7697 /*
7698 * Reevaluate the parent vdev state.
7699 */
7700 vdev_propagate_state(pvd);
7701
7702 tvd = newvd->vdev_top;
7703 ASSERT(pvd->vdev_top == tvd);
7704 ASSERT(tvd->vdev_parent == rvd);
7705
7706 vdev_config_dirty(tvd);
7707
7708 /*
7709 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7710 * for any dmu_sync-ed blocks. It will propagate upward when
7711 * spa_vdev_exit() calls vdev_dtl_reassess().
7712 */
7713 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7714
7715 if (raidz) {
7716 /*
7717 * Wait for the youngest allocations and frees to sync,
7718 * and then wait for the deferral of those frees to finish.
7719 */
7720 spa_vdev_config_exit(spa, NULL,
7721 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
7722
7723 vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE);
7724 vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE);
7725 vdev_autotrim_stop_wait(tvd);
7726
7727 dtl_max_txg = spa_vdev_config_enter(spa);
7728
7729 tvd->vdev_rz_expanding = B_TRUE;
7730
7731 vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg);
7732 vdev_config_dirty(tvd);
7733
7734 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
7735 dtl_max_txg);
7736 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync,
7737 newvd, tx);
7738 dmu_tx_commit(tx);
7739 } else {
7740 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
7741 dtl_max_txg - TXG_INITIAL);
7742
7743 if (newvd->vdev_isspare) {
7744 spa_spare_activate(newvd);
7745 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7746 }
7747
7748 newvd_isspare = newvd->vdev_isspare;
7749
7750 /*
7751 * Mark newvd's DTL dirty in this txg.
7752 */
7753 vdev_dirty(tvd, VDD_DTL, newvd, txg);
7754
7755 /*
7756 * Schedule the resilver or rebuild to restart in the future.
7757 * We do this to ensure that dmu_sync-ed blocks have been
7758 * stitched into the respective datasets.
7759 */
7760 if (rebuild) {
7761 newvd->vdev_rebuild_txg = txg;
7762
7763 vdev_rebuild(tvd);
7764 } else {
7765 newvd->vdev_resilver_txg = txg;
7766
7767 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7768 spa_feature_is_enabled(spa,
7769 SPA_FEATURE_RESILVER_DEFER)) {
7770 vdev_defer_resilver(newvd);
7771 } else {
7772 dsl_scan_restart_resilver(spa->spa_dsl_pool,
7773 dtl_max_txg);
7774 }
7775 }
7776 }
7777
7778 if (spa->spa_bootfs)
7779 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7780
7781 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7782
7783 /*
7784 * Commit the config
7785 */
7786 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7787
7788 spa_history_log_internal(spa, "vdev attach", NULL,
7789 "%s vdev=%s %s vdev=%s",
7790 replacing && newvd_isspare ? "spare in" :
7791 replacing ? "replace" : "attach", newvdpath,
7792 replacing ? "for" : "to", oldvdpath);
7793
7794 spa_strfree(oldvdpath);
7795 spa_strfree(newvdpath);
7796
7797 return (0);
7798 }
7799
7800 /*
7801 * Detach a device from a mirror or replacing vdev.
7802 *
7803 * If 'replace_done' is specified, only detach if the parent
7804 * is a replacing or a spare vdev.
7805 */
7806 int
7807 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7808 {
7809 uint64_t txg;
7810 int error;
7811 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7812 vdev_t *vd, *pvd, *cvd, *tvd;
7813 boolean_t unspare = B_FALSE;
7814 uint64_t unspare_guid = 0;
7815 char *vdpath;
7816
7817 ASSERT(spa_writeable(spa));
7818
7819 txg = spa_vdev_detach_enter(spa, guid);
7820
7821 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7822
7823 /*
7824 * Besides being called directly from the userland through the
7825 * ioctl interface, spa_vdev_detach() can be potentially called
7826 * at the end of spa_vdev_resilver_done().
7827 *
7828 * In the regular case, when we have a checkpoint this shouldn't
7829 * happen as we never empty the DTLs of a vdev during the scrub
7830 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7831 * should never get here when we have a checkpoint.
7832 *
7833 * That said, even in a case when we checkpoint the pool exactly
7834 * as spa_vdev_resilver_done() calls this function everything
7835 * should be fine as the resilver will return right away.
7836 */
7837 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7838 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7839 error = (spa_has_checkpoint(spa)) ?
7840 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7841 return (spa_vdev_exit(spa, NULL, txg, error));
7842 }
7843
7844 if (vd == NULL)
7845 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7846
7847 if (!vd->vdev_ops->vdev_op_leaf)
7848 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7849
7850 pvd = vd->vdev_parent;
7851
7852 /*
7853 * If the parent/child relationship is not as expected, don't do it.
7854 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7855 * vdev that's replacing B with C. The user's intent in replacing
7856 * is to go from M(A,B) to M(A,C). If the user decides to cancel
7857 * the replace by detaching C, the expected behavior is to end up
7858 * M(A,B). But suppose that right after deciding to detach C,
7859 * the replacement of B completes. We would have M(A,C), and then
7860 * ask to detach C, which would leave us with just A -- not what
7861 * the user wanted. To prevent this, we make sure that the
7862 * parent/child relationship hasn't changed -- in this example,
7863 * that C's parent is still the replacing vdev R.
7864 */
7865 if (pvd->vdev_guid != pguid && pguid != 0)
7866 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7867
7868 /*
7869 * Only 'replacing' or 'spare' vdevs can be replaced.
7870 */
7871 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7872 pvd->vdev_ops != &vdev_spare_ops)
7873 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7874
7875 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7876 spa_version(spa) >= SPA_VERSION_SPARES);
7877
7878 /*
7879 * Only mirror, replacing, and spare vdevs support detach.
7880 */
7881 if (pvd->vdev_ops != &vdev_replacing_ops &&
7882 pvd->vdev_ops != &vdev_mirror_ops &&
7883 pvd->vdev_ops != &vdev_spare_ops)
7884 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7885
7886 /*
7887 * If this device has the only valid copy of some data,
7888 * we cannot safely detach it.
7889 */
7890 if (vdev_dtl_required(vd))
7891 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7892
7893 ASSERT(pvd->vdev_children >= 2);
7894
7895 /*
7896 * If we are detaching the second disk from a replacing vdev, then
7897 * check to see if we changed the original vdev's path to have "/old"
7898 * at the end in spa_vdev_attach(). If so, undo that change now.
7899 */
7900 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7901 vd->vdev_path != NULL) {
7902 size_t len = strlen(vd->vdev_path);
7903
7904 for (int c = 0; c < pvd->vdev_children; c++) {
7905 cvd = pvd->vdev_child[c];
7906
7907 if (cvd == vd || cvd->vdev_path == NULL)
7908 continue;
7909
7910 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7911 strcmp(cvd->vdev_path + len, "/old") == 0) {
7912 spa_strfree(cvd->vdev_path);
7913 cvd->vdev_path = spa_strdup(vd->vdev_path);
7914 break;
7915 }
7916 }
7917 }
7918
7919 /*
7920 * If we are detaching the original disk from a normal spare, then it
7921 * implies that the spare should become a real disk, and be removed
7922 * from the active spare list for the pool. dRAID spares on the
7923 * other hand are coupled to the pool and thus should never be removed
7924 * from the spares list.
7925 */
7926 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7927 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7928
7929 if (last_cvd->vdev_isspare &&
7930 last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7931 unspare = B_TRUE;
7932 }
7933 }
7934
7935 /*
7936 * Erase the disk labels so the disk can be used for other things.
7937 * This must be done after all other error cases are handled,
7938 * but before we disembowel vd (so we can still do I/O to it).
7939 * But if we can't do it, don't treat the error as fatal --
7940 * it may be that the unwritability of the disk is the reason
7941 * it's being detached!
7942 */
7943 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7944
7945 /*
7946 * Remove vd from its parent and compact the parent's children.
7947 */
7948 vdev_remove_child(pvd, vd);
7949 vdev_compact_children(pvd);
7950
7951 /*
7952 * Remember one of the remaining children so we can get tvd below.
7953 */
7954 cvd = pvd->vdev_child[pvd->vdev_children - 1];
7955
7956 /*
7957 * If we need to remove the remaining child from the list of hot spares,
7958 * do it now, marking the vdev as no longer a spare in the process.
7959 * We must do this before vdev_remove_parent(), because that can
7960 * change the GUID if it creates a new toplevel GUID. For a similar
7961 * reason, we must remove the spare now, in the same txg as the detach;
7962 * otherwise someone could attach a new sibling, change the GUID, and
7963 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7964 */
7965 if (unspare) {
7966 ASSERT(cvd->vdev_isspare);
7967 spa_spare_remove(cvd);
7968 unspare_guid = cvd->vdev_guid;
7969 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7970 cvd->vdev_unspare = B_TRUE;
7971 }
7972
7973 /*
7974 * If the parent mirror/replacing vdev only has one child,
7975 * the parent is no longer needed. Remove it from the tree.
7976 */
7977 if (pvd->vdev_children == 1) {
7978 if (pvd->vdev_ops == &vdev_spare_ops)
7979 cvd->vdev_unspare = B_FALSE;
7980 vdev_remove_parent(cvd);
7981 }
7982
7983 /*
7984 * We don't set tvd until now because the parent we just removed
7985 * may have been the previous top-level vdev.
7986 */
7987 tvd = cvd->vdev_top;
7988 ASSERT(tvd->vdev_parent == rvd);
7989
7990 /*
7991 * Reevaluate the parent vdev state.
7992 */
7993 vdev_propagate_state(cvd);
7994
7995 /*
7996 * If the 'autoexpand' property is set on the pool then automatically
7997 * try to expand the size of the pool. For example if the device we
7998 * just detached was smaller than the others, it may be possible to
7999 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
8000 * first so that we can obtain the updated sizes of the leaf vdevs.
8001 */
8002 if (spa->spa_autoexpand) {
8003 vdev_reopen(tvd);
8004 vdev_expand(tvd, txg);
8005 }
8006
8007 vdev_config_dirty(tvd);
8008
8009 /*
8010 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
8011 * vd->vdev_detached is set and free vd's DTL object in syncing context.
8012 * But first make sure we're not on any *other* txg's DTL list, to
8013 * prevent vd from being accessed after it's freed.
8014 */
8015 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
8016 for (int t = 0; t < TXG_SIZE; t++)
8017 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
8018 vd->vdev_detached = B_TRUE;
8019 vdev_dirty(tvd, VDD_DTL, vd, txg);
8020
8021 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
8022 spa_notify_waiters(spa);
8023
8024 /* hang on to the spa before we release the lock */
8025 spa_open_ref(spa, FTAG);
8026
8027 error = spa_vdev_exit(spa, vd, txg, 0);
8028
8029 spa_history_log_internal(spa, "detach", NULL,
8030 "vdev=%s", vdpath);
8031 spa_strfree(vdpath);
8032
8033 /*
8034 * If this was the removal of the original device in a hot spare vdev,
8035 * then we want to go through and remove the device from the hot spare
8036 * list of every other pool.
8037 */
8038 if (unspare) {
8039 spa_t *altspa = NULL;
8040
8041 mutex_enter(&spa_namespace_lock);
8042 while ((altspa = spa_next(altspa)) != NULL) {
8043 if (altspa->spa_state != POOL_STATE_ACTIVE ||
8044 altspa == spa)
8045 continue;
8046
8047 spa_open_ref(altspa, FTAG);
8048 mutex_exit(&spa_namespace_lock);
8049 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
8050 mutex_enter(&spa_namespace_lock);
8051 spa_close(altspa, FTAG);
8052 }
8053 mutex_exit(&spa_namespace_lock);
8054
8055 /* search the rest of the vdevs for spares to remove */
8056 spa_vdev_resilver_done(spa);
8057 }
8058
8059 /* all done with the spa; OK to release */
8060 mutex_enter(&spa_namespace_lock);
8061 spa_close(spa, FTAG);
8062 mutex_exit(&spa_namespace_lock);
8063
8064 return (error);
8065 }
8066
8067 static int
8068 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8069 list_t *vd_list)
8070 {
8071 ASSERT(MUTEX_HELD(&spa_namespace_lock));
8072
8073 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8074
8075 /* Look up vdev and ensure it's a leaf. */
8076 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8077 if (vd == NULL || vd->vdev_detached) {
8078 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8079 return (SET_ERROR(ENODEV));
8080 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8081 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8082 return (SET_ERROR(EINVAL));
8083 } else if (!vdev_writeable(vd)) {
8084 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8085 return (SET_ERROR(EROFS));
8086 }
8087 mutex_enter(&vd->vdev_initialize_lock);
8088 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8089
8090 /*
8091 * When we activate an initialize action we check to see
8092 * if the vdev_initialize_thread is NULL. We do this instead
8093 * of using the vdev_initialize_state since there might be
8094 * a previous initialization process which has completed but
8095 * the thread is not exited.
8096 */
8097 if (cmd_type == POOL_INITIALIZE_START &&
8098 (vd->vdev_initialize_thread != NULL ||
8099 vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) {
8100 mutex_exit(&vd->vdev_initialize_lock);
8101 return (SET_ERROR(EBUSY));
8102 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
8103 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
8104 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
8105 mutex_exit(&vd->vdev_initialize_lock);
8106 return (SET_ERROR(ESRCH));
8107 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
8108 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
8109 mutex_exit(&vd->vdev_initialize_lock);
8110 return (SET_ERROR(ESRCH));
8111 } else if (cmd_type == POOL_INITIALIZE_UNINIT &&
8112 vd->vdev_initialize_thread != NULL) {
8113 mutex_exit(&vd->vdev_initialize_lock);
8114 return (SET_ERROR(EBUSY));
8115 }
8116
8117 switch (cmd_type) {
8118 case POOL_INITIALIZE_START:
8119 vdev_initialize(vd);
8120 break;
8121 case POOL_INITIALIZE_CANCEL:
8122 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
8123 break;
8124 case POOL_INITIALIZE_SUSPEND:
8125 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
8126 break;
8127 case POOL_INITIALIZE_UNINIT:
8128 vdev_uninitialize(vd);
8129 break;
8130 default:
8131 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8132 }
8133 mutex_exit(&vd->vdev_initialize_lock);
8134
8135 return (0);
8136 }
8137
8138 int
8139 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
8140 nvlist_t *vdev_errlist)
8141 {
8142 int total_errors = 0;
8143 list_t vd_list;
8144
8145 list_create(&vd_list, sizeof (vdev_t),
8146 offsetof(vdev_t, vdev_initialize_node));
8147
8148 /*
8149 * We hold the namespace lock through the whole function
8150 * to prevent any changes to the pool while we're starting or
8151 * stopping initialization. The config and state locks are held so that
8152 * we can properly assess the vdev state before we commit to
8153 * the initializing operation.
8154 */
8155 mutex_enter(&spa_namespace_lock);
8156
8157 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8158 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8159 uint64_t vdev_guid = fnvpair_value_uint64(pair);
8160
8161 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
8162 &vd_list);
8163 if (error != 0) {
8164 char guid_as_str[MAXNAMELEN];
8165
8166 (void) snprintf(guid_as_str, sizeof (guid_as_str),
8167 "%llu", (unsigned long long)vdev_guid);
8168 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8169 total_errors++;
8170 }
8171 }
8172
8173 /* Wait for all initialize threads to stop. */
8174 vdev_initialize_stop_wait(spa, &vd_list);
8175
8176 /* Sync out the initializing state */
8177 txg_wait_synced(spa->spa_dsl_pool, 0);
8178 mutex_exit(&spa_namespace_lock);
8179
8180 list_destroy(&vd_list);
8181
8182 return (total_errors);
8183 }
8184
8185 static int
8186 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8187 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
8188 {
8189 ASSERT(MUTEX_HELD(&spa_namespace_lock));
8190
8191 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8192
8193 /* Look up vdev and ensure it's a leaf. */
8194 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8195 if (vd == NULL || vd->vdev_detached) {
8196 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8197 return (SET_ERROR(ENODEV));
8198 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8199 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8200 return (SET_ERROR(EINVAL));
8201 } else if (!vdev_writeable(vd)) {
8202 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8203 return (SET_ERROR(EROFS));
8204 } else if (!vd->vdev_has_trim) {
8205 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8206 return (SET_ERROR(EOPNOTSUPP));
8207 } else if (secure && !vd->vdev_has_securetrim) {
8208 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8209 return (SET_ERROR(EOPNOTSUPP));
8210 }
8211 mutex_enter(&vd->vdev_trim_lock);
8212 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8213
8214 /*
8215 * When we activate a TRIM action we check to see if the
8216 * vdev_trim_thread is NULL. We do this instead of using the
8217 * vdev_trim_state since there might be a previous TRIM process
8218 * which has completed but the thread is not exited.
8219 */
8220 if (cmd_type == POOL_TRIM_START &&
8221 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing ||
8222 vd->vdev_top->vdev_rz_expanding)) {
8223 mutex_exit(&vd->vdev_trim_lock);
8224 return (SET_ERROR(EBUSY));
8225 } else if (cmd_type == POOL_TRIM_CANCEL &&
8226 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
8227 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
8228 mutex_exit(&vd->vdev_trim_lock);
8229 return (SET_ERROR(ESRCH));
8230 } else if (cmd_type == POOL_TRIM_SUSPEND &&
8231 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
8232 mutex_exit(&vd->vdev_trim_lock);
8233 return (SET_ERROR(ESRCH));
8234 }
8235
8236 switch (cmd_type) {
8237 case POOL_TRIM_START:
8238 vdev_trim(vd, rate, partial, secure);
8239 break;
8240 case POOL_TRIM_CANCEL:
8241 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
8242 break;
8243 case POOL_TRIM_SUSPEND:
8244 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
8245 break;
8246 default:
8247 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8248 }
8249 mutex_exit(&vd->vdev_trim_lock);
8250
8251 return (0);
8252 }
8253
8254 /*
8255 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
8256 * TRIM threads for each child vdev. These threads pass over all of the free
8257 * space in the vdev's metaslabs and issues TRIM commands for that space.
8258 */
8259 int
8260 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
8261 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
8262 {
8263 int total_errors = 0;
8264 list_t vd_list;
8265
8266 list_create(&vd_list, sizeof (vdev_t),
8267 offsetof(vdev_t, vdev_trim_node));
8268
8269 /*
8270 * We hold the namespace lock through the whole function
8271 * to prevent any changes to the pool while we're starting or
8272 * stopping TRIM. The config and state locks are held so that
8273 * we can properly assess the vdev state before we commit to
8274 * the TRIM operation.
8275 */
8276 mutex_enter(&spa_namespace_lock);
8277
8278 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8279 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8280 uint64_t vdev_guid = fnvpair_value_uint64(pair);
8281
8282 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
8283 rate, partial, secure, &vd_list);
8284 if (error != 0) {
8285 char guid_as_str[MAXNAMELEN];
8286
8287 (void) snprintf(guid_as_str, sizeof (guid_as_str),
8288 "%llu", (unsigned long long)vdev_guid);
8289 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8290 total_errors++;
8291 }
8292 }
8293
8294 /* Wait for all TRIM threads to stop. */
8295 vdev_trim_stop_wait(spa, &vd_list);
8296
8297 /* Sync out the TRIM state */
8298 txg_wait_synced(spa->spa_dsl_pool, 0);
8299 mutex_exit(&spa_namespace_lock);
8300
8301 list_destroy(&vd_list);
8302
8303 return (total_errors);
8304 }
8305
8306 /*
8307 * Split a set of devices from their mirrors, and create a new pool from them.
8308 */
8309 int
8310 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
8311 nvlist_t *props, boolean_t exp)
8312 {
8313 int error = 0;
8314 uint64_t txg, *glist;
8315 spa_t *newspa;
8316 uint_t c, children, lastlog;
8317 nvlist_t **child, *nvl, *tmp;
8318 dmu_tx_t *tx;
8319 const char *altroot = NULL;
8320 vdev_t *rvd, **vml = NULL; /* vdev modify list */
8321 boolean_t activate_slog;
8322
8323 ASSERT(spa_writeable(spa));
8324
8325 txg = spa_vdev_enter(spa);
8326
8327 ASSERT(MUTEX_HELD(&spa_namespace_lock));
8328 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8329 error = (spa_has_checkpoint(spa)) ?
8330 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8331 return (spa_vdev_exit(spa, NULL, txg, error));
8332 }
8333
8334 /* clear the log and flush everything up to now */
8335 activate_slog = spa_passivate_log(spa);
8336 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8337 error = spa_reset_logs(spa);
8338 txg = spa_vdev_config_enter(spa);
8339
8340 if (activate_slog)
8341 spa_activate_log(spa);
8342
8343 if (error != 0)
8344 return (spa_vdev_exit(spa, NULL, txg, error));
8345
8346 /* check new spa name before going any further */
8347 if (spa_lookup(newname) != NULL)
8348 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
8349
8350 /*
8351 * scan through all the children to ensure they're all mirrors
8352 */
8353 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
8354 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
8355 &children) != 0)
8356 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8357
8358 /* first, check to ensure we've got the right child count */
8359 rvd = spa->spa_root_vdev;
8360 lastlog = 0;
8361 for (c = 0; c < rvd->vdev_children; c++) {
8362 vdev_t *vd = rvd->vdev_child[c];
8363
8364 /* don't count the holes & logs as children */
8365 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
8366 !vdev_is_concrete(vd))) {
8367 if (lastlog == 0)
8368 lastlog = c;
8369 continue;
8370 }
8371
8372 lastlog = 0;
8373 }
8374 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
8375 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8376
8377 /* next, ensure no spare or cache devices are part of the split */
8378 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
8379 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
8380 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8381
8382 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
8383 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
8384
8385 /* then, loop over each vdev and validate it */
8386 for (c = 0; c < children; c++) {
8387 uint64_t is_hole = 0;
8388
8389 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
8390 &is_hole);
8391
8392 if (is_hole != 0) {
8393 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
8394 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
8395 continue;
8396 } else {
8397 error = SET_ERROR(EINVAL);
8398 break;
8399 }
8400 }
8401
8402 /* deal with indirect vdevs */
8403 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
8404 &vdev_indirect_ops)
8405 continue;
8406
8407 /* which disk is going to be split? */
8408 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
8409 &glist[c]) != 0) {
8410 error = SET_ERROR(EINVAL);
8411 break;
8412 }
8413
8414 /* look it up in the spa */
8415 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
8416 if (vml[c] == NULL) {
8417 error = SET_ERROR(ENODEV);
8418 break;
8419 }
8420
8421 /* make sure there's nothing stopping the split */
8422 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
8423 vml[c]->vdev_islog ||
8424 !vdev_is_concrete(vml[c]) ||
8425 vml[c]->vdev_isspare ||
8426 vml[c]->vdev_isl2cache ||
8427 !vdev_writeable(vml[c]) ||
8428 vml[c]->vdev_children != 0 ||
8429 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
8430 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
8431 error = SET_ERROR(EINVAL);
8432 break;
8433 }
8434
8435 if (vdev_dtl_required(vml[c]) ||
8436 vdev_resilver_needed(vml[c], NULL, NULL)) {
8437 error = SET_ERROR(EBUSY);
8438 break;
8439 }
8440
8441 /* we need certain info from the top level */
8442 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
8443 vml[c]->vdev_top->vdev_ms_array);
8444 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
8445 vml[c]->vdev_top->vdev_ms_shift);
8446 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
8447 vml[c]->vdev_top->vdev_asize);
8448 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
8449 vml[c]->vdev_top->vdev_ashift);
8450
8451 /* transfer per-vdev ZAPs */
8452 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
8453 VERIFY0(nvlist_add_uint64(child[c],
8454 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
8455
8456 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
8457 VERIFY0(nvlist_add_uint64(child[c],
8458 ZPOOL_CONFIG_VDEV_TOP_ZAP,
8459 vml[c]->vdev_parent->vdev_top_zap));
8460 }
8461
8462 if (error != 0) {
8463 kmem_free(vml, children * sizeof (vdev_t *));
8464 kmem_free(glist, children * sizeof (uint64_t));
8465 return (spa_vdev_exit(spa, NULL, txg, error));
8466 }
8467
8468 /* stop writers from using the disks */
8469 for (c = 0; c < children; c++) {
8470 if (vml[c] != NULL)
8471 vml[c]->vdev_offline = B_TRUE;
8472 }
8473 vdev_reopen(spa->spa_root_vdev);
8474
8475 /*
8476 * Temporarily record the splitting vdevs in the spa config. This
8477 * will disappear once the config is regenerated.
8478 */
8479 nvl = fnvlist_alloc();
8480 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
8481 kmem_free(glist, children * sizeof (uint64_t));
8482
8483 mutex_enter(&spa->spa_props_lock);
8484 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
8485 mutex_exit(&spa->spa_props_lock);
8486 spa->spa_config_splitting = nvl;
8487 vdev_config_dirty(spa->spa_root_vdev);
8488
8489 /* configure and create the new pool */
8490 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
8491 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
8492 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
8493 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
8494 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
8495 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
8496 spa_generate_guid(NULL));
8497 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
8498 (void) nvlist_lookup_string(props,
8499 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
8500
8501 /* add the new pool to the namespace */
8502 newspa = spa_add(newname, config, altroot);
8503 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
8504 newspa->spa_config_txg = spa->spa_config_txg;
8505 spa_set_log_state(newspa, SPA_LOG_CLEAR);
8506
8507 /* release the spa config lock, retaining the namespace lock */
8508 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8509
8510 if (zio_injection_enabled)
8511 zio_handle_panic_injection(spa, FTAG, 1);
8512
8513 spa_activate(newspa, spa_mode_global);
8514 spa_async_suspend(newspa);
8515
8516 /*
8517 * Temporarily stop the initializing and TRIM activity. We set the
8518 * state to ACTIVE so that we know to resume initializing or TRIM
8519 * once the split has completed.
8520 */
8521 list_t vd_initialize_list;
8522 list_create(&vd_initialize_list, sizeof (vdev_t),
8523 offsetof(vdev_t, vdev_initialize_node));
8524
8525 list_t vd_trim_list;
8526 list_create(&vd_trim_list, sizeof (vdev_t),
8527 offsetof(vdev_t, vdev_trim_node));
8528
8529 for (c = 0; c < children; c++) {
8530 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8531 mutex_enter(&vml[c]->vdev_initialize_lock);
8532 vdev_initialize_stop(vml[c],
8533 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
8534 mutex_exit(&vml[c]->vdev_initialize_lock);
8535
8536 mutex_enter(&vml[c]->vdev_trim_lock);
8537 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
8538 mutex_exit(&vml[c]->vdev_trim_lock);
8539 }
8540 }
8541
8542 vdev_initialize_stop_wait(spa, &vd_initialize_list);
8543 vdev_trim_stop_wait(spa, &vd_trim_list);
8544
8545 list_destroy(&vd_initialize_list);
8546 list_destroy(&vd_trim_list);
8547
8548 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
8549 newspa->spa_is_splitting = B_TRUE;
8550
8551 /* create the new pool from the disks of the original pool */
8552 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
8553 if (error)
8554 goto out;
8555
8556 /* if that worked, generate a real config for the new pool */
8557 if (newspa->spa_root_vdev != NULL) {
8558 newspa->spa_config_splitting = fnvlist_alloc();
8559 fnvlist_add_uint64(newspa->spa_config_splitting,
8560 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
8561 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
8562 B_TRUE));
8563 }
8564
8565 /* set the props */
8566 if (props != NULL) {
8567 spa_configfile_set(newspa, props, B_FALSE);
8568 error = spa_prop_set(newspa, props);
8569 if (error)
8570 goto out;
8571 }
8572
8573 /* flush everything */
8574 txg = spa_vdev_config_enter(newspa);
8575 vdev_config_dirty(newspa->spa_root_vdev);
8576 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
8577
8578 if (zio_injection_enabled)
8579 zio_handle_panic_injection(spa, FTAG, 2);
8580
8581 spa_async_resume(newspa);
8582
8583 /* finally, update the original pool's config */
8584 txg = spa_vdev_config_enter(spa);
8585 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
8586 error = dmu_tx_assign(tx, TXG_WAIT);
8587 if (error != 0)
8588 dmu_tx_abort(tx);
8589 for (c = 0; c < children; c++) {
8590 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8591 vdev_t *tvd = vml[c]->vdev_top;
8592
8593 /*
8594 * Need to be sure the detachable VDEV is not
8595 * on any *other* txg's DTL list to prevent it
8596 * from being accessed after it's freed.
8597 */
8598 for (int t = 0; t < TXG_SIZE; t++) {
8599 (void) txg_list_remove_this(
8600 &tvd->vdev_dtl_list, vml[c], t);
8601 }
8602
8603 vdev_split(vml[c]);
8604 if (error == 0)
8605 spa_history_log_internal(spa, "detach", tx,
8606 "vdev=%s", vml[c]->vdev_path);
8607
8608 vdev_free(vml[c]);
8609 }
8610 }
8611 spa->spa_avz_action = AVZ_ACTION_REBUILD;
8612 vdev_config_dirty(spa->spa_root_vdev);
8613 spa->spa_config_splitting = NULL;
8614 nvlist_free(nvl);
8615 if (error == 0)
8616 dmu_tx_commit(tx);
8617 (void) spa_vdev_exit(spa, NULL, txg, 0);
8618
8619 if (zio_injection_enabled)
8620 zio_handle_panic_injection(spa, FTAG, 3);
8621
8622 /* split is complete; log a history record */
8623 spa_history_log_internal(newspa, "split", NULL,
8624 "from pool %s", spa_name(spa));
8625
8626 newspa->spa_is_splitting = B_FALSE;
8627 kmem_free(vml, children * sizeof (vdev_t *));
8628
8629 /* if we're not going to mount the filesystems in userland, export */
8630 if (exp)
8631 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
8632 B_FALSE, B_FALSE);
8633
8634 return (error);
8635
8636 out:
8637 spa_unload(newspa);
8638 spa_deactivate(newspa);
8639 spa_remove(newspa);
8640
8641 txg = spa_vdev_config_enter(spa);
8642
8643 /* re-online all offlined disks */
8644 for (c = 0; c < children; c++) {
8645 if (vml[c] != NULL)
8646 vml[c]->vdev_offline = B_FALSE;
8647 }
8648
8649 /* restart initializing or trimming disks as necessary */
8650 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
8651 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
8652 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
8653
8654 vdev_reopen(spa->spa_root_vdev);
8655
8656 nvlist_free(spa->spa_config_splitting);
8657 spa->spa_config_splitting = NULL;
8658 (void) spa_vdev_exit(spa, NULL, txg, error);
8659
8660 kmem_free(vml, children * sizeof (vdev_t *));
8661 return (error);
8662 }
8663
8664 /*
8665 * Find any device that's done replacing, or a vdev marked 'unspare' that's
8666 * currently spared, so we can detach it.
8667 */
8668 static vdev_t *
8669 spa_vdev_resilver_done_hunt(vdev_t *vd)
8670 {
8671 vdev_t *newvd, *oldvd;
8672
8673 for (int c = 0; c < vd->vdev_children; c++) {
8674 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8675 if (oldvd != NULL)
8676 return (oldvd);
8677 }
8678
8679 /*
8680 * Check for a completed replacement. We always consider the first
8681 * vdev in the list to be the oldest vdev, and the last one to be
8682 * the newest (see spa_vdev_attach() for how that works). In
8683 * the case where the newest vdev is faulted, we will not automatically
8684 * remove it after a resilver completes. This is OK as it will require
8685 * user intervention to determine which disk the admin wishes to keep.
8686 */
8687 if (vd->vdev_ops == &vdev_replacing_ops) {
8688 ASSERT(vd->vdev_children > 1);
8689
8690 newvd = vd->vdev_child[vd->vdev_children - 1];
8691 oldvd = vd->vdev_child[0];
8692
8693 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8694 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8695 !vdev_dtl_required(oldvd))
8696 return (oldvd);
8697 }
8698
8699 /*
8700 * Check for a completed resilver with the 'unspare' flag set.
8701 * Also potentially update faulted state.
8702 */
8703 if (vd->vdev_ops == &vdev_spare_ops) {
8704 vdev_t *first = vd->vdev_child[0];
8705 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8706
8707 if (last->vdev_unspare) {
8708 oldvd = first;
8709 newvd = last;
8710 } else if (first->vdev_unspare) {
8711 oldvd = last;
8712 newvd = first;
8713 } else {
8714 oldvd = NULL;
8715 }
8716
8717 if (oldvd != NULL &&
8718 vdev_dtl_empty(newvd, DTL_MISSING) &&
8719 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8720 !vdev_dtl_required(oldvd))
8721 return (oldvd);
8722
8723 vdev_propagate_state(vd);
8724
8725 /*
8726 * If there are more than two spares attached to a disk,
8727 * and those spares are not required, then we want to
8728 * attempt to free them up now so that they can be used
8729 * by other pools. Once we're back down to a single
8730 * disk+spare, we stop removing them.
8731 */
8732 if (vd->vdev_children > 2) {
8733 newvd = vd->vdev_child[1];
8734
8735 if (newvd->vdev_isspare && last->vdev_isspare &&
8736 vdev_dtl_empty(last, DTL_MISSING) &&
8737 vdev_dtl_empty(last, DTL_OUTAGE) &&
8738 !vdev_dtl_required(newvd))
8739 return (newvd);
8740 }
8741 }
8742
8743 return (NULL);
8744 }
8745
8746 static void
8747 spa_vdev_resilver_done(spa_t *spa)
8748 {
8749 vdev_t *vd, *pvd, *ppvd;
8750 uint64_t guid, sguid, pguid, ppguid;
8751
8752 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8753
8754 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8755 pvd = vd->vdev_parent;
8756 ppvd = pvd->vdev_parent;
8757 guid = vd->vdev_guid;
8758 pguid = pvd->vdev_guid;
8759 ppguid = ppvd->vdev_guid;
8760 sguid = 0;
8761 /*
8762 * If we have just finished replacing a hot spared device, then
8763 * we need to detach the parent's first child (the original hot
8764 * spare) as well.
8765 */
8766 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8767 ppvd->vdev_children == 2) {
8768 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8769 sguid = ppvd->vdev_child[1]->vdev_guid;
8770 }
8771 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8772
8773 spa_config_exit(spa, SCL_ALL, FTAG);
8774 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8775 return;
8776 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8777 return;
8778 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8779 }
8780
8781 spa_config_exit(spa, SCL_ALL, FTAG);
8782
8783 /*
8784 * If a detach was not performed above replace waiters will not have
8785 * been notified. In which case we must do so now.
8786 */
8787 spa_notify_waiters(spa);
8788 }
8789
8790 /*
8791 * Update the stored path or FRU for this vdev.
8792 */
8793 static int
8794 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8795 boolean_t ispath)
8796 {
8797 vdev_t *vd;
8798 boolean_t sync = B_FALSE;
8799
8800 ASSERT(spa_writeable(spa));
8801
8802 spa_vdev_state_enter(spa, SCL_ALL);
8803
8804 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8805 return (spa_vdev_state_exit(spa, NULL, ENOENT));
8806
8807 if (!vd->vdev_ops->vdev_op_leaf)
8808 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8809
8810 if (ispath) {
8811 if (strcmp(value, vd->vdev_path) != 0) {
8812 spa_strfree(vd->vdev_path);
8813 vd->vdev_path = spa_strdup(value);
8814 sync = B_TRUE;
8815 }
8816 } else {
8817 if (vd->vdev_fru == NULL) {
8818 vd->vdev_fru = spa_strdup(value);
8819 sync = B_TRUE;
8820 } else if (strcmp(value, vd->vdev_fru) != 0) {
8821 spa_strfree(vd->vdev_fru);
8822 vd->vdev_fru = spa_strdup(value);
8823 sync = B_TRUE;
8824 }
8825 }
8826
8827 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8828 }
8829
8830 int
8831 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8832 {
8833 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8834 }
8835
8836 int
8837 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8838 {
8839 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8840 }
8841
8842 /*
8843 * ==========================================================================
8844 * SPA Scanning
8845 * ==========================================================================
8846 */
8847 int
8848 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8849 {
8850 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8851
8852 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8853 return (SET_ERROR(EBUSY));
8854
8855 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8856 }
8857
8858 int
8859 spa_scan_stop(spa_t *spa)
8860 {
8861 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8862 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8863 return (SET_ERROR(EBUSY));
8864
8865 return (dsl_scan_cancel(spa->spa_dsl_pool));
8866 }
8867
8868 int
8869 spa_scan(spa_t *spa, pool_scan_func_t func)
8870 {
8871 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8872
8873 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8874 return (SET_ERROR(ENOTSUP));
8875
8876 if (func == POOL_SCAN_RESILVER &&
8877 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8878 return (SET_ERROR(ENOTSUP));
8879
8880 /*
8881 * If a resilver was requested, but there is no DTL on a
8882 * writeable leaf device, we have nothing to do.
8883 */
8884 if (func == POOL_SCAN_RESILVER &&
8885 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8886 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8887 return (0);
8888 }
8889
8890 if (func == POOL_SCAN_ERRORSCRUB &&
8891 !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
8892 return (SET_ERROR(ENOTSUP));
8893
8894 return (dsl_scan(spa->spa_dsl_pool, func));
8895 }
8896
8897 /*
8898 * ==========================================================================
8899 * SPA async task processing
8900 * ==========================================================================
8901 */
8902
8903 static void
8904 spa_async_remove(spa_t *spa, vdev_t *vd)
8905 {
8906 if (vd->vdev_remove_wanted) {
8907 vd->vdev_remove_wanted = B_FALSE;
8908 vd->vdev_delayed_close = B_FALSE;
8909 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8910
8911 /*
8912 * We want to clear the stats, but we don't want to do a full
8913 * vdev_clear() as that will cause us to throw away
8914 * degraded/faulted state as well as attempt to reopen the
8915 * device, all of which is a waste.
8916 */
8917 vd->vdev_stat.vs_read_errors = 0;
8918 vd->vdev_stat.vs_write_errors = 0;
8919 vd->vdev_stat.vs_checksum_errors = 0;
8920
8921 vdev_state_dirty(vd->vdev_top);
8922
8923 /* Tell userspace that the vdev is gone. */
8924 zfs_post_remove(spa, vd);
8925 }
8926
8927 for (int c = 0; c < vd->vdev_children; c++)
8928 spa_async_remove(spa, vd->vdev_child[c]);
8929 }
8930
8931 static void
8932 spa_async_fault_vdev(spa_t *spa, vdev_t *vd)
8933 {
8934 if (vd->vdev_fault_wanted) {
8935 vd->vdev_fault_wanted = B_FALSE;
8936 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
8937 VDEV_AUX_ERR_EXCEEDED);
8938 }
8939
8940 for (int c = 0; c < vd->vdev_children; c++)
8941 spa_async_fault_vdev(spa, vd->vdev_child[c]);
8942 }
8943
8944 static void
8945 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8946 {
8947 if (!spa->spa_autoexpand)
8948 return;
8949
8950 for (int c = 0; c < vd->vdev_children; c++) {
8951 vdev_t *cvd = vd->vdev_child[c];
8952 spa_async_autoexpand(spa, cvd);
8953 }
8954
8955 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8956 return;
8957
8958 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8959 }
8960
8961 static __attribute__((noreturn)) void
8962 spa_async_thread(void *arg)
8963 {
8964 spa_t *spa = (spa_t *)arg;
8965 dsl_pool_t *dp = spa->spa_dsl_pool;
8966 int tasks;
8967
8968 ASSERT(spa->spa_sync_on);
8969
8970 mutex_enter(&spa->spa_async_lock);
8971 tasks = spa->spa_async_tasks;
8972 spa->spa_async_tasks = 0;
8973 mutex_exit(&spa->spa_async_lock);
8974
8975 /*
8976 * See if the config needs to be updated.
8977 */
8978 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8979 uint64_t old_space, new_space;
8980
8981 mutex_enter(&spa_namespace_lock);
8982 old_space = metaslab_class_get_space(spa_normal_class(spa));
8983 old_space += metaslab_class_get_space(spa_special_class(spa));
8984 old_space += metaslab_class_get_space(spa_dedup_class(spa));
8985 old_space += metaslab_class_get_space(
8986 spa_embedded_log_class(spa));
8987
8988 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8989
8990 new_space = metaslab_class_get_space(spa_normal_class(spa));
8991 new_space += metaslab_class_get_space(spa_special_class(spa));
8992 new_space += metaslab_class_get_space(spa_dedup_class(spa));
8993 new_space += metaslab_class_get_space(
8994 spa_embedded_log_class(spa));
8995 mutex_exit(&spa_namespace_lock);
8996
8997 /*
8998 * If the pool grew as a result of the config update,
8999 * then log an internal history event.
9000 */
9001 if (new_space != old_space) {
9002 spa_history_log_internal(spa, "vdev online", NULL,
9003 "pool '%s' size: %llu(+%llu)",
9004 spa_name(spa), (u_longlong_t)new_space,
9005 (u_longlong_t)(new_space - old_space));
9006 }
9007 }
9008
9009 /*
9010 * See if any devices need to be marked REMOVED.
9011 */
9012 if (tasks & SPA_ASYNC_REMOVE) {
9013 spa_vdev_state_enter(spa, SCL_NONE);
9014 spa_async_remove(spa, spa->spa_root_vdev);
9015 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
9016 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
9017 for (int i = 0; i < spa->spa_spares.sav_count; i++)
9018 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
9019 (void) spa_vdev_state_exit(spa, NULL, 0);
9020 }
9021
9022 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
9023 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9024 spa_async_autoexpand(spa, spa->spa_root_vdev);
9025 spa_config_exit(spa, SCL_CONFIG, FTAG);
9026 }
9027
9028 /*
9029 * See if any devices need to be marked faulted.
9030 */
9031 if (tasks & SPA_ASYNC_FAULT_VDEV) {
9032 spa_vdev_state_enter(spa, SCL_NONE);
9033 spa_async_fault_vdev(spa, spa->spa_root_vdev);
9034 (void) spa_vdev_state_exit(spa, NULL, 0);
9035 }
9036
9037 /*
9038 * If any devices are done replacing, detach them.
9039 */
9040 if (tasks & SPA_ASYNC_RESILVER_DONE ||
9041 tasks & SPA_ASYNC_REBUILD_DONE ||
9042 tasks & SPA_ASYNC_DETACH_SPARE) {
9043 spa_vdev_resilver_done(spa);
9044 }
9045
9046 /*
9047 * Kick off a resilver.
9048 */
9049 if (tasks & SPA_ASYNC_RESILVER &&
9050 !vdev_rebuild_active(spa->spa_root_vdev) &&
9051 (!dsl_scan_resilvering(dp) ||
9052 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
9053 dsl_scan_restart_resilver(dp, 0);
9054
9055 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
9056 mutex_enter(&spa_namespace_lock);
9057 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9058 vdev_initialize_restart(spa->spa_root_vdev);
9059 spa_config_exit(spa, SCL_CONFIG, FTAG);
9060 mutex_exit(&spa_namespace_lock);
9061 }
9062
9063 if (tasks & SPA_ASYNC_TRIM_RESTART) {
9064 mutex_enter(&spa_namespace_lock);
9065 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9066 vdev_trim_restart(spa->spa_root_vdev);
9067 spa_config_exit(spa, SCL_CONFIG, FTAG);
9068 mutex_exit(&spa_namespace_lock);
9069 }
9070
9071 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
9072 mutex_enter(&spa_namespace_lock);
9073 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9074 vdev_autotrim_restart(spa);
9075 spa_config_exit(spa, SCL_CONFIG, FTAG);
9076 mutex_exit(&spa_namespace_lock);
9077 }
9078
9079 /*
9080 * Kick off L2 cache whole device TRIM.
9081 */
9082 if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
9083 mutex_enter(&spa_namespace_lock);
9084 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9085 vdev_trim_l2arc(spa);
9086 spa_config_exit(spa, SCL_CONFIG, FTAG);
9087 mutex_exit(&spa_namespace_lock);
9088 }
9089
9090 /*
9091 * Kick off L2 cache rebuilding.
9092 */
9093 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
9094 mutex_enter(&spa_namespace_lock);
9095 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
9096 l2arc_spa_rebuild_start(spa);
9097 spa_config_exit(spa, SCL_L2ARC, FTAG);
9098 mutex_exit(&spa_namespace_lock);
9099 }
9100
9101 /*
9102 * Let the world know that we're done.
9103 */
9104 mutex_enter(&spa->spa_async_lock);
9105 spa->spa_async_thread = NULL;
9106 cv_broadcast(&spa->spa_async_cv);
9107 mutex_exit(&spa->spa_async_lock);
9108 thread_exit();
9109 }
9110
9111 void
9112 spa_async_suspend(spa_t *spa)
9113 {
9114 mutex_enter(&spa->spa_async_lock);
9115 spa->spa_async_suspended++;
9116 while (spa->spa_async_thread != NULL)
9117 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
9118 mutex_exit(&spa->spa_async_lock);
9119
9120 spa_vdev_remove_suspend(spa);
9121
9122 zthr_t *condense_thread = spa->spa_condense_zthr;
9123 if (condense_thread != NULL)
9124 zthr_cancel(condense_thread);
9125
9126 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9127 if (raidz_expand_thread != NULL)
9128 zthr_cancel(raidz_expand_thread);
9129
9130 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9131 if (discard_thread != NULL)
9132 zthr_cancel(discard_thread);
9133
9134 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9135 if (ll_delete_thread != NULL)
9136 zthr_cancel(ll_delete_thread);
9137
9138 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9139 if (ll_condense_thread != NULL)
9140 zthr_cancel(ll_condense_thread);
9141 }
9142
9143 void
9144 spa_async_resume(spa_t *spa)
9145 {
9146 mutex_enter(&spa->spa_async_lock);
9147 ASSERT(spa->spa_async_suspended != 0);
9148 spa->spa_async_suspended--;
9149 mutex_exit(&spa->spa_async_lock);
9150 spa_restart_removal(spa);
9151
9152 zthr_t *condense_thread = spa->spa_condense_zthr;
9153 if (condense_thread != NULL)
9154 zthr_resume(condense_thread);
9155
9156 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9157 if (raidz_expand_thread != NULL)
9158 zthr_resume(raidz_expand_thread);
9159
9160 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9161 if (discard_thread != NULL)
9162 zthr_resume(discard_thread);
9163
9164 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9165 if (ll_delete_thread != NULL)
9166 zthr_resume(ll_delete_thread);
9167
9168 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9169 if (ll_condense_thread != NULL)
9170 zthr_resume(ll_condense_thread);
9171 }
9172
9173 static boolean_t
9174 spa_async_tasks_pending(spa_t *spa)
9175 {
9176 uint_t non_config_tasks;
9177 uint_t config_task;
9178 boolean_t config_task_suspended;
9179
9180 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
9181 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
9182 if (spa->spa_ccw_fail_time == 0) {
9183 config_task_suspended = B_FALSE;
9184 } else {
9185 config_task_suspended =
9186 (gethrtime() - spa->spa_ccw_fail_time) <
9187 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
9188 }
9189
9190 return (non_config_tasks || (config_task && !config_task_suspended));
9191 }
9192
9193 static void
9194 spa_async_dispatch(spa_t *spa)
9195 {
9196 mutex_enter(&spa->spa_async_lock);
9197 if (spa_async_tasks_pending(spa) &&
9198 !spa->spa_async_suspended &&
9199 spa->spa_async_thread == NULL)
9200 spa->spa_async_thread = thread_create(NULL, 0,
9201 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
9202 mutex_exit(&spa->spa_async_lock);
9203 }
9204
9205 void
9206 spa_async_request(spa_t *spa, int task)
9207 {
9208 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
9209 mutex_enter(&spa->spa_async_lock);
9210 spa->spa_async_tasks |= task;
9211 mutex_exit(&spa->spa_async_lock);
9212 }
9213
9214 int
9215 spa_async_tasks(spa_t *spa)
9216 {
9217 return (spa->spa_async_tasks);
9218 }
9219
9220 /*
9221 * ==========================================================================
9222 * SPA syncing routines
9223 * ==========================================================================
9224 */
9225
9226
9227 static int
9228 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9229 dmu_tx_t *tx)
9230 {
9231 bpobj_t *bpo = arg;
9232 bpobj_enqueue(bpo, bp, bp_freed, tx);
9233 return (0);
9234 }
9235
9236 int
9237 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9238 {
9239 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
9240 }
9241
9242 int
9243 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9244 {
9245 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
9246 }
9247
9248 static int
9249 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9250 {
9251 zio_t *pio = arg;
9252
9253 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
9254 pio->io_flags));
9255 return (0);
9256 }
9257
9258 static int
9259 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9260 dmu_tx_t *tx)
9261 {
9262 ASSERT(!bp_freed);
9263 return (spa_free_sync_cb(arg, bp, tx));
9264 }
9265
9266 /*
9267 * Note: this simple function is not inlined to make it easier to dtrace the
9268 * amount of time spent syncing frees.
9269 */
9270 static void
9271 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
9272 {
9273 zio_t *zio = zio_root(spa, NULL, NULL, 0);
9274 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
9275 VERIFY(zio_wait(zio) == 0);
9276 }
9277
9278 /*
9279 * Note: this simple function is not inlined to make it easier to dtrace the
9280 * amount of time spent syncing deferred frees.
9281 */
9282 static void
9283 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
9284 {
9285 if (spa_sync_pass(spa) != 1)
9286 return;
9287
9288 /*
9289 * Note:
9290 * If the log space map feature is active, we stop deferring
9291 * frees to the next TXG and therefore running this function
9292 * would be considered a no-op as spa_deferred_bpobj should
9293 * not have any entries.
9294 *
9295 * That said we run this function anyway (instead of returning
9296 * immediately) for the edge-case scenario where we just
9297 * activated the log space map feature in this TXG but we have
9298 * deferred frees from the previous TXG.
9299 */
9300 zio_t *zio = zio_root(spa, NULL, NULL, 0);
9301 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
9302 bpobj_spa_free_sync_cb, zio, tx), ==, 0);
9303 VERIFY0(zio_wait(zio));
9304 }
9305
9306 static void
9307 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
9308 {
9309 char *packed = NULL;
9310 size_t bufsize;
9311 size_t nvsize = 0;
9312 dmu_buf_t *db;
9313
9314 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
9315
9316 /*
9317 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
9318 * information. This avoids the dmu_buf_will_dirty() path and
9319 * saves us a pre-read to get data we don't actually care about.
9320 */
9321 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
9322 packed = vmem_alloc(bufsize, KM_SLEEP);
9323
9324 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
9325 KM_SLEEP) == 0);
9326 memset(packed + nvsize, 0, bufsize - nvsize);
9327
9328 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
9329
9330 vmem_free(packed, bufsize);
9331
9332 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
9333 dmu_buf_will_dirty(db, tx);
9334 *(uint64_t *)db->db_data = nvsize;
9335 dmu_buf_rele(db, FTAG);
9336 }
9337
9338 static void
9339 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
9340 const char *config, const char *entry)
9341 {
9342 nvlist_t *nvroot;
9343 nvlist_t **list;
9344 int i;
9345
9346 if (!sav->sav_sync)
9347 return;
9348
9349 /*
9350 * Update the MOS nvlist describing the list of available devices.
9351 * spa_validate_aux() will have already made sure this nvlist is
9352 * valid and the vdevs are labeled appropriately.
9353 */
9354 if (sav->sav_object == 0) {
9355 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
9356 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
9357 sizeof (uint64_t), tx);
9358 VERIFY(zap_update(spa->spa_meta_objset,
9359 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
9360 &sav->sav_object, tx) == 0);
9361 }
9362
9363 nvroot = fnvlist_alloc();
9364 if (sav->sav_count == 0) {
9365 fnvlist_add_nvlist_array(nvroot, config,
9366 (const nvlist_t * const *)NULL, 0);
9367 } else {
9368 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
9369 for (i = 0; i < sav->sav_count; i++)
9370 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
9371 B_FALSE, VDEV_CONFIG_L2CACHE);
9372 fnvlist_add_nvlist_array(nvroot, config,
9373 (const nvlist_t * const *)list, sav->sav_count);
9374 for (i = 0; i < sav->sav_count; i++)
9375 nvlist_free(list[i]);
9376 kmem_free(list, sav->sav_count * sizeof (void *));
9377 }
9378
9379 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
9380 nvlist_free(nvroot);
9381
9382 sav->sav_sync = B_FALSE;
9383 }
9384
9385 /*
9386 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
9387 * The all-vdev ZAP must be empty.
9388 */
9389 static void
9390 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
9391 {
9392 spa_t *spa = vd->vdev_spa;
9393
9394 if (vd->vdev_root_zap != 0 &&
9395 spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
9396 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9397 vd->vdev_root_zap, tx));
9398 }
9399 if (vd->vdev_top_zap != 0) {
9400 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9401 vd->vdev_top_zap, tx));
9402 }
9403 if (vd->vdev_leaf_zap != 0) {
9404 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9405 vd->vdev_leaf_zap, tx));
9406 }
9407 for (uint64_t i = 0; i < vd->vdev_children; i++) {
9408 spa_avz_build(vd->vdev_child[i], avz, tx);
9409 }
9410 }
9411
9412 static void
9413 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
9414 {
9415 nvlist_t *config;
9416
9417 /*
9418 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
9419 * its config may not be dirty but we still need to build per-vdev ZAPs.
9420 * Similarly, if the pool is being assembled (e.g. after a split), we
9421 * need to rebuild the AVZ although the config may not be dirty.
9422 */
9423 if (list_is_empty(&spa->spa_config_dirty_list) &&
9424 spa->spa_avz_action == AVZ_ACTION_NONE)
9425 return;
9426
9427 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9428
9429 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
9430 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
9431 spa->spa_all_vdev_zaps != 0);
9432
9433 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
9434 /* Make and build the new AVZ */
9435 uint64_t new_avz = zap_create(spa->spa_meta_objset,
9436 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
9437 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
9438
9439 /* Diff old AVZ with new one */
9440 zap_cursor_t zc;
9441 zap_attribute_t *za = zap_attribute_alloc();
9442
9443 for (zap_cursor_init(&zc, spa->spa_meta_objset,
9444 spa->spa_all_vdev_zaps);
9445 zap_cursor_retrieve(&zc, za) == 0;
9446 zap_cursor_advance(&zc)) {
9447 uint64_t vdzap = za->za_first_integer;
9448 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
9449 vdzap) == ENOENT) {
9450 /*
9451 * ZAP is listed in old AVZ but not in new one;
9452 * destroy it
9453 */
9454 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
9455 tx));
9456 }
9457 }
9458
9459 zap_cursor_fini(&zc);
9460 zap_attribute_free(za);
9461
9462 /* Destroy the old AVZ */
9463 VERIFY0(zap_destroy(spa->spa_meta_objset,
9464 spa->spa_all_vdev_zaps, tx));
9465
9466 /* Replace the old AVZ in the dir obj with the new one */
9467 VERIFY0(zap_update(spa->spa_meta_objset,
9468 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
9469 sizeof (new_avz), 1, &new_avz, tx));
9470
9471 spa->spa_all_vdev_zaps = new_avz;
9472 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
9473 zap_cursor_t zc;
9474 zap_attribute_t *za = zap_attribute_alloc();
9475
9476 /* Walk through the AVZ and destroy all listed ZAPs */
9477 for (zap_cursor_init(&zc, spa->spa_meta_objset,
9478 spa->spa_all_vdev_zaps);
9479 zap_cursor_retrieve(&zc, za) == 0;
9480 zap_cursor_advance(&zc)) {
9481 uint64_t zap = za->za_first_integer;
9482 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
9483 }
9484
9485 zap_cursor_fini(&zc);
9486 zap_attribute_free(za);
9487
9488 /* Destroy and unlink the AVZ itself */
9489 VERIFY0(zap_destroy(spa->spa_meta_objset,
9490 spa->spa_all_vdev_zaps, tx));
9491 VERIFY0(zap_remove(spa->spa_meta_objset,
9492 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
9493 spa->spa_all_vdev_zaps = 0;
9494 }
9495
9496 if (spa->spa_all_vdev_zaps == 0) {
9497 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
9498 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
9499 DMU_POOL_VDEV_ZAP_MAP, tx);
9500 }
9501 spa->spa_avz_action = AVZ_ACTION_NONE;
9502
9503 /* Create ZAPs for vdevs that don't have them. */
9504 vdev_construct_zaps(spa->spa_root_vdev, tx);
9505
9506 config = spa_config_generate(spa, spa->spa_root_vdev,
9507 dmu_tx_get_txg(tx), B_FALSE);
9508
9509 /*
9510 * If we're upgrading the spa version then make sure that
9511 * the config object gets updated with the correct version.
9512 */
9513 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
9514 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
9515 spa->spa_uberblock.ub_version);
9516
9517 spa_config_exit(spa, SCL_STATE, FTAG);
9518
9519 nvlist_free(spa->spa_config_syncing);
9520 spa->spa_config_syncing = config;
9521
9522 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
9523 }
9524
9525 static void
9526 spa_sync_version(void *arg, dmu_tx_t *tx)
9527 {
9528 uint64_t *versionp = arg;
9529 uint64_t version = *versionp;
9530 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9531
9532 /*
9533 * Setting the version is special cased when first creating the pool.
9534 */
9535 ASSERT(tx->tx_txg != TXG_INITIAL);
9536
9537 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
9538 ASSERT(version >= spa_version(spa));
9539
9540 spa->spa_uberblock.ub_version = version;
9541 vdev_config_dirty(spa->spa_root_vdev);
9542 spa_history_log_internal(spa, "set", tx, "version=%lld",
9543 (longlong_t)version);
9544 }
9545
9546 /*
9547 * Set zpool properties.
9548 */
9549 static void
9550 spa_sync_props(void *arg, dmu_tx_t *tx)
9551 {
9552 nvlist_t *nvp = arg;
9553 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9554 objset_t *mos = spa->spa_meta_objset;
9555 nvpair_t *elem = NULL;
9556
9557 mutex_enter(&spa->spa_props_lock);
9558
9559 while ((elem = nvlist_next_nvpair(nvp, elem))) {
9560 uint64_t intval;
9561 const char *strval, *fname;
9562 zpool_prop_t prop;
9563 const char *propname;
9564 const char *elemname = nvpair_name(elem);
9565 zprop_type_t proptype;
9566 spa_feature_t fid;
9567
9568 switch (prop = zpool_name_to_prop(elemname)) {
9569 case ZPOOL_PROP_VERSION:
9570 intval = fnvpair_value_uint64(elem);
9571 /*
9572 * The version is synced separately before other
9573 * properties and should be correct by now.
9574 */
9575 ASSERT3U(spa_version(spa), >=, intval);
9576 break;
9577
9578 case ZPOOL_PROP_ALTROOT:
9579 /*
9580 * 'altroot' is a non-persistent property. It should
9581 * have been set temporarily at creation or import time.
9582 */
9583 ASSERT(spa->spa_root != NULL);
9584 break;
9585
9586 case ZPOOL_PROP_READONLY:
9587 case ZPOOL_PROP_CACHEFILE:
9588 /*
9589 * 'readonly' and 'cachefile' are also non-persistent
9590 * properties.
9591 */
9592 break;
9593 case ZPOOL_PROP_COMMENT:
9594 strval = fnvpair_value_string(elem);
9595 if (spa->spa_comment != NULL)
9596 spa_strfree(spa->spa_comment);
9597 spa->spa_comment = spa_strdup(strval);
9598 /*
9599 * We need to dirty the configuration on all the vdevs
9600 * so that their labels get updated. We also need to
9601 * update the cache file to keep it in sync with the
9602 * MOS version. It's unnecessary to do this for pool
9603 * creation since the vdev's configuration has already
9604 * been dirtied.
9605 */
9606 if (tx->tx_txg != TXG_INITIAL) {
9607 vdev_config_dirty(spa->spa_root_vdev);
9608 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9609 }
9610 spa_history_log_internal(spa, "set", tx,
9611 "%s=%s", elemname, strval);
9612 break;
9613 case ZPOOL_PROP_COMPATIBILITY:
9614 strval = fnvpair_value_string(elem);
9615 if (spa->spa_compatibility != NULL)
9616 spa_strfree(spa->spa_compatibility);
9617 spa->spa_compatibility = spa_strdup(strval);
9618 /*
9619 * Dirty the configuration on vdevs as above.
9620 */
9621 if (tx->tx_txg != TXG_INITIAL) {
9622 vdev_config_dirty(spa->spa_root_vdev);
9623 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9624 }
9625
9626 spa_history_log_internal(spa, "set", tx,
9627 "%s=%s", nvpair_name(elem), strval);
9628 break;
9629
9630 case ZPOOL_PROP_INVAL:
9631 if (zpool_prop_feature(elemname)) {
9632 fname = strchr(elemname, '@') + 1;
9633 VERIFY0(zfeature_lookup_name(fname, &fid));
9634
9635 spa_feature_enable(spa, fid, tx);
9636 spa_history_log_internal(spa, "set", tx,
9637 "%s=enabled", elemname);
9638 break;
9639 } else if (!zfs_prop_user(elemname)) {
9640 ASSERT(zpool_prop_feature(elemname));
9641 break;
9642 }
9643 zfs_fallthrough;
9644 default:
9645 /*
9646 * Set pool property values in the poolprops mos object.
9647 */
9648 if (spa->spa_pool_props_object == 0) {
9649 spa->spa_pool_props_object =
9650 zap_create_link(mos, DMU_OT_POOL_PROPS,
9651 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
9652 tx);
9653 }
9654
9655 /* normalize the property name */
9656 if (prop == ZPOOL_PROP_INVAL) {
9657 propname = elemname;
9658 proptype = PROP_TYPE_STRING;
9659 } else {
9660 propname = zpool_prop_to_name(prop);
9661 proptype = zpool_prop_get_type(prop);
9662 }
9663
9664 if (nvpair_type(elem) == DATA_TYPE_STRING) {
9665 ASSERT(proptype == PROP_TYPE_STRING);
9666 strval = fnvpair_value_string(elem);
9667 VERIFY0(zap_update(mos,
9668 spa->spa_pool_props_object, propname,
9669 1, strlen(strval) + 1, strval, tx));
9670 spa_history_log_internal(spa, "set", tx,
9671 "%s=%s", elemname, strval);
9672 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
9673 intval = fnvpair_value_uint64(elem);
9674
9675 if (proptype == PROP_TYPE_INDEX) {
9676 const char *unused;
9677 VERIFY0(zpool_prop_index_to_string(
9678 prop, intval, &unused));
9679 }
9680 VERIFY0(zap_update(mos,
9681 spa->spa_pool_props_object, propname,
9682 8, 1, &intval, tx));
9683 spa_history_log_internal(spa, "set", tx,
9684 "%s=%lld", elemname,
9685 (longlong_t)intval);
9686
9687 switch (prop) {
9688 case ZPOOL_PROP_DELEGATION:
9689 spa->spa_delegation = intval;
9690 break;
9691 case ZPOOL_PROP_BOOTFS:
9692 spa->spa_bootfs = intval;
9693 break;
9694 case ZPOOL_PROP_FAILUREMODE:
9695 spa->spa_failmode = intval;
9696 break;
9697 case ZPOOL_PROP_AUTOTRIM:
9698 spa->spa_autotrim = intval;
9699 spa_async_request(spa,
9700 SPA_ASYNC_AUTOTRIM_RESTART);
9701 break;
9702 case ZPOOL_PROP_AUTOEXPAND:
9703 spa->spa_autoexpand = intval;
9704 if (tx->tx_txg != TXG_INITIAL)
9705 spa_async_request(spa,
9706 SPA_ASYNC_AUTOEXPAND);
9707 break;
9708 case ZPOOL_PROP_MULTIHOST:
9709 spa->spa_multihost = intval;
9710 break;
9711 case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
9712 spa->spa_dedup_table_quota = intval;
9713 break;
9714 default:
9715 break;
9716 }
9717 } else {
9718 ASSERT(0); /* not allowed */
9719 }
9720 }
9721
9722 }
9723
9724 mutex_exit(&spa->spa_props_lock);
9725 }
9726
9727 /*
9728 * Perform one-time upgrade on-disk changes. spa_version() does not
9729 * reflect the new version this txg, so there must be no changes this
9730 * txg to anything that the upgrade code depends on after it executes.
9731 * Therefore this must be called after dsl_pool_sync() does the sync
9732 * tasks.
9733 */
9734 static void
9735 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
9736 {
9737 if (spa_sync_pass(spa) != 1)
9738 return;
9739
9740 dsl_pool_t *dp = spa->spa_dsl_pool;
9741 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
9742
9743 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
9744 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
9745 dsl_pool_create_origin(dp, tx);
9746
9747 /* Keeping the origin open increases spa_minref */
9748 spa->spa_minref += 3;
9749 }
9750
9751 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
9752 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
9753 dsl_pool_upgrade_clones(dp, tx);
9754 }
9755
9756 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
9757 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
9758 dsl_pool_upgrade_dir_clones(dp, tx);
9759
9760 /* Keeping the freedir open increases spa_minref */
9761 spa->spa_minref += 3;
9762 }
9763
9764 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
9765 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9766 spa_feature_create_zap_objects(spa, tx);
9767 }
9768
9769 /*
9770 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
9771 * when possibility to use lz4 compression for metadata was added
9772 * Old pools that have this feature enabled must be upgraded to have
9773 * this feature active
9774 */
9775 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9776 boolean_t lz4_en = spa_feature_is_enabled(spa,
9777 SPA_FEATURE_LZ4_COMPRESS);
9778 boolean_t lz4_ac = spa_feature_is_active(spa,
9779 SPA_FEATURE_LZ4_COMPRESS);
9780
9781 if (lz4_en && !lz4_ac)
9782 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9783 }
9784
9785 /*
9786 * If we haven't written the salt, do so now. Note that the
9787 * feature may not be activated yet, but that's fine since
9788 * the presence of this ZAP entry is backwards compatible.
9789 */
9790 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9791 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9792 VERIFY0(zap_add(spa->spa_meta_objset,
9793 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9794 sizeof (spa->spa_cksum_salt.zcs_bytes),
9795 spa->spa_cksum_salt.zcs_bytes, tx));
9796 }
9797
9798 rrw_exit(&dp->dp_config_rwlock, FTAG);
9799 }
9800
9801 static void
9802 vdev_indirect_state_sync_verify(vdev_t *vd)
9803 {
9804 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9805 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9806
9807 if (vd->vdev_ops == &vdev_indirect_ops) {
9808 ASSERT(vim != NULL);
9809 ASSERT(vib != NULL);
9810 }
9811
9812 uint64_t obsolete_sm_object = 0;
9813 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9814 if (obsolete_sm_object != 0) {
9815 ASSERT(vd->vdev_obsolete_sm != NULL);
9816 ASSERT(vd->vdev_removing ||
9817 vd->vdev_ops == &vdev_indirect_ops);
9818 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9819 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9820 ASSERT3U(obsolete_sm_object, ==,
9821 space_map_object(vd->vdev_obsolete_sm));
9822 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9823 space_map_allocated(vd->vdev_obsolete_sm));
9824 }
9825 ASSERT(vd->vdev_obsolete_segments != NULL);
9826
9827 /*
9828 * Since frees / remaps to an indirect vdev can only
9829 * happen in syncing context, the obsolete segments
9830 * tree must be empty when we start syncing.
9831 */
9832 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9833 }
9834
9835 /*
9836 * Set the top-level vdev's max queue depth. Evaluate each top-level's
9837 * async write queue depth in case it changed. The max queue depth will
9838 * not change in the middle of syncing out this txg.
9839 */
9840 static void
9841 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9842 {
9843 ASSERT(spa_writeable(spa));
9844
9845 vdev_t *rvd = spa->spa_root_vdev;
9846 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9847 zfs_vdev_queue_depth_pct / 100;
9848 metaslab_class_t *normal = spa_normal_class(spa);
9849 metaslab_class_t *special = spa_special_class(spa);
9850 metaslab_class_t *dedup = spa_dedup_class(spa);
9851
9852 uint64_t slots_per_allocator = 0;
9853 for (int c = 0; c < rvd->vdev_children; c++) {
9854 vdev_t *tvd = rvd->vdev_child[c];
9855
9856 metaslab_group_t *mg = tvd->vdev_mg;
9857 if (mg == NULL || !metaslab_group_initialized(mg))
9858 continue;
9859
9860 metaslab_class_t *mc = mg->mg_class;
9861 if (mc != normal && mc != special && mc != dedup)
9862 continue;
9863
9864 /*
9865 * It is safe to do a lock-free check here because only async
9866 * allocations look at mg_max_alloc_queue_depth, and async
9867 * allocations all happen from spa_sync().
9868 */
9869 for (int i = 0; i < mg->mg_allocators; i++) {
9870 ASSERT0(zfs_refcount_count(
9871 &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9872 }
9873 mg->mg_max_alloc_queue_depth = max_queue_depth;
9874
9875 for (int i = 0; i < mg->mg_allocators; i++) {
9876 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9877 zfs_vdev_def_queue_depth;
9878 }
9879 slots_per_allocator += zfs_vdev_def_queue_depth;
9880 }
9881
9882 for (int i = 0; i < spa->spa_alloc_count; i++) {
9883 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9884 mca_alloc_slots));
9885 ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9886 mca_alloc_slots));
9887 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9888 mca_alloc_slots));
9889 normal->mc_allocator[i].mca_alloc_max_slots =
9890 slots_per_allocator;
9891 special->mc_allocator[i].mca_alloc_max_slots =
9892 slots_per_allocator;
9893 dedup->mc_allocator[i].mca_alloc_max_slots =
9894 slots_per_allocator;
9895 }
9896 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9897 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9898 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9899 }
9900
9901 static void
9902 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9903 {
9904 ASSERT(spa_writeable(spa));
9905
9906 vdev_t *rvd = spa->spa_root_vdev;
9907 for (int c = 0; c < rvd->vdev_children; c++) {
9908 vdev_t *vd = rvd->vdev_child[c];
9909 vdev_indirect_state_sync_verify(vd);
9910
9911 if (vdev_indirect_should_condense(vd)) {
9912 spa_condense_indirect_start_sync(vd, tx);
9913 break;
9914 }
9915 }
9916 }
9917
9918 static void
9919 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9920 {
9921 objset_t *mos = spa->spa_meta_objset;
9922 dsl_pool_t *dp = spa->spa_dsl_pool;
9923 uint64_t txg = tx->tx_txg;
9924 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9925
9926 do {
9927 int pass = ++spa->spa_sync_pass;
9928
9929 spa_sync_config_object(spa, tx);
9930 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9931 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9932 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9933 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9934 spa_errlog_sync(spa, txg);
9935 dsl_pool_sync(dp, txg);
9936
9937 if (pass < zfs_sync_pass_deferred_free ||
9938 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9939 /*
9940 * If the log space map feature is active we don't
9941 * care about deferred frees and the deferred bpobj
9942 * as the log space map should effectively have the
9943 * same results (i.e. appending only to one object).
9944 */
9945 spa_sync_frees(spa, free_bpl, tx);
9946 } else {
9947 /*
9948 * We can not defer frees in pass 1, because
9949 * we sync the deferred frees later in pass 1.
9950 */
9951 ASSERT3U(pass, >, 1);
9952 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9953 &spa->spa_deferred_bpobj, tx);
9954 }
9955
9956 brt_sync(spa, txg);
9957 ddt_sync(spa, txg);
9958 dsl_scan_sync(dp, tx);
9959 dsl_errorscrub_sync(dp, tx);
9960 svr_sync(spa, tx);
9961 spa_sync_upgrades(spa, tx);
9962
9963 spa_flush_metaslabs(spa, tx);
9964
9965 vdev_t *vd = NULL;
9966 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9967 != NULL)
9968 vdev_sync(vd, txg);
9969
9970 if (pass == 1) {
9971 /*
9972 * dsl_pool_sync() -> dp_sync_tasks may have dirtied
9973 * the config. If that happens, this txg should not
9974 * be a no-op. So we must sync the config to the MOS
9975 * before checking for no-op.
9976 *
9977 * Note that when the config is dirty, it will
9978 * be written to the MOS (i.e. the MOS will be
9979 * dirtied) every time we call spa_sync_config_object()
9980 * in this txg. Therefore we can't call this after
9981 * dsl_pool_sync() every pass, because it would
9982 * prevent us from converging, since we'd dirty
9983 * the MOS every pass.
9984 *
9985 * Sync tasks can only be processed in pass 1, so
9986 * there's no need to do this in later passes.
9987 */
9988 spa_sync_config_object(spa, tx);
9989 }
9990
9991 /*
9992 * Note: We need to check if the MOS is dirty because we could
9993 * have marked the MOS dirty without updating the uberblock
9994 * (e.g. if we have sync tasks but no dirty user data). We need
9995 * to check the uberblock's rootbp because it is updated if we
9996 * have synced out dirty data (though in this case the MOS will
9997 * most likely also be dirty due to second order effects, we
9998 * don't want to rely on that here).
9999 */
10000 if (pass == 1 &&
10001 BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp) < txg &&
10002 !dmu_objset_is_dirty(mos, txg)) {
10003 /*
10004 * Nothing changed on the first pass, therefore this
10005 * TXG is a no-op. Avoid syncing deferred frees, so
10006 * that we can keep this TXG as a no-op.
10007 */
10008 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10009 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10010 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
10011 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
10012 break;
10013 }
10014
10015 spa_sync_deferred_frees(spa, tx);
10016 } while (dmu_objset_is_dirty(mos, txg));
10017 }
10018
10019 /*
10020 * Rewrite the vdev configuration (which includes the uberblock) to
10021 * commit the transaction group.
10022 *
10023 * If there are no dirty vdevs, we sync the uberblock to a few random
10024 * top-level vdevs that are known to be visible in the config cache
10025 * (see spa_vdev_add() for a complete description). If there *are* dirty
10026 * vdevs, sync the uberblock to all vdevs.
10027 */
10028 static void
10029 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
10030 {
10031 vdev_t *rvd = spa->spa_root_vdev;
10032 uint64_t txg = tx->tx_txg;
10033
10034 for (;;) {
10035 int error = 0;
10036
10037 /*
10038 * We hold SCL_STATE to prevent vdev open/close/etc.
10039 * while we're attempting to write the vdev labels.
10040 */
10041 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10042
10043 if (list_is_empty(&spa->spa_config_dirty_list)) {
10044 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
10045 int svdcount = 0;
10046 int children = rvd->vdev_children;
10047 int c0 = random_in_range(children);
10048
10049 for (int c = 0; c < children; c++) {
10050 vdev_t *vd =
10051 rvd->vdev_child[(c0 + c) % children];
10052
10053 /* Stop when revisiting the first vdev */
10054 if (c > 0 && svd[0] == vd)
10055 break;
10056
10057 if (vd->vdev_ms_array == 0 ||
10058 vd->vdev_islog ||
10059 !vdev_is_concrete(vd))
10060 continue;
10061
10062 svd[svdcount++] = vd;
10063 if (svdcount == SPA_SYNC_MIN_VDEVS)
10064 break;
10065 }
10066 error = vdev_config_sync(svd, svdcount, txg);
10067 } else {
10068 error = vdev_config_sync(rvd->vdev_child,
10069 rvd->vdev_children, txg);
10070 }
10071
10072 if (error == 0)
10073 spa->spa_last_synced_guid = rvd->vdev_guid;
10074
10075 spa_config_exit(spa, SCL_STATE, FTAG);
10076
10077 if (error == 0)
10078 break;
10079 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
10080 zio_resume_wait(spa);
10081 }
10082 }
10083
10084 /*
10085 * Sync the specified transaction group. New blocks may be dirtied as
10086 * part of the process, so we iterate until it converges.
10087 */
10088 void
10089 spa_sync(spa_t *spa, uint64_t txg)
10090 {
10091 vdev_t *vd = NULL;
10092
10093 VERIFY(spa_writeable(spa));
10094
10095 /*
10096 * Wait for i/os issued in open context that need to complete
10097 * before this txg syncs.
10098 */
10099 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
10100 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
10101 ZIO_FLAG_CANFAIL);
10102
10103 /*
10104 * Now that there can be no more cloning in this transaction group,
10105 * but we are still before issuing frees, we can process pending BRT
10106 * updates.
10107 */
10108 brt_pending_apply(spa, txg);
10109
10110 /*
10111 * Lock out configuration changes.
10112 */
10113 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
10114
10115 spa->spa_syncing_txg = txg;
10116 spa->spa_sync_pass = 0;
10117
10118 for (int i = 0; i < spa->spa_alloc_count; i++) {
10119 mutex_enter(&spa->spa_allocs[i].spaa_lock);
10120 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10121 mutex_exit(&spa->spa_allocs[i].spaa_lock);
10122 }
10123
10124 /*
10125 * If there are any pending vdev state changes, convert them
10126 * into config changes that go out with this transaction group.
10127 */
10128 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10129 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10130 /* Avoid holding the write lock unless actually necessary */
10131 if (vd->vdev_aux == NULL) {
10132 vdev_state_clean(vd);
10133 vdev_config_dirty(vd);
10134 continue;
10135 }
10136 /*
10137 * We need the write lock here because, for aux vdevs,
10138 * calling vdev_config_dirty() modifies sav_config.
10139 * This is ugly and will become unnecessary when we
10140 * eliminate the aux vdev wart by integrating all vdevs
10141 * into the root vdev tree.
10142 */
10143 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10144 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
10145 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10146 vdev_state_clean(vd);
10147 vdev_config_dirty(vd);
10148 }
10149 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10150 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10151 }
10152 spa_config_exit(spa, SCL_STATE, FTAG);
10153
10154 dsl_pool_t *dp = spa->spa_dsl_pool;
10155 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
10156
10157 spa->spa_sync_starttime = gethrtime();
10158 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10159 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
10160 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
10161 NSEC_TO_TICK(spa->spa_deadman_synctime));
10162
10163 /*
10164 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
10165 * set spa_deflate if we have no raid-z vdevs.
10166 */
10167 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
10168 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
10169 vdev_t *rvd = spa->spa_root_vdev;
10170
10171 int i;
10172 for (i = 0; i < rvd->vdev_children; i++) {
10173 vd = rvd->vdev_child[i];
10174 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
10175 break;
10176 }
10177 if (i == rvd->vdev_children) {
10178 spa->spa_deflate = TRUE;
10179 VERIFY0(zap_add(spa->spa_meta_objset,
10180 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
10181 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
10182 }
10183 }
10184
10185 spa_sync_adjust_vdev_max_queue_depth(spa);
10186
10187 spa_sync_condense_indirect(spa, tx);
10188
10189 spa_sync_iterate_to_convergence(spa, tx);
10190
10191 #ifdef ZFS_DEBUG
10192 if (!list_is_empty(&spa->spa_config_dirty_list)) {
10193 /*
10194 * Make sure that the number of ZAPs for all the vdevs matches
10195 * the number of ZAPs in the per-vdev ZAP list. This only gets
10196 * called if the config is dirty; otherwise there may be
10197 * outstanding AVZ operations that weren't completed in
10198 * spa_sync_config_object.
10199 */
10200 uint64_t all_vdev_zap_entry_count;
10201 ASSERT0(zap_count(spa->spa_meta_objset,
10202 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
10203 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
10204 all_vdev_zap_entry_count);
10205 }
10206 #endif
10207
10208 if (spa->spa_vdev_removal != NULL) {
10209 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
10210 }
10211
10212 spa_sync_rewrite_vdev_config(spa, tx);
10213 dmu_tx_commit(tx);
10214
10215 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10216 spa->spa_deadman_tqid = 0;
10217
10218 /*
10219 * Clear the dirty config list.
10220 */
10221 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
10222 vdev_config_clean(vd);
10223
10224 /*
10225 * Now that the new config has synced transactionally,
10226 * let it become visible to the config cache.
10227 */
10228 if (spa->spa_config_syncing != NULL) {
10229 spa_config_set(spa, spa->spa_config_syncing);
10230 spa->spa_config_txg = txg;
10231 spa->spa_config_syncing = NULL;
10232 }
10233
10234 dsl_pool_sync_done(dp, txg);
10235
10236 for (int i = 0; i < spa->spa_alloc_count; i++) {
10237 mutex_enter(&spa->spa_allocs[i].spaa_lock);
10238 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10239 mutex_exit(&spa->spa_allocs[i].spaa_lock);
10240 }
10241
10242 /*
10243 * Update usable space statistics.
10244 */
10245 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
10246 != NULL)
10247 vdev_sync_done(vd, txg);
10248
10249 metaslab_class_evict_old(spa->spa_normal_class, txg);
10250 metaslab_class_evict_old(spa->spa_log_class, txg);
10251 /* spa_embedded_log_class has only one metaslab per vdev. */
10252 metaslab_class_evict_old(spa->spa_special_class, txg);
10253 metaslab_class_evict_old(spa->spa_dedup_class, txg);
10254
10255 spa_sync_close_syncing_log_sm(spa);
10256
10257 spa_update_dspace(spa);
10258
10259 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
10260 vdev_autotrim_kick(spa);
10261
10262 /*
10263 * It had better be the case that we didn't dirty anything
10264 * since vdev_config_sync().
10265 */
10266 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10267 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10268 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
10269
10270 while (zfs_pause_spa_sync)
10271 delay(1);
10272
10273 spa->spa_sync_pass = 0;
10274
10275 /*
10276 * Update the last synced uberblock here. We want to do this at
10277 * the end of spa_sync() so that consumers of spa_last_synced_txg()
10278 * will be guaranteed that all the processing associated with
10279 * that txg has been completed.
10280 */
10281 spa->spa_ubsync = spa->spa_uberblock;
10282 spa_config_exit(spa, SCL_CONFIG, FTAG);
10283
10284 spa_handle_ignored_writes(spa);
10285
10286 /*
10287 * If any async tasks have been requested, kick them off.
10288 */
10289 spa_async_dispatch(spa);
10290 }
10291
10292 /*
10293 * Sync all pools. We don't want to hold the namespace lock across these
10294 * operations, so we take a reference on the spa_t and drop the lock during the
10295 * sync.
10296 */
10297 void
10298 spa_sync_allpools(void)
10299 {
10300 spa_t *spa = NULL;
10301 mutex_enter(&spa_namespace_lock);
10302 while ((spa = spa_next(spa)) != NULL) {
10303 if (spa_state(spa) != POOL_STATE_ACTIVE ||
10304 !spa_writeable(spa) || spa_suspended(spa))
10305 continue;
10306 spa_open_ref(spa, FTAG);
10307 mutex_exit(&spa_namespace_lock);
10308 txg_wait_synced(spa_get_dsl(spa), 0);
10309 mutex_enter(&spa_namespace_lock);
10310 spa_close(spa, FTAG);
10311 }
10312 mutex_exit(&spa_namespace_lock);
10313 }
10314
10315 taskq_t *
10316 spa_sync_tq_create(spa_t *spa, const char *name)
10317 {
10318 kthread_t **kthreads;
10319
10320 ASSERT(spa->spa_sync_tq == NULL);
10321 ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus);
10322
10323 /*
10324 * - do not allow more allocators than cpus.
10325 * - there may be more cpus than allocators.
10326 * - do not allow more sync taskq threads than allocators or cpus.
10327 */
10328 int nthreads = spa->spa_alloc_count;
10329 spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) *
10330 nthreads, KM_SLEEP);
10331
10332 spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri,
10333 nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads);
10334 VERIFY(spa->spa_sync_tq != NULL);
10335 VERIFY(kthreads != NULL);
10336
10337 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10338 for (int i = 0; i < nthreads; i++, ti++) {
10339 ti->sti_thread = kthreads[i];
10340 ti->sti_allocator = i;
10341 }
10342
10343 kmem_free(kthreads, sizeof (*kthreads) * nthreads);
10344 return (spa->spa_sync_tq);
10345 }
10346
10347 void
10348 spa_sync_tq_destroy(spa_t *spa)
10349 {
10350 ASSERT(spa->spa_sync_tq != NULL);
10351
10352 taskq_wait(spa->spa_sync_tq);
10353 taskq_destroy(spa->spa_sync_tq);
10354 kmem_free(spa->spa_syncthreads,
10355 sizeof (spa_syncthread_info_t) * spa->spa_alloc_count);
10356 spa->spa_sync_tq = NULL;
10357 }
10358
10359 uint_t
10360 spa_acq_allocator(spa_t *spa)
10361 {
10362 int i;
10363
10364 if (spa->spa_alloc_count == 1)
10365 return (0);
10366
10367 mutex_enter(&spa->spa_allocs_use->sau_lock);
10368 uint_t r = spa->spa_allocs_use->sau_rotor;
10369 do {
10370 if (++r == spa->spa_alloc_count)
10371 r = 0;
10372 } while (spa->spa_allocs_use->sau_inuse[r]);
10373 spa->spa_allocs_use->sau_inuse[r] = B_TRUE;
10374 spa->spa_allocs_use->sau_rotor = r;
10375 mutex_exit(&spa->spa_allocs_use->sau_lock);
10376
10377 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10378 for (i = 0; i < spa->spa_alloc_count; i++, ti++) {
10379 if (ti->sti_thread == curthread) {
10380 ti->sti_allocator = r;
10381 break;
10382 }
10383 }
10384 ASSERT3S(i, <, spa->spa_alloc_count);
10385 return (r);
10386 }
10387
10388 void
10389 spa_rel_allocator(spa_t *spa, uint_t allocator)
10390 {
10391 if (spa->spa_alloc_count > 1)
10392 spa->spa_allocs_use->sau_inuse[allocator] = B_FALSE;
10393 }
10394
10395 void
10396 spa_select_allocator(zio_t *zio)
10397 {
10398 zbookmark_phys_t *bm = &zio->io_bookmark;
10399 spa_t *spa = zio->io_spa;
10400
10401 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
10402
10403 /*
10404 * A gang block (for example) may have inherited its parent's
10405 * allocator, in which case there is nothing further to do here.
10406 */
10407 if (ZIO_HAS_ALLOCATOR(zio))
10408 return;
10409
10410 ASSERT(spa != NULL);
10411 ASSERT(bm != NULL);
10412
10413 /*
10414 * First try to use an allocator assigned to the syncthread, and set
10415 * the corresponding write issue taskq for the allocator.
10416 * Note, we must have an open pool to do this.
10417 */
10418 if (spa->spa_sync_tq != NULL) {
10419 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10420 for (int i = 0; i < spa->spa_alloc_count; i++, ti++) {
10421 if (ti->sti_thread == curthread) {
10422 zio->io_allocator = ti->sti_allocator;
10423 return;
10424 }
10425 }
10426 }
10427
10428 /*
10429 * We want to try to use as many allocators as possible to help improve
10430 * performance, but we also want logically adjacent IOs to be physically
10431 * adjacent to improve sequential read performance. We chunk each object
10432 * into 2^20 block regions, and then hash based on the objset, object,
10433 * level, and region to accomplish both of these goals.
10434 */
10435 uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level,
10436 bm->zb_blkid >> 20);
10437
10438 zio->io_allocator = (uint_t)hv % spa->spa_alloc_count;
10439 }
10440
10441 /*
10442 * ==========================================================================
10443 * Miscellaneous routines
10444 * ==========================================================================
10445 */
10446
10447 /*
10448 * Remove all pools in the system.
10449 */
10450 void
10451 spa_evict_all(void)
10452 {
10453 spa_t *spa;
10454
10455 /*
10456 * Remove all cached state. All pools should be closed now,
10457 * so every spa in the AVL tree should be unreferenced.
10458 */
10459 mutex_enter(&spa_namespace_lock);
10460 while ((spa = spa_next(NULL)) != NULL) {
10461 /*
10462 * Stop async tasks. The async thread may need to detach
10463 * a device that's been replaced, which requires grabbing
10464 * spa_namespace_lock, so we must drop it here.
10465 */
10466 spa_open_ref(spa, FTAG);
10467 mutex_exit(&spa_namespace_lock);
10468 spa_async_suspend(spa);
10469 mutex_enter(&spa_namespace_lock);
10470 spa_close(spa, FTAG);
10471
10472 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
10473 spa_unload(spa);
10474 spa_deactivate(spa);
10475 }
10476 spa_remove(spa);
10477 }
10478 mutex_exit(&spa_namespace_lock);
10479 }
10480
10481 vdev_t *
10482 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
10483 {
10484 vdev_t *vd;
10485 int i;
10486
10487 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
10488 return (vd);
10489
10490 if (aux) {
10491 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
10492 vd = spa->spa_l2cache.sav_vdevs[i];
10493 if (vd->vdev_guid == guid)
10494 return (vd);
10495 }
10496
10497 for (i = 0; i < spa->spa_spares.sav_count; i++) {
10498 vd = spa->spa_spares.sav_vdevs[i];
10499 if (vd->vdev_guid == guid)
10500 return (vd);
10501 }
10502 }
10503
10504 return (NULL);
10505 }
10506
10507 void
10508 spa_upgrade(spa_t *spa, uint64_t version)
10509 {
10510 ASSERT(spa_writeable(spa));
10511
10512 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
10513
10514 /*
10515 * This should only be called for a non-faulted pool, and since a
10516 * future version would result in an unopenable pool, this shouldn't be
10517 * possible.
10518 */
10519 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
10520 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
10521
10522 spa->spa_uberblock.ub_version = version;
10523 vdev_config_dirty(spa->spa_root_vdev);
10524
10525 spa_config_exit(spa, SCL_ALL, FTAG);
10526
10527 txg_wait_synced(spa_get_dsl(spa), 0);
10528 }
10529
10530 static boolean_t
10531 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
10532 {
10533 (void) spa;
10534 int i;
10535 uint64_t vdev_guid;
10536
10537 for (i = 0; i < sav->sav_count; i++)
10538 if (sav->sav_vdevs[i]->vdev_guid == guid)
10539 return (B_TRUE);
10540
10541 for (i = 0; i < sav->sav_npending; i++) {
10542 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
10543 &vdev_guid) == 0 && vdev_guid == guid)
10544 return (B_TRUE);
10545 }
10546
10547 return (B_FALSE);
10548 }
10549
10550 boolean_t
10551 spa_has_l2cache(spa_t *spa, uint64_t guid)
10552 {
10553 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
10554 }
10555
10556 boolean_t
10557 spa_has_spare(spa_t *spa, uint64_t guid)
10558 {
10559 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
10560 }
10561
10562 /*
10563 * Check if a pool has an active shared spare device.
10564 * Note: reference count of an active spare is 2, as a spare and as a replace
10565 */
10566 static boolean_t
10567 spa_has_active_shared_spare(spa_t *spa)
10568 {
10569 int i, refcnt;
10570 uint64_t pool;
10571 spa_aux_vdev_t *sav = &spa->spa_spares;
10572
10573 for (i = 0; i < sav->sav_count; i++) {
10574 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
10575 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
10576 refcnt > 2)
10577 return (B_TRUE);
10578 }
10579
10580 return (B_FALSE);
10581 }
10582
10583 uint64_t
10584 spa_total_metaslabs(spa_t *spa)
10585 {
10586 vdev_t *rvd = spa->spa_root_vdev;
10587
10588 uint64_t m = 0;
10589 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
10590 vdev_t *vd = rvd->vdev_child[c];
10591 if (!vdev_is_concrete(vd))
10592 continue;
10593 m += vd->vdev_ms_count;
10594 }
10595 return (m);
10596 }
10597
10598 /*
10599 * Notify any waiting threads that some activity has switched from being in-
10600 * progress to not-in-progress so that the thread can wake up and determine
10601 * whether it is finished waiting.
10602 */
10603 void
10604 spa_notify_waiters(spa_t *spa)
10605 {
10606 /*
10607 * Acquiring spa_activities_lock here prevents the cv_broadcast from
10608 * happening between the waiting thread's check and cv_wait.
10609 */
10610 mutex_enter(&spa->spa_activities_lock);
10611 cv_broadcast(&spa->spa_activities_cv);
10612 mutex_exit(&spa->spa_activities_lock);
10613 }
10614
10615 /*
10616 * Notify any waiting threads that the pool is exporting, and then block until
10617 * they are finished using the spa_t.
10618 */
10619 void
10620 spa_wake_waiters(spa_t *spa)
10621 {
10622 mutex_enter(&spa->spa_activities_lock);
10623 spa->spa_waiters_cancel = B_TRUE;
10624 cv_broadcast(&spa->spa_activities_cv);
10625 while (spa->spa_waiters != 0)
10626 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
10627 spa->spa_waiters_cancel = B_FALSE;
10628 mutex_exit(&spa->spa_activities_lock);
10629 }
10630
10631 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
10632 static boolean_t
10633 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
10634 {
10635 spa_t *spa = vd->vdev_spa;
10636
10637 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
10638 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10639 ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
10640 activity == ZPOOL_WAIT_TRIM);
10641
10642 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
10643 &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
10644
10645 mutex_exit(&spa->spa_activities_lock);
10646 mutex_enter(lock);
10647 mutex_enter(&spa->spa_activities_lock);
10648
10649 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
10650 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
10651 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
10652 mutex_exit(lock);
10653
10654 if (in_progress)
10655 return (B_TRUE);
10656
10657 for (int i = 0; i < vd->vdev_children; i++) {
10658 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
10659 activity))
10660 return (B_TRUE);
10661 }
10662
10663 return (B_FALSE);
10664 }
10665
10666 /*
10667 * If use_guid is true, this checks whether the vdev specified by guid is
10668 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
10669 * is being initialized/trimmed. The caller must hold the config lock and
10670 * spa_activities_lock.
10671 */
10672 static int
10673 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
10674 zpool_wait_activity_t activity, boolean_t *in_progress)
10675 {
10676 mutex_exit(&spa->spa_activities_lock);
10677 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10678 mutex_enter(&spa->spa_activities_lock);
10679
10680 vdev_t *vd;
10681 if (use_guid) {
10682 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
10683 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
10684 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10685 return (EINVAL);
10686 }
10687 } else {
10688 vd = spa->spa_root_vdev;
10689 }
10690
10691 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
10692
10693 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10694 return (0);
10695 }
10696
10697 /*
10698 * Locking for waiting threads
10699 * ---------------------------
10700 *
10701 * Waiting threads need a way to check whether a given activity is in progress,
10702 * and then, if it is, wait for it to complete. Each activity will have some
10703 * in-memory representation of the relevant on-disk state which can be used to
10704 * determine whether or not the activity is in progress. The in-memory state and
10705 * the locking used to protect it will be different for each activity, and may
10706 * not be suitable for use with a cvar (e.g., some state is protected by the
10707 * config lock). To allow waiting threads to wait without any races, another
10708 * lock, spa_activities_lock, is used.
10709 *
10710 * When the state is checked, both the activity-specific lock (if there is one)
10711 * and spa_activities_lock are held. In some cases, the activity-specific lock
10712 * is acquired explicitly (e.g. the config lock). In others, the locking is
10713 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
10714 * thread releases the activity-specific lock and, if the activity is in
10715 * progress, then cv_waits using spa_activities_lock.
10716 *
10717 * The waiting thread is woken when another thread, one completing some
10718 * activity, updates the state of the activity and then calls
10719 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
10720 * needs to hold its activity-specific lock when updating the state, and this
10721 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
10722 *
10723 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
10724 * and because it is held when the waiting thread checks the state of the
10725 * activity, it can never be the case that the completing thread both updates
10726 * the activity state and cv_broadcasts in between the waiting thread's check
10727 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
10728 *
10729 * In order to prevent deadlock, when the waiting thread does its check, in some
10730 * cases it will temporarily drop spa_activities_lock in order to acquire the
10731 * activity-specific lock. The order in which spa_activities_lock and the
10732 * activity specific lock are acquired in the waiting thread is determined by
10733 * the order in which they are acquired in the completing thread; if the
10734 * completing thread calls spa_notify_waiters with the activity-specific lock
10735 * held, then the waiting thread must also acquire the activity-specific lock
10736 * first.
10737 */
10738
10739 static int
10740 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
10741 boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
10742 {
10743 int error = 0;
10744
10745 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10746
10747 switch (activity) {
10748 case ZPOOL_WAIT_CKPT_DISCARD:
10749 *in_progress =
10750 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
10751 zap_contains(spa_meta_objset(spa),
10752 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
10753 ENOENT);
10754 break;
10755 case ZPOOL_WAIT_FREE:
10756 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
10757 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
10758 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
10759 spa_livelist_delete_check(spa));
10760 break;
10761 case ZPOOL_WAIT_INITIALIZE:
10762 case ZPOOL_WAIT_TRIM:
10763 error = spa_vdev_activity_in_progress(spa, use_tag, tag,
10764 activity, in_progress);
10765 break;
10766 case ZPOOL_WAIT_REPLACE:
10767 mutex_exit(&spa->spa_activities_lock);
10768 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10769 mutex_enter(&spa->spa_activities_lock);
10770
10771 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
10772 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10773 break;
10774 case ZPOOL_WAIT_REMOVE:
10775 *in_progress = (spa->spa_removing_phys.sr_state ==
10776 DSS_SCANNING);
10777 break;
10778 case ZPOOL_WAIT_RESILVER:
10779 *in_progress = vdev_rebuild_active(spa->spa_root_vdev);
10780 if (*in_progress)
10781 break;
10782 zfs_fallthrough;
10783 case ZPOOL_WAIT_SCRUB:
10784 {
10785 boolean_t scanning, paused, is_scrub;
10786 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
10787
10788 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
10789 scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
10790 paused = dsl_scan_is_paused_scrub(scn);
10791 *in_progress = (scanning && !paused &&
10792 is_scrub == (activity == ZPOOL_WAIT_SCRUB));
10793 break;
10794 }
10795 case ZPOOL_WAIT_RAIDZ_EXPAND:
10796 {
10797 vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
10798 *in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING);
10799 break;
10800 }
10801 default:
10802 panic("unrecognized value for activity %d", activity);
10803 }
10804
10805 return (error);
10806 }
10807
10808 static int
10809 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
10810 boolean_t use_tag, uint64_t tag, boolean_t *waited)
10811 {
10812 /*
10813 * The tag is used to distinguish between instances of an activity.
10814 * 'initialize' and 'trim' are the only activities that we use this for.
10815 * The other activities can only have a single instance in progress in a
10816 * pool at one time, making the tag unnecessary.
10817 *
10818 * There can be multiple devices being replaced at once, but since they
10819 * all finish once resilvering finishes, we don't bother keeping track
10820 * of them individually, we just wait for them all to finish.
10821 */
10822 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
10823 activity != ZPOOL_WAIT_TRIM)
10824 return (EINVAL);
10825
10826 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
10827 return (EINVAL);
10828
10829 spa_t *spa;
10830 int error = spa_open(pool, &spa, FTAG);
10831 if (error != 0)
10832 return (error);
10833
10834 /*
10835 * Increment the spa's waiter count so that we can call spa_close and
10836 * still ensure that the spa_t doesn't get freed before this thread is
10837 * finished with it when the pool is exported. We want to call spa_close
10838 * before we start waiting because otherwise the additional ref would
10839 * prevent the pool from being exported or destroyed throughout the
10840 * potentially long wait.
10841 */
10842 mutex_enter(&spa->spa_activities_lock);
10843 spa->spa_waiters++;
10844 spa_close(spa, FTAG);
10845
10846 *waited = B_FALSE;
10847 for (;;) {
10848 boolean_t in_progress;
10849 error = spa_activity_in_progress(spa, activity, use_tag, tag,
10850 &in_progress);
10851
10852 if (error || !in_progress || spa->spa_waiters_cancel)
10853 break;
10854
10855 *waited = B_TRUE;
10856
10857 if (cv_wait_sig(&spa->spa_activities_cv,
10858 &spa->spa_activities_lock) == 0) {
10859 error = EINTR;
10860 break;
10861 }
10862 }
10863
10864 spa->spa_waiters--;
10865 cv_signal(&spa->spa_waiters_cv);
10866 mutex_exit(&spa->spa_activities_lock);
10867
10868 return (error);
10869 }
10870
10871 /*
10872 * Wait for a particular instance of the specified activity to complete, where
10873 * the instance is identified by 'tag'
10874 */
10875 int
10876 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
10877 boolean_t *waited)
10878 {
10879 return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
10880 }
10881
10882 /*
10883 * Wait for all instances of the specified activity complete
10884 */
10885 int
10886 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
10887 {
10888
10889 return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
10890 }
10891
10892 sysevent_t *
10893 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10894 {
10895 sysevent_t *ev = NULL;
10896 #ifdef _KERNEL
10897 nvlist_t *resource;
10898
10899 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
10900 if (resource) {
10901 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
10902 ev->resource = resource;
10903 }
10904 #else
10905 (void) spa, (void) vd, (void) hist_nvl, (void) name;
10906 #endif
10907 return (ev);
10908 }
10909
10910 void
10911 spa_event_post(sysevent_t *ev)
10912 {
10913 #ifdef _KERNEL
10914 if (ev) {
10915 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
10916 kmem_free(ev, sizeof (*ev));
10917 }
10918 #else
10919 (void) ev;
10920 #endif
10921 }
10922
10923 /*
10924 * Post a zevent corresponding to the given sysevent. The 'name' must be one
10925 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
10926 * filled in from the spa and (optionally) the vdev. This doesn't do anything
10927 * in the userland libzpool, as we don't want consumers to misinterpret ztest
10928 * or zdb as real changes.
10929 */
10930 void
10931 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10932 {
10933 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
10934 }
10935
10936 /* state manipulation functions */
10937 EXPORT_SYMBOL(spa_open);
10938 EXPORT_SYMBOL(spa_open_rewind);
10939 EXPORT_SYMBOL(spa_get_stats);
10940 EXPORT_SYMBOL(spa_create);
10941 EXPORT_SYMBOL(spa_import);
10942 EXPORT_SYMBOL(spa_tryimport);
10943 EXPORT_SYMBOL(spa_destroy);
10944 EXPORT_SYMBOL(spa_export);
10945 EXPORT_SYMBOL(spa_reset);
10946 EXPORT_SYMBOL(spa_async_request);
10947 EXPORT_SYMBOL(spa_async_suspend);
10948 EXPORT_SYMBOL(spa_async_resume);
10949 EXPORT_SYMBOL(spa_inject_addref);
10950 EXPORT_SYMBOL(spa_inject_delref);
10951 EXPORT_SYMBOL(spa_scan_stat_init);
10952 EXPORT_SYMBOL(spa_scan_get_stats);
10953
10954 /* device manipulation */
10955 EXPORT_SYMBOL(spa_vdev_add);
10956 EXPORT_SYMBOL(spa_vdev_attach);
10957 EXPORT_SYMBOL(spa_vdev_detach);
10958 EXPORT_SYMBOL(spa_vdev_setpath);
10959 EXPORT_SYMBOL(spa_vdev_setfru);
10960 EXPORT_SYMBOL(spa_vdev_split_mirror);
10961
10962 /* spare statech is global across all pools) */
10963 EXPORT_SYMBOL(spa_spare_add);
10964 EXPORT_SYMBOL(spa_spare_remove);
10965 EXPORT_SYMBOL(spa_spare_exists);
10966 EXPORT_SYMBOL(spa_spare_activate);
10967
10968 /* L2ARC statech is global across all pools) */
10969 EXPORT_SYMBOL(spa_l2cache_add);
10970 EXPORT_SYMBOL(spa_l2cache_remove);
10971 EXPORT_SYMBOL(spa_l2cache_exists);
10972 EXPORT_SYMBOL(spa_l2cache_activate);
10973 EXPORT_SYMBOL(spa_l2cache_drop);
10974
10975 /* scanning */
10976 EXPORT_SYMBOL(spa_scan);
10977 EXPORT_SYMBOL(spa_scan_stop);
10978
10979 /* spa syncing */
10980 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
10981 EXPORT_SYMBOL(spa_sync_allpools);
10982
10983 /* properties */
10984 EXPORT_SYMBOL(spa_prop_set);
10985 EXPORT_SYMBOL(spa_prop_get);
10986 EXPORT_SYMBOL(spa_prop_clear_bootfs);
10987
10988 /* asynchronous event notification */
10989 EXPORT_SYMBOL(spa_event_notify);
10990
10991 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
10992 "Percentage of CPUs to run a metaslab preload taskq");
10993
10994 /* BEGIN CSTYLED */
10995 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10996 "log2 fraction of arc that can be used by inflight I/Os when "
10997 "verifying pool during import");
10998 /* END CSTYLED */
10999
11000 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
11001 "Set to traverse metadata on pool import");
11002
11003 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
11004 "Set to traverse data on pool import");
11005
11006 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
11007 "Print vdev tree to zfs_dbgmsg during pool import");
11008
11009 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RW,
11010 "Percentage of CPUs to run an IO worker thread");
11011
11012 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RW,
11013 "Number of threads per IO worker taskqueue");
11014
11015 /* BEGIN CSTYLED */
11016 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
11017 "Allow importing pool with up to this number of missing top-level "
11018 "vdevs (in read-only mode)");
11019 /* END CSTYLED */
11020
11021 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
11022 ZMOD_RW, "Set the livelist condense zthr to pause");
11023
11024 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
11025 ZMOD_RW, "Set the livelist condense synctask to pause");
11026
11027 /* BEGIN CSTYLED */
11028 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
11029 INT, ZMOD_RW,
11030 "Whether livelist condensing was canceled in the synctask");
11031
11032 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
11033 INT, ZMOD_RW,
11034 "Whether livelist condensing was canceled in the zthr function");
11035
11036 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
11037 ZMOD_RW,
11038 "Whether extra ALLOC blkptrs were added to a livelist entry while it "
11039 "was being condensed");
11040
11041 #ifdef _KERNEL
11042 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read,
11043 spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RW,
11044 "Configure IO queues for read IO");
11045 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write,
11046 spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RW,
11047 "Configure IO queues for write IO");
11048 #endif
11049 /* END CSTYLED */
11050
11051 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_write_tpq, UINT, ZMOD_RW,
11052 "Number of CPUs per write issue taskq");
11053