1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
31 * Copyright 2019 Joyent, Inc.
32 * Copyright (c) 2017, Intel Corporation.
33 * Copyright 2020 Joshua M. Clulow <josh@sysmgr.org>
34 * Copyright 2021 OmniOS Community Edition (OmniOSce) Association.
35 * Copyright 2022 Oxide Computer Company
36 * Copyright 2023 MNX Cloud, Inc.
37 */
38
39 /*
40 * SPA: Storage Pool Allocator
41 *
42 * This file contains all the routines used when modifying on-disk SPA state.
43 * This includes opening, importing, destroying, exporting a pool, and syncing a
44 * pool.
45 */
46
47 #include <sys/zfs_context.h>
48 #include <sys/fm/fs/zfs.h>
49 #include <sys/spa_impl.h>
50 #include <sys/zio.h>
51 #include <sys/zio_checksum.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_tx.h>
54 #include <sys/zap.h>
55 #include <sys/zil.h>
56 #include <sys/ddt.h>
57 #include <sys/vdev_impl.h>
58 #include <sys/vdev_removal.h>
59 #include <sys/vdev_indirect_mapping.h>
60 #include <sys/vdev_indirect_births.h>
61 #include <sys/vdev_initialize.h>
62 #include <sys/vdev_trim.h>
63 #include <sys/metaslab.h>
64 #include <sys/metaslab_impl.h>
65 #include <sys/mmp.h>
66 #include <sys/uberblock_impl.h>
67 #include <sys/txg.h>
68 #include <sys/avl.h>
69 #include <sys/bpobj.h>
70 #include <sys/dmu_traverse.h>
71 #include <sys/dmu_objset.h>
72 #include <sys/unique.h>
73 #include <sys/dsl_pool.h>
74 #include <sys/dsl_dataset.h>
75 #include <sys/dsl_dir.h>
76 #include <sys/dsl_prop.h>
77 #include <sys/dsl_synctask.h>
78 #include <sys/fs/zfs.h>
79 #include <sys/arc.h>
80 #include <sys/callb.h>
81 #include <sys/systeminfo.h>
82 #include <sys/spa_boot.h>
83 #include <sys/zfs_ioctl.h>
84 #include <sys/dsl_scan.h>
85 #include <sys/zfeature.h>
86 #include <sys/dsl_destroy.h>
87 #include <sys/abd.h>
88
89 #ifdef _KERNEL
90 #include <sys/bootprops.h>
91 #include <sys/callb.h>
92 #include <sys/cpupart.h>
93 #include <sys/pool.h>
94 #include <sys/sysdc.h>
95 #include <sys/zone.h>
96 #endif /* _KERNEL */
97
98 #include "zfs_prop.h"
99 #include "zfs_comutil.h"
100
101 /*
102 * The interval, in seconds, at which failed configuration cache file writes
103 * should be retried.
104 */
105 int zfs_ccw_retry_interval = 300;
106
107 typedef enum zti_modes {
108 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
109 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
110 ZTI_MODE_NULL, /* don't create a taskq */
111 ZTI_NMODES
112 } zti_modes_t;
113
114 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
115 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
116 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
117
118 #define ZTI_N(n) ZTI_P(n, 1)
119 #define ZTI_ONE ZTI_N(1)
120
121 typedef struct zio_taskq_info {
122 zti_modes_t zti_mode;
123 uint_t zti_value;
124 uint_t zti_count;
125 } zio_taskq_info_t;
126
127 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
128 "issue", "issue_high", "intr", "intr_high"
129 };
130
131 /*
132 * This table defines the taskq settings for each ZFS I/O type. When
133 * initializing a pool, we use this table to create an appropriately sized
134 * taskq. Some operations are low volume and therefore have a small, static
135 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
136 * macros. Other operations process a large amount of data; the ZTI_BATCH
137 * macro causes us to create a taskq oriented for throughput. Some operations
138 * are so high frequency and short-lived that the taskq itself can become a
139 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
140 * additional degree of parallelism specified by the number of threads per-
141 * taskq and the number of taskqs; when dispatching an event in this case, the
142 * particular taskq is chosen at random.
143 *
144 * The different taskq priorities are to handle the different contexts (issue
145 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
146 * need to be handled with minimum delay.
147 */
148 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
149 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
150 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
151 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
152 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
153 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
154 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
155 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
156 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
157 };
158
159 static void spa_sync_version(void *arg, dmu_tx_t *tx);
160 static void spa_sync_props(void *arg, dmu_tx_t *tx);
161 static boolean_t spa_has_active_shared_spare(spa_t *spa);
162 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
163 static void spa_vdev_resilver_done(spa_t *spa);
164
165 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
166 id_t zio_taskq_psrset_bind = PS_NONE;
167 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
168 uint_t zio_taskq_basedc = 80; /* base duty cycle */
169
170 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
171 extern int zfs_sync_pass_deferred_free;
172
173 /*
174 * Report any spa_load_verify errors found, but do not fail spa_load.
175 * This is used by zdb to analyze non-idle pools.
176 */
177 boolean_t spa_load_verify_dryrun = B_FALSE;
178
179 /*
180 * This (illegal) pool name is used when temporarily importing a spa_t in order
181 * to get the vdev stats associated with the imported devices.
182 */
183 #define TRYIMPORT_NAME "$import"
184
185 /*
186 * For debugging purposes: print out vdev tree during pool import.
187 */
188 boolean_t spa_load_print_vdev_tree = B_FALSE;
189
190 /*
191 * A non-zero value for zfs_max_missing_tvds means that we allow importing
192 * pools with missing top-level vdevs. This is strictly intended for advanced
193 * pool recovery cases since missing data is almost inevitable. Pools with
194 * missing devices can only be imported read-only for safety reasons, and their
195 * fail-mode will be automatically set to "continue".
196 *
197 * With 1 missing vdev we should be able to import the pool and mount all
198 * datasets. User data that was not modified after the missing device has been
199 * added should be recoverable. This means that snapshots created prior to the
200 * addition of that device should be completely intact.
201 *
202 * With 2 missing vdevs, some datasets may fail to mount since there are
203 * dataset statistics that are stored as regular metadata. Some data might be
204 * recoverable if those vdevs were added recently.
205 *
206 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
207 * may be missing entirely. Chances of data recovery are very low. Note that
208 * there are also risks of performing an inadvertent rewind as we might be
209 * missing all the vdevs with the latest uberblocks.
210 */
211 uint64_t zfs_max_missing_tvds = 0;
212
213 /*
214 * The parameters below are similar to zfs_max_missing_tvds but are only
215 * intended for a preliminary open of the pool with an untrusted config which
216 * might be incomplete or out-dated.
217 *
218 * We are more tolerant for pools opened from a cachefile since we could have
219 * an out-dated cachefile where a device removal was not registered.
220 * We could have set the limit arbitrarily high but in the case where devices
221 * are really missing we would want to return the proper error codes; we chose
222 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
223 * and we get a chance to retrieve the trusted config.
224 */
225 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
226
227 /*
228 * In the case where config was assembled by scanning device paths (/dev/dsks
229 * by default) we are less tolerant since all the existing devices should have
230 * been detected and we want spa_load to return the right error codes.
231 */
232 uint64_t zfs_max_missing_tvds_scan = 0;
233
234 /*
235 * Interval in seconds at which to poll spare vdevs for health.
236 * Setting this to zero disables spare polling.
237 * Set to three hours by default.
238 */
239 uint_t spa_spare_poll_interval_seconds = 60 * 60 * 3;
240
241 /*
242 * Debugging aid that pauses spa_sync() towards the end.
243 */
244 boolean_t zfs_pause_spa_sync = B_FALSE;
245
246 /*
247 * ==========================================================================
248 * SPA properties routines
249 * ==========================================================================
250 */
251
252 /*
253 * Add a (source=src, propname=propval) list to an nvlist.
254 */
255 static void
spa_prop_add_list(nvlist_t * nvl,zpool_prop_t prop,char * strval,uint64_t intval,zprop_source_t src)256 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
257 uint64_t intval, zprop_source_t src)
258 {
259 const char *propname = zpool_prop_to_name(prop);
260 nvlist_t *propval;
261
262 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
263 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
264
265 if (strval != NULL)
266 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
267 else
268 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
269
270 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
271 nvlist_free(propval);
272 }
273
274 /*
275 * Get property values from the spa configuration.
276 */
277 static void
spa_prop_get_config(spa_t * spa,nvlist_t ** nvp)278 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
279 {
280 vdev_t *rvd = spa->spa_root_vdev;
281 dsl_pool_t *pool = spa->spa_dsl_pool;
282 uint64_t size, alloc, cap, version;
283 zprop_source_t src = ZPROP_SRC_NONE;
284 spa_config_dirent_t *dp;
285 metaslab_class_t *mc = spa_normal_class(spa);
286
287 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
288
289 if (rvd != NULL) {
290 alloc = metaslab_class_get_alloc(mc);
291 alloc += metaslab_class_get_alloc(spa_special_class(spa));
292 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
293
294 size = metaslab_class_get_space(mc);
295 size += metaslab_class_get_space(spa_special_class(spa));
296 size += metaslab_class_get_space(spa_dedup_class(spa));
297
298 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
299 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
300 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
301 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
302 size - alloc, src);
303 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
304 spa->spa_checkpoint_info.sci_dspace, src);
305
306 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
307 metaslab_class_fragmentation(mc), src);
308 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
309 metaslab_class_expandable_space(mc), src);
310 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
311 (spa_mode(spa) == FREAD), src);
312
313 cap = (size == 0) ? 0 : (alloc * 100 / size);
314 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
315
316 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
317 ddt_get_pool_dedup_ratio(spa), src);
318
319 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
320 rvd->vdev_state, src);
321
322 version = spa_version(spa);
323 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
324 src = ZPROP_SRC_DEFAULT;
325 else
326 src = ZPROP_SRC_LOCAL;
327 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
328 }
329
330 if (pool != NULL) {
331 /*
332 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
333 * when opening pools before this version freedir will be NULL.
334 */
335 if (pool->dp_free_dir != NULL) {
336 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
337 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
338 src);
339 } else {
340 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
341 NULL, 0, src);
342 }
343
344 if (pool->dp_leak_dir != NULL) {
345 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
346 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
347 src);
348 } else {
349 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
350 NULL, 0, src);
351 }
352 }
353
354 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
355
356 if (spa->spa_comment != NULL) {
357 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
358 0, ZPROP_SRC_LOCAL);
359 }
360
361 if (spa->spa_root != NULL)
362 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
363 0, ZPROP_SRC_LOCAL);
364
365 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
366 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
367 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
368 } else {
369 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
370 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
371 }
372
373 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
374 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
375 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
376 } else {
377 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
378 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
379 }
380
381 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
382 if (dp->scd_path == NULL) {
383 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
384 "none", 0, ZPROP_SRC_LOCAL);
385 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
386 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
387 dp->scd_path, 0, ZPROP_SRC_LOCAL);
388 }
389 }
390 }
391
392 /*
393 * Get zpool property values.
394 */
395 int
spa_prop_get(spa_t * spa,nvlist_t ** nvp)396 spa_prop_get(spa_t *spa, nvlist_t **nvp)
397 {
398 objset_t *mos = spa->spa_meta_objset;
399 zap_cursor_t zc;
400 zap_attribute_t za;
401 int err;
402
403 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
404
405 mutex_enter(&spa->spa_props_lock);
406
407 /*
408 * Get properties from the spa config.
409 */
410 spa_prop_get_config(spa, nvp);
411
412 /* If no pool property object, no more prop to get. */
413 if (mos == NULL || spa->spa_pool_props_object == 0) {
414 mutex_exit(&spa->spa_props_lock);
415 return (0);
416 }
417
418 /*
419 * Get properties from the MOS pool property object.
420 */
421 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
422 (err = zap_cursor_retrieve(&zc, &za)) == 0;
423 zap_cursor_advance(&zc)) {
424 uint64_t intval = 0;
425 char *strval = NULL;
426 zprop_source_t src = ZPROP_SRC_DEFAULT;
427 zpool_prop_t prop;
428
429 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
430 continue;
431
432 switch (za.za_integer_length) {
433 case 8:
434 /* integer property */
435 if (za.za_first_integer !=
436 zpool_prop_default_numeric(prop))
437 src = ZPROP_SRC_LOCAL;
438
439 if (prop == ZPOOL_PROP_BOOTFS) {
440 dsl_pool_t *dp;
441 dsl_dataset_t *ds = NULL;
442
443 dp = spa_get_dsl(spa);
444 dsl_pool_config_enter(dp, FTAG);
445 err = dsl_dataset_hold_obj(dp,
446 za.za_first_integer, FTAG, &ds);
447 if (err != 0) {
448 dsl_pool_config_exit(dp, FTAG);
449 break;
450 }
451
452 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
453 KM_SLEEP);
454 dsl_dataset_name(ds, strval);
455 dsl_dataset_rele(ds, FTAG);
456 dsl_pool_config_exit(dp, FTAG);
457 } else {
458 strval = NULL;
459 intval = za.za_first_integer;
460 }
461
462 spa_prop_add_list(*nvp, prop, strval, intval, src);
463
464 if (strval != NULL)
465 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
466
467 break;
468
469 case 1:
470 /* string property */
471 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
472 err = zap_lookup(mos, spa->spa_pool_props_object,
473 za.za_name, 1, za.za_num_integers, strval);
474 if (err) {
475 kmem_free(strval, za.za_num_integers);
476 break;
477 }
478 spa_prop_add_list(*nvp, prop, strval, 0, src);
479 kmem_free(strval, za.za_num_integers);
480 break;
481
482 default:
483 break;
484 }
485 }
486 zap_cursor_fini(&zc);
487 mutex_exit(&spa->spa_props_lock);
488 out:
489 if (err && err != ENOENT) {
490 nvlist_free(*nvp);
491 *nvp = NULL;
492 return (err);
493 }
494
495 return (0);
496 }
497
498 /*
499 * Validate the given pool properties nvlist and modify the list
500 * for the property values to be set.
501 */
502 static int
spa_prop_validate(spa_t * spa,nvlist_t * props)503 spa_prop_validate(spa_t *spa, nvlist_t *props)
504 {
505 nvpair_t *elem;
506 int error = 0, reset_bootfs = 0;
507 uint64_t objnum = 0;
508 boolean_t has_feature = B_FALSE;
509
510 elem = NULL;
511 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
512 uint64_t intval;
513 char *strval, *slash, *check, *fname;
514 const char *propname = nvpair_name(elem);
515 zpool_prop_t prop = zpool_name_to_prop(propname);
516
517 switch (prop) {
518 case ZPOOL_PROP_INVAL:
519 if (!zpool_prop_feature(propname)) {
520 error = SET_ERROR(EINVAL);
521 break;
522 }
523
524 /*
525 * Sanitize the input.
526 */
527 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
528 error = SET_ERROR(EINVAL);
529 break;
530 }
531
532 if (nvpair_value_uint64(elem, &intval) != 0) {
533 error = SET_ERROR(EINVAL);
534 break;
535 }
536
537 if (intval != 0) {
538 error = SET_ERROR(EINVAL);
539 break;
540 }
541
542 fname = strchr(propname, '@') + 1;
543 if (zfeature_lookup_name(fname, NULL) != 0) {
544 error = SET_ERROR(EINVAL);
545 break;
546 }
547
548 has_feature = B_TRUE;
549 break;
550
551 case ZPOOL_PROP_VERSION:
552 error = nvpair_value_uint64(elem, &intval);
553 if (!error &&
554 (intval < spa_version(spa) ||
555 intval > SPA_VERSION_BEFORE_FEATURES ||
556 has_feature))
557 error = SET_ERROR(EINVAL);
558 break;
559
560 case ZPOOL_PROP_DELEGATION:
561 case ZPOOL_PROP_AUTOREPLACE:
562 case ZPOOL_PROP_LISTSNAPS:
563 case ZPOOL_PROP_AUTOEXPAND:
564 case ZPOOL_PROP_AUTOTRIM:
565 error = nvpair_value_uint64(elem, &intval);
566 if (!error && intval > 1)
567 error = SET_ERROR(EINVAL);
568 break;
569
570 case ZPOOL_PROP_MULTIHOST:
571 error = nvpair_value_uint64(elem, &intval);
572 if (!error && intval > 1)
573 error = SET_ERROR(EINVAL);
574
575 if (!error && !spa_get_hostid())
576 error = SET_ERROR(ENOTSUP);
577
578 break;
579
580 case ZPOOL_PROP_BOOTFS:
581 /*
582 * If the pool version is less than SPA_VERSION_BOOTFS,
583 * or the pool is still being created (version == 0),
584 * the bootfs property cannot be set.
585 */
586 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
587 error = SET_ERROR(ENOTSUP);
588 break;
589 }
590
591 /*
592 * Make sure the vdev config is bootable
593 */
594 if (!vdev_is_bootable(spa->spa_root_vdev)) {
595 error = SET_ERROR(ENOTSUP);
596 break;
597 }
598
599 reset_bootfs = 1;
600
601 error = nvpair_value_string(elem, &strval);
602
603 if (!error) {
604 objset_t *os;
605 uint64_t propval;
606
607 if (strval == NULL || strval[0] == '\0') {
608 objnum = zpool_prop_default_numeric(
609 ZPOOL_PROP_BOOTFS);
610 break;
611 }
612
613 error = dmu_objset_hold(strval, FTAG, &os);
614 if (error != 0)
615 break;
616
617 /*
618 * Must be ZPL, and its property settings
619 * must be supported.
620 */
621
622 if (dmu_objset_type(os) != DMU_OST_ZFS) {
623 error = SET_ERROR(ENOTSUP);
624 } else if ((error =
625 dsl_prop_get_int_ds(dmu_objset_ds(os),
626 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
627 &propval)) == 0 &&
628 !BOOTFS_COMPRESS_VALID(propval)) {
629 error = SET_ERROR(ENOTSUP);
630 } else {
631 objnum = dmu_objset_id(os);
632 }
633 dmu_objset_rele(os, FTAG);
634 }
635 break;
636
637 case ZPOOL_PROP_FAILUREMODE:
638 error = nvpair_value_uint64(elem, &intval);
639 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
640 intval > ZIO_FAILURE_MODE_PANIC))
641 error = SET_ERROR(EINVAL);
642
643 /*
644 * This is a special case which only occurs when
645 * the pool has completely failed. This allows
646 * the user to change the in-core failmode property
647 * without syncing it out to disk (I/Os might
648 * currently be blocked). We do this by returning
649 * EIO to the caller (spa_prop_set) to trick it
650 * into thinking we encountered a property validation
651 * error.
652 */
653 if (!error && spa_suspended(spa)) {
654 spa->spa_failmode = intval;
655 error = SET_ERROR(EIO);
656 }
657 break;
658
659 case ZPOOL_PROP_CACHEFILE:
660 if ((error = nvpair_value_string(elem, &strval)) != 0)
661 break;
662
663 if (strval[0] == '\0')
664 break;
665
666 if (strcmp(strval, "none") == 0)
667 break;
668
669 if (strval[0] != '/') {
670 error = SET_ERROR(EINVAL);
671 break;
672 }
673
674 slash = strrchr(strval, '/');
675 ASSERT(slash != NULL);
676
677 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
678 strcmp(slash, "/..") == 0)
679 error = SET_ERROR(EINVAL);
680 break;
681
682 case ZPOOL_PROP_COMMENT:
683 if ((error = nvpair_value_string(elem, &strval)) != 0)
684 break;
685 for (check = strval; *check != '\0'; check++) {
686 /*
687 * The kernel doesn't have an easy isprint()
688 * check. For this kernel check, we merely
689 * check ASCII apart from DEL. Fix this if
690 * there is an easy-to-use kernel isprint().
691 */
692 if (*check >= 0x7f) {
693 error = SET_ERROR(EINVAL);
694 break;
695 }
696 }
697 if (strlen(strval) > ZPROP_MAX_COMMENT)
698 error = E2BIG;
699 break;
700
701 case ZPOOL_PROP_DEDUPDITTO:
702 if (spa_version(spa) < SPA_VERSION_DEDUP)
703 error = SET_ERROR(ENOTSUP);
704 else
705 error = nvpair_value_uint64(elem, &intval);
706 if (error == 0 &&
707 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
708 error = SET_ERROR(EINVAL);
709 break;
710 }
711
712 if (error)
713 break;
714 }
715
716 if (!error && reset_bootfs) {
717 error = nvlist_remove(props,
718 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
719
720 if (!error) {
721 error = nvlist_add_uint64(props,
722 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
723 }
724 }
725
726 return (error);
727 }
728
729 void
spa_configfile_set(spa_t * spa,nvlist_t * nvp,boolean_t need_sync)730 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
731 {
732 char *cachefile;
733 spa_config_dirent_t *dp;
734
735 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
736 &cachefile) != 0)
737 return;
738
739 dp = kmem_alloc(sizeof (spa_config_dirent_t),
740 KM_SLEEP);
741
742 if (cachefile[0] == '\0')
743 dp->scd_path = spa_strdup(spa_config_path);
744 else if (strcmp(cachefile, "none") == 0)
745 dp->scd_path = NULL;
746 else
747 dp->scd_path = spa_strdup(cachefile);
748
749 list_insert_head(&spa->spa_config_list, dp);
750 if (need_sync)
751 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
752 }
753
754 int
spa_prop_set(spa_t * spa,nvlist_t * nvp)755 spa_prop_set(spa_t *spa, nvlist_t *nvp)
756 {
757 int error;
758 nvpair_t *elem = NULL;
759 boolean_t need_sync = B_FALSE;
760
761 if ((error = spa_prop_validate(spa, nvp)) != 0)
762 return (error);
763
764 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
765 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
766
767 if (prop == ZPOOL_PROP_CACHEFILE ||
768 prop == ZPOOL_PROP_ALTROOT ||
769 prop == ZPOOL_PROP_READONLY)
770 continue;
771
772 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
773 uint64_t ver;
774
775 if (prop == ZPOOL_PROP_VERSION) {
776 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
777 } else {
778 ASSERT(zpool_prop_feature(nvpair_name(elem)));
779 ver = SPA_VERSION_FEATURES;
780 need_sync = B_TRUE;
781 }
782
783 /* Save time if the version is already set. */
784 if (ver == spa_version(spa))
785 continue;
786
787 /*
788 * In addition to the pool directory object, we might
789 * create the pool properties object, the features for
790 * read object, the features for write object, or the
791 * feature descriptions object.
792 */
793 error = dsl_sync_task(spa->spa_name, NULL,
794 spa_sync_version, &ver,
795 6, ZFS_SPACE_CHECK_RESERVED);
796 if (error)
797 return (error);
798 continue;
799 }
800
801 need_sync = B_TRUE;
802 break;
803 }
804
805 if (need_sync) {
806 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
807 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
808 }
809
810 return (0);
811 }
812
813 /*
814 * If the bootfs property value is dsobj, clear it.
815 */
816 void
spa_prop_clear_bootfs(spa_t * spa,uint64_t dsobj,dmu_tx_t * tx)817 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
818 {
819 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
820 VERIFY(zap_remove(spa->spa_meta_objset,
821 spa->spa_pool_props_object,
822 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
823 spa->spa_bootfs = 0;
824 }
825 }
826
827 /*ARGSUSED*/
828 static int
spa_change_guid_check(void * arg,dmu_tx_t * tx)829 spa_change_guid_check(void *arg, dmu_tx_t *tx)
830 {
831 uint64_t *newguid = arg;
832 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
833 vdev_t *rvd = spa->spa_root_vdev;
834 uint64_t vdev_state;
835
836 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
837 int error = (spa_has_checkpoint(spa)) ?
838 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
839 return (SET_ERROR(error));
840 }
841
842 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
843 vdev_state = rvd->vdev_state;
844 spa_config_exit(spa, SCL_STATE, FTAG);
845
846 if (vdev_state != VDEV_STATE_HEALTHY)
847 return (SET_ERROR(ENXIO));
848
849 ASSERT3U(spa_guid(spa), !=, *newguid);
850
851 return (0);
852 }
853
854 static void
spa_change_guid_sync(void * arg,dmu_tx_t * tx)855 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
856 {
857 uint64_t *newguid = arg;
858 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
859 uint64_t oldguid;
860 vdev_t *rvd = spa->spa_root_vdev;
861
862 oldguid = spa_guid(spa);
863
864 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
865 rvd->vdev_guid = *newguid;
866 rvd->vdev_guid_sum += (*newguid - oldguid);
867 vdev_config_dirty(rvd);
868 spa_config_exit(spa, SCL_STATE, FTAG);
869
870 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
871 oldguid, *newguid);
872 }
873
874 /*
875 * Change the GUID for the pool. This is done so that we can later
876 * re-import a pool built from a clone of our own vdevs. We will modify
877 * the root vdev's guid, our own pool guid, and then mark all of our
878 * vdevs dirty. Note that we must make sure that all our vdevs are
879 * online when we do this, or else any vdevs that weren't present
880 * would be orphaned from our pool. We are also going to issue a
881 * sysevent to update any watchers.
882 */
883 int
spa_change_guid(spa_t * spa)884 spa_change_guid(spa_t *spa)
885 {
886 int error;
887 uint64_t guid;
888
889 mutex_enter(&spa->spa_vdev_top_lock);
890 mutex_enter(&spa_namespace_lock);
891 guid = spa_generate_guid(NULL);
892
893 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
894 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
895
896 if (error == 0) {
897 spa_write_cachefile(spa, B_FALSE, B_TRUE);
898 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
899 }
900
901 mutex_exit(&spa_namespace_lock);
902 mutex_exit(&spa->spa_vdev_top_lock);
903
904 return (error);
905 }
906
907 /*
908 * ==========================================================================
909 * SPA state manipulation (open/create/destroy/import/export)
910 * ==========================================================================
911 */
912
913 static int
spa_error_entry_compare(const void * a,const void * b)914 spa_error_entry_compare(const void *a, const void *b)
915 {
916 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
917 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
918 int ret;
919
920 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
921 sizeof (zbookmark_phys_t));
922
923 return (TREE_ISIGN(ret));
924 }
925
926 /*
927 * Utility function which retrieves copies of the current logs and
928 * re-initializes them in the process.
929 */
930 void
spa_get_errlists(spa_t * spa,avl_tree_t * last,avl_tree_t * scrub)931 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
932 {
933 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
934
935 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
936 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
937
938 avl_create(&spa->spa_errlist_scrub,
939 spa_error_entry_compare, sizeof (spa_error_entry_t),
940 offsetof(spa_error_entry_t, se_avl));
941 avl_create(&spa->spa_errlist_last,
942 spa_error_entry_compare, sizeof (spa_error_entry_t),
943 offsetof(spa_error_entry_t, se_avl));
944 }
945
946 static void
spa_taskqs_init(spa_t * spa,zio_type_t t,zio_taskq_type_t q)947 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
948 {
949 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
950 enum zti_modes mode = ztip->zti_mode;
951 uint_t value = ztip->zti_value;
952 uint_t count = ztip->zti_count;
953 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
954 char name[32];
955 uint_t flags = 0;
956 boolean_t batch = B_FALSE;
957
958 if (mode == ZTI_MODE_NULL) {
959 tqs->stqs_count = 0;
960 tqs->stqs_taskq = NULL;
961 return;
962 }
963
964 ASSERT3U(count, >, 0);
965
966 tqs->stqs_count = count;
967 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
968
969 switch (mode) {
970 case ZTI_MODE_FIXED:
971 ASSERT3U(value, >=, 1);
972 value = MAX(value, 1);
973 break;
974
975 case ZTI_MODE_BATCH:
976 batch = B_TRUE;
977 flags |= TASKQ_THREADS_CPU_PCT;
978 value = zio_taskq_batch_pct;
979 break;
980
981 default:
982 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
983 "spa_activate()",
984 zio_type_name[t], zio_taskq_types[q], mode, value);
985 break;
986 }
987
988 for (uint_t i = 0; i < count; i++) {
989 taskq_t *tq;
990
991 if (count > 1) {
992 (void) snprintf(name, sizeof (name), "%s_%s_%u",
993 zio_type_name[t], zio_taskq_types[q], i);
994 } else {
995 (void) snprintf(name, sizeof (name), "%s_%s",
996 zio_type_name[t], zio_taskq_types[q]);
997 }
998
999 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1000 if (batch)
1001 flags |= TASKQ_DC_BATCH;
1002
1003 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1004 spa->spa_proc, zio_taskq_basedc, flags);
1005 } else {
1006 pri_t pri = maxclsyspri;
1007 /*
1008 * The write issue taskq can be extremely CPU
1009 * intensive. Run it at slightly lower priority
1010 * than the other taskqs.
1011 */
1012 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
1013 pri--;
1014
1015 tq = taskq_create_proc(name, value, pri, 50,
1016 INT_MAX, spa->spa_proc, flags);
1017 }
1018
1019 tqs->stqs_taskq[i] = tq;
1020 }
1021 }
1022
1023 static void
spa_taskqs_fini(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1024 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1025 {
1026 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1027
1028 if (tqs->stqs_taskq == NULL) {
1029 ASSERT0(tqs->stqs_count);
1030 return;
1031 }
1032
1033 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1034 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1035 taskq_destroy(tqs->stqs_taskq[i]);
1036 }
1037
1038 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1039 tqs->stqs_taskq = NULL;
1040 }
1041
1042 /*
1043 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1044 * Note that a type may have multiple discrete taskqs to avoid lock contention
1045 * on the taskq itself. In that case we choose which taskq at random by using
1046 * the low bits of gethrtime().
1047 */
1048 void
spa_taskq_dispatch_ent(spa_t * spa,zio_type_t t,zio_taskq_type_t q,task_func_t * func,void * arg,uint_t flags,taskq_ent_t * ent)1049 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1050 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1051 {
1052 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1053 taskq_t *tq;
1054
1055 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1056 ASSERT3U(tqs->stqs_count, !=, 0);
1057
1058 if (tqs->stqs_count == 1) {
1059 tq = tqs->stqs_taskq[0];
1060 } else {
1061 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1062 }
1063
1064 taskq_dispatch_ent(tq, func, arg, flags, ent);
1065 }
1066
1067 static void
spa_create_zio_taskqs(spa_t * spa)1068 spa_create_zio_taskqs(spa_t *spa)
1069 {
1070 for (int t = 0; t < ZIO_TYPES; t++) {
1071 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1072 spa_taskqs_init(spa, t, q);
1073 }
1074 }
1075 }
1076
1077 #ifdef _KERNEL
1078 static void
spa_thread(void * arg)1079 spa_thread(void *arg)
1080 {
1081 callb_cpr_t cprinfo;
1082 spa_t *spa = arg;
1083 char spa_id_readable[CB_MAXNAME + 1];
1084 user_t *pu = PTOU(curproc);
1085
1086 (void) snprintf(spa_id_readable, sizeof (spa_id_readable), "SPA:0x%p",
1087 spa);
1088
1089 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1090 spa_id_readable);
1091
1092 ASSERT(curproc != &p0);
1093 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1094 "zpool-%s", spa->spa_name);
1095 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1096
1097 /* bind this thread to the requested psrset */
1098 if (zio_taskq_psrset_bind != PS_NONE) {
1099 pool_lock();
1100 mutex_enter(&cpu_lock);
1101 mutex_enter(&pidlock);
1102 mutex_enter(&curproc->p_lock);
1103
1104 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1105 0, NULL, NULL) == 0) {
1106 curthread->t_bind_pset = zio_taskq_psrset_bind;
1107 } else {
1108 cmn_err(CE_WARN,
1109 "Couldn't bind process for zfs pool \"%s\" to "
1110 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1111 }
1112
1113 mutex_exit(&curproc->p_lock);
1114 mutex_exit(&pidlock);
1115 mutex_exit(&cpu_lock);
1116 pool_unlock();
1117 }
1118
1119 if (zio_taskq_sysdc) {
1120 sysdc_thread_enter(curthread, 100, 0);
1121 }
1122
1123 spa->spa_proc = curproc;
1124 spa->spa_did = curthread->t_did;
1125
1126 spa_create_zio_taskqs(spa);
1127
1128 mutex_enter(&spa->spa_proc_lock);
1129 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1130
1131 spa->spa_proc_state = SPA_PROC_ACTIVE;
1132 cv_broadcast(&spa->spa_proc_cv);
1133
1134 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1135 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1136 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1137 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1138
1139 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1140 spa->spa_proc_state = SPA_PROC_GONE;
1141 spa->spa_proc = &p0;
1142 cv_broadcast(&spa->spa_proc_cv);
1143 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1144
1145 mutex_enter(&curproc->p_lock);
1146 lwp_exit();
1147 }
1148 #endif
1149
1150 /*
1151 * Activate an uninitialized pool.
1152 */
1153 static void
spa_activate(spa_t * spa,int mode)1154 spa_activate(spa_t *spa, int mode)
1155 {
1156 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1157
1158 spa->spa_state = POOL_STATE_ACTIVE;
1159 spa->spa_mode = mode;
1160
1161 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1162 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1163 spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1164 spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1165
1166 /* Try to create a covering process */
1167 mutex_enter(&spa->spa_proc_lock);
1168 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1169 ASSERT(spa->spa_proc == &p0);
1170 spa->spa_did = 0;
1171
1172 /* Only create a process if we're going to be around a while. */
1173 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1174 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1175 NULL, 0) == 0) {
1176 spa->spa_proc_state = SPA_PROC_CREATED;
1177 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1178 cv_wait(&spa->spa_proc_cv,
1179 &spa->spa_proc_lock);
1180 }
1181 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1182 ASSERT(spa->spa_proc != &p0);
1183 ASSERT(spa->spa_did != 0);
1184 } else {
1185 #ifdef _KERNEL
1186 cmn_err(CE_WARN,
1187 "Couldn't create process for zfs pool \"%s\"\n",
1188 spa->spa_name);
1189 #endif
1190 }
1191 }
1192 mutex_exit(&spa->spa_proc_lock);
1193
1194 /* If we didn't create a process, we need to create our taskqs. */
1195 if (spa->spa_proc == &p0) {
1196 spa_create_zio_taskqs(spa);
1197 }
1198
1199 for (size_t i = 0; i < TXG_SIZE; i++) {
1200 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1201 ZIO_FLAG_CANFAIL);
1202 }
1203
1204 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1205 offsetof(vdev_t, vdev_config_dirty_node));
1206 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1207 offsetof(objset_t, os_evicting_node));
1208 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1209 offsetof(vdev_t, vdev_state_dirty_node));
1210
1211 txg_list_create(&spa->spa_vdev_txg_list, spa,
1212 offsetof(struct vdev, vdev_txg_node));
1213
1214 avl_create(&spa->spa_errlist_scrub,
1215 spa_error_entry_compare, sizeof (spa_error_entry_t),
1216 offsetof(spa_error_entry_t, se_avl));
1217 avl_create(&spa->spa_errlist_last,
1218 spa_error_entry_compare, sizeof (spa_error_entry_t),
1219 offsetof(spa_error_entry_t, se_avl));
1220
1221 spa_keystore_init(&spa->spa_keystore);
1222
1223 /*
1224 * The taskq to upgrade datasets in this pool. Currently used by
1225 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1226 */
1227 spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus,
1228 minclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1229 }
1230
1231 /*
1232 * Opposite of spa_activate().
1233 */
1234 static void
spa_deactivate(spa_t * spa)1235 spa_deactivate(spa_t *spa)
1236 {
1237 ASSERT(spa->spa_sync_on == B_FALSE);
1238 ASSERT(spa->spa_dsl_pool == NULL);
1239 ASSERT(spa->spa_root_vdev == NULL);
1240 ASSERT(spa->spa_async_zio_root == NULL);
1241 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1242
1243 spa_evicting_os_wait(spa);
1244
1245 if (spa->spa_upgrade_taskq) {
1246 taskq_destroy(spa->spa_upgrade_taskq);
1247 spa->spa_upgrade_taskq = NULL;
1248 }
1249
1250 txg_list_destroy(&spa->spa_vdev_txg_list);
1251
1252 list_destroy(&spa->spa_config_dirty_list);
1253 list_destroy(&spa->spa_evicting_os_list);
1254 list_destroy(&spa->spa_state_dirty_list);
1255
1256 for (int t = 0; t < ZIO_TYPES; t++) {
1257 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1258 spa_taskqs_fini(spa, t, q);
1259 }
1260 }
1261
1262 for (size_t i = 0; i < TXG_SIZE; i++) {
1263 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1264 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1265 spa->spa_txg_zio[i] = NULL;
1266 }
1267
1268 metaslab_class_destroy(spa->spa_normal_class);
1269 spa->spa_normal_class = NULL;
1270
1271 metaslab_class_destroy(spa->spa_log_class);
1272 spa->spa_log_class = NULL;
1273
1274 metaslab_class_destroy(spa->spa_special_class);
1275 spa->spa_special_class = NULL;
1276
1277 metaslab_class_destroy(spa->spa_dedup_class);
1278 spa->spa_dedup_class = NULL;
1279
1280 /*
1281 * If this was part of an import or the open otherwise failed, we may
1282 * still have errors left in the queues. Empty them just in case.
1283 */
1284 spa_errlog_drain(spa);
1285 avl_destroy(&spa->spa_errlist_scrub);
1286 avl_destroy(&spa->spa_errlist_last);
1287
1288 spa_keystore_fini(&spa->spa_keystore);
1289
1290 spa->spa_state = POOL_STATE_UNINITIALIZED;
1291
1292 mutex_enter(&spa->spa_proc_lock);
1293 if (spa->spa_proc_state != SPA_PROC_NONE) {
1294 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1295 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1296 cv_broadcast(&spa->spa_proc_cv);
1297 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1298 ASSERT(spa->spa_proc != &p0);
1299 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1300 }
1301 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1302 spa->spa_proc_state = SPA_PROC_NONE;
1303 }
1304 ASSERT(spa->spa_proc == &p0);
1305 mutex_exit(&spa->spa_proc_lock);
1306
1307 /*
1308 * We want to make sure spa_thread() has actually exited the ZFS
1309 * module, so that the module can't be unloaded out from underneath
1310 * it.
1311 */
1312 if (spa->spa_did != 0) {
1313 thread_join(spa->spa_did);
1314 spa->spa_did = 0;
1315 }
1316 }
1317
1318 /*
1319 * Verify a pool configuration, and construct the vdev tree appropriately. This
1320 * will create all the necessary vdevs in the appropriate layout, with each vdev
1321 * in the CLOSED state. This will prep the pool before open/creation/import.
1322 * All vdev validation is done by the vdev_alloc() routine.
1323 */
1324 static int
spa_config_parse(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int atype)1325 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1326 uint_t id, int atype)
1327 {
1328 nvlist_t **child;
1329 uint_t children;
1330 int error;
1331
1332 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1333 return (error);
1334
1335 if ((*vdp)->vdev_ops->vdev_op_leaf)
1336 return (0);
1337
1338 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1339 &child, &children);
1340
1341 if (error == ENOENT)
1342 return (0);
1343
1344 if (error) {
1345 vdev_free(*vdp);
1346 *vdp = NULL;
1347 return (SET_ERROR(EINVAL));
1348 }
1349
1350 for (int c = 0; c < children; c++) {
1351 vdev_t *vd;
1352 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1353 atype)) != 0) {
1354 vdev_free(*vdp);
1355 *vdp = NULL;
1356 return (error);
1357 }
1358 }
1359
1360 ASSERT(*vdp != NULL);
1361
1362 return (0);
1363 }
1364
1365 static boolean_t
spa_should_flush_logs_on_unload(spa_t * spa)1366 spa_should_flush_logs_on_unload(spa_t *spa)
1367 {
1368 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1369 return (B_FALSE);
1370
1371 if (!spa_writeable(spa))
1372 return (B_FALSE);
1373
1374 if (!spa->spa_sync_on)
1375 return (B_FALSE);
1376
1377 if (spa_state(spa) != POOL_STATE_EXPORTED)
1378 return (B_FALSE);
1379
1380 if (zfs_keep_log_spacemaps_at_export)
1381 return (B_FALSE);
1382
1383 return (B_TRUE);
1384 }
1385
1386 /*
1387 * Opens a transaction that will set the flag that will instruct
1388 * spa_sync to attempt to flush all the metaslabs for that txg.
1389 */
1390 static void
spa_unload_log_sm_flush_all(spa_t * spa)1391 spa_unload_log_sm_flush_all(spa_t *spa)
1392 {
1393 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1394
1395 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1396
1397 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1398 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1399
1400 dmu_tx_commit(tx);
1401 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1402 }
1403
1404 static void
spa_unload_log_sm_metadata(spa_t * spa)1405 spa_unload_log_sm_metadata(spa_t *spa)
1406 {
1407 void *cookie = NULL;
1408 spa_log_sm_t *sls;
1409
1410 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1411 &cookie)) != NULL) {
1412 VERIFY0(sls->sls_mscount);
1413 kmem_free(sls, sizeof (spa_log_sm_t));
1414 }
1415
1416 for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1417 e != NULL; e = list_head(&spa->spa_log_summary)) {
1418 VERIFY0(e->lse_mscount);
1419 list_remove(&spa->spa_log_summary, e);
1420 kmem_free(e, sizeof (log_summary_entry_t));
1421 }
1422
1423 spa->spa_unflushed_stats.sus_nblocks = 0;
1424 spa->spa_unflushed_stats.sus_memused = 0;
1425 spa->spa_unflushed_stats.sus_blocklimit = 0;
1426 }
1427
1428 /*
1429 * Opposite of spa_load().
1430 */
1431 static void
spa_unload(spa_t * spa)1432 spa_unload(spa_t *spa)
1433 {
1434 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1435 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1436
1437 spa_import_progress_remove(spa);
1438 spa_load_note(spa, "UNLOADING");
1439
1440 /*
1441 * If the log space map feature is enabled and the pool is getting
1442 * exported (but not destroyed), we want to spend some time flushing
1443 * as many metaslabs as we can in an attempt to destroy log space
1444 * maps and save import time.
1445 */
1446 if (spa_should_flush_logs_on_unload(spa))
1447 spa_unload_log_sm_flush_all(spa);
1448
1449 /*
1450 * Stop async tasks.
1451 */
1452 spa_async_suspend(spa);
1453
1454 if (spa->spa_root_vdev) {
1455 vdev_t *root_vdev = spa->spa_root_vdev;
1456 vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE);
1457 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1458 vdev_autotrim_stop_all(spa);
1459 }
1460
1461 /*
1462 * Stop syncing.
1463 */
1464 if (spa->spa_sync_on) {
1465 txg_sync_stop(spa->spa_dsl_pool);
1466 spa->spa_sync_on = B_FALSE;
1467 }
1468
1469 /*
1470 * This ensures that there is no async metaslab prefetching
1471 * while we attempt to unload the spa.
1472 */
1473 if (spa->spa_root_vdev != NULL) {
1474 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1475 vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1476 if (vc->vdev_mg != NULL)
1477 taskq_wait(vc->vdev_mg->mg_taskq);
1478 }
1479 }
1480
1481 if (spa->spa_mmp.mmp_thread)
1482 mmp_thread_stop(spa);
1483
1484 /*
1485 * Wait for any outstanding async I/O to complete.
1486 */
1487 if (spa->spa_async_zio_root != NULL) {
1488 for (int i = 0; i < max_ncpus; i++)
1489 (void) zio_wait(spa->spa_async_zio_root[i]);
1490 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1491 spa->spa_async_zio_root = NULL;
1492 }
1493
1494 if (spa->spa_vdev_removal != NULL) {
1495 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1496 spa->spa_vdev_removal = NULL;
1497 }
1498
1499 if (spa->spa_condense_zthr != NULL) {
1500 zthr_destroy(spa->spa_condense_zthr);
1501 spa->spa_condense_zthr = NULL;
1502 }
1503
1504 if (spa->spa_checkpoint_discard_zthr != NULL) {
1505 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1506 spa->spa_checkpoint_discard_zthr = NULL;
1507 }
1508
1509 spa_condense_fini(spa);
1510
1511 bpobj_close(&spa->spa_deferred_bpobj);
1512
1513 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1514
1515 /*
1516 * Close all vdevs.
1517 */
1518 if (spa->spa_root_vdev)
1519 vdev_free(spa->spa_root_vdev);
1520 ASSERT(spa->spa_root_vdev == NULL);
1521
1522 /*
1523 * Close the dsl pool.
1524 */
1525 if (spa->spa_dsl_pool) {
1526 dsl_pool_close(spa->spa_dsl_pool);
1527 spa->spa_dsl_pool = NULL;
1528 spa->spa_meta_objset = NULL;
1529 }
1530
1531 ddt_unload(spa);
1532 spa_unload_log_sm_metadata(spa);
1533
1534 /*
1535 * Drop and purge level 2 cache
1536 */
1537 spa_l2cache_drop(spa);
1538
1539 for (int i = 0; i < spa->spa_spares.sav_count; i++)
1540 vdev_free(spa->spa_spares.sav_vdevs[i]);
1541 if (spa->spa_spares.sav_vdevs) {
1542 kmem_free(spa->spa_spares.sav_vdevs,
1543 spa->spa_spares.sav_count * sizeof (void *));
1544 spa->spa_spares.sav_vdevs = NULL;
1545 }
1546 if (spa->spa_spares.sav_config) {
1547 nvlist_free(spa->spa_spares.sav_config);
1548 spa->spa_spares.sav_config = NULL;
1549 }
1550 spa->spa_spares.sav_count = 0;
1551
1552 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1553 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1554 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1555 }
1556 if (spa->spa_l2cache.sav_vdevs) {
1557 kmem_free(spa->spa_l2cache.sav_vdevs,
1558 spa->spa_l2cache.sav_count * sizeof (void *));
1559 spa->spa_l2cache.sav_vdevs = NULL;
1560 }
1561 if (spa->spa_l2cache.sav_config) {
1562 nvlist_free(spa->spa_l2cache.sav_config);
1563 spa->spa_l2cache.sav_config = NULL;
1564 }
1565 spa->spa_l2cache.sav_count = 0;
1566
1567 spa->spa_async_suspended = 0;
1568
1569 spa->spa_indirect_vdevs_loaded = B_FALSE;
1570
1571 if (spa->spa_comment != NULL) {
1572 spa_strfree(spa->spa_comment);
1573 spa->spa_comment = NULL;
1574 }
1575
1576 spa_config_exit(spa, SCL_ALL, spa);
1577 }
1578
1579 /*
1580 * Load (or re-load) the current list of vdevs describing the active spares for
1581 * this pool. When this is called, we have some form of basic information in
1582 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1583 * then re-generate a more complete list including status information.
1584 */
1585 void
spa_load_spares(spa_t * spa)1586 spa_load_spares(spa_t *spa)
1587 {
1588 nvlist_t **spares;
1589 uint_t nspares;
1590 int i;
1591 vdev_t *vd, *tvd;
1592
1593 #ifndef _KERNEL
1594 /*
1595 * zdb opens both the current state of the pool and the
1596 * checkpointed state (if present), with a different spa_t.
1597 *
1598 * As spare vdevs are shared among open pools, we skip loading
1599 * them when we load the checkpointed state of the pool.
1600 */
1601 if (!spa_writeable(spa))
1602 return;
1603 #endif
1604
1605 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1606
1607 /*
1608 * First, close and free any existing spare vdevs.
1609 */
1610 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1611 vd = spa->spa_spares.sav_vdevs[i];
1612
1613 /* Undo the call to spa_activate() below */
1614 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1615 B_FALSE)) != NULL && tvd->vdev_isspare)
1616 spa_spare_remove(tvd);
1617 vdev_close(vd);
1618 vdev_free(vd);
1619 }
1620
1621 if (spa->spa_spares.sav_vdevs)
1622 kmem_free(spa->spa_spares.sav_vdevs,
1623 spa->spa_spares.sav_count * sizeof (void *));
1624
1625 if (spa->spa_spares.sav_config == NULL)
1626 nspares = 0;
1627 else
1628 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1629 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1630
1631 spa->spa_spares.sav_count = (int)nspares;
1632 spa->spa_spares.sav_vdevs = NULL;
1633
1634 if (nspares == 0)
1635 return;
1636
1637 /*
1638 * Construct the array of vdevs, opening them to get status in the
1639 * process. For each spare, there is potentially two different vdev_t
1640 * structures associated with it: one in the list of spares (used only
1641 * for basic validation purposes) and one in the active vdev
1642 * configuration (if it's spared in). During this phase we open and
1643 * validate each vdev on the spare list. If the vdev also exists in the
1644 * active configuration, then we also mark this vdev as an active spare.
1645 */
1646 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1647 KM_SLEEP);
1648 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1649 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1650 VDEV_ALLOC_SPARE) == 0);
1651 ASSERT(vd != NULL);
1652
1653 spa->spa_spares.sav_vdevs[i] = vd;
1654
1655 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1656 B_FALSE)) != NULL) {
1657 if (!tvd->vdev_isspare)
1658 spa_spare_add(tvd);
1659
1660 /*
1661 * We only mark the spare active if we were successfully
1662 * able to load the vdev. Otherwise, importing a pool
1663 * with a bad active spare would result in strange
1664 * behavior, because multiple pool would think the spare
1665 * is actively in use.
1666 *
1667 * There is a vulnerability here to an equally bizarre
1668 * circumstance, where a dead active spare is later
1669 * brought back to life (onlined or otherwise). Given
1670 * the rarity of this scenario, and the extra complexity
1671 * it adds, we ignore the possibility.
1672 */
1673 if (!vdev_is_dead(tvd))
1674 spa_spare_activate(tvd);
1675 }
1676
1677 vd->vdev_top = vd;
1678 vd->vdev_aux = &spa->spa_spares;
1679
1680 if (vdev_open(vd) != 0)
1681 continue;
1682
1683 if (vdev_validate_aux(vd) == 0)
1684 spa_spare_add(vd);
1685 }
1686
1687 /*
1688 * Recompute the stashed list of spares, with status information
1689 * this time.
1690 */
1691 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1692 DATA_TYPE_NVLIST_ARRAY) == 0);
1693
1694 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1695 KM_SLEEP);
1696 for (i = 0; i < spa->spa_spares.sav_count; i++)
1697 spares[i] = vdev_config_generate(spa,
1698 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1699 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1700 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1701 for (i = 0; i < spa->spa_spares.sav_count; i++)
1702 nvlist_free(spares[i]);
1703 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1704 }
1705
1706 /*
1707 * Load (or re-load) the current list of vdevs describing the active l2cache for
1708 * this pool. When this is called, we have some form of basic information in
1709 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1710 * then re-generate a more complete list including status information.
1711 * Devices which are already active have their details maintained, and are
1712 * not re-opened.
1713 */
1714 void
spa_load_l2cache(spa_t * spa)1715 spa_load_l2cache(spa_t *spa)
1716 {
1717 nvlist_t **l2cache;
1718 uint_t nl2cache;
1719 int i, j, oldnvdevs;
1720 uint64_t guid;
1721 vdev_t *vd, **oldvdevs, **newvdevs;
1722 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1723
1724 #ifndef _KERNEL
1725 /*
1726 * zdb opens both the current state of the pool and the
1727 * checkpointed state (if present), with a different spa_t.
1728 *
1729 * As L2 caches are part of the ARC which is shared among open
1730 * pools, we skip loading them when we load the checkpointed
1731 * state of the pool.
1732 */
1733 if (!spa_writeable(spa))
1734 return;
1735 #endif
1736
1737 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1738
1739 nl2cache = 0;
1740 newvdevs = NULL;
1741 if (sav->sav_config != NULL) {
1742 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1743 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1744 if (nl2cache > 0) {
1745 newvdevs = kmem_alloc(
1746 nl2cache * sizeof (void *), KM_SLEEP);
1747 }
1748 }
1749
1750 oldvdevs = sav->sav_vdevs;
1751 oldnvdevs = sav->sav_count;
1752 sav->sav_vdevs = NULL;
1753 sav->sav_count = 0;
1754
1755 /*
1756 * Process new nvlist of vdevs.
1757 */
1758 for (i = 0; i < nl2cache; i++) {
1759 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1760 &guid) == 0);
1761
1762 newvdevs[i] = NULL;
1763 for (j = 0; j < oldnvdevs; j++) {
1764 vd = oldvdevs[j];
1765 if (vd != NULL && guid == vd->vdev_guid) {
1766 /*
1767 * Retain previous vdev for add/remove ops.
1768 */
1769 newvdevs[i] = vd;
1770 oldvdevs[j] = NULL;
1771 break;
1772 }
1773 }
1774
1775 if (newvdevs[i] == NULL) {
1776 /*
1777 * Create new vdev
1778 */
1779 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1780 VDEV_ALLOC_L2CACHE) == 0);
1781 ASSERT(vd != NULL);
1782 newvdevs[i] = vd;
1783
1784 /*
1785 * Commit this vdev as an l2cache device,
1786 * even if it fails to open.
1787 */
1788 spa_l2cache_add(vd);
1789
1790 vd->vdev_top = vd;
1791 vd->vdev_aux = sav;
1792
1793 spa_l2cache_activate(vd);
1794
1795 if (vdev_open(vd) != 0)
1796 continue;
1797
1798 (void) vdev_validate_aux(vd);
1799
1800 if (!vdev_is_dead(vd))
1801 l2arc_add_vdev(spa, vd);
1802 }
1803 }
1804
1805 /*
1806 * Purge vdevs that were dropped
1807 */
1808 for (i = 0; i < oldnvdevs; i++) {
1809 uint64_t pool;
1810
1811 vd = oldvdevs[i];
1812 if (vd != NULL) {
1813 ASSERT(vd->vdev_isl2cache);
1814
1815 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1816 pool != 0ULL && l2arc_vdev_present(vd))
1817 l2arc_remove_vdev(vd);
1818 vdev_clear_stats(vd);
1819 vdev_free(vd);
1820 }
1821 }
1822
1823 if (oldvdevs)
1824 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1825
1826 if (sav->sav_config == NULL)
1827 goto out;
1828
1829 sav->sav_vdevs = newvdevs;
1830 sav->sav_count = (int)nl2cache;
1831
1832 /*
1833 * Recompute the stashed list of l2cache devices, with status
1834 * information this time.
1835 */
1836 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1837 DATA_TYPE_NVLIST_ARRAY) == 0);
1838
1839 l2cache = NULL;
1840 if (sav->sav_count > 0) {
1841 l2cache = kmem_alloc(
1842 sav->sav_count * sizeof (void *), KM_SLEEP);
1843 }
1844 for (i = 0; i < sav->sav_count; i++)
1845 l2cache[i] = vdev_config_generate(spa,
1846 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1847 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1848 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1849 out:
1850 for (i = 0; i < sav->sav_count; i++)
1851 nvlist_free(l2cache[i]);
1852 if (sav->sav_count)
1853 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1854 }
1855
1856 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)1857 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1858 {
1859 dmu_buf_t *db;
1860 char *packed = NULL;
1861 size_t nvsize = 0;
1862 int error;
1863 *value = NULL;
1864
1865 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1866 if (error != 0)
1867 return (error);
1868
1869 nvsize = *(uint64_t *)db->db_data;
1870 dmu_buf_rele(db, FTAG);
1871
1872 packed = kmem_alloc(nvsize, KM_SLEEP);
1873 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1874 DMU_READ_PREFETCH);
1875 if (error == 0)
1876 error = nvlist_unpack(packed, nvsize, value, 0);
1877 kmem_free(packed, nvsize);
1878
1879 return (error);
1880 }
1881
1882 /*
1883 * Concrete top-level vdevs that are not missing and are not logs. At every
1884 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1885 */
1886 static uint64_t
spa_healthy_core_tvds(spa_t * spa)1887 spa_healthy_core_tvds(spa_t *spa)
1888 {
1889 vdev_t *rvd = spa->spa_root_vdev;
1890 uint64_t tvds = 0;
1891
1892 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1893 vdev_t *vd = rvd->vdev_child[i];
1894 if (vd->vdev_islog)
1895 continue;
1896 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1897 tvds++;
1898 }
1899
1900 return (tvds);
1901 }
1902
1903 /*
1904 * Checks to see if the given vdev could not be opened, in which case we post a
1905 * sysevent to notify the autoreplace code that the device has been removed.
1906 */
1907 static void
spa_check_removed(vdev_t * vd)1908 spa_check_removed(vdev_t *vd)
1909 {
1910 for (uint64_t c = 0; c < vd->vdev_children; c++)
1911 spa_check_removed(vd->vdev_child[c]);
1912
1913 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1914 vdev_is_concrete(vd)) {
1915 zfs_post_autoreplace(vd->vdev_spa, vd);
1916 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1917 }
1918 }
1919
1920 static int
spa_check_for_missing_logs(spa_t * spa)1921 spa_check_for_missing_logs(spa_t *spa)
1922 {
1923 vdev_t *rvd = spa->spa_root_vdev;
1924
1925 /*
1926 * If we're doing a normal import, then build up any additional
1927 * diagnostic information about missing log devices.
1928 * We'll pass this up to the user for further processing.
1929 */
1930 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1931 nvlist_t **child, *nv;
1932 uint64_t idx = 0;
1933
1934 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1935 KM_SLEEP);
1936 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1937
1938 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1939 vdev_t *tvd = rvd->vdev_child[c];
1940
1941 /*
1942 * We consider a device as missing only if it failed
1943 * to open (i.e. offline or faulted is not considered
1944 * as missing).
1945 */
1946 if (tvd->vdev_islog &&
1947 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1948 child[idx++] = vdev_config_generate(spa, tvd,
1949 B_FALSE, VDEV_CONFIG_MISSING);
1950 }
1951 }
1952
1953 if (idx > 0) {
1954 fnvlist_add_nvlist_array(nv,
1955 ZPOOL_CONFIG_CHILDREN, child, idx);
1956 fnvlist_add_nvlist(spa->spa_load_info,
1957 ZPOOL_CONFIG_MISSING_DEVICES, nv);
1958
1959 for (uint64_t i = 0; i < idx; i++)
1960 nvlist_free(child[i]);
1961 }
1962 nvlist_free(nv);
1963 kmem_free(child, rvd->vdev_children * sizeof (char **));
1964
1965 if (idx > 0) {
1966 spa_load_failed(spa, "some log devices are missing");
1967 vdev_dbgmsg_print_tree(rvd, 2);
1968 return (SET_ERROR(ENXIO));
1969 }
1970 } else {
1971 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1972 vdev_t *tvd = rvd->vdev_child[c];
1973
1974 if (tvd->vdev_islog &&
1975 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1976 spa_set_log_state(spa, SPA_LOG_CLEAR);
1977 spa_load_note(spa, "some log devices are "
1978 "missing, ZIL is dropped.");
1979 vdev_dbgmsg_print_tree(rvd, 2);
1980 break;
1981 }
1982 }
1983 }
1984
1985 return (0);
1986 }
1987
1988 /*
1989 * Check for missing log devices
1990 */
1991 static boolean_t
spa_check_logs(spa_t * spa)1992 spa_check_logs(spa_t *spa)
1993 {
1994 boolean_t rv = B_FALSE;
1995 dsl_pool_t *dp = spa_get_dsl(spa);
1996
1997 switch (spa->spa_log_state) {
1998 case SPA_LOG_MISSING:
1999 /* need to recheck in case slog has been restored */
2000 case SPA_LOG_UNKNOWN:
2001 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2002 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2003 if (rv)
2004 spa_set_log_state(spa, SPA_LOG_MISSING);
2005 break;
2006 }
2007 return (rv);
2008 }
2009
2010 static boolean_t
spa_passivate_log(spa_t * spa)2011 spa_passivate_log(spa_t *spa)
2012 {
2013 vdev_t *rvd = spa->spa_root_vdev;
2014 boolean_t slog_found = B_FALSE;
2015
2016 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2017
2018 if (!spa_has_slogs(spa))
2019 return (B_FALSE);
2020
2021 for (int c = 0; c < rvd->vdev_children; c++) {
2022 vdev_t *tvd = rvd->vdev_child[c];
2023 metaslab_group_t *mg = tvd->vdev_mg;
2024
2025 if (tvd->vdev_islog) {
2026 metaslab_group_passivate(mg);
2027 slog_found = B_TRUE;
2028 }
2029 }
2030
2031 return (slog_found);
2032 }
2033
2034 static void
spa_activate_log(spa_t * spa)2035 spa_activate_log(spa_t *spa)
2036 {
2037 vdev_t *rvd = spa->spa_root_vdev;
2038
2039 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2040
2041 for (int c = 0; c < rvd->vdev_children; c++) {
2042 vdev_t *tvd = rvd->vdev_child[c];
2043 metaslab_group_t *mg = tvd->vdev_mg;
2044
2045 if (tvd->vdev_islog)
2046 metaslab_group_activate(mg);
2047 }
2048 }
2049
2050 int
spa_reset_logs(spa_t * spa)2051 spa_reset_logs(spa_t *spa)
2052 {
2053 int error;
2054
2055 error = dmu_objset_find(spa_name(spa), zil_reset,
2056 NULL, DS_FIND_CHILDREN);
2057 if (error == 0) {
2058 /*
2059 * We successfully offlined the log device, sync out the
2060 * current txg so that the "stubby" block can be removed
2061 * by zil_sync().
2062 */
2063 txg_wait_synced(spa->spa_dsl_pool, 0);
2064 }
2065 return (error);
2066 }
2067
2068 static void
spa_aux_check_removed(spa_aux_vdev_t * sav)2069 spa_aux_check_removed(spa_aux_vdev_t *sav)
2070 {
2071 for (int i = 0; i < sav->sav_count; i++)
2072 spa_check_removed(sav->sav_vdevs[i]);
2073 }
2074
2075 void
spa_claim_notify(zio_t * zio)2076 spa_claim_notify(zio_t *zio)
2077 {
2078 spa_t *spa = zio->io_spa;
2079
2080 if (zio->io_error)
2081 return;
2082
2083 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2084 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2085 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2086 mutex_exit(&spa->spa_props_lock);
2087 }
2088
2089 typedef struct spa_load_error {
2090 uint64_t sle_meta_count;
2091 uint64_t sle_data_count;
2092 } spa_load_error_t;
2093
2094 static void
spa_load_verify_done(zio_t * zio)2095 spa_load_verify_done(zio_t *zio)
2096 {
2097 blkptr_t *bp = zio->io_bp;
2098 spa_load_error_t *sle = zio->io_private;
2099 dmu_object_type_t type = BP_GET_TYPE(bp);
2100 int error = zio->io_error;
2101 spa_t *spa = zio->io_spa;
2102
2103 abd_free(zio->io_abd);
2104 if (error) {
2105 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2106 type != DMU_OT_INTENT_LOG)
2107 atomic_inc_64(&sle->sle_meta_count);
2108 else
2109 atomic_inc_64(&sle->sle_data_count);
2110 }
2111
2112 mutex_enter(&spa->spa_scrub_lock);
2113 spa->spa_load_verify_ios--;
2114 cv_broadcast(&spa->spa_scrub_io_cv);
2115 mutex_exit(&spa->spa_scrub_lock);
2116 }
2117
2118 /*
2119 * Maximum number of concurrent scrub i/os to create while verifying
2120 * a pool while importing it.
2121 */
2122 int spa_load_verify_maxinflight = 10000;
2123 boolean_t spa_load_verify_metadata = B_TRUE;
2124 boolean_t spa_load_verify_data = B_TRUE;
2125
2126 /*ARGSUSED*/
2127 static int
spa_load_verify_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)2128 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2129 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2130 {
2131 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2132 return (0);
2133 /*
2134 * Note: normally this routine will not be called if
2135 * spa_load_verify_metadata is not set. However, it may be useful
2136 * to manually set the flag after the traversal has begun.
2137 */
2138 if (!spa_load_verify_metadata)
2139 return (0);
2140 if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2141 return (0);
2142
2143 zio_t *rio = arg;
2144 size_t size = BP_GET_PSIZE(bp);
2145
2146 mutex_enter(&spa->spa_scrub_lock);
2147 while (spa->spa_load_verify_ios >= spa_load_verify_maxinflight)
2148 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2149 spa->spa_load_verify_ios++;
2150 mutex_exit(&spa->spa_scrub_lock);
2151
2152 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2153 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2154 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2155 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2156 return (0);
2157 }
2158
2159 /* ARGSUSED */
2160 int
verify_dataset_name_len(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)2161 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2162 {
2163 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2164 return (SET_ERROR(ENAMETOOLONG));
2165
2166 return (0);
2167 }
2168
2169 static int
spa_load_verify(spa_t * spa)2170 spa_load_verify(spa_t *spa)
2171 {
2172 zio_t *rio;
2173 spa_load_error_t sle = { 0 };
2174 zpool_load_policy_t policy;
2175 boolean_t verify_ok = B_FALSE;
2176 int error = 0;
2177
2178 zpool_get_load_policy(spa->spa_config, &policy);
2179
2180 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2181 return (0);
2182
2183 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2184 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2185 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2186 DS_FIND_CHILDREN);
2187 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2188 if (error != 0)
2189 return (error);
2190
2191 rio = zio_root(spa, NULL, &sle,
2192 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2193
2194 if (spa_load_verify_metadata) {
2195 if (spa->spa_extreme_rewind) {
2196 spa_load_note(spa, "performing a complete scan of the "
2197 "pool since extreme rewind is on. This may take "
2198 "a very long time.\n (spa_load_verify_data=%u, "
2199 "spa_load_verify_metadata=%u)",
2200 spa_load_verify_data, spa_load_verify_metadata);
2201 }
2202 error = traverse_pool(spa, spa->spa_verify_min_txg,
2203 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2204 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2205 }
2206
2207 (void) zio_wait(rio);
2208
2209 spa->spa_load_meta_errors = sle.sle_meta_count;
2210 spa->spa_load_data_errors = sle.sle_data_count;
2211
2212 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2213 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2214 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2215 (u_longlong_t)sle.sle_data_count);
2216 }
2217
2218 if (spa_load_verify_dryrun ||
2219 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2220 sle.sle_data_count <= policy.zlp_maxdata)) {
2221 int64_t loss = 0;
2222
2223 verify_ok = B_TRUE;
2224 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2225 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2226
2227 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2228 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2229 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2230 VERIFY(nvlist_add_int64(spa->spa_load_info,
2231 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2232 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2233 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2234 } else {
2235 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2236 }
2237
2238 if (spa_load_verify_dryrun)
2239 return (0);
2240
2241 if (error) {
2242 if (error != ENXIO && error != EIO)
2243 error = SET_ERROR(EIO);
2244 return (error);
2245 }
2246
2247 return (verify_ok ? 0 : EIO);
2248 }
2249
2250 /*
2251 * Find a value in the pool props object.
2252 */
2253 static void
spa_prop_find(spa_t * spa,zpool_prop_t prop,uint64_t * val)2254 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2255 {
2256 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2257 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2258 }
2259
2260 /*
2261 * Find a value in the pool directory object.
2262 */
2263 static int
spa_dir_prop(spa_t * spa,const char * name,uint64_t * val,boolean_t log_enoent)2264 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2265 {
2266 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2267 name, sizeof (uint64_t), 1, val);
2268
2269 if (error != 0 && (error != ENOENT || log_enoent)) {
2270 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2271 "[error=%d]", name, error);
2272 }
2273
2274 return (error);
2275 }
2276
2277 static int
spa_vdev_err(vdev_t * vdev,vdev_aux_t aux,int err)2278 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2279 {
2280 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2281 return (SET_ERROR(err));
2282 }
2283
2284 static void
spa_spawn_aux_threads(spa_t * spa)2285 spa_spawn_aux_threads(spa_t *spa)
2286 {
2287 ASSERT(spa_writeable(spa));
2288
2289 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2290
2291 spa_start_indirect_condensing_thread(spa);
2292
2293 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2294 spa->spa_checkpoint_discard_zthr =
2295 zthr_create(spa_checkpoint_discard_thread_check,
2296 spa_checkpoint_discard_thread, spa);
2297 }
2298
2299 /*
2300 * Fix up config after a partly-completed split. This is done with the
2301 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2302 * pool have that entry in their config, but only the splitting one contains
2303 * a list of all the guids of the vdevs that are being split off.
2304 *
2305 * This function determines what to do with that list: either rejoin
2306 * all the disks to the pool, or complete the splitting process. To attempt
2307 * the rejoin, each disk that is offlined is marked online again, and
2308 * we do a reopen() call. If the vdev label for every disk that was
2309 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2310 * then we call vdev_split() on each disk, and complete the split.
2311 *
2312 * Otherwise we leave the config alone, with all the vdevs in place in
2313 * the original pool.
2314 */
2315 static void
spa_try_repair(spa_t * spa,nvlist_t * config)2316 spa_try_repair(spa_t *spa, nvlist_t *config)
2317 {
2318 uint_t extracted;
2319 uint64_t *glist;
2320 uint_t i, gcount;
2321 nvlist_t *nvl;
2322 vdev_t **vd;
2323 boolean_t attempt_reopen;
2324
2325 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2326 return;
2327
2328 /* check that the config is complete */
2329 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2330 &glist, &gcount) != 0)
2331 return;
2332
2333 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2334
2335 /* attempt to online all the vdevs & validate */
2336 attempt_reopen = B_TRUE;
2337 for (i = 0; i < gcount; i++) {
2338 if (glist[i] == 0) /* vdev is hole */
2339 continue;
2340
2341 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2342 if (vd[i] == NULL) {
2343 /*
2344 * Don't bother attempting to reopen the disks;
2345 * just do the split.
2346 */
2347 attempt_reopen = B_FALSE;
2348 } else {
2349 /* attempt to re-online it */
2350 vd[i]->vdev_offline = B_FALSE;
2351 }
2352 }
2353
2354 if (attempt_reopen) {
2355 vdev_reopen(spa->spa_root_vdev);
2356
2357 /* check each device to see what state it's in */
2358 for (extracted = 0, i = 0; i < gcount; i++) {
2359 if (vd[i] != NULL &&
2360 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2361 break;
2362 ++extracted;
2363 }
2364 }
2365
2366 /*
2367 * If every disk has been moved to the new pool, or if we never
2368 * even attempted to look at them, then we split them off for
2369 * good.
2370 */
2371 if (!attempt_reopen || gcount == extracted) {
2372 for (i = 0; i < gcount; i++)
2373 if (vd[i] != NULL)
2374 vdev_split(vd[i]);
2375 vdev_reopen(spa->spa_root_vdev);
2376 }
2377
2378 kmem_free(vd, gcount * sizeof (vdev_t *));
2379 }
2380
2381 static int
spa_load(spa_t * spa,spa_load_state_t state,spa_import_type_t type)2382 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2383 {
2384 char *ereport = FM_EREPORT_ZFS_POOL;
2385 int error;
2386
2387 spa->spa_load_state = state;
2388 (void) spa_import_progress_set_state(spa, spa_load_state(spa));
2389
2390 gethrestime(&spa->spa_loaded_ts);
2391 error = spa_load_impl(spa, type, &ereport);
2392
2393 /*
2394 * Don't count references from objsets that are already closed
2395 * and are making their way through the eviction process.
2396 */
2397 spa_evicting_os_wait(spa);
2398 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2399 if (error) {
2400 if (error != EEXIST) {
2401 spa->spa_loaded_ts.tv_sec = 0;
2402 spa->spa_loaded_ts.tv_nsec = 0;
2403 }
2404 if (error != EBADF) {
2405 (void) zfs_ereport_post(ereport, spa,
2406 NULL, NULL, NULL, 0, 0);
2407 }
2408 }
2409 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2410 spa->spa_ena = 0;
2411
2412 (void) spa_import_progress_set_state(spa, spa_load_state(spa));
2413
2414 return (error);
2415 }
2416
2417 /*
2418 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2419 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2420 * spa's per-vdev ZAP list.
2421 */
2422 static uint64_t
vdev_count_verify_zaps(vdev_t * vd)2423 vdev_count_verify_zaps(vdev_t *vd)
2424 {
2425 spa_t *spa = vd->vdev_spa;
2426 uint64_t total = 0;
2427 if (vd->vdev_top_zap != 0) {
2428 total++;
2429 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2430 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2431 }
2432 if (vd->vdev_leaf_zap != 0) {
2433 total++;
2434 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2435 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2436 }
2437
2438 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2439 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2440 }
2441
2442 return (total);
2443 }
2444
2445 /*
2446 * Determine whether the activity check is required.
2447 */
2448 static boolean_t
spa_activity_check_required(spa_t * spa,uberblock_t * ub,nvlist_t * label,nvlist_t * config)2449 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2450 nvlist_t *config)
2451 {
2452 uint64_t state = 0;
2453 uint64_t hostid = 0;
2454 uint64_t tryconfig_txg = 0;
2455 uint64_t tryconfig_timestamp = 0;
2456 uint16_t tryconfig_mmp_seq = 0;
2457 nvlist_t *nvinfo;
2458
2459 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2460 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2461 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2462 &tryconfig_txg);
2463 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2464 &tryconfig_timestamp);
2465 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
2466 &tryconfig_mmp_seq);
2467 }
2468
2469 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2470
2471 /*
2472 * Disable the MMP activity check - This is used by zdb which
2473 * is intended to be used on potentially active pools.
2474 */
2475 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2476 return (B_FALSE);
2477
2478 /*
2479 * Skip the activity check when the MMP feature is disabled.
2480 */
2481 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2482 return (B_FALSE);
2483
2484 /*
2485 * If the tryconfig_ values are nonzero, they are the results of an
2486 * earlier tryimport. If they all match the uberblock we just found,
2487 * then the pool has not changed and we return false so we do not test
2488 * a second time.
2489 */
2490 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2491 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
2492 tryconfig_mmp_seq && tryconfig_mmp_seq ==
2493 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
2494 return (B_FALSE);
2495
2496 /*
2497 * Allow the activity check to be skipped when importing the pool
2498 * on the same host which last imported it. Since the hostid from
2499 * configuration may be stale use the one read from the label.
2500 */
2501 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2502 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2503
2504 if (hostid == spa_get_hostid())
2505 return (B_FALSE);
2506
2507 /*
2508 * Skip the activity test when the pool was cleanly exported.
2509 */
2510 if (state != POOL_STATE_ACTIVE)
2511 return (B_FALSE);
2512
2513 return (B_TRUE);
2514 }
2515
2516 /*
2517 * Nanoseconds the activity check must watch for changes on-disk.
2518 */
2519 static uint64_t
spa_activity_check_duration(spa_t * spa,uberblock_t * ub)2520 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
2521 {
2522 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
2523 uint64_t multihost_interval = MSEC2NSEC(
2524 MMP_INTERVAL_OK(zfs_multihost_interval));
2525 uint64_t import_delay = MAX(NANOSEC, import_intervals *
2526 multihost_interval);
2527
2528 /*
2529 * Local tunables determine a minimum duration except for the case
2530 * where we know when the remote host will suspend the pool if MMP
2531 * writes do not land.
2532 *
2533 * See Big Theory comment at the top of mmp.c for the reasoning behind
2534 * these cases and times.
2535 */
2536
2537 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
2538
2539 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
2540 MMP_FAIL_INT(ub) > 0) {
2541
2542 /* MMP on remote host will suspend pool after failed writes */
2543 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
2544 MMP_IMPORT_SAFETY_FACTOR / 100;
2545
2546 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
2547 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
2548 "import_intervals=%u", import_delay, MMP_FAIL_INT(ub),
2549 MMP_INTERVAL(ub), import_intervals);
2550
2551 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
2552 MMP_FAIL_INT(ub) == 0) {
2553
2554 /* MMP on remote host will never suspend pool */
2555 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
2556 ub->ub_mmp_delay) * import_intervals);
2557
2558 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
2559 "mmp_interval=%llu ub_mmp_delay=%llu "
2560 "import_intervals=%u", import_delay, MMP_INTERVAL(ub),
2561 ub->ub_mmp_delay, import_intervals);
2562
2563 } else if (MMP_VALID(ub)) {
2564 /*
2565 * zfs-0.7 compatability case
2566 */
2567
2568 import_delay = MAX(import_delay, (multihost_interval +
2569 ub->ub_mmp_delay) * import_intervals);
2570
2571 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
2572 "import_intervals=%u leaves=%u", import_delay,
2573 ub->ub_mmp_delay, import_intervals,
2574 vdev_count_leaves(spa));
2575 } else {
2576 /* Using local tunings is the only reasonable option */
2577 zfs_dbgmsg("pool last imported on non-MMP aware "
2578 "host using import_delay=%llu multihost_interval=%llu "
2579 "import_intervals=%u", import_delay, multihost_interval,
2580 import_intervals);
2581 }
2582
2583 return (import_delay);
2584 }
2585
2586 /*
2587 * Perform the import activity check. If the user canceled the import or
2588 * we detected activity then fail.
2589 */
2590 static int
spa_activity_check(spa_t * spa,uberblock_t * ub,nvlist_t * config)2591 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
2592 {
2593 uint64_t txg = ub->ub_txg;
2594 uint64_t timestamp = ub->ub_timestamp;
2595 uint64_t mmp_config = ub->ub_mmp_config;
2596 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
2597 uint64_t import_delay;
2598 hrtime_t import_expire;
2599 nvlist_t *mmp_label = NULL;
2600 vdev_t *rvd = spa->spa_root_vdev;
2601 kcondvar_t cv;
2602 kmutex_t mtx;
2603 int error = 0;
2604
2605 cv_init(&cv, NULL, CV_DEFAULT, NULL);
2606 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
2607 mutex_enter(&mtx);
2608
2609 /*
2610 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
2611 * during the earlier tryimport. If the txg recorded there is 0 then
2612 * the pool is known to be active on another host.
2613 *
2614 * Otherwise, the pool might be in use on another host. Check for
2615 * changes in the uberblocks on disk if necessary.
2616 */
2617 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2618 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
2619 ZPOOL_CONFIG_LOAD_INFO);
2620
2621 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
2622 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
2623 vdev_uberblock_load(rvd, ub, &mmp_label);
2624 error = SET_ERROR(EREMOTEIO);
2625 goto out;
2626 }
2627 }
2628
2629 import_delay = spa_activity_check_duration(spa, ub);
2630
2631 /* Add a small random factor in case of simultaneous imports (0-25%) */
2632 import_delay += import_delay * spa_get_random(250) / 1000;
2633
2634 import_expire = gethrtime() + import_delay;
2635
2636 while (gethrtime() < import_expire) {
2637 (void) spa_import_progress_set_mmp_check(spa,
2638 NSEC2SEC(import_expire - gethrtime()));
2639
2640 vdev_uberblock_load(rvd, ub, &mmp_label);
2641
2642 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
2643 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
2644 zfs_dbgmsg("multihost activity detected "
2645 "txg %llu ub_txg %llu "
2646 "timestamp %llu ub_timestamp %llu "
2647 "mmp_config %#llx ub_mmp_config %#llx",
2648 txg, ub->ub_txg, timestamp, ub->ub_timestamp,
2649 mmp_config, ub->ub_mmp_config);
2650
2651 error = SET_ERROR(EREMOTEIO);
2652 break;
2653 }
2654
2655 if (mmp_label) {
2656 nvlist_free(mmp_label);
2657 mmp_label = NULL;
2658 }
2659
2660 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
2661 if (error != -1) {
2662 error = SET_ERROR(EINTR);
2663 break;
2664 }
2665 error = 0;
2666 }
2667
2668 out:
2669 mutex_exit(&mtx);
2670 mutex_destroy(&mtx);
2671 cv_destroy(&cv);
2672
2673 /*
2674 * If the pool is determined to be active store the status in the
2675 * spa->spa_load_info nvlist. If the remote hostname or hostid are
2676 * available from configuration read from disk store them as well.
2677 * This allows 'zpool import' to generate a more useful message.
2678 *
2679 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
2680 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
2681 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
2682 */
2683 if (error == EREMOTEIO) {
2684 char *hostname = "<unknown>";
2685 uint64_t hostid = 0;
2686
2687 if (mmp_label) {
2688 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
2689 hostname = fnvlist_lookup_string(mmp_label,
2690 ZPOOL_CONFIG_HOSTNAME);
2691 fnvlist_add_string(spa->spa_load_info,
2692 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
2693 }
2694
2695 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
2696 hostid = fnvlist_lookup_uint64(mmp_label,
2697 ZPOOL_CONFIG_HOSTID);
2698 fnvlist_add_uint64(spa->spa_load_info,
2699 ZPOOL_CONFIG_MMP_HOSTID, hostid);
2700 }
2701 }
2702
2703 fnvlist_add_uint64(spa->spa_load_info,
2704 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
2705 fnvlist_add_uint64(spa->spa_load_info,
2706 ZPOOL_CONFIG_MMP_TXG, 0);
2707
2708 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
2709 }
2710
2711 if (mmp_label)
2712 nvlist_free(mmp_label);
2713
2714 return (error);
2715 }
2716
2717 static int
spa_verify_host(spa_t * spa,nvlist_t * mos_config)2718 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2719 {
2720 uint64_t hostid;
2721 char *hostname;
2722 uint64_t myhostid = 0;
2723
2724 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2725 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2726 hostname = fnvlist_lookup_string(mos_config,
2727 ZPOOL_CONFIG_HOSTNAME);
2728
2729 myhostid = zone_get_hostid(NULL);
2730
2731 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2732 cmn_err(CE_WARN, "pool '%s' could not be "
2733 "loaded as it was last accessed by "
2734 "another system (host: %s hostid: 0x%llx). "
2735 "See: http://illumos.org/msg/ZFS-8000-EY",
2736 spa_name(spa), hostname, (u_longlong_t)hostid);
2737 spa_load_failed(spa, "hostid verification failed: pool "
2738 "last accessed by host: %s (hostid: 0x%llx)",
2739 hostname, (u_longlong_t)hostid);
2740 return (SET_ERROR(EBADF));
2741 }
2742 }
2743
2744 return (0);
2745 }
2746
2747 static int
spa_ld_parse_config(spa_t * spa,spa_import_type_t type)2748 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2749 {
2750 int error = 0;
2751 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2752 int parse;
2753 vdev_t *rvd;
2754 uint64_t pool_guid;
2755 char *comment;
2756
2757 /*
2758 * Versioning wasn't explicitly added to the label until later, so if
2759 * it's not present treat it as the initial version.
2760 */
2761 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2762 &spa->spa_ubsync.ub_version) != 0)
2763 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2764
2765 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2766 spa_load_failed(spa, "invalid config provided: '%s' missing",
2767 ZPOOL_CONFIG_POOL_GUID);
2768 return (SET_ERROR(EINVAL));
2769 }
2770
2771 /*
2772 * If we are doing an import, ensure that the pool is not already
2773 * imported by checking if its pool guid already exists in the
2774 * spa namespace.
2775 *
2776 * The only case that we allow an already imported pool to be
2777 * imported again, is when the pool is checkpointed and we want to
2778 * look at its checkpointed state from userland tools like zdb.
2779 */
2780 #ifdef _KERNEL
2781 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2782 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2783 spa_guid_exists(pool_guid, 0)) {
2784 #else
2785 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2786 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2787 spa_guid_exists(pool_guid, 0) &&
2788 !spa_importing_readonly_checkpoint(spa)) {
2789 #endif
2790 spa_load_failed(spa, "a pool with guid %llu is already open",
2791 (u_longlong_t)pool_guid);
2792 return (SET_ERROR(EEXIST));
2793 }
2794
2795 spa->spa_config_guid = pool_guid;
2796
2797 nvlist_free(spa->spa_load_info);
2798 spa->spa_load_info = fnvlist_alloc();
2799
2800 ASSERT(spa->spa_comment == NULL);
2801 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2802 spa->spa_comment = spa_strdup(comment);
2803
2804 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2805 &spa->spa_config_txg);
2806
2807 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2808 spa->spa_config_splitting = fnvlist_dup(nvl);
2809
2810 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2811 spa_load_failed(spa, "invalid config provided: '%s' missing",
2812 ZPOOL_CONFIG_VDEV_TREE);
2813 return (SET_ERROR(EINVAL));
2814 }
2815
2816 /*
2817 * Create "The Godfather" zio to hold all async IOs
2818 */
2819 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2820 KM_SLEEP);
2821 for (int i = 0; i < max_ncpus; i++) {
2822 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2823 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2824 ZIO_FLAG_GODFATHER);
2825 }
2826
2827 /*
2828 * Parse the configuration into a vdev tree. We explicitly set the
2829 * value that will be returned by spa_version() since parsing the
2830 * configuration requires knowing the version number.
2831 */
2832 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2833 parse = (type == SPA_IMPORT_EXISTING ?
2834 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2835 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2836 spa_config_exit(spa, SCL_ALL, FTAG);
2837
2838 if (error != 0) {
2839 spa_load_failed(spa, "unable to parse config [error=%d]",
2840 error);
2841 return (error);
2842 }
2843
2844 ASSERT(spa->spa_root_vdev == rvd);
2845 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2846 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2847
2848 if (type != SPA_IMPORT_ASSEMBLE) {
2849 ASSERT(spa_guid(spa) == pool_guid);
2850 }
2851
2852 return (0);
2853 }
2854
2855 /*
2856 * Recursively open all vdevs in the vdev tree. This function is called twice:
2857 * first with the untrusted config, then with the trusted config.
2858 */
2859 static int
2860 spa_ld_open_vdevs(spa_t *spa)
2861 {
2862 int error = 0;
2863
2864 /*
2865 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2866 * missing/unopenable for the root vdev to be still considered openable.
2867 */
2868 if (spa->spa_trust_config) {
2869 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2870 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2871 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2872 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2873 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2874 } else {
2875 spa->spa_missing_tvds_allowed = 0;
2876 }
2877
2878 spa->spa_missing_tvds_allowed =
2879 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2880
2881 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2882 error = vdev_open(spa->spa_root_vdev);
2883 spa_config_exit(spa, SCL_ALL, FTAG);
2884
2885 if (spa->spa_missing_tvds != 0) {
2886 spa_load_note(spa, "vdev tree has %lld missing top-level "
2887 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2888 if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2889 /*
2890 * Although theoretically we could allow users to open
2891 * incomplete pools in RW mode, we'd need to add a lot
2892 * of extra logic (e.g. adjust pool space to account
2893 * for missing vdevs).
2894 * This limitation also prevents users from accidentally
2895 * opening the pool in RW mode during data recovery and
2896 * damaging it further.
2897 */
2898 spa_load_note(spa, "pools with missing top-level "
2899 "vdevs can only be opened in read-only mode.");
2900 error = SET_ERROR(ENXIO);
2901 } else {
2902 spa_load_note(spa, "current settings allow for maximum "
2903 "%lld missing top-level vdevs at this stage.",
2904 (u_longlong_t)spa->spa_missing_tvds_allowed);
2905 }
2906 }
2907 if (error != 0) {
2908 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2909 error);
2910 }
2911 if (spa->spa_missing_tvds != 0 || error != 0)
2912 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2913
2914 return (error);
2915 }
2916
2917 /*
2918 * We need to validate the vdev labels against the configuration that
2919 * we have in hand. This function is called twice: first with an untrusted
2920 * config, then with a trusted config. The validation is more strict when the
2921 * config is trusted.
2922 */
2923 static int
2924 spa_ld_validate_vdevs(spa_t *spa)
2925 {
2926 int error = 0;
2927 vdev_t *rvd = spa->spa_root_vdev;
2928
2929 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2930 error = vdev_validate(rvd);
2931 spa_config_exit(spa, SCL_ALL, FTAG);
2932
2933 if (error != 0) {
2934 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2935 return (error);
2936 }
2937
2938 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2939 spa_load_failed(spa, "cannot open vdev tree after invalidating "
2940 "some vdevs");
2941 vdev_dbgmsg_print_tree(rvd, 2);
2942 return (SET_ERROR(ENXIO));
2943 }
2944
2945 return (0);
2946 }
2947
2948 static void
2949 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
2950 {
2951 spa->spa_state = POOL_STATE_ACTIVE;
2952 spa->spa_ubsync = spa->spa_uberblock;
2953 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2954 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2955 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2956 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2957 spa->spa_claim_max_txg = spa->spa_first_txg;
2958 spa->spa_prev_software_version = ub->ub_software_version;
2959 }
2960
2961 static int
2962 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2963 {
2964 vdev_t *rvd = spa->spa_root_vdev;
2965 nvlist_t *label;
2966 uberblock_t *ub = &spa->spa_uberblock;
2967 boolean_t activity_check = B_FALSE;
2968
2969 /*
2970 * If we are opening the checkpointed state of the pool by
2971 * rewinding to it, at this point we will have written the
2972 * checkpointed uberblock to the vdev labels, so searching
2973 * the labels will find the right uberblock. However, if
2974 * we are opening the checkpointed state read-only, we have
2975 * not modified the labels. Therefore, we must ignore the
2976 * labels and continue using the spa_uberblock that was set
2977 * by spa_ld_checkpoint_rewind.
2978 *
2979 * Note that it would be fine to ignore the labels when
2980 * rewinding (opening writeable) as well. However, if we
2981 * crash just after writing the labels, we will end up
2982 * searching the labels. Doing so in the common case means
2983 * that this code path gets exercised normally, rather than
2984 * just in the edge case.
2985 */
2986 if (ub->ub_checkpoint_txg != 0 &&
2987 spa_importing_readonly_checkpoint(spa)) {
2988 spa_ld_select_uberblock_done(spa, ub);
2989 return (0);
2990 }
2991
2992 /*
2993 * Find the best uberblock.
2994 */
2995 vdev_uberblock_load(rvd, ub, &label);
2996
2997 /*
2998 * If we weren't able to find a single valid uberblock, return failure.
2999 */
3000 if (ub->ub_txg == 0) {
3001 nvlist_free(label);
3002 spa_load_failed(spa, "no valid uberblock found");
3003 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3004 }
3005
3006 if (spa->spa_load_max_txg != UINT64_MAX) {
3007 (void) spa_import_progress_set_max_txg(spa,
3008 (u_longlong_t)spa->spa_load_max_txg);
3009 }
3010 spa_load_note(spa, "using uberblock with txg=%llu",
3011 (u_longlong_t)ub->ub_txg);
3012
3013 /*
3014 * For pools which have the multihost property on determine if the
3015 * pool is truly inactive and can be safely imported. Prevent
3016 * hosts which don't have a hostid set from importing the pool.
3017 */
3018 activity_check = spa_activity_check_required(spa, ub, label,
3019 spa->spa_config);
3020 if (activity_check) {
3021 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3022 spa_get_hostid() == 0) {
3023 nvlist_free(label);
3024 fnvlist_add_uint64(spa->spa_load_info,
3025 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3026 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3027 }
3028
3029 int error = spa_activity_check(spa, ub, spa->spa_config);
3030 if (error) {
3031 nvlist_free(label);
3032 return (error);
3033 }
3034
3035 fnvlist_add_uint64(spa->spa_load_info,
3036 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3037 fnvlist_add_uint64(spa->spa_load_info,
3038 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3039 fnvlist_add_uint16(spa->spa_load_info,
3040 ZPOOL_CONFIG_MMP_SEQ,
3041 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3042 }
3043
3044 /*
3045 * If the pool has an unsupported version we can't open it.
3046 */
3047 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3048 nvlist_free(label);
3049 spa_load_failed(spa, "version %llu is not supported",
3050 (u_longlong_t)ub->ub_version);
3051 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3052 }
3053
3054 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3055 nvlist_t *features;
3056
3057 /*
3058 * If we weren't able to find what's necessary for reading the
3059 * MOS in the label, return failure.
3060 */
3061 if (label == NULL) {
3062 spa_load_failed(spa, "label config unavailable");
3063 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3064 ENXIO));
3065 }
3066
3067 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3068 &features) != 0) {
3069 nvlist_free(label);
3070 spa_load_failed(spa, "invalid label: '%s' missing",
3071 ZPOOL_CONFIG_FEATURES_FOR_READ);
3072 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3073 ENXIO));
3074 }
3075
3076 /*
3077 * Update our in-core representation with the definitive values
3078 * from the label.
3079 */
3080 nvlist_free(spa->spa_label_features);
3081 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
3082 }
3083
3084 nvlist_free(label);
3085
3086 /*
3087 * Look through entries in the label nvlist's features_for_read. If
3088 * there is a feature listed there which we don't understand then we
3089 * cannot open a pool.
3090 */
3091 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3092 nvlist_t *unsup_feat;
3093
3094 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
3095 0);
3096
3097 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3098 NULL); nvp != NULL;
3099 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3100 if (!zfeature_is_supported(nvpair_name(nvp))) {
3101 VERIFY(nvlist_add_string(unsup_feat,
3102 nvpair_name(nvp), "") == 0);
3103 }
3104 }
3105
3106 if (!nvlist_empty(unsup_feat)) {
3107 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
3108 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
3109 nvlist_free(unsup_feat);
3110 spa_load_failed(spa, "some features are unsupported");
3111 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3112 ENOTSUP));
3113 }
3114
3115 nvlist_free(unsup_feat);
3116 }
3117
3118 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3119 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3120 spa_try_repair(spa, spa->spa_config);
3121 spa_config_exit(spa, SCL_ALL, FTAG);
3122 nvlist_free(spa->spa_config_splitting);
3123 spa->spa_config_splitting = NULL;
3124 }
3125
3126 /*
3127 * Initialize internal SPA structures.
3128 */
3129 spa_ld_select_uberblock_done(spa, ub);
3130
3131 return (0);
3132 }
3133
3134 static int
3135 spa_ld_open_rootbp(spa_t *spa)
3136 {
3137 int error = 0;
3138 vdev_t *rvd = spa->spa_root_vdev;
3139
3140 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3141 if (error != 0) {
3142 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3143 "[error=%d]", error);
3144 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3145 }
3146 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3147
3148 return (0);
3149 }
3150
3151 static int
3152 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3153 boolean_t reloading)
3154 {
3155 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3156 nvlist_t *nv, *mos_config, *policy;
3157 int error = 0, copy_error;
3158 uint64_t healthy_tvds, healthy_tvds_mos;
3159 uint64_t mos_config_txg;
3160
3161 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3162 != 0)
3163 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3164
3165 /*
3166 * If we're assembling a pool from a split, the config provided is
3167 * already trusted so there is nothing to do.
3168 */
3169 if (type == SPA_IMPORT_ASSEMBLE)
3170 return (0);
3171
3172 healthy_tvds = spa_healthy_core_tvds(spa);
3173
3174 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3175 != 0) {
3176 spa_load_failed(spa, "unable to retrieve MOS config");
3177 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3178 }
3179
3180 /*
3181 * If we are doing an open, pool owner wasn't verified yet, thus do
3182 * the verification here.
3183 */
3184 if (spa->spa_load_state == SPA_LOAD_OPEN) {
3185 error = spa_verify_host(spa, mos_config);
3186 if (error != 0) {
3187 nvlist_free(mos_config);
3188 return (error);
3189 }
3190 }
3191
3192 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3193
3194 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3195
3196 /*
3197 * Build a new vdev tree from the trusted config
3198 */
3199 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
3200
3201 /*
3202 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3203 * obtained by scanning /dev/dsk, then it will have the right vdev
3204 * paths. We update the trusted MOS config with this information.
3205 * We first try to copy the paths with vdev_copy_path_strict, which
3206 * succeeds only when both configs have exactly the same vdev tree.
3207 * If that fails, we fall back to a more flexible method that has a
3208 * best effort policy.
3209 */
3210 copy_error = vdev_copy_path_strict(rvd, mrvd);
3211 if (copy_error != 0 || spa_load_print_vdev_tree) {
3212 spa_load_note(spa, "provided vdev tree:");
3213 vdev_dbgmsg_print_tree(rvd, 2);
3214 spa_load_note(spa, "MOS vdev tree:");
3215 vdev_dbgmsg_print_tree(mrvd, 2);
3216 }
3217 if (copy_error != 0) {
3218 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3219 "back to vdev_copy_path_relaxed");
3220 vdev_copy_path_relaxed(rvd, mrvd);
3221 }
3222
3223 vdev_close(rvd);
3224 vdev_free(rvd);
3225 spa->spa_root_vdev = mrvd;
3226 rvd = mrvd;
3227 spa_config_exit(spa, SCL_ALL, FTAG);
3228
3229 /*
3230 * We will use spa_config if we decide to reload the spa or if spa_load
3231 * fails and we rewind. We must thus regenerate the config using the
3232 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3233 * pass settings on how to load the pool and is not stored in the MOS.
3234 * We copy it over to our new, trusted config.
3235 */
3236 mos_config_txg = fnvlist_lookup_uint64(mos_config,
3237 ZPOOL_CONFIG_POOL_TXG);
3238 nvlist_free(mos_config);
3239 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3240 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3241 &policy) == 0)
3242 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3243 spa_config_set(spa, mos_config);
3244 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3245
3246 /*
3247 * Now that we got the config from the MOS, we should be more strict
3248 * in checking blkptrs and can make assumptions about the consistency
3249 * of the vdev tree. spa_trust_config must be set to true before opening
3250 * vdevs in order for them to be writeable.
3251 */
3252 spa->spa_trust_config = B_TRUE;
3253
3254 /*
3255 * Open and validate the new vdev tree
3256 */
3257 error = spa_ld_open_vdevs(spa);
3258 if (error != 0)
3259 return (error);
3260
3261 error = spa_ld_validate_vdevs(spa);
3262 if (error != 0)
3263 return (error);
3264
3265 if (copy_error != 0 || spa_load_print_vdev_tree) {
3266 spa_load_note(spa, "final vdev tree:");
3267 vdev_dbgmsg_print_tree(rvd, 2);
3268 }
3269
3270 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3271 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3272 /*
3273 * Sanity check to make sure that we are indeed loading the
3274 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3275 * in the config provided and they happened to be the only ones
3276 * to have the latest uberblock, we could involuntarily perform
3277 * an extreme rewind.
3278 */
3279 healthy_tvds_mos = spa_healthy_core_tvds(spa);
3280 if (healthy_tvds_mos - healthy_tvds >=
3281 SPA_SYNC_MIN_VDEVS) {
3282 spa_load_note(spa, "config provided misses too many "
3283 "top-level vdevs compared to MOS (%lld vs %lld). ",
3284 (u_longlong_t)healthy_tvds,
3285 (u_longlong_t)healthy_tvds_mos);
3286 spa_load_note(spa, "vdev tree:");
3287 vdev_dbgmsg_print_tree(rvd, 2);
3288 if (reloading) {
3289 spa_load_failed(spa, "config was already "
3290 "provided from MOS. Aborting.");
3291 return (spa_vdev_err(rvd,
3292 VDEV_AUX_CORRUPT_DATA, EIO));
3293 }
3294 spa_load_note(spa, "spa must be reloaded using MOS "
3295 "config");
3296 return (SET_ERROR(EAGAIN));
3297 }
3298 }
3299
3300 error = spa_check_for_missing_logs(spa);
3301 if (error != 0)
3302 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3303
3304 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3305 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3306 "guid sum (%llu != %llu)",
3307 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3308 (u_longlong_t)rvd->vdev_guid_sum);
3309 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3310 ENXIO));
3311 }
3312
3313 return (0);
3314 }
3315
3316 static int
3317 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3318 {
3319 int error = 0;
3320 vdev_t *rvd = spa->spa_root_vdev;
3321
3322 /*
3323 * Everything that we read before spa_remove_init() must be stored
3324 * on concreted vdevs. Therefore we do this as early as possible.
3325 */
3326 error = spa_remove_init(spa);
3327 if (error != 0) {
3328 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3329 error);
3330 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3331 }
3332
3333 /*
3334 * Retrieve information needed to condense indirect vdev mappings.
3335 */
3336 error = spa_condense_init(spa);
3337 if (error != 0) {
3338 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3339 error);
3340 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3341 }
3342
3343 return (0);
3344 }
3345
3346 static int
3347 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3348 {
3349 int error = 0;
3350 vdev_t *rvd = spa->spa_root_vdev;
3351
3352 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3353 boolean_t missing_feat_read = B_FALSE;
3354 nvlist_t *unsup_feat, *enabled_feat;
3355
3356 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3357 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3358 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3359 }
3360
3361 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3362 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3363 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3364 }
3365
3366 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3367 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3368 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3369 }
3370
3371 enabled_feat = fnvlist_alloc();
3372 unsup_feat = fnvlist_alloc();
3373
3374 if (!spa_features_check(spa, B_FALSE,
3375 unsup_feat, enabled_feat))
3376 missing_feat_read = B_TRUE;
3377
3378 if (spa_writeable(spa) ||
3379 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3380 if (!spa_features_check(spa, B_TRUE,
3381 unsup_feat, enabled_feat)) {
3382 *missing_feat_writep = B_TRUE;
3383 }
3384 }
3385
3386 fnvlist_add_nvlist(spa->spa_load_info,
3387 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3388
3389 if (!nvlist_empty(unsup_feat)) {
3390 fnvlist_add_nvlist(spa->spa_load_info,
3391 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3392 }
3393
3394 fnvlist_free(enabled_feat);
3395 fnvlist_free(unsup_feat);
3396
3397 if (!missing_feat_read) {
3398 fnvlist_add_boolean(spa->spa_load_info,
3399 ZPOOL_CONFIG_CAN_RDONLY);
3400 }
3401
3402 /*
3403 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3404 * twofold: to determine whether the pool is available for
3405 * import in read-write mode and (if it is not) whether the
3406 * pool is available for import in read-only mode. If the pool
3407 * is available for import in read-write mode, it is displayed
3408 * as available in userland; if it is not available for import
3409 * in read-only mode, it is displayed as unavailable in
3410 * userland. If the pool is available for import in read-only
3411 * mode but not read-write mode, it is displayed as unavailable
3412 * in userland with a special note that the pool is actually
3413 * available for open in read-only mode.
3414 *
3415 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3416 * missing a feature for write, we must first determine whether
3417 * the pool can be opened read-only before returning to
3418 * userland in order to know whether to display the
3419 * abovementioned note.
3420 */
3421 if (missing_feat_read || (*missing_feat_writep &&
3422 spa_writeable(spa))) {
3423 spa_load_failed(spa, "pool uses unsupported features");
3424 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3425 ENOTSUP));
3426 }
3427
3428 /*
3429 * Load refcounts for ZFS features from disk into an in-memory
3430 * cache during SPA initialization.
3431 */
3432 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3433 uint64_t refcount;
3434
3435 error = feature_get_refcount_from_disk(spa,
3436 &spa_feature_table[i], &refcount);
3437 if (error == 0) {
3438 spa->spa_feat_refcount_cache[i] = refcount;
3439 } else if (error == ENOTSUP) {
3440 spa->spa_feat_refcount_cache[i] =
3441 SPA_FEATURE_DISABLED;
3442 } else {
3443 spa_load_failed(spa, "error getting refcount "
3444 "for feature %s [error=%d]",
3445 spa_feature_table[i].fi_guid, error);
3446 return (spa_vdev_err(rvd,
3447 VDEV_AUX_CORRUPT_DATA, EIO));
3448 }
3449 }
3450 }
3451
3452 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3453 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3454 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3455 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3456 }
3457
3458 /*
3459 * Encryption was added before bookmark_v2, even though bookmark_v2
3460 * is now a dependency. If this pool has encryption enabled without
3461 * bookmark_v2, trigger an errata message.
3462 */
3463 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
3464 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
3465 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
3466 }
3467
3468 return (0);
3469 }
3470
3471 static int
3472 spa_ld_load_special_directories(spa_t *spa)
3473 {
3474 int error = 0;
3475 vdev_t *rvd = spa->spa_root_vdev;
3476
3477 spa->spa_is_initializing = B_TRUE;
3478 error = dsl_pool_open(spa->spa_dsl_pool);
3479 spa->spa_is_initializing = B_FALSE;
3480 if (error != 0) {
3481 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3482 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3483 }
3484
3485 return (0);
3486 }
3487
3488 static int
3489 spa_ld_get_props(spa_t *spa)
3490 {
3491 int error = 0;
3492 uint64_t obj;
3493 vdev_t *rvd = spa->spa_root_vdev;
3494
3495 /* Grab the secret checksum salt from the MOS. */
3496 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3497 DMU_POOL_CHECKSUM_SALT, 1,
3498 sizeof (spa->spa_cksum_salt.zcs_bytes),
3499 spa->spa_cksum_salt.zcs_bytes);
3500 if (error == ENOENT) {
3501 /* Generate a new salt for subsequent use */
3502 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3503 sizeof (spa->spa_cksum_salt.zcs_bytes));
3504 } else if (error != 0) {
3505 spa_load_failed(spa, "unable to retrieve checksum salt from "
3506 "MOS [error=%d]", error);
3507 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3508 }
3509
3510 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3511 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3512 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3513 if (error != 0) {
3514 spa_load_failed(spa, "error opening deferred-frees bpobj "
3515 "[error=%d]", error);
3516 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3517 }
3518
3519 /*
3520 * Load the bit that tells us to use the new accounting function
3521 * (raid-z deflation). If we have an older pool, this will not
3522 * be present.
3523 */
3524 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3525 if (error != 0 && error != ENOENT)
3526 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3527
3528 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3529 &spa->spa_creation_version, B_FALSE);
3530 if (error != 0 && error != ENOENT)
3531 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3532
3533 /*
3534 * Load the persistent error log. If we have an older pool, this will
3535 * not be present.
3536 */
3537 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3538 B_FALSE);
3539 if (error != 0 && error != ENOENT)
3540 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3541
3542 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3543 &spa->spa_errlog_scrub, B_FALSE);
3544 if (error != 0 && error != ENOENT)
3545 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3546
3547 /*
3548 * Load the history object. If we have an older pool, this
3549 * will not be present.
3550 */
3551 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3552 if (error != 0 && error != ENOENT)
3553 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3554
3555 /*
3556 * Load the per-vdev ZAP map. If we have an older pool, this will not
3557 * be present; in this case, defer its creation to a later time to
3558 * avoid dirtying the MOS this early / out of sync context. See
3559 * spa_sync_config_object.
3560 */
3561
3562 /* The sentinel is only available in the MOS config. */
3563 nvlist_t *mos_config;
3564 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3565 spa_load_failed(spa, "unable to retrieve MOS config");
3566 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3567 }
3568
3569 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3570 &spa->spa_all_vdev_zaps, B_FALSE);
3571
3572 if (error == ENOENT) {
3573 VERIFY(!nvlist_exists(mos_config,
3574 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3575 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3576 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3577 } else if (error != 0) {
3578 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3579 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3580 /*
3581 * An older version of ZFS overwrote the sentinel value, so
3582 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3583 * destruction to later; see spa_sync_config_object.
3584 */
3585 spa->spa_avz_action = AVZ_ACTION_DESTROY;
3586 /*
3587 * We're assuming that no vdevs have had their ZAPs created
3588 * before this. Better be sure of it.
3589 */
3590 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3591 }
3592 nvlist_free(mos_config);
3593
3594 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3595
3596 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3597 B_FALSE);
3598 if (error && error != ENOENT)
3599 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3600
3601 if (error == 0) {
3602 uint64_t autoreplace;
3603
3604 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3605 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3606 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3607 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3608 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3609 spa_prop_find(spa, ZPOOL_PROP_BOOTSIZE, &spa->spa_bootsize);
3610 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
3611 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3612 &spa->spa_dedup_ditto);
3613 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
3614 spa->spa_autoreplace = (autoreplace != 0);
3615 }
3616
3617 /*
3618 * If we are importing a pool with missing top-level vdevs,
3619 * we enforce that the pool doesn't panic or get suspended on
3620 * error since the likelihood of missing data is extremely high.
3621 */
3622 if (spa->spa_missing_tvds > 0 &&
3623 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3624 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3625 spa_load_note(spa, "forcing failmode to 'continue' "
3626 "as some top level vdevs are missing");
3627 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3628 }
3629
3630 return (0);
3631 }
3632
3633 static int
3634 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3635 {
3636 int error = 0;
3637 vdev_t *rvd = spa->spa_root_vdev;
3638
3639 /*
3640 * If we're assembling the pool from the split-off vdevs of
3641 * an existing pool, we don't want to attach the spares & cache
3642 * devices.
3643 */
3644
3645 /*
3646 * Load any hot spares for this pool.
3647 */
3648 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3649 B_FALSE);
3650 if (error != 0 && error != ENOENT)
3651 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3652 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3653 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3654 if (load_nvlist(spa, spa->spa_spares.sav_object,
3655 &spa->spa_spares.sav_config) != 0) {
3656 spa_load_failed(spa, "error loading spares nvlist");
3657 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3658 }
3659
3660 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3661 spa_load_spares(spa);
3662 spa_config_exit(spa, SCL_ALL, FTAG);
3663 } else if (error == 0) {
3664 spa->spa_spares.sav_sync = B_TRUE;
3665 }
3666
3667 /*
3668 * Load any level 2 ARC devices for this pool.
3669 */
3670 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3671 &spa->spa_l2cache.sav_object, B_FALSE);
3672 if (error != 0 && error != ENOENT)
3673 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3674 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3675 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3676 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3677 &spa->spa_l2cache.sav_config) != 0) {
3678 spa_load_failed(spa, "error loading l2cache nvlist");
3679 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3680 }
3681
3682 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3683 spa_load_l2cache(spa);
3684 spa_config_exit(spa, SCL_ALL, FTAG);
3685 } else if (error == 0) {
3686 spa->spa_l2cache.sav_sync = B_TRUE;
3687 }
3688
3689 return (0);
3690 }
3691
3692 static int
3693 spa_ld_load_vdev_metadata(spa_t *spa)
3694 {
3695 int error = 0;
3696 vdev_t *rvd = spa->spa_root_vdev;
3697
3698 /*
3699 * If the 'multihost' property is set, then never allow a pool to
3700 * be imported when the system hostid is zero. The exception to
3701 * this rule is zdb which is always allowed to access pools.
3702 */
3703 if (spa_multihost(spa) && spa_get_hostid() == 0 &&
3704 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
3705 fnvlist_add_uint64(spa->spa_load_info,
3706 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3707 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3708 }
3709
3710 /*
3711 * If the 'autoreplace' property is set, then post a resource notifying
3712 * the ZFS DE that it should not issue any faults for unopenable
3713 * devices. We also iterate over the vdevs, and post a sysevent for any
3714 * unopenable vdevs so that the normal autoreplace handler can take
3715 * over.
3716 */
3717 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3718 spa_check_removed(spa->spa_root_vdev);
3719 /*
3720 * For the import case, this is done in spa_import(), because
3721 * at this point we're using the spare definitions from
3722 * the MOS config, not necessarily from the userland config.
3723 */
3724 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3725 spa_aux_check_removed(&spa->spa_spares);
3726 spa_aux_check_removed(&spa->spa_l2cache);
3727 }
3728 }
3729
3730 /*
3731 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3732 */
3733 error = vdev_load(rvd);
3734 if (error != 0) {
3735 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3736 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3737 }
3738
3739 error = spa_ld_log_spacemaps(spa);
3740 if (error != 0) {
3741 spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]",
3742 error);
3743 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3744 }
3745
3746 /*
3747 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3748 */
3749 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3750 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3751 spa_config_exit(spa, SCL_ALL, FTAG);
3752
3753 return (0);
3754 }
3755
3756 static int
3757 spa_ld_load_dedup_tables(spa_t *spa)
3758 {
3759 int error = 0;
3760 vdev_t *rvd = spa->spa_root_vdev;
3761
3762 error = ddt_load(spa);
3763 if (error != 0) {
3764 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3765 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3766 }
3767
3768 return (0);
3769 }
3770
3771 static int
3772 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3773 {
3774 vdev_t *rvd = spa->spa_root_vdev;
3775
3776 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3777 boolean_t missing = spa_check_logs(spa);
3778 if (missing) {
3779 if (spa->spa_missing_tvds != 0) {
3780 spa_load_note(spa, "spa_check_logs failed "
3781 "so dropping the logs");
3782 } else {
3783 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3784 spa_load_failed(spa, "spa_check_logs failed");
3785 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3786 ENXIO));
3787 }
3788 }
3789 }
3790
3791 return (0);
3792 }
3793
3794 static int
3795 spa_ld_verify_pool_data(spa_t *spa)
3796 {
3797 int error = 0;
3798 vdev_t *rvd = spa->spa_root_vdev;
3799
3800 /*
3801 * We've successfully opened the pool, verify that we're ready
3802 * to start pushing transactions.
3803 */
3804 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3805 error = spa_load_verify(spa);
3806 if (error != 0) {
3807 spa_load_failed(spa, "spa_load_verify failed "
3808 "[error=%d]", error);
3809 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3810 error));
3811 }
3812 }
3813
3814 return (0);
3815 }
3816
3817 static void
3818 spa_ld_claim_log_blocks(spa_t *spa)
3819 {
3820 dmu_tx_t *tx;
3821 dsl_pool_t *dp = spa_get_dsl(spa);
3822
3823 /*
3824 * Claim log blocks that haven't been committed yet.
3825 * This must all happen in a single txg.
3826 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3827 * invoked from zil_claim_log_block()'s i/o done callback.
3828 * Price of rollback is that we abandon the log.
3829 */
3830 spa->spa_claiming = B_TRUE;
3831
3832 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3833 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3834 zil_claim, tx, DS_FIND_CHILDREN);
3835 dmu_tx_commit(tx);
3836
3837 spa->spa_claiming = B_FALSE;
3838
3839 spa_set_log_state(spa, SPA_LOG_GOOD);
3840 }
3841
3842 static void
3843 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3844 boolean_t update_config_cache)
3845 {
3846 vdev_t *rvd = spa->spa_root_vdev;
3847 int need_update = B_FALSE;
3848
3849 /*
3850 * If the config cache is stale, or we have uninitialized
3851 * metaslabs (see spa_vdev_add()), then update the config.
3852 *
3853 * If this is a verbatim import, trust the current
3854 * in-core spa_config and update the disk labels.
3855 */
3856 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
3857 spa->spa_load_state == SPA_LOAD_IMPORT ||
3858 spa->spa_load_state == SPA_LOAD_RECOVER ||
3859 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3860 need_update = B_TRUE;
3861
3862 for (int c = 0; c < rvd->vdev_children; c++)
3863 if (rvd->vdev_child[c]->vdev_ms_array == 0)
3864 need_update = B_TRUE;
3865
3866 /*
3867 * Update the config cache asychronously in case we're the
3868 * root pool, in which case the config cache isn't writable yet.
3869 */
3870 if (need_update)
3871 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3872 }
3873
3874 static void
3875 spa_ld_prepare_for_reload(spa_t *spa)
3876 {
3877 int mode = spa->spa_mode;
3878 int async_suspended = spa->spa_async_suspended;
3879
3880 spa_unload(spa);
3881 spa_deactivate(spa);
3882 spa_activate(spa, mode);
3883
3884 /*
3885 * We save the value of spa_async_suspended as it gets reset to 0 by
3886 * spa_unload(). We want to restore it back to the original value before
3887 * returning as we might be calling spa_async_resume() later.
3888 */
3889 spa->spa_async_suspended = async_suspended;
3890 }
3891
3892 static int
3893 spa_ld_read_checkpoint_txg(spa_t *spa)
3894 {
3895 uberblock_t checkpoint;
3896 int error = 0;
3897
3898 ASSERT0(spa->spa_checkpoint_txg);
3899 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3900
3901 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3902 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3903 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3904
3905 if (error == ENOENT)
3906 return (0);
3907
3908 if (error != 0)
3909 return (error);
3910
3911 ASSERT3U(checkpoint.ub_txg, !=, 0);
3912 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
3913 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
3914 spa->spa_checkpoint_txg = checkpoint.ub_txg;
3915 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
3916
3917 return (0);
3918 }
3919
3920 static int
3921 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
3922 {
3923 int error = 0;
3924
3925 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3926 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3927
3928 /*
3929 * Never trust the config that is provided unless we are assembling
3930 * a pool following a split.
3931 * This means don't trust blkptrs and the vdev tree in general. This
3932 * also effectively puts the spa in read-only mode since
3933 * spa_writeable() checks for spa_trust_config to be true.
3934 * We will later load a trusted config from the MOS.
3935 */
3936 if (type != SPA_IMPORT_ASSEMBLE)
3937 spa->spa_trust_config = B_FALSE;
3938
3939 /*
3940 * Parse the config provided to create a vdev tree.
3941 */
3942 error = spa_ld_parse_config(spa, type);
3943 if (error != 0)
3944 return (error);
3945
3946 spa_import_progress_add(spa);
3947
3948 /*
3949 * Now that we have the vdev tree, try to open each vdev. This involves
3950 * opening the underlying physical device, retrieving its geometry and
3951 * probing the vdev with a dummy I/O. The state of each vdev will be set
3952 * based on the success of those operations. After this we'll be ready
3953 * to read from the vdevs.
3954 */
3955 error = spa_ld_open_vdevs(spa);
3956 if (error != 0)
3957 return (error);
3958
3959 /*
3960 * Read the label of each vdev and make sure that the GUIDs stored
3961 * there match the GUIDs in the config provided.
3962 * If we're assembling a new pool that's been split off from an
3963 * existing pool, the labels haven't yet been updated so we skip
3964 * validation for now.
3965 */
3966 if (type != SPA_IMPORT_ASSEMBLE) {
3967 error = spa_ld_validate_vdevs(spa);
3968 if (error != 0)
3969 return (error);
3970 }
3971
3972 /*
3973 * Read all vdev labels to find the best uberblock (i.e. latest,
3974 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
3975 * get the list of features required to read blkptrs in the MOS from
3976 * the vdev label with the best uberblock and verify that our version
3977 * of zfs supports them all.
3978 */
3979 error = spa_ld_select_uberblock(spa, type);
3980 if (error != 0)
3981 return (error);
3982
3983 /*
3984 * Pass that uberblock to the dsl_pool layer which will open the root
3985 * blkptr. This blkptr points to the latest version of the MOS and will
3986 * allow us to read its contents.
3987 */
3988 error = spa_ld_open_rootbp(spa);
3989 if (error != 0)
3990 return (error);
3991
3992 return (0);
3993 }
3994
3995 static int
3996 spa_ld_checkpoint_rewind(spa_t *spa)
3997 {
3998 uberblock_t checkpoint;
3999 int error = 0;
4000
4001 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4002 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4003
4004 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4005 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4006 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4007
4008 if (error != 0) {
4009 spa_load_failed(spa, "unable to retrieve checkpointed "
4010 "uberblock from the MOS config [error=%d]", error);
4011
4012 if (error == ENOENT)
4013 error = ZFS_ERR_NO_CHECKPOINT;
4014
4015 return (error);
4016 }
4017
4018 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4019 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4020
4021 /*
4022 * We need to update the txg and timestamp of the checkpointed
4023 * uberblock to be higher than the latest one. This ensures that
4024 * the checkpointed uberblock is selected if we were to close and
4025 * reopen the pool right after we've written it in the vdev labels.
4026 * (also see block comment in vdev_uberblock_compare)
4027 */
4028 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4029 checkpoint.ub_timestamp = gethrestime_sec();
4030
4031 /*
4032 * Set current uberblock to be the checkpointed uberblock.
4033 */
4034 spa->spa_uberblock = checkpoint;
4035
4036 /*
4037 * If we are doing a normal rewind, then the pool is open for
4038 * writing and we sync the "updated" checkpointed uberblock to
4039 * disk. Once this is done, we've basically rewound the whole
4040 * pool and there is no way back.
4041 *
4042 * There are cases when we don't want to attempt and sync the
4043 * checkpointed uberblock to disk because we are opening a
4044 * pool as read-only. Specifically, verifying the checkpointed
4045 * state with zdb, and importing the checkpointed state to get
4046 * a "preview" of its content.
4047 */
4048 if (spa_writeable(spa)) {
4049 vdev_t *rvd = spa->spa_root_vdev;
4050
4051 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4052 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4053 int svdcount = 0;
4054 int children = rvd->vdev_children;
4055 int c0 = spa_get_random(children);
4056
4057 for (int c = 0; c < children; c++) {
4058 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4059
4060 /* Stop when revisiting the first vdev */
4061 if (c > 0 && svd[0] == vd)
4062 break;
4063
4064 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4065 !vdev_is_concrete(vd))
4066 continue;
4067
4068 svd[svdcount++] = vd;
4069 if (svdcount == SPA_SYNC_MIN_VDEVS)
4070 break;
4071 }
4072 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4073 if (error == 0)
4074 spa->spa_last_synced_guid = rvd->vdev_guid;
4075 spa_config_exit(spa, SCL_ALL, FTAG);
4076
4077 if (error != 0) {
4078 spa_load_failed(spa, "failed to write checkpointed "
4079 "uberblock to the vdev labels [error=%d]", error);
4080 return (error);
4081 }
4082 }
4083
4084 return (0);
4085 }
4086
4087 static int
4088 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4089 boolean_t *update_config_cache)
4090 {
4091 int error;
4092
4093 /*
4094 * Parse the config for pool, open and validate vdevs,
4095 * select an uberblock, and use that uberblock to open
4096 * the MOS.
4097 */
4098 error = spa_ld_mos_init(spa, type);
4099 if (error != 0)
4100 return (error);
4101
4102 /*
4103 * Retrieve the trusted config stored in the MOS and use it to create
4104 * a new, exact version of the vdev tree, then reopen all vdevs.
4105 */
4106 error = spa_ld_trusted_config(spa, type, B_FALSE);
4107 if (error == EAGAIN) {
4108 if (update_config_cache != NULL)
4109 *update_config_cache = B_TRUE;
4110
4111 /*
4112 * Redo the loading process with the trusted config if it is
4113 * too different from the untrusted config.
4114 */
4115 spa_ld_prepare_for_reload(spa);
4116 spa_load_note(spa, "RELOADING");
4117 error = spa_ld_mos_init(spa, type);
4118 if (error != 0)
4119 return (error);
4120
4121 error = spa_ld_trusted_config(spa, type, B_TRUE);
4122 if (error != 0)
4123 return (error);
4124
4125 } else if (error != 0) {
4126 return (error);
4127 }
4128
4129 return (0);
4130 }
4131
4132 /*
4133 * Load an existing storage pool, using the config provided. This config
4134 * describes which vdevs are part of the pool and is later validated against
4135 * partial configs present in each vdev's label and an entire copy of the
4136 * config stored in the MOS.
4137 */
4138 static int
4139 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4140 {
4141 int error = 0;
4142 boolean_t missing_feat_write = B_FALSE;
4143 boolean_t checkpoint_rewind =
4144 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4145 boolean_t update_config_cache = B_FALSE;
4146
4147 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4148 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4149
4150 spa_load_note(spa, "LOADING");
4151
4152 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4153 if (error != 0)
4154 return (error);
4155
4156 /*
4157 * If we are rewinding to the checkpoint then we need to repeat
4158 * everything we've done so far in this function but this time
4159 * selecting the checkpointed uberblock and using that to open
4160 * the MOS.
4161 */
4162 if (checkpoint_rewind) {
4163 /*
4164 * If we are rewinding to the checkpoint update config cache
4165 * anyway.
4166 */
4167 update_config_cache = B_TRUE;
4168
4169 /*
4170 * Extract the checkpointed uberblock from the current MOS
4171 * and use this as the pool's uberblock from now on. If the
4172 * pool is imported as writeable we also write the checkpoint
4173 * uberblock to the labels, making the rewind permanent.
4174 */
4175 error = spa_ld_checkpoint_rewind(spa);
4176 if (error != 0)
4177 return (error);
4178
4179 /*
4180 * Redo the loading process process again with the
4181 * checkpointed uberblock.
4182 */
4183 spa_ld_prepare_for_reload(spa);
4184 spa_load_note(spa, "LOADING checkpointed uberblock");
4185 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4186 if (error != 0)
4187 return (error);
4188 }
4189
4190 /*
4191 * Retrieve the checkpoint txg if the pool has a checkpoint.
4192 */
4193 error = spa_ld_read_checkpoint_txg(spa);
4194 if (error != 0)
4195 return (error);
4196
4197 /*
4198 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4199 * from the pool and their contents were re-mapped to other vdevs. Note
4200 * that everything that we read before this step must have been
4201 * rewritten on concrete vdevs after the last device removal was
4202 * initiated. Otherwise we could be reading from indirect vdevs before
4203 * we have loaded their mappings.
4204 */
4205 error = spa_ld_open_indirect_vdev_metadata(spa);
4206 if (error != 0)
4207 return (error);
4208
4209 /*
4210 * Retrieve the full list of active features from the MOS and check if
4211 * they are all supported.
4212 */
4213 error = spa_ld_check_features(spa, &missing_feat_write);
4214 if (error != 0)
4215 return (error);
4216
4217 /*
4218 * Load several special directories from the MOS needed by the dsl_pool
4219 * layer.
4220 */
4221 error = spa_ld_load_special_directories(spa);
4222 if (error != 0)
4223 return (error);
4224
4225 /*
4226 * Retrieve pool properties from the MOS.
4227 */
4228 error = spa_ld_get_props(spa);
4229 if (error != 0)
4230 return (error);
4231
4232 /*
4233 * Retrieve the list of auxiliary devices - cache devices and spares -
4234 * and open them.
4235 */
4236 error = spa_ld_open_aux_vdevs(spa, type);
4237 if (error != 0)
4238 return (error);
4239
4240 /*
4241 * Load the metadata for all vdevs. Also check if unopenable devices
4242 * should be autoreplaced.
4243 */
4244 error = spa_ld_load_vdev_metadata(spa);
4245 if (error != 0)
4246 return (error);
4247
4248 error = spa_ld_load_dedup_tables(spa);
4249 if (error != 0)
4250 return (error);
4251
4252 /*
4253 * Verify the logs now to make sure we don't have any unexpected errors
4254 * when we claim log blocks later.
4255 */
4256 error = spa_ld_verify_logs(spa, type, ereport);
4257 if (error != 0)
4258 return (error);
4259
4260 if (missing_feat_write) {
4261 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4262
4263 /*
4264 * At this point, we know that we can open the pool in
4265 * read-only mode but not read-write mode. We now have enough
4266 * information and can return to userland.
4267 */
4268 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4269 ENOTSUP));
4270 }
4271
4272 /*
4273 * Traverse the last txgs to make sure the pool was left off in a safe
4274 * state. When performing an extreme rewind, we verify the whole pool,
4275 * which can take a very long time.
4276 */
4277 error = spa_ld_verify_pool_data(spa);
4278 if (error != 0)
4279 return (error);
4280
4281 /*
4282 * Calculate the deflated space for the pool. This must be done before
4283 * we write anything to the pool because we'd need to update the space
4284 * accounting using the deflated sizes.
4285 */
4286 spa_update_dspace(spa);
4287
4288 /*
4289 * We have now retrieved all the information we needed to open the
4290 * pool. If we are importing the pool in read-write mode, a few
4291 * additional steps must be performed to finish the import.
4292 */
4293 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4294 spa->spa_load_max_txg == UINT64_MAX)) {
4295 uint64_t config_cache_txg = spa->spa_config_txg;
4296
4297 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4298
4299 /*
4300 * In case of a checkpoint rewind, log the original txg
4301 * of the checkpointed uberblock.
4302 */
4303 if (checkpoint_rewind) {
4304 spa_history_log_internal(spa, "checkpoint rewind",
4305 NULL, "rewound state to txg=%llu",
4306 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4307 }
4308
4309 /*
4310 * Traverse the ZIL and claim all blocks.
4311 */
4312 spa_ld_claim_log_blocks(spa);
4313
4314 /*
4315 * Kick-off the syncing thread.
4316 */
4317 spa->spa_sync_on = B_TRUE;
4318 txg_sync_start(spa->spa_dsl_pool);
4319 mmp_thread_start(spa);
4320
4321 /*
4322 * Wait for all claims to sync. We sync up to the highest
4323 * claimed log block birth time so that claimed log blocks
4324 * don't appear to be from the future. spa_claim_max_txg
4325 * will have been set for us by ZIL traversal operations
4326 * performed above.
4327 */
4328 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4329
4330 /*
4331 * Check if we need to request an update of the config. On the
4332 * next sync, we would update the config stored in vdev labels
4333 * and the cachefile (by default /etc/zfs/zpool.cache).
4334 */
4335 spa_ld_check_for_config_update(spa, config_cache_txg,
4336 update_config_cache);
4337
4338 /*
4339 * Check all DTLs to see if anything needs resilvering.
4340 */
4341 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4342 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4343 spa_async_request(spa, SPA_ASYNC_RESILVER);
4344
4345 /*
4346 * Log the fact that we booted up (so that we can detect if
4347 * we rebooted in the middle of an operation).
4348 */
4349 spa_history_log_version(spa, "open");
4350
4351 spa_restart_removal(spa);
4352 spa_spawn_aux_threads(spa);
4353
4354 /*
4355 * Delete any inconsistent datasets.
4356 *
4357 * Note:
4358 * Since we may be issuing deletes for clones here,
4359 * we make sure to do so after we've spawned all the
4360 * auxiliary threads above (from which the livelist
4361 * deletion zthr is part of).
4362 */
4363 (void) dmu_objset_find(spa_name(spa),
4364 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4365
4366 /*
4367 * Clean up any stale temporary dataset userrefs.
4368 */
4369 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4370
4371 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4372 vdev_initialize_restart(spa->spa_root_vdev);
4373 vdev_trim_restart(spa->spa_root_vdev);
4374 vdev_autotrim_restart(spa);
4375 spa_config_exit(spa, SCL_CONFIG, FTAG);
4376 }
4377
4378 spa_import_progress_remove(spa);
4379 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
4380
4381 spa_load_note(spa, "LOADED");
4382
4383 return (0);
4384 }
4385
4386 static int
4387 spa_load_retry(spa_t *spa, spa_load_state_t state)
4388 {
4389 int mode = spa->spa_mode;
4390
4391 spa_unload(spa);
4392 spa_deactivate(spa);
4393
4394 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4395
4396 spa_activate(spa, mode);
4397 spa_async_suspend(spa);
4398
4399 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4400 (u_longlong_t)spa->spa_load_max_txg);
4401
4402 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4403 }
4404
4405 /*
4406 * If spa_load() fails this function will try loading prior txg's. If
4407 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4408 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4409 * function will not rewind the pool and will return the same error as
4410 * spa_load().
4411 */
4412 static int
4413 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
4414 int rewind_flags)
4415 {
4416 nvlist_t *loadinfo = NULL;
4417 nvlist_t *config = NULL;
4418 int load_error, rewind_error;
4419 uint64_t safe_rewind_txg;
4420 uint64_t min_txg;
4421
4422 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
4423 spa->spa_load_max_txg = spa->spa_load_txg;
4424 spa_set_log_state(spa, SPA_LOG_CLEAR);
4425 } else {
4426 spa->spa_load_max_txg = max_request;
4427 if (max_request != UINT64_MAX)
4428 spa->spa_extreme_rewind = B_TRUE;
4429 }
4430
4431 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
4432 if (load_error == 0)
4433 return (0);
4434 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
4435 /*
4436 * When attempting checkpoint-rewind on a pool with no
4437 * checkpoint, we should not attempt to load uberblocks
4438 * from previous txgs when spa_load fails.
4439 */
4440 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4441 spa_import_progress_remove(spa);
4442 return (load_error);
4443 }
4444
4445 if (spa->spa_root_vdev != NULL)
4446 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4447
4448 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
4449 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
4450
4451 if (rewind_flags & ZPOOL_NEVER_REWIND) {
4452 nvlist_free(config);
4453 spa_import_progress_remove(spa);
4454 return (load_error);
4455 }
4456
4457 if (state == SPA_LOAD_RECOVER) {
4458 /* Price of rolling back is discarding txgs, including log */
4459 spa_set_log_state(spa, SPA_LOG_CLEAR);
4460 } else {
4461 /*
4462 * If we aren't rolling back save the load info from our first
4463 * import attempt so that we can restore it after attempting
4464 * to rewind.
4465 */
4466 loadinfo = spa->spa_load_info;
4467 spa->spa_load_info = fnvlist_alloc();
4468 }
4469
4470 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4471 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4472 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4473 TXG_INITIAL : safe_rewind_txg;
4474
4475 /*
4476 * Continue as long as we're finding errors, we're still within
4477 * the acceptable rewind range, and we're still finding uberblocks
4478 */
4479 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4480 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4481 if (spa->spa_load_max_txg < safe_rewind_txg)
4482 spa->spa_extreme_rewind = B_TRUE;
4483 rewind_error = spa_load_retry(spa, state);
4484 }
4485
4486 spa->spa_extreme_rewind = B_FALSE;
4487 spa->spa_load_max_txg = UINT64_MAX;
4488
4489 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4490 spa_config_set(spa, config);
4491 else
4492 nvlist_free(config);
4493
4494 if (state == SPA_LOAD_RECOVER) {
4495 ASSERT3P(loadinfo, ==, NULL);
4496 spa_import_progress_remove(spa);
4497 return (rewind_error);
4498 } else {
4499 /* Store the rewind info as part of the initial load info */
4500 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4501 spa->spa_load_info);
4502
4503 /* Restore the initial load info */
4504 fnvlist_free(spa->spa_load_info);
4505 spa->spa_load_info = loadinfo;
4506
4507 spa_import_progress_remove(spa);
4508 return (load_error);
4509 }
4510 }
4511
4512 /*
4513 * Pool Open/Import
4514 *
4515 * The import case is identical to an open except that the configuration is sent
4516 * down from userland, instead of grabbed from the configuration cache. For the
4517 * case of an open, the pool configuration will exist in the
4518 * POOL_STATE_UNINITIALIZED state.
4519 *
4520 * The stats information (gen/count/ustats) is used to gather vdev statistics at
4521 * the same time open the pool, without having to keep around the spa_t in some
4522 * ambiguous state.
4523 */
4524 static int
4525 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4526 nvlist_t **config)
4527 {
4528 spa_t *spa;
4529 spa_load_state_t state = SPA_LOAD_OPEN;
4530 int error;
4531 int locked = B_FALSE;
4532
4533 *spapp = NULL;
4534
4535 /*
4536 * As disgusting as this is, we need to support recursive calls to this
4537 * function because dsl_dir_open() is called during spa_load(), and ends
4538 * up calling spa_open() again. The real fix is to figure out how to
4539 * avoid dsl_dir_open() calling this in the first place.
4540 */
4541 if (mutex_owner(&spa_namespace_lock) != curthread) {
4542 mutex_enter(&spa_namespace_lock);
4543 locked = B_TRUE;
4544 }
4545
4546 if ((spa = spa_lookup(pool)) == NULL) {
4547 if (locked)
4548 mutex_exit(&spa_namespace_lock);
4549 return (SET_ERROR(ENOENT));
4550 }
4551
4552 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4553 zpool_load_policy_t policy;
4554
4555 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
4556 &policy);
4557 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
4558 state = SPA_LOAD_RECOVER;
4559
4560 spa_activate(spa, spa_mode_global);
4561
4562 if (state != SPA_LOAD_RECOVER)
4563 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4564 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4565
4566 zfs_dbgmsg("spa_open_common: opening %s", pool);
4567 error = spa_load_best(spa, state, policy.zlp_txg,
4568 policy.zlp_rewind);
4569
4570 if (error == EBADF) {
4571 /*
4572 * If vdev_validate() returns failure (indicated by
4573 * EBADF), it indicates that one of the vdevs indicates
4574 * that the pool has been exported or destroyed. If
4575 * this is the case, the config cache is out of sync and
4576 * we should remove the pool from the namespace.
4577 */
4578 spa_unload(spa);
4579 spa_deactivate(spa);
4580 spa_write_cachefile(spa, B_TRUE, B_TRUE);
4581 spa_remove(spa);
4582 if (locked)
4583 mutex_exit(&spa_namespace_lock);
4584 return (SET_ERROR(ENOENT));
4585 }
4586
4587 if (error) {
4588 /*
4589 * We can't open the pool, but we still have useful
4590 * information: the state of each vdev after the
4591 * attempted vdev_open(). Return this to the user.
4592 */
4593 if (config != NULL && spa->spa_config) {
4594 VERIFY(nvlist_dup(spa->spa_config, config,
4595 KM_SLEEP) == 0);
4596 VERIFY(nvlist_add_nvlist(*config,
4597 ZPOOL_CONFIG_LOAD_INFO,
4598 spa->spa_load_info) == 0);
4599 }
4600 spa_unload(spa);
4601 spa_deactivate(spa);
4602 spa->spa_last_open_failed = error;
4603 if (locked)
4604 mutex_exit(&spa_namespace_lock);
4605 *spapp = NULL;
4606 return (error);
4607 }
4608 }
4609
4610 spa_open_ref(spa, tag);
4611
4612 if (config != NULL)
4613 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4614
4615 /*
4616 * If we've recovered the pool, pass back any information we
4617 * gathered while doing the load.
4618 */
4619 if (state == SPA_LOAD_RECOVER) {
4620 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4621 spa->spa_load_info) == 0);
4622 }
4623
4624 if (locked) {
4625 spa->spa_last_open_failed = 0;
4626 spa->spa_last_ubsync_txg = 0;
4627 spa->spa_load_txg = 0;
4628 mutex_exit(&spa_namespace_lock);
4629 }
4630
4631 *spapp = spa;
4632
4633 return (0);
4634 }
4635
4636 int
4637 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4638 nvlist_t **config)
4639 {
4640 return (spa_open_common(name, spapp, tag, policy, config));
4641 }
4642
4643 int
4644 spa_open(const char *name, spa_t **spapp, void *tag)
4645 {
4646 return (spa_open_common(name, spapp, tag, NULL, NULL));
4647 }
4648
4649 /*
4650 * Lookup the given spa_t, incrementing the inject count in the process,
4651 * preventing it from being exported or destroyed.
4652 */
4653 spa_t *
4654 spa_inject_addref(char *name)
4655 {
4656 spa_t *spa;
4657
4658 mutex_enter(&spa_namespace_lock);
4659 if ((spa = spa_lookup(name)) == NULL) {
4660 mutex_exit(&spa_namespace_lock);
4661 return (NULL);
4662 }
4663 spa->spa_inject_ref++;
4664 mutex_exit(&spa_namespace_lock);
4665
4666 return (spa);
4667 }
4668
4669 void
4670 spa_inject_delref(spa_t *spa)
4671 {
4672 mutex_enter(&spa_namespace_lock);
4673 spa->spa_inject_ref--;
4674 mutex_exit(&spa_namespace_lock);
4675 }
4676
4677 /*
4678 * Add spares device information to the nvlist.
4679 */
4680 static void
4681 spa_add_spares(spa_t *spa, nvlist_t *config)
4682 {
4683 nvlist_t **spares;
4684 uint_t i, nspares;
4685 nvlist_t *nvroot;
4686 uint64_t guid;
4687 vdev_stat_t *vs;
4688 uint_t vsc;
4689 uint64_t pool;
4690
4691 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4692
4693 if (spa->spa_spares.sav_count == 0)
4694 return;
4695
4696 VERIFY(nvlist_lookup_nvlist(config,
4697 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4698 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4699 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4700 if (nspares != 0) {
4701 VERIFY(nvlist_add_nvlist_array(nvroot,
4702 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4703 VERIFY(nvlist_lookup_nvlist_array(nvroot,
4704 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4705
4706 /*
4707 * Go through and find any spares which have since been
4708 * repurposed as an active spare. If this is the case, update
4709 * their status appropriately.
4710 */
4711 for (i = 0; i < nspares; i++) {
4712 VERIFY(nvlist_lookup_uint64(spares[i],
4713 ZPOOL_CONFIG_GUID, &guid) == 0);
4714 if (spa_spare_exists(guid, &pool, NULL) &&
4715 pool != 0ULL) {
4716 VERIFY(nvlist_lookup_uint64_array(
4717 spares[i], ZPOOL_CONFIG_VDEV_STATS,
4718 (uint64_t **)&vs, &vsc) == 0);
4719 vs->vs_state = VDEV_STATE_CANT_OPEN;
4720 vs->vs_aux = VDEV_AUX_SPARED;
4721 }
4722 }
4723 }
4724 }
4725
4726 /*
4727 * Add l2cache device information to the nvlist, including vdev stats.
4728 */
4729 static void
4730 spa_add_l2cache(spa_t *spa, nvlist_t *config)
4731 {
4732 nvlist_t **l2cache;
4733 uint_t i, j, nl2cache;
4734 nvlist_t *nvroot;
4735 uint64_t guid;
4736 vdev_t *vd;
4737 vdev_stat_t *vs;
4738 uint_t vsc;
4739
4740 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4741
4742 if (spa->spa_l2cache.sav_count == 0)
4743 return;
4744
4745 VERIFY(nvlist_lookup_nvlist(config,
4746 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4747 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4748 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4749 if (nl2cache != 0) {
4750 VERIFY(nvlist_add_nvlist_array(nvroot,
4751 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4752 VERIFY(nvlist_lookup_nvlist_array(nvroot,
4753 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4754
4755 /*
4756 * Update level 2 cache device stats.
4757 */
4758
4759 for (i = 0; i < nl2cache; i++) {
4760 VERIFY(nvlist_lookup_uint64(l2cache[i],
4761 ZPOOL_CONFIG_GUID, &guid) == 0);
4762
4763 vd = NULL;
4764 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4765 if (guid ==
4766 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4767 vd = spa->spa_l2cache.sav_vdevs[j];
4768 break;
4769 }
4770 }
4771 ASSERT(vd != NULL);
4772
4773 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4774 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4775 == 0);
4776 vdev_get_stats(vd, vs);
4777 vdev_config_generate_stats(vd, l2cache[i]);
4778
4779 }
4780 }
4781 }
4782
4783 static void
4784 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4785 {
4786 nvlist_t *features;
4787 zap_cursor_t zc;
4788 zap_attribute_t za;
4789
4790 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4791 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4792
4793 if (spa->spa_feat_for_read_obj != 0) {
4794 for (zap_cursor_init(&zc, spa->spa_meta_objset,
4795 spa->spa_feat_for_read_obj);
4796 zap_cursor_retrieve(&zc, &za) == 0;
4797 zap_cursor_advance(&zc)) {
4798 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4799 za.za_num_integers == 1);
4800 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4801 za.za_first_integer));
4802 }
4803 zap_cursor_fini(&zc);
4804 }
4805
4806 if (spa->spa_feat_for_write_obj != 0) {
4807 for (zap_cursor_init(&zc, spa->spa_meta_objset,
4808 spa->spa_feat_for_write_obj);
4809 zap_cursor_retrieve(&zc, &za) == 0;
4810 zap_cursor_advance(&zc)) {
4811 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4812 za.za_num_integers == 1);
4813 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4814 za.za_first_integer));
4815 }
4816 zap_cursor_fini(&zc);
4817 }
4818
4819 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4820 features) == 0);
4821 nvlist_free(features);
4822 }
4823
4824 int
4825 spa_get_stats(const char *name, nvlist_t **config,
4826 char *altroot, size_t buflen)
4827 {
4828 int error;
4829 spa_t *spa;
4830
4831 *config = NULL;
4832 error = spa_open_common(name, &spa, FTAG, NULL, config);
4833
4834 if (spa != NULL) {
4835 /*
4836 * This still leaves a window of inconsistency where the spares
4837 * or l2cache devices could change and the config would be
4838 * self-inconsistent.
4839 */
4840 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4841
4842 if (*config != NULL) {
4843 uint64_t loadtimes[2];
4844
4845 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4846 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4847 VERIFY(nvlist_add_uint64_array(*config,
4848 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4849
4850 VERIFY(nvlist_add_uint64(*config,
4851 ZPOOL_CONFIG_ERRCOUNT,
4852 spa_get_errlog_size(spa)) == 0);
4853
4854 if (spa_suspended(spa)) {
4855 VERIFY(nvlist_add_uint64(*config,
4856 ZPOOL_CONFIG_SUSPENDED,
4857 spa->spa_failmode) == 0);
4858 VERIFY(nvlist_add_uint64(*config,
4859 ZPOOL_CONFIG_SUSPENDED_REASON,
4860 spa->spa_suspended) == 0);
4861 }
4862
4863 spa_add_spares(spa, *config);
4864 spa_add_l2cache(spa, *config);
4865 spa_add_feature_stats(spa, *config);
4866 }
4867 }
4868
4869 /*
4870 * We want to get the alternate root even for faulted pools, so we cheat
4871 * and call spa_lookup() directly.
4872 */
4873 if (altroot) {
4874 if (spa == NULL) {
4875 mutex_enter(&spa_namespace_lock);
4876 spa = spa_lookup(name);
4877 if (spa)
4878 spa_altroot(spa, altroot, buflen);
4879 else
4880 altroot[0] = '\0';
4881 spa = NULL;
4882 mutex_exit(&spa_namespace_lock);
4883 } else {
4884 spa_altroot(spa, altroot, buflen);
4885 }
4886 }
4887
4888 if (spa != NULL) {
4889 spa_config_exit(spa, SCL_CONFIG, FTAG);
4890 spa_close(spa, FTAG);
4891 }
4892
4893 return (error);
4894 }
4895
4896 /*
4897 * Validate that the auxiliary device array is well formed. We must have an
4898 * array of nvlists, each which describes a valid leaf vdev. If this is an
4899 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4900 * specified, as long as they are well-formed.
4901 */
4902 static int
4903 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4904 spa_aux_vdev_t *sav, const char *config, uint64_t version,
4905 vdev_labeltype_t label)
4906 {
4907 nvlist_t **dev;
4908 uint_t i, ndev;
4909 vdev_t *vd;
4910 int error;
4911
4912 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4913
4914 /*
4915 * It's acceptable to have no devs specified.
4916 */
4917 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4918 return (0);
4919
4920 if (ndev == 0)
4921 return (SET_ERROR(EINVAL));
4922
4923 /*
4924 * Make sure the pool is formatted with a version that supports this
4925 * device type.
4926 */
4927 if (spa_version(spa) < version)
4928 return (SET_ERROR(ENOTSUP));
4929
4930 /*
4931 * Set the pending device list so we correctly handle device in-use
4932 * checking.
4933 */
4934 sav->sav_pending = dev;
4935 sav->sav_npending = ndev;
4936
4937 for (i = 0; i < ndev; i++) {
4938 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4939 mode)) != 0)
4940 goto out;
4941
4942 if (!vd->vdev_ops->vdev_op_leaf) {
4943 vdev_free(vd);
4944 error = SET_ERROR(EINVAL);
4945 goto out;
4946 }
4947
4948 vd->vdev_top = vd;
4949
4950 if ((error = vdev_open(vd)) == 0 &&
4951 (error = vdev_label_init(vd, crtxg, label)) == 0) {
4952 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4953 vd->vdev_guid) == 0);
4954 }
4955
4956 vdev_free(vd);
4957
4958 if (error &&
4959 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4960 goto out;
4961 else
4962 error = 0;
4963 }
4964
4965 out:
4966 sav->sav_pending = NULL;
4967 sav->sav_npending = 0;
4968 return (error);
4969 }
4970
4971 static int
4972 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4973 {
4974 int error;
4975
4976 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4977
4978 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4979 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4980 VDEV_LABEL_SPARE)) != 0) {
4981 return (error);
4982 }
4983
4984 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4985 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4986 VDEV_LABEL_L2CACHE));
4987 }
4988
4989 static void
4990 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4991 const char *config)
4992 {
4993 int i;
4994
4995 if (sav->sav_config != NULL) {
4996 nvlist_t **olddevs;
4997 uint_t oldndevs;
4998 nvlist_t **newdevs;
4999
5000 /*
5001 * Generate new dev list by concatentating with the
5002 * current dev list.
5003 */
5004 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
5005 &olddevs, &oldndevs) == 0);
5006
5007 newdevs = kmem_alloc(sizeof (void *) *
5008 (ndevs + oldndevs), KM_SLEEP);
5009 for (i = 0; i < oldndevs; i++)
5010 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
5011 KM_SLEEP) == 0);
5012 for (i = 0; i < ndevs; i++)
5013 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
5014 KM_SLEEP) == 0);
5015
5016 VERIFY(nvlist_remove(sav->sav_config, config,
5017 DATA_TYPE_NVLIST_ARRAY) == 0);
5018
5019 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
5020 config, newdevs, ndevs + oldndevs) == 0);
5021 for (i = 0; i < oldndevs + ndevs; i++)
5022 nvlist_free(newdevs[i]);
5023 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5024 } else {
5025 /*
5026 * Generate a new dev list.
5027 */
5028 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
5029 KM_SLEEP) == 0);
5030 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
5031 devs, ndevs) == 0);
5032 }
5033 }
5034
5035 /*
5036 * Stop and drop level 2 ARC devices
5037 */
5038 void
5039 spa_l2cache_drop(spa_t *spa)
5040 {
5041 vdev_t *vd;
5042 int i;
5043 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5044
5045 for (i = 0; i < sav->sav_count; i++) {
5046 uint64_t pool;
5047
5048 vd = sav->sav_vdevs[i];
5049 ASSERT(vd != NULL);
5050
5051 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5052 pool != 0ULL && l2arc_vdev_present(vd))
5053 l2arc_remove_vdev(vd);
5054 }
5055 }
5056
5057 /*
5058 * Verify encryption parameters for spa creation. If we are encrypting, we must
5059 * have the encryption feature flag enabled.
5060 */
5061 static int
5062 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5063 boolean_t has_encryption)
5064 {
5065 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5066 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5067 !has_encryption)
5068 return (SET_ERROR(ENOTSUP));
5069
5070 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5071 }
5072
5073 /*
5074 * Pool Creation
5075 */
5076 int
5077 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5078 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5079 {
5080 spa_t *spa;
5081 char *altroot = NULL;
5082 vdev_t *rvd;
5083 dsl_pool_t *dp;
5084 dmu_tx_t *tx;
5085 int error = 0;
5086 uint64_t txg = TXG_INITIAL;
5087 nvlist_t **spares, **l2cache;
5088 uint_t nspares, nl2cache;
5089 uint64_t version, obj;
5090 boolean_t has_features;
5091 char *poolname;
5092 nvlist_t *nvl;
5093 boolean_t has_encryption;
5094 spa_feature_t feat;
5095 char *feat_name;
5096
5097 if (props == NULL ||
5098 nvlist_lookup_string(props,
5099 zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
5100 poolname = (char *)pool;
5101
5102 /*
5103 * If this pool already exists, return failure.
5104 */
5105 mutex_enter(&spa_namespace_lock);
5106 if (spa_lookup(poolname) != NULL) {
5107 mutex_exit(&spa_namespace_lock);
5108 return (SET_ERROR(EEXIST));
5109 }
5110
5111 /*
5112 * Allocate a new spa_t structure.
5113 */
5114 nvl = fnvlist_alloc();
5115 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5116 (void) nvlist_lookup_string(props,
5117 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5118 spa = spa_add(poolname, nvl, altroot);
5119 fnvlist_free(nvl);
5120 spa_activate(spa, spa_mode_global);
5121
5122 if (props && (error = spa_prop_validate(spa, props))) {
5123 spa_deactivate(spa);
5124 spa_remove(spa);
5125 mutex_exit(&spa_namespace_lock);
5126 return (error);
5127 }
5128
5129 /*
5130 * Temporary pool names should never be written to disk.
5131 */
5132 if (poolname != pool)
5133 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5134
5135 has_features = B_FALSE;
5136 has_encryption = B_FALSE;
5137 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5138 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5139 if (zpool_prop_feature(nvpair_name(elem))) {
5140 has_features = B_TRUE;
5141 feat_name = strchr(nvpair_name(elem), '@') + 1;
5142 VERIFY0(zfeature_lookup_name(feat_name, &feat));
5143 if (feat == SPA_FEATURE_ENCRYPTION)
5144 has_encryption = B_TRUE;
5145 }
5146 }
5147
5148 /* verify encryption params, if they were provided */
5149 if (dcp != NULL) {
5150 error = spa_create_check_encryption_params(dcp, has_encryption);
5151 if (error != 0) {
5152 spa_deactivate(spa);
5153 spa_remove(spa);
5154 mutex_exit(&spa_namespace_lock);
5155 return (error);
5156 }
5157 }
5158
5159 if (has_features || nvlist_lookup_uint64(props,
5160 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5161 version = SPA_VERSION;
5162 }
5163 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5164
5165 spa->spa_first_txg = txg;
5166 spa->spa_uberblock.ub_txg = txg - 1;
5167 spa->spa_uberblock.ub_version = version;
5168 spa->spa_ubsync = spa->spa_uberblock;
5169 spa->spa_load_state = SPA_LOAD_CREATE;
5170 spa->spa_removing_phys.sr_state = DSS_NONE;
5171 spa->spa_removing_phys.sr_removing_vdev = -1;
5172 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5173 spa->spa_indirect_vdevs_loaded = B_TRUE;
5174
5175 /*
5176 * Create "The Godfather" zio to hold all async IOs
5177 */
5178 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5179 KM_SLEEP);
5180 for (int i = 0; i < max_ncpus; i++) {
5181 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5182 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5183 ZIO_FLAG_GODFATHER);
5184 }
5185
5186 /*
5187 * Create the root vdev.
5188 */
5189 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5190
5191 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5192
5193 ASSERT(error != 0 || rvd != NULL);
5194 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5195
5196 if (error == 0 && !zfs_allocatable_devs(nvroot))
5197 error = SET_ERROR(EINVAL);
5198
5199 if (error == 0 &&
5200 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5201 (error = spa_validate_aux(spa, nvroot, txg,
5202 VDEV_ALLOC_ADD)) == 0) {
5203 /*
5204 * instantiate the metaslab groups (this will dirty the vdevs)
5205 * we can no longer error exit past this point
5206 */
5207 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5208 vdev_t *vd = rvd->vdev_child[c];
5209
5210 vdev_metaslab_set_size(vd);
5211 vdev_expand(vd, txg);
5212 }
5213 }
5214
5215 spa_config_exit(spa, SCL_ALL, FTAG);
5216
5217 if (error != 0) {
5218 spa_unload(spa);
5219 spa_deactivate(spa);
5220 spa_remove(spa);
5221 mutex_exit(&spa_namespace_lock);
5222 return (error);
5223 }
5224
5225 /*
5226 * Get the list of spares, if specified.
5227 */
5228 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5229 &spares, &nspares) == 0) {
5230 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
5231 KM_SLEEP) == 0);
5232 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5233 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5234 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5235 spa_load_spares(spa);
5236 spa_config_exit(spa, SCL_ALL, FTAG);
5237 spa->spa_spares.sav_sync = B_TRUE;
5238 }
5239
5240 /*
5241 * Get the list of level 2 cache devices, if specified.
5242 */
5243 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5244 &l2cache, &nl2cache) == 0) {
5245 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5246 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5247 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5248 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5249 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5250 spa_load_l2cache(spa);
5251 spa_config_exit(spa, SCL_ALL, FTAG);
5252 spa->spa_l2cache.sav_sync = B_TRUE;
5253 }
5254
5255 spa->spa_is_initializing = B_TRUE;
5256 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5257 spa->spa_is_initializing = B_FALSE;
5258
5259 /*
5260 * Create DDTs (dedup tables).
5261 */
5262 ddt_create(spa);
5263
5264 spa_update_dspace(spa);
5265
5266 tx = dmu_tx_create_assigned(dp, txg);
5267
5268 /*
5269 * Create the pool config object.
5270 */
5271 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5272 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5273 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5274
5275 if (zap_add(spa->spa_meta_objset,
5276 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5277 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5278 cmn_err(CE_PANIC, "failed to add pool config");
5279 }
5280
5281 if (zap_add(spa->spa_meta_objset,
5282 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5283 sizeof (uint64_t), 1, &version, tx) != 0) {
5284 cmn_err(CE_PANIC, "failed to add pool version");
5285 }
5286
5287 /* Newly created pools with the right version are always deflated. */
5288 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5289 spa->spa_deflate = TRUE;
5290 if (zap_add(spa->spa_meta_objset,
5291 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5292 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5293 cmn_err(CE_PANIC, "failed to add deflate");
5294 }
5295 }
5296
5297 /*
5298 * Create the deferred-free bpobj. Turn off compression
5299 * because sync-to-convergence takes longer if the blocksize
5300 * keeps changing.
5301 */
5302 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5303 dmu_object_set_compress(spa->spa_meta_objset, obj,
5304 ZIO_COMPRESS_OFF, tx);
5305 if (zap_add(spa->spa_meta_objset,
5306 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5307 sizeof (uint64_t), 1, &obj, tx) != 0) {
5308 cmn_err(CE_PANIC, "failed to add bpobj");
5309 }
5310 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5311 spa->spa_meta_objset, obj));
5312
5313 /*
5314 * Create the pool's history object.
5315 */
5316 if (version >= SPA_VERSION_ZPOOL_HISTORY)
5317 spa_history_create_obj(spa, tx);
5318
5319 /*
5320 * Generate some random noise for salted checksums to operate on.
5321 */
5322 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5323 sizeof (spa->spa_cksum_salt.zcs_bytes));
5324
5325 /*
5326 * Set pool properties.
5327 */
5328 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5329 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5330 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5331 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5332 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5333 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
5334
5335 if (props != NULL) {
5336 spa_configfile_set(spa, props, B_FALSE);
5337 spa_sync_props(props, tx);
5338 }
5339
5340 dmu_tx_commit(tx);
5341
5342 spa->spa_sync_on = B_TRUE;
5343 txg_sync_start(spa->spa_dsl_pool);
5344 mmp_thread_start(spa);
5345
5346 /*
5347 * We explicitly wait for the first transaction to complete so that our
5348 * bean counters are appropriately updated.
5349 */
5350 txg_wait_synced(spa->spa_dsl_pool, txg);
5351
5352 spa_spawn_aux_threads(spa);
5353
5354 spa_write_cachefile(spa, B_FALSE, B_TRUE);
5355 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5356
5357 spa_history_log_version(spa, "create");
5358
5359 /*
5360 * Don't count references from objsets that are already closed
5361 * and are making their way through the eviction process.
5362 */
5363 spa_evicting_os_wait(spa);
5364 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
5365 spa->spa_load_state = SPA_LOAD_NONE;
5366
5367 mutex_exit(&spa_namespace_lock);
5368
5369 return (0);
5370 }
5371
5372 #ifdef _KERNEL
5373 /*
5374 * Get the root pool information from the root disk, then import the root pool
5375 * during the system boot up time.
5376 */
5377 static nvlist_t *
5378 spa_generate_rootconf(const char *devpath, const char *devid, uint64_t *guid,
5379 uint64_t pool_guid)
5380 {
5381 nvlist_t *config;
5382 nvlist_t *nvtop, *nvroot;
5383 uint64_t pgid;
5384
5385 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
5386 return (NULL);
5387
5388 /*
5389 * Add this top-level vdev to the child array.
5390 */
5391 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5392 &nvtop) == 0);
5393 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5394 &pgid) == 0);
5395 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
5396
5397 if (pool_guid != 0 && pool_guid != pgid) {
5398 /*
5399 * The boot loader provided a pool GUID, but it does not match
5400 * the one we found in the label. Return failure so that we
5401 * can fall back to the full device scan.
5402 */
5403 zfs_dbgmsg("spa_generate_rootconf: loader pool guid %llu != "
5404 "label pool guid %llu", (u_longlong_t)pool_guid,
5405 (u_longlong_t)pgid);
5406 nvlist_free(config);
5407 return (NULL);
5408 }
5409
5410 /*
5411 * Put this pool's top-level vdevs into a root vdev.
5412 */
5413 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5414 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
5415 VDEV_TYPE_ROOT) == 0);
5416 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
5417 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
5418 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
5419 &nvtop, 1) == 0);
5420
5421 /*
5422 * Replace the existing vdev_tree with the new root vdev in
5423 * this pool's configuration (remove the old, add the new).
5424 */
5425 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
5426 nvlist_free(nvroot);
5427 return (config);
5428 }
5429
5430 /*
5431 * Walk the vdev tree and see if we can find a device with "better"
5432 * configuration. A configuration is "better" if the label on that
5433 * device has a more recent txg.
5434 */
5435 static void
5436 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
5437 {
5438 for (int c = 0; c < vd->vdev_children; c++)
5439 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
5440
5441 if (vd->vdev_ops->vdev_op_leaf) {
5442 nvlist_t *label;
5443 uint64_t label_txg;
5444
5445 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
5446 &label) != 0)
5447 return;
5448
5449 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
5450 &label_txg) == 0);
5451
5452 /*
5453 * Do we have a better boot device?
5454 */
5455 if (label_txg > *txg) {
5456 *txg = label_txg;
5457 *avd = vd;
5458 }
5459 nvlist_free(label);
5460 }
5461 }
5462
5463 /*
5464 * Import a root pool.
5465 *
5466 * For x86. devpath_list will consist of devid and/or physpath name of
5467 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
5468 * The GRUB "findroot" command will return the vdev we should boot.
5469 *
5470 * For Sparc, devpath_list consists the physpath name of the booting device
5471 * no matter the rootpool is a single device pool or a mirrored pool.
5472 * e.g.
5473 * "/pci@1f,0/ide@d/disk@0,0:a"
5474 */
5475 int
5476 spa_import_rootpool(char *devpath, char *devid, uint64_t pool_guid,
5477 uint64_t vdev_guid)
5478 {
5479 spa_t *spa;
5480 vdev_t *rvd, *bvd, *avd = NULL;
5481 nvlist_t *config, *nvtop;
5482 uint64_t guid, txg;
5483 char *pname;
5484 int error;
5485 const char *altdevpath = NULL;
5486 const char *rdpath = NULL;
5487
5488 if ((rdpath = vdev_disk_preroot_force_path()) != NULL) {
5489 /*
5490 * We expect to import a single-vdev pool from a specific
5491 * device such as a ramdisk device. We don't care what the
5492 * pool label says.
5493 */
5494 config = spa_generate_rootconf(rdpath, NULL, &guid, 0);
5495 if (config != NULL) {
5496 goto configok;
5497 }
5498 cmn_err(CE_NOTE, "Cannot use root disk device '%s'", rdpath);
5499 return (SET_ERROR(EIO));
5500 }
5501
5502 /*
5503 * Read the label from the boot device and generate a configuration.
5504 */
5505 config = spa_generate_rootconf(devpath, devid, &guid, pool_guid);
5506 #if defined(_OBP) && defined(_KERNEL)
5507 if (config == NULL) {
5508 if (strstr(devpath, "/iscsi/ssd") != NULL) {
5509 /* iscsi boot */
5510 get_iscsi_bootpath_phy(devpath);
5511 config = spa_generate_rootconf(devpath, devid, &guid,
5512 pool_guid);
5513 }
5514 }
5515 #endif
5516
5517 /*
5518 * We were unable to import the pool using the /devices path or devid
5519 * provided by the boot loader. This may be the case if the boot
5520 * device has been connected to a different location in the system, or
5521 * if a new boot environment has changed the driver used to access the
5522 * boot device.
5523 *
5524 * Attempt an exhaustive scan of all visible block devices to see if we
5525 * can locate an alternative /devices path with a label that matches
5526 * the expected pool and vdev GUID.
5527 */
5528 if (config == NULL && (altdevpath =
5529 vdev_disk_preroot_lookup(pool_guid, vdev_guid)) != NULL) {
5530 cmn_err(CE_NOTE, "Original /devices path (%s) not available; "
5531 "ZFS is trying an alternate path (%s)", devpath,
5532 altdevpath);
5533 config = spa_generate_rootconf(altdevpath, NULL, &guid,
5534 pool_guid);
5535 }
5536
5537 if (config == NULL) {
5538 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
5539 devpath);
5540 return (SET_ERROR(EIO));
5541 }
5542
5543 configok:
5544 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
5545 &pname) == 0);
5546 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
5547
5548 mutex_enter(&spa_namespace_lock);
5549 if ((spa = spa_lookup(pname)) != NULL) {
5550 /*
5551 * Remove the existing root pool from the namespace so that we
5552 * can replace it with the correct config we just read in.
5553 */
5554 spa_remove(spa);
5555 }
5556
5557 spa = spa_add(pname, config, NULL);
5558 spa->spa_is_root = B_TRUE;
5559 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
5560 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
5561 &spa->spa_ubsync.ub_version) != 0)
5562 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
5563
5564 /*
5565 * Build up a vdev tree based on the boot device's label config.
5566 */
5567 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5568 &nvtop) == 0);
5569 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5570 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
5571 VDEV_ALLOC_ROOTPOOL);
5572 spa_config_exit(spa, SCL_ALL, FTAG);
5573 if (error) {
5574 mutex_exit(&spa_namespace_lock);
5575 nvlist_free(config);
5576 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
5577 pname);
5578 return (error);
5579 }
5580
5581 /*
5582 * Get the boot vdev.
5583 */
5584 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
5585 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
5586 (u_longlong_t)guid);
5587 error = SET_ERROR(ENOENT);
5588 goto out;
5589 }
5590
5591 /*
5592 * Determine if there is a better boot device.
5593 */
5594 avd = bvd;
5595 spa_alt_rootvdev(rvd, &avd, &txg);
5596 if (avd != bvd) {
5597 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
5598 "try booting from '%s'", avd->vdev_path);
5599 error = SET_ERROR(EINVAL);
5600 goto out;
5601 }
5602
5603 /*
5604 * If the boot device is part of a spare vdev then ensure that
5605 * we're booting off the active spare.
5606 */
5607 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
5608 !bvd->vdev_isspare) {
5609 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
5610 "try booting from '%s'",
5611 bvd->vdev_parent->
5612 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
5613 error = SET_ERROR(EINVAL);
5614 goto out;
5615 }
5616
5617 /*
5618 * The root disk may have been expanded while the system was offline.
5619 * Kick off an async task to check for and handle expansion.
5620 */
5621 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5622
5623 error = 0;
5624 out:
5625 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5626 vdev_free(rvd);
5627 spa_config_exit(spa, SCL_ALL, FTAG);
5628 mutex_exit(&spa_namespace_lock);
5629
5630 nvlist_free(config);
5631 return (error);
5632 }
5633
5634 #endif
5635
5636 /*
5637 * Import a non-root pool into the system.
5638 */
5639 int
5640 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5641 {
5642 spa_t *spa;
5643 char *altroot = NULL;
5644 spa_load_state_t state = SPA_LOAD_IMPORT;
5645 zpool_load_policy_t policy;
5646 uint64_t mode = spa_mode_global;
5647 uint64_t readonly = B_FALSE;
5648 int error;
5649 nvlist_t *nvroot;
5650 nvlist_t **spares, **l2cache;
5651 uint_t nspares, nl2cache;
5652
5653 /*
5654 * If a pool with this name exists, return failure.
5655 */
5656 mutex_enter(&spa_namespace_lock);
5657 if (spa_lookup(pool) != NULL) {
5658 mutex_exit(&spa_namespace_lock);
5659 return (SET_ERROR(EEXIST));
5660 }
5661
5662 /*
5663 * Create and initialize the spa structure.
5664 */
5665 (void) nvlist_lookup_string(props,
5666 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5667 (void) nvlist_lookup_uint64(props,
5668 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5669 if (readonly)
5670 mode = FREAD;
5671 spa = spa_add(pool, config, altroot);
5672 spa->spa_import_flags = flags;
5673
5674 /*
5675 * Verbatim import - Take a pool and insert it into the namespace
5676 * as if it had been loaded at boot.
5677 */
5678 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5679 if (props != NULL)
5680 spa_configfile_set(spa, props, B_FALSE);
5681
5682 spa_write_cachefile(spa, B_FALSE, B_TRUE);
5683 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5684 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5685 mutex_exit(&spa_namespace_lock);
5686 return (0);
5687 }
5688
5689 spa_activate(spa, mode);
5690
5691 /*
5692 * Don't start async tasks until we know everything is healthy.
5693 */
5694 spa_async_suspend(spa);
5695
5696 zpool_get_load_policy(config, &policy);
5697 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5698 state = SPA_LOAD_RECOVER;
5699
5700 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5701
5702 if (state != SPA_LOAD_RECOVER) {
5703 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5704 zfs_dbgmsg("spa_import: importing %s", pool);
5705 } else {
5706 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5707 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5708 }
5709 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5710
5711 /*
5712 * Propagate anything learned while loading the pool and pass it
5713 * back to caller (i.e. rewind info, missing devices, etc).
5714 */
5715 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5716 spa->spa_load_info) == 0);
5717
5718 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5719 /*
5720 * Toss any existing sparelist, as it doesn't have any validity
5721 * anymore, and conflicts with spa_has_spare().
5722 */
5723 if (spa->spa_spares.sav_config) {
5724 nvlist_free(spa->spa_spares.sav_config);
5725 spa->spa_spares.sav_config = NULL;
5726 spa_load_spares(spa);
5727 }
5728 if (spa->spa_l2cache.sav_config) {
5729 nvlist_free(spa->spa_l2cache.sav_config);
5730 spa->spa_l2cache.sav_config = NULL;
5731 spa_load_l2cache(spa);
5732 }
5733
5734 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5735 &nvroot) == 0);
5736 if (error == 0)
5737 error = spa_validate_aux(spa, nvroot, -1ULL,
5738 VDEV_ALLOC_SPARE);
5739 if (error == 0)
5740 error = spa_validate_aux(spa, nvroot, -1ULL,
5741 VDEV_ALLOC_L2CACHE);
5742 spa_config_exit(spa, SCL_ALL, FTAG);
5743
5744 if (props != NULL)
5745 spa_configfile_set(spa, props, B_FALSE);
5746
5747 if (error != 0 || (props && spa_writeable(spa) &&
5748 (error = spa_prop_set(spa, props)))) {
5749 spa_unload(spa);
5750 spa_deactivate(spa);
5751 spa_remove(spa);
5752 mutex_exit(&spa_namespace_lock);
5753 return (error);
5754 }
5755
5756 spa_async_resume(spa);
5757
5758 /*
5759 * Override any spares and level 2 cache devices as specified by
5760 * the user, as these may have correct device names/devids, etc.
5761 */
5762 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5763 &spares, &nspares) == 0) {
5764 if (spa->spa_spares.sav_config)
5765 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5766 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5767 else
5768 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5769 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5770 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5771 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5772 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5773 spa_load_spares(spa);
5774 spa_config_exit(spa, SCL_ALL, FTAG);
5775 spa->spa_spares.sav_sync = B_TRUE;
5776 }
5777 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5778 &l2cache, &nl2cache) == 0) {
5779 if (spa->spa_l2cache.sav_config)
5780 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5781 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5782 else
5783 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5784 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5785 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5786 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5787 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5788 spa_load_l2cache(spa);
5789 spa_config_exit(spa, SCL_ALL, FTAG);
5790 spa->spa_l2cache.sav_sync = B_TRUE;
5791 }
5792
5793 /*
5794 * Check for any removed devices.
5795 */
5796 if (spa->spa_autoreplace) {
5797 spa_aux_check_removed(&spa->spa_spares);
5798 spa_aux_check_removed(&spa->spa_l2cache);
5799 }
5800
5801 if (spa_writeable(spa)) {
5802 /*
5803 * Update the config cache to include the newly-imported pool.
5804 */
5805 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5806 }
5807
5808 /*
5809 * It's possible that the pool was expanded while it was exported.
5810 * We kick off an async task to handle this for us.
5811 */
5812 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5813
5814 spa_history_log_version(spa, "import");
5815
5816 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5817
5818 mutex_exit(&spa_namespace_lock);
5819
5820 return (0);
5821 }
5822
5823 nvlist_t *
5824 spa_tryimport(nvlist_t *tryconfig)
5825 {
5826 nvlist_t *config = NULL;
5827 char *poolname, *cachefile;
5828 spa_t *spa;
5829 uint64_t state;
5830 int error;
5831 zpool_load_policy_t policy;
5832
5833 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5834 return (NULL);
5835
5836 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5837 return (NULL);
5838
5839 /*
5840 * Create and initialize the spa structure.
5841 */
5842 mutex_enter(&spa_namespace_lock);
5843 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5844 spa_activate(spa, FREAD);
5845
5846 /*
5847 * Rewind pool if a max txg was provided.
5848 */
5849 zpool_get_load_policy(spa->spa_config, &policy);
5850 if (policy.zlp_txg != UINT64_MAX) {
5851 spa->spa_load_max_txg = policy.zlp_txg;
5852 spa->spa_extreme_rewind = B_TRUE;
5853 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5854 poolname, (longlong_t)policy.zlp_txg);
5855 } else {
5856 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5857 }
5858
5859 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5860 == 0) {
5861 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5862 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5863 } else {
5864 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5865 }
5866
5867 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5868
5869 /*
5870 * If 'tryconfig' was at least parsable, return the current config.
5871 */
5872 if (spa->spa_root_vdev != NULL) {
5873 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5874 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5875 poolname) == 0);
5876 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5877 state) == 0);
5878 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5879 spa->spa_uberblock.ub_timestamp) == 0);
5880 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5881 spa->spa_load_info) == 0);
5882
5883 /*
5884 * If the bootfs property exists on this pool then we
5885 * copy it out so that external consumers can tell which
5886 * pools are bootable.
5887 */
5888 if ((!error || error == EEXIST) && spa->spa_bootfs) {
5889 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5890
5891 /*
5892 * We have to play games with the name since the
5893 * pool was opened as TRYIMPORT_NAME.
5894 */
5895 if (dsl_dsobj_to_dsname(spa_name(spa),
5896 spa->spa_bootfs, tmpname) == 0) {
5897 char *cp;
5898 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5899
5900 cp = strchr(tmpname, '/');
5901 if (cp == NULL) {
5902 (void) strlcpy(dsname, tmpname,
5903 MAXPATHLEN);
5904 } else {
5905 (void) snprintf(dsname, MAXPATHLEN,
5906 "%s/%s", poolname, ++cp);
5907 }
5908 VERIFY(nvlist_add_string(config,
5909 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5910 kmem_free(dsname, MAXPATHLEN);
5911 }
5912 kmem_free(tmpname, MAXPATHLEN);
5913 }
5914
5915 /*
5916 * Add the list of hot spares and level 2 cache devices.
5917 */
5918 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5919 spa_add_spares(spa, config);
5920 spa_add_l2cache(spa, config);
5921 spa_config_exit(spa, SCL_CONFIG, FTAG);
5922 }
5923
5924 spa_unload(spa);
5925 spa_deactivate(spa);
5926 spa_remove(spa);
5927 mutex_exit(&spa_namespace_lock);
5928
5929 return (config);
5930 }
5931
5932 /*
5933 * Pool export/destroy
5934 *
5935 * The act of destroying or exporting a pool is very simple. We make sure there
5936 * is no more pending I/O and any references to the pool are gone. Then, we
5937 * update the pool state and sync all the labels to disk, removing the
5938 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5939 * we don't sync the labels or remove the configuration cache.
5940 */
5941 static int
5942 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5943 boolean_t force, boolean_t hardforce)
5944 {
5945 spa_t *spa;
5946
5947 if (oldconfig)
5948 *oldconfig = NULL;
5949
5950 if (!(spa_mode_global & FWRITE))
5951 return (SET_ERROR(EROFS));
5952
5953 mutex_enter(&spa_namespace_lock);
5954 if ((spa = spa_lookup(pool)) == NULL) {
5955 mutex_exit(&spa_namespace_lock);
5956 return (SET_ERROR(ENOENT));
5957 }
5958
5959 /*
5960 * Put a hold on the pool, drop the namespace lock, stop async tasks,
5961 * reacquire the namespace lock, and see if we can export.
5962 */
5963 spa_open_ref(spa, FTAG);
5964 mutex_exit(&spa_namespace_lock);
5965 spa_async_suspend(spa);
5966 mutex_enter(&spa_namespace_lock);
5967 spa_close(spa, FTAG);
5968
5969 /*
5970 * The pool will be in core if it's openable,
5971 * in which case we can modify its state.
5972 */
5973 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
5974
5975 /*
5976 * Objsets may be open only because they're dirty, so we
5977 * have to force it to sync before checking spa_refcnt.
5978 */
5979 txg_wait_synced(spa->spa_dsl_pool, 0);
5980 spa_evicting_os_wait(spa);
5981
5982 /*
5983 * A pool cannot be exported or destroyed if there are active
5984 * references. If we are resetting a pool, allow references by
5985 * fault injection handlers.
5986 */
5987 if (!spa_refcount_zero(spa) ||
5988 (spa->spa_inject_ref != 0 &&
5989 new_state != POOL_STATE_UNINITIALIZED)) {
5990 spa_async_resume(spa);
5991 mutex_exit(&spa_namespace_lock);
5992 return (SET_ERROR(EBUSY));
5993 }
5994
5995 /*
5996 * A pool cannot be exported if it has an active shared spare.
5997 * This is to prevent other pools stealing the active spare
5998 * from an exported pool. At user's own will, such pool can
5999 * be forcedly exported.
6000 */
6001 if (!force && new_state == POOL_STATE_EXPORTED &&
6002 spa_has_active_shared_spare(spa)) {
6003 spa_async_resume(spa);
6004 mutex_exit(&spa_namespace_lock);
6005 return (SET_ERROR(EXDEV));
6006 }
6007
6008 /*
6009 * We're about to export or destroy this pool. Make sure
6010 * we stop all initialization and trim activity here before
6011 * we set the spa_final_txg. This will ensure that all
6012 * dirty data resulting from the initialization is
6013 * committed to disk before we unload the pool.
6014 */
6015 if (spa->spa_root_vdev != NULL) {
6016 vdev_t *rvd = spa->spa_root_vdev;
6017 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6018 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6019 vdev_autotrim_stop_all(spa);
6020 }
6021
6022 /*
6023 * We want this to be reflected on every label,
6024 * so mark them all dirty. spa_unload() will do the
6025 * final sync that pushes these changes out.
6026 */
6027 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6028 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6029 spa->spa_state = new_state;
6030 spa->spa_final_txg = spa_last_synced_txg(spa) +
6031 TXG_DEFER_SIZE + 1;
6032 vdev_config_dirty(spa->spa_root_vdev);
6033 spa_config_exit(spa, SCL_ALL, FTAG);
6034 }
6035 }
6036
6037 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6038
6039 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6040 spa_unload(spa);
6041 spa_deactivate(spa);
6042 }
6043
6044 if (oldconfig && spa->spa_config)
6045 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
6046
6047 if (new_state != POOL_STATE_UNINITIALIZED) {
6048 if (!hardforce)
6049 spa_write_cachefile(spa, B_TRUE, B_TRUE);
6050 spa_remove(spa);
6051 }
6052 mutex_exit(&spa_namespace_lock);
6053
6054 return (0);
6055 }
6056
6057 /*
6058 * Destroy a storage pool.
6059 */
6060 int
6061 spa_destroy(char *pool)
6062 {
6063 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6064 B_FALSE, B_FALSE));
6065 }
6066
6067 /*
6068 * Export a storage pool.
6069 */
6070 int
6071 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
6072 boolean_t hardforce)
6073 {
6074 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6075 force, hardforce));
6076 }
6077
6078 /*
6079 * Similar to spa_export(), this unloads the spa_t without actually removing it
6080 * from the namespace in any way.
6081 */
6082 int
6083 spa_reset(char *pool)
6084 {
6085 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6086 B_FALSE, B_FALSE));
6087 }
6088
6089 /*
6090 * ==========================================================================
6091 * Device manipulation
6092 * ==========================================================================
6093 */
6094
6095 /*
6096 * Add a device to a storage pool.
6097 */
6098 int
6099 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6100 {
6101 uint64_t txg;
6102 int error;
6103 vdev_t *rvd = spa->spa_root_vdev;
6104 vdev_t *vd, *tvd;
6105 nvlist_t **spares, **l2cache;
6106 uint_t nspares, nl2cache;
6107
6108 ASSERT(spa_writeable(spa));
6109
6110 txg = spa_vdev_enter(spa);
6111
6112 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6113 VDEV_ALLOC_ADD)) != 0)
6114 return (spa_vdev_exit(spa, NULL, txg, error));
6115
6116 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
6117
6118 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6119 &nspares) != 0)
6120 nspares = 0;
6121
6122 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6123 &nl2cache) != 0)
6124 nl2cache = 0;
6125
6126 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6127 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6128
6129 if (vd->vdev_children != 0 &&
6130 (error = vdev_create(vd, txg, B_FALSE)) != 0)
6131 return (spa_vdev_exit(spa, vd, txg, error));
6132
6133 /*
6134 * We must validate the spares and l2cache devices after checking the
6135 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
6136 */
6137 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6138 return (spa_vdev_exit(spa, vd, txg, error));
6139
6140 /*
6141 * If we are in the middle of a device removal, we can only add
6142 * devices which match the existing devices in the pool.
6143 * If we are in the middle of a removal, or have some indirect
6144 * vdevs, we can not add raidz toplevels.
6145 */
6146 if (spa->spa_vdev_removal != NULL ||
6147 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6148 for (int c = 0; c < vd->vdev_children; c++) {
6149 tvd = vd->vdev_child[c];
6150 if (spa->spa_vdev_removal != NULL &&
6151 tvd->vdev_ashift != spa->spa_max_ashift) {
6152 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6153 }
6154 /* Fail if top level vdev is raidz */
6155 if (tvd->vdev_ops == &vdev_raidz_ops) {
6156 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6157 }
6158 /*
6159 * Need the top level mirror to be
6160 * a mirror of leaf vdevs only
6161 */
6162 if (tvd->vdev_ops == &vdev_mirror_ops) {
6163 for (uint64_t cid = 0;
6164 cid < tvd->vdev_children; cid++) {
6165 vdev_t *cvd = tvd->vdev_child[cid];
6166 if (!cvd->vdev_ops->vdev_op_leaf) {
6167 return (spa_vdev_exit(spa, vd,
6168 txg, EINVAL));
6169 }
6170 }
6171 }
6172 }
6173 }
6174
6175 for (int c = 0; c < vd->vdev_children; c++) {
6176 tvd = vd->vdev_child[c];
6177 vdev_remove_child(vd, tvd);
6178 tvd->vdev_id = rvd->vdev_children;
6179 vdev_add_child(rvd, tvd);
6180 vdev_config_dirty(tvd);
6181 }
6182
6183 if (nspares != 0) {
6184 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6185 ZPOOL_CONFIG_SPARES);
6186 spa_load_spares(spa);
6187 spa->spa_spares.sav_sync = B_TRUE;
6188 }
6189
6190 if (nl2cache != 0) {
6191 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6192 ZPOOL_CONFIG_L2CACHE);
6193 spa_load_l2cache(spa);
6194 spa->spa_l2cache.sav_sync = B_TRUE;
6195 }
6196
6197 /*
6198 * We have to be careful when adding new vdevs to an existing pool.
6199 * If other threads start allocating from these vdevs before we
6200 * sync the config cache, and we lose power, then upon reboot we may
6201 * fail to open the pool because there are DVAs that the config cache
6202 * can't translate. Therefore, we first add the vdevs without
6203 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6204 * and then let spa_config_update() initialize the new metaslabs.
6205 *
6206 * spa_load() checks for added-but-not-initialized vdevs, so that
6207 * if we lose power at any point in this sequence, the remaining
6208 * steps will be completed the next time we load the pool.
6209 */
6210 (void) spa_vdev_exit(spa, vd, txg, 0);
6211
6212 mutex_enter(&spa_namespace_lock);
6213 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6214 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6215 mutex_exit(&spa_namespace_lock);
6216
6217 return (0);
6218 }
6219
6220 /*
6221 * Attach a device to a mirror. The arguments are the path to any device
6222 * in the mirror, and the nvroot for the new device. If the path specifies
6223 * a device that is not mirrored, we automatically insert the mirror vdev.
6224 *
6225 * If 'replacing' is specified, the new device is intended to replace the
6226 * existing device; in this case the two devices are made into their own
6227 * mirror using the 'replacing' vdev, which is functionally identical to
6228 * the mirror vdev (it actually reuses all the same ops) but has a few
6229 * extra rules: you can't attach to it after it's been created, and upon
6230 * completion of resilvering, the first disk (the one being replaced)
6231 * is automatically detached.
6232 */
6233 int
6234 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
6235 {
6236 uint64_t txg, dtl_max_txg;
6237 vdev_t *rvd = spa->spa_root_vdev;
6238 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6239 vdev_ops_t *pvops;
6240 char *oldvdpath, *newvdpath;
6241 int newvd_isspare;
6242 int error;
6243
6244 ASSERT(spa_writeable(spa));
6245
6246 txg = spa_vdev_enter(spa);
6247
6248 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6249
6250 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6251 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6252 error = (spa_has_checkpoint(spa)) ?
6253 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6254 return (spa_vdev_exit(spa, NULL, txg, error));
6255 }
6256
6257 if (spa->spa_vdev_removal != NULL)
6258 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6259
6260 if (oldvd == NULL)
6261 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6262
6263 if (!oldvd->vdev_ops->vdev_op_leaf)
6264 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6265
6266 pvd = oldvd->vdev_parent;
6267
6268 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6269 VDEV_ALLOC_ATTACH)) != 0)
6270 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6271
6272 if (newrootvd->vdev_children != 1)
6273 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6274
6275 newvd = newrootvd->vdev_child[0];
6276
6277 if (!newvd->vdev_ops->vdev_op_leaf)
6278 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6279
6280 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6281 return (spa_vdev_exit(spa, newrootvd, txg, error));
6282
6283 /*
6284 * Spares can't replace logs
6285 */
6286 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6287 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6288
6289 if (!replacing) {
6290 /*
6291 * For attach, the only allowable parent is a mirror or the root
6292 * vdev.
6293 */
6294 if (pvd->vdev_ops != &vdev_mirror_ops &&
6295 pvd->vdev_ops != &vdev_root_ops)
6296 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6297
6298 pvops = &vdev_mirror_ops;
6299 } else {
6300 /*
6301 * Active hot spares can only be replaced by inactive hot
6302 * spares.
6303 */
6304 if (pvd->vdev_ops == &vdev_spare_ops &&
6305 oldvd->vdev_isspare &&
6306 !spa_has_spare(spa, newvd->vdev_guid))
6307 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6308
6309 /*
6310 * If the source is a hot spare, and the parent isn't already a
6311 * spare, then we want to create a new hot spare. Otherwise, we
6312 * want to create a replacing vdev. The user is not allowed to
6313 * attach to a spared vdev child unless the 'isspare' state is
6314 * the same (spare replaces spare, non-spare replaces
6315 * non-spare).
6316 */
6317 if (pvd->vdev_ops == &vdev_replacing_ops &&
6318 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6319 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6320 } else if (pvd->vdev_ops == &vdev_spare_ops &&
6321 newvd->vdev_isspare != oldvd->vdev_isspare) {
6322 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6323 }
6324
6325 if (newvd->vdev_isspare)
6326 pvops = &vdev_spare_ops;
6327 else
6328 pvops = &vdev_replacing_ops;
6329 }
6330
6331 /*
6332 * Make sure the new device is big enough.
6333 */
6334 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6335 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6336
6337 /*
6338 * The new device cannot have a higher alignment requirement
6339 * than the top-level vdev.
6340 */
6341 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6342 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
6343
6344 /*
6345 * If this is an in-place replacement, update oldvd's path and devid
6346 * to make it distinguishable from newvd, and unopenable from now on.
6347 */
6348 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6349 spa_strfree(oldvd->vdev_path);
6350 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6351 KM_SLEEP);
6352 (void) sprintf(oldvd->vdev_path, "%s/%s",
6353 newvd->vdev_path, "old");
6354 if (oldvd->vdev_devid != NULL) {
6355 spa_strfree(oldvd->vdev_devid);
6356 oldvd->vdev_devid = NULL;
6357 }
6358 }
6359
6360 /* mark the device being resilvered */
6361 newvd->vdev_resilver_txg = txg;
6362
6363 /*
6364 * If the parent is not a mirror, or if we're replacing, insert the new
6365 * mirror/replacing/spare vdev above oldvd.
6366 */
6367 if (pvd->vdev_ops != pvops)
6368 pvd = vdev_add_parent(oldvd, pvops);
6369
6370 ASSERT(pvd->vdev_top->vdev_parent == rvd);
6371 ASSERT(pvd->vdev_ops == pvops);
6372 ASSERT(oldvd->vdev_parent == pvd);
6373
6374 /*
6375 * Extract the new device from its root and add it to pvd.
6376 */
6377 vdev_remove_child(newrootvd, newvd);
6378 newvd->vdev_id = pvd->vdev_children;
6379 newvd->vdev_crtxg = oldvd->vdev_crtxg;
6380 vdev_add_child(pvd, newvd);
6381
6382 tvd = newvd->vdev_top;
6383 ASSERT(pvd->vdev_top == tvd);
6384 ASSERT(tvd->vdev_parent == rvd);
6385
6386 vdev_config_dirty(tvd);
6387
6388 /*
6389 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6390 * for any dmu_sync-ed blocks. It will propagate upward when
6391 * spa_vdev_exit() calls vdev_dtl_reassess().
6392 */
6393 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6394
6395 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
6396 dtl_max_txg - TXG_INITIAL);
6397
6398 if (newvd->vdev_isspare) {
6399 spa_spare_activate(newvd);
6400 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6401 }
6402
6403 oldvdpath = spa_strdup(oldvd->vdev_path);
6404 newvdpath = spa_strdup(newvd->vdev_path);
6405 newvd_isspare = newvd->vdev_isspare;
6406
6407 /*
6408 * Mark newvd's DTL dirty in this txg.
6409 */
6410 vdev_dirty(tvd, VDD_DTL, newvd, txg);
6411
6412 /*
6413 * Schedule the resilver to restart in the future. We do this to
6414 * ensure that dmu_sync-ed blocks have been stitched into the
6415 * respective datasets. We do not do this if resilvers have been
6416 * deferred.
6417 */
6418 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6419 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
6420 vdev_defer_resilver(newvd);
6421 else
6422 dsl_scan_restart_resilver(spa->spa_dsl_pool, dtl_max_txg);
6423
6424 if (spa->spa_bootfs)
6425 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6426
6427 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6428
6429 /*
6430 * Commit the config
6431 */
6432 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6433
6434 spa_history_log_internal(spa, "vdev attach", NULL,
6435 "%s vdev=%s %s vdev=%s",
6436 replacing && newvd_isspare ? "spare in" :
6437 replacing ? "replace" : "attach", newvdpath,
6438 replacing ? "for" : "to", oldvdpath);
6439
6440 spa_strfree(oldvdpath);
6441 spa_strfree(newvdpath);
6442
6443 return (0);
6444 }
6445
6446 /*
6447 * Detach a device from a mirror or replacing vdev.
6448 *
6449 * If 'replace_done' is specified, only detach if the parent
6450 * is a replacing vdev.
6451 */
6452 int
6453 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6454 {
6455 uint64_t txg;
6456 int error;
6457 vdev_t *rvd = spa->spa_root_vdev;
6458 vdev_t *vd, *pvd, *cvd, *tvd;
6459 boolean_t unspare = B_FALSE;
6460 uint64_t unspare_guid = 0;
6461 char *vdpath;
6462
6463 ASSERT(spa_writeable(spa));
6464
6465 txg = spa_vdev_enter(spa);
6466
6467 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6468
6469 /*
6470 * Besides being called directly from the userland through the
6471 * ioctl interface, spa_vdev_detach() can be potentially called
6472 * at the end of spa_vdev_resilver_done().
6473 *
6474 * In the regular case, when we have a checkpoint this shouldn't
6475 * happen as we never empty the DTLs of a vdev during the scrub
6476 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6477 * should never get here when we have a checkpoint.
6478 *
6479 * That said, even in a case when we checkpoint the pool exactly
6480 * as spa_vdev_resilver_done() calls this function everything
6481 * should be fine as the resilver will return right away.
6482 */
6483 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6484 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6485 error = (spa_has_checkpoint(spa)) ?
6486 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6487 return (spa_vdev_exit(spa, NULL, txg, error));
6488 }
6489
6490 if (vd == NULL)
6491 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6492
6493 if (!vd->vdev_ops->vdev_op_leaf)
6494 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6495
6496 pvd = vd->vdev_parent;
6497
6498 /*
6499 * If the parent/child relationship is not as expected, don't do it.
6500 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6501 * vdev that's replacing B with C. The user's intent in replacing
6502 * is to go from M(A,B) to M(A,C). If the user decides to cancel
6503 * the replace by detaching C, the expected behavior is to end up
6504 * M(A,B). But suppose that right after deciding to detach C,
6505 * the replacement of B completes. We would have M(A,C), and then
6506 * ask to detach C, which would leave us with just A -- not what
6507 * the user wanted. To prevent this, we make sure that the
6508 * parent/child relationship hasn't changed -- in this example,
6509 * that C's parent is still the replacing vdev R.
6510 */
6511 if (pvd->vdev_guid != pguid && pguid != 0)
6512 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6513
6514 /*
6515 * Only 'replacing' or 'spare' vdevs can be replaced.
6516 */
6517 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
6518 pvd->vdev_ops != &vdev_spare_ops)
6519 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6520
6521 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
6522 spa_version(spa) >= SPA_VERSION_SPARES);
6523
6524 /*
6525 * Only mirror, replacing, and spare vdevs support detach.
6526 */
6527 if (pvd->vdev_ops != &vdev_replacing_ops &&
6528 pvd->vdev_ops != &vdev_mirror_ops &&
6529 pvd->vdev_ops != &vdev_spare_ops)
6530 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6531
6532 /*
6533 * If this device has the only valid copy of some data,
6534 * we cannot safely detach it.
6535 */
6536 if (vdev_dtl_required(vd))
6537 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6538
6539 ASSERT(pvd->vdev_children >= 2);
6540
6541 /*
6542 * If we are detaching the second disk from a replacing vdev, then
6543 * check to see if we changed the original vdev's path to have "/old"
6544 * at the end in spa_vdev_attach(). If so, undo that change now.
6545 */
6546 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
6547 vd->vdev_path != NULL) {
6548 size_t len = strlen(vd->vdev_path);
6549
6550 for (int c = 0; c < pvd->vdev_children; c++) {
6551 cvd = pvd->vdev_child[c];
6552
6553 if (cvd == vd || cvd->vdev_path == NULL)
6554 continue;
6555
6556 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
6557 strcmp(cvd->vdev_path + len, "/old") == 0) {
6558 spa_strfree(cvd->vdev_path);
6559 cvd->vdev_path = spa_strdup(vd->vdev_path);
6560 break;
6561 }
6562 }
6563 }
6564
6565 /*
6566 * If we are detaching the original disk from a spare, then it implies
6567 * that the spare should become a real disk, and be removed from the
6568 * active spare list for the pool.
6569 */
6570 if (pvd->vdev_ops == &vdev_spare_ops &&
6571 vd->vdev_id == 0 &&
6572 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
6573 unspare = B_TRUE;
6574
6575 /*
6576 * Erase the disk labels so the disk can be used for other things.
6577 * This must be done after all other error cases are handled,
6578 * but before we disembowel vd (so we can still do I/O to it).
6579 * But if we can't do it, don't treat the error as fatal --
6580 * it may be that the unwritability of the disk is the reason
6581 * it's being detached!
6582 */
6583 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
6584
6585 /*
6586 * Remove vd from its parent and compact the parent's children.
6587 */
6588 vdev_remove_child(pvd, vd);
6589 vdev_compact_children(pvd);
6590
6591 /*
6592 * Remember one of the remaining children so we can get tvd below.
6593 */
6594 cvd = pvd->vdev_child[pvd->vdev_children - 1];
6595
6596 /*
6597 * If we need to remove the remaining child from the list of hot spares,
6598 * do it now, marking the vdev as no longer a spare in the process.
6599 * We must do this before vdev_remove_parent(), because that can
6600 * change the GUID if it creates a new toplevel GUID. For a similar
6601 * reason, we must remove the spare now, in the same txg as the detach;
6602 * otherwise someone could attach a new sibling, change the GUID, and
6603 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6604 */
6605 if (unspare) {
6606 ASSERT(cvd->vdev_isspare);
6607 spa_spare_remove(cvd);
6608 unspare_guid = cvd->vdev_guid;
6609 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6610 cvd->vdev_unspare = B_TRUE;
6611 }
6612
6613 /*
6614 * If the parent mirror/replacing vdev only has one child,
6615 * the parent is no longer needed. Remove it from the tree.
6616 */
6617 if (pvd->vdev_children == 1) {
6618 if (pvd->vdev_ops == &vdev_spare_ops)
6619 cvd->vdev_unspare = B_FALSE;
6620 vdev_remove_parent(cvd);
6621 }
6622
6623 /*
6624 * We don't set tvd until now because the parent we just removed
6625 * may have been the previous top-level vdev.
6626 */
6627 tvd = cvd->vdev_top;
6628 ASSERT(tvd->vdev_parent == rvd);
6629
6630 /*
6631 * Reevaluate the parent vdev state.
6632 */
6633 vdev_propagate_state(cvd);
6634
6635 /*
6636 * If the 'autoexpand' property is set on the pool then automatically
6637 * try to expand the size of the pool. For example if the device we
6638 * just detached was smaller than the others, it may be possible to
6639 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6640 * first so that we can obtain the updated sizes of the leaf vdevs.
6641 */
6642 if (spa->spa_autoexpand) {
6643 vdev_reopen(tvd);
6644 vdev_expand(tvd, txg);
6645 }
6646
6647 vdev_config_dirty(tvd);
6648
6649 /*
6650 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
6651 * vd->vdev_detached is set and free vd's DTL object in syncing context.
6652 * But first make sure we're not on any *other* txg's DTL list, to
6653 * prevent vd from being accessed after it's freed.
6654 */
6655 vdpath = spa_strdup(vd->vdev_path);
6656 for (int t = 0; t < TXG_SIZE; t++)
6657 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6658 vd->vdev_detached = B_TRUE;
6659 vdev_dirty(tvd, VDD_DTL, vd, txg);
6660
6661 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
6662
6663 /* hang on to the spa before we release the lock */
6664 spa_open_ref(spa, FTAG);
6665
6666 error = spa_vdev_exit(spa, vd, txg, 0);
6667
6668 spa_history_log_internal(spa, "detach", NULL,
6669 "vdev=%s", vdpath);
6670 spa_strfree(vdpath);
6671
6672 /*
6673 * If this was the removal of the original device in a hot spare vdev,
6674 * then we want to go through and remove the device from the hot spare
6675 * list of every other pool.
6676 */
6677 if (unspare) {
6678 spa_t *altspa = NULL;
6679
6680 mutex_enter(&spa_namespace_lock);
6681 while ((altspa = spa_next(altspa)) != NULL) {
6682 if (altspa->spa_state != POOL_STATE_ACTIVE ||
6683 altspa == spa)
6684 continue;
6685
6686 spa_open_ref(altspa, FTAG);
6687 mutex_exit(&spa_namespace_lock);
6688 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
6689 mutex_enter(&spa_namespace_lock);
6690 spa_close(altspa, FTAG);
6691 }
6692 mutex_exit(&spa_namespace_lock);
6693
6694 /* search the rest of the vdevs for spares to remove */
6695 spa_vdev_resilver_done(spa);
6696 }
6697
6698 /* all done with the spa; OK to release */
6699 mutex_enter(&spa_namespace_lock);
6700 spa_close(spa, FTAG);
6701 mutex_exit(&spa_namespace_lock);
6702
6703 return (error);
6704 }
6705
6706 static int
6707 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
6708 list_t *vd_list)
6709 {
6710 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6711
6712 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6713
6714 /* Look up vdev and ensure it's a leaf. */
6715 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6716 if (vd == NULL || vd->vdev_detached) {
6717 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6718 return (SET_ERROR(ENODEV));
6719 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6720 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6721 return (SET_ERROR(EINVAL));
6722 } else if (!vdev_writeable(vd)) {
6723 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6724 return (SET_ERROR(EROFS));
6725 }
6726 mutex_enter(&vd->vdev_initialize_lock);
6727 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6728
6729 /*
6730 * When we activate an initialize action we check to see
6731 * if the vdev_initialize_thread is NULL. We do this instead
6732 * of using the vdev_initialize_state since there might be
6733 * a previous initialization process which has completed but
6734 * the thread is not exited.
6735 */
6736 if (cmd_type == POOL_INITIALIZE_START &&
6737 (vd->vdev_initialize_thread != NULL ||
6738 vd->vdev_top->vdev_removing)) {
6739 mutex_exit(&vd->vdev_initialize_lock);
6740 return (SET_ERROR(EBUSY));
6741 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
6742 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
6743 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
6744 mutex_exit(&vd->vdev_initialize_lock);
6745 return (SET_ERROR(ESRCH));
6746 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
6747 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
6748 mutex_exit(&vd->vdev_initialize_lock);
6749 return (SET_ERROR(ESRCH));
6750 }
6751
6752 switch (cmd_type) {
6753 case POOL_INITIALIZE_START:
6754 vdev_initialize(vd);
6755 break;
6756 case POOL_INITIALIZE_CANCEL:
6757 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
6758 break;
6759 case POOL_INITIALIZE_SUSPEND:
6760 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
6761 break;
6762 default:
6763 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6764 }
6765 mutex_exit(&vd->vdev_initialize_lock);
6766
6767 return (0);
6768 }
6769
6770 int
6771 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
6772 nvlist_t *vdev_errlist)
6773 {
6774 int total_errors = 0;
6775 list_t vd_list;
6776
6777 list_create(&vd_list, sizeof (vdev_t),
6778 offsetof(vdev_t, vdev_initialize_node));
6779
6780 /*
6781 * We hold the namespace lock through the whole function
6782 * to prevent any changes to the pool while we're starting or
6783 * stopping initialization. The config and state locks are held so that
6784 * we can properly assess the vdev state before we commit to
6785 * the initializing operation.
6786 */
6787 mutex_enter(&spa_namespace_lock);
6788
6789 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
6790 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
6791 uint64_t vdev_guid = fnvpair_value_uint64(pair);
6792
6793 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
6794 &vd_list);
6795 if (error != 0) {
6796 char guid_as_str[MAXNAMELEN];
6797
6798 (void) snprintf(guid_as_str, sizeof (guid_as_str),
6799 "%llu", (unsigned long long)vdev_guid);
6800 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
6801 total_errors++;
6802 }
6803 }
6804
6805 /* Wait for all initialize threads to stop. */
6806 vdev_initialize_stop_wait(spa, &vd_list);
6807
6808 /* Sync out the initializing state */
6809 txg_wait_synced(spa->spa_dsl_pool, 0);
6810 mutex_exit(&spa_namespace_lock);
6811
6812 list_destroy(&vd_list);
6813
6814 return (total_errors);
6815 }
6816
6817 static int
6818 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
6819 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
6820 {
6821 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6822
6823 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6824
6825 /* Look up vdev and ensure it's a leaf. */
6826 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6827 if (vd == NULL || vd->vdev_detached) {
6828 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6829 return (SET_ERROR(ENODEV));
6830 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6831 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6832 return (SET_ERROR(EINVAL));
6833 } else if (!vdev_writeable(vd)) {
6834 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6835 return (SET_ERROR(EROFS));
6836 } else if (!vd->vdev_has_trim) {
6837 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6838 return (SET_ERROR(EOPNOTSUPP));
6839 } else if (secure && !vd->vdev_has_securetrim) {
6840 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6841 return (SET_ERROR(EOPNOTSUPP));
6842 }
6843 mutex_enter(&vd->vdev_trim_lock);
6844 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6845
6846 /*
6847 * When we activate a TRIM action we check to see if the
6848 * vdev_trim_thread is NULL. We do this instead of using the
6849 * vdev_trim_state since there might be a previous TRIM process
6850 * which has completed but the thread is not exited.
6851 */
6852 if (cmd_type == POOL_TRIM_START &&
6853 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
6854 mutex_exit(&vd->vdev_trim_lock);
6855 return (SET_ERROR(EBUSY));
6856 } else if (cmd_type == POOL_TRIM_CANCEL &&
6857 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
6858 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
6859 mutex_exit(&vd->vdev_trim_lock);
6860 return (SET_ERROR(ESRCH));
6861 } else if (cmd_type == POOL_TRIM_SUSPEND &&
6862 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
6863 mutex_exit(&vd->vdev_trim_lock);
6864 return (SET_ERROR(ESRCH));
6865 }
6866
6867 switch (cmd_type) {
6868 case POOL_TRIM_START:
6869 vdev_trim(vd, rate, partial, secure);
6870 break;
6871 case POOL_TRIM_CANCEL:
6872 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
6873 break;
6874 case POOL_TRIM_SUSPEND:
6875 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
6876 break;
6877 default:
6878 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6879 }
6880 mutex_exit(&vd->vdev_trim_lock);
6881
6882 return (0);
6883 }
6884
6885 /*
6886 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
6887 * TRIM threads for each child vdev. These threads pass over all of the free
6888 * space in the vdev's metaslabs and issues TRIM commands for that space.
6889 */
6890 int
6891 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
6892 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
6893 {
6894 int total_errors = 0;
6895 list_t vd_list;
6896
6897 list_create(&vd_list, sizeof (vdev_t),
6898 offsetof(vdev_t, vdev_trim_node));
6899
6900 /*
6901 * We hold the namespace lock through the whole function
6902 * to prevent any changes to the pool while we're starting or
6903 * stopping TRIM. The config and state locks are held so that
6904 * we can properly assess the vdev state before we commit to
6905 * the TRIM operation.
6906 */
6907 mutex_enter(&spa_namespace_lock);
6908
6909 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
6910 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
6911 uint64_t vdev_guid = fnvpair_value_uint64(pair);
6912
6913 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
6914 rate, partial, secure, &vd_list);
6915 if (error != 0) {
6916 char guid_as_str[MAXNAMELEN];
6917
6918 (void) snprintf(guid_as_str, sizeof (guid_as_str),
6919 "%llu", (unsigned long long)vdev_guid);
6920 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
6921 total_errors++;
6922 }
6923 }
6924
6925 /* Wait for all TRIM threads to stop. */
6926 vdev_trim_stop_wait(spa, &vd_list);
6927
6928 /* Sync out the TRIM state */
6929 txg_wait_synced(spa->spa_dsl_pool, 0);
6930 mutex_exit(&spa_namespace_lock);
6931
6932 list_destroy(&vd_list);
6933
6934 return (total_errors);
6935 }
6936
6937 /*
6938 * Split a set of devices from their mirrors, and create a new pool from them.
6939 */
6940 int
6941 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6942 nvlist_t *props, boolean_t exp)
6943 {
6944 int error = 0;
6945 uint64_t txg, *glist;
6946 spa_t *newspa;
6947 uint_t c, children, lastlog;
6948 nvlist_t **child, *nvl, *tmp;
6949 dmu_tx_t *tx;
6950 char *altroot = NULL;
6951 vdev_t *rvd, **vml = NULL; /* vdev modify list */
6952 boolean_t activate_slog;
6953
6954 ASSERT(spa_writeable(spa));
6955
6956 txg = spa_vdev_enter(spa);
6957
6958 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6959 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6960 error = (spa_has_checkpoint(spa)) ?
6961 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6962 return (spa_vdev_exit(spa, NULL, txg, error));
6963 }
6964
6965 /* clear the log and flush everything up to now */
6966 activate_slog = spa_passivate_log(spa);
6967 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6968 error = spa_reset_logs(spa);
6969 txg = spa_vdev_config_enter(spa);
6970
6971 if (activate_slog)
6972 spa_activate_log(spa);
6973
6974 if (error != 0)
6975 return (spa_vdev_exit(spa, NULL, txg, error));
6976
6977 /* check new spa name before going any further */
6978 if (spa_lookup(newname) != NULL)
6979 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6980
6981 /*
6982 * scan through all the children to ensure they're all mirrors
6983 */
6984 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6985 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6986 &children) != 0)
6987 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6988
6989 /* first, check to ensure we've got the right child count */
6990 rvd = spa->spa_root_vdev;
6991 lastlog = 0;
6992 for (c = 0; c < rvd->vdev_children; c++) {
6993 vdev_t *vd = rvd->vdev_child[c];
6994
6995 /* don't count the holes & logs as children */
6996 if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6997 if (lastlog == 0)
6998 lastlog = c;
6999 continue;
7000 }
7001
7002 lastlog = 0;
7003 }
7004 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7005 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7006
7007 /* next, ensure no spare or cache devices are part of the split */
7008 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7009 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7010 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7011
7012 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7013 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7014
7015 /* then, loop over each vdev and validate it */
7016 for (c = 0; c < children; c++) {
7017 uint64_t is_hole = 0;
7018
7019 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7020 &is_hole);
7021
7022 if (is_hole != 0) {
7023 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7024 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7025 continue;
7026 } else {
7027 error = SET_ERROR(EINVAL);
7028 break;
7029 }
7030 }
7031
7032 /* which disk is going to be split? */
7033 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7034 &glist[c]) != 0) {
7035 error = SET_ERROR(EINVAL);
7036 break;
7037 }
7038
7039 /* look it up in the spa */
7040 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7041 if (vml[c] == NULL) {
7042 error = SET_ERROR(ENODEV);
7043 break;
7044 }
7045
7046 /* make sure there's nothing stopping the split */
7047 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7048 vml[c]->vdev_islog ||
7049 !vdev_is_concrete(vml[c]) ||
7050 vml[c]->vdev_isspare ||
7051 vml[c]->vdev_isl2cache ||
7052 !vdev_writeable(vml[c]) ||
7053 vml[c]->vdev_children != 0 ||
7054 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7055 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7056 error = SET_ERROR(EINVAL);
7057 break;
7058 }
7059
7060 if (vdev_dtl_required(vml[c])) {
7061 error = SET_ERROR(EBUSY);
7062 break;
7063 }
7064
7065 /* we need certain info from the top level */
7066 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7067 vml[c]->vdev_top->vdev_ms_array) == 0);
7068 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7069 vml[c]->vdev_top->vdev_ms_shift) == 0);
7070 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7071 vml[c]->vdev_top->vdev_asize) == 0);
7072 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7073 vml[c]->vdev_top->vdev_ashift) == 0);
7074
7075 /* transfer per-vdev ZAPs */
7076 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7077 VERIFY0(nvlist_add_uint64(child[c],
7078 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7079
7080 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7081 VERIFY0(nvlist_add_uint64(child[c],
7082 ZPOOL_CONFIG_VDEV_TOP_ZAP,
7083 vml[c]->vdev_parent->vdev_top_zap));
7084 }
7085
7086 if (error != 0) {
7087 kmem_free(vml, children * sizeof (vdev_t *));
7088 kmem_free(glist, children * sizeof (uint64_t));
7089 return (spa_vdev_exit(spa, NULL, txg, error));
7090 }
7091
7092 /* stop writers from using the disks */
7093 for (c = 0; c < children; c++) {
7094 if (vml[c] != NULL)
7095 vml[c]->vdev_offline = B_TRUE;
7096 }
7097 vdev_reopen(spa->spa_root_vdev);
7098
7099 /*
7100 * Temporarily record the splitting vdevs in the spa config. This
7101 * will disappear once the config is regenerated.
7102 */
7103 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7104 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
7105 glist, children) == 0);
7106 kmem_free(glist, children * sizeof (uint64_t));
7107
7108 mutex_enter(&spa->spa_props_lock);
7109 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
7110 nvl) == 0);
7111 mutex_exit(&spa->spa_props_lock);
7112 spa->spa_config_splitting = nvl;
7113 vdev_config_dirty(spa->spa_root_vdev);
7114
7115 /* configure and create the new pool */
7116 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
7117 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7118 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
7119 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7120 spa_version(spa)) == 0);
7121 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
7122 spa->spa_config_txg) == 0);
7123 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7124 spa_generate_guid(NULL)) == 0);
7125 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7126 (void) nvlist_lookup_string(props,
7127 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7128
7129 /* add the new pool to the namespace */
7130 newspa = spa_add(newname, config, altroot);
7131 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7132 newspa->spa_config_txg = spa->spa_config_txg;
7133 spa_set_log_state(newspa, SPA_LOG_CLEAR);
7134
7135 /* release the spa config lock, retaining the namespace lock */
7136 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7137
7138 if (zio_injection_enabled)
7139 zio_handle_panic_injection(spa, FTAG, 1);
7140
7141 spa_activate(newspa, spa_mode_global);
7142 spa_async_suspend(newspa);
7143
7144 /*
7145 * Temporarily stop the initializing and TRIM activity. We set the
7146 * state to ACTIVE so that we know to resume initializing or TRIM
7147 * once the split has completed.
7148 */
7149 list_t vd_initialize_list;
7150 list_create(&vd_initialize_list, sizeof (vdev_t),
7151 offsetof(vdev_t, vdev_initialize_node));
7152
7153 list_t vd_trim_list;
7154 list_create(&vd_trim_list, sizeof (vdev_t),
7155 offsetof(vdev_t, vdev_trim_node));
7156
7157 for (c = 0; c < children; c++) {
7158 if (vml[c] != NULL) {
7159 mutex_enter(&vml[c]->vdev_initialize_lock);
7160 vdev_initialize_stop(vml[c],
7161 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7162 mutex_exit(&vml[c]->vdev_initialize_lock);
7163
7164 mutex_enter(&vml[c]->vdev_trim_lock);
7165 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7166 mutex_exit(&vml[c]->vdev_trim_lock);
7167 }
7168 }
7169
7170 vdev_initialize_stop_wait(spa, &vd_initialize_list);
7171 vdev_trim_stop_wait(spa, &vd_trim_list);
7172
7173 list_destroy(&vd_initialize_list);
7174 list_destroy(&vd_trim_list);
7175
7176 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7177
7178 /* create the new pool from the disks of the original pool */
7179 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7180 if (error)
7181 goto out;
7182
7183 /* if that worked, generate a real config for the new pool */
7184 if (newspa->spa_root_vdev != NULL) {
7185 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
7186 NV_UNIQUE_NAME, KM_SLEEP) == 0);
7187 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
7188 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
7189 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7190 B_TRUE));
7191 }
7192
7193 /* set the props */
7194 if (props != NULL) {
7195 spa_configfile_set(newspa, props, B_FALSE);
7196 error = spa_prop_set(newspa, props);
7197 if (error)
7198 goto out;
7199 }
7200
7201 /* flush everything */
7202 txg = spa_vdev_config_enter(newspa);
7203 vdev_config_dirty(newspa->spa_root_vdev);
7204 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7205
7206 if (zio_injection_enabled)
7207 zio_handle_panic_injection(spa, FTAG, 2);
7208
7209 spa_async_resume(newspa);
7210
7211 /* finally, update the original pool's config */
7212 txg = spa_vdev_config_enter(spa);
7213 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7214 error = dmu_tx_assign(tx, TXG_WAIT);
7215 if (error != 0)
7216 dmu_tx_abort(tx);
7217 for (c = 0; c < children; c++) {
7218 if (vml[c] != NULL) {
7219 vdev_split(vml[c]);
7220 if (error == 0)
7221 spa_history_log_internal(spa, "detach", tx,
7222 "vdev=%s", vml[c]->vdev_path);
7223
7224 vdev_free(vml[c]);
7225 }
7226 }
7227 spa->spa_avz_action = AVZ_ACTION_REBUILD;
7228 vdev_config_dirty(spa->spa_root_vdev);
7229 spa->spa_config_splitting = NULL;
7230 nvlist_free(nvl);
7231 if (error == 0)
7232 dmu_tx_commit(tx);
7233 (void) spa_vdev_exit(spa, NULL, txg, 0);
7234
7235 if (zio_injection_enabled)
7236 zio_handle_panic_injection(spa, FTAG, 3);
7237
7238 /* split is complete; log a history record */
7239 spa_history_log_internal(newspa, "split", NULL,
7240 "from pool %s", spa_name(spa));
7241
7242 kmem_free(vml, children * sizeof (vdev_t *));
7243
7244 /* if we're not going to mount the filesystems in userland, export */
7245 if (exp)
7246 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7247 B_FALSE, B_FALSE);
7248
7249 return (error);
7250
7251 out:
7252 spa_unload(newspa);
7253 spa_deactivate(newspa);
7254 spa_remove(newspa);
7255
7256 txg = spa_vdev_config_enter(spa);
7257
7258 /* re-online all offlined disks */
7259 for (c = 0; c < children; c++) {
7260 if (vml[c] != NULL)
7261 vml[c]->vdev_offline = B_FALSE;
7262 }
7263
7264 /* restart initializing or trimming disks as necessary */
7265 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7266 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7267 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7268
7269 vdev_reopen(spa->spa_root_vdev);
7270
7271 nvlist_free(spa->spa_config_splitting);
7272 spa->spa_config_splitting = NULL;
7273 (void) spa_vdev_exit(spa, NULL, txg, error);
7274
7275 kmem_free(vml, children * sizeof (vdev_t *));
7276 return (error);
7277 }
7278
7279 /*
7280 * Find any device that's done replacing, or a vdev marked 'unspare' that's
7281 * currently spared, so we can detach it.
7282 */
7283 static vdev_t *
7284 spa_vdev_resilver_done_hunt(vdev_t *vd)
7285 {
7286 vdev_t *newvd, *oldvd;
7287
7288 for (int c = 0; c < vd->vdev_children; c++) {
7289 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7290 if (oldvd != NULL)
7291 return (oldvd);
7292 }
7293
7294 /*
7295 * Check for a completed replacement. We always consider the first
7296 * vdev in the list to be the oldest vdev, and the last one to be
7297 * the newest (see spa_vdev_attach() for how that works). In
7298 * the case where the newest vdev is faulted, we will not automatically
7299 * remove it after a resilver completes. This is OK as it will require
7300 * user intervention to determine which disk the admin wishes to keep.
7301 */
7302 if (vd->vdev_ops == &vdev_replacing_ops) {
7303 ASSERT(vd->vdev_children > 1);
7304
7305 newvd = vd->vdev_child[vd->vdev_children - 1];
7306 oldvd = vd->vdev_child[0];
7307
7308 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7309 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7310 !vdev_dtl_required(oldvd))
7311 return (oldvd);
7312 }
7313
7314 /*
7315 * Check for a completed resilver with the 'unspare' flag set.
7316 * Also potentially update faulted state.
7317 */
7318 if (vd->vdev_ops == &vdev_spare_ops) {
7319 vdev_t *first = vd->vdev_child[0];
7320 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7321
7322 if (last->vdev_unspare) {
7323 oldvd = first;
7324 newvd = last;
7325 } else if (first->vdev_unspare) {
7326 oldvd = last;
7327 newvd = first;
7328 } else {
7329 oldvd = NULL;
7330 }
7331
7332 if (oldvd != NULL &&
7333 vdev_dtl_empty(newvd, DTL_MISSING) &&
7334 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7335 !vdev_dtl_required(oldvd))
7336 return (oldvd);
7337
7338 vdev_propagate_state(vd);
7339
7340 /*
7341 * If there are more than two spares attached to a disk,
7342 * and those spares are not required, then we want to
7343 * attempt to free them up now so that they can be used
7344 * by other pools. Once we're back down to a single
7345 * disk+spare, we stop removing them.
7346 */
7347 if (vd->vdev_children > 2) {
7348 newvd = vd->vdev_child[1];
7349
7350 if (newvd->vdev_isspare && last->vdev_isspare &&
7351 vdev_dtl_empty(last, DTL_MISSING) &&
7352 vdev_dtl_empty(last, DTL_OUTAGE) &&
7353 !vdev_dtl_required(newvd))
7354 return (newvd);
7355 }
7356 }
7357
7358 return (NULL);
7359 }
7360
7361 static void
7362 spa_vdev_resilver_done(spa_t *spa)
7363 {
7364 vdev_t *vd, *pvd, *ppvd;
7365 uint64_t guid, sguid, pguid, ppguid;
7366
7367 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7368
7369 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7370 pvd = vd->vdev_parent;
7371 ppvd = pvd->vdev_parent;
7372 guid = vd->vdev_guid;
7373 pguid = pvd->vdev_guid;
7374 ppguid = ppvd->vdev_guid;
7375 sguid = 0;
7376 /*
7377 * If we have just finished replacing a hot spared device, then
7378 * we need to detach the parent's first child (the original hot
7379 * spare) as well.
7380 */
7381 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7382 ppvd->vdev_children == 2) {
7383 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7384 sguid = ppvd->vdev_child[1]->vdev_guid;
7385 }
7386 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7387
7388 spa_config_exit(spa, SCL_ALL, FTAG);
7389 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7390 return;
7391 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7392 return;
7393 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7394 }
7395
7396 spa_config_exit(spa, SCL_ALL, FTAG);
7397 }
7398
7399 /*
7400 * Update the stored path or FRU for this vdev.
7401 */
7402 int
7403 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7404 boolean_t ispath)
7405 {
7406 vdev_t *vd;
7407 boolean_t sync = B_FALSE;
7408
7409 ASSERT(spa_writeable(spa));
7410
7411 spa_vdev_state_enter(spa, SCL_ALL);
7412
7413 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7414 return (spa_vdev_state_exit(spa, NULL, ENOENT));
7415
7416 if (!vd->vdev_ops->vdev_op_leaf)
7417 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7418
7419 if (ispath) {
7420 if (strcmp(value, vd->vdev_path) != 0) {
7421 spa_strfree(vd->vdev_path);
7422 vd->vdev_path = spa_strdup(value);
7423 sync = B_TRUE;
7424 }
7425 } else {
7426 if (vd->vdev_fru == NULL) {
7427 vd->vdev_fru = spa_strdup(value);
7428 sync = B_TRUE;
7429 } else if (strcmp(value, vd->vdev_fru) != 0) {
7430 spa_strfree(vd->vdev_fru);
7431 vd->vdev_fru = spa_strdup(value);
7432 sync = B_TRUE;
7433 }
7434 }
7435
7436 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
7437 }
7438
7439 int
7440 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
7441 {
7442 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
7443 }
7444
7445 int
7446 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
7447 {
7448 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
7449 }
7450
7451 /*
7452 * ==========================================================================
7453 * SPA Scanning
7454 * ==========================================================================
7455 */
7456 int
7457 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7458 {
7459 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7460
7461 if (dsl_scan_resilvering(spa->spa_dsl_pool))
7462 return (SET_ERROR(EBUSY));
7463
7464 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
7465 }
7466
7467 int
7468 spa_scan_stop(spa_t *spa)
7469 {
7470 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7471 if (dsl_scan_resilvering(spa->spa_dsl_pool))
7472 return (SET_ERROR(EBUSY));
7473 return (dsl_scan_cancel(spa->spa_dsl_pool));
7474 }
7475
7476 int
7477 spa_scan(spa_t *spa, pool_scan_func_t func)
7478 {
7479 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7480
7481 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
7482 return (SET_ERROR(ENOTSUP));
7483
7484 if (func == POOL_SCAN_RESILVER &&
7485 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
7486 return (SET_ERROR(ENOTSUP));
7487
7488 /*
7489 * If a resilver was requested, but there is no DTL on a
7490 * writeable leaf device, we have nothing to do.
7491 */
7492 if (func == POOL_SCAN_RESILVER &&
7493 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
7494 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
7495 return (0);
7496 }
7497
7498 return (dsl_scan(spa->spa_dsl_pool, func));
7499 }
7500
7501 /*
7502 * ==========================================================================
7503 * SPA async task processing
7504 * ==========================================================================
7505 */
7506
7507 static void
7508 spa_async_remove(spa_t *spa, vdev_t *vd)
7509 {
7510 if (vd->vdev_remove_wanted) {
7511 vd->vdev_remove_wanted = B_FALSE;
7512 vd->vdev_delayed_close = B_FALSE;
7513 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
7514
7515 /*
7516 * We want to clear the stats, but we don't want to do a full
7517 * vdev_clear() as that will cause us to throw away
7518 * degraded/faulted state as well as attempt to reopen the
7519 * device, all of which is a waste.
7520 */
7521 vd->vdev_stat.vs_read_errors = 0;
7522 vd->vdev_stat.vs_write_errors = 0;
7523 vd->vdev_stat.vs_checksum_errors = 0;
7524
7525 vdev_state_dirty(vd->vdev_top);
7526 }
7527
7528 for (int c = 0; c < vd->vdev_children; c++)
7529 spa_async_remove(spa, vd->vdev_child[c]);
7530 }
7531
7532 static void
7533 spa_async_probe(spa_t *spa, vdev_t *vd)
7534 {
7535 if (vd->vdev_probe_wanted) {
7536 vd->vdev_probe_wanted = B_FALSE;
7537 vdev_reopen(vd); /* vdev_open() does the actual probe */
7538 }
7539
7540 for (int c = 0; c < vd->vdev_children; c++)
7541 spa_async_probe(spa, vd->vdev_child[c]);
7542 }
7543
7544 static void
7545 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
7546 {
7547 char *physpath;
7548
7549 if (!spa->spa_autoexpand)
7550 return;
7551
7552 for (int c = 0; c < vd->vdev_children; c++) {
7553 vdev_t *cvd = vd->vdev_child[c];
7554 spa_async_autoexpand(spa, cvd);
7555 }
7556
7557 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
7558 return;
7559
7560 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
7561 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
7562
7563 zfs_post_dle_sysevent(physpath);
7564
7565 kmem_free(physpath, MAXPATHLEN);
7566 }
7567
7568 static void
7569 spa_async_thread(void *arg)
7570 {
7571 spa_t *spa = (spa_t *)arg;
7572 dsl_pool_t *dp = spa->spa_dsl_pool;
7573 int tasks;
7574
7575 ASSERT(spa->spa_sync_on);
7576
7577 mutex_enter(&spa->spa_async_lock);
7578 tasks = spa->spa_async_tasks;
7579 spa->spa_async_tasks = 0;
7580 mutex_exit(&spa->spa_async_lock);
7581
7582 /*
7583 * See if the config needs to be updated.
7584 */
7585 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
7586 uint64_t old_space, new_space;
7587
7588 mutex_enter(&spa_namespace_lock);
7589 old_space = metaslab_class_get_space(spa_normal_class(spa));
7590 old_space += metaslab_class_get_space(spa_special_class(spa));
7591 old_space += metaslab_class_get_space(spa_dedup_class(spa));
7592
7593 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7594
7595 new_space = metaslab_class_get_space(spa_normal_class(spa));
7596 new_space += metaslab_class_get_space(spa_special_class(spa));
7597 new_space += metaslab_class_get_space(spa_dedup_class(spa));
7598 mutex_exit(&spa_namespace_lock);
7599
7600 /*
7601 * If the pool grew as a result of the config update,
7602 * then log an internal history event.
7603 */
7604 if (new_space != old_space) {
7605 spa_history_log_internal(spa, "vdev online", NULL,
7606 "pool '%s' size: %llu(+%llu)",
7607 spa_name(spa), new_space, new_space - old_space);
7608 }
7609 }
7610
7611 /*
7612 * See if any devices need to be marked REMOVED.
7613 */
7614 if (tasks & SPA_ASYNC_REMOVE) {
7615 spa_vdev_state_enter(spa, SCL_NONE);
7616 spa_async_remove(spa, spa->spa_root_vdev);
7617 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
7618 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
7619 for (int i = 0; i < spa->spa_spares.sav_count; i++)
7620 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
7621 (void) spa_vdev_state_exit(spa, NULL, 0);
7622 }
7623
7624 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
7625 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7626 spa_async_autoexpand(spa, spa->spa_root_vdev);
7627 spa_config_exit(spa, SCL_CONFIG, FTAG);
7628 }
7629
7630 /*
7631 * See if any devices need to be probed.
7632 */
7633 if (tasks & SPA_ASYNC_PROBE) {
7634 spa_vdev_state_enter(spa, SCL_NONE);
7635 spa_async_probe(spa, spa->spa_root_vdev);
7636 for (int i = 0; i < spa->spa_spares.sav_count; i++)
7637 spa_async_probe(spa, spa->spa_spares.sav_vdevs[i]);
7638 (void) spa_vdev_state_exit(spa, NULL, 0);
7639 }
7640
7641 /*
7642 * If any devices are done replacing, detach them.
7643 */
7644 if (tasks & SPA_ASYNC_RESILVER_DONE)
7645 spa_vdev_resilver_done(spa);
7646
7647 /*
7648 * Kick off a resilver.
7649 */
7650 if (tasks & SPA_ASYNC_RESILVER &&
7651 (!dsl_scan_resilvering(dp) ||
7652 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
7653 dsl_scan_restart_resilver(dp, 0);
7654
7655 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
7656 mutex_enter(&spa_namespace_lock);
7657 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7658 vdev_initialize_restart(spa->spa_root_vdev);
7659 spa_config_exit(spa, SCL_CONFIG, FTAG);
7660 mutex_exit(&spa_namespace_lock);
7661 }
7662
7663 if (tasks & SPA_ASYNC_TRIM_RESTART) {
7664 mutex_enter(&spa_namespace_lock);
7665 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7666 vdev_trim_restart(spa->spa_root_vdev);
7667 spa_config_exit(spa, SCL_CONFIG, FTAG);
7668 mutex_exit(&spa_namespace_lock);
7669 }
7670
7671 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
7672 mutex_enter(&spa_namespace_lock);
7673 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7674 vdev_autotrim_restart(spa);
7675 spa_config_exit(spa, SCL_CONFIG, FTAG);
7676 mutex_exit(&spa_namespace_lock);
7677 }
7678
7679 /*
7680 * Kick off L2 cache rebuilding.
7681 */
7682 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
7683 mutex_enter(&spa_namespace_lock);
7684 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
7685 l2arc_spa_rebuild_start(spa);
7686 spa_config_exit(spa, SCL_L2ARC, FTAG);
7687 mutex_exit(&spa_namespace_lock);
7688 }
7689
7690 /*
7691 * Let the world know that we're done.
7692 */
7693 mutex_enter(&spa->spa_async_lock);
7694 spa->spa_async_thread = NULL;
7695 cv_broadcast(&spa->spa_async_cv);
7696 mutex_exit(&spa->spa_async_lock);
7697 thread_exit();
7698 }
7699
7700 void
7701 spa_async_suspend(spa_t *spa)
7702 {
7703 mutex_enter(&spa->spa_async_lock);
7704 spa->spa_async_suspended++;
7705 while (spa->spa_async_thread != NULL)
7706 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
7707 mutex_exit(&spa->spa_async_lock);
7708
7709 spa_vdev_remove_suspend(spa);
7710
7711 zthr_t *condense_thread = spa->spa_condense_zthr;
7712 if (condense_thread != NULL)
7713 zthr_cancel(condense_thread);
7714
7715 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7716 if (discard_thread != NULL)
7717 zthr_cancel(discard_thread);
7718 }
7719
7720 void
7721 spa_async_resume(spa_t *spa)
7722 {
7723 mutex_enter(&spa->spa_async_lock);
7724 ASSERT(spa->spa_async_suspended != 0);
7725 spa->spa_async_suspended--;
7726 mutex_exit(&spa->spa_async_lock);
7727 spa_restart_removal(spa);
7728
7729 zthr_t *condense_thread = spa->spa_condense_zthr;
7730 if (condense_thread != NULL)
7731 zthr_resume(condense_thread);
7732
7733 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7734 if (discard_thread != NULL)
7735 zthr_resume(discard_thread);
7736 }
7737
7738 static boolean_t
7739 spa_async_tasks_pending(spa_t *spa)
7740 {
7741 uint_t non_config_tasks;
7742 uint_t config_task;
7743 boolean_t config_task_suspended;
7744
7745 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
7746 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
7747 if (spa->spa_ccw_fail_time == 0) {
7748 config_task_suspended = B_FALSE;
7749 } else {
7750 config_task_suspended =
7751 (gethrtime() - spa->spa_ccw_fail_time) <
7752 (zfs_ccw_retry_interval * NANOSEC);
7753 }
7754
7755 return (non_config_tasks || (config_task && !config_task_suspended));
7756 }
7757
7758 static void
7759 spa_async_dispatch(spa_t *spa)
7760 {
7761 mutex_enter(&spa->spa_async_lock);
7762 if (spa_async_tasks_pending(spa) &&
7763 !spa->spa_async_suspended &&
7764 spa->spa_async_thread == NULL &&
7765 rootdir != NULL)
7766 spa->spa_async_thread = thread_create(NULL, 0,
7767 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
7768 mutex_exit(&spa->spa_async_lock);
7769 }
7770
7771 void
7772 spa_async_request(spa_t *spa, int task)
7773 {
7774 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
7775 mutex_enter(&spa->spa_async_lock);
7776 spa->spa_async_tasks |= task;
7777 mutex_exit(&spa->spa_async_lock);
7778 }
7779
7780 int
7781 spa_async_tasks(spa_t *spa)
7782 {
7783 return (spa->spa_async_tasks);
7784 }
7785
7786 /*
7787 * ==========================================================================
7788 * SPA syncing routines
7789 * ==========================================================================
7790 */
7791
7792 static int
7793 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7794 {
7795 bpobj_t *bpo = arg;
7796 bpobj_enqueue(bpo, bp, tx);
7797 return (0);
7798 }
7799
7800 static int
7801 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7802 {
7803 zio_t *zio = arg;
7804
7805 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
7806 zio->io_flags));
7807 return (0);
7808 }
7809
7810 /*
7811 * Note: this simple function is not inlined to make it easier to dtrace the
7812 * amount of time spent syncing frees.
7813 */
7814 static void
7815 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
7816 {
7817 zio_t *zio = zio_root(spa, NULL, NULL, 0);
7818 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
7819 VERIFY(zio_wait(zio) == 0);
7820 }
7821
7822 /*
7823 * Note: this simple function is not inlined to make it easier to dtrace the
7824 * amount of time spent syncing deferred frees.
7825 */
7826 static void
7827 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
7828 {
7829 if (spa_sync_pass(spa) != 1)
7830 return;
7831
7832 /*
7833 * Note:
7834 * If the log space map feature is active, we stop deferring
7835 * frees to the next TXG and therefore running this function
7836 * would be considered a no-op as spa_deferred_bpobj should
7837 * not have any entries.
7838 *
7839 * That said we run this function anyway (instead of returning
7840 * immediately) for the edge-case scenario where we just
7841 * activated the log space map feature in this TXG but we have
7842 * deferred frees from the previous TXG.
7843 */
7844 zio_t *zio = zio_root(spa, NULL, NULL, 0);
7845 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
7846 spa_free_sync_cb, zio, tx), ==, 0);
7847 VERIFY0(zio_wait(zio));
7848 }
7849
7850
7851 static void
7852 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
7853 {
7854 char *packed = NULL;
7855 size_t bufsize;
7856 size_t nvsize = 0;
7857 dmu_buf_t *db;
7858
7859 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
7860
7861 /*
7862 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
7863 * information. This avoids the dmu_buf_will_dirty() path and
7864 * saves us a pre-read to get data we don't actually care about.
7865 */
7866 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
7867 packed = kmem_alloc(bufsize, KM_SLEEP);
7868
7869 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
7870 KM_SLEEP) == 0);
7871 bzero(packed + nvsize, bufsize - nvsize);
7872
7873 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
7874
7875 kmem_free(packed, bufsize);
7876
7877 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
7878 dmu_buf_will_dirty(db, tx);
7879 *(uint64_t *)db->db_data = nvsize;
7880 dmu_buf_rele(db, FTAG);
7881 }
7882
7883 static void
7884 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
7885 const char *config, const char *entry)
7886 {
7887 nvlist_t *nvroot;
7888 nvlist_t **list;
7889 int i;
7890
7891 if (!sav->sav_sync)
7892 return;
7893
7894 /*
7895 * Update the MOS nvlist describing the list of available devices.
7896 * spa_validate_aux() will have already made sure this nvlist is
7897 * valid and the vdevs are labeled appropriately.
7898 */
7899 if (sav->sav_object == 0) {
7900 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
7901 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
7902 sizeof (uint64_t), tx);
7903 VERIFY(zap_update(spa->spa_meta_objset,
7904 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
7905 &sav->sav_object, tx) == 0);
7906 }
7907
7908 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7909 if (sav->sav_count == 0) {
7910 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
7911 } else {
7912 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
7913 for (i = 0; i < sav->sav_count; i++)
7914 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
7915 B_FALSE, VDEV_CONFIG_L2CACHE);
7916 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
7917 sav->sav_count) == 0);
7918 for (i = 0; i < sav->sav_count; i++)
7919 nvlist_free(list[i]);
7920 kmem_free(list, sav->sav_count * sizeof (void *));
7921 }
7922
7923 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
7924 nvlist_free(nvroot);
7925
7926 sav->sav_sync = B_FALSE;
7927 }
7928
7929 /*
7930 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
7931 * The all-vdev ZAP must be empty.
7932 */
7933 static void
7934 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
7935 {
7936 spa_t *spa = vd->vdev_spa;
7937 if (vd->vdev_top_zap != 0) {
7938 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7939 vd->vdev_top_zap, tx));
7940 }
7941 if (vd->vdev_leaf_zap != 0) {
7942 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7943 vd->vdev_leaf_zap, tx));
7944 }
7945 for (uint64_t i = 0; i < vd->vdev_children; i++) {
7946 spa_avz_build(vd->vdev_child[i], avz, tx);
7947 }
7948 }
7949
7950 static void
7951 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
7952 {
7953 nvlist_t *config;
7954
7955 /*
7956 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
7957 * its config may not be dirty but we still need to build per-vdev ZAPs.
7958 * Similarly, if the pool is being assembled (e.g. after a split), we
7959 * need to rebuild the AVZ although the config may not be dirty.
7960 */
7961 if (list_is_empty(&spa->spa_config_dirty_list) &&
7962 spa->spa_avz_action == AVZ_ACTION_NONE)
7963 return;
7964
7965 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7966
7967 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
7968 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
7969 spa->spa_all_vdev_zaps != 0);
7970
7971 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
7972 /* Make and build the new AVZ */
7973 uint64_t new_avz = zap_create(spa->spa_meta_objset,
7974 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
7975 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
7976
7977 /* Diff old AVZ with new one */
7978 zap_cursor_t zc;
7979 zap_attribute_t za;
7980
7981 for (zap_cursor_init(&zc, spa->spa_meta_objset,
7982 spa->spa_all_vdev_zaps);
7983 zap_cursor_retrieve(&zc, &za) == 0;
7984 zap_cursor_advance(&zc)) {
7985 uint64_t vdzap = za.za_first_integer;
7986 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
7987 vdzap) == ENOENT) {
7988 /*
7989 * ZAP is listed in old AVZ but not in new one;
7990 * destroy it
7991 */
7992 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
7993 tx));
7994 }
7995 }
7996
7997 zap_cursor_fini(&zc);
7998
7999 /* Destroy the old AVZ */
8000 VERIFY0(zap_destroy(spa->spa_meta_objset,
8001 spa->spa_all_vdev_zaps, tx));
8002
8003 /* Replace the old AVZ in the dir obj with the new one */
8004 VERIFY0(zap_update(spa->spa_meta_objset,
8005 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8006 sizeof (new_avz), 1, &new_avz, tx));
8007
8008 spa->spa_all_vdev_zaps = new_avz;
8009 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8010 zap_cursor_t zc;
8011 zap_attribute_t za;
8012
8013 /* Walk through the AVZ and destroy all listed ZAPs */
8014 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8015 spa->spa_all_vdev_zaps);
8016 zap_cursor_retrieve(&zc, &za) == 0;
8017 zap_cursor_advance(&zc)) {
8018 uint64_t zap = za.za_first_integer;
8019 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8020 }
8021
8022 zap_cursor_fini(&zc);
8023
8024 /* Destroy and unlink the AVZ itself */
8025 VERIFY0(zap_destroy(spa->spa_meta_objset,
8026 spa->spa_all_vdev_zaps, tx));
8027 VERIFY0(zap_remove(spa->spa_meta_objset,
8028 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8029 spa->spa_all_vdev_zaps = 0;
8030 }
8031
8032 if (spa->spa_all_vdev_zaps == 0) {
8033 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8034 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8035 DMU_POOL_VDEV_ZAP_MAP, tx);
8036 }
8037 spa->spa_avz_action = AVZ_ACTION_NONE;
8038
8039 /* Create ZAPs for vdevs that don't have them. */
8040 vdev_construct_zaps(spa->spa_root_vdev, tx);
8041
8042 config = spa_config_generate(spa, spa->spa_root_vdev,
8043 dmu_tx_get_txg(tx), B_FALSE);
8044
8045 /*
8046 * If we're upgrading the spa version then make sure that
8047 * the config object gets updated with the correct version.
8048 */
8049 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8050 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8051 spa->spa_uberblock.ub_version);
8052
8053 spa_config_exit(spa, SCL_STATE, FTAG);
8054
8055 nvlist_free(spa->spa_config_syncing);
8056 spa->spa_config_syncing = config;
8057
8058 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8059 }
8060
8061 static void
8062 spa_sync_version(void *arg, dmu_tx_t *tx)
8063 {
8064 uint64_t *versionp = arg;
8065 uint64_t version = *versionp;
8066 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8067
8068 /*
8069 * Setting the version is special cased when first creating the pool.
8070 */
8071 ASSERT(tx->tx_txg != TXG_INITIAL);
8072
8073 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8074 ASSERT(version >= spa_version(spa));
8075
8076 spa->spa_uberblock.ub_version = version;
8077 vdev_config_dirty(spa->spa_root_vdev);
8078 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
8079 }
8080
8081 /*
8082 * Set zpool properties.
8083 */
8084 static void
8085 spa_sync_props(void *arg, dmu_tx_t *tx)
8086 {
8087 nvlist_t *nvp = arg;
8088 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8089 objset_t *mos = spa->spa_meta_objset;
8090 nvpair_t *elem = NULL;
8091
8092 mutex_enter(&spa->spa_props_lock);
8093
8094 while ((elem = nvlist_next_nvpair(nvp, elem))) {
8095 uint64_t intval;
8096 char *strval, *fname;
8097 zpool_prop_t prop;
8098 const char *propname;
8099 zprop_type_t proptype;
8100 spa_feature_t fid;
8101
8102 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8103 case ZPOOL_PROP_INVAL:
8104 /*
8105 * We checked this earlier in spa_prop_validate().
8106 */
8107 ASSERT(zpool_prop_feature(nvpair_name(elem)));
8108
8109 fname = strchr(nvpair_name(elem), '@') + 1;
8110 VERIFY0(zfeature_lookup_name(fname, &fid));
8111
8112 spa_feature_enable(spa, fid, tx);
8113 spa_history_log_internal(spa, "set", tx,
8114 "%s=enabled", nvpair_name(elem));
8115 break;
8116
8117 case ZPOOL_PROP_VERSION:
8118 intval = fnvpair_value_uint64(elem);
8119 /*
8120 * The version is synced seperatly before other
8121 * properties and should be correct by now.
8122 */
8123 ASSERT3U(spa_version(spa), >=, intval);
8124 break;
8125
8126 case ZPOOL_PROP_ALTROOT:
8127 /*
8128 * 'altroot' is a non-persistent property. It should
8129 * have been set temporarily at creation or import time.
8130 */
8131 ASSERT(spa->spa_root != NULL);
8132 break;
8133
8134 case ZPOOL_PROP_READONLY:
8135 case ZPOOL_PROP_CACHEFILE:
8136 /*
8137 * 'readonly' and 'cachefile' are also non-persisitent
8138 * properties.
8139 */
8140 break;
8141 case ZPOOL_PROP_COMMENT:
8142 strval = fnvpair_value_string(elem);
8143 if (spa->spa_comment != NULL)
8144 spa_strfree(spa->spa_comment);
8145 spa->spa_comment = spa_strdup(strval);
8146 /*
8147 * We need to dirty the configuration on all the vdevs
8148 * so that their labels get updated. It's unnecessary
8149 * to do this for pool creation since the vdev's
8150 * configuratoin has already been dirtied.
8151 */
8152 if (tx->tx_txg != TXG_INITIAL)
8153 vdev_config_dirty(spa->spa_root_vdev);
8154 spa_history_log_internal(spa, "set", tx,
8155 "%s=%s", nvpair_name(elem), strval);
8156 break;
8157 default:
8158 /*
8159 * Set pool property values in the poolprops mos object.
8160 */
8161 if (spa->spa_pool_props_object == 0) {
8162 spa->spa_pool_props_object =
8163 zap_create_link(mos, DMU_OT_POOL_PROPS,
8164 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8165 tx);
8166 }
8167
8168 /* normalize the property name */
8169 propname = zpool_prop_to_name(prop);
8170 proptype = zpool_prop_get_type(prop);
8171
8172 if (nvpair_type(elem) == DATA_TYPE_STRING) {
8173 ASSERT(proptype == PROP_TYPE_STRING);
8174 strval = fnvpair_value_string(elem);
8175 VERIFY0(zap_update(mos,
8176 spa->spa_pool_props_object, propname,
8177 1, strlen(strval) + 1, strval, tx));
8178 spa_history_log_internal(spa, "set", tx,
8179 "%s=%s", nvpair_name(elem), strval);
8180 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8181 intval = fnvpair_value_uint64(elem);
8182
8183 if (proptype == PROP_TYPE_INDEX) {
8184 const char *unused;
8185 VERIFY0(zpool_prop_index_to_string(
8186 prop, intval, &unused));
8187 }
8188 VERIFY0(zap_update(mos,
8189 spa->spa_pool_props_object, propname,
8190 8, 1, &intval, tx));
8191 spa_history_log_internal(spa, "set", tx,
8192 "%s=%lld", nvpair_name(elem), intval);
8193 } else {
8194 ASSERT(0); /* not allowed */
8195 }
8196
8197 switch (prop) {
8198 case ZPOOL_PROP_DELEGATION:
8199 spa->spa_delegation = intval;
8200 break;
8201 case ZPOOL_PROP_BOOTFS:
8202 spa->spa_bootfs = intval;
8203 break;
8204 case ZPOOL_PROP_FAILUREMODE:
8205 spa->spa_failmode = intval;
8206 break;
8207 case ZPOOL_PROP_AUTOTRIM:
8208 spa->spa_autotrim = intval;
8209 spa_async_request(spa,
8210 SPA_ASYNC_AUTOTRIM_RESTART);
8211 break;
8212 case ZPOOL_PROP_AUTOEXPAND:
8213 spa->spa_autoexpand = intval;
8214 if (tx->tx_txg != TXG_INITIAL)
8215 spa_async_request(spa,
8216 SPA_ASYNC_AUTOEXPAND);
8217 break;
8218 case ZPOOL_PROP_MULTIHOST:
8219 spa->spa_multihost = intval;
8220 break;
8221 case ZPOOL_PROP_DEDUPDITTO:
8222 spa->spa_dedup_ditto = intval;
8223 break;
8224 default:
8225 break;
8226 }
8227 }
8228
8229 }
8230
8231 mutex_exit(&spa->spa_props_lock);
8232 }
8233
8234 /*
8235 * Perform one-time upgrade on-disk changes. spa_version() does not
8236 * reflect the new version this txg, so there must be no changes this
8237 * txg to anything that the upgrade code depends on after it executes.
8238 * Therefore this must be called after dsl_pool_sync() does the sync
8239 * tasks.
8240 */
8241 static void
8242 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8243 {
8244 if (spa_sync_pass(spa) != 1)
8245 return;
8246
8247 dsl_pool_t *dp = spa->spa_dsl_pool;
8248 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8249
8250 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8251 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8252 dsl_pool_create_origin(dp, tx);
8253
8254 /* Keeping the origin open increases spa_minref */
8255 spa->spa_minref += 3;
8256 }
8257
8258 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8259 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8260 dsl_pool_upgrade_clones(dp, tx);
8261 }
8262
8263 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8264 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8265 dsl_pool_upgrade_dir_clones(dp, tx);
8266
8267 /* Keeping the freedir open increases spa_minref */
8268 spa->spa_minref += 3;
8269 }
8270
8271 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8272 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8273 spa_feature_create_zap_objects(spa, tx);
8274 }
8275
8276 /*
8277 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8278 * when possibility to use lz4 compression for metadata was added
8279 * Old pools that have this feature enabled must be upgraded to have
8280 * this feature active
8281 */
8282 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8283 boolean_t lz4_en = spa_feature_is_enabled(spa,
8284 SPA_FEATURE_LZ4_COMPRESS);
8285 boolean_t lz4_ac = spa_feature_is_active(spa,
8286 SPA_FEATURE_LZ4_COMPRESS);
8287
8288 if (lz4_en && !lz4_ac)
8289 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8290 }
8291
8292 /*
8293 * If we haven't written the salt, do so now. Note that the
8294 * feature may not be activated yet, but that's fine since
8295 * the presence of this ZAP entry is backwards compatible.
8296 */
8297 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8298 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8299 VERIFY0(zap_add(spa->spa_meta_objset,
8300 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8301 sizeof (spa->spa_cksum_salt.zcs_bytes),
8302 spa->spa_cksum_salt.zcs_bytes, tx));
8303 }
8304
8305 rrw_exit(&dp->dp_config_rwlock, FTAG);
8306 }
8307
8308 static void
8309 vdev_indirect_state_sync_verify(vdev_t *vd)
8310 {
8311 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
8312 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
8313
8314 if (vd->vdev_ops == &vdev_indirect_ops) {
8315 ASSERT(vim != NULL);
8316 ASSERT(vib != NULL);
8317 }
8318
8319 if (vdev_obsolete_sm_object(vd) != 0) {
8320 ASSERT(vd->vdev_obsolete_sm != NULL);
8321 ASSERT(vd->vdev_removing ||
8322 vd->vdev_ops == &vdev_indirect_ops);
8323 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8324 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8325
8326 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
8327 space_map_object(vd->vdev_obsolete_sm));
8328 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8329 space_map_allocated(vd->vdev_obsolete_sm));
8330 }
8331 ASSERT(vd->vdev_obsolete_segments != NULL);
8332
8333 /*
8334 * Since frees / remaps to an indirect vdev can only
8335 * happen in syncing context, the obsolete segments
8336 * tree must be empty when we start syncing.
8337 */
8338 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
8339 }
8340
8341 /*
8342 * Set the top-level vdev's max queue depth. Evaluate each top-level's
8343 * async write queue depth in case it changed. The max queue depth will
8344 * not change in the middle of syncing out this txg.
8345 */
8346 static void
8347 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
8348 {
8349 ASSERT(spa_writeable(spa));
8350
8351 vdev_t *rvd = spa->spa_root_vdev;
8352 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
8353 zfs_vdev_queue_depth_pct / 100;
8354 metaslab_class_t *normal = spa_normal_class(spa);
8355 metaslab_class_t *special = spa_special_class(spa);
8356 metaslab_class_t *dedup = spa_dedup_class(spa);
8357
8358 uint64_t slots_per_allocator = 0;
8359 for (int c = 0; c < rvd->vdev_children; c++) {
8360 vdev_t *tvd = rvd->vdev_child[c];
8361
8362 metaslab_group_t *mg = tvd->vdev_mg;
8363 if (mg == NULL || !metaslab_group_initialized(mg))
8364 continue;
8365
8366 metaslab_class_t *mc = mg->mg_class;
8367 if (mc != normal && mc != special && mc != dedup)
8368 continue;
8369
8370 /*
8371 * It is safe to do a lock-free check here because only async
8372 * allocations look at mg_max_alloc_queue_depth, and async
8373 * allocations all happen from spa_sync().
8374 */
8375 for (int i = 0; i < spa->spa_alloc_count; i++)
8376 ASSERT0(zfs_refcount_count(
8377 &(mg->mg_alloc_queue_depth[i])));
8378 mg->mg_max_alloc_queue_depth = max_queue_depth;
8379
8380 for (int i = 0; i < spa->spa_alloc_count; i++) {
8381 mg->mg_cur_max_alloc_queue_depth[i] =
8382 zfs_vdev_def_queue_depth;
8383 }
8384 slots_per_allocator += zfs_vdev_def_queue_depth;
8385 }
8386
8387 for (int i = 0; i < spa->spa_alloc_count; i++) {
8388 ASSERT0(zfs_refcount_count(&normal->mc_alloc_slots[i]));
8389 ASSERT0(zfs_refcount_count(&special->mc_alloc_slots[i]));
8390 ASSERT0(zfs_refcount_count(&dedup->mc_alloc_slots[i]));
8391 normal->mc_alloc_max_slots[i] = slots_per_allocator;
8392 special->mc_alloc_max_slots[i] = slots_per_allocator;
8393 dedup->mc_alloc_max_slots[i] = slots_per_allocator;
8394 }
8395 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8396 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8397 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8398 }
8399
8400 static void
8401 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
8402 {
8403 ASSERT(spa_writeable(spa));
8404
8405 vdev_t *rvd = spa->spa_root_vdev;
8406 for (int c = 0; c < rvd->vdev_children; c++) {
8407 vdev_t *vd = rvd->vdev_child[c];
8408 vdev_indirect_state_sync_verify(vd);
8409
8410 if (vdev_indirect_should_condense(vd)) {
8411 spa_condense_indirect_start_sync(vd, tx);
8412 break;
8413 }
8414 }
8415 }
8416
8417 static void
8418 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
8419 {
8420 objset_t *mos = spa->spa_meta_objset;
8421 dsl_pool_t *dp = spa->spa_dsl_pool;
8422 uint64_t txg = tx->tx_txg;
8423 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
8424
8425 do {
8426 int pass = ++spa->spa_sync_pass;
8427
8428 spa_sync_config_object(spa, tx);
8429 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
8430 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
8431 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
8432 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
8433 spa_errlog_sync(spa, txg);
8434 dsl_pool_sync(dp, txg);
8435
8436 if (pass < zfs_sync_pass_deferred_free ||
8437 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
8438 /*
8439 * If the log space map feature is active we don't
8440 * care about deferred frees and the deferred bpobj
8441 * as the log space map should effectively have the
8442 * same results (i.e. appending only to one object).
8443 */
8444 spa_sync_frees(spa, free_bpl, tx);
8445 } else {
8446 /*
8447 * We can not defer frees in pass 1, because
8448 * we sync the deferred frees later in pass 1.
8449 */
8450 ASSERT3U(pass, >, 1);
8451 bplist_iterate(free_bpl, bpobj_enqueue_cb,
8452 &spa->spa_deferred_bpobj, tx);
8453 }
8454
8455 ddt_sync(spa, txg);
8456 dsl_scan_sync(dp, tx);
8457 svr_sync(spa, tx);
8458 spa_sync_upgrades(spa, tx);
8459
8460 spa_flush_metaslabs(spa, tx);
8461
8462 vdev_t *vd = NULL;
8463 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
8464 != NULL)
8465 vdev_sync(vd, txg);
8466
8467 /*
8468 * Note: We need to check if the MOS is dirty because we could
8469 * have marked the MOS dirty without updating the uberblock
8470 * (e.g. if we have sync tasks but no dirty user data). We need
8471 * to check the uberblock's rootbp because it is updated if we
8472 * have synced out dirty data (though in this case the MOS will
8473 * most likely also be dirty due to second order effects, we
8474 * don't want to rely on that here).
8475 */
8476 if (pass == 1 &&
8477 spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
8478 !dmu_objset_is_dirty(mos, txg)) {
8479 /*
8480 * Nothing changed on the first pass, therefore this
8481 * TXG is a no-op. Avoid syncing deferred frees, so
8482 * that we can keep this TXG as a no-op.
8483 */
8484 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8485 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8486 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
8487 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
8488 break;
8489 }
8490
8491 spa_sync_deferred_frees(spa, tx);
8492 } while (dmu_objset_is_dirty(mos, txg));
8493 }
8494
8495 /*
8496 * Rewrite the vdev configuration (which includes the uberblock) to
8497 * commit the transaction group.
8498 *
8499 * If there are no dirty vdevs, we sync the uberblock to a few random
8500 * top-level vdevs that are known to be visible in the config cache
8501 * (see spa_vdev_add() for a complete description). If there *are* dirty
8502 * vdevs, sync the uberblock to all vdevs.
8503 */
8504 static void
8505 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
8506 {
8507 vdev_t *rvd = spa->spa_root_vdev;
8508 uint64_t txg = tx->tx_txg;
8509
8510 for (;;) {
8511 int error = 0;
8512
8513 /*
8514 * We hold SCL_STATE to prevent vdev open/close/etc.
8515 * while we're attempting to write the vdev labels.
8516 */
8517 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8518
8519 if (list_is_empty(&spa->spa_config_dirty_list)) {
8520 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
8521 int svdcount = 0;
8522 int children = rvd->vdev_children;
8523 int c0 = spa_get_random(children);
8524
8525 for (int c = 0; c < children; c++) {
8526 vdev_t *vd =
8527 rvd->vdev_child[(c0 + c) % children];
8528
8529 /* Stop when revisiting the first vdev */
8530 if (c > 0 && svd[0] == vd)
8531 break;
8532
8533 if (vd->vdev_ms_array == 0 ||
8534 vd->vdev_islog ||
8535 !vdev_is_concrete(vd))
8536 continue;
8537
8538 svd[svdcount++] = vd;
8539 if (svdcount == SPA_SYNC_MIN_VDEVS)
8540 break;
8541 }
8542 error = vdev_config_sync(svd, svdcount, txg);
8543 } else {
8544 error = vdev_config_sync(rvd->vdev_child,
8545 rvd->vdev_children, txg);
8546 }
8547
8548 if (error == 0)
8549 spa->spa_last_synced_guid = rvd->vdev_guid;
8550
8551 spa_config_exit(spa, SCL_STATE, FTAG);
8552
8553 if (error == 0)
8554 break;
8555 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
8556 zio_resume_wait(spa);
8557 }
8558 }
8559
8560 /*
8561 * Sync the specified transaction group. New blocks may be dirtied as
8562 * part of the process, so we iterate until it converges.
8563 */
8564 void
8565 spa_sync(spa_t *spa, uint64_t txg)
8566 {
8567 vdev_t *vd = NULL;
8568
8569 VERIFY(spa_writeable(spa));
8570
8571 /*
8572 * Wait for i/os issued in open context that need to complete
8573 * before this txg syncs.
8574 */
8575 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
8576 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
8577 ZIO_FLAG_CANFAIL);
8578
8579 /*
8580 * Lock out configuration changes.
8581 */
8582 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8583
8584 spa->spa_syncing_txg = txg;
8585 spa->spa_sync_pass = 0;
8586
8587 for (int i = 0; i < spa->spa_alloc_count; i++) {
8588 mutex_enter(&spa->spa_alloc_locks[i]);
8589 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8590 mutex_exit(&spa->spa_alloc_locks[i]);
8591 }
8592
8593 /*
8594 * If there are any pending vdev state changes, convert them
8595 * into config changes that go out with this transaction group.
8596 */
8597 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8598 while (list_head(&spa->spa_state_dirty_list) != NULL) {
8599 /*
8600 * We need the write lock here because, for aux vdevs,
8601 * calling vdev_config_dirty() modifies sav_config.
8602 * This is ugly and will become unnecessary when we
8603 * eliminate the aux vdev wart by integrating all vdevs
8604 * into the root vdev tree.
8605 */
8606 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8607 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
8608 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
8609 vdev_state_clean(vd);
8610 vdev_config_dirty(vd);
8611 }
8612 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8613 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8614 }
8615 spa_config_exit(spa, SCL_STATE, FTAG);
8616
8617 dsl_pool_t *dp = spa->spa_dsl_pool;
8618 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
8619
8620 spa->spa_sync_starttime = gethrtime();
8621 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
8622 spa->spa_sync_starttime + spa->spa_deadman_synctime));
8623
8624 /*
8625 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
8626 * set spa_deflate if we have no raid-z vdevs.
8627 */
8628 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
8629 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
8630 vdev_t *rvd = spa->spa_root_vdev;
8631
8632 int i;
8633 for (i = 0; i < rvd->vdev_children; i++) {
8634 vd = rvd->vdev_child[i];
8635 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
8636 break;
8637 }
8638 if (i == rvd->vdev_children) {
8639 spa->spa_deflate = TRUE;
8640 VERIFY0(zap_add(spa->spa_meta_objset,
8641 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
8642 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
8643 }
8644 }
8645
8646 spa_sync_adjust_vdev_max_queue_depth(spa);
8647
8648 spa_sync_condense_indirect(spa, tx);
8649
8650 spa_sync_iterate_to_convergence(spa, tx);
8651
8652 #ifdef ZFS_DEBUG
8653 if (!list_is_empty(&spa->spa_config_dirty_list)) {
8654 /*
8655 * Make sure that the number of ZAPs for all the vdevs matches
8656 * the number of ZAPs in the per-vdev ZAP list. This only gets
8657 * called if the config is dirty; otherwise there may be
8658 * outstanding AVZ operations that weren't completed in
8659 * spa_sync_config_object.
8660 */
8661 uint64_t all_vdev_zap_entry_count;
8662 ASSERT0(zap_count(spa->spa_meta_objset,
8663 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
8664 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
8665 all_vdev_zap_entry_count);
8666 }
8667 #endif
8668
8669 if (spa->spa_vdev_removal != NULL) {
8670 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
8671 }
8672
8673 spa_sync_rewrite_vdev_config(spa, tx);
8674 dmu_tx_commit(tx);
8675
8676 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
8677
8678 /*
8679 * Clear the dirty config list.
8680 */
8681 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
8682 vdev_config_clean(vd);
8683
8684 /*
8685 * Now that the new config has synced transactionally,
8686 * let it become visible to the config cache.
8687 */
8688 if (spa->spa_config_syncing != NULL) {
8689 spa_config_set(spa, spa->spa_config_syncing);
8690 spa->spa_config_txg = txg;
8691 spa->spa_config_syncing = NULL;
8692 }
8693
8694 dsl_pool_sync_done(dp, txg);
8695
8696 for (int i = 0; i < spa->spa_alloc_count; i++) {
8697 mutex_enter(&spa->spa_alloc_locks[i]);
8698 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8699 mutex_exit(&spa->spa_alloc_locks[i]);
8700 }
8701
8702 /*
8703 * Update usable space statistics.
8704 */
8705 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
8706 != NULL)
8707 vdev_sync_done(vd, txg);
8708
8709 metaslab_class_evict_old(spa->spa_normal_class, txg);
8710 metaslab_class_evict_old(spa->spa_log_class, txg);
8711
8712 spa_sync_close_syncing_log_sm(spa);
8713
8714 spa_update_dspace(spa);
8715
8716 /*
8717 * It had better be the case that we didn't dirty anything
8718 * since vdev_config_sync().
8719 */
8720 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8721 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8722 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
8723
8724 while (zfs_pause_spa_sync)
8725 delay(1);
8726
8727 spa->spa_sync_pass = 0;
8728
8729 /*
8730 * Update the last synced uberblock here. We want to do this at
8731 * the end of spa_sync() so that consumers of spa_last_synced_txg()
8732 * will be guaranteed that all the processing associated with
8733 * that txg has been completed.
8734 */
8735 spa->spa_ubsync = spa->spa_uberblock;
8736 spa_config_exit(spa, SCL_CONFIG, FTAG);
8737
8738 spa_handle_ignored_writes(spa);
8739
8740 /* Mark unused spares as needing a health check. */
8741 if (spa_spare_poll_interval_seconds != 0 &&
8742 NSEC2SEC(gethrtime() - spa->spa_spares_last_polled) >
8743 spa_spare_poll_interval_seconds) {
8744 spa_spare_poll(spa);
8745 spa->spa_spares_last_polled = gethrtime();
8746 }
8747
8748 /*
8749 * If any async tasks have been requested, kick them off.
8750 */
8751 spa_async_dispatch(spa);
8752 }
8753
8754 /*
8755 * Sync all pools. We don't want to hold the namespace lock across these
8756 * operations, so we take a reference on the spa_t and drop the lock during the
8757 * sync.
8758 */
8759 void
8760 spa_sync_allpools(void)
8761 {
8762 spa_t *spa = NULL;
8763 mutex_enter(&spa_namespace_lock);
8764 while ((spa = spa_next(spa)) != NULL) {
8765 if (spa_state(spa) != POOL_STATE_ACTIVE ||
8766 !spa_writeable(spa) || spa_suspended(spa))
8767 continue;
8768 spa_open_ref(spa, FTAG);
8769 mutex_exit(&spa_namespace_lock);
8770 txg_wait_synced(spa_get_dsl(spa), 0);
8771 mutex_enter(&spa_namespace_lock);
8772 spa_close(spa, FTAG);
8773 }
8774 mutex_exit(&spa_namespace_lock);
8775 }
8776
8777 /*
8778 * ==========================================================================
8779 * Miscellaneous routines
8780 * ==========================================================================
8781 */
8782
8783 /*
8784 * Remove all pools in the system.
8785 */
8786 void
8787 spa_evict_all(void)
8788 {
8789 spa_t *spa;
8790
8791 /*
8792 * Remove all cached state. All pools should be closed now,
8793 * so every spa in the AVL tree should be unreferenced.
8794 */
8795 mutex_enter(&spa_namespace_lock);
8796 while ((spa = spa_next(NULL)) != NULL) {
8797 /*
8798 * Stop async tasks. The async thread may need to detach
8799 * a device that's been replaced, which requires grabbing
8800 * spa_namespace_lock, so we must drop it here.
8801 */
8802 spa_open_ref(spa, FTAG);
8803 mutex_exit(&spa_namespace_lock);
8804 spa_async_suspend(spa);
8805 mutex_enter(&spa_namespace_lock);
8806 spa_close(spa, FTAG);
8807
8808 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
8809 spa_unload(spa);
8810 spa_deactivate(spa);
8811 }
8812 spa_remove(spa);
8813 }
8814 mutex_exit(&spa_namespace_lock);
8815 }
8816
8817 vdev_t *
8818 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
8819 {
8820 vdev_t *vd;
8821 int i;
8822
8823 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
8824 return (vd);
8825
8826 if (aux) {
8827 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
8828 vd = spa->spa_l2cache.sav_vdevs[i];
8829 if (vd->vdev_guid == guid)
8830 return (vd);
8831 }
8832
8833 for (i = 0; i < spa->spa_spares.sav_count; i++) {
8834 vd = spa->spa_spares.sav_vdevs[i];
8835 if (vd->vdev_guid == guid)
8836 return (vd);
8837 }
8838 }
8839
8840 return (NULL);
8841 }
8842
8843 void
8844 spa_upgrade(spa_t *spa, uint64_t version)
8845 {
8846 ASSERT(spa_writeable(spa));
8847
8848 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8849
8850 /*
8851 * This should only be called for a non-faulted pool, and since a
8852 * future version would result in an unopenable pool, this shouldn't be
8853 * possible.
8854 */
8855 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
8856 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
8857
8858 spa->spa_uberblock.ub_version = version;
8859 vdev_config_dirty(spa->spa_root_vdev);
8860
8861 spa_config_exit(spa, SCL_ALL, FTAG);
8862
8863 txg_wait_synced(spa_get_dsl(spa), 0);
8864 }
8865
8866 boolean_t
8867 spa_has_spare(spa_t *spa, uint64_t guid)
8868 {
8869 int i;
8870 uint64_t spareguid;
8871 spa_aux_vdev_t *sav = &spa->spa_spares;
8872
8873 for (i = 0; i < sav->sav_count; i++)
8874 if (sav->sav_vdevs[i]->vdev_guid == guid)
8875 return (B_TRUE);
8876
8877 for (i = 0; i < sav->sav_npending; i++) {
8878 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
8879 &spareguid) == 0 && spareguid == guid)
8880 return (B_TRUE);
8881 }
8882
8883 return (B_FALSE);
8884 }
8885
8886 /*
8887 * Check if a pool has an active shared spare device.
8888 * Note: reference count of an active spare is 2, as a spare and as a replace
8889 */
8890 static boolean_t
8891 spa_has_active_shared_spare(spa_t *spa)
8892 {
8893 int i, refcnt;
8894 uint64_t pool;
8895 spa_aux_vdev_t *sav = &spa->spa_spares;
8896
8897 for (i = 0; i < sav->sav_count; i++) {
8898 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
8899 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
8900 refcnt > 2)
8901 return (B_TRUE);
8902 }
8903
8904 return (B_FALSE);
8905 }
8906
8907 uint64_t
8908 spa_total_metaslabs(spa_t *spa)
8909 {
8910 vdev_t *rvd = spa->spa_root_vdev;
8911 uint64_t m = 0;
8912
8913 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
8914 vdev_t *vd = rvd->vdev_child[c];
8915 if (!vdev_is_concrete(vd))
8916 continue;
8917 m += vd->vdev_ms_count;
8918 }
8919 return (m);
8920 }
8921
8922 sysevent_t *
8923 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8924 {
8925 sysevent_t *ev = NULL;
8926 #ifdef _KERNEL
8927 sysevent_attr_list_t *attr = NULL;
8928 sysevent_value_t value;
8929
8930 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
8931 SE_SLEEP);
8932 ASSERT(ev != NULL);
8933
8934 value.value_type = SE_DATA_TYPE_STRING;
8935 value.value.sv_string = spa_name(spa);
8936 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
8937 goto done;
8938
8939 value.value_type = SE_DATA_TYPE_UINT64;
8940 value.value.sv_uint64 = spa_guid(spa);
8941 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
8942 goto done;
8943
8944 if (vd) {
8945 value.value_type = SE_DATA_TYPE_UINT64;
8946 value.value.sv_uint64 = vd->vdev_guid;
8947 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
8948 SE_SLEEP) != 0)
8949 goto done;
8950
8951 if (vd->vdev_path) {
8952 value.value_type = SE_DATA_TYPE_STRING;
8953 value.value.sv_string = vd->vdev_path;
8954 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
8955 &value, SE_SLEEP) != 0)
8956 goto done;
8957 }
8958 }
8959
8960 if (hist_nvl != NULL) {
8961 fnvlist_merge((nvlist_t *)attr, hist_nvl);
8962 }
8963
8964 if (sysevent_attach_attributes(ev, attr) != 0)
8965 goto done;
8966 attr = NULL;
8967
8968 done:
8969 if (attr)
8970 sysevent_free_attr(attr);
8971
8972 #endif
8973 return (ev);
8974 }
8975
8976 void
8977 spa_event_post(sysevent_t *ev)
8978 {
8979 #ifdef _KERNEL
8980 sysevent_id_t eid;
8981
8982 (void) log_sysevent(ev, SE_SLEEP, &eid);
8983 sysevent_free(ev);
8984 #endif
8985 }
8986
8987 void
8988 spa_event_discard(sysevent_t *ev)
8989 {
8990 #ifdef _KERNEL
8991 sysevent_free(ev);
8992 #endif
8993 }
8994
8995 /*
8996 * Post a sysevent corresponding to the given event. The 'name' must be one of
8997 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
8998 * filled in from the spa and (optionally) the vdev and history nvl. This
8999 * doesn't do anything in the userland libzpool, as we don't want consumers to
9000 * misinterpret ztest or zdb as real changes.
9001 */
9002 void
9003 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9004 {
9005 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9006 }
9007