xref: /freebsd/sys/contrib/openzfs/include/sys/spa.h (revision 53a2e2635ab2d17bed1de7b4e0d782dd23ceb6ea)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
25  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2017 Joyent, Inc.
30  * Copyright (c) 2017, Intel Corporation.
31  * Copyright (c) 2019, Allan Jude
32  * Copyright (c) 2019, Klara Inc.
33  * Copyright (c) 2019, Datto Inc.
34  */
35 
36 #ifndef _SYS_SPA_H
37 #define	_SYS_SPA_H
38 
39 #include <sys/zfs_context.h>
40 #include <sys/avl.h>
41 #include <sys/kstat.h>
42 #include <sys/nvpair.h>
43 #include <sys/types.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/spa_checksum.h>
46 #include <sys/dmu.h>
47 #include <sys/space_map.h>
48 #include <sys/bitops.h>
49 
50 #ifdef	__cplusplus
51 extern "C" {
52 #endif
53 
54 /*
55  * Forward references that lots of things need.
56  */
57 typedef struct brt_vdev brt_vdev_t;
58 typedef struct spa spa_t;
59 typedef struct vdev vdev_t;
60 typedef struct metaslab metaslab_t;
61 typedef struct metaslab_group metaslab_group_t;
62 typedef struct metaslab_class metaslab_class_t;
63 typedef struct zio zio_t;
64 typedef struct zilog zilog_t;
65 typedef struct spa_aux_vdev spa_aux_vdev_t;
66 typedef struct zbookmark_phys zbookmark_phys_t;
67 typedef struct zbookmark_err_phys zbookmark_err_phys_t;
68 
69 struct bpobj;
70 struct bplist;
71 struct dsl_pool;
72 struct dsl_dataset;
73 struct dsl_crypto_params;
74 
75 /*
76  * Alignment Shift (ashift) is an immutable, internal top-level vdev property
77  * which can only be set at vdev creation time. Physical writes are always done
78  * according to it, which makes 2^ashift the smallest possible IO on a vdev.
79  *
80  * We currently allow values ranging from 512 bytes (2^9 = 512) to 64 KiB
81  * (2^16 = 65,536).
82  */
83 #define	ASHIFT_MIN		9
84 #define	ASHIFT_MAX		16
85 
86 /*
87  * Size of block to hold the configuration data (a packed nvlist)
88  */
89 #define	SPA_CONFIG_BLOCKSIZE	(1ULL << 14)
90 
91 /*
92  * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
93  * The ASIZE encoding should be at least 64 times larger (6 more bits)
94  * to support up to 4-way RAID-Z mirror mode with worst-case gang block
95  * overhead, three DVAs per bp, plus one more bit in case we do anything
96  * else that expands the ASIZE.
97  */
98 #define	SPA_LSIZEBITS		16	/* LSIZE up to 32M (2^16 * 512)	*/
99 #define	SPA_PSIZEBITS		16	/* PSIZE up to 32M (2^16 * 512)	*/
100 #define	SPA_ASIZEBITS		24	/* ASIZE up to 64 times larger	*/
101 
102 #define	SPA_COMPRESSBITS	7
103 #define	SPA_VDEVBITS		24
104 #define	SPA_COMPRESSMASK	((1U << SPA_COMPRESSBITS) - 1)
105 
106 /*
107  * All SPA data is represented by 128-bit data virtual addresses (DVAs).
108  * The members of the dva_t should be considered opaque outside the SPA.
109  */
110 typedef struct dva {
111 	uint64_t	dva_word[2];
112 } dva_t;
113 
114 
115 /*
116  * Some checksums/hashes need a 256-bit initialization salt. This salt is kept
117  * secret and is suitable for use in MAC algorithms as the key.
118  */
119 typedef struct zio_cksum_salt {
120 	uint8_t		zcs_bytes[32];
121 } zio_cksum_salt_t;
122 
123 /*
124  * Each block is described by its DVAs, time of birth, checksum, etc.
125  * The word-by-word, bit-by-bit layout of the blkptr is as follows:
126  *
127  *	64	56	48	40	32	24	16	8	0
128  *	+-------+-------+-------+-------+-------+-------+-------+-------+
129  * 0	|  pad  |	  vdev1         | pad   |	  ASIZE		|
130  *	+-------+-------+-------+-------+-------+-------+-------+-------+
131  * 1	|G|			 offset1				|
132  *	+-------+-------+-------+-------+-------+-------+-------+-------+
133  * 2	|  pad  |	  vdev2         | pad   |	  ASIZE		|
134  *	+-------+-------+-------+-------+-------+-------+-------+-------+
135  * 3	|G|			 offset2				|
136  *	+-------+-------+-------+-------+-------+-------+-------+-------+
137  * 4	|  pad  |	  vdev3         | pad   |	  ASIZE		|
138  *	+-------+-------+-------+-------+-------+-------+-------+-------+
139  * 5	|G|			 offset3				|
140  *	+-------+-------+-------+-------+-------+-------+-------+-------+
141  * 6	|BDX|lvl| type	| cksum |E| comp|    PSIZE	|     LSIZE	|
142  *	+-------+-------+-------+-------+-------+-------+-------+-------+
143  * 7	|R|			padding					|
144  *	+-------+-------+-------+-------+-------+-------+-------+-------+
145  * 8	|			padding					|
146  *	+-------+-------+-------+-------+-------+-------+-------+-------+
147  * 9	|			physical birth txg			|
148  *	+-------+-------+-------+-------+-------+-------+-------+-------+
149  * a	|			logical birth txg			|
150  *	+-------+-------+-------+-------+-------+-------+-------+-------+
151  * b	|			fill count				|
152  *	+-------+-------+-------+-------+-------+-------+-------+-------+
153  * c	|			checksum[0]				|
154  *	+-------+-------+-------+-------+-------+-------+-------+-------+
155  * d	|			checksum[1]				|
156  *	+-------+-------+-------+-------+-------+-------+-------+-------+
157  * e	|			checksum[2]				|
158  *	+-------+-------+-------+-------+-------+-------+-------+-------+
159  * f	|			checksum[3]				|
160  *	+-------+-------+-------+-------+-------+-------+-------+-------+
161  *
162  * Legend:
163  *
164  * vdev		virtual device ID
165  * offset	offset into virtual device
166  * LSIZE	logical size
167  * PSIZE	physical size (after compression)
168  * ASIZE	allocated size (including RAID-Z parity and gang block headers)
169  * cksum	checksum function
170  * comp		compression function
171  * G		gang block indicator
172  * B		byteorder (endianness)
173  * D		dedup
174  * X		encryption
175  * E		blkptr_t contains embedded data (see below)
176  * lvl		level of indirection
177  * type		DMU object type
178  * R		rewrite (reallocated/rewritten at phys birth TXG)
179  * phys birth	txg when dva[0] was written; zero if same as logical birth txg
180  *              note that typically all the dva's would be written in this
181  *              txg, but they could be different if they were moved by
182  *              device removal.
183  * log. birth	transaction group in which the block was logically born
184  * fill count	number of non-zero blocks under this bp
185  * checksum[4]	256-bit checksum of the data this bp describes
186  */
187 
188 /*
189  * The blkptr_t's of encrypted blocks also need to store the encryption
190  * parameters so that the block can be decrypted. This layout is as follows:
191  *
192  *	64	56	48	40	32	24	16	8	0
193  *	+-------+-------+-------+-------+-------+-------+-------+-------+
194  * 0	|  pad  |	  vdev1         | pad   |	  ASIZE		|
195  *	+-------+-------+-------+-------+-------+-------+-------+-------+
196  * 1	|G|			 offset1				|
197  *	+-------+-------+-------+-------+-------+-------+-------+-------+
198  * 2	|  pad  |	  vdev2         | pad   |	  ASIZE		|
199  *	+-------+-------+-------+-------+-------+-------+-------+-------+
200  * 3	|G|			 offset2				|
201  *	+-------+-------+-------+-------+-------+-------+-------+-------+
202  * 4	|			salt					|
203  *	+-------+-------+-------+-------+-------+-------+-------+-------+
204  * 5	|			IV1					|
205  *	+-------+-------+-------+-------+-------+-------+-------+-------+
206  * 6	|BDX|lvl| type	| cksum |E| comp|    PSIZE	|     LSIZE	|
207  *	+-------+-------+-------+-------+-------+-------+-------+-------+
208  * 7	|R|			padding					|
209  *	+-------+-------+-------+-------+-------+-------+-------+-------+
210  * 8	|			padding					|
211  *	+-------+-------+-------+-------+-------+-------+-------+-------+
212  * 9	|			physical birth txg			|
213  *	+-------+-------+-------+-------+-------+-------+-------+-------+
214  * a	|			logical birth txg			|
215  *	+-------+-------+-------+-------+-------+-------+-------+-------+
216  * b	|		IV2		|	    fill count		|
217  *	+-------+-------+-------+-------+-------+-------+-------+-------+
218  * c	|			checksum[0]				|
219  *	+-------+-------+-------+-------+-------+-------+-------+-------+
220  * d	|			checksum[1]				|
221  *	+-------+-------+-------+-------+-------+-------+-------+-------+
222  * e	|			MAC[0]					|
223  *	+-------+-------+-------+-------+-------+-------+-------+-------+
224  * f	|			MAC[1]					|
225  *	+-------+-------+-------+-------+-------+-------+-------+-------+
226  *
227  * Legend:
228  *
229  * salt		Salt for generating encryption keys
230  * IV1		First 64 bits of encryption IV
231  * X		Block requires encryption handling (set to 1)
232  * E		blkptr_t contains embedded data (set to 0, see below)
233  * fill count	number of non-zero blocks under this bp (truncated to 32 bits)
234  * IV2		Last 32 bits of encryption IV
235  * checksum[2]	128-bit checksum of the data this bp describes
236  * MAC[2]	128-bit message authentication code for this data
237  *
238  * The X bit being set indicates that this block is one of 3 types. If this is
239  * a level 0 block with an encrypted object type, the block is encrypted
240  * (see BP_IS_ENCRYPTED()). If this is a level 0 block with an unencrypted
241  * object type, this block is authenticated with an HMAC (see
242  * BP_IS_AUTHENTICATED()). Otherwise (if level > 0), this bp will use the MAC
243  * words to store a checksum-of-MACs from the level below (see
244  * BP_HAS_INDIRECT_MAC_CKSUM()). For convenience in the code, BP_IS_PROTECTED()
245  * refers to both encrypted and authenticated blocks and BP_USES_CRYPT()
246  * refers to any of these 3 kinds of blocks.
247  *
248  * The additional encryption parameters are the salt, IV, and MAC which are
249  * explained in greater detail in the block comment at the top of zio_crypt.c.
250  * The MAC occupies half of the checksum space since it serves a very similar
251  * purpose: to prevent data corruption on disk. The only functional difference
252  * is that the checksum is used to detect on-disk corruption whether or not the
253  * encryption key is loaded and the MAC provides additional protection against
254  * malicious disk tampering. We use the 3rd DVA to store the salt and first
255  * 64 bits of the IV. As a result encrypted blocks can only have 2 copies
256  * maximum instead of the normal 3. The last 32 bits of the IV are stored in
257  * the upper bits of what is usually the fill count. Note that only blocks at
258  * level 0 or -2 are ever encrypted, which allows us to guarantee that these
259  * 32 bits are not trampled over by other code (see zio_crypt.c for details).
260  * The salt and IV are not used for authenticated bps or bps with an indirect
261  * MAC checksum, so these blocks can utilize all 3 DVAs and the full 64 bits
262  * for the fill count.
263  */
264 
265 /*
266  * "Embedded" blkptr_t's don't actually point to a block, instead they
267  * have a data payload embedded in the blkptr_t itself.  See the comment
268  * in blkptr.c for more details.
269  *
270  * The blkptr_t is laid out as follows:
271  *
272  *	64	56	48	40	32	24	16	8	0
273  *	+-------+-------+-------+-------+-------+-------+-------+-------+
274  * 0	|      payload                                                  |
275  * 1	|      payload                                                  |
276  * 2	|      payload                                                  |
277  * 3	|      payload                                                  |
278  * 4	|      payload                                                  |
279  * 5	|      payload                                                  |
280  *	+-------+-------+-------+-------+-------+-------+-------+-------+
281  * 6	|BDX|lvl| type	| etype |E| comp| PSIZE|              LSIZE	|
282  *	+-------+-------+-------+-------+-------+-------+-------+-------+
283  * 7	|      payload                                                  |
284  * 8	|      payload                                                  |
285  * 9	|      payload                                                  |
286  *	+-------+-------+-------+-------+-------+-------+-------+-------+
287  * a	|			logical birth txg			|
288  *	+-------+-------+-------+-------+-------+-------+-------+-------+
289  * b	|      payload                                                  |
290  * c	|      payload                                                  |
291  * d	|      payload                                                  |
292  * e	|      payload                                                  |
293  * f	|      payload                                                  |
294  *	+-------+-------+-------+-------+-------+-------+-------+-------+
295  *
296  * Legend:
297  *
298  * payload		contains the embedded data
299  * B (byteorder)	byteorder (endianness)
300  * D (dedup)		padding (set to zero)
301  * X			encryption (set to zero)
302  * E (embedded)		set to one
303  * lvl			indirection level
304  * type			DMU object type
305  * etype		how to interpret embedded data (BP_EMBEDDED_TYPE_*)
306  * comp			compression function of payload
307  * PSIZE		size of payload after compression, in bytes
308  * LSIZE		logical size of payload, in bytes
309  *			note that 25 bits is enough to store the largest
310  *			"normal" BP's LSIZE (2^16 * 2^9) in bytes
311  * log. birth		transaction group in which the block was logically born
312  *
313  * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded
314  * bp's they are stored in units of SPA_MINBLOCKSHIFT.
315  * Generally, the generic BP_GET_*() macros can be used on embedded BP's.
316  * The B, D, X, lvl, type, and comp fields are stored the same as with normal
317  * BP's so the BP_SET_* macros can be used with them.  etype, PSIZE, LSIZE must
318  * be set with the BPE_SET_* macros.  BP_SET_EMBEDDED() should be called before
319  * other macros, as they assert that they are only used on BP's of the correct
320  * "embedded-ness". Encrypted blkptr_t's cannot be embedded because they use
321  * the payload space for encryption parameters (see the comment above on
322  * how encryption parameters are stored).
323  */
324 
325 #define	BPE_GET_ETYPE(bp)	\
326 	(ASSERT(BP_IS_EMBEDDED(bp)), \
327 	BF64_GET((bp)->blk_prop, 40, 8))
328 #define	BPE_SET_ETYPE(bp, t)	do { \
329 	ASSERT(BP_IS_EMBEDDED(bp)); \
330 	BF64_SET((bp)->blk_prop, 40, 8, t); \
331 } while (0)
332 
333 #define	BPE_GET_LSIZE(bp)	\
334 	(ASSERT(BP_IS_EMBEDDED(bp)), \
335 	BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1))
336 #define	BPE_SET_LSIZE(bp, x)	do { \
337 	ASSERT(BP_IS_EMBEDDED(bp)); \
338 	BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \
339 } while (0)
340 
341 #define	BPE_GET_PSIZE(bp)	\
342 	(ASSERT(BP_IS_EMBEDDED(bp)), \
343 	BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1))
344 #define	BPE_SET_PSIZE(bp, x)	do { \
345 	ASSERT(BP_IS_EMBEDDED(bp)); \
346 	BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \
347 } while (0)
348 
349 typedef enum bp_embedded_type {
350 	BP_EMBEDDED_TYPE_DATA,
351 	BP_EMBEDDED_TYPE_RESERVED, /* Reserved for Delphix byteswap feature. */
352 	BP_EMBEDDED_TYPE_REDACTED,
353 	NUM_BP_EMBEDDED_TYPES
354 } bp_embedded_type_t;
355 
356 #define	BPE_NUM_WORDS 14
357 #define	BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t))
358 #define	BPE_IS_PAYLOADWORD(bp, wp) \
359 	((wp) != &(bp)->blk_prop && (wp) != (&(bp)->blk_birth_word[1]))
360 
361 #define	SPA_BLKPTRSHIFT	7		/* blkptr_t is 128 bytes	*/
362 #define	SPA_DVAS_PER_BP	3		/* Number of DVAs in a bp	*/
363 #define	SPA_SYNC_MIN_VDEVS 3		/* min vdevs to update during sync */
364 
365 /*
366  * A block is a hole when it has either 1) never been written to, or
367  * 2) is zero-filled. In both cases, ZFS can return all zeroes for all reads
368  * without physically allocating disk space. Holes are represented in the
369  * blkptr_t structure by zeroed blk_dva. Correct checking for holes is
370  * done through the BP_IS_HOLE macro. For holes, the logical size, level,
371  * DMU object type, and birth times are all also stored for holes that
372  * were written to at some point (i.e. were punched after having been filled).
373  */
374 typedef struct blkptr {
375 	dva_t		blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */
376 	uint64_t	blk_prop;	/* size, compression, type, etc	    */
377 	uint64_t	blk_prop2;	/* additional properties	    */
378 	uint64_t	blk_pad;	/* Extra space for the future	    */
379 	uint64_t	blk_birth_word[2];
380 	uint64_t	blk_fill;	/* fill count			    */
381 	zio_cksum_t	blk_cksum;	/* 256-bit checksum		    */
382 } blkptr_t;
383 
384 /*
385  * Macros to get and set fields in a bp or DVA.
386  */
387 
388 /*
389  * Note, for gang blocks, DVA_GET_ASIZE() is the total space allocated for
390  * this gang DVA including its children BP's.  The space allocated at this
391  * DVA's vdev/offset is vdev_gang_header_asize(vdev).
392  */
393 #define	DVA_GET_ASIZE(dva)	\
394 	BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0)
395 #define	DVA_SET_ASIZE(dva, x)	\
396 	BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \
397 	SPA_MINBLOCKSHIFT, 0, x)
398 
399 #define	DVA_GET_VDEV(dva)	BF64_GET((dva)->dva_word[0], 32, SPA_VDEVBITS)
400 #define	DVA_SET_VDEV(dva, x)	\
401 	BF64_SET((dva)->dva_word[0], 32, SPA_VDEVBITS, x)
402 
403 #define	DVA_GET_OFFSET(dva)	\
404 	BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0)
405 #define	DVA_SET_OFFSET(dva, x)	\
406 	BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x)
407 
408 #define	DVA_GET_GANG(dva)	BF64_GET((dva)->dva_word[1], 63, 1)
409 #define	DVA_SET_GANG(dva, x)	BF64_SET((dva)->dva_word[1], 63, 1, x)
410 
411 #define	BP_GET_LSIZE(bp)	\
412 	(BP_IS_EMBEDDED(bp) ?	\
413 	(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \
414 	BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1))
415 #define	BP_SET_LSIZE(bp, x)	do { \
416 	ASSERT(!BP_IS_EMBEDDED(bp)); \
417 	BF64_SET_SB((bp)->blk_prop, \
418 	    0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
419 } while (0)
420 
421 #define	BP_GET_PSIZE(bp)	\
422 	(BP_IS_EMBEDDED(bp) ? 0 : \
423 	BF64_GET_SB((bp)->blk_prop, 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1))
424 #define	BP_SET_PSIZE(bp, x)	do { \
425 	ASSERT(!BP_IS_EMBEDDED(bp)); \
426 	BF64_SET_SB((bp)->blk_prop, \
427 	    16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
428 } while (0)
429 
430 #define	BP_GET_COMPRESS(bp)		\
431 	BF64_GET((bp)->blk_prop, 32, SPA_COMPRESSBITS)
432 #define	BP_SET_COMPRESS(bp, x)		\
433 	BF64_SET((bp)->blk_prop, 32, SPA_COMPRESSBITS, x)
434 
435 #define	BP_IS_EMBEDDED(bp)		BF64_GET((bp)->blk_prop, 39, 1)
436 #define	BP_SET_EMBEDDED(bp, x)		BF64_SET((bp)->blk_prop, 39, 1, x)
437 
438 #define	BP_GET_CHECKSUM(bp)		\
439 	(BP_IS_EMBEDDED(bp) ? ZIO_CHECKSUM_OFF : \
440 	BF64_GET((bp)->blk_prop, 40, 8))
441 #define	BP_SET_CHECKSUM(bp, x)		do { \
442 	ASSERT(!BP_IS_EMBEDDED(bp)); \
443 	BF64_SET((bp)->blk_prop, 40, 8, x); \
444 } while (0)
445 
446 #define	BP_GET_TYPE(bp)			BF64_GET((bp)->blk_prop, 48, 8)
447 #define	BP_SET_TYPE(bp, x)		BF64_SET((bp)->blk_prop, 48, 8, x)
448 
449 #define	BP_GET_LEVEL(bp)		BF64_GET((bp)->blk_prop, 56, 5)
450 #define	BP_SET_LEVEL(bp, x)		BF64_SET((bp)->blk_prop, 56, 5, x)
451 
452 /* encrypted, authenticated, and MAC cksum bps use the same bit */
453 #define	BP_USES_CRYPT(bp)		BF64_GET((bp)->blk_prop, 61, 1)
454 #define	BP_SET_CRYPT(bp, x)		BF64_SET((bp)->blk_prop, 61, 1, x)
455 
456 #define	BP_IS_ENCRYPTED(bp)			\
457 	(BP_USES_CRYPT(bp) &&			\
458 	BP_GET_LEVEL(bp) <= 0 &&		\
459 	DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp)))
460 
461 #define	BP_IS_AUTHENTICATED(bp)			\
462 	(BP_USES_CRYPT(bp) &&			\
463 	BP_GET_LEVEL(bp) <= 0 &&		\
464 	!DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp)))
465 
466 #define	BP_HAS_INDIRECT_MAC_CKSUM(bp)		\
467 	(BP_USES_CRYPT(bp) && BP_GET_LEVEL(bp) > 0)
468 
469 #define	BP_IS_PROTECTED(bp)			\
470 	(BP_IS_ENCRYPTED(bp) || BP_IS_AUTHENTICATED(bp))
471 
472 #define	BP_GET_DEDUP(bp)		BF64_GET((bp)->blk_prop, 62, 1)
473 #define	BP_SET_DEDUP(bp, x)		BF64_SET((bp)->blk_prop, 62, 1, x)
474 
475 #define	BP_GET_BYTEORDER(bp)		BF64_GET((bp)->blk_prop, 63, 1)
476 #define	BP_SET_BYTEORDER(bp, x)		BF64_SET((bp)->blk_prop, 63, 1, x)
477 
478 #define	BP_GET_FREE(bp)			BF64_GET((bp)->blk_fill, 0, 1)
479 #define	BP_SET_FREE(bp, x)		BF64_SET((bp)->blk_fill, 0, 1, x)
480 
481 /*
482  * Block birth time macros for different use cases:
483  * - BP_GET_LOGICAL_BIRTH(): When the block was logically modified by user.
484  *   To be used with a focus on user data, like incremental replication.
485  * - BP_GET_PHYSICAL_BIRTH(): When the block was physically written to disks.
486  *   For regular writes is equal to logical birth.  For dedup and block cloning
487  *   can be smaller than logical birth.  For remapped and rewritten blocks can
488  *   be bigger. To be used with focus on physical disk content: ARC, DDT, scrub.
489  * - BP_GET_RAW_PHYSICAL_BIRTH(): Raw physical birth value.  Zero if equal
490  *   to logical birth.  Should only be used for BP copying and debugging.
491  * - BP_GET_BIRTH(): When the block was allocated, which is a physical birth
492  *   for rewritten blocks (rewrite flag set) or logical birth otherwise.
493  */
494 #define	BP_GET_LOGICAL_BIRTH(bp)	(bp)->blk_birth_word[1]
495 #define	BP_SET_LOGICAL_BIRTH(bp, x)	((bp)->blk_birth_word[1] = (x))
496 
497 #define	BP_GET_RAW_PHYSICAL_BIRTH(bp)	(bp)->blk_birth_word[0]
498 #define	BP_SET_PHYSICAL_BIRTH(bp, x)	((bp)->blk_birth_word[0] = (x))
499 
500 #define	BP_GET_PHYSICAL_BIRTH(bp)					\
501 	(BP_IS_EMBEDDED(bp) ? 0 : 					\
502 	BP_GET_RAW_PHYSICAL_BIRTH(bp) ? BP_GET_RAW_PHYSICAL_BIRTH(bp) :	\
503 	BP_GET_LOGICAL_BIRTH(bp))
504 
505 #define	BP_GET_BIRTH(bp)					\
506 	((BP_IS_EMBEDDED(bp) || !BP_GET_REWRITE(bp)) ?		\
507 	BP_GET_LOGICAL_BIRTH(bp) : BP_GET_PHYSICAL_BIRTH(bp))
508 
509 #define	BP_SET_BIRTH(bp, logical, physical)			\
510 {								\
511 	ASSERT(!BP_IS_EMBEDDED(bp));				\
512 	BP_SET_LOGICAL_BIRTH(bp, logical);			\
513 	BP_SET_PHYSICAL_BIRTH(bp, 				\
514 	    ((logical) == (physical) ? 0 : (physical)));	\
515 }
516 
517 #define	BP_GET_FILL(bp)				\
518 	(BP_IS_EMBEDDED(bp) ? 1 : 			\
519 	BP_IS_ENCRYPTED(bp) ? BF64_GET((bp)->blk_fill, 0, 32) : \
520 	(bp)->blk_fill)
521 
522 #define	BP_SET_FILL(bp, fill)			\
523 {						\
524 	ASSERT(!BP_IS_EMBEDDED(bp));		\
525 	if (BP_IS_ENCRYPTED(bp))		\
526 		BF64_SET((bp)->blk_fill, 0, 32, fill); \
527 	else					\
528 		(bp)->blk_fill = fill;		\
529 }
530 
531 #define	BP_GET_IV2(bp)				\
532 	(ASSERT(BP_IS_ENCRYPTED(bp)),		\
533 	BF64_GET((bp)->blk_fill, 32, 32))
534 #define	BP_SET_IV2(bp, iv2)			\
535 {						\
536 	ASSERT(BP_IS_ENCRYPTED(bp));		\
537 	BF64_SET((bp)->blk_fill, 32, 32, iv2);	\
538 }
539 
540 #define	BP_GET_REWRITE(bp)			\
541 	(BP_IS_EMBEDDED(bp) ? 0 : BF64_GET((bp)->blk_prop2, 63, 1))
542 
543 #define	BP_SET_REWRITE(bp, x)			\
544 {						\
545 	ASSERT(!BP_IS_EMBEDDED(bp));		\
546 	BF64_SET((bp)->blk_prop2, 63, 1, x);	\
547 }
548 
549 #define	BP_IS_METADATA(bp)	\
550 	(BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
551 
552 #define	BP_GET_ASIZE(bp)	\
553 	(BP_IS_EMBEDDED(bp) ? 0 : \
554 	DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
555 	DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
556 	(DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))
557 
558 #define	BP_GET_UCSIZE(bp)	\
559 	(BP_IS_METADATA(bp) ? BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp))
560 
561 #define	BP_GET_NDVAS(bp)	\
562 	(BP_IS_EMBEDDED(bp) ? 0 : \
563 	!!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
564 	!!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
565 	(!!DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))
566 
567 #define	BP_COUNT_GANG(bp)	\
568 	(BP_IS_EMBEDDED(bp) ? 0 : \
569 	(DVA_GET_GANG(&(bp)->blk_dva[0]) + \
570 	DVA_GET_GANG(&(bp)->blk_dva[1]) + \
571 	(DVA_GET_GANG(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp))))
572 
573 #define	DVA_EQUAL(dva1, dva2)	\
574 	((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
575 	(dva1)->dva_word[0] == (dva2)->dva_word[0])
576 
577 #define	BP_EQUAL(bp1, bp2)	\
578 	(BP_GET_PHYSICAL_BIRTH(bp1) == BP_GET_PHYSICAL_BIRTH(bp2) &&	\
579 	BP_GET_LOGICAL_BIRTH(bp1) == BP_GET_LOGICAL_BIRTH(bp2) &&	\
580 	DVA_EQUAL(&(bp1)->blk_dva[0], &(bp2)->blk_dva[0]) &&	\
581 	DVA_EQUAL(&(bp1)->blk_dva[1], &(bp2)->blk_dva[1]) &&	\
582 	DVA_EQUAL(&(bp1)->blk_dva[2], &(bp2)->blk_dva[2]))
583 
584 
585 #define	DVA_IS_VALID(dva)	(DVA_GET_ASIZE(dva) != 0)
586 
587 #define	BP_IDENTITY(bp)		(ASSERT(!BP_IS_EMBEDDED(bp)), &(bp)->blk_dva[0])
588 #define	BP_IS_GANG(bp)		\
589 	(BP_IS_EMBEDDED(bp) ? B_FALSE : DVA_GET_GANG(BP_IDENTITY(bp)))
590 #define	DVA_IS_EMPTY(dva)	((dva)->dva_word[0] == 0ULL &&	\
591 				(dva)->dva_word[1] == 0ULL)
592 #define	BP_IS_HOLE(bp) \
593 	(!BP_IS_EMBEDDED(bp) && DVA_IS_EMPTY(BP_IDENTITY(bp)))
594 
595 #define	BP_SET_REDACTED(bp) \
596 {							\
597 	BP_SET_EMBEDDED(bp, B_TRUE);			\
598 	BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_REDACTED);	\
599 }
600 #define	BP_IS_REDACTED(bp) \
601 	(BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_REDACTED)
602 
603 /* BP_IS_RAIDZ(bp) assumes no block compression */
604 #define	BP_IS_RAIDZ(bp)		(DVA_GET_ASIZE(&(bp)->blk_dva[0]) > \
605 				BP_GET_PSIZE(bp))
606 
607 #define	BP_ZERO_DVAS(bp)			\
608 {						\
609 	(bp)->blk_dva[0].dva_word[0] = 0;	\
610 	(bp)->blk_dva[0].dva_word[1] = 0;	\
611 	(bp)->blk_dva[1].dva_word[0] = 0;	\
612 	(bp)->blk_dva[1].dva_word[1] = 0;	\
613 	(bp)->blk_dva[2].dva_word[0] = 0;	\
614 	(bp)->blk_dva[2].dva_word[1] = 0;	\
615 }
616 
617 #define	BP_ZERO(bp)				\
618 {						\
619 	BP_ZERO_DVAS(bp);			\
620 	(bp)->blk_prop = 0;			\
621 	(bp)->blk_prop2 = 0;			\
622 	(bp)->blk_pad = 0;			\
623 	(bp)->blk_birth_word[0] = 0;		\
624 	(bp)->blk_birth_word[1] = 0;		\
625 	(bp)->blk_fill = 0;			\
626 	ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0);	\
627 }
628 
629 #ifdef _ZFS_BIG_ENDIAN
630 #define	ZFS_HOST_BYTEORDER	(0ULL)
631 #else
632 #define	ZFS_HOST_BYTEORDER	(1ULL)
633 #endif
634 
635 #define	BP_SHOULD_BYTESWAP(bp)	(BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER)
636 
637 #define	BP_SPRINTF_LEN	400
638 
639 /*
640  * This macro allows code sharing between zfs, libzpool, and mdb.
641  * 'func' is either kmem_scnprintf() or mdb_snprintf().
642  * 'ws' (whitespace) can be ' ' for single-line format, '\n' for multi-line.
643  */
644 
645 #define	SNPRINTF_BLKPTR(func, ws, buf, size, bp, type, checksum, compress) \
646 {									\
647 	static const char *const copyname[] =				\
648 	    { "zero", "single", "double", "triple" };			\
649 	int len = 0;							\
650 	int copies = 0;							\
651 	const char *crypt_type;						\
652 	if (bp != NULL) {						\
653 		if (BP_IS_ENCRYPTED(bp)) {				\
654 			crypt_type = "encrypted";			\
655 			/* LINTED E_SUSPICIOUS_COMPARISON */		\
656 		} else if (BP_IS_AUTHENTICATED(bp)) {			\
657 			crypt_type = "authenticated";			\
658 		} else if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {		\
659 			crypt_type = "indirect-MAC";			\
660 		} else {						\
661 			crypt_type = "unencrypted";			\
662 		}							\
663 	}								\
664 	if (bp == NULL) {						\
665 		len += func(buf + len, size - len, "<NULL>");		\
666 	} else if (BP_IS_HOLE(bp)) {					\
667 		len += func(buf + len, size - len,			\
668 		    "HOLE [L%llu %s] "					\
669 		    "size=%llxL birth=%lluL",				\
670 		    (u_longlong_t)BP_GET_LEVEL(bp),			\
671 		    type,						\
672 		    (u_longlong_t)BP_GET_LSIZE(bp),			\
673 		    (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp));		\
674 	} else if (BP_IS_EMBEDDED(bp)) {				\
675 		len = func(buf + len, size - len,			\
676 		    "EMBEDDED [L%llu %s] et=%u %s "			\
677 		    "size=%llxL/%llxP birth=%lluL",			\
678 		    (u_longlong_t)BP_GET_LEVEL(bp),			\
679 		    type,						\
680 		    (int)BPE_GET_ETYPE(bp),				\
681 		    compress,						\
682 		    (u_longlong_t)BPE_GET_LSIZE(bp),			\
683 		    (u_longlong_t)BPE_GET_PSIZE(bp),			\
684 		    (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp));		\
685 	} else if (BP_IS_REDACTED(bp)) {				\
686 		len += func(buf + len, size - len,			\
687 		    "REDACTED [L%llu %s] size=%llxL birth=%lluL",	\
688 		    (u_longlong_t)BP_GET_LEVEL(bp),			\
689 		    type,						\
690 		    (u_longlong_t)BP_GET_LSIZE(bp),			\
691 		    (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp));		\
692 	} else {							\
693 		for (int d = 0; d < BP_GET_NDVAS(bp); d++) {		\
694 			const dva_t *dva = &bp->blk_dva[d];		\
695 			if (DVA_IS_VALID(dva))				\
696 				copies++;				\
697 			len += func(buf + len, size - len,		\
698 			    "DVA[%d]=<%llu:%llx:%llx>%c", d,		\
699 			    (u_longlong_t)DVA_GET_VDEV(dva),		\
700 			    (u_longlong_t)DVA_GET_OFFSET(dva),		\
701 			    (u_longlong_t)DVA_GET_ASIZE(dva),		\
702 			    ws);					\
703 		}							\
704 		if (BP_IS_ENCRYPTED(bp)) {				\
705 			len += func(buf + len, size - len,		\
706 			    "salt=%llx iv=%llx:%llx%c",			\
707 			    (u_longlong_t)bp->blk_dva[2].dva_word[0],	\
708 			    (u_longlong_t)bp->blk_dva[2].dva_word[1],	\
709 			    (u_longlong_t)BP_GET_IV2(bp),		\
710 			    ws);					\
711 		}							\
712 		len += func(buf + len, size - len,			\
713 		    "[L%llu %s] %s %s %s %s %s %s %s%c"			\
714 		    "size=%llxL/%llxP birth=%lluL/%lluP fill=%llu%c"	\
715 		    "cksum=%016llx:%016llx:%016llx:%016llx",		\
716 		    (u_longlong_t)BP_GET_LEVEL(bp),			\
717 		    type,						\
718 		    checksum,						\
719 		    compress,						\
720 		    crypt_type,						\
721 		    BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",		\
722 		    BP_IS_GANG(bp) ? "gang" : "contiguous",		\
723 		    BP_GET_DEDUP(bp) ? "dedup" : "unique",		\
724 		    copyname[copies],					\
725 		    ws,							\
726 		    (u_longlong_t)BP_GET_LSIZE(bp),			\
727 		    (u_longlong_t)BP_GET_PSIZE(bp),			\
728 		    (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp),		\
729 		    (u_longlong_t)BP_GET_PHYSICAL_BIRTH(bp),		\
730 		    (u_longlong_t)BP_GET_FILL(bp),			\
731 		    ws,							\
732 		    (u_longlong_t)bp->blk_cksum.zc_word[0],		\
733 		    (u_longlong_t)bp->blk_cksum.zc_word[1],		\
734 		    (u_longlong_t)bp->blk_cksum.zc_word[2],		\
735 		    (u_longlong_t)bp->blk_cksum.zc_word[3]);		\
736 	}								\
737 	ASSERT(len < size);						\
738 }
739 
740 #define	BP_GET_BUFC_TYPE(bp)						\
741 	(BP_IS_METADATA(bp) ? ARC_BUFC_METADATA : ARC_BUFC_DATA)
742 
743 typedef enum spa_import_type {
744 	SPA_IMPORT_EXISTING,
745 	SPA_IMPORT_ASSEMBLE
746 } spa_import_type_t;
747 
748 typedef enum spa_mode {
749 	SPA_MODE_UNINIT = 0,
750 	SPA_MODE_READ = 1,
751 	SPA_MODE_WRITE = 2,
752 } spa_mode_t;
753 
754 /*
755  * Send TRIM commands in-line during normal pool operation while deleting.
756  *	OFF: no
757  *	ON: yes
758  */
759 typedef enum {
760 	SPA_AUTOTRIM_OFF = 0,	/* default */
761 	SPA_AUTOTRIM_ON,
762 } spa_autotrim_t;
763 
764 /*
765  * Reason TRIM command was issued, used internally for accounting purposes.
766  */
767 typedef enum trim_type {
768 	TRIM_TYPE_MANUAL = 0,
769 	TRIM_TYPE_AUTO = 1,
770 	TRIM_TYPE_SIMPLE = 2
771 } trim_type_t;
772 
773 /* state manipulation functions */
774 extern int spa_open(const char *pool, spa_t **, const void *tag);
775 extern int spa_open_rewind(const char *pool, spa_t **, const void *tag,
776     nvlist_t *policy, nvlist_t **config);
777 extern int spa_get_stats(const char *pool, nvlist_t **config, char *altroot,
778     size_t buflen);
779 extern int spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
780     nvlist_t *zplprops, struct dsl_crypto_params *dcp);
781 extern int spa_import(char *pool, nvlist_t *config, nvlist_t *props,
782     uint64_t flags);
783 extern nvlist_t *spa_tryimport(nvlist_t *tryconfig);
784 extern int spa_destroy(const char *pool);
785 extern int spa_checkpoint(const char *pool);
786 extern int spa_checkpoint_discard(const char *pool);
787 extern int spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
788     boolean_t hardforce);
789 extern int spa_reset(const char *pool);
790 extern void spa_async_request(spa_t *spa, int flag);
791 extern void spa_async_unrequest(spa_t *spa, int flag);
792 extern void spa_async_suspend(spa_t *spa);
793 extern void spa_async_resume(spa_t *spa);
794 extern int spa_async_tasks(spa_t *spa);
795 extern spa_t *spa_inject_addref(char *pool);
796 extern void spa_inject_delref(spa_t *spa);
797 extern void spa_scan_stat_init(spa_t *spa);
798 extern int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps);
799 extern int bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx);
800 extern int bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx);
801 
802 #define	SPA_ASYNC_CONFIG_UPDATE			0x01
803 #define	SPA_ASYNC_REMOVE			0x02
804 #define	SPA_ASYNC_FAULT_VDEV			0x04
805 #define	SPA_ASYNC_RESILVER_DONE			0x08
806 #define	SPA_ASYNC_RESILVER			0x10
807 #define	SPA_ASYNC_AUTOEXPAND			0x20
808 #define	SPA_ASYNC_REMOVE_DONE			0x40
809 #define	SPA_ASYNC_REMOVE_STOP			0x80
810 #define	SPA_ASYNC_INITIALIZE_RESTART		0x100
811 #define	SPA_ASYNC_TRIM_RESTART			0x200
812 #define	SPA_ASYNC_AUTOTRIM_RESTART		0x400
813 #define	SPA_ASYNC_L2CACHE_REBUILD		0x800
814 #define	SPA_ASYNC_L2CACHE_TRIM			0x1000
815 #define	SPA_ASYNC_REBUILD_DONE			0x2000
816 #define	SPA_ASYNC_DETACH_SPARE			0x4000
817 #define	SPA_ASYNC_REMOVE_BY_USER		0x8000
818 
819 /* device manipulation */
820 extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t ashift_check);
821 extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot,
822     int replacing, int rebuild);
823 extern int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid,
824     int replace_done);
825 extern int spa_vdev_alloc(spa_t *spa, uint64_t guid);
826 extern int spa_vdev_noalloc(spa_t *spa, uint64_t guid);
827 extern boolean_t spa_vdev_remove_active(spa_t *spa);
828 extern int spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
829     nvlist_t *vdev_errlist);
830 extern int spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
831     uint64_t rate, boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist);
832 extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath);
833 extern int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru);
834 extern int spa_vdev_split_mirror(spa_t *spa, const char *newname,
835     nvlist_t *config, nvlist_t *props, boolean_t exp);
836 
837 /* spare state (which is global across all pools) */
838 extern void spa_spare_add(vdev_t *vd);
839 extern void spa_spare_remove(vdev_t *vd);
840 extern boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt);
841 extern void spa_spare_activate(vdev_t *vd);
842 
843 /* L2ARC state (which is global across all pools) */
844 extern void spa_l2cache_add(vdev_t *vd);
845 extern void spa_l2cache_remove(vdev_t *vd);
846 extern boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool);
847 extern void spa_l2cache_activate(vdev_t *vd);
848 extern void spa_l2cache_drop(spa_t *spa);
849 
850 /* scanning */
851 extern int spa_scan(spa_t *spa, pool_scan_func_t func);
852 extern int spa_scan_range(spa_t *spa, pool_scan_func_t func, uint64_t txgstart,
853     uint64_t txgend);
854 extern int spa_scan_stop(spa_t *spa);
855 extern int spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t flag);
856 
857 /* spa syncing */
858 extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMU use */
859 extern void spa_sync_allpools(void);
860 
861 extern uint_t zfs_sync_pass_deferred_free;
862 
863 /* spa sync taskqueues */
864 taskq_t *spa_sync_tq_create(spa_t *spa, const char *name);
865 void spa_sync_tq_destroy(spa_t *spa);
866 uint_t spa_acq_allocator(spa_t *spa);
867 void spa_rel_allocator(spa_t *spa, uint_t allocator);
868 void spa_select_allocator(zio_t *zio);
869 
870 /* spa namespace global mutex */
871 extern kmutex_t spa_namespace_lock;
872 extern avl_tree_t spa_namespace_avl;
873 extern kcondvar_t spa_namespace_cv;
874 
875 /*
876  * SPA configuration functions in spa_config.c
877  */
878 
879 #define	SPA_CONFIG_UPDATE_POOL	0
880 #define	SPA_CONFIG_UPDATE_VDEVS	1
881 
882 extern void spa_write_cachefile(spa_t *, boolean_t, boolean_t, boolean_t);
883 extern int spa_all_configs(uint64_t *generation, nvlist_t **pools);
884 extern void spa_config_set(spa_t *spa, nvlist_t *config);
885 extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg,
886     int getstats);
887 extern void spa_config_update(spa_t *spa, int what);
888 extern int spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv,
889     vdev_t *parent, uint_t id, int atype);
890 
891 
892 /*
893  * Miscellaneous SPA routines in spa_misc.c
894  */
895 
896 /* Namespace manipulation */
897 extern spa_t *spa_lookup(const char *name);
898 extern spa_t *spa_add(const char *name, nvlist_t *config, const char *altroot);
899 extern void spa_remove(spa_t *spa);
900 extern spa_t *spa_next(spa_t *prev);
901 
902 /* Refcount functions */
903 extern void spa_open_ref(spa_t *spa, const void *tag);
904 extern void spa_close(spa_t *spa, const void *tag);
905 extern void spa_async_close(spa_t *spa, const void *tag);
906 extern boolean_t spa_refcount_zero(spa_t *spa);
907 
908 #define	SCL_NONE	0x00
909 #define	SCL_CONFIG	0x01
910 #define	SCL_STATE	0x02
911 #define	SCL_L2ARC	0x04		/* hack until L2ARC 2.0 */
912 #define	SCL_ALLOC	0x08
913 #define	SCL_ZIO		0x10
914 #define	SCL_FREE	0x20
915 #define	SCL_VDEV	0x40
916 #define	SCL_LOCKS	7
917 #define	SCL_ALL		((1 << SCL_LOCKS) - 1)
918 #define	SCL_STATE_ALL	(SCL_STATE | SCL_L2ARC | SCL_ZIO)
919 
920 /* Historical pool statistics */
921 typedef struct spa_history_kstat {
922 	kmutex_t		lock;
923 	uint64_t		count;
924 	uint64_t		size;
925 	kstat_t			*kstat;
926 	void			*priv;
927 	list_t			list;
928 } spa_history_kstat_t;
929 
930 typedef struct spa_history_list {
931 	uint64_t		size;
932 	procfs_list_t		procfs_list;
933 } spa_history_list_t;
934 
935 typedef struct spa_stats {
936 	spa_history_list_t	read_history;
937 	spa_history_list_t	txg_history;
938 	spa_history_kstat_t	tx_assign_histogram;
939 	spa_history_list_t	mmp_history;
940 	spa_history_kstat_t	state;		/* pool state */
941 	spa_history_kstat_t	guid;		/* pool guid */
942 	spa_history_kstat_t	iostats;
943 } spa_stats_t;
944 
945 typedef enum txg_state {
946 	TXG_STATE_BIRTH		= 0,
947 	TXG_STATE_OPEN		= 1,
948 	TXG_STATE_QUIESCED	= 2,
949 	TXG_STATE_WAIT_FOR_SYNC	= 3,
950 	TXG_STATE_SYNCED	= 4,
951 	TXG_STATE_COMMITTED	= 5,
952 } txg_state_t;
953 
954 typedef struct txg_stat {
955 	vdev_stat_t		vs1;
956 	vdev_stat_t		vs2;
957 	uint64_t		txg;
958 	uint64_t		ndirty;
959 } txg_stat_t;
960 
961 /* Assorted pool IO kstats */
962 typedef struct spa_iostats {
963 	kstat_named_t	trim_extents_written;
964 	kstat_named_t	trim_bytes_written;
965 	kstat_named_t	trim_extents_skipped;
966 	kstat_named_t	trim_bytes_skipped;
967 	kstat_named_t	trim_extents_failed;
968 	kstat_named_t	trim_bytes_failed;
969 	kstat_named_t	autotrim_extents_written;
970 	kstat_named_t	autotrim_bytes_written;
971 	kstat_named_t	autotrim_extents_skipped;
972 	kstat_named_t	autotrim_bytes_skipped;
973 	kstat_named_t	autotrim_extents_failed;
974 	kstat_named_t	autotrim_bytes_failed;
975 	kstat_named_t	simple_trim_extents_written;
976 	kstat_named_t	simple_trim_bytes_written;
977 	kstat_named_t	simple_trim_extents_skipped;
978 	kstat_named_t	simple_trim_bytes_skipped;
979 	kstat_named_t	simple_trim_extents_failed;
980 	kstat_named_t	simple_trim_bytes_failed;
981 	kstat_named_t	arc_read_count;
982 	kstat_named_t	arc_read_bytes;
983 	kstat_named_t	arc_write_count;
984 	kstat_named_t	arc_write_bytes;
985 	kstat_named_t	direct_read_count;
986 	kstat_named_t	direct_read_bytes;
987 	kstat_named_t	direct_write_count;
988 	kstat_named_t	direct_write_bytes;
989 } spa_iostats_t;
990 
991 extern void spa_stats_init(spa_t *spa);
992 extern void spa_stats_destroy(spa_t *spa);
993 extern void spa_read_history_add(spa_t *spa, const zbookmark_phys_t *zb,
994     uint32_t aflags);
995 extern void spa_txg_history_add(spa_t *spa, uint64_t txg, hrtime_t birth_time);
996 extern int spa_txg_history_set(spa_t *spa,  uint64_t txg,
997     txg_state_t completed_state, hrtime_t completed_time);
998 extern txg_stat_t *spa_txg_history_init_io(spa_t *, uint64_t,
999     struct dsl_pool *);
1000 extern void spa_txg_history_fini_io(spa_t *, txg_stat_t *);
1001 extern void spa_tx_assign_add_nsecs(spa_t *spa, uint64_t nsecs);
1002 extern int spa_mmp_history_set_skip(spa_t *spa, uint64_t mmp_kstat_id);
1003 extern int spa_mmp_history_set(spa_t *spa, uint64_t mmp_kstat_id, int io_error,
1004     hrtime_t duration);
1005 extern void spa_mmp_history_add(spa_t *spa, uint64_t txg, uint64_t timestamp,
1006     uint64_t mmp_delay, vdev_t *vd, int label, uint64_t mmp_kstat_id,
1007     int error);
1008 extern void spa_iostats_trim_add(spa_t *spa, trim_type_t type,
1009     uint64_t extents_written, uint64_t bytes_written,
1010     uint64_t extents_skipped, uint64_t bytes_skipped,
1011     uint64_t extents_failed, uint64_t bytes_failed);
1012 extern void spa_iostats_read_add(spa_t *spa, uint64_t size, uint64_t iops,
1013     dmu_flags_t flags);
1014 extern void spa_iostats_write_add(spa_t *spa, uint64_t size, uint64_t iops,
1015     dmu_flags_t flags);
1016 extern void spa_import_progress_add(spa_t *spa);
1017 extern void spa_import_progress_remove(uint64_t spa_guid);
1018 extern int spa_import_progress_set_mmp_check(uint64_t pool_guid,
1019     uint64_t mmp_sec_remaining);
1020 extern int spa_import_progress_set_max_txg(uint64_t pool_guid,
1021     uint64_t max_txg);
1022 extern int spa_import_progress_set_state(uint64_t pool_guid,
1023     spa_load_state_t spa_load_state);
1024 extern void spa_import_progress_set_notes(spa_t *spa,
1025     const char *fmt, ...) __printflike(2, 3);
1026 extern void spa_import_progress_set_notes_nolog(spa_t *spa,
1027     const char *fmt, ...) __printflike(2, 3);
1028 
1029 /* Pool configuration locks */
1030 extern int spa_config_tryenter(spa_t *spa, int locks, const void *tag,
1031     krw_t rw);
1032 extern void spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw);
1033 extern void spa_config_enter_mmp(spa_t *spa, int locks, const void *tag,
1034     krw_t rw);
1035 extern void spa_config_exit(spa_t *spa, int locks, const void *tag);
1036 extern int spa_config_held(spa_t *spa, int locks, krw_t rw);
1037 
1038 /* Pool vdev add/remove lock */
1039 extern uint64_t spa_vdev_enter(spa_t *spa);
1040 extern uint64_t spa_vdev_detach_enter(spa_t *spa, uint64_t guid);
1041 extern uint64_t spa_vdev_config_enter(spa_t *spa);
1042 extern void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg,
1043     int error, const char *tag);
1044 extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error);
1045 
1046 /* Pool vdev state change lock */
1047 extern void spa_vdev_state_enter(spa_t *spa, int oplock);
1048 extern int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error);
1049 
1050 /* Log state */
1051 typedef enum spa_log_state {
1052 	SPA_LOG_UNKNOWN = 0,	/* unknown log state */
1053 	SPA_LOG_MISSING,	/* missing log(s) */
1054 	SPA_LOG_CLEAR,		/* clear the log(s) */
1055 	SPA_LOG_GOOD,		/* log(s) are good */
1056 } spa_log_state_t;
1057 
1058 extern spa_log_state_t spa_get_log_state(spa_t *spa);
1059 extern void spa_set_log_state(spa_t *spa, spa_log_state_t state);
1060 extern int spa_reset_logs(spa_t *spa);
1061 
1062 /* Log claim callback */
1063 extern void spa_claim_notify(zio_t *zio);
1064 extern void spa_deadman(void *);
1065 
1066 /* Accessor functions */
1067 extern boolean_t spa_shutting_down(spa_t *spa);
1068 extern struct dsl_pool *spa_get_dsl(spa_t *spa);
1069 extern boolean_t spa_is_initializing(spa_t *spa);
1070 extern boolean_t spa_indirect_vdevs_loaded(spa_t *spa);
1071 extern blkptr_t *spa_get_rootblkptr(spa_t *spa);
1072 extern void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp);
1073 extern void spa_altroot(spa_t *, char *, size_t);
1074 extern uint32_t spa_sync_pass(spa_t *spa);
1075 extern char *spa_name(spa_t *spa);
1076 extern uint64_t spa_guid(spa_t *spa);
1077 extern uint64_t spa_load_guid(spa_t *spa);
1078 extern uint64_t spa_last_synced_txg(spa_t *spa);
1079 extern uint64_t spa_first_txg(spa_t *spa);
1080 extern uint64_t spa_syncing_txg(spa_t *spa);
1081 extern uint64_t spa_final_dirty_txg(spa_t *spa);
1082 extern uint64_t spa_version(spa_t *spa);
1083 extern pool_state_t spa_state(spa_t *spa);
1084 extern spa_load_state_t spa_load_state(spa_t *spa);
1085 extern uint64_t spa_freeze_txg(spa_t *spa);
1086 extern uint64_t spa_get_worst_case_asize(spa_t *spa, uint64_t lsize);
1087 extern uint64_t spa_get_dspace(spa_t *spa);
1088 extern uint64_t spa_get_checkpoint_space(spa_t *spa);
1089 extern uint64_t spa_get_slop_space(spa_t *spa);
1090 extern void spa_update_dspace(spa_t *spa);
1091 extern uint64_t spa_version(spa_t *spa);
1092 extern boolean_t spa_deflate(spa_t *spa);
1093 extern metaslab_class_t *spa_normal_class(spa_t *spa);
1094 extern metaslab_class_t *spa_log_class(spa_t *spa);
1095 extern metaslab_class_t *spa_embedded_log_class(spa_t *spa);
1096 extern metaslab_class_t *spa_special_class(spa_t *spa);
1097 extern metaslab_class_t *spa_special_embedded_log_class(spa_t *spa);
1098 extern metaslab_class_t *spa_dedup_class(spa_t *spa);
1099 extern metaslab_class_t *spa_preferred_class(spa_t *spa, const zio_t *zio);
1100 extern boolean_t spa_special_has_ddt(spa_t *spa);
1101 
1102 extern void spa_evicting_os_register(spa_t *, objset_t *os);
1103 extern void spa_evicting_os_deregister(spa_t *, objset_t *os);
1104 extern void spa_evicting_os_wait(spa_t *spa);
1105 extern int spa_max_replication(spa_t *spa);
1106 extern int spa_prev_software_version(spa_t *spa);
1107 extern uint64_t spa_get_failmode(spa_t *spa);
1108 extern uint64_t spa_get_deadman_failmode(spa_t *spa);
1109 extern void spa_set_deadman_failmode(spa_t *spa, const char *failmode);
1110 extern boolean_t spa_suspended(spa_t *spa);
1111 extern uint64_t spa_bootfs(spa_t *spa);
1112 extern uint64_t spa_get_last_scrubbed_txg(spa_t *spa);
1113 extern uint64_t spa_delegation(spa_t *spa);
1114 extern objset_t *spa_meta_objset(spa_t *spa);
1115 extern space_map_t *spa_syncing_log_sm(spa_t *spa);
1116 extern uint64_t spa_deadman_synctime(spa_t *spa);
1117 extern uint64_t spa_deadman_ziotime(spa_t *spa);
1118 extern uint64_t spa_dirty_data(spa_t *spa);
1119 extern spa_autotrim_t spa_get_autotrim(spa_t *spa);
1120 extern int spa_get_allocator(spa_t *spa);
1121 extern void spa_set_allocator(spa_t *spa, const char *allocator);
1122 
1123 /* Miscellaneous support routines */
1124 extern void spa_load_failed(spa_t *spa, const char *fmt, ...)
1125     __attribute__((format(printf, 2, 3)));
1126 extern void spa_load_note(spa_t *spa, const char *fmt, ...)
1127     __attribute__((format(printf, 2, 3)));
1128 extern void spa_activate_mos_feature(spa_t *spa, const char *feature,
1129     dmu_tx_t *tx);
1130 extern void spa_deactivate_mos_feature(spa_t *spa, const char *feature);
1131 extern spa_t *spa_by_guid(uint64_t pool_guid, uint64_t device_guid);
1132 extern boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid);
1133 extern char *spa_strdup(const char *);
1134 extern void spa_strfree(char *);
1135 extern uint64_t spa_generate_guid(spa_t *spa);
1136 extern uint64_t spa_generate_load_guid(void);
1137 extern void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp);
1138 extern void spa_freeze(spa_t *spa);
1139 extern int spa_change_guid(spa_t *spa, const uint64_t *guidp);
1140 extern void spa_upgrade(spa_t *spa, uint64_t version);
1141 extern void spa_evict_all(void);
1142 extern vdev_t *spa_lookup_by_guid(spa_t *spa, uint64_t guid,
1143     boolean_t l2cache);
1144 extern boolean_t spa_has_l2cache(spa_t *, uint64_t guid);
1145 extern boolean_t spa_has_spare(spa_t *, uint64_t guid);
1146 extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva);
1147 extern uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp);
1148 extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp);
1149 extern boolean_t spa_has_dedup(spa_t *spa);
1150 extern boolean_t spa_has_slogs(spa_t *spa);
1151 extern boolean_t spa_has_special(spa_t *spa);
1152 extern boolean_t spa_is_root(spa_t *spa);
1153 extern boolean_t spa_writeable(spa_t *spa);
1154 extern boolean_t spa_has_pending_synctask(spa_t *spa);
1155 extern int spa_maxblocksize(spa_t *spa);
1156 extern int spa_maxdnodesize(spa_t *spa);
1157 extern boolean_t spa_has_checkpoint(spa_t *spa);
1158 extern boolean_t spa_importing_readonly_checkpoint(spa_t *spa);
1159 extern boolean_t spa_suspend_async_destroy(spa_t *spa);
1160 extern uint64_t spa_min_claim_txg(spa_t *spa);
1161 extern boolean_t zfs_dva_valid(spa_t *spa, const dva_t *dva,
1162     const blkptr_t *bp);
1163 typedef void (*spa_remap_cb_t)(uint64_t vdev, uint64_t offset, uint64_t size,
1164     void *arg);
1165 extern boolean_t spa_remap_blkptr(spa_t *spa, blkptr_t *bp,
1166     spa_remap_cb_t callback, void *arg);
1167 extern uint64_t spa_get_last_removal_txg(spa_t *spa);
1168 extern boolean_t spa_trust_config(spa_t *spa);
1169 extern uint64_t spa_missing_tvds_allowed(spa_t *spa);
1170 extern void spa_set_missing_tvds(spa_t *spa, uint64_t missing);
1171 extern boolean_t spa_top_vdevs_spacemap_addressable(spa_t *spa);
1172 extern uint64_t spa_total_metaslabs(spa_t *spa);
1173 extern boolean_t spa_multihost(spa_t *spa);
1174 extern uint32_t spa_get_hostid(spa_t *spa);
1175 extern void spa_activate_allocation_classes(spa_t *, dmu_tx_t *);
1176 extern boolean_t spa_livelist_delete_check(spa_t *spa);
1177 
1178 extern boolean_t spa_mmp_remote_host_activity(spa_t *spa);
1179 
1180 extern spa_mode_t spa_mode(spa_t *spa);
1181 extern uint64_t zfs_strtonum(const char *str, char **nptr);
1182 
1183 extern char *spa_his_ievent_table[];
1184 
1185 extern void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx);
1186 extern int spa_history_get(spa_t *spa, uint64_t *offset, uint64_t *len_read,
1187     char *his_buf);
1188 extern int spa_history_log(spa_t *spa, const char *his_buf);
1189 extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl);
1190 extern void spa_history_log_version(spa_t *spa, const char *operation,
1191     dmu_tx_t *tx);
1192 extern void spa_history_log_internal(spa_t *spa, const char *operation,
1193     dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5);
1194 extern void spa_history_log_internal_ds(struct dsl_dataset *ds, const char *op,
1195     dmu_tx_t *tx, const char *fmt, ...)  __printflike(4, 5);
1196 extern void spa_history_log_internal_dd(dsl_dir_t *dd, const char *operation,
1197     dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5);
1198 
1199 extern const char *spa_state_to_name(spa_t *spa);
1200 
1201 /* error handling */
1202 struct zbookmark_phys;
1203 extern void spa_log_error(spa_t *spa, const zbookmark_phys_t *zb,
1204     const uint64_t birth);
1205 extern void spa_remove_error(spa_t *spa, zbookmark_phys_t *zb,
1206     uint64_t birth);
1207 extern int zfs_ereport_post(const char *clazz, spa_t *spa, vdev_t *vd,
1208     const zbookmark_phys_t *zb, zio_t *zio, uint64_t state);
1209 extern boolean_t zfs_ereport_is_valid(const char *clazz, spa_t *spa, vdev_t *vd,
1210     zio_t *zio);
1211 extern void zfs_ereport_taskq_fini(void);
1212 extern void zfs_ereport_clear(spa_t *spa, vdev_t *vd);
1213 extern nvlist_t *zfs_event_create(spa_t *spa, vdev_t *vd, const char *type,
1214     const char *name, nvlist_t *aux);
1215 extern void zfs_post_remove(spa_t *spa, vdev_t *vd, boolean_t by_kernel);
1216 extern void zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate);
1217 extern void zfs_post_autoreplace(spa_t *spa, vdev_t *vd);
1218 extern uint64_t spa_approx_errlog_size(spa_t *spa);
1219 extern int spa_get_errlog(spa_t *spa, void *uaddr, uint64_t *count);
1220 extern uint64_t spa_get_last_errlog_size(spa_t *spa);
1221 extern void spa_errlog_rotate(spa_t *spa);
1222 extern void spa_errlog_drain(spa_t *spa);
1223 extern void spa_errlog_sync(spa_t *spa, uint64_t txg);
1224 extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub);
1225 extern void spa_delete_dataset_errlog(spa_t *spa, uint64_t ds, dmu_tx_t *tx);
1226 extern void spa_swap_errlog(spa_t *spa, uint64_t new_head_ds,
1227     uint64_t old_head_ds, dmu_tx_t *tx);
1228 extern void sync_error_list(spa_t *spa, avl_tree_t *t, uint64_t *obj,
1229     dmu_tx_t *tx);
1230 extern void spa_upgrade_errlog(spa_t *spa, dmu_tx_t *tx);
1231 extern int find_top_affected_fs(spa_t *spa, uint64_t head_ds,
1232     zbookmark_err_phys_t *zep, uint64_t *top_affected_fs);
1233 extern int find_birth_txg(struct dsl_dataset *ds, zbookmark_err_phys_t *zep,
1234     uint64_t *birth_txg);
1235 extern void zep_to_zb(uint64_t dataset, zbookmark_err_phys_t *zep,
1236     zbookmark_phys_t *zb);
1237 extern void name_to_errphys(char *buf, zbookmark_err_phys_t *zep);
1238 
1239 /* vdev mirror */
1240 extern void vdev_mirror_stat_init(void);
1241 extern void vdev_mirror_stat_fini(void);
1242 
1243 /* Initialization and termination */
1244 extern void spa_init(spa_mode_t mode);
1245 extern void spa_fini(void);
1246 
1247 /* properties */
1248 extern int spa_prop_set(spa_t *spa, nvlist_t *nvp);
1249 extern int spa_prop_get(spa_t *spa, nvlist_t *nvp);
1250 extern int spa_prop_get_nvlist(spa_t *spa, char **props,
1251     unsigned int n_props, nvlist_t *outnvl);
1252 extern void spa_prop_clear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx);
1253 extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t);
1254 
1255 /* asynchronous event notification */
1256 extern void spa_event_notify(spa_t *spa, vdev_t *vdev, nvlist_t *hist_nvl,
1257     const char *name);
1258 extern void zfs_ereport_zvol_post(const char *subclass, const char *name,
1259     const char *device_name, const char *raw_name);
1260 
1261 /* waiting for pool activities to complete */
1262 extern int spa_wait(const char *pool, zpool_wait_activity_t activity,
1263     boolean_t *waited);
1264 extern int spa_wait_tag(const char *name, zpool_wait_activity_t activity,
1265     uint64_t tag, boolean_t *waited);
1266 extern void spa_notify_waiters(spa_t *spa);
1267 extern void spa_wake_waiters(spa_t *spa);
1268 
1269 extern void spa_import_os(spa_t *spa);
1270 extern void spa_export_os(spa_t *spa);
1271 extern void spa_activate_os(spa_t *spa);
1272 extern void spa_deactivate_os(spa_t *spa);
1273 
1274 /* module param call functions */
1275 int param_set_deadman_ziotime(ZFS_MODULE_PARAM_ARGS);
1276 int param_set_deadman_synctime(ZFS_MODULE_PARAM_ARGS);
1277 int param_set_slop_shift(ZFS_MODULE_PARAM_ARGS);
1278 int param_set_deadman_failmode(ZFS_MODULE_PARAM_ARGS);
1279 int param_set_active_allocator(ZFS_MODULE_PARAM_ARGS);
1280 
1281 #ifdef ZFS_DEBUG
1282 #define	dprintf_bp(bp, fmt, ...) do {				\
1283 	if (zfs_flags & ZFS_DEBUG_DPRINTF) {			\
1284 	char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP);	\
1285 	snprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, (bp));	\
1286 	dprintf(fmt " %s\n", __VA_ARGS__, __blkbuf);		\
1287 	kmem_free(__blkbuf, BP_SPRINTF_LEN);			\
1288 	} \
1289 } while (0)
1290 #else
1291 #define	dprintf_bp(bp, fmt, ...)
1292 #endif
1293 
1294 extern spa_mode_t spa_mode_global;
1295 extern int zfs_deadman_enabled;
1296 extern uint64_t zfs_deadman_synctime_ms;
1297 extern uint64_t zfs_deadman_ziotime_ms;
1298 extern uint64_t zfs_deadman_checktime_ms;
1299 
1300 extern kmem_cache_t *zio_buf_cache[];
1301 extern kmem_cache_t *zio_data_buf_cache[];
1302 
1303 #ifdef	__cplusplus
1304 }
1305 #endif
1306 
1307 #endif	/* _SYS_SPA_H */
1308