1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2017 Datto Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
31 * Copyright (c) 2023, 2024, Klara Inc.
32 */
33
34 #include <sys/zfs_context.h>
35 #include <sys/zfs_chksum.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/zio_compress.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/zap.h>
43 #include <sys/zil.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/vdev_initialize.h>
46 #include <sys/vdev_trim.h>
47 #include <sys/vdev_file.h>
48 #include <sys/vdev_raidz.h>
49 #include <sys/metaslab.h>
50 #include <sys/uberblock_impl.h>
51 #include <sys/txg.h>
52 #include <sys/avl.h>
53 #include <sys/unique.h>
54 #include <sys/dsl_pool.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/fm/util.h>
58 #include <sys/dsl_scan.h>
59 #include <sys/fs/zfs.h>
60 #include <sys/metaslab_impl.h>
61 #include <sys/arc.h>
62 #include <sys/brt.h>
63 #include <sys/ddt.h>
64 #include <sys/kstat.h>
65 #include "zfs_prop.h"
66 #include <sys/btree.h>
67 #include <sys/zfeature.h>
68 #include <sys/qat.h>
69 #include <sys/zstd/zstd.h>
70
71 /*
72 * SPA locking
73 *
74 * There are three basic locks for managing spa_t structures:
75 *
76 * spa_namespace_lock (global mutex)
77 *
78 * This lock must be acquired to do any of the following:
79 *
80 * - Lookup a spa_t by name
81 * - Add or remove a spa_t from the namespace
82 * - Increase spa_refcount from non-zero
83 * - Check if spa_refcount is zero
84 * - Rename a spa_t
85 * - add/remove/attach/detach devices
86 * - Held for the duration of create/destroy
87 * - Held at the start and end of import and export
88 *
89 * It does not need to handle recursion. A create or destroy may
90 * reference objects (files or zvols) in other pools, but by
91 * definition they must have an existing reference, and will never need
92 * to lookup a spa_t by name.
93 *
94 * spa_refcount (per-spa zfs_refcount_t protected by mutex)
95 *
96 * This reference count keep track of any active users of the spa_t. The
97 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
98 * the refcount is never really 'zero' - opening a pool implicitly keeps
99 * some references in the DMU. Internally we check against spa_minref, but
100 * present the image of a zero/non-zero value to consumers.
101 *
102 * spa_config_lock[] (per-spa array of rwlocks)
103 *
104 * This protects the spa_t from config changes, and must be held in
105 * the following circumstances:
106 *
107 * - RW_READER to perform I/O to the spa
108 * - RW_WRITER to change the vdev config
109 *
110 * The locking order is fairly straightforward:
111 *
112 * spa_namespace_lock -> spa_refcount
113 *
114 * The namespace lock must be acquired to increase the refcount from 0
115 * or to check if it is zero.
116 *
117 * spa_refcount -> spa_config_lock[]
118 *
119 * There must be at least one valid reference on the spa_t to acquire
120 * the config lock.
121 *
122 * spa_namespace_lock -> spa_config_lock[]
123 *
124 * The namespace lock must always be taken before the config lock.
125 *
126 *
127 * The spa_namespace_lock can be acquired directly and is globally visible.
128 *
129 * The namespace is manipulated using the following functions, all of which
130 * require the spa_namespace_lock to be held.
131 *
132 * spa_lookup() Lookup a spa_t by name.
133 *
134 * spa_add() Create a new spa_t in the namespace.
135 *
136 * spa_remove() Remove a spa_t from the namespace. This also
137 * frees up any memory associated with the spa_t.
138 *
139 * spa_next() Returns the next spa_t in the system, or the
140 * first if NULL is passed.
141 *
142 * spa_evict_all() Shutdown and remove all spa_t structures in
143 * the system.
144 *
145 * spa_guid_exists() Determine whether a pool/device guid exists.
146 *
147 * The spa_refcount is manipulated using the following functions:
148 *
149 * spa_open_ref() Adds a reference to the given spa_t. Must be
150 * called with spa_namespace_lock held if the
151 * refcount is currently zero.
152 *
153 * spa_close() Remove a reference from the spa_t. This will
154 * not free the spa_t or remove it from the
155 * namespace. No locking is required.
156 *
157 * spa_refcount_zero() Returns true if the refcount is currently
158 * zero. Must be called with spa_namespace_lock
159 * held.
160 *
161 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
162 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
163 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
164 *
165 * To read the configuration, it suffices to hold one of these locks as reader.
166 * To modify the configuration, you must hold all locks as writer. To modify
167 * vdev state without altering the vdev tree's topology (e.g. online/offline),
168 * you must hold SCL_STATE and SCL_ZIO as writer.
169 *
170 * We use these distinct config locks to avoid recursive lock entry.
171 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
172 * block allocations (SCL_ALLOC), which may require reading space maps
173 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
174 *
175 * The spa config locks cannot be normal rwlocks because we need the
176 * ability to hand off ownership. For example, SCL_ZIO is acquired
177 * by the issuing thread and later released by an interrupt thread.
178 * They do, however, obey the usual write-wanted semantics to prevent
179 * writer (i.e. system administrator) starvation.
180 *
181 * The lock acquisition rules are as follows:
182 *
183 * SCL_CONFIG
184 * Protects changes to the vdev tree topology, such as vdev
185 * add/remove/attach/detach. Protects the dirty config list
186 * (spa_config_dirty_list) and the set of spares and l2arc devices.
187 *
188 * SCL_STATE
189 * Protects changes to pool state and vdev state, such as vdev
190 * online/offline/fault/degrade/clear. Protects the dirty state list
191 * (spa_state_dirty_list) and global pool state (spa_state).
192 *
193 * SCL_ALLOC
194 * Protects changes to metaslab groups and classes.
195 * Held as reader by metaslab_alloc() and metaslab_claim().
196 *
197 * SCL_ZIO
198 * Held by bp-level zios (those which have no io_vd upon entry)
199 * to prevent changes to the vdev tree. The bp-level zio implicitly
200 * protects all of its vdev child zios, which do not hold SCL_ZIO.
201 *
202 * SCL_FREE
203 * Protects changes to metaslab groups and classes.
204 * Held as reader by metaslab_free(). SCL_FREE is distinct from
205 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
206 * blocks in zio_done() while another i/o that holds either
207 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
208 *
209 * SCL_VDEV
210 * Held as reader to prevent changes to the vdev tree during trivial
211 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
212 * other locks, and lower than all of them, to ensure that it's safe
213 * to acquire regardless of caller context.
214 *
215 * In addition, the following rules apply:
216 *
217 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
218 * The lock ordering is SCL_CONFIG > spa_props_lock.
219 *
220 * (b) I/O operations on leaf vdevs. For any zio operation that takes
221 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
222 * or zio_write_phys() -- the caller must ensure that the config cannot
223 * cannot change in the interim, and that the vdev cannot be reopened.
224 * SCL_STATE as reader suffices for both.
225 *
226 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
227 *
228 * spa_vdev_enter() Acquire the namespace lock and the config lock
229 * for writing.
230 *
231 * spa_vdev_exit() Release the config lock, wait for all I/O
232 * to complete, sync the updated configs to the
233 * cache, and release the namespace lock.
234 *
235 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
236 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
237 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
238 */
239
240 avl_tree_t spa_namespace_avl;
241 kmutex_t spa_namespace_lock;
242 kcondvar_t spa_namespace_cv;
243 static const int spa_max_replication_override = SPA_DVAS_PER_BP;
244
245 static kmutex_t spa_spare_lock;
246 static avl_tree_t spa_spare_avl;
247 static kmutex_t spa_l2cache_lock;
248 static avl_tree_t spa_l2cache_avl;
249
250 spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
251
252 #ifdef ZFS_DEBUG
253 /*
254 * Everything except dprintf, set_error, spa, and indirect_remap is on
255 * by default in debug builds.
256 */
257 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
258 ZFS_DEBUG_INDIRECT_REMAP);
259 #else
260 int zfs_flags = 0;
261 #endif
262
263 /*
264 * zfs_recover can be set to nonzero to attempt to recover from
265 * otherwise-fatal errors, typically caused by on-disk corruption. When
266 * set, calls to zfs_panic_recover() will turn into warning messages.
267 * This should only be used as a last resort, as it typically results
268 * in leaked space, or worse.
269 */
270 int zfs_recover = B_FALSE;
271
272 /*
273 * If destroy encounters an EIO while reading metadata (e.g. indirect
274 * blocks), space referenced by the missing metadata can not be freed.
275 * Normally this causes the background destroy to become "stalled", as
276 * it is unable to make forward progress. While in this stalled state,
277 * all remaining space to free from the error-encountering filesystem is
278 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
279 * permanently leak the space from indirect blocks that can not be read,
280 * and continue to free everything else that it can.
281 *
282 * The default, "stalling" behavior is useful if the storage partially
283 * fails (i.e. some but not all i/os fail), and then later recovers. In
284 * this case, we will be able to continue pool operations while it is
285 * partially failed, and when it recovers, we can continue to free the
286 * space, with no leaks. However, note that this case is actually
287 * fairly rare.
288 *
289 * Typically pools either (a) fail completely (but perhaps temporarily,
290 * e.g. a top-level vdev going offline), or (b) have localized,
291 * permanent errors (e.g. disk returns the wrong data due to bit flip or
292 * firmware bug). In case (a), this setting does not matter because the
293 * pool will be suspended and the sync thread will not be able to make
294 * forward progress regardless. In case (b), because the error is
295 * permanent, the best we can do is leak the minimum amount of space,
296 * which is what setting this flag will do. Therefore, it is reasonable
297 * for this flag to normally be set, but we chose the more conservative
298 * approach of not setting it, so that there is no possibility of
299 * leaking space in the "partial temporary" failure case.
300 */
301 int zfs_free_leak_on_eio = B_FALSE;
302
303 /*
304 * Expiration time in milliseconds. This value has two meanings. First it is
305 * used to determine when the spa_deadman() logic should fire. By default the
306 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
307 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
308 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
309 * in one of three behaviors controlled by zfs_deadman_failmode.
310 */
311 uint64_t zfs_deadman_synctime_ms = 600000UL; /* 10 min. */
312
313 /*
314 * This value controls the maximum amount of time zio_wait() will block for an
315 * outstanding IO. By default this is 300 seconds at which point the "hung"
316 * behavior will be applied as described for zfs_deadman_synctime_ms.
317 */
318 uint64_t zfs_deadman_ziotime_ms = 300000UL; /* 5 min. */
319
320 /*
321 * Check time in milliseconds. This defines the frequency at which we check
322 * for hung I/O.
323 */
324 uint64_t zfs_deadman_checktime_ms = 60000UL; /* 1 min. */
325
326 /*
327 * By default the deadman is enabled.
328 */
329 int zfs_deadman_enabled = B_TRUE;
330
331 /*
332 * Controls the behavior of the deadman when it detects a "hung" I/O.
333 * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
334 *
335 * wait - Wait for the "hung" I/O (default)
336 * continue - Attempt to recover from a "hung" I/O
337 * panic - Panic the system
338 */
339 const char *zfs_deadman_failmode = "wait";
340
341 /*
342 * The worst case is single-sector max-parity RAID-Z blocks, in which
343 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
344 * times the size; so just assume that. Add to this the fact that
345 * we can have up to 3 DVAs per bp, and one more factor of 2 because
346 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
347 * the worst case is:
348 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
349 */
350 uint_t spa_asize_inflation = 24;
351
352 /*
353 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
354 * the pool to be consumed (bounded by spa_max_slop). This ensures that we
355 * don't run the pool completely out of space, due to unaccounted changes (e.g.
356 * to the MOS). It also limits the worst-case time to allocate space. If we
357 * have less than this amount of free space, most ZPL operations (e.g. write,
358 * create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are
359 * also part of this 3.2% of space which can't be consumed by normal writes;
360 * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded
361 * log space.
362 *
363 * Certain operations (e.g. file removal, most administrative actions) can
364 * use half the slop space. They will only return ENOSPC if less than half
365 * the slop space is free. Typically, once the pool has less than the slop
366 * space free, the user will use these operations to free up space in the pool.
367 * These are the operations that call dsl_pool_adjustedsize() with the netfree
368 * argument set to TRUE.
369 *
370 * Operations that are almost guaranteed to free up space in the absence of
371 * a pool checkpoint can use up to three quarters of the slop space
372 * (e.g zfs destroy).
373 *
374 * A very restricted set of operations are always permitted, regardless of
375 * the amount of free space. These are the operations that call
376 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
377 * increase in the amount of space used, it is possible to run the pool
378 * completely out of space, causing it to be permanently read-only.
379 *
380 * Note that on very small pools, the slop space will be larger than
381 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
382 * but we never allow it to be more than half the pool size.
383 *
384 * Further, on very large pools, the slop space will be smaller than
385 * 3.2%, to avoid reserving much more space than we actually need; bounded
386 * by spa_max_slop (128GB).
387 *
388 * See also the comments in zfs_space_check_t.
389 */
390 uint_t spa_slop_shift = 5;
391 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024;
392 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024;
393
394 /*
395 * Number of allocators to use, per spa instance
396 */
397 static int spa_num_allocators = 4;
398 static int spa_cpus_per_allocator = 4;
399
400 /*
401 * Spa active allocator.
402 * Valid values are zfs_active_allocator=<dynamic|cursor|new-dynamic>.
403 */
404 const char *zfs_active_allocator = "dynamic";
405
406 void
spa_load_failed(spa_t * spa,const char * fmt,...)407 spa_load_failed(spa_t *spa, const char *fmt, ...)
408 {
409 va_list adx;
410 char buf[256];
411
412 va_start(adx, fmt);
413 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
414 va_end(adx);
415
416 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
417 spa->spa_trust_config ? "trusted" : "untrusted", buf);
418 }
419
420 void
spa_load_note(spa_t * spa,const char * fmt,...)421 spa_load_note(spa_t *spa, const char *fmt, ...)
422 {
423 va_list adx;
424 char buf[256];
425
426 va_start(adx, fmt);
427 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
428 va_end(adx);
429
430 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
431 spa->spa_trust_config ? "trusted" : "untrusted", buf);
432
433 spa_import_progress_set_notes_nolog(spa, "%s", buf);
434 }
435
436 /*
437 * By default dedup and user data indirects land in the special class
438 */
439 static int zfs_ddt_data_is_special = B_TRUE;
440 static int zfs_user_indirect_is_special = B_TRUE;
441
442 /*
443 * The percentage of special class final space reserved for metadata only.
444 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
445 * let metadata into the class.
446 */
447 static uint_t zfs_special_class_metadata_reserve_pct = 25;
448
449 /*
450 * ==========================================================================
451 * SPA config locking
452 * ==========================================================================
453 */
454 static void
spa_config_lock_init(spa_t * spa)455 spa_config_lock_init(spa_t *spa)
456 {
457 for (int i = 0; i < SCL_LOCKS; i++) {
458 spa_config_lock_t *scl = &spa->spa_config_lock[i];
459 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
460 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
461 scl->scl_writer = NULL;
462 scl->scl_write_wanted = 0;
463 scl->scl_count = 0;
464 }
465 }
466
467 static void
spa_config_lock_destroy(spa_t * spa)468 spa_config_lock_destroy(spa_t *spa)
469 {
470 for (int i = 0; i < SCL_LOCKS; i++) {
471 spa_config_lock_t *scl = &spa->spa_config_lock[i];
472 mutex_destroy(&scl->scl_lock);
473 cv_destroy(&scl->scl_cv);
474 ASSERT(scl->scl_writer == NULL);
475 ASSERT(scl->scl_write_wanted == 0);
476 ASSERT(scl->scl_count == 0);
477 }
478 }
479
480 int
spa_config_tryenter(spa_t * spa,int locks,const void * tag,krw_t rw)481 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw)
482 {
483 for (int i = 0; i < SCL_LOCKS; i++) {
484 spa_config_lock_t *scl = &spa->spa_config_lock[i];
485 if (!(locks & (1 << i)))
486 continue;
487 mutex_enter(&scl->scl_lock);
488 if (rw == RW_READER) {
489 if (scl->scl_writer || scl->scl_write_wanted) {
490 mutex_exit(&scl->scl_lock);
491 spa_config_exit(spa, locks & ((1 << i) - 1),
492 tag);
493 return (0);
494 }
495 } else {
496 ASSERT(scl->scl_writer != curthread);
497 if (scl->scl_count != 0) {
498 mutex_exit(&scl->scl_lock);
499 spa_config_exit(spa, locks & ((1 << i) - 1),
500 tag);
501 return (0);
502 }
503 scl->scl_writer = curthread;
504 }
505 scl->scl_count++;
506 mutex_exit(&scl->scl_lock);
507 }
508 return (1);
509 }
510
511 static void
spa_config_enter_impl(spa_t * spa,int locks,const void * tag,krw_t rw,int mmp_flag)512 spa_config_enter_impl(spa_t *spa, int locks, const void *tag, krw_t rw,
513 int mmp_flag)
514 {
515 (void) tag;
516 int wlocks_held = 0;
517
518 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
519
520 for (int i = 0; i < SCL_LOCKS; i++) {
521 spa_config_lock_t *scl = &spa->spa_config_lock[i];
522 if (scl->scl_writer == curthread)
523 wlocks_held |= (1 << i);
524 if (!(locks & (1 << i)))
525 continue;
526 mutex_enter(&scl->scl_lock);
527 if (rw == RW_READER) {
528 while (scl->scl_writer ||
529 (!mmp_flag && scl->scl_write_wanted)) {
530 cv_wait(&scl->scl_cv, &scl->scl_lock);
531 }
532 } else {
533 ASSERT(scl->scl_writer != curthread);
534 while (scl->scl_count != 0) {
535 scl->scl_write_wanted++;
536 cv_wait(&scl->scl_cv, &scl->scl_lock);
537 scl->scl_write_wanted--;
538 }
539 scl->scl_writer = curthread;
540 }
541 scl->scl_count++;
542 mutex_exit(&scl->scl_lock);
543 }
544 ASSERT3U(wlocks_held, <=, locks);
545 }
546
547 void
spa_config_enter(spa_t * spa,int locks,const void * tag,krw_t rw)548 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
549 {
550 spa_config_enter_impl(spa, locks, tag, rw, 0);
551 }
552
553 /*
554 * The spa_config_enter_mmp() allows the mmp thread to cut in front of
555 * outstanding write lock requests. This is needed since the mmp updates are
556 * time sensitive and failure to service them promptly will result in a
557 * suspended pool. This pool suspension has been seen in practice when there is
558 * a single disk in a pool that is responding slowly and presumably about to
559 * fail.
560 */
561
562 void
spa_config_enter_mmp(spa_t * spa,int locks,const void * tag,krw_t rw)563 spa_config_enter_mmp(spa_t *spa, int locks, const void *tag, krw_t rw)
564 {
565 spa_config_enter_impl(spa, locks, tag, rw, 1);
566 }
567
568 void
spa_config_exit(spa_t * spa,int locks,const void * tag)569 spa_config_exit(spa_t *spa, int locks, const void *tag)
570 {
571 (void) tag;
572 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
573 spa_config_lock_t *scl = &spa->spa_config_lock[i];
574 if (!(locks & (1 << i)))
575 continue;
576 mutex_enter(&scl->scl_lock);
577 ASSERT(scl->scl_count > 0);
578 if (--scl->scl_count == 0) {
579 ASSERT(scl->scl_writer == NULL ||
580 scl->scl_writer == curthread);
581 scl->scl_writer = NULL; /* OK in either case */
582 cv_broadcast(&scl->scl_cv);
583 }
584 mutex_exit(&scl->scl_lock);
585 }
586 }
587
588 int
spa_config_held(spa_t * spa,int locks,krw_t rw)589 spa_config_held(spa_t *spa, int locks, krw_t rw)
590 {
591 int locks_held = 0;
592
593 for (int i = 0; i < SCL_LOCKS; i++) {
594 spa_config_lock_t *scl = &spa->spa_config_lock[i];
595 if (!(locks & (1 << i)))
596 continue;
597 if ((rw == RW_READER && scl->scl_count != 0) ||
598 (rw == RW_WRITER && scl->scl_writer == curthread))
599 locks_held |= 1 << i;
600 }
601
602 return (locks_held);
603 }
604
605 /*
606 * ==========================================================================
607 * SPA namespace functions
608 * ==========================================================================
609 */
610
611 /*
612 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
613 * Returns NULL if no matching spa_t is found.
614 */
615 spa_t *
spa_lookup(const char * name)616 spa_lookup(const char *name)
617 {
618 static spa_t search; /* spa_t is large; don't allocate on stack */
619 spa_t *spa;
620 avl_index_t where;
621 char *cp;
622
623 ASSERT(MUTEX_HELD(&spa_namespace_lock));
624
625 retry:
626 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
627
628 /*
629 * If it's a full dataset name, figure out the pool name and
630 * just use that.
631 */
632 cp = strpbrk(search.spa_name, "/@#");
633 if (cp != NULL)
634 *cp = '\0';
635
636 spa = avl_find(&spa_namespace_avl, &search, &where);
637 if (spa == NULL)
638 return (NULL);
639
640 /*
641 * Avoid racing with import/export, which don't hold the namespace
642 * lock for their entire duration.
643 */
644 if ((spa->spa_load_thread != NULL &&
645 spa->spa_load_thread != curthread) ||
646 (spa->spa_export_thread != NULL &&
647 spa->spa_export_thread != curthread)) {
648 cv_wait(&spa_namespace_cv, &spa_namespace_lock);
649 goto retry;
650 }
651
652 return (spa);
653 }
654
655 /*
656 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
657 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
658 * looking for potentially hung I/Os.
659 */
660 void
spa_deadman(void * arg)661 spa_deadman(void *arg)
662 {
663 spa_t *spa = arg;
664
665 /* Disable the deadman if the pool is suspended. */
666 if (spa_suspended(spa))
667 return;
668
669 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
670 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
671 (u_longlong_t)++spa->spa_deadman_calls);
672 if (zfs_deadman_enabled)
673 vdev_deadman(spa->spa_root_vdev, FTAG);
674
675 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
676 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
677 MSEC_TO_TICK(zfs_deadman_checktime_ms));
678 }
679
680 static int
spa_log_sm_sort_by_txg(const void * va,const void * vb)681 spa_log_sm_sort_by_txg(const void *va, const void *vb)
682 {
683 const spa_log_sm_t *a = va;
684 const spa_log_sm_t *b = vb;
685
686 return (TREE_CMP(a->sls_txg, b->sls_txg));
687 }
688
689 /*
690 * Create an uninitialized spa_t with the given name. Requires
691 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
692 * exist by calling spa_lookup() first.
693 */
694 spa_t *
spa_add(const char * name,nvlist_t * config,const char * altroot)695 spa_add(const char *name, nvlist_t *config, const char *altroot)
696 {
697 spa_t *spa;
698 spa_config_dirent_t *dp;
699
700 ASSERT(MUTEX_HELD(&spa_namespace_lock));
701
702 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
703
704 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
705 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
706 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
707 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
708 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
709 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
710 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
711 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
712 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
713 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
714 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
715 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
716 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
717 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
718
719 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
720 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
721 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
722 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
723 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
724 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
725 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
726
727 for (int t = 0; t < TXG_SIZE; t++)
728 bplist_create(&spa->spa_free_bplist[t]);
729
730 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
731 spa->spa_state = POOL_STATE_UNINITIALIZED;
732 spa->spa_freeze_txg = UINT64_MAX;
733 spa->spa_final_txg = UINT64_MAX;
734 spa->spa_load_max_txg = UINT64_MAX;
735 spa->spa_proc = &p0;
736 spa->spa_proc_state = SPA_PROC_NONE;
737 spa->spa_trust_config = B_TRUE;
738 spa->spa_hostid = zone_get_hostid(NULL);
739
740 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
741 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
742 spa_set_deadman_failmode(spa, zfs_deadman_failmode);
743 spa_set_allocator(spa, zfs_active_allocator);
744
745 zfs_refcount_create(&spa->spa_refcount);
746 spa_config_lock_init(spa);
747 spa_stats_init(spa);
748
749 ASSERT(MUTEX_HELD(&spa_namespace_lock));
750 avl_add(&spa_namespace_avl, spa);
751
752 /*
753 * Set the alternate root, if there is one.
754 */
755 if (altroot)
756 spa->spa_root = spa_strdup(altroot);
757
758 /* Do not allow more allocators than fraction of CPUs. */
759 spa->spa_alloc_count = MAX(MIN(spa_num_allocators,
760 boot_ncpus / MAX(spa_cpus_per_allocator, 1)), 1);
761
762 if (spa->spa_alloc_count > 1) {
763 spa->spa_allocs_use = kmem_zalloc(offsetof(spa_allocs_use_t,
764 sau_inuse[spa->spa_alloc_count]), KM_SLEEP);
765 mutex_init(&spa->spa_allocs_use->sau_lock, NULL, MUTEX_DEFAULT,
766 NULL);
767 }
768
769 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
770 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
771 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
772 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
773 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
774 offsetof(log_summary_entry_t, lse_node));
775
776 /*
777 * Every pool starts with the default cachefile
778 */
779 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
780 offsetof(spa_config_dirent_t, scd_link));
781
782 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
783 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
784 list_insert_head(&spa->spa_config_list, dp);
785
786 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
787 KM_SLEEP) == 0);
788
789 if (config != NULL) {
790 nvlist_t *features;
791
792 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
793 &features) == 0) {
794 VERIFY(nvlist_dup(features, &spa->spa_label_features,
795 0) == 0);
796 }
797
798 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
799 }
800
801 if (spa->spa_label_features == NULL) {
802 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
803 KM_SLEEP) == 0);
804 }
805
806 spa->spa_min_ashift = INT_MAX;
807 spa->spa_max_ashift = 0;
808 spa->spa_min_alloc = INT_MAX;
809 spa->spa_gcd_alloc = INT_MAX;
810
811 /* Reset cached value */
812 spa->spa_dedup_dspace = ~0ULL;
813
814 /*
815 * As a pool is being created, treat all features as disabled by
816 * setting SPA_FEATURE_DISABLED for all entries in the feature
817 * refcount cache.
818 */
819 for (int i = 0; i < SPA_FEATURES; i++) {
820 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
821 }
822
823 list_create(&spa->spa_leaf_list, sizeof (vdev_t),
824 offsetof(vdev_t, vdev_leaf_node));
825
826 return (spa);
827 }
828
829 /*
830 * Removes a spa_t from the namespace, freeing up any memory used. Requires
831 * spa_namespace_lock. This is called only after the spa_t has been closed and
832 * deactivated.
833 */
834 void
spa_remove(spa_t * spa)835 spa_remove(spa_t *spa)
836 {
837 spa_config_dirent_t *dp;
838
839 ASSERT(MUTEX_HELD(&spa_namespace_lock));
840 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
841 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
842 ASSERT0(spa->spa_waiters);
843
844 nvlist_free(spa->spa_config_splitting);
845
846 avl_remove(&spa_namespace_avl, spa);
847
848 if (spa->spa_root)
849 spa_strfree(spa->spa_root);
850
851 while ((dp = list_remove_head(&spa->spa_config_list)) != NULL) {
852 if (dp->scd_path != NULL)
853 spa_strfree(dp->scd_path);
854 kmem_free(dp, sizeof (spa_config_dirent_t));
855 }
856
857 if (spa->spa_alloc_count > 1) {
858 mutex_destroy(&spa->spa_allocs_use->sau_lock);
859 kmem_free(spa->spa_allocs_use, offsetof(spa_allocs_use_t,
860 sau_inuse[spa->spa_alloc_count]));
861 }
862
863 avl_destroy(&spa->spa_metaslabs_by_flushed);
864 avl_destroy(&spa->spa_sm_logs_by_txg);
865 list_destroy(&spa->spa_log_summary);
866 list_destroy(&spa->spa_config_list);
867 list_destroy(&spa->spa_leaf_list);
868
869 nvlist_free(spa->spa_label_features);
870 nvlist_free(spa->spa_load_info);
871 nvlist_free(spa->spa_feat_stats);
872 spa_config_set(spa, NULL);
873
874 zfs_refcount_destroy(&spa->spa_refcount);
875
876 spa_stats_destroy(spa);
877 spa_config_lock_destroy(spa);
878
879 for (int t = 0; t < TXG_SIZE; t++)
880 bplist_destroy(&spa->spa_free_bplist[t]);
881
882 zio_checksum_templates_free(spa);
883
884 cv_destroy(&spa->spa_async_cv);
885 cv_destroy(&spa->spa_evicting_os_cv);
886 cv_destroy(&spa->spa_proc_cv);
887 cv_destroy(&spa->spa_scrub_io_cv);
888 cv_destroy(&spa->spa_suspend_cv);
889 cv_destroy(&spa->spa_activities_cv);
890 cv_destroy(&spa->spa_waiters_cv);
891
892 mutex_destroy(&spa->spa_flushed_ms_lock);
893 mutex_destroy(&spa->spa_async_lock);
894 mutex_destroy(&spa->spa_errlist_lock);
895 mutex_destroy(&spa->spa_errlog_lock);
896 mutex_destroy(&spa->spa_evicting_os_lock);
897 mutex_destroy(&spa->spa_history_lock);
898 mutex_destroy(&spa->spa_proc_lock);
899 mutex_destroy(&spa->spa_props_lock);
900 mutex_destroy(&spa->spa_cksum_tmpls_lock);
901 mutex_destroy(&spa->spa_scrub_lock);
902 mutex_destroy(&spa->spa_suspend_lock);
903 mutex_destroy(&spa->spa_vdev_top_lock);
904 mutex_destroy(&spa->spa_feat_stats_lock);
905 mutex_destroy(&spa->spa_activities_lock);
906
907 kmem_free(spa, sizeof (spa_t));
908 }
909
910 /*
911 * Given a pool, return the next pool in the namespace, or NULL if there is
912 * none. If 'prev' is NULL, return the first pool.
913 */
914 spa_t *
spa_next(spa_t * prev)915 spa_next(spa_t *prev)
916 {
917 ASSERT(MUTEX_HELD(&spa_namespace_lock));
918
919 if (prev)
920 return (AVL_NEXT(&spa_namespace_avl, prev));
921 else
922 return (avl_first(&spa_namespace_avl));
923 }
924
925 /*
926 * ==========================================================================
927 * SPA refcount functions
928 * ==========================================================================
929 */
930
931 /*
932 * Add a reference to the given spa_t. Must have at least one reference, or
933 * have the namespace lock held.
934 */
935 void
spa_open_ref(spa_t * spa,const void * tag)936 spa_open_ref(spa_t *spa, const void *tag)
937 {
938 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
939 MUTEX_HELD(&spa_namespace_lock) ||
940 spa->spa_load_thread == curthread);
941 (void) zfs_refcount_add(&spa->spa_refcount, tag);
942 }
943
944 /*
945 * Remove a reference to the given spa_t. Must have at least one reference, or
946 * have the namespace lock held or be part of a pool import/export.
947 */
948 void
spa_close(spa_t * spa,const void * tag)949 spa_close(spa_t *spa, const void *tag)
950 {
951 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
952 MUTEX_HELD(&spa_namespace_lock) ||
953 spa->spa_load_thread == curthread ||
954 spa->spa_export_thread == curthread);
955 (void) zfs_refcount_remove(&spa->spa_refcount, tag);
956 }
957
958 /*
959 * Remove a reference to the given spa_t held by a dsl dir that is
960 * being asynchronously released. Async releases occur from a taskq
961 * performing eviction of dsl datasets and dirs. The namespace lock
962 * isn't held and the hold by the object being evicted may contribute to
963 * spa_minref (e.g. dataset or directory released during pool export),
964 * so the asserts in spa_close() do not apply.
965 */
966 void
spa_async_close(spa_t * spa,const void * tag)967 spa_async_close(spa_t *spa, const void *tag)
968 {
969 (void) zfs_refcount_remove(&spa->spa_refcount, tag);
970 }
971
972 /*
973 * Check to see if the spa refcount is zero. Must be called with
974 * spa_namespace_lock held or be the spa export thread. We really
975 * compare against spa_minref, which is the number of references
976 * acquired when opening a pool
977 */
978 boolean_t
spa_refcount_zero(spa_t * spa)979 spa_refcount_zero(spa_t *spa)
980 {
981 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
982 spa->spa_export_thread == curthread);
983
984 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
985 }
986
987 /*
988 * ==========================================================================
989 * SPA spare and l2cache tracking
990 * ==========================================================================
991 */
992
993 /*
994 * Hot spares and cache devices are tracked using the same code below,
995 * for 'auxiliary' devices.
996 */
997
998 typedef struct spa_aux {
999 uint64_t aux_guid;
1000 uint64_t aux_pool;
1001 avl_node_t aux_avl;
1002 int aux_count;
1003 } spa_aux_t;
1004
1005 static inline int
spa_aux_compare(const void * a,const void * b)1006 spa_aux_compare(const void *a, const void *b)
1007 {
1008 const spa_aux_t *sa = (const spa_aux_t *)a;
1009 const spa_aux_t *sb = (const spa_aux_t *)b;
1010
1011 return (TREE_CMP(sa->aux_guid, sb->aux_guid));
1012 }
1013
1014 static void
spa_aux_add(vdev_t * vd,avl_tree_t * avl)1015 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
1016 {
1017 avl_index_t where;
1018 spa_aux_t search;
1019 spa_aux_t *aux;
1020
1021 search.aux_guid = vd->vdev_guid;
1022 if ((aux = avl_find(avl, &search, &where)) != NULL) {
1023 aux->aux_count++;
1024 } else {
1025 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
1026 aux->aux_guid = vd->vdev_guid;
1027 aux->aux_count = 1;
1028 avl_insert(avl, aux, where);
1029 }
1030 }
1031
1032 static void
spa_aux_remove(vdev_t * vd,avl_tree_t * avl)1033 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
1034 {
1035 spa_aux_t search;
1036 spa_aux_t *aux;
1037 avl_index_t where;
1038
1039 search.aux_guid = vd->vdev_guid;
1040 aux = avl_find(avl, &search, &where);
1041
1042 ASSERT(aux != NULL);
1043
1044 if (--aux->aux_count == 0) {
1045 avl_remove(avl, aux);
1046 kmem_free(aux, sizeof (spa_aux_t));
1047 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
1048 aux->aux_pool = 0ULL;
1049 }
1050 }
1051
1052 static boolean_t
spa_aux_exists(uint64_t guid,uint64_t * pool,int * refcnt,avl_tree_t * avl)1053 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
1054 {
1055 spa_aux_t search, *found;
1056
1057 search.aux_guid = guid;
1058 found = avl_find(avl, &search, NULL);
1059
1060 if (pool) {
1061 if (found)
1062 *pool = found->aux_pool;
1063 else
1064 *pool = 0ULL;
1065 }
1066
1067 if (refcnt) {
1068 if (found)
1069 *refcnt = found->aux_count;
1070 else
1071 *refcnt = 0;
1072 }
1073
1074 return (found != NULL);
1075 }
1076
1077 static void
spa_aux_activate(vdev_t * vd,avl_tree_t * avl)1078 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1079 {
1080 spa_aux_t search, *found;
1081 avl_index_t where;
1082
1083 search.aux_guid = vd->vdev_guid;
1084 found = avl_find(avl, &search, &where);
1085 ASSERT(found != NULL);
1086 ASSERT(found->aux_pool == 0ULL);
1087
1088 found->aux_pool = spa_guid(vd->vdev_spa);
1089 }
1090
1091 /*
1092 * Spares are tracked globally due to the following constraints:
1093 *
1094 * - A spare may be part of multiple pools.
1095 * - A spare may be added to a pool even if it's actively in use within
1096 * another pool.
1097 * - A spare in use in any pool can only be the source of a replacement if
1098 * the target is a spare in the same pool.
1099 *
1100 * We keep track of all spares on the system through the use of a reference
1101 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
1102 * spare, then we bump the reference count in the AVL tree. In addition, we set
1103 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1104 * inactive). When a spare is made active (used to replace a device in the
1105 * pool), we also keep track of which pool its been made a part of.
1106 *
1107 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
1108 * called under the spa_namespace lock as part of vdev reconfiguration. The
1109 * separate spare lock exists for the status query path, which does not need to
1110 * be completely consistent with respect to other vdev configuration changes.
1111 */
1112
1113 static int
spa_spare_compare(const void * a,const void * b)1114 spa_spare_compare(const void *a, const void *b)
1115 {
1116 return (spa_aux_compare(a, b));
1117 }
1118
1119 void
spa_spare_add(vdev_t * vd)1120 spa_spare_add(vdev_t *vd)
1121 {
1122 mutex_enter(&spa_spare_lock);
1123 ASSERT(!vd->vdev_isspare);
1124 spa_aux_add(vd, &spa_spare_avl);
1125 vd->vdev_isspare = B_TRUE;
1126 mutex_exit(&spa_spare_lock);
1127 }
1128
1129 void
spa_spare_remove(vdev_t * vd)1130 spa_spare_remove(vdev_t *vd)
1131 {
1132 mutex_enter(&spa_spare_lock);
1133 ASSERT(vd->vdev_isspare);
1134 spa_aux_remove(vd, &spa_spare_avl);
1135 vd->vdev_isspare = B_FALSE;
1136 mutex_exit(&spa_spare_lock);
1137 }
1138
1139 boolean_t
spa_spare_exists(uint64_t guid,uint64_t * pool,int * refcnt)1140 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1141 {
1142 boolean_t found;
1143
1144 mutex_enter(&spa_spare_lock);
1145 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1146 mutex_exit(&spa_spare_lock);
1147
1148 return (found);
1149 }
1150
1151 void
spa_spare_activate(vdev_t * vd)1152 spa_spare_activate(vdev_t *vd)
1153 {
1154 mutex_enter(&spa_spare_lock);
1155 ASSERT(vd->vdev_isspare);
1156 spa_aux_activate(vd, &spa_spare_avl);
1157 mutex_exit(&spa_spare_lock);
1158 }
1159
1160 /*
1161 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1162 * Cache devices currently only support one pool per cache device, and so
1163 * for these devices the aux reference count is currently unused beyond 1.
1164 */
1165
1166 static int
spa_l2cache_compare(const void * a,const void * b)1167 spa_l2cache_compare(const void *a, const void *b)
1168 {
1169 return (spa_aux_compare(a, b));
1170 }
1171
1172 void
spa_l2cache_add(vdev_t * vd)1173 spa_l2cache_add(vdev_t *vd)
1174 {
1175 mutex_enter(&spa_l2cache_lock);
1176 ASSERT(!vd->vdev_isl2cache);
1177 spa_aux_add(vd, &spa_l2cache_avl);
1178 vd->vdev_isl2cache = B_TRUE;
1179 mutex_exit(&spa_l2cache_lock);
1180 }
1181
1182 void
spa_l2cache_remove(vdev_t * vd)1183 spa_l2cache_remove(vdev_t *vd)
1184 {
1185 mutex_enter(&spa_l2cache_lock);
1186 ASSERT(vd->vdev_isl2cache);
1187 spa_aux_remove(vd, &spa_l2cache_avl);
1188 vd->vdev_isl2cache = B_FALSE;
1189 mutex_exit(&spa_l2cache_lock);
1190 }
1191
1192 boolean_t
spa_l2cache_exists(uint64_t guid,uint64_t * pool)1193 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1194 {
1195 boolean_t found;
1196
1197 mutex_enter(&spa_l2cache_lock);
1198 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1199 mutex_exit(&spa_l2cache_lock);
1200
1201 return (found);
1202 }
1203
1204 void
spa_l2cache_activate(vdev_t * vd)1205 spa_l2cache_activate(vdev_t *vd)
1206 {
1207 mutex_enter(&spa_l2cache_lock);
1208 ASSERT(vd->vdev_isl2cache);
1209 spa_aux_activate(vd, &spa_l2cache_avl);
1210 mutex_exit(&spa_l2cache_lock);
1211 }
1212
1213 /*
1214 * ==========================================================================
1215 * SPA vdev locking
1216 * ==========================================================================
1217 */
1218
1219 /*
1220 * Lock the given spa_t for the purpose of adding or removing a vdev.
1221 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1222 * It returns the next transaction group for the spa_t.
1223 */
1224 uint64_t
spa_vdev_enter(spa_t * spa)1225 spa_vdev_enter(spa_t *spa)
1226 {
1227 mutex_enter(&spa->spa_vdev_top_lock);
1228 mutex_enter(&spa_namespace_lock);
1229
1230 ASSERT0(spa->spa_export_thread);
1231
1232 vdev_autotrim_stop_all(spa);
1233
1234 return (spa_vdev_config_enter(spa));
1235 }
1236
1237 /*
1238 * The same as spa_vdev_enter() above but additionally takes the guid of
1239 * the vdev being detached. When there is a rebuild in process it will be
1240 * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1241 * The rebuild is canceled if only a single child remains after the detach.
1242 */
1243 uint64_t
spa_vdev_detach_enter(spa_t * spa,uint64_t guid)1244 spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1245 {
1246 mutex_enter(&spa->spa_vdev_top_lock);
1247 mutex_enter(&spa_namespace_lock);
1248
1249 ASSERT0(spa->spa_export_thread);
1250
1251 vdev_autotrim_stop_all(spa);
1252
1253 if (guid != 0) {
1254 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1255 if (vd) {
1256 vdev_rebuild_stop_wait(vd->vdev_top);
1257 }
1258 }
1259
1260 return (spa_vdev_config_enter(spa));
1261 }
1262
1263 /*
1264 * Internal implementation for spa_vdev_enter(). Used when a vdev
1265 * operation requires multiple syncs (i.e. removing a device) while
1266 * keeping the spa_namespace_lock held.
1267 */
1268 uint64_t
spa_vdev_config_enter(spa_t * spa)1269 spa_vdev_config_enter(spa_t *spa)
1270 {
1271 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1272
1273 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1274
1275 return (spa_last_synced_txg(spa) + 1);
1276 }
1277
1278 /*
1279 * Used in combination with spa_vdev_config_enter() to allow the syncing
1280 * of multiple transactions without releasing the spa_namespace_lock.
1281 */
1282 void
spa_vdev_config_exit(spa_t * spa,vdev_t * vd,uint64_t txg,int error,const char * tag)1283 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error,
1284 const char *tag)
1285 {
1286 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1287
1288 int config_changed = B_FALSE;
1289
1290 ASSERT(txg > spa_last_synced_txg(spa));
1291
1292 spa->spa_pending_vdev = NULL;
1293
1294 /*
1295 * Reassess the DTLs.
1296 */
1297 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
1298
1299 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1300 config_changed = B_TRUE;
1301 spa->spa_config_generation++;
1302 }
1303
1304 /*
1305 * Verify the metaslab classes.
1306 */
1307 metaslab_class_validate(spa_normal_class(spa));
1308 metaslab_class_validate(spa_log_class(spa));
1309 metaslab_class_validate(spa_embedded_log_class(spa));
1310 metaslab_class_validate(spa_special_class(spa));
1311 metaslab_class_validate(spa_dedup_class(spa));
1312
1313 spa_config_exit(spa, SCL_ALL, spa);
1314
1315 /*
1316 * Panic the system if the specified tag requires it. This
1317 * is useful for ensuring that configurations are updated
1318 * transactionally.
1319 */
1320 if (zio_injection_enabled)
1321 zio_handle_panic_injection(spa, tag, 0);
1322
1323 /*
1324 * Note: this txg_wait_synced() is important because it ensures
1325 * that there won't be more than one config change per txg.
1326 * This allows us to use the txg as the generation number.
1327 */
1328 if (error == 0)
1329 txg_wait_synced(spa->spa_dsl_pool, txg);
1330
1331 if (vd != NULL) {
1332 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1333 if (vd->vdev_ops->vdev_op_leaf) {
1334 mutex_enter(&vd->vdev_initialize_lock);
1335 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1336 NULL);
1337 mutex_exit(&vd->vdev_initialize_lock);
1338
1339 mutex_enter(&vd->vdev_trim_lock);
1340 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1341 mutex_exit(&vd->vdev_trim_lock);
1342 }
1343
1344 /*
1345 * The vdev may be both a leaf and top-level device.
1346 */
1347 vdev_autotrim_stop_wait(vd);
1348
1349 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
1350 vdev_free(vd);
1351 spa_config_exit(spa, SCL_STATE_ALL, spa);
1352 }
1353
1354 /*
1355 * If the config changed, update the config cache.
1356 */
1357 if (config_changed)
1358 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1359 }
1360
1361 /*
1362 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1363 * locking of spa_vdev_enter(), we also want make sure the transactions have
1364 * synced to disk, and then update the global configuration cache with the new
1365 * information.
1366 */
1367 int
spa_vdev_exit(spa_t * spa,vdev_t * vd,uint64_t txg,int error)1368 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1369 {
1370 vdev_autotrim_restart(spa);
1371 vdev_rebuild_restart(spa);
1372
1373 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1374 mutex_exit(&spa_namespace_lock);
1375 mutex_exit(&spa->spa_vdev_top_lock);
1376
1377 return (error);
1378 }
1379
1380 /*
1381 * Lock the given spa_t for the purpose of changing vdev state.
1382 */
1383 void
spa_vdev_state_enter(spa_t * spa,int oplocks)1384 spa_vdev_state_enter(spa_t *spa, int oplocks)
1385 {
1386 int locks = SCL_STATE_ALL | oplocks;
1387
1388 /*
1389 * Root pools may need to read of the underlying devfs filesystem
1390 * when opening up a vdev. Unfortunately if we're holding the
1391 * SCL_ZIO lock it will result in a deadlock when we try to issue
1392 * the read from the root filesystem. Instead we "prefetch"
1393 * the associated vnodes that we need prior to opening the
1394 * underlying devices and cache them so that we can prevent
1395 * any I/O when we are doing the actual open.
1396 */
1397 if (spa_is_root(spa)) {
1398 int low = locks & ~(SCL_ZIO - 1);
1399 int high = locks & ~low;
1400
1401 spa_config_enter(spa, high, spa, RW_WRITER);
1402 vdev_hold(spa->spa_root_vdev);
1403 spa_config_enter(spa, low, spa, RW_WRITER);
1404 } else {
1405 spa_config_enter(spa, locks, spa, RW_WRITER);
1406 }
1407 spa->spa_vdev_locks = locks;
1408 }
1409
1410 int
spa_vdev_state_exit(spa_t * spa,vdev_t * vd,int error)1411 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1412 {
1413 boolean_t config_changed = B_FALSE;
1414 vdev_t *vdev_top;
1415
1416 if (vd == NULL || vd == spa->spa_root_vdev) {
1417 vdev_top = spa->spa_root_vdev;
1418 } else {
1419 vdev_top = vd->vdev_top;
1420 }
1421
1422 if (vd != NULL || error == 0)
1423 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
1424
1425 if (vd != NULL) {
1426 if (vd != spa->spa_root_vdev)
1427 vdev_state_dirty(vdev_top);
1428
1429 config_changed = B_TRUE;
1430 spa->spa_config_generation++;
1431 }
1432
1433 if (spa_is_root(spa))
1434 vdev_rele(spa->spa_root_vdev);
1435
1436 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1437 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1438
1439 /*
1440 * If anything changed, wait for it to sync. This ensures that,
1441 * from the system administrator's perspective, zpool(8) commands
1442 * are synchronous. This is important for things like zpool offline:
1443 * when the command completes, you expect no further I/O from ZFS.
1444 */
1445 if (vd != NULL)
1446 txg_wait_synced(spa->spa_dsl_pool, 0);
1447
1448 /*
1449 * If the config changed, update the config cache.
1450 */
1451 if (config_changed) {
1452 mutex_enter(&spa_namespace_lock);
1453 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
1454 mutex_exit(&spa_namespace_lock);
1455 }
1456
1457 return (error);
1458 }
1459
1460 /*
1461 * ==========================================================================
1462 * Miscellaneous functions
1463 * ==========================================================================
1464 */
1465
1466 void
spa_activate_mos_feature(spa_t * spa,const char * feature,dmu_tx_t * tx)1467 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1468 {
1469 if (!nvlist_exists(spa->spa_label_features, feature)) {
1470 fnvlist_add_boolean(spa->spa_label_features, feature);
1471 /*
1472 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1473 * dirty the vdev config because lock SCL_CONFIG is not held.
1474 * Thankfully, in this case we don't need to dirty the config
1475 * because it will be written out anyway when we finish
1476 * creating the pool.
1477 */
1478 if (tx->tx_txg != TXG_INITIAL)
1479 vdev_config_dirty(spa->spa_root_vdev);
1480 }
1481 }
1482
1483 void
spa_deactivate_mos_feature(spa_t * spa,const char * feature)1484 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1485 {
1486 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1487 vdev_config_dirty(spa->spa_root_vdev);
1488 }
1489
1490 /*
1491 * Return the spa_t associated with given pool_guid, if it exists. If
1492 * device_guid is non-zero, determine whether the pool exists *and* contains
1493 * a device with the specified device_guid.
1494 */
1495 spa_t *
spa_by_guid(uint64_t pool_guid,uint64_t device_guid)1496 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1497 {
1498 spa_t *spa;
1499 avl_tree_t *t = &spa_namespace_avl;
1500
1501 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1502
1503 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1504 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1505 continue;
1506 if (spa->spa_root_vdev == NULL)
1507 continue;
1508 if (spa_guid(spa) == pool_guid) {
1509 if (device_guid == 0)
1510 break;
1511
1512 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1513 device_guid) != NULL)
1514 break;
1515
1516 /*
1517 * Check any devices we may be in the process of adding.
1518 */
1519 if (spa->spa_pending_vdev) {
1520 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1521 device_guid) != NULL)
1522 break;
1523 }
1524 }
1525 }
1526
1527 return (spa);
1528 }
1529
1530 /*
1531 * Determine whether a pool with the given pool_guid exists.
1532 */
1533 boolean_t
spa_guid_exists(uint64_t pool_guid,uint64_t device_guid)1534 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1535 {
1536 return (spa_by_guid(pool_guid, device_guid) != NULL);
1537 }
1538
1539 char *
spa_strdup(const char * s)1540 spa_strdup(const char *s)
1541 {
1542 size_t len;
1543 char *new;
1544
1545 len = strlen(s);
1546 new = kmem_alloc(len + 1, KM_SLEEP);
1547 memcpy(new, s, len + 1);
1548
1549 return (new);
1550 }
1551
1552 void
spa_strfree(char * s)1553 spa_strfree(char *s)
1554 {
1555 kmem_free(s, strlen(s) + 1);
1556 }
1557
1558 uint64_t
spa_generate_guid(spa_t * spa)1559 spa_generate_guid(spa_t *spa)
1560 {
1561 uint64_t guid;
1562
1563 if (spa != NULL) {
1564 do {
1565 (void) random_get_pseudo_bytes((void *)&guid,
1566 sizeof (guid));
1567 } while (guid == 0 || spa_guid_exists(spa_guid(spa), guid));
1568 } else {
1569 do {
1570 (void) random_get_pseudo_bytes((void *)&guid,
1571 sizeof (guid));
1572 } while (guid == 0 || spa_guid_exists(guid, 0));
1573 }
1574
1575 return (guid);
1576 }
1577
1578 static boolean_t
spa_load_guid_exists(uint64_t guid)1579 spa_load_guid_exists(uint64_t guid)
1580 {
1581 avl_tree_t *t = &spa_namespace_avl;
1582
1583 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1584
1585 for (spa_t *spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1586 if (spa_load_guid(spa) == guid)
1587 return (B_TRUE);
1588 }
1589
1590 return (arc_async_flush_guid_inuse(guid));
1591 }
1592
1593 uint64_t
spa_generate_load_guid(void)1594 spa_generate_load_guid(void)
1595 {
1596 uint64_t guid;
1597
1598 do {
1599 (void) random_get_pseudo_bytes((void *)&guid,
1600 sizeof (guid));
1601 } while (guid == 0 || spa_load_guid_exists(guid));
1602
1603 return (guid);
1604 }
1605
1606 void
snprintf_blkptr(char * buf,size_t buflen,const blkptr_t * bp)1607 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1608 {
1609 char type[256];
1610 const char *checksum = NULL;
1611 const char *compress = NULL;
1612
1613 if (bp != NULL) {
1614 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1615 dmu_object_byteswap_t bswap =
1616 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1617 (void) snprintf(type, sizeof (type), "bswap %s %s",
1618 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1619 "metadata" : "data",
1620 dmu_ot_byteswap[bswap].ob_name);
1621 } else {
1622 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1623 sizeof (type));
1624 }
1625 if (!BP_IS_EMBEDDED(bp)) {
1626 checksum =
1627 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1628 }
1629 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1630 }
1631
1632 SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum,
1633 compress);
1634 }
1635
1636 void
spa_freeze(spa_t * spa)1637 spa_freeze(spa_t *spa)
1638 {
1639 uint64_t freeze_txg = 0;
1640
1641 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1642 if (spa->spa_freeze_txg == UINT64_MAX) {
1643 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1644 spa->spa_freeze_txg = freeze_txg;
1645 }
1646 spa_config_exit(spa, SCL_ALL, FTAG);
1647 if (freeze_txg != 0)
1648 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1649 }
1650
1651 void
zfs_panic_recover(const char * fmt,...)1652 zfs_panic_recover(const char *fmt, ...)
1653 {
1654 va_list adx;
1655
1656 va_start(adx, fmt);
1657 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1658 va_end(adx);
1659 }
1660
1661 /*
1662 * This is a stripped-down version of strtoull, suitable only for converting
1663 * lowercase hexadecimal numbers that don't overflow.
1664 */
1665 uint64_t
zfs_strtonum(const char * str,char ** nptr)1666 zfs_strtonum(const char *str, char **nptr)
1667 {
1668 uint64_t val = 0;
1669 char c;
1670 int digit;
1671
1672 while ((c = *str) != '\0') {
1673 if (c >= '0' && c <= '9')
1674 digit = c - '0';
1675 else if (c >= 'a' && c <= 'f')
1676 digit = 10 + c - 'a';
1677 else
1678 break;
1679
1680 val *= 16;
1681 val += digit;
1682
1683 str++;
1684 }
1685
1686 if (nptr)
1687 *nptr = (char *)str;
1688
1689 return (val);
1690 }
1691
1692 void
spa_activate_allocation_classes(spa_t * spa,dmu_tx_t * tx)1693 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1694 {
1695 /*
1696 * We bump the feature refcount for each special vdev added to the pool
1697 */
1698 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1699 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1700 }
1701
1702 /*
1703 * ==========================================================================
1704 * Accessor functions
1705 * ==========================================================================
1706 */
1707
1708 boolean_t
spa_shutting_down(spa_t * spa)1709 spa_shutting_down(spa_t *spa)
1710 {
1711 return (spa->spa_async_suspended);
1712 }
1713
1714 dsl_pool_t *
spa_get_dsl(spa_t * spa)1715 spa_get_dsl(spa_t *spa)
1716 {
1717 return (spa->spa_dsl_pool);
1718 }
1719
1720 boolean_t
spa_is_initializing(spa_t * spa)1721 spa_is_initializing(spa_t *spa)
1722 {
1723 return (spa->spa_is_initializing);
1724 }
1725
1726 boolean_t
spa_indirect_vdevs_loaded(spa_t * spa)1727 spa_indirect_vdevs_loaded(spa_t *spa)
1728 {
1729 return (spa->spa_indirect_vdevs_loaded);
1730 }
1731
1732 blkptr_t *
spa_get_rootblkptr(spa_t * spa)1733 spa_get_rootblkptr(spa_t *spa)
1734 {
1735 return (&spa->spa_ubsync.ub_rootbp);
1736 }
1737
1738 void
spa_set_rootblkptr(spa_t * spa,const blkptr_t * bp)1739 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1740 {
1741 spa->spa_uberblock.ub_rootbp = *bp;
1742 }
1743
1744 void
spa_altroot(spa_t * spa,char * buf,size_t buflen)1745 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1746 {
1747 if (spa->spa_root == NULL)
1748 buf[0] = '\0';
1749 else
1750 (void) strlcpy(buf, spa->spa_root, buflen);
1751 }
1752
1753 uint32_t
spa_sync_pass(spa_t * spa)1754 spa_sync_pass(spa_t *spa)
1755 {
1756 return (spa->spa_sync_pass);
1757 }
1758
1759 char *
spa_name(spa_t * spa)1760 spa_name(spa_t *spa)
1761 {
1762 return (spa->spa_name);
1763 }
1764
1765 uint64_t
spa_guid(spa_t * spa)1766 spa_guid(spa_t *spa)
1767 {
1768 dsl_pool_t *dp = spa_get_dsl(spa);
1769 uint64_t guid;
1770
1771 /*
1772 * If we fail to parse the config during spa_load(), we can go through
1773 * the error path (which posts an ereport) and end up here with no root
1774 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1775 * this case.
1776 */
1777 if (spa->spa_root_vdev == NULL)
1778 return (spa->spa_config_guid);
1779
1780 guid = spa->spa_last_synced_guid != 0 ?
1781 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1782
1783 /*
1784 * Return the most recently synced out guid unless we're
1785 * in syncing context.
1786 */
1787 if (dp && dsl_pool_sync_context(dp))
1788 return (spa->spa_root_vdev->vdev_guid);
1789 else
1790 return (guid);
1791 }
1792
1793 uint64_t
spa_load_guid(spa_t * spa)1794 spa_load_guid(spa_t *spa)
1795 {
1796 /*
1797 * This is a GUID that exists solely as a reference for the
1798 * purposes of the arc. It is generated at load time, and
1799 * is never written to persistent storage.
1800 */
1801 return (spa->spa_load_guid);
1802 }
1803
1804 uint64_t
spa_last_synced_txg(spa_t * spa)1805 spa_last_synced_txg(spa_t *spa)
1806 {
1807 return (spa->spa_ubsync.ub_txg);
1808 }
1809
1810 uint64_t
spa_first_txg(spa_t * spa)1811 spa_first_txg(spa_t *spa)
1812 {
1813 return (spa->spa_first_txg);
1814 }
1815
1816 uint64_t
spa_syncing_txg(spa_t * spa)1817 spa_syncing_txg(spa_t *spa)
1818 {
1819 return (spa->spa_syncing_txg);
1820 }
1821
1822 /*
1823 * Return the last txg where data can be dirtied. The final txgs
1824 * will be used to just clear out any deferred frees that remain.
1825 */
1826 uint64_t
spa_final_dirty_txg(spa_t * spa)1827 spa_final_dirty_txg(spa_t *spa)
1828 {
1829 return (spa->spa_final_txg - TXG_DEFER_SIZE);
1830 }
1831
1832 pool_state_t
spa_state(spa_t * spa)1833 spa_state(spa_t *spa)
1834 {
1835 return (spa->spa_state);
1836 }
1837
1838 spa_load_state_t
spa_load_state(spa_t * spa)1839 spa_load_state(spa_t *spa)
1840 {
1841 return (spa->spa_load_state);
1842 }
1843
1844 uint64_t
spa_freeze_txg(spa_t * spa)1845 spa_freeze_txg(spa_t *spa)
1846 {
1847 return (spa->spa_freeze_txg);
1848 }
1849
1850 /*
1851 * Return the inflated asize for a logical write in bytes. This is used by the
1852 * DMU to calculate the space a logical write will require on disk.
1853 * If lsize is smaller than the largest physical block size allocatable on this
1854 * pool we use its value instead, since the write will end up using the whole
1855 * block anyway.
1856 */
1857 uint64_t
spa_get_worst_case_asize(spa_t * spa,uint64_t lsize)1858 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1859 {
1860 if (lsize == 0)
1861 return (0); /* No inflation needed */
1862 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1863 }
1864
1865 /*
1866 * Return the amount of slop space in bytes. It is typically 1/32 of the pool
1867 * (3.2%), minus the embedded log space. On very small pools, it may be
1868 * slightly larger than this. On very large pools, it will be capped to
1869 * the value of spa_max_slop. The embedded log space is not included in
1870 * spa_dspace. By subtracting it, the usable space (per "zfs list") is a
1871 * constant 97% of the total space, regardless of metaslab size (assuming the
1872 * default spa_slop_shift=5 and a non-tiny pool).
1873 *
1874 * See the comment above spa_slop_shift for more details.
1875 */
1876 uint64_t
spa_get_slop_space(spa_t * spa)1877 spa_get_slop_space(spa_t *spa)
1878 {
1879 uint64_t space = 0;
1880 uint64_t slop = 0;
1881
1882 /*
1883 * Make sure spa_dedup_dspace has been set.
1884 */
1885 if (spa->spa_dedup_dspace == ~0ULL)
1886 spa_update_dspace(spa);
1887
1888 space = spa->spa_rdspace;
1889 slop = MIN(space >> spa_slop_shift, spa_max_slop);
1890
1891 /*
1892 * Subtract the embedded log space, but no more than half the (3.2%)
1893 * unusable space. Note, the "no more than half" is only relevant if
1894 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
1895 * default.
1896 */
1897 uint64_t embedded_log =
1898 metaslab_class_get_dspace(spa_embedded_log_class(spa));
1899 slop -= MIN(embedded_log, slop >> 1);
1900
1901 /*
1902 * Slop space should be at least spa_min_slop, but no more than half
1903 * the entire pool.
1904 */
1905 slop = MAX(slop, MIN(space >> 1, spa_min_slop));
1906 return (slop);
1907 }
1908
1909 uint64_t
spa_get_dspace(spa_t * spa)1910 spa_get_dspace(spa_t *spa)
1911 {
1912 return (spa->spa_dspace);
1913 }
1914
1915 uint64_t
spa_get_checkpoint_space(spa_t * spa)1916 spa_get_checkpoint_space(spa_t *spa)
1917 {
1918 return (spa->spa_checkpoint_info.sci_dspace);
1919 }
1920
1921 void
spa_update_dspace(spa_t * spa)1922 spa_update_dspace(spa_t *spa)
1923 {
1924 spa->spa_rdspace = metaslab_class_get_dspace(spa_normal_class(spa));
1925 if (spa->spa_nonallocating_dspace > 0) {
1926 /*
1927 * Subtract the space provided by all non-allocating vdevs that
1928 * contribute to dspace. If a file is overwritten, its old
1929 * blocks are freed and new blocks are allocated. If there are
1930 * no snapshots of the file, the available space should remain
1931 * the same. The old blocks could be freed from the
1932 * non-allocating vdev, but the new blocks must be allocated on
1933 * other (allocating) vdevs. By reserving the entire size of
1934 * the non-allocating vdevs (including allocated space), we
1935 * ensure that there will be enough space on the allocating
1936 * vdevs for this file overwrite to succeed.
1937 *
1938 * Note that the DMU/DSL doesn't actually know or care
1939 * how much space is allocated (it does its own tracking
1940 * of how much space has been logically used). So it
1941 * doesn't matter that the data we are moving may be
1942 * allocated twice (on the old device and the new device).
1943 */
1944 ASSERT3U(spa->spa_rdspace, >=, spa->spa_nonallocating_dspace);
1945 spa->spa_rdspace -= spa->spa_nonallocating_dspace;
1946 }
1947 spa->spa_dspace = spa->spa_rdspace + ddt_get_dedup_dspace(spa) +
1948 brt_get_dspace(spa);
1949 }
1950
1951 /*
1952 * Return the failure mode that has been set to this pool. The default
1953 * behavior will be to block all I/Os when a complete failure occurs.
1954 */
1955 uint64_t
spa_get_failmode(spa_t * spa)1956 spa_get_failmode(spa_t *spa)
1957 {
1958 return (spa->spa_failmode);
1959 }
1960
1961 boolean_t
spa_suspended(spa_t * spa)1962 spa_suspended(spa_t *spa)
1963 {
1964 return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1965 }
1966
1967 uint64_t
spa_version(spa_t * spa)1968 spa_version(spa_t *spa)
1969 {
1970 return (spa->spa_ubsync.ub_version);
1971 }
1972
1973 boolean_t
spa_deflate(spa_t * spa)1974 spa_deflate(spa_t *spa)
1975 {
1976 return (spa->spa_deflate);
1977 }
1978
1979 metaslab_class_t *
spa_normal_class(spa_t * spa)1980 spa_normal_class(spa_t *spa)
1981 {
1982 return (spa->spa_normal_class);
1983 }
1984
1985 metaslab_class_t *
spa_log_class(spa_t * spa)1986 spa_log_class(spa_t *spa)
1987 {
1988 return (spa->spa_log_class);
1989 }
1990
1991 metaslab_class_t *
spa_embedded_log_class(spa_t * spa)1992 spa_embedded_log_class(spa_t *spa)
1993 {
1994 return (spa->spa_embedded_log_class);
1995 }
1996
1997 metaslab_class_t *
spa_special_class(spa_t * spa)1998 spa_special_class(spa_t *spa)
1999 {
2000 return (spa->spa_special_class);
2001 }
2002
2003 metaslab_class_t *
spa_dedup_class(spa_t * spa)2004 spa_dedup_class(spa_t *spa)
2005 {
2006 return (spa->spa_dedup_class);
2007 }
2008
2009 boolean_t
spa_special_has_ddt(spa_t * spa)2010 spa_special_has_ddt(spa_t *spa)
2011 {
2012 return (zfs_ddt_data_is_special &&
2013 spa->spa_special_class->mc_groups != 0);
2014 }
2015
2016 /*
2017 * Locate an appropriate allocation class
2018 */
2019 metaslab_class_t *
spa_preferred_class(spa_t * spa,const zio_t * zio)2020 spa_preferred_class(spa_t *spa, const zio_t *zio)
2021 {
2022 const zio_prop_t *zp = &zio->io_prop;
2023
2024 /*
2025 * Override object type for the purposes of selecting a storage class.
2026 * Primarily for DMU_OTN_ types where we can't explicitly control their
2027 * storage class; instead, choose a static type most closely matches
2028 * what we want.
2029 */
2030 dmu_object_type_t objtype =
2031 zp->zp_storage_type == DMU_OT_NONE ?
2032 zp->zp_type : zp->zp_storage_type;
2033
2034 /*
2035 * ZIL allocations determine their class in zio_alloc_zil().
2036 */
2037 ASSERT(objtype != DMU_OT_INTENT_LOG);
2038
2039 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
2040
2041 if (DMU_OT_IS_DDT(objtype)) {
2042 if (spa->spa_dedup_class->mc_groups != 0)
2043 return (spa_dedup_class(spa));
2044 else if (has_special_class && zfs_ddt_data_is_special)
2045 return (spa_special_class(spa));
2046 else
2047 return (spa_normal_class(spa));
2048 }
2049
2050 /* Indirect blocks for user data can land in special if allowed */
2051 if (zp->zp_level > 0 &&
2052 (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
2053 if (has_special_class && zfs_user_indirect_is_special)
2054 return (spa_special_class(spa));
2055 else
2056 return (spa_normal_class(spa));
2057 }
2058
2059 if (DMU_OT_IS_METADATA(objtype) || zp->zp_level > 0) {
2060 if (has_special_class)
2061 return (spa_special_class(spa));
2062 else
2063 return (spa_normal_class(spa));
2064 }
2065
2066 /*
2067 * Allow small file blocks in special class in some cases (like
2068 * for the dRAID vdev feature). But always leave a reserve of
2069 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
2070 */
2071 if (DMU_OT_IS_FILE(objtype) &&
2072 has_special_class && zio->io_size <= zp->zp_zpl_smallblk) {
2073 metaslab_class_t *special = spa_special_class(spa);
2074 uint64_t alloc = metaslab_class_get_alloc(special);
2075 uint64_t space = metaslab_class_get_space(special);
2076 uint64_t limit =
2077 (space * (100 - zfs_special_class_metadata_reserve_pct))
2078 / 100;
2079
2080 if (alloc < limit)
2081 return (special);
2082 }
2083
2084 return (spa_normal_class(spa));
2085 }
2086
2087 void
spa_evicting_os_register(spa_t * spa,objset_t * os)2088 spa_evicting_os_register(spa_t *spa, objset_t *os)
2089 {
2090 mutex_enter(&spa->spa_evicting_os_lock);
2091 list_insert_head(&spa->spa_evicting_os_list, os);
2092 mutex_exit(&spa->spa_evicting_os_lock);
2093 }
2094
2095 void
spa_evicting_os_deregister(spa_t * spa,objset_t * os)2096 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
2097 {
2098 mutex_enter(&spa->spa_evicting_os_lock);
2099 list_remove(&spa->spa_evicting_os_list, os);
2100 cv_broadcast(&spa->spa_evicting_os_cv);
2101 mutex_exit(&spa->spa_evicting_os_lock);
2102 }
2103
2104 void
spa_evicting_os_wait(spa_t * spa)2105 spa_evicting_os_wait(spa_t *spa)
2106 {
2107 mutex_enter(&spa->spa_evicting_os_lock);
2108 while (!list_is_empty(&spa->spa_evicting_os_list))
2109 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
2110 mutex_exit(&spa->spa_evicting_os_lock);
2111
2112 dmu_buf_user_evict_wait();
2113 }
2114
2115 int
spa_max_replication(spa_t * spa)2116 spa_max_replication(spa_t *spa)
2117 {
2118 /*
2119 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
2120 * handle BPs with more than one DVA allocated. Set our max
2121 * replication level accordingly.
2122 */
2123 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
2124 return (1);
2125 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
2126 }
2127
2128 int
spa_prev_software_version(spa_t * spa)2129 spa_prev_software_version(spa_t *spa)
2130 {
2131 return (spa->spa_prev_software_version);
2132 }
2133
2134 uint64_t
spa_deadman_synctime(spa_t * spa)2135 spa_deadman_synctime(spa_t *spa)
2136 {
2137 return (spa->spa_deadman_synctime);
2138 }
2139
2140 spa_autotrim_t
spa_get_autotrim(spa_t * spa)2141 spa_get_autotrim(spa_t *spa)
2142 {
2143 return (spa->spa_autotrim);
2144 }
2145
2146 uint64_t
spa_deadman_ziotime(spa_t * spa)2147 spa_deadman_ziotime(spa_t *spa)
2148 {
2149 return (spa->spa_deadman_ziotime);
2150 }
2151
2152 uint64_t
spa_get_deadman_failmode(spa_t * spa)2153 spa_get_deadman_failmode(spa_t *spa)
2154 {
2155 return (spa->spa_deadman_failmode);
2156 }
2157
2158 void
spa_set_deadman_failmode(spa_t * spa,const char * failmode)2159 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2160 {
2161 if (strcmp(failmode, "wait") == 0)
2162 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2163 else if (strcmp(failmode, "continue") == 0)
2164 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2165 else if (strcmp(failmode, "panic") == 0)
2166 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2167 else
2168 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2169 }
2170
2171 void
spa_set_deadman_ziotime(hrtime_t ns)2172 spa_set_deadman_ziotime(hrtime_t ns)
2173 {
2174 spa_t *spa = NULL;
2175
2176 if (spa_mode_global != SPA_MODE_UNINIT) {
2177 mutex_enter(&spa_namespace_lock);
2178 while ((spa = spa_next(spa)) != NULL)
2179 spa->spa_deadman_ziotime = ns;
2180 mutex_exit(&spa_namespace_lock);
2181 }
2182 }
2183
2184 void
spa_set_deadman_synctime(hrtime_t ns)2185 spa_set_deadman_synctime(hrtime_t ns)
2186 {
2187 spa_t *spa = NULL;
2188
2189 if (spa_mode_global != SPA_MODE_UNINIT) {
2190 mutex_enter(&spa_namespace_lock);
2191 while ((spa = spa_next(spa)) != NULL)
2192 spa->spa_deadman_synctime = ns;
2193 mutex_exit(&spa_namespace_lock);
2194 }
2195 }
2196
2197 uint64_t
dva_get_dsize_sync(spa_t * spa,const dva_t * dva)2198 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2199 {
2200 uint64_t asize = DVA_GET_ASIZE(dva);
2201 uint64_t dsize = asize;
2202
2203 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2204
2205 if (asize != 0 && spa->spa_deflate) {
2206 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2207 if (vd != NULL)
2208 dsize = (asize >> SPA_MINBLOCKSHIFT) *
2209 vd->vdev_deflate_ratio;
2210 }
2211
2212 return (dsize);
2213 }
2214
2215 uint64_t
bp_get_dsize_sync(spa_t * spa,const blkptr_t * bp)2216 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2217 {
2218 uint64_t dsize = 0;
2219
2220 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2221 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2222
2223 return (dsize);
2224 }
2225
2226 uint64_t
bp_get_dsize(spa_t * spa,const blkptr_t * bp)2227 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2228 {
2229 uint64_t dsize = 0;
2230
2231 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2232
2233 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2234 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2235
2236 spa_config_exit(spa, SCL_VDEV, FTAG);
2237
2238 return (dsize);
2239 }
2240
2241 uint64_t
spa_dirty_data(spa_t * spa)2242 spa_dirty_data(spa_t *spa)
2243 {
2244 return (spa->spa_dsl_pool->dp_dirty_total);
2245 }
2246
2247 /*
2248 * ==========================================================================
2249 * SPA Import Progress Routines
2250 * ==========================================================================
2251 */
2252
2253 typedef struct spa_import_progress {
2254 uint64_t pool_guid; /* unique id for updates */
2255 char *pool_name;
2256 spa_load_state_t spa_load_state;
2257 char *spa_load_notes;
2258 uint64_t mmp_sec_remaining; /* MMP activity check */
2259 uint64_t spa_load_max_txg; /* rewind txg */
2260 procfs_list_node_t smh_node;
2261 } spa_import_progress_t;
2262
2263 spa_history_list_t *spa_import_progress_list = NULL;
2264
2265 static int
spa_import_progress_show_header(struct seq_file * f)2266 spa_import_progress_show_header(struct seq_file *f)
2267 {
2268 seq_printf(f, "%-20s %-14s %-14s %-12s %-16s %s\n", "pool_guid",
2269 "load_state", "multihost_secs", "max_txg",
2270 "pool_name", "notes");
2271 return (0);
2272 }
2273
2274 static int
spa_import_progress_show(struct seq_file * f,void * data)2275 spa_import_progress_show(struct seq_file *f, void *data)
2276 {
2277 spa_import_progress_t *sip = (spa_import_progress_t *)data;
2278
2279 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %-16s %s\n",
2280 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2281 (u_longlong_t)sip->mmp_sec_remaining,
2282 (u_longlong_t)sip->spa_load_max_txg,
2283 (sip->pool_name ? sip->pool_name : "-"),
2284 (sip->spa_load_notes ? sip->spa_load_notes : "-"));
2285
2286 return (0);
2287 }
2288
2289 /* Remove oldest elements from list until there are no more than 'size' left */
2290 static void
spa_import_progress_truncate(spa_history_list_t * shl,unsigned int size)2291 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2292 {
2293 spa_import_progress_t *sip;
2294 while (shl->size > size) {
2295 sip = list_remove_head(&shl->procfs_list.pl_list);
2296 if (sip->pool_name)
2297 spa_strfree(sip->pool_name);
2298 if (sip->spa_load_notes)
2299 kmem_strfree(sip->spa_load_notes);
2300 kmem_free(sip, sizeof (spa_import_progress_t));
2301 shl->size--;
2302 }
2303
2304 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2305 }
2306
2307 static void
spa_import_progress_init(void)2308 spa_import_progress_init(void)
2309 {
2310 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2311 KM_SLEEP);
2312
2313 spa_import_progress_list->size = 0;
2314
2315 spa_import_progress_list->procfs_list.pl_private =
2316 spa_import_progress_list;
2317
2318 procfs_list_install("zfs",
2319 NULL,
2320 "import_progress",
2321 0644,
2322 &spa_import_progress_list->procfs_list,
2323 spa_import_progress_show,
2324 spa_import_progress_show_header,
2325 NULL,
2326 offsetof(spa_import_progress_t, smh_node));
2327 }
2328
2329 static void
spa_import_progress_destroy(void)2330 spa_import_progress_destroy(void)
2331 {
2332 spa_history_list_t *shl = spa_import_progress_list;
2333 procfs_list_uninstall(&shl->procfs_list);
2334 spa_import_progress_truncate(shl, 0);
2335 procfs_list_destroy(&shl->procfs_list);
2336 kmem_free(shl, sizeof (spa_history_list_t));
2337 }
2338
2339 int
spa_import_progress_set_state(uint64_t pool_guid,spa_load_state_t load_state)2340 spa_import_progress_set_state(uint64_t pool_guid,
2341 spa_load_state_t load_state)
2342 {
2343 spa_history_list_t *shl = spa_import_progress_list;
2344 spa_import_progress_t *sip;
2345 int error = ENOENT;
2346
2347 if (shl->size == 0)
2348 return (0);
2349
2350 mutex_enter(&shl->procfs_list.pl_lock);
2351 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2352 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2353 if (sip->pool_guid == pool_guid) {
2354 sip->spa_load_state = load_state;
2355 if (sip->spa_load_notes != NULL) {
2356 kmem_strfree(sip->spa_load_notes);
2357 sip->spa_load_notes = NULL;
2358 }
2359 error = 0;
2360 break;
2361 }
2362 }
2363 mutex_exit(&shl->procfs_list.pl_lock);
2364
2365 return (error);
2366 }
2367
2368 static void
spa_import_progress_set_notes_impl(spa_t * spa,boolean_t log_dbgmsg,const char * fmt,va_list adx)2369 spa_import_progress_set_notes_impl(spa_t *spa, boolean_t log_dbgmsg,
2370 const char *fmt, va_list adx)
2371 {
2372 spa_history_list_t *shl = spa_import_progress_list;
2373 spa_import_progress_t *sip;
2374 uint64_t pool_guid = spa_guid(spa);
2375
2376 if (shl->size == 0)
2377 return;
2378
2379 char *notes = kmem_vasprintf(fmt, adx);
2380
2381 mutex_enter(&shl->procfs_list.pl_lock);
2382 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2383 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2384 if (sip->pool_guid == pool_guid) {
2385 if (sip->spa_load_notes != NULL) {
2386 kmem_strfree(sip->spa_load_notes);
2387 sip->spa_load_notes = NULL;
2388 }
2389 sip->spa_load_notes = notes;
2390 if (log_dbgmsg)
2391 zfs_dbgmsg("'%s' %s", sip->pool_name, notes);
2392 notes = NULL;
2393 break;
2394 }
2395 }
2396 mutex_exit(&shl->procfs_list.pl_lock);
2397 if (notes != NULL)
2398 kmem_strfree(notes);
2399 }
2400
2401 void
spa_import_progress_set_notes(spa_t * spa,const char * fmt,...)2402 spa_import_progress_set_notes(spa_t *spa, const char *fmt, ...)
2403 {
2404 va_list adx;
2405
2406 va_start(adx, fmt);
2407 spa_import_progress_set_notes_impl(spa, B_TRUE, fmt, adx);
2408 va_end(adx);
2409 }
2410
2411 void
spa_import_progress_set_notes_nolog(spa_t * spa,const char * fmt,...)2412 spa_import_progress_set_notes_nolog(spa_t *spa, const char *fmt, ...)
2413 {
2414 va_list adx;
2415
2416 va_start(adx, fmt);
2417 spa_import_progress_set_notes_impl(spa, B_FALSE, fmt, adx);
2418 va_end(adx);
2419 }
2420
2421 int
spa_import_progress_set_max_txg(uint64_t pool_guid,uint64_t load_max_txg)2422 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2423 {
2424 spa_history_list_t *shl = spa_import_progress_list;
2425 spa_import_progress_t *sip;
2426 int error = ENOENT;
2427
2428 if (shl->size == 0)
2429 return (0);
2430
2431 mutex_enter(&shl->procfs_list.pl_lock);
2432 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2433 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2434 if (sip->pool_guid == pool_guid) {
2435 sip->spa_load_max_txg = load_max_txg;
2436 error = 0;
2437 break;
2438 }
2439 }
2440 mutex_exit(&shl->procfs_list.pl_lock);
2441
2442 return (error);
2443 }
2444
2445 int
spa_import_progress_set_mmp_check(uint64_t pool_guid,uint64_t mmp_sec_remaining)2446 spa_import_progress_set_mmp_check(uint64_t pool_guid,
2447 uint64_t mmp_sec_remaining)
2448 {
2449 spa_history_list_t *shl = spa_import_progress_list;
2450 spa_import_progress_t *sip;
2451 int error = ENOENT;
2452
2453 if (shl->size == 0)
2454 return (0);
2455
2456 mutex_enter(&shl->procfs_list.pl_lock);
2457 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2458 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2459 if (sip->pool_guid == pool_guid) {
2460 sip->mmp_sec_remaining = mmp_sec_remaining;
2461 error = 0;
2462 break;
2463 }
2464 }
2465 mutex_exit(&shl->procfs_list.pl_lock);
2466
2467 return (error);
2468 }
2469
2470 /*
2471 * A new import is in progress, add an entry.
2472 */
2473 void
spa_import_progress_add(spa_t * spa)2474 spa_import_progress_add(spa_t *spa)
2475 {
2476 spa_history_list_t *shl = spa_import_progress_list;
2477 spa_import_progress_t *sip;
2478 const char *poolname = NULL;
2479
2480 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2481 sip->pool_guid = spa_guid(spa);
2482
2483 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2484 &poolname);
2485 if (poolname == NULL)
2486 poolname = spa_name(spa);
2487 sip->pool_name = spa_strdup(poolname);
2488 sip->spa_load_state = spa_load_state(spa);
2489 sip->spa_load_notes = NULL;
2490
2491 mutex_enter(&shl->procfs_list.pl_lock);
2492 procfs_list_add(&shl->procfs_list, sip);
2493 shl->size++;
2494 mutex_exit(&shl->procfs_list.pl_lock);
2495 }
2496
2497 void
spa_import_progress_remove(uint64_t pool_guid)2498 spa_import_progress_remove(uint64_t pool_guid)
2499 {
2500 spa_history_list_t *shl = spa_import_progress_list;
2501 spa_import_progress_t *sip;
2502
2503 mutex_enter(&shl->procfs_list.pl_lock);
2504 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2505 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2506 if (sip->pool_guid == pool_guid) {
2507 if (sip->pool_name)
2508 spa_strfree(sip->pool_name);
2509 if (sip->spa_load_notes)
2510 spa_strfree(sip->spa_load_notes);
2511 list_remove(&shl->procfs_list.pl_list, sip);
2512 shl->size--;
2513 kmem_free(sip, sizeof (spa_import_progress_t));
2514 break;
2515 }
2516 }
2517 mutex_exit(&shl->procfs_list.pl_lock);
2518 }
2519
2520 /*
2521 * ==========================================================================
2522 * Initialization and Termination
2523 * ==========================================================================
2524 */
2525
2526 static int
spa_name_compare(const void * a1,const void * a2)2527 spa_name_compare(const void *a1, const void *a2)
2528 {
2529 const spa_t *s1 = a1;
2530 const spa_t *s2 = a2;
2531 int s;
2532
2533 s = strcmp(s1->spa_name, s2->spa_name);
2534
2535 return (TREE_ISIGN(s));
2536 }
2537
2538 void
spa_boot_init(void * unused)2539 spa_boot_init(void *unused)
2540 {
2541 (void) unused;
2542 spa_config_load();
2543 }
2544
2545 void
spa_init(spa_mode_t mode)2546 spa_init(spa_mode_t mode)
2547 {
2548 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2549 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2550 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2551 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2552
2553 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2554 offsetof(spa_t, spa_avl));
2555
2556 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2557 offsetof(spa_aux_t, aux_avl));
2558
2559 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2560 offsetof(spa_aux_t, aux_avl));
2561
2562 spa_mode_global = mode;
2563
2564 #ifndef _KERNEL
2565 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
2566 struct sigaction sa;
2567
2568 sa.sa_flags = SA_SIGINFO;
2569 sigemptyset(&sa.sa_mask);
2570 sa.sa_sigaction = arc_buf_sigsegv;
2571
2572 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2573 perror("could not enable watchpoints: "
2574 "sigaction(SIGSEGV, ...) = ");
2575 } else {
2576 arc_watch = B_TRUE;
2577 }
2578 }
2579 #endif
2580
2581 fm_init();
2582 zfs_refcount_init();
2583 unique_init();
2584 zfs_btree_init();
2585 metaslab_stat_init();
2586 brt_init();
2587 ddt_init();
2588 zio_init();
2589 dmu_init();
2590 zil_init();
2591 vdev_mirror_stat_init();
2592 vdev_raidz_math_init();
2593 vdev_file_init();
2594 zfs_prop_init();
2595 chksum_init();
2596 zpool_prop_init();
2597 zpool_feature_init();
2598 spa_config_load();
2599 vdev_prop_init();
2600 l2arc_start();
2601 scan_init();
2602 qat_init();
2603 spa_import_progress_init();
2604 zap_init();
2605 }
2606
2607 void
spa_fini(void)2608 spa_fini(void)
2609 {
2610 l2arc_stop();
2611
2612 spa_evict_all();
2613
2614 vdev_file_fini();
2615 vdev_mirror_stat_fini();
2616 vdev_raidz_math_fini();
2617 chksum_fini();
2618 zil_fini();
2619 dmu_fini();
2620 zio_fini();
2621 ddt_fini();
2622 brt_fini();
2623 metaslab_stat_fini();
2624 zfs_btree_fini();
2625 unique_fini();
2626 zfs_refcount_fini();
2627 fm_fini();
2628 scan_fini();
2629 qat_fini();
2630 spa_import_progress_destroy();
2631 zap_fini();
2632
2633 avl_destroy(&spa_namespace_avl);
2634 avl_destroy(&spa_spare_avl);
2635 avl_destroy(&spa_l2cache_avl);
2636
2637 cv_destroy(&spa_namespace_cv);
2638 mutex_destroy(&spa_namespace_lock);
2639 mutex_destroy(&spa_spare_lock);
2640 mutex_destroy(&spa_l2cache_lock);
2641 }
2642
2643 /*
2644 * Return whether this pool has a dedicated slog device. No locking needed.
2645 * It's not a problem if the wrong answer is returned as it's only for
2646 * performance and not correctness.
2647 */
2648 boolean_t
spa_has_slogs(spa_t * spa)2649 spa_has_slogs(spa_t *spa)
2650 {
2651 return (spa->spa_log_class->mc_groups != 0);
2652 }
2653
2654 spa_log_state_t
spa_get_log_state(spa_t * spa)2655 spa_get_log_state(spa_t *spa)
2656 {
2657 return (spa->spa_log_state);
2658 }
2659
2660 void
spa_set_log_state(spa_t * spa,spa_log_state_t state)2661 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2662 {
2663 spa->spa_log_state = state;
2664 }
2665
2666 boolean_t
spa_is_root(spa_t * spa)2667 spa_is_root(spa_t *spa)
2668 {
2669 return (spa->spa_is_root);
2670 }
2671
2672 boolean_t
spa_writeable(spa_t * spa)2673 spa_writeable(spa_t *spa)
2674 {
2675 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
2676 }
2677
2678 /*
2679 * Returns true if there is a pending sync task in any of the current
2680 * syncing txg, the current quiescing txg, or the current open txg.
2681 */
2682 boolean_t
spa_has_pending_synctask(spa_t * spa)2683 spa_has_pending_synctask(spa_t *spa)
2684 {
2685 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2686 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2687 }
2688
2689 spa_mode_t
spa_mode(spa_t * spa)2690 spa_mode(spa_t *spa)
2691 {
2692 return (spa->spa_mode);
2693 }
2694
2695 uint64_t
spa_get_last_scrubbed_txg(spa_t * spa)2696 spa_get_last_scrubbed_txg(spa_t *spa)
2697 {
2698 return (spa->spa_scrubbed_last_txg);
2699 }
2700
2701 uint64_t
spa_bootfs(spa_t * spa)2702 spa_bootfs(spa_t *spa)
2703 {
2704 return (spa->spa_bootfs);
2705 }
2706
2707 uint64_t
spa_delegation(spa_t * spa)2708 spa_delegation(spa_t *spa)
2709 {
2710 return (spa->spa_delegation);
2711 }
2712
2713 objset_t *
spa_meta_objset(spa_t * spa)2714 spa_meta_objset(spa_t *spa)
2715 {
2716 return (spa->spa_meta_objset);
2717 }
2718
2719 enum zio_checksum
spa_dedup_checksum(spa_t * spa)2720 spa_dedup_checksum(spa_t *spa)
2721 {
2722 return (spa->spa_dedup_checksum);
2723 }
2724
2725 /*
2726 * Reset pool scan stat per scan pass (or reboot).
2727 */
2728 void
spa_scan_stat_init(spa_t * spa)2729 spa_scan_stat_init(spa_t *spa)
2730 {
2731 /* data not stored on disk */
2732 spa->spa_scan_pass_start = gethrestime_sec();
2733 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2734 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2735 else
2736 spa->spa_scan_pass_scrub_pause = 0;
2737
2738 if (dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan))
2739 spa->spa_scan_pass_errorscrub_pause = spa->spa_scan_pass_start;
2740 else
2741 spa->spa_scan_pass_errorscrub_pause = 0;
2742
2743 spa->spa_scan_pass_scrub_spent_paused = 0;
2744 spa->spa_scan_pass_exam = 0;
2745 spa->spa_scan_pass_issued = 0;
2746
2747 // error scrub stats
2748 spa->spa_scan_pass_errorscrub_spent_paused = 0;
2749 }
2750
2751 /*
2752 * Get scan stats for zpool status reports
2753 */
2754 int
spa_scan_get_stats(spa_t * spa,pool_scan_stat_t * ps)2755 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2756 {
2757 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2758
2759 if (scn == NULL || (scn->scn_phys.scn_func == POOL_SCAN_NONE &&
2760 scn->errorscrub_phys.dep_func == POOL_SCAN_NONE))
2761 return (SET_ERROR(ENOENT));
2762
2763 memset(ps, 0, sizeof (pool_scan_stat_t));
2764
2765 /* data stored on disk */
2766 ps->pss_func = scn->scn_phys.scn_func;
2767 ps->pss_state = scn->scn_phys.scn_state;
2768 ps->pss_start_time = scn->scn_phys.scn_start_time;
2769 ps->pss_end_time = scn->scn_phys.scn_end_time;
2770 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2771 ps->pss_examined = scn->scn_phys.scn_examined;
2772 ps->pss_skipped = scn->scn_phys.scn_skipped;
2773 ps->pss_processed = scn->scn_phys.scn_processed;
2774 ps->pss_errors = scn->scn_phys.scn_errors;
2775
2776 /* data not stored on disk */
2777 ps->pss_pass_exam = spa->spa_scan_pass_exam;
2778 ps->pss_pass_start = spa->spa_scan_pass_start;
2779 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2780 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2781 ps->pss_pass_issued = spa->spa_scan_pass_issued;
2782 ps->pss_issued =
2783 scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2784
2785 /* error scrub data stored on disk */
2786 ps->pss_error_scrub_func = scn->errorscrub_phys.dep_func;
2787 ps->pss_error_scrub_state = scn->errorscrub_phys.dep_state;
2788 ps->pss_error_scrub_start = scn->errorscrub_phys.dep_start_time;
2789 ps->pss_error_scrub_end = scn->errorscrub_phys.dep_end_time;
2790 ps->pss_error_scrub_examined = scn->errorscrub_phys.dep_examined;
2791 ps->pss_error_scrub_to_be_examined =
2792 scn->errorscrub_phys.dep_to_examine;
2793
2794 /* error scrub data not stored on disk */
2795 ps->pss_pass_error_scrub_pause = spa->spa_scan_pass_errorscrub_pause;
2796
2797 return (0);
2798 }
2799
2800 int
spa_maxblocksize(spa_t * spa)2801 spa_maxblocksize(spa_t *spa)
2802 {
2803 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2804 return (SPA_MAXBLOCKSIZE);
2805 else
2806 return (SPA_OLD_MAXBLOCKSIZE);
2807 }
2808
2809
2810 /*
2811 * Returns the txg that the last device removal completed. No indirect mappings
2812 * have been added since this txg.
2813 */
2814 uint64_t
spa_get_last_removal_txg(spa_t * spa)2815 spa_get_last_removal_txg(spa_t *spa)
2816 {
2817 uint64_t vdevid;
2818 uint64_t ret = -1ULL;
2819
2820 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2821 /*
2822 * sr_prev_indirect_vdev is only modified while holding all the
2823 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2824 * examining it.
2825 */
2826 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2827
2828 while (vdevid != -1ULL) {
2829 vdev_t *vd = vdev_lookup_top(spa, vdevid);
2830 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2831
2832 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2833
2834 /*
2835 * If the removal did not remap any data, we don't care.
2836 */
2837 if (vdev_indirect_births_count(vib) != 0) {
2838 ret = vdev_indirect_births_last_entry_txg(vib);
2839 break;
2840 }
2841
2842 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2843 }
2844 spa_config_exit(spa, SCL_VDEV, FTAG);
2845
2846 IMPLY(ret != -1ULL,
2847 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2848
2849 return (ret);
2850 }
2851
2852 int
spa_maxdnodesize(spa_t * spa)2853 spa_maxdnodesize(spa_t *spa)
2854 {
2855 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2856 return (DNODE_MAX_SIZE);
2857 else
2858 return (DNODE_MIN_SIZE);
2859 }
2860
2861 boolean_t
spa_multihost(spa_t * spa)2862 spa_multihost(spa_t *spa)
2863 {
2864 return (spa->spa_multihost ? B_TRUE : B_FALSE);
2865 }
2866
2867 uint32_t
spa_get_hostid(spa_t * spa)2868 spa_get_hostid(spa_t *spa)
2869 {
2870 return (spa->spa_hostid);
2871 }
2872
2873 boolean_t
spa_trust_config(spa_t * spa)2874 spa_trust_config(spa_t *spa)
2875 {
2876 return (spa->spa_trust_config);
2877 }
2878
2879 uint64_t
spa_missing_tvds_allowed(spa_t * spa)2880 spa_missing_tvds_allowed(spa_t *spa)
2881 {
2882 return (spa->spa_missing_tvds_allowed);
2883 }
2884
2885 space_map_t *
spa_syncing_log_sm(spa_t * spa)2886 spa_syncing_log_sm(spa_t *spa)
2887 {
2888 return (spa->spa_syncing_log_sm);
2889 }
2890
2891 void
spa_set_missing_tvds(spa_t * spa,uint64_t missing)2892 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2893 {
2894 spa->spa_missing_tvds = missing;
2895 }
2896
2897 /*
2898 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2899 */
2900 const char *
spa_state_to_name(spa_t * spa)2901 spa_state_to_name(spa_t *spa)
2902 {
2903 ASSERT3P(spa, !=, NULL);
2904
2905 /*
2906 * it is possible for the spa to exist, without root vdev
2907 * as the spa transitions during import/export
2908 */
2909 vdev_t *rvd = spa->spa_root_vdev;
2910 if (rvd == NULL) {
2911 return ("TRANSITIONING");
2912 }
2913 vdev_state_t state = rvd->vdev_state;
2914 vdev_aux_t aux = rvd->vdev_stat.vs_aux;
2915
2916 if (spa_suspended(spa))
2917 return ("SUSPENDED");
2918
2919 switch (state) {
2920 case VDEV_STATE_CLOSED:
2921 case VDEV_STATE_OFFLINE:
2922 return ("OFFLINE");
2923 case VDEV_STATE_REMOVED:
2924 return ("REMOVED");
2925 case VDEV_STATE_CANT_OPEN:
2926 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2927 return ("FAULTED");
2928 else if (aux == VDEV_AUX_SPLIT_POOL)
2929 return ("SPLIT");
2930 else
2931 return ("UNAVAIL");
2932 case VDEV_STATE_FAULTED:
2933 return ("FAULTED");
2934 case VDEV_STATE_DEGRADED:
2935 return ("DEGRADED");
2936 case VDEV_STATE_HEALTHY:
2937 return ("ONLINE");
2938 default:
2939 break;
2940 }
2941
2942 return ("UNKNOWN");
2943 }
2944
2945 boolean_t
spa_top_vdevs_spacemap_addressable(spa_t * spa)2946 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2947 {
2948 vdev_t *rvd = spa->spa_root_vdev;
2949 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2950 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2951 return (B_FALSE);
2952 }
2953 return (B_TRUE);
2954 }
2955
2956 boolean_t
spa_has_checkpoint(spa_t * spa)2957 spa_has_checkpoint(spa_t *spa)
2958 {
2959 return (spa->spa_checkpoint_txg != 0);
2960 }
2961
2962 boolean_t
spa_importing_readonly_checkpoint(spa_t * spa)2963 spa_importing_readonly_checkpoint(spa_t *spa)
2964 {
2965 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2966 spa->spa_mode == SPA_MODE_READ);
2967 }
2968
2969 uint64_t
spa_min_claim_txg(spa_t * spa)2970 spa_min_claim_txg(spa_t *spa)
2971 {
2972 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2973
2974 if (checkpoint_txg != 0)
2975 return (checkpoint_txg + 1);
2976
2977 return (spa->spa_first_txg);
2978 }
2979
2980 /*
2981 * If there is a checkpoint, async destroys may consume more space from
2982 * the pool instead of freeing it. In an attempt to save the pool from
2983 * getting suspended when it is about to run out of space, we stop
2984 * processing async destroys.
2985 */
2986 boolean_t
spa_suspend_async_destroy(spa_t * spa)2987 spa_suspend_async_destroy(spa_t *spa)
2988 {
2989 dsl_pool_t *dp = spa_get_dsl(spa);
2990
2991 uint64_t unreserved = dsl_pool_unreserved_space(dp,
2992 ZFS_SPACE_CHECK_EXTRA_RESERVED);
2993 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2994 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2995
2996 if (spa_has_checkpoint(spa) && avail == 0)
2997 return (B_TRUE);
2998
2999 return (B_FALSE);
3000 }
3001
3002 #if defined(_KERNEL)
3003
3004 int
param_set_deadman_failmode_common(const char * val)3005 param_set_deadman_failmode_common(const char *val)
3006 {
3007 spa_t *spa = NULL;
3008 char *p;
3009
3010 if (val == NULL)
3011 return (SET_ERROR(EINVAL));
3012
3013 if ((p = strchr(val, '\n')) != NULL)
3014 *p = '\0';
3015
3016 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
3017 strcmp(val, "panic"))
3018 return (SET_ERROR(EINVAL));
3019
3020 if (spa_mode_global != SPA_MODE_UNINIT) {
3021 mutex_enter(&spa_namespace_lock);
3022 while ((spa = spa_next(spa)) != NULL)
3023 spa_set_deadman_failmode(spa, val);
3024 mutex_exit(&spa_namespace_lock);
3025 }
3026
3027 return (0);
3028 }
3029 #endif
3030
3031 /* Namespace manipulation */
3032 EXPORT_SYMBOL(spa_lookup);
3033 EXPORT_SYMBOL(spa_add);
3034 EXPORT_SYMBOL(spa_remove);
3035 EXPORT_SYMBOL(spa_next);
3036
3037 /* Refcount functions */
3038 EXPORT_SYMBOL(spa_open_ref);
3039 EXPORT_SYMBOL(spa_close);
3040 EXPORT_SYMBOL(spa_refcount_zero);
3041
3042 /* Pool configuration lock */
3043 EXPORT_SYMBOL(spa_config_tryenter);
3044 EXPORT_SYMBOL(spa_config_enter);
3045 EXPORT_SYMBOL(spa_config_exit);
3046 EXPORT_SYMBOL(spa_config_held);
3047
3048 /* Pool vdev add/remove lock */
3049 EXPORT_SYMBOL(spa_vdev_enter);
3050 EXPORT_SYMBOL(spa_vdev_exit);
3051
3052 /* Pool vdev state change lock */
3053 EXPORT_SYMBOL(spa_vdev_state_enter);
3054 EXPORT_SYMBOL(spa_vdev_state_exit);
3055
3056 /* Accessor functions */
3057 EXPORT_SYMBOL(spa_shutting_down);
3058 EXPORT_SYMBOL(spa_get_dsl);
3059 EXPORT_SYMBOL(spa_get_rootblkptr);
3060 EXPORT_SYMBOL(spa_set_rootblkptr);
3061 EXPORT_SYMBOL(spa_altroot);
3062 EXPORT_SYMBOL(spa_sync_pass);
3063 EXPORT_SYMBOL(spa_name);
3064 EXPORT_SYMBOL(spa_guid);
3065 EXPORT_SYMBOL(spa_last_synced_txg);
3066 EXPORT_SYMBOL(spa_first_txg);
3067 EXPORT_SYMBOL(spa_syncing_txg);
3068 EXPORT_SYMBOL(spa_version);
3069 EXPORT_SYMBOL(spa_state);
3070 EXPORT_SYMBOL(spa_load_state);
3071 EXPORT_SYMBOL(spa_freeze_txg);
3072 EXPORT_SYMBOL(spa_get_dspace);
3073 EXPORT_SYMBOL(spa_update_dspace);
3074 EXPORT_SYMBOL(spa_deflate);
3075 EXPORT_SYMBOL(spa_normal_class);
3076 EXPORT_SYMBOL(spa_log_class);
3077 EXPORT_SYMBOL(spa_special_class);
3078 EXPORT_SYMBOL(spa_preferred_class);
3079 EXPORT_SYMBOL(spa_max_replication);
3080 EXPORT_SYMBOL(spa_prev_software_version);
3081 EXPORT_SYMBOL(spa_get_failmode);
3082 EXPORT_SYMBOL(spa_suspended);
3083 EXPORT_SYMBOL(spa_bootfs);
3084 EXPORT_SYMBOL(spa_delegation);
3085 EXPORT_SYMBOL(spa_meta_objset);
3086 EXPORT_SYMBOL(spa_maxblocksize);
3087 EXPORT_SYMBOL(spa_maxdnodesize);
3088
3089 /* Miscellaneous support routines */
3090 EXPORT_SYMBOL(spa_guid_exists);
3091 EXPORT_SYMBOL(spa_strdup);
3092 EXPORT_SYMBOL(spa_strfree);
3093 EXPORT_SYMBOL(spa_generate_guid);
3094 EXPORT_SYMBOL(snprintf_blkptr);
3095 EXPORT_SYMBOL(spa_freeze);
3096 EXPORT_SYMBOL(spa_upgrade);
3097 EXPORT_SYMBOL(spa_evict_all);
3098 EXPORT_SYMBOL(spa_lookup_by_guid);
3099 EXPORT_SYMBOL(spa_has_spare);
3100 EXPORT_SYMBOL(dva_get_dsize_sync);
3101 EXPORT_SYMBOL(bp_get_dsize_sync);
3102 EXPORT_SYMBOL(bp_get_dsize);
3103 EXPORT_SYMBOL(spa_has_slogs);
3104 EXPORT_SYMBOL(spa_is_root);
3105 EXPORT_SYMBOL(spa_writeable);
3106 EXPORT_SYMBOL(spa_mode);
3107 EXPORT_SYMBOL(spa_namespace_lock);
3108 EXPORT_SYMBOL(spa_trust_config);
3109 EXPORT_SYMBOL(spa_missing_tvds_allowed);
3110 EXPORT_SYMBOL(spa_set_missing_tvds);
3111 EXPORT_SYMBOL(spa_state_to_name);
3112 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
3113 EXPORT_SYMBOL(spa_min_claim_txg);
3114 EXPORT_SYMBOL(spa_suspend_async_destroy);
3115 EXPORT_SYMBOL(spa_has_checkpoint);
3116 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
3117
3118 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
3119 "Set additional debugging flags");
3120
3121 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
3122 "Set to attempt to recover from fatal errors");
3123
3124 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
3125 "Set to ignore IO errors during free and permanently leak the space");
3126
3127 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW,
3128 "Dead I/O check interval in milliseconds");
3129
3130 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW,
3131 "Enable deadman timer");
3132
3133 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW,
3134 "SPA size estimate multiplication factor");
3135
3136 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
3137 "Place DDT data into the special class");
3138
3139 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
3140 "Place user data indirect blocks into the special class");
3141
3142 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
3143 param_set_deadman_failmode, param_get_charp, ZMOD_RW,
3144 "Failmode for deadman timer");
3145
3146 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
3147 param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW,
3148 "Pool sync expiration time in milliseconds");
3149
3150 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
3151 param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW,
3152 "IO expiration time in milliseconds");
3153
3154 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW,
3155 "Small file blocks in special vdevs depends on this much "
3156 "free space available");
3157
3158 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
3159 param_get_uint, ZMOD_RW, "Reserved free space in pool");
3160
3161 ZFS_MODULE_PARAM(zfs, spa_, num_allocators, INT, ZMOD_RW,
3162 "Number of allocators per spa");
3163
3164 ZFS_MODULE_PARAM(zfs, spa_, cpus_per_allocator, INT, ZMOD_RW,
3165 "Minimum number of CPUs per allocators");
3166