xref: /freebsd/sys/contrib/openzfs/module/zfs/spa_misc.c (revision 8ac904ce090b1c2e355da8aa122ca2252183f4e1)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
25  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2017 Datto Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
31  * Copyright (c) 2023, 2024, 2025, Klara, Inc.
32  */
33 
34 #include <sys/zfs_context.h>
35 #include <sys/zfs_chksum.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/zio_compress.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/zap.h>
43 #include <sys/zil.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/vdev_initialize.h>
46 #include <sys/vdev_trim.h>
47 #include <sys/vdev_file.h>
48 #include <sys/vdev_raidz.h>
49 #include <sys/metaslab.h>
50 #include <sys/uberblock_impl.h>
51 #include <sys/txg.h>
52 #include <sys/avl.h>
53 #include <sys/unique.h>
54 #include <sys/dsl_pool.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/fm/util.h>
58 #include <sys/dsl_scan.h>
59 #include <sys/fs/zfs.h>
60 #include <sys/metaslab_impl.h>
61 #include <sys/arc.h>
62 #include <sys/brt.h>
63 #include <sys/ddt.h>
64 #include <sys/kstat.h>
65 #include "zfs_prop.h"
66 #include <sys/btree.h>
67 #include <sys/zfeature.h>
68 #include <sys/qat.h>
69 #include <sys/zstd/zstd.h>
70 
71 /*
72  * SPA locking
73  *
74  * There are three basic locks for managing spa_t structures:
75  *
76  * spa_namespace_lock (global mutex)
77  *
78  *	This lock must be acquired to do any of the following:
79  *
80  *		- Lookup a spa_t by name
81  *		- Add or remove a spa_t from the namespace
82  *		- Increase spa_refcount from non-zero
83  *		- Check if spa_refcount is zero
84  *		- Rename a spa_t
85  *		- add/remove/attach/detach devices
86  *		- Held for the duration of create/destroy
87  *		- Held at the start and end of import and export
88  *
89  *	It does not need to handle recursion.  A create or destroy may
90  *	reference objects (files or zvols) in other pools, but by
91  *	definition they must have an existing reference, and will never need
92  *	to lookup a spa_t by name.
93  *
94  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
95  *
96  *	This reference count keep track of any active users of the spa_t.  The
97  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
98  *	the refcount is never really 'zero' - opening a pool implicitly keeps
99  *	some references in the DMU.  Internally we check against spa_minref, but
100  *	present the image of a zero/non-zero value to consumers.
101  *
102  * spa_config_lock[] (per-spa array of rwlocks)
103  *
104  *	This protects the spa_t from config changes, and must be held in
105  *	the following circumstances:
106  *
107  *		- RW_READER to perform I/O to the spa
108  *		- RW_WRITER to change the vdev config
109  *
110  * The locking order is fairly straightforward:
111  *
112  *		spa_namespace_lock	->	spa_refcount
113  *
114  *	The namespace lock must be acquired to increase the refcount from 0
115  *	or to check if it is zero.
116  *
117  *		spa_refcount		->	spa_config_lock[]
118  *
119  *	There must be at least one valid reference on the spa_t to acquire
120  *	the config lock.
121  *
122  *		spa_namespace_lock	->	spa_config_lock[]
123  *
124  *	The namespace lock must always be taken before the config lock.
125  *
126  *
127  * The spa_namespace_lock can be acquired directly and is globally visible.
128  *
129  * The namespace is manipulated using the following functions, all of which
130  * require the spa_namespace_lock to be held.
131  *
132  *	spa_lookup()		Lookup a spa_t by name.
133  *
134  *	spa_add()		Create a new spa_t in the namespace.
135  *
136  *	spa_remove()		Remove a spa_t from the namespace.  This also
137  *				frees up any memory associated with the spa_t.
138  *
139  *	spa_next()		Returns the next spa_t in the system, or the
140  *				first if NULL is passed.
141  *
142  *	spa_evict_all()		Shutdown and remove all spa_t structures in
143  *				the system.
144  *
145  *	spa_guid_exists()	Determine whether a pool/device guid exists.
146  *
147  * The spa_refcount is manipulated using the following functions:
148  *
149  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
150  *				called with spa_namespace_lock held if the
151  *				refcount is currently zero.
152  *
153  *	spa_close()		Remove a reference from the spa_t.  This will
154  *				not free the spa_t or remove it from the
155  *				namespace.  No locking is required.
156  *
157  *	spa_refcount_zero()	Returns true if the refcount is currently
158  *				zero.  Must be called with spa_namespace_lock
159  *				held.
160  *
161  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
162  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
163  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
164  *
165  * To read the configuration, it suffices to hold one of these locks as reader.
166  * To modify the configuration, you must hold all locks as writer.  To modify
167  * vdev state without altering the vdev tree's topology (e.g. online/offline),
168  * you must hold SCL_STATE and SCL_ZIO as writer.
169  *
170  * We use these distinct config locks to avoid recursive lock entry.
171  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
172  * block allocations (SCL_ALLOC), which may require reading space maps
173  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
174  *
175  * The spa config locks cannot be normal rwlocks because we need the
176  * ability to hand off ownership.  For example, SCL_ZIO is acquired
177  * by the issuing thread and later released by an interrupt thread.
178  * They do, however, obey the usual write-wanted semantics to prevent
179  * writer (i.e. system administrator) starvation.
180  *
181  * The lock acquisition rules are as follows:
182  *
183  * SCL_CONFIG
184  *	Protects changes to the vdev tree topology, such as vdev
185  *	add/remove/attach/detach.  Protects the dirty config list
186  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
187  *
188  * SCL_STATE
189  *	Protects changes to pool state and vdev state, such as vdev
190  *	online/offline/fault/degrade/clear.  Protects the dirty state list
191  *	(spa_state_dirty_list) and global pool state (spa_state).
192  *
193  * SCL_ALLOC
194  *	Protects changes to metaslab groups and classes.
195  *	Held as reader by metaslab_alloc() and metaslab_claim().
196  *
197  * SCL_ZIO
198  *	Held by bp-level zios (those which have no io_vd upon entry)
199  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
200  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
201  *
202  * SCL_FREE
203  *	Protects changes to metaslab groups and classes.
204  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
205  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
206  *	blocks in zio_done() while another i/o that holds either
207  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
208  *
209  * SCL_VDEV
210  *	Held as reader to prevent changes to the vdev tree during trivial
211  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
212  *	other locks, and lower than all of them, to ensure that it's safe
213  *	to acquire regardless of caller context.
214  *
215  * In addition, the following rules apply:
216  *
217  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
218  *	The lock ordering is SCL_CONFIG > spa_props_lock.
219  *
220  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
221  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
222  *	or zio_write_phys() -- the caller must ensure that the config cannot
223  *	cannot change in the interim, and that the vdev cannot be reopened.
224  *	SCL_STATE as reader suffices for both.
225  *
226  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
227  *
228  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
229  *				for writing.
230  *
231  *	spa_vdev_exit()		Release the config lock, wait for all I/O
232  *				to complete, sync the updated configs to the
233  *				cache, and release the namespace lock.
234  *
235  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
236  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
237  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
238  */
239 
240 static avl_tree_t spa_namespace_avl;
241 static kmutex_t spa_namespace_lock;
242 static kcondvar_t spa_namespace_cv;
243 
244 static const int spa_max_replication_override = SPA_DVAS_PER_BP;
245 
246 static kmutex_t spa_spare_lock;
247 static avl_tree_t spa_spare_avl;
248 static kmutex_t spa_l2cache_lock;
249 static avl_tree_t spa_l2cache_avl;
250 
251 spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
252 
253 #ifdef ZFS_DEBUG
254 /*
255  * Everything except dprintf, set_error, indirect_remap, and raidz_reconstruct
256  * is on by default in debug builds.
257  */
258 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
259     ZFS_DEBUG_INDIRECT_REMAP | ZFS_DEBUG_RAIDZ_RECONSTRUCT);
260 #else
261 int zfs_flags = 0;
262 #endif
263 
264 /*
265  * zfs_recover can be set to nonzero to attempt to recover from
266  * otherwise-fatal errors, typically caused by on-disk corruption.  When
267  * set, calls to zfs_panic_recover() will turn into warning messages.
268  * This should only be used as a last resort, as it typically results
269  * in leaked space, or worse.
270  */
271 int zfs_recover = B_FALSE;
272 
273 /*
274  * If destroy encounters an EIO while reading metadata (e.g. indirect
275  * blocks), space referenced by the missing metadata can not be freed.
276  * Normally this causes the background destroy to become "stalled", as
277  * it is unable to make forward progress.  While in this stalled state,
278  * all remaining space to free from the error-encountering filesystem is
279  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
280  * permanently leak the space from indirect blocks that can not be read,
281  * and continue to free everything else that it can.
282  *
283  * The default, "stalling" behavior is useful if the storage partially
284  * fails (i.e. some but not all i/os fail), and then later recovers.  In
285  * this case, we will be able to continue pool operations while it is
286  * partially failed, and when it recovers, we can continue to free the
287  * space, with no leaks.  However, note that this case is actually
288  * fairly rare.
289  *
290  * Typically pools either (a) fail completely (but perhaps temporarily,
291  * e.g. a top-level vdev going offline), or (b) have localized,
292  * permanent errors (e.g. disk returns the wrong data due to bit flip or
293  * firmware bug).  In case (a), this setting does not matter because the
294  * pool will be suspended and the sync thread will not be able to make
295  * forward progress regardless.  In case (b), because the error is
296  * permanent, the best we can do is leak the minimum amount of space,
297  * which is what setting this flag will do.  Therefore, it is reasonable
298  * for this flag to normally be set, but we chose the more conservative
299  * approach of not setting it, so that there is no possibility of
300  * leaking space in the "partial temporary" failure case.
301  */
302 int zfs_free_leak_on_eio = B_FALSE;
303 
304 /*
305  * Expiration time in milliseconds. This value has two meanings. First it is
306  * used to determine when the spa_deadman() logic should fire. By default the
307  * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
308  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
309  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
310  * in one of three behaviors controlled by zfs_deadman_failmode.
311  */
312 uint64_t zfs_deadman_synctime_ms = 600000UL;  /* 10 min. */
313 
314 /*
315  * This value controls the maximum amount of time zio_wait() will block for an
316  * outstanding IO.  By default this is 300 seconds at which point the "hung"
317  * behavior will be applied as described for zfs_deadman_synctime_ms.
318  */
319 uint64_t zfs_deadman_ziotime_ms = 300000UL;  /* 5 min. */
320 
321 /*
322  * Check time in milliseconds. This defines the frequency at which we check
323  * for hung I/O.
324  */
325 uint64_t zfs_deadman_checktime_ms = 60000UL;  /* 1 min. */
326 
327 /*
328  * By default the deadman is enabled.
329  */
330 int zfs_deadman_enabled = B_TRUE;
331 
332 /*
333  * Controls the behavior of the deadman when it detects a "hung" I/O.
334  * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
335  *
336  * wait     - Wait for the "hung" I/O (default)
337  * continue - Attempt to recover from a "hung" I/O
338  * panic    - Panic the system
339  */
340 const char *zfs_deadman_failmode = "wait";
341 
342 /*
343  * The worst case is single-sector max-parity RAID-Z blocks, in which
344  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
345  * times the size; so just assume that.  Add to this the fact that
346  * we can have up to 3 DVAs per bp, and one more factor of 2 because
347  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
348  * the worst case is:
349  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
350  */
351 uint_t spa_asize_inflation = 24;
352 
353 /*
354  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
355  * the pool to be consumed (bounded by spa_max_slop).  This ensures that we
356  * don't run the pool completely out of space, due to unaccounted changes (e.g.
357  * to the MOS).  It also limits the worst-case time to allocate space.  If we
358  * have less than this amount of free space, most ZPL operations (e.g.  write,
359  * create) will return ENOSPC.  The ZIL metaslabs (spa_embedded_log_class) are
360  * also part of this 3.2% of space which can't be consumed by normal writes;
361  * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded
362  * log space.
363  *
364  * Certain operations (e.g. file removal, most administrative actions) can
365  * use half the slop space.  They will only return ENOSPC if less than half
366  * the slop space is free.  Typically, once the pool has less than the slop
367  * space free, the user will use these operations to free up space in the pool.
368  * These are the operations that call dsl_pool_adjustedsize() with the netfree
369  * argument set to TRUE.
370  *
371  * Operations that are almost guaranteed to free up space in the absence of
372  * a pool checkpoint can use up to three quarters of the slop space
373  * (e.g zfs destroy).
374  *
375  * A very restricted set of operations are always permitted, regardless of
376  * the amount of free space.  These are the operations that call
377  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
378  * increase in the amount of space used, it is possible to run the pool
379  * completely out of space, causing it to be permanently read-only.
380  *
381  * Note that on very small pools, the slop space will be larger than
382  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
383  * but we never allow it to be more than half the pool size.
384  *
385  * Further, on very large pools, the slop space will be smaller than
386  * 3.2%, to avoid reserving much more space than we actually need; bounded
387  * by spa_max_slop (128GB).
388  *
389  * See also the comments in zfs_space_check_t.
390  */
391 uint_t spa_slop_shift = 5;
392 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024;
393 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024;
394 
395 /*
396  * Number of allocators to use, per spa instance
397  */
398 static int spa_num_allocators = 4;
399 static int spa_cpus_per_allocator = 4;
400 
401 /*
402  * Spa active allocator.
403  * Valid values are zfs_active_allocator=<dynamic|cursor|new-dynamic>.
404  */
405 const char *zfs_active_allocator = "dynamic";
406 
407 void
spa_load_failed(spa_t * spa,const char * fmt,...)408 spa_load_failed(spa_t *spa, const char *fmt, ...)
409 {
410 	va_list adx;
411 	char buf[256];
412 
413 	va_start(adx, fmt);
414 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
415 	va_end(adx);
416 
417 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
418 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
419 }
420 
421 void
spa_load_note(spa_t * spa,const char * fmt,...)422 spa_load_note(spa_t *spa, const char *fmt, ...)
423 {
424 	va_list adx;
425 	char buf[256];
426 
427 	va_start(adx, fmt);
428 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
429 	va_end(adx);
430 
431 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
432 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
433 
434 	spa_import_progress_set_notes_nolog(spa, "%s", buf);
435 }
436 
437 /*
438  * By default dedup and user data indirects land in the special class
439  */
440 static int zfs_ddt_data_is_special = B_TRUE;
441 static int zfs_user_indirect_is_special = B_TRUE;
442 
443 /*
444  * The percentage of special class final space reserved for metadata only.
445  * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
446  * let metadata into the class.
447  */
448 static uint_t zfs_special_class_metadata_reserve_pct = 25;
449 
450 /*
451  * ==========================================================================
452  * SPA config locking
453  * ==========================================================================
454  */
455 static void
spa_config_lock_init(spa_t * spa)456 spa_config_lock_init(spa_t *spa)
457 {
458 	for (int i = 0; i < SCL_LOCKS; i++) {
459 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
460 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
461 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
462 		scl->scl_writer = NULL;
463 		scl->scl_write_wanted = 0;
464 		scl->scl_count = 0;
465 	}
466 }
467 
468 static void
spa_config_lock_destroy(spa_t * spa)469 spa_config_lock_destroy(spa_t *spa)
470 {
471 	for (int i = 0; i < SCL_LOCKS; i++) {
472 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
473 		mutex_destroy(&scl->scl_lock);
474 		cv_destroy(&scl->scl_cv);
475 		ASSERT0P(scl->scl_writer);
476 		ASSERT0(scl->scl_write_wanted);
477 		ASSERT0(scl->scl_count);
478 	}
479 }
480 
481 int
spa_config_tryenter(spa_t * spa,int locks,const void * tag,krw_t rw)482 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw)
483 {
484 	for (int i = 0; i < SCL_LOCKS; i++) {
485 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
486 		if (!(locks & (1 << i)))
487 			continue;
488 		mutex_enter(&scl->scl_lock);
489 		if (rw == RW_READER) {
490 			if (scl->scl_writer || scl->scl_write_wanted) {
491 				mutex_exit(&scl->scl_lock);
492 				spa_config_exit(spa, locks & ((1 << i) - 1),
493 				    tag);
494 				return (0);
495 			}
496 		} else {
497 			ASSERT(scl->scl_writer != curthread);
498 			if (scl->scl_count != 0) {
499 				mutex_exit(&scl->scl_lock);
500 				spa_config_exit(spa, locks & ((1 << i) - 1),
501 				    tag);
502 				return (0);
503 			}
504 			scl->scl_writer = curthread;
505 		}
506 		scl->scl_count++;
507 		mutex_exit(&scl->scl_lock);
508 	}
509 	return (1);
510 }
511 
512 static void
spa_config_enter_impl(spa_t * spa,int locks,const void * tag,krw_t rw,int priority_flag)513 spa_config_enter_impl(spa_t *spa, int locks, const void *tag, krw_t rw,
514     int priority_flag)
515 {
516 	(void) tag;
517 	int wlocks_held = 0;
518 
519 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
520 
521 	for (int i = 0; i < SCL_LOCKS; i++) {
522 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
523 		if (scl->scl_writer == curthread)
524 			wlocks_held |= (1 << i);
525 		if (!(locks & (1 << i)))
526 			continue;
527 		mutex_enter(&scl->scl_lock);
528 		if (rw == RW_READER) {
529 			while (scl->scl_writer ||
530 			    (!priority_flag && scl->scl_write_wanted)) {
531 				cv_wait(&scl->scl_cv, &scl->scl_lock);
532 			}
533 		} else {
534 			ASSERT(scl->scl_writer != curthread);
535 			while (scl->scl_count != 0) {
536 				scl->scl_write_wanted++;
537 				cv_wait(&scl->scl_cv, &scl->scl_lock);
538 				scl->scl_write_wanted--;
539 			}
540 			scl->scl_writer = curthread;
541 		}
542 		scl->scl_count++;
543 		mutex_exit(&scl->scl_lock);
544 	}
545 	ASSERT3U(wlocks_held, <=, locks);
546 }
547 
548 void
spa_config_enter(spa_t * spa,int locks,const void * tag,krw_t rw)549 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
550 {
551 	spa_config_enter_impl(spa, locks, tag, rw, 0);
552 }
553 
554 /*
555  * The spa_config_enter_priority() allows the mmp thread to cut in front of
556  * outstanding write lock requests. This is needed since the mmp updates are
557  * time sensitive and failure to service them promptly will result in a
558  * suspended pool. This pool suspension has been seen in practice when there is
559  * a single disk in a pool that is responding slowly and presumably about to
560  * fail.
561  */
562 
563 void
spa_config_enter_priority(spa_t * spa,int locks,const void * tag,krw_t rw)564 spa_config_enter_priority(spa_t *spa, int locks, const void *tag, krw_t rw)
565 {
566 	spa_config_enter_impl(spa, locks, tag, rw, 1);
567 }
568 
569 void
spa_config_exit(spa_t * spa,int locks,const void * tag)570 spa_config_exit(spa_t *spa, int locks, const void *tag)
571 {
572 	(void) tag;
573 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
574 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
575 		if (!(locks & (1 << i)))
576 			continue;
577 		mutex_enter(&scl->scl_lock);
578 		ASSERT(scl->scl_count > 0);
579 		if (--scl->scl_count == 0) {
580 			ASSERT(scl->scl_writer == NULL ||
581 			    scl->scl_writer == curthread);
582 			scl->scl_writer = NULL;	/* OK in either case */
583 			cv_broadcast(&scl->scl_cv);
584 		}
585 		mutex_exit(&scl->scl_lock);
586 	}
587 }
588 
589 int
spa_config_held(spa_t * spa,int locks,krw_t rw)590 spa_config_held(spa_t *spa, int locks, krw_t rw)
591 {
592 	int locks_held = 0;
593 
594 	for (int i = 0; i < SCL_LOCKS; i++) {
595 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
596 		if (!(locks & (1 << i)))
597 			continue;
598 		if ((rw == RW_READER && scl->scl_count != 0) ||
599 		    (rw == RW_WRITER && scl->scl_writer == curthread))
600 			locks_held |= 1 << i;
601 	}
602 
603 	return (locks_held);
604 }
605 
606 /*
607  * ==========================================================================
608  * SPA namespace functions
609  * ==========================================================================
610  */
611 
612 void
spa_namespace_enter(const void * tag)613 spa_namespace_enter(const void *tag)
614 {
615 	(void) tag;
616 	ASSERT(!MUTEX_HELD(&spa_namespace_lock));
617 	mutex_enter(&spa_namespace_lock);
618 }
619 
620 boolean_t
spa_namespace_tryenter(const void * tag)621 spa_namespace_tryenter(const void *tag)
622 {
623 	(void) tag;
624 	ASSERT(!MUTEX_HELD(&spa_namespace_lock));
625 	return (mutex_tryenter(&spa_namespace_lock));
626 }
627 
628 int
spa_namespace_enter_interruptible(const void * tag)629 spa_namespace_enter_interruptible(const void *tag)
630 {
631 	(void) tag;
632 	ASSERT(!MUTEX_HELD(&spa_namespace_lock));
633 	return (mutex_enter_interruptible(&spa_namespace_lock));
634 }
635 
636 void
spa_namespace_exit(const void * tag)637 spa_namespace_exit(const void *tag)
638 {
639 	(void) tag;
640 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
641 	mutex_exit(&spa_namespace_lock);
642 }
643 
644 boolean_t
spa_namespace_held(void)645 spa_namespace_held(void)
646 {
647 	return (MUTEX_HELD(&spa_namespace_lock));
648 }
649 
650 void
spa_namespace_wait(void)651 spa_namespace_wait(void)
652 {
653 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
654 	cv_wait(&spa_namespace_cv, &spa_namespace_lock);
655 }
656 
657 void
spa_namespace_broadcast(void)658 spa_namespace_broadcast(void)
659 {
660 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
661 	cv_broadcast(&spa_namespace_cv);
662 }
663 
664 /*
665  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
666  * Returns NULL if no matching spa_t is found.
667  */
668 spa_t *
spa_lookup(const char * name)669 spa_lookup(const char *name)
670 {
671 	static spa_t search;	/* spa_t is large; don't allocate on stack */
672 	spa_t *spa;
673 	avl_index_t where;
674 	char *cp;
675 
676 	ASSERT(spa_namespace_held());
677 
678 retry:
679 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
680 
681 	/*
682 	 * If it's a full dataset name, figure out the pool name and
683 	 * just use that.
684 	 */
685 	cp = strpbrk(search.spa_name, "/@#");
686 	if (cp != NULL)
687 		*cp = '\0';
688 
689 	spa = avl_find(&spa_namespace_avl, &search, &where);
690 	if (spa == NULL)
691 		return (NULL);
692 
693 	/*
694 	 * Avoid racing with import/export, which don't hold the namespace
695 	 * lock for their entire duration.
696 	 */
697 	if ((spa->spa_load_thread != NULL &&
698 	    spa->spa_load_thread != curthread) ||
699 	    (spa->spa_export_thread != NULL &&
700 	    spa->spa_export_thread != curthread)) {
701 		spa_namespace_wait();
702 		goto retry;
703 	}
704 
705 	return (spa);
706 }
707 
708 /*
709  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
710  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
711  * looking for potentially hung I/Os.
712  */
713 void
spa_deadman(void * arg)714 spa_deadman(void *arg)
715 {
716 	spa_t *spa = arg;
717 
718 	/* Disable the deadman if the pool is suspended. */
719 	if (spa_suspended(spa))
720 		return;
721 
722 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
723 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
724 	    (u_longlong_t)++spa->spa_deadman_calls);
725 	if (zfs_deadman_enabled)
726 		vdev_deadman(spa->spa_root_vdev, FTAG);
727 
728 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
729 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
730 	    MSEC_TO_TICK(zfs_deadman_checktime_ms));
731 }
732 
733 static int
spa_log_sm_sort_by_txg(const void * va,const void * vb)734 spa_log_sm_sort_by_txg(const void *va, const void *vb)
735 {
736 	const spa_log_sm_t *a = va;
737 	const spa_log_sm_t *b = vb;
738 
739 	return (TREE_CMP(a->sls_txg, b->sls_txg));
740 }
741 
742 /*
743  * Create an uninitialized spa_t with the given name.  Requires
744  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
745  * exist by calling spa_lookup() first.
746  */
747 spa_t *
spa_add(const char * name,nvlist_t * config,const char * altroot)748 spa_add(const char *name, nvlist_t *config, const char *altroot)
749 {
750 	spa_t *spa;
751 	spa_config_dirent_t *dp;
752 
753 	ASSERT(spa_namespace_held());
754 
755 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
756 
757 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
758 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
759 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
760 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
761 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
762 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
763 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
764 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
765 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
766 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
767 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
768 	mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
769 	mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
770 	mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
771 	mutex_init(&spa->spa_txg_log_time_lock, NULL, MUTEX_DEFAULT, NULL);
772 
773 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
774 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
775 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
776 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
777 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
778 	cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
779 	cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
780 
781 	for (int t = 0; t < TXG_SIZE; t++)
782 		bplist_create(&spa->spa_free_bplist[t]);
783 
784 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
785 	spa->spa_state = POOL_STATE_UNINITIALIZED;
786 	spa->spa_freeze_txg = UINT64_MAX;
787 	spa->spa_final_txg = UINT64_MAX;
788 	spa->spa_load_max_txg = UINT64_MAX;
789 	spa->spa_proc = &p0;
790 	spa->spa_proc_state = SPA_PROC_NONE;
791 	spa->spa_trust_config = B_TRUE;
792 	spa->spa_hostid = zone_get_hostid(NULL);
793 
794 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
795 	spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
796 	spa_set_deadman_failmode(spa, zfs_deadman_failmode);
797 	spa_set_allocator(spa, zfs_active_allocator);
798 
799 	zfs_refcount_create(&spa->spa_refcount);
800 	spa_config_lock_init(spa);
801 	spa_stats_init(spa);
802 
803 	ASSERT(spa_namespace_held());
804 	avl_add(&spa_namespace_avl, spa);
805 
806 	/*
807 	 * Set the alternate root, if there is one.
808 	 */
809 	if (altroot)
810 		spa->spa_root = spa_strdup(altroot);
811 
812 	/* Do not allow more allocators than fraction of CPUs. */
813 	spa->spa_alloc_count = MAX(MIN(spa_num_allocators,
814 	    boot_ncpus / MAX(spa_cpus_per_allocator, 1)), 1);
815 
816 	if (spa->spa_alloc_count > 1) {
817 		spa->spa_allocs_use = kmem_zalloc(offsetof(spa_allocs_use_t,
818 		    sau_inuse[spa->spa_alloc_count]), KM_SLEEP);
819 		mutex_init(&spa->spa_allocs_use->sau_lock, NULL, MUTEX_DEFAULT,
820 		    NULL);
821 	}
822 
823 	avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
824 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
825 	avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
826 	    sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
827 	list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
828 	    offsetof(log_summary_entry_t, lse_node));
829 
830 	/*
831 	 * Every pool starts with the default cachefile
832 	 */
833 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
834 	    offsetof(spa_config_dirent_t, scd_link));
835 
836 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
837 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
838 	list_insert_head(&spa->spa_config_list, dp);
839 
840 	VERIFY0(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, KM_SLEEP));
841 
842 	if (config != NULL) {
843 		nvlist_t *features;
844 
845 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
846 		    &features) == 0) {
847 			VERIFY0(nvlist_dup(features,
848 			    &spa->spa_label_features, 0));
849 		}
850 
851 		VERIFY0(nvlist_dup(config, &spa->spa_config, 0));
852 	}
853 
854 	if (spa->spa_label_features == NULL) {
855 		VERIFY0(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
856 		    KM_SLEEP));
857 	}
858 
859 	spa->spa_min_ashift = INT_MAX;
860 	spa->spa_max_ashift = 0;
861 	spa->spa_min_alloc = INT_MAX;
862 	spa->spa_max_alloc = 0;
863 	spa->spa_gcd_alloc = INT_MAX;
864 
865 	/* Reset cached value */
866 	spa->spa_dedup_dspace = ~0ULL;
867 
868 	/*
869 	 * As a pool is being created, treat all features as disabled by
870 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
871 	 * refcount cache.
872 	 */
873 	for (int i = 0; i < SPA_FEATURES; i++) {
874 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
875 	}
876 
877 	list_create(&spa->spa_leaf_list, sizeof (vdev_t),
878 	    offsetof(vdev_t, vdev_leaf_node));
879 
880 	return (spa);
881 }
882 
883 /*
884  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
885  * spa_namespace_lock.  This is called only after the spa_t has been closed and
886  * deactivated.
887  */
888 void
spa_remove(spa_t * spa)889 spa_remove(spa_t *spa)
890 {
891 	spa_config_dirent_t *dp;
892 
893 	ASSERT(spa_namespace_held());
894 	ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
895 	ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
896 	ASSERT0(spa->spa_waiters);
897 
898 	nvlist_free(spa->spa_config_splitting);
899 
900 	avl_remove(&spa_namespace_avl, spa);
901 
902 	if (spa->spa_root)
903 		spa_strfree(spa->spa_root);
904 
905 	while ((dp = list_remove_head(&spa->spa_config_list)) != NULL) {
906 		if (dp->scd_path != NULL)
907 			spa_strfree(dp->scd_path);
908 		kmem_free(dp, sizeof (spa_config_dirent_t));
909 	}
910 
911 	if (spa->spa_alloc_count > 1) {
912 		mutex_destroy(&spa->spa_allocs_use->sau_lock);
913 		kmem_free(spa->spa_allocs_use, offsetof(spa_allocs_use_t,
914 		    sau_inuse[spa->spa_alloc_count]));
915 	}
916 
917 	avl_destroy(&spa->spa_metaslabs_by_flushed);
918 	avl_destroy(&spa->spa_sm_logs_by_txg);
919 	list_destroy(&spa->spa_log_summary);
920 	list_destroy(&spa->spa_config_list);
921 	list_destroy(&spa->spa_leaf_list);
922 
923 	nvlist_free(spa->spa_label_features);
924 	nvlist_free(spa->spa_load_info);
925 	nvlist_free(spa->spa_feat_stats);
926 	spa_config_set(spa, NULL);
927 
928 	zfs_refcount_destroy(&spa->spa_refcount);
929 
930 	spa_stats_destroy(spa);
931 	spa_config_lock_destroy(spa);
932 
933 	for (int t = 0; t < TXG_SIZE; t++)
934 		bplist_destroy(&spa->spa_free_bplist[t]);
935 
936 	zio_checksum_templates_free(spa);
937 
938 	cv_destroy(&spa->spa_async_cv);
939 	cv_destroy(&spa->spa_evicting_os_cv);
940 	cv_destroy(&spa->spa_proc_cv);
941 	cv_destroy(&spa->spa_scrub_io_cv);
942 	cv_destroy(&spa->spa_suspend_cv);
943 	cv_destroy(&spa->spa_activities_cv);
944 	cv_destroy(&spa->spa_waiters_cv);
945 
946 	mutex_destroy(&spa->spa_flushed_ms_lock);
947 	mutex_destroy(&spa->spa_async_lock);
948 	mutex_destroy(&spa->spa_errlist_lock);
949 	mutex_destroy(&spa->spa_errlog_lock);
950 	mutex_destroy(&spa->spa_evicting_os_lock);
951 	mutex_destroy(&spa->spa_history_lock);
952 	mutex_destroy(&spa->spa_proc_lock);
953 	mutex_destroy(&spa->spa_props_lock);
954 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
955 	mutex_destroy(&spa->spa_scrub_lock);
956 	mutex_destroy(&spa->spa_suspend_lock);
957 	mutex_destroy(&spa->spa_vdev_top_lock);
958 	mutex_destroy(&spa->spa_feat_stats_lock);
959 	mutex_destroy(&spa->spa_activities_lock);
960 	mutex_destroy(&spa->spa_txg_log_time_lock);
961 
962 	kmem_free(spa, sizeof (spa_t));
963 }
964 
965 /*
966  * Given a pool, return the next pool in the namespace, or NULL if there is
967  * none.  If 'prev' is NULL, return the first pool.
968  */
969 spa_t *
spa_next(spa_t * prev)970 spa_next(spa_t *prev)
971 {
972 	ASSERT(spa_namespace_held());
973 
974 	if (prev)
975 		return (AVL_NEXT(&spa_namespace_avl, prev));
976 	else
977 		return (avl_first(&spa_namespace_avl));
978 }
979 
980 /*
981  * ==========================================================================
982  * SPA refcount functions
983  * ==========================================================================
984  */
985 
986 /*
987  * Add a reference to the given spa_t.  Must have at least one reference, or
988  * have the namespace lock held.
989  */
990 void
spa_open_ref(spa_t * spa,const void * tag)991 spa_open_ref(spa_t *spa, const void *tag)
992 {
993 	ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
994 	    spa_namespace_held() ||
995 	    spa->spa_load_thread == curthread);
996 	(void) zfs_refcount_add(&spa->spa_refcount, tag);
997 }
998 
999 /*
1000  * Remove a reference to the given spa_t.  Must have at least one reference, or
1001  * have the namespace lock held or be part of a pool import/export.
1002  */
1003 void
spa_close(spa_t * spa,const void * tag)1004 spa_close(spa_t *spa, const void *tag)
1005 {
1006 	ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
1007 	    spa_namespace_held() ||
1008 	    spa->spa_load_thread == curthread ||
1009 	    spa->spa_export_thread == curthread);
1010 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
1011 }
1012 
1013 /*
1014  * Remove a reference to the given spa_t held by a dsl dir that is
1015  * being asynchronously released.  Async releases occur from a taskq
1016  * performing eviction of dsl datasets and dirs.  The namespace lock
1017  * isn't held and the hold by the object being evicted may contribute to
1018  * spa_minref (e.g. dataset or directory released during pool export),
1019  * so the asserts in spa_close() do not apply.
1020  */
1021 void
spa_async_close(spa_t * spa,const void * tag)1022 spa_async_close(spa_t *spa, const void *tag)
1023 {
1024 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
1025 }
1026 
1027 /*
1028  * Check to see if the spa refcount is zero.  Must be called with
1029  * spa_namespace_lock held or be the spa export thread.  We really
1030  * compare against spa_minref, which is the  number of references
1031  * acquired when opening a pool
1032  */
1033 boolean_t
spa_refcount_zero(spa_t * spa)1034 spa_refcount_zero(spa_t *spa)
1035 {
1036 	ASSERT(spa_namespace_held() ||
1037 	    spa->spa_export_thread == curthread);
1038 
1039 	return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
1040 }
1041 
1042 /*
1043  * ==========================================================================
1044  * SPA spare and l2cache tracking
1045  * ==========================================================================
1046  */
1047 
1048 /*
1049  * Hot spares and cache devices are tracked using the same code below,
1050  * for 'auxiliary' devices.
1051  */
1052 
1053 typedef struct spa_aux {
1054 	uint64_t	aux_guid;
1055 	uint64_t	aux_pool;
1056 	avl_node_t	aux_avl;
1057 	int		aux_count;
1058 } spa_aux_t;
1059 
1060 static inline int
spa_aux_compare(const void * a,const void * b)1061 spa_aux_compare(const void *a, const void *b)
1062 {
1063 	const spa_aux_t *sa = (const spa_aux_t *)a;
1064 	const spa_aux_t *sb = (const spa_aux_t *)b;
1065 
1066 	return (TREE_CMP(sa->aux_guid, sb->aux_guid));
1067 }
1068 
1069 static void
spa_aux_add(vdev_t * vd,avl_tree_t * avl)1070 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
1071 {
1072 	avl_index_t where;
1073 	spa_aux_t search;
1074 	spa_aux_t *aux;
1075 
1076 	search.aux_guid = vd->vdev_guid;
1077 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
1078 		aux->aux_count++;
1079 	} else {
1080 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
1081 		aux->aux_guid = vd->vdev_guid;
1082 		aux->aux_count = 1;
1083 		avl_insert(avl, aux, where);
1084 	}
1085 }
1086 
1087 static void
spa_aux_remove(vdev_t * vd,avl_tree_t * avl)1088 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
1089 {
1090 	spa_aux_t search;
1091 	spa_aux_t *aux;
1092 	avl_index_t where;
1093 
1094 	search.aux_guid = vd->vdev_guid;
1095 	aux = avl_find(avl, &search, &where);
1096 
1097 	ASSERT(aux != NULL);
1098 
1099 	if (--aux->aux_count == 0) {
1100 		avl_remove(avl, aux);
1101 		kmem_free(aux, sizeof (spa_aux_t));
1102 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
1103 		aux->aux_pool = 0ULL;
1104 	}
1105 }
1106 
1107 static boolean_t
spa_aux_exists(uint64_t guid,uint64_t * pool,int * refcnt,avl_tree_t * avl)1108 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
1109 {
1110 	spa_aux_t search, *found;
1111 
1112 	search.aux_guid = guid;
1113 	found = avl_find(avl, &search, NULL);
1114 
1115 	if (pool) {
1116 		if (found)
1117 			*pool = found->aux_pool;
1118 		else
1119 			*pool = 0ULL;
1120 	}
1121 
1122 	if (refcnt) {
1123 		if (found)
1124 			*refcnt = found->aux_count;
1125 		else
1126 			*refcnt = 0;
1127 	}
1128 
1129 	return (found != NULL);
1130 }
1131 
1132 static void
spa_aux_activate(vdev_t * vd,avl_tree_t * avl)1133 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1134 {
1135 	spa_aux_t search, *found;
1136 	avl_index_t where;
1137 
1138 	search.aux_guid = vd->vdev_guid;
1139 	found = avl_find(avl, &search, &where);
1140 	ASSERT(found != NULL);
1141 	ASSERT(found->aux_pool == 0ULL);
1142 
1143 	found->aux_pool = spa_guid(vd->vdev_spa);
1144 }
1145 
1146 /*
1147  * Spares are tracked globally due to the following constraints:
1148  *
1149  *	- A spare may be part of multiple pools.
1150  *	- A spare may be added to a pool even if it's actively in use within
1151  *	  another pool.
1152  *	- A spare in use in any pool can only be the source of a replacement if
1153  *	  the target is a spare in the same pool.
1154  *
1155  * We keep track of all spares on the system through the use of a reference
1156  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1157  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1158  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1159  * inactive).  When a spare is made active (used to replace a device in the
1160  * pool), we also keep track of which pool its been made a part of.
1161  *
1162  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1163  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1164  * separate spare lock exists for the status query path, which does not need to
1165  * be completely consistent with respect to other vdev configuration changes.
1166  */
1167 
1168 static int
spa_spare_compare(const void * a,const void * b)1169 spa_spare_compare(const void *a, const void *b)
1170 {
1171 	return (spa_aux_compare(a, b));
1172 }
1173 
1174 void
spa_spare_add(vdev_t * vd)1175 spa_spare_add(vdev_t *vd)
1176 {
1177 	mutex_enter(&spa_spare_lock);
1178 	ASSERT(!vd->vdev_isspare);
1179 	spa_aux_add(vd, &spa_spare_avl);
1180 	vd->vdev_isspare = B_TRUE;
1181 	mutex_exit(&spa_spare_lock);
1182 }
1183 
1184 void
spa_spare_remove(vdev_t * vd)1185 spa_spare_remove(vdev_t *vd)
1186 {
1187 	mutex_enter(&spa_spare_lock);
1188 	ASSERT(vd->vdev_isspare);
1189 	spa_aux_remove(vd, &spa_spare_avl);
1190 	vd->vdev_isspare = B_FALSE;
1191 	mutex_exit(&spa_spare_lock);
1192 }
1193 
1194 boolean_t
spa_spare_exists(uint64_t guid,uint64_t * pool,int * refcnt)1195 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1196 {
1197 	boolean_t found;
1198 
1199 	mutex_enter(&spa_spare_lock);
1200 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1201 	mutex_exit(&spa_spare_lock);
1202 
1203 	return (found);
1204 }
1205 
1206 void
spa_spare_activate(vdev_t * vd)1207 spa_spare_activate(vdev_t *vd)
1208 {
1209 	mutex_enter(&spa_spare_lock);
1210 	ASSERT(vd->vdev_isspare);
1211 	spa_aux_activate(vd, &spa_spare_avl);
1212 	mutex_exit(&spa_spare_lock);
1213 }
1214 
1215 /*
1216  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1217  * Cache devices currently only support one pool per cache device, and so
1218  * for these devices the aux reference count is currently unused beyond 1.
1219  */
1220 
1221 static int
spa_l2cache_compare(const void * a,const void * b)1222 spa_l2cache_compare(const void *a, const void *b)
1223 {
1224 	return (spa_aux_compare(a, b));
1225 }
1226 
1227 void
spa_l2cache_add(vdev_t * vd)1228 spa_l2cache_add(vdev_t *vd)
1229 {
1230 	mutex_enter(&spa_l2cache_lock);
1231 	ASSERT(!vd->vdev_isl2cache);
1232 	spa_aux_add(vd, &spa_l2cache_avl);
1233 	vd->vdev_isl2cache = B_TRUE;
1234 	mutex_exit(&spa_l2cache_lock);
1235 }
1236 
1237 void
spa_l2cache_remove(vdev_t * vd)1238 spa_l2cache_remove(vdev_t *vd)
1239 {
1240 	mutex_enter(&spa_l2cache_lock);
1241 	ASSERT(vd->vdev_isl2cache);
1242 	spa_aux_remove(vd, &spa_l2cache_avl);
1243 	vd->vdev_isl2cache = B_FALSE;
1244 	mutex_exit(&spa_l2cache_lock);
1245 }
1246 
1247 boolean_t
spa_l2cache_exists(uint64_t guid,uint64_t * pool)1248 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1249 {
1250 	boolean_t found;
1251 
1252 	mutex_enter(&spa_l2cache_lock);
1253 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1254 	mutex_exit(&spa_l2cache_lock);
1255 
1256 	return (found);
1257 }
1258 
1259 void
spa_l2cache_activate(vdev_t * vd)1260 spa_l2cache_activate(vdev_t *vd)
1261 {
1262 	mutex_enter(&spa_l2cache_lock);
1263 	ASSERT(vd->vdev_isl2cache);
1264 	spa_aux_activate(vd, &spa_l2cache_avl);
1265 	mutex_exit(&spa_l2cache_lock);
1266 }
1267 
1268 /*
1269  * ==========================================================================
1270  * SPA vdev locking
1271  * ==========================================================================
1272  */
1273 
1274 /*
1275  * Lock the given spa_t for the purpose of adding or removing a vdev.
1276  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1277  * It returns the next transaction group for the spa_t.
1278  */
1279 uint64_t
spa_vdev_enter(spa_t * spa)1280 spa_vdev_enter(spa_t *spa)
1281 {
1282 	mutex_enter(&spa->spa_vdev_top_lock);
1283 	spa_namespace_enter(FTAG);
1284 
1285 	ASSERT0(spa->spa_export_thread);
1286 
1287 	vdev_autotrim_stop_all(spa);
1288 
1289 	return (spa_vdev_config_enter(spa));
1290 }
1291 
1292 /*
1293  * The same as spa_vdev_enter() above but additionally takes the guid of
1294  * the vdev being detached.  When there is a rebuild in process it will be
1295  * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1296  * The rebuild is canceled if only a single child remains after the detach.
1297  */
1298 uint64_t
spa_vdev_detach_enter(spa_t * spa,uint64_t guid)1299 spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1300 {
1301 	mutex_enter(&spa->spa_vdev_top_lock);
1302 	spa_namespace_enter(FTAG);
1303 
1304 	ASSERT0(spa->spa_export_thread);
1305 
1306 	vdev_autotrim_stop_all(spa);
1307 
1308 	if (guid != 0) {
1309 		vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1310 		if (vd) {
1311 			vdev_rebuild_stop_wait(vd->vdev_top);
1312 		}
1313 	}
1314 
1315 	return (spa_vdev_config_enter(spa));
1316 }
1317 
1318 /*
1319  * Internal implementation for spa_vdev_enter().  Used when a vdev
1320  * operation requires multiple syncs (i.e. removing a device) while
1321  * keeping the spa_namespace_lock held.
1322  */
1323 uint64_t
spa_vdev_config_enter(spa_t * spa)1324 spa_vdev_config_enter(spa_t *spa)
1325 {
1326 	ASSERT(spa_namespace_held());
1327 
1328 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1329 
1330 	return (spa_last_synced_txg(spa) + 1);
1331 }
1332 
1333 /*
1334  * Used in combination with spa_vdev_config_enter() to allow the syncing
1335  * of multiple transactions without releasing the spa_namespace_lock.
1336  */
1337 void
spa_vdev_config_exit(spa_t * spa,vdev_t * vd,uint64_t txg,int error,const char * tag)1338 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error,
1339     const char *tag)
1340 {
1341 	ASSERT(spa_namespace_held());
1342 
1343 	int config_changed = B_FALSE;
1344 
1345 	ASSERT(txg > spa_last_synced_txg(spa));
1346 
1347 	spa->spa_pending_vdev = NULL;
1348 
1349 	/*
1350 	 * Reassess the DTLs.
1351 	 */
1352 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
1353 
1354 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1355 		config_changed = B_TRUE;
1356 		spa->spa_config_generation++;
1357 	}
1358 
1359 	/*
1360 	 * Verify the metaslab classes.
1361 	 */
1362 	metaslab_class_validate(spa_normal_class(spa));
1363 	metaslab_class_validate(spa_log_class(spa));
1364 	metaslab_class_validate(spa_embedded_log_class(spa));
1365 	metaslab_class_validate(spa_special_class(spa));
1366 	metaslab_class_validate(spa_special_embedded_log_class(spa));
1367 	metaslab_class_validate(spa_dedup_class(spa));
1368 
1369 	spa_config_exit(spa, SCL_ALL, spa);
1370 
1371 	/*
1372 	 * Panic the system if the specified tag requires it.  This
1373 	 * is useful for ensuring that configurations are updated
1374 	 * transactionally.
1375 	 */
1376 	if (zio_injection_enabled)
1377 		zio_handle_panic_injection(spa, tag, 0);
1378 
1379 	/*
1380 	 * Note: this txg_wait_synced() is important because it ensures
1381 	 * that there won't be more than one config change per txg.
1382 	 * This allows us to use the txg as the generation number.
1383 	 */
1384 	if (error == 0)
1385 		txg_wait_synced(spa->spa_dsl_pool, txg);
1386 
1387 	if (vd != NULL) {
1388 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1389 		if (vd->vdev_ops->vdev_op_leaf) {
1390 			mutex_enter(&vd->vdev_initialize_lock);
1391 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1392 			    NULL);
1393 			mutex_exit(&vd->vdev_initialize_lock);
1394 
1395 			mutex_enter(&vd->vdev_trim_lock);
1396 			vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1397 			mutex_exit(&vd->vdev_trim_lock);
1398 		}
1399 
1400 		/*
1401 		 * The vdev may be both a leaf and top-level device.
1402 		 */
1403 		vdev_autotrim_stop_wait(vd);
1404 
1405 		spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
1406 		vdev_free(vd);
1407 		spa_config_exit(spa, SCL_STATE_ALL, spa);
1408 	}
1409 
1410 	/*
1411 	 * If the config changed, update the config cache.
1412 	 */
1413 	if (config_changed)
1414 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1415 }
1416 
1417 /*
1418  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1419  * locking of spa_vdev_enter(), we also want make sure the transactions have
1420  * synced to disk, and then update the global configuration cache with the new
1421  * information.
1422  */
1423 int
spa_vdev_exit(spa_t * spa,vdev_t * vd,uint64_t txg,int error)1424 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1425 {
1426 	vdev_autotrim_restart(spa);
1427 	vdev_rebuild_restart(spa);
1428 
1429 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1430 	spa_namespace_exit(FTAG);
1431 	mutex_exit(&spa->spa_vdev_top_lock);
1432 
1433 	return (error);
1434 }
1435 
1436 /*
1437  * Lock the given spa_t for the purpose of changing vdev state.
1438  */
1439 void
spa_vdev_state_enter(spa_t * spa,int oplocks)1440 spa_vdev_state_enter(spa_t *spa, int oplocks)
1441 {
1442 	int locks = SCL_STATE_ALL | oplocks;
1443 
1444 	/*
1445 	 * Root pools may need to read of the underlying devfs filesystem
1446 	 * when opening up a vdev.  Unfortunately if we're holding the
1447 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1448 	 * the read from the root filesystem.  Instead we "prefetch"
1449 	 * the associated vnodes that we need prior to opening the
1450 	 * underlying devices and cache them so that we can prevent
1451 	 * any I/O when we are doing the actual open.
1452 	 */
1453 	if (spa_is_root(spa)) {
1454 		int low = locks & ~(SCL_ZIO - 1);
1455 		int high = locks & ~low;
1456 
1457 		spa_config_enter(spa, high, spa, RW_WRITER);
1458 		vdev_hold(spa->spa_root_vdev);
1459 		spa_config_enter(spa, low, spa, RW_WRITER);
1460 	} else {
1461 		spa_config_enter(spa, locks, spa, RW_WRITER);
1462 	}
1463 	spa->spa_vdev_locks = locks;
1464 }
1465 
1466 int
spa_vdev_state_exit(spa_t * spa,vdev_t * vd,int error)1467 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1468 {
1469 	boolean_t config_changed = B_FALSE;
1470 	vdev_t *vdev_top;
1471 
1472 	if (vd == NULL || vd == spa->spa_root_vdev) {
1473 		vdev_top = spa->spa_root_vdev;
1474 	} else {
1475 		vdev_top = vd->vdev_top;
1476 	}
1477 
1478 	if (vd != NULL || error == 0)
1479 		vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
1480 
1481 	if (vd != NULL) {
1482 		if (vd != spa->spa_root_vdev)
1483 			vdev_state_dirty(vdev_top);
1484 
1485 		config_changed = B_TRUE;
1486 		spa->spa_config_generation++;
1487 	}
1488 
1489 	if (spa_is_root(spa))
1490 		vdev_rele(spa->spa_root_vdev);
1491 
1492 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1493 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1494 
1495 	/*
1496 	 * If anything changed, wait for it to sync.  This ensures that,
1497 	 * from the system administrator's perspective, zpool(8) commands
1498 	 * are synchronous.  This is important for things like zpool offline:
1499 	 * when the command completes, you expect no further I/O from ZFS.
1500 	 */
1501 	if (vd != NULL)
1502 		txg_wait_synced(spa->spa_dsl_pool, 0);
1503 
1504 	/*
1505 	 * If the config changed, update the config cache.
1506 	 */
1507 	if (config_changed) {
1508 		spa_namespace_enter(FTAG);
1509 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
1510 		spa_namespace_exit(FTAG);
1511 	}
1512 
1513 	return (error);
1514 }
1515 
1516 /*
1517  * ==========================================================================
1518  * Miscellaneous functions
1519  * ==========================================================================
1520  */
1521 
1522 void
spa_activate_mos_feature(spa_t * spa,const char * feature,dmu_tx_t * tx)1523 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1524 {
1525 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1526 		fnvlist_add_boolean(spa->spa_label_features, feature);
1527 		/*
1528 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1529 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1530 		 * Thankfully, in this case we don't need to dirty the config
1531 		 * because it will be written out anyway when we finish
1532 		 * creating the pool.
1533 		 */
1534 		if (tx->tx_txg != TXG_INITIAL)
1535 			vdev_config_dirty(spa->spa_root_vdev);
1536 	}
1537 }
1538 
1539 void
spa_deactivate_mos_feature(spa_t * spa,const char * feature)1540 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1541 {
1542 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1543 		vdev_config_dirty(spa->spa_root_vdev);
1544 }
1545 
1546 /*
1547  * Return the spa_t associated with given pool_guid, if it exists.  If
1548  * device_guid is non-zero, determine whether the pool exists *and* contains
1549  * a device with the specified device_guid.
1550  */
1551 spa_t *
spa_by_guid(uint64_t pool_guid,uint64_t device_guid)1552 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1553 {
1554 	spa_t *spa;
1555 	avl_tree_t *t = &spa_namespace_avl;
1556 
1557 	ASSERT(spa_namespace_held());
1558 
1559 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1560 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1561 			continue;
1562 		if (spa->spa_root_vdev == NULL)
1563 			continue;
1564 		if (spa_guid(spa) == pool_guid) {
1565 			if (device_guid == 0)
1566 				break;
1567 
1568 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1569 			    device_guid) != NULL)
1570 				break;
1571 
1572 			/*
1573 			 * Check any devices we may be in the process of adding.
1574 			 */
1575 			if (spa->spa_pending_vdev) {
1576 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1577 				    device_guid) != NULL)
1578 					break;
1579 			}
1580 		}
1581 	}
1582 
1583 	return (spa);
1584 }
1585 
1586 /*
1587  * Determine whether a pool with the given pool_guid exists.
1588  */
1589 boolean_t
spa_guid_exists(uint64_t pool_guid,uint64_t device_guid)1590 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1591 {
1592 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1593 }
1594 
1595 char *
spa_strdup(const char * s)1596 spa_strdup(const char *s)
1597 {
1598 	size_t len;
1599 	char *new;
1600 
1601 	len = strlen(s);
1602 	new = kmem_alloc(len + 1, KM_SLEEP);
1603 	memcpy(new, s, len + 1);
1604 
1605 	return (new);
1606 }
1607 
1608 void
spa_strfree(char * s)1609 spa_strfree(char *s)
1610 {
1611 	kmem_free(s, strlen(s) + 1);
1612 }
1613 
1614 uint64_t
spa_generate_guid(spa_t * spa)1615 spa_generate_guid(spa_t *spa)
1616 {
1617 	uint64_t guid;
1618 
1619 	if (spa != NULL) {
1620 		do {
1621 			(void) random_get_pseudo_bytes((void *)&guid,
1622 			    sizeof (guid));
1623 		} while (guid == 0 || spa_guid_exists(spa_guid(spa), guid));
1624 	} else {
1625 		do {
1626 			(void) random_get_pseudo_bytes((void *)&guid,
1627 			    sizeof (guid));
1628 		} while (guid == 0 || spa_guid_exists(guid, 0));
1629 	}
1630 
1631 	return (guid);
1632 }
1633 
1634 static boolean_t
spa_load_guid_exists(uint64_t guid)1635 spa_load_guid_exists(uint64_t guid)
1636 {
1637 	avl_tree_t *t = &spa_namespace_avl;
1638 
1639 	ASSERT(spa_namespace_held());
1640 
1641 	for (spa_t *spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1642 		if (spa_load_guid(spa) == guid)
1643 			return (B_TRUE);
1644 	}
1645 
1646 	return (arc_async_flush_guid_inuse(guid));
1647 }
1648 
1649 uint64_t
spa_generate_load_guid(void)1650 spa_generate_load_guid(void)
1651 {
1652 	uint64_t guid;
1653 
1654 	do {
1655 		(void) random_get_pseudo_bytes((void *)&guid,
1656 		    sizeof (guid));
1657 	} while (guid == 0 || spa_load_guid_exists(guid));
1658 
1659 	return (guid);
1660 }
1661 
1662 void
snprintf_blkptr(char * buf,size_t buflen,const blkptr_t * bp)1663 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1664 {
1665 	char type[256];
1666 	const char *checksum = NULL;
1667 	const char *compress = NULL;
1668 
1669 	if (bp != NULL) {
1670 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1671 			dmu_object_byteswap_t bswap =
1672 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1673 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1674 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1675 			    "metadata" : "data",
1676 			    dmu_ot_byteswap[bswap].ob_name);
1677 		} else {
1678 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1679 			    sizeof (type));
1680 		}
1681 		if (!BP_IS_EMBEDDED(bp)) {
1682 			checksum =
1683 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1684 		}
1685 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1686 	}
1687 
1688 	SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum,
1689 	    compress);
1690 }
1691 
1692 void
spa_freeze(spa_t * spa)1693 spa_freeze(spa_t *spa)
1694 {
1695 	uint64_t freeze_txg = 0;
1696 
1697 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1698 	if (spa->spa_freeze_txg == UINT64_MAX) {
1699 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1700 		spa->spa_freeze_txg = freeze_txg;
1701 	}
1702 	spa_config_exit(spa, SCL_ALL, FTAG);
1703 	if (freeze_txg != 0)
1704 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1705 }
1706 
1707 void
zfs_panic_recover(const char * fmt,...)1708 zfs_panic_recover(const char *fmt, ...)
1709 {
1710 	va_list adx;
1711 
1712 	va_start(adx, fmt);
1713 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1714 	va_end(adx);
1715 }
1716 
1717 /*
1718  * This is a stripped-down version of strtoull, suitable only for converting
1719  * lowercase hexadecimal numbers that don't overflow.
1720  */
1721 uint64_t
zfs_strtonum(const char * str,char ** nptr)1722 zfs_strtonum(const char *str, char **nptr)
1723 {
1724 	uint64_t val = 0;
1725 	char c;
1726 	int digit;
1727 
1728 	while ((c = *str) != '\0') {
1729 		if (c >= '0' && c <= '9')
1730 			digit = c - '0';
1731 		else if (c >= 'a' && c <= 'f')
1732 			digit = 10 + c - 'a';
1733 		else
1734 			break;
1735 
1736 		val *= 16;
1737 		val += digit;
1738 
1739 		str++;
1740 	}
1741 
1742 	if (nptr)
1743 		*nptr = (char *)str;
1744 
1745 	return (val);
1746 }
1747 
1748 void
spa_activate_allocation_classes(spa_t * spa,dmu_tx_t * tx)1749 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1750 {
1751 	/*
1752 	 * We bump the feature refcount for each special vdev added to the pool
1753 	 */
1754 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1755 	spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1756 }
1757 
1758 /*
1759  * ==========================================================================
1760  * Accessor functions
1761  * ==========================================================================
1762  */
1763 
1764 boolean_t
spa_shutting_down(spa_t * spa)1765 spa_shutting_down(spa_t *spa)
1766 {
1767 	return (spa->spa_async_suspended);
1768 }
1769 
1770 dsl_pool_t *
spa_get_dsl(spa_t * spa)1771 spa_get_dsl(spa_t *spa)
1772 {
1773 	return (spa->spa_dsl_pool);
1774 }
1775 
1776 boolean_t
spa_is_initializing(spa_t * spa)1777 spa_is_initializing(spa_t *spa)
1778 {
1779 	return (spa->spa_is_initializing);
1780 }
1781 
1782 boolean_t
spa_indirect_vdevs_loaded(spa_t * spa)1783 spa_indirect_vdevs_loaded(spa_t *spa)
1784 {
1785 	return (spa->spa_indirect_vdevs_loaded);
1786 }
1787 
1788 blkptr_t *
spa_get_rootblkptr(spa_t * spa)1789 spa_get_rootblkptr(spa_t *spa)
1790 {
1791 	return (&spa->spa_ubsync.ub_rootbp);
1792 }
1793 
1794 void
spa_set_rootblkptr(spa_t * spa,const blkptr_t * bp)1795 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1796 {
1797 	spa->spa_uberblock.ub_rootbp = *bp;
1798 }
1799 
1800 void
spa_altroot(spa_t * spa,char * buf,size_t buflen)1801 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1802 {
1803 	if (spa->spa_root == NULL)
1804 		buf[0] = '\0';
1805 	else
1806 		(void) strlcpy(buf, spa->spa_root, buflen);
1807 }
1808 
1809 uint32_t
spa_sync_pass(spa_t * spa)1810 spa_sync_pass(spa_t *spa)
1811 {
1812 	return (spa->spa_sync_pass);
1813 }
1814 
1815 char *
spa_name(spa_t * spa)1816 spa_name(spa_t *spa)
1817 {
1818 	return (spa->spa_name);
1819 }
1820 
1821 uint64_t
spa_guid(spa_t * spa)1822 spa_guid(spa_t *spa)
1823 {
1824 	dsl_pool_t *dp = spa_get_dsl(spa);
1825 	uint64_t guid;
1826 
1827 	/*
1828 	 * If we fail to parse the config during spa_load(), we can go through
1829 	 * the error path (which posts an ereport) and end up here with no root
1830 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1831 	 * this case.
1832 	 */
1833 	if (spa->spa_root_vdev == NULL)
1834 		return (spa->spa_config_guid);
1835 
1836 	guid = spa->spa_last_synced_guid != 0 ?
1837 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1838 
1839 	/*
1840 	 * Return the most recently synced out guid unless we're
1841 	 * in syncing context.
1842 	 */
1843 	if (dp && dsl_pool_sync_context(dp))
1844 		return (spa->spa_root_vdev->vdev_guid);
1845 	else
1846 		return (guid);
1847 }
1848 
1849 uint64_t
spa_load_guid(spa_t * spa)1850 spa_load_guid(spa_t *spa)
1851 {
1852 	/*
1853 	 * This is a GUID that exists solely as a reference for the
1854 	 * purposes of the arc.  It is generated at load time, and
1855 	 * is never written to persistent storage.
1856 	 */
1857 	return (spa->spa_load_guid);
1858 }
1859 
1860 uint64_t
spa_last_synced_txg(spa_t * spa)1861 spa_last_synced_txg(spa_t *spa)
1862 {
1863 	return (spa->spa_ubsync.ub_txg);
1864 }
1865 
1866 uint64_t
spa_first_txg(spa_t * spa)1867 spa_first_txg(spa_t *spa)
1868 {
1869 	return (spa->spa_first_txg);
1870 }
1871 
1872 uint64_t
spa_syncing_txg(spa_t * spa)1873 spa_syncing_txg(spa_t *spa)
1874 {
1875 	return (spa->spa_syncing_txg);
1876 }
1877 
1878 /*
1879  * Return the last txg where data can be dirtied. The final txgs
1880  * will be used to just clear out any deferred frees that remain.
1881  */
1882 uint64_t
spa_final_dirty_txg(spa_t * spa)1883 spa_final_dirty_txg(spa_t *spa)
1884 {
1885 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1886 }
1887 
1888 pool_state_t
spa_state(spa_t * spa)1889 spa_state(spa_t *spa)
1890 {
1891 	return (spa->spa_state);
1892 }
1893 
1894 spa_load_state_t
spa_load_state(spa_t * spa)1895 spa_load_state(spa_t *spa)
1896 {
1897 	return (spa->spa_load_state);
1898 }
1899 
1900 uint64_t
spa_freeze_txg(spa_t * spa)1901 spa_freeze_txg(spa_t *spa)
1902 {
1903 	return (spa->spa_freeze_txg);
1904 }
1905 
1906 /*
1907  * Return the inflated asize for a logical write in bytes. This is used by the
1908  * DMU to calculate the space a logical write will require on disk.
1909  * If lsize is smaller than the largest physical block size allocatable on this
1910  * pool we use its value instead, since the write will end up using the whole
1911  * block anyway.
1912  */
1913 uint64_t
spa_get_worst_case_asize(spa_t * spa,uint64_t lsize)1914 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1915 {
1916 	if (lsize == 0)
1917 		return (0);	/* No inflation needed */
1918 	return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1919 }
1920 
1921 /*
1922  * Return the range of minimum allocation sizes for the normal allocation
1923  * class. This can be used by external consumers of the DMU to estimate
1924  * potential wasted capacity when setting the recordsize for an object.
1925  * This is mainly for dRAID pools which always pad to a full stripe width.
1926  */
1927 void
spa_get_min_alloc_range(spa_t * spa,uint64_t * min_alloc,uint64_t * max_alloc)1928 spa_get_min_alloc_range(spa_t *spa, uint64_t *min_alloc, uint64_t *max_alloc)
1929 {
1930 	*min_alloc = spa->spa_min_alloc;
1931 	*max_alloc = spa->spa_max_alloc;
1932 }
1933 
1934 /*
1935  * Return the amount of slop space in bytes.  It is typically 1/32 of the pool
1936  * (3.2%), minus the embedded log space.  On very small pools, it may be
1937  * slightly larger than this.  On very large pools, it will be capped to
1938  * the value of spa_max_slop.  The embedded log space is not included in
1939  * spa_dspace.  By subtracting it, the usable space (per "zfs list") is a
1940  * constant 97% of the total space, regardless of metaslab size (assuming the
1941  * default spa_slop_shift=5 and a non-tiny pool).
1942  *
1943  * See the comment above spa_slop_shift for more details.
1944  */
1945 uint64_t
spa_get_slop_space(spa_t * spa)1946 spa_get_slop_space(spa_t *spa)
1947 {
1948 	uint64_t space = 0;
1949 	uint64_t slop = 0;
1950 
1951 	/*
1952 	 * Make sure spa_dedup_dspace has been set.
1953 	 */
1954 	if (spa->spa_dedup_dspace == ~0ULL)
1955 		spa_update_dspace(spa);
1956 
1957 	space = spa->spa_rdspace;
1958 	slop = MIN(space >> spa_slop_shift, spa_max_slop);
1959 
1960 	/*
1961 	 * Subtract the embedded log space, but no more than half the (3.2%)
1962 	 * unusable space.  Note, the "no more than half" is only relevant if
1963 	 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
1964 	 * default.
1965 	 */
1966 	uint64_t embedded_log =
1967 	    metaslab_class_get_dspace(spa_embedded_log_class(spa));
1968 	embedded_log += metaslab_class_get_dspace(
1969 	    spa_special_embedded_log_class(spa));
1970 	slop -= MIN(embedded_log, slop >> 1);
1971 
1972 	/*
1973 	 * Slop space should be at least spa_min_slop, but no more than half
1974 	 * the entire pool.
1975 	 */
1976 	slop = MAX(slop, MIN(space >> 1, spa_min_slop));
1977 	return (slop);
1978 }
1979 
1980 uint64_t
spa_get_dspace(spa_t * spa)1981 spa_get_dspace(spa_t *spa)
1982 {
1983 	return (spa->spa_dspace);
1984 }
1985 
1986 uint64_t
spa_get_checkpoint_space(spa_t * spa)1987 spa_get_checkpoint_space(spa_t *spa)
1988 {
1989 	return (spa->spa_checkpoint_info.sci_dspace);
1990 }
1991 
1992 void
spa_update_dspace(spa_t * spa)1993 spa_update_dspace(spa_t *spa)
1994 {
1995 	spa->spa_rdspace = metaslab_class_get_dspace(spa_normal_class(spa));
1996 	if (spa->spa_nonallocating_dspace > 0) {
1997 		/*
1998 		 * Subtract the space provided by all non-allocating vdevs that
1999 		 * contribute to dspace.  If a file is overwritten, its old
2000 		 * blocks are freed and new blocks are allocated.  If there are
2001 		 * no snapshots of the file, the available space should remain
2002 		 * the same.  The old blocks could be freed from the
2003 		 * non-allocating vdev, but the new blocks must be allocated on
2004 		 * other (allocating) vdevs.  By reserving the entire size of
2005 		 * the non-allocating vdevs (including allocated space), we
2006 		 * ensure that there will be enough space on the allocating
2007 		 * vdevs for this file overwrite to succeed.
2008 		 *
2009 		 * Note that the DMU/DSL doesn't actually know or care
2010 		 * how much space is allocated (it does its own tracking
2011 		 * of how much space has been logically used).  So it
2012 		 * doesn't matter that the data we are moving may be
2013 		 * allocated twice (on the old device and the new device).
2014 		 */
2015 		ASSERT3U(spa->spa_rdspace, >=, spa->spa_nonallocating_dspace);
2016 		spa->spa_rdspace -= spa->spa_nonallocating_dspace;
2017 	}
2018 	spa->spa_dspace = spa->spa_rdspace + ddt_get_dedup_dspace(spa) +
2019 	    brt_get_dspace(spa);
2020 }
2021 
2022 /*
2023  * Return the failure mode that has been set to this pool. The default
2024  * behavior will be to block all I/Os when a complete failure occurs.
2025  */
2026 uint64_t
spa_get_failmode(spa_t * spa)2027 spa_get_failmode(spa_t *spa)
2028 {
2029 	return (spa->spa_failmode);
2030 }
2031 
2032 boolean_t
spa_suspended(spa_t * spa)2033 spa_suspended(spa_t *spa)
2034 {
2035 	return (spa->spa_suspended != ZIO_SUSPEND_NONE);
2036 }
2037 
2038 uint64_t
spa_version(spa_t * spa)2039 spa_version(spa_t *spa)
2040 {
2041 	return (spa->spa_ubsync.ub_version);
2042 }
2043 
2044 boolean_t
spa_deflate(spa_t * spa)2045 spa_deflate(spa_t *spa)
2046 {
2047 	return (spa->spa_deflate);
2048 }
2049 
2050 metaslab_class_t *
spa_normal_class(spa_t * spa)2051 spa_normal_class(spa_t *spa)
2052 {
2053 	return (spa->spa_normal_class);
2054 }
2055 
2056 metaslab_class_t *
spa_log_class(spa_t * spa)2057 spa_log_class(spa_t *spa)
2058 {
2059 	return (spa->spa_log_class);
2060 }
2061 
2062 metaslab_class_t *
spa_embedded_log_class(spa_t * spa)2063 spa_embedded_log_class(spa_t *spa)
2064 {
2065 	return (spa->spa_embedded_log_class);
2066 }
2067 
2068 metaslab_class_t *
spa_special_class(spa_t * spa)2069 spa_special_class(spa_t *spa)
2070 {
2071 	return (spa->spa_special_class);
2072 }
2073 
2074 metaslab_class_t *
spa_special_embedded_log_class(spa_t * spa)2075 spa_special_embedded_log_class(spa_t *spa)
2076 {
2077 	return (spa->spa_special_embedded_log_class);
2078 }
2079 
2080 metaslab_class_t *
spa_dedup_class(spa_t * spa)2081 spa_dedup_class(spa_t *spa)
2082 {
2083 	return (spa->spa_dedup_class);
2084 }
2085 
2086 boolean_t
spa_special_has_ddt(spa_t * spa)2087 spa_special_has_ddt(spa_t *spa)
2088 {
2089 	return (zfs_ddt_data_is_special && spa_has_special(spa));
2090 }
2091 
2092 /*
2093  * Locate an appropriate allocation class
2094  */
2095 metaslab_class_t *
spa_preferred_class(spa_t * spa,const zio_t * zio)2096 spa_preferred_class(spa_t *spa, const zio_t *zio)
2097 {
2098 	metaslab_class_t *mc = zio->io_metaslab_class;
2099 	boolean_t tried_dedup = (mc == spa_dedup_class(spa));
2100 	boolean_t tried_special = (mc == spa_special_class(spa));
2101 	const zio_prop_t *zp = &zio->io_prop;
2102 
2103 	/*
2104 	 * Override object type for the purposes of selecting a storage class.
2105 	 * Primarily for DMU_OTN_ types where we can't explicitly control their
2106 	 * storage class; instead, choose a static type most closely matches
2107 	 * what we want.
2108 	 */
2109 	dmu_object_type_t objtype =
2110 	    zp->zp_storage_type == DMU_OT_NONE ?
2111 	    zp->zp_type : zp->zp_storage_type;
2112 
2113 	/*
2114 	 * ZIL allocations determine their class in zio_alloc_zil().
2115 	 */
2116 	ASSERT(objtype != DMU_OT_INTENT_LOG);
2117 
2118 	if (DMU_OT_IS_DDT(objtype)) {
2119 		if (spa_has_dedup(spa) && !tried_dedup && !tried_special)
2120 			return (spa_dedup_class(spa));
2121 		else if (spa_special_has_ddt(spa) && !tried_special)
2122 			return (spa_special_class(spa));
2123 		else
2124 			return (spa_normal_class(spa));
2125 	}
2126 
2127 	/* Indirect blocks for user data can land in special if allowed */
2128 	if (zp->zp_level > 0 &&
2129 	    (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
2130 		if (zfs_user_indirect_is_special && spa_has_special(spa) &&
2131 		    !tried_special)
2132 			return (spa_special_class(spa));
2133 		else
2134 			return (spa_normal_class(spa));
2135 	}
2136 
2137 	if (DMU_OT_IS_METADATA(objtype) || zp->zp_level > 0) {
2138 		if (spa_has_special(spa) && !tried_special)
2139 			return (spa_special_class(spa));
2140 		else
2141 			return (spa_normal_class(spa));
2142 	}
2143 
2144 	/*
2145 	 * Allow small file or zvol blocks in special class if opted in by
2146 	 * the special_smallblk property. However, always leave a reserve of
2147 	 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
2148 	 */
2149 	if ((DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL) &&
2150 	    spa_has_special(spa) && !tried_special &&
2151 	    zio->io_size <= zp->zp_zpl_smallblk) {
2152 		metaslab_class_t *special = spa_special_class(spa);
2153 		uint64_t alloc = metaslab_class_get_alloc(special);
2154 		uint64_t space = metaslab_class_get_space(special);
2155 		uint64_t limit =
2156 		    (space * (100 - zfs_special_class_metadata_reserve_pct))
2157 		    / 100;
2158 
2159 		if (alloc < limit)
2160 			return (special);
2161 	}
2162 
2163 	return (spa_normal_class(spa));
2164 }
2165 
2166 void
spa_evicting_os_register(spa_t * spa,objset_t * os)2167 spa_evicting_os_register(spa_t *spa, objset_t *os)
2168 {
2169 	mutex_enter(&spa->spa_evicting_os_lock);
2170 	list_insert_head(&spa->spa_evicting_os_list, os);
2171 	mutex_exit(&spa->spa_evicting_os_lock);
2172 }
2173 
2174 void
spa_evicting_os_deregister(spa_t * spa,objset_t * os)2175 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
2176 {
2177 	mutex_enter(&spa->spa_evicting_os_lock);
2178 	list_remove(&spa->spa_evicting_os_list, os);
2179 	cv_broadcast(&spa->spa_evicting_os_cv);
2180 	mutex_exit(&spa->spa_evicting_os_lock);
2181 }
2182 
2183 void
spa_evicting_os_wait(spa_t * spa)2184 spa_evicting_os_wait(spa_t *spa)
2185 {
2186 	mutex_enter(&spa->spa_evicting_os_lock);
2187 	while (!list_is_empty(&spa->spa_evicting_os_list))
2188 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
2189 	mutex_exit(&spa->spa_evicting_os_lock);
2190 
2191 	dmu_buf_user_evict_wait();
2192 }
2193 
2194 int
spa_max_replication(spa_t * spa)2195 spa_max_replication(spa_t *spa)
2196 {
2197 	/*
2198 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
2199 	 * handle BPs with more than one DVA allocated.  Set our max
2200 	 * replication level accordingly.
2201 	 */
2202 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
2203 		return (1);
2204 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
2205 }
2206 
2207 int
spa_prev_software_version(spa_t * spa)2208 spa_prev_software_version(spa_t *spa)
2209 {
2210 	return (spa->spa_prev_software_version);
2211 }
2212 
2213 uint64_t
spa_deadman_synctime(spa_t * spa)2214 spa_deadman_synctime(spa_t *spa)
2215 {
2216 	return (spa->spa_deadman_synctime);
2217 }
2218 
2219 spa_autotrim_t
spa_get_autotrim(spa_t * spa)2220 spa_get_autotrim(spa_t *spa)
2221 {
2222 	return (spa->spa_autotrim);
2223 }
2224 
2225 uint64_t
spa_deadman_ziotime(spa_t * spa)2226 spa_deadman_ziotime(spa_t *spa)
2227 {
2228 	return (spa->spa_deadman_ziotime);
2229 }
2230 
2231 uint64_t
spa_get_deadman_failmode(spa_t * spa)2232 spa_get_deadman_failmode(spa_t *spa)
2233 {
2234 	return (spa->spa_deadman_failmode);
2235 }
2236 
2237 void
spa_set_deadman_failmode(spa_t * spa,const char * failmode)2238 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2239 {
2240 	if (strcmp(failmode, "wait") == 0)
2241 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2242 	else if (strcmp(failmode, "continue") == 0)
2243 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2244 	else if (strcmp(failmode, "panic") == 0)
2245 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2246 	else
2247 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2248 }
2249 
2250 void
spa_set_deadman_ziotime(hrtime_t ns)2251 spa_set_deadman_ziotime(hrtime_t ns)
2252 {
2253 	spa_t *spa = NULL;
2254 
2255 	if (spa_mode_global != SPA_MODE_UNINIT) {
2256 		spa_namespace_enter(FTAG);
2257 		while ((spa = spa_next(spa)) != NULL)
2258 			spa->spa_deadman_ziotime = ns;
2259 		spa_namespace_exit(FTAG);
2260 	}
2261 }
2262 
2263 void
spa_set_deadman_synctime(hrtime_t ns)2264 spa_set_deadman_synctime(hrtime_t ns)
2265 {
2266 	spa_t *spa = NULL;
2267 
2268 	if (spa_mode_global != SPA_MODE_UNINIT) {
2269 		spa_namespace_enter(FTAG);
2270 		while ((spa = spa_next(spa)) != NULL)
2271 			spa->spa_deadman_synctime = ns;
2272 		spa_namespace_exit(FTAG);
2273 	}
2274 }
2275 
2276 uint64_t
dva_get_dsize_sync(spa_t * spa,const dva_t * dva)2277 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2278 {
2279 	uint64_t asize = DVA_GET_ASIZE(dva);
2280 	uint64_t dsize = asize;
2281 
2282 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2283 
2284 	if (asize != 0 && spa->spa_deflate) {
2285 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2286 		if (vd != NULL)
2287 			dsize = (asize >> SPA_MINBLOCKSHIFT) *
2288 			    vd->vdev_deflate_ratio;
2289 	}
2290 
2291 	return (dsize);
2292 }
2293 
2294 uint64_t
bp_get_dsize_sync(spa_t * spa,const blkptr_t * bp)2295 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2296 {
2297 	uint64_t dsize = 0;
2298 
2299 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2300 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2301 
2302 	return (dsize);
2303 }
2304 
2305 uint64_t
bp_get_dsize(spa_t * spa,const blkptr_t * bp)2306 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2307 {
2308 	uint64_t dsize = 0;
2309 
2310 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2311 
2312 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2313 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2314 
2315 	spa_config_exit(spa, SCL_VDEV, FTAG);
2316 
2317 	return (dsize);
2318 }
2319 
2320 uint64_t
spa_dirty_data(spa_t * spa)2321 spa_dirty_data(spa_t *spa)
2322 {
2323 	return (spa->spa_dsl_pool->dp_dirty_total);
2324 }
2325 
2326 /*
2327  * ==========================================================================
2328  * SPA Import Progress Routines
2329  * ==========================================================================
2330  */
2331 
2332 typedef struct spa_import_progress {
2333 	uint64_t		pool_guid;	/* unique id for updates */
2334 	char			*pool_name;
2335 	spa_load_state_t	spa_load_state;
2336 	char			*spa_load_notes;
2337 	uint64_t		mmp_sec_remaining;	/* MMP activity check */
2338 	uint64_t		spa_load_max_txg;	/* rewind txg */
2339 	procfs_list_node_t	smh_node;
2340 } spa_import_progress_t;
2341 
2342 spa_history_list_t *spa_import_progress_list = NULL;
2343 
2344 static int
spa_import_progress_show_header(struct seq_file * f)2345 spa_import_progress_show_header(struct seq_file *f)
2346 {
2347 	seq_printf(f, "%-20s %-14s %-14s %-12s %-16s %s\n", "pool_guid",
2348 	    "load_state", "multihost_secs", "max_txg",
2349 	    "pool_name", "notes");
2350 	return (0);
2351 }
2352 
2353 static int
spa_import_progress_show(struct seq_file * f,void * data)2354 spa_import_progress_show(struct seq_file *f, void *data)
2355 {
2356 	spa_import_progress_t *sip = (spa_import_progress_t *)data;
2357 
2358 	seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %-16s %s\n",
2359 	    (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2360 	    (u_longlong_t)sip->mmp_sec_remaining,
2361 	    (u_longlong_t)sip->spa_load_max_txg,
2362 	    (sip->pool_name ? sip->pool_name : "-"),
2363 	    (sip->spa_load_notes ? sip->spa_load_notes : "-"));
2364 
2365 	return (0);
2366 }
2367 
2368 /* Remove oldest elements from list until there are no more than 'size' left */
2369 static void
spa_import_progress_truncate(spa_history_list_t * shl,unsigned int size)2370 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2371 {
2372 	spa_import_progress_t *sip;
2373 	while (shl->size > size) {
2374 		sip = list_remove_head(&shl->procfs_list.pl_list);
2375 		if (sip->pool_name)
2376 			spa_strfree(sip->pool_name);
2377 		if (sip->spa_load_notes)
2378 			kmem_strfree(sip->spa_load_notes);
2379 		kmem_free(sip, sizeof (spa_import_progress_t));
2380 		shl->size--;
2381 	}
2382 
2383 	IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2384 }
2385 
2386 static void
spa_import_progress_init(void)2387 spa_import_progress_init(void)
2388 {
2389 	spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2390 	    KM_SLEEP);
2391 
2392 	spa_import_progress_list->size = 0;
2393 
2394 	spa_import_progress_list->procfs_list.pl_private =
2395 	    spa_import_progress_list;
2396 
2397 	procfs_list_install("zfs",
2398 	    NULL,
2399 	    "import_progress",
2400 	    0644,
2401 	    &spa_import_progress_list->procfs_list,
2402 	    spa_import_progress_show,
2403 	    spa_import_progress_show_header,
2404 	    NULL,
2405 	    offsetof(spa_import_progress_t, smh_node));
2406 }
2407 
2408 static void
spa_import_progress_destroy(void)2409 spa_import_progress_destroy(void)
2410 {
2411 	spa_history_list_t *shl = spa_import_progress_list;
2412 	procfs_list_uninstall(&shl->procfs_list);
2413 	spa_import_progress_truncate(shl, 0);
2414 	procfs_list_destroy(&shl->procfs_list);
2415 	kmem_free(shl, sizeof (spa_history_list_t));
2416 }
2417 
2418 int
spa_import_progress_set_state(uint64_t pool_guid,spa_load_state_t load_state)2419 spa_import_progress_set_state(uint64_t pool_guid,
2420     spa_load_state_t load_state)
2421 {
2422 	spa_history_list_t *shl = spa_import_progress_list;
2423 	spa_import_progress_t *sip;
2424 	int error = ENOENT;
2425 
2426 	if (shl->size == 0)
2427 		return (0);
2428 
2429 	mutex_enter(&shl->procfs_list.pl_lock);
2430 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2431 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2432 		if (sip->pool_guid == pool_guid) {
2433 			sip->spa_load_state = load_state;
2434 			if (sip->spa_load_notes != NULL) {
2435 				kmem_strfree(sip->spa_load_notes);
2436 				sip->spa_load_notes = NULL;
2437 			}
2438 			error = 0;
2439 			break;
2440 		}
2441 	}
2442 	mutex_exit(&shl->procfs_list.pl_lock);
2443 
2444 	return (error);
2445 }
2446 
2447 static void
spa_import_progress_set_notes_impl(spa_t * spa,boolean_t log_dbgmsg,const char * fmt,va_list adx)2448 spa_import_progress_set_notes_impl(spa_t *spa, boolean_t log_dbgmsg,
2449     const char *fmt, va_list adx)
2450 {
2451 	spa_history_list_t *shl = spa_import_progress_list;
2452 	spa_import_progress_t *sip;
2453 	uint64_t pool_guid = spa_guid(spa);
2454 
2455 	if (shl->size == 0)
2456 		return;
2457 
2458 	char *notes = kmem_vasprintf(fmt, adx);
2459 
2460 	mutex_enter(&shl->procfs_list.pl_lock);
2461 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2462 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2463 		if (sip->pool_guid == pool_guid) {
2464 			if (sip->spa_load_notes != NULL) {
2465 				kmem_strfree(sip->spa_load_notes);
2466 				sip->spa_load_notes = NULL;
2467 			}
2468 			sip->spa_load_notes = notes;
2469 			if (log_dbgmsg)
2470 				zfs_dbgmsg("'%s' %s", sip->pool_name, notes);
2471 			notes = NULL;
2472 			break;
2473 		}
2474 	}
2475 	mutex_exit(&shl->procfs_list.pl_lock);
2476 	if (notes != NULL)
2477 		kmem_strfree(notes);
2478 }
2479 
2480 void
spa_import_progress_set_notes(spa_t * spa,const char * fmt,...)2481 spa_import_progress_set_notes(spa_t *spa, const char *fmt, ...)
2482 {
2483 	va_list adx;
2484 
2485 	va_start(adx, fmt);
2486 	spa_import_progress_set_notes_impl(spa, B_TRUE, fmt, adx);
2487 	va_end(adx);
2488 }
2489 
2490 void
spa_import_progress_set_notes_nolog(spa_t * spa,const char * fmt,...)2491 spa_import_progress_set_notes_nolog(spa_t *spa, const char *fmt, ...)
2492 {
2493 	va_list adx;
2494 
2495 	va_start(adx, fmt);
2496 	spa_import_progress_set_notes_impl(spa, B_FALSE, fmt, adx);
2497 	va_end(adx);
2498 }
2499 
2500 int
spa_import_progress_set_max_txg(uint64_t pool_guid,uint64_t load_max_txg)2501 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2502 {
2503 	spa_history_list_t *shl = spa_import_progress_list;
2504 	spa_import_progress_t *sip;
2505 	int error = ENOENT;
2506 
2507 	if (shl->size == 0)
2508 		return (0);
2509 
2510 	mutex_enter(&shl->procfs_list.pl_lock);
2511 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2512 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2513 		if (sip->pool_guid == pool_guid) {
2514 			sip->spa_load_max_txg = load_max_txg;
2515 			error = 0;
2516 			break;
2517 		}
2518 	}
2519 	mutex_exit(&shl->procfs_list.pl_lock);
2520 
2521 	return (error);
2522 }
2523 
2524 int
spa_import_progress_set_mmp_check(uint64_t pool_guid,uint64_t mmp_sec_remaining)2525 spa_import_progress_set_mmp_check(uint64_t pool_guid,
2526     uint64_t mmp_sec_remaining)
2527 {
2528 	spa_history_list_t *shl = spa_import_progress_list;
2529 	spa_import_progress_t *sip;
2530 	int error = ENOENT;
2531 
2532 	if (shl->size == 0)
2533 		return (0);
2534 
2535 	mutex_enter(&shl->procfs_list.pl_lock);
2536 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2537 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2538 		if (sip->pool_guid == pool_guid) {
2539 			sip->mmp_sec_remaining = mmp_sec_remaining;
2540 			error = 0;
2541 			break;
2542 		}
2543 	}
2544 	mutex_exit(&shl->procfs_list.pl_lock);
2545 
2546 	return (error);
2547 }
2548 
2549 /*
2550  * A new import is in progress, add an entry.
2551  */
2552 void
spa_import_progress_add(spa_t * spa)2553 spa_import_progress_add(spa_t *spa)
2554 {
2555 	spa_history_list_t *shl = spa_import_progress_list;
2556 	spa_import_progress_t *sip;
2557 	const char *poolname = NULL;
2558 
2559 	sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2560 	sip->pool_guid = spa_guid(spa);
2561 
2562 	(void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2563 	    &poolname);
2564 	if (poolname == NULL)
2565 		poolname = spa_name(spa);
2566 	sip->pool_name = spa_strdup(poolname);
2567 	sip->spa_load_state = spa_load_state(spa);
2568 	sip->spa_load_notes = NULL;
2569 
2570 	mutex_enter(&shl->procfs_list.pl_lock);
2571 	procfs_list_add(&shl->procfs_list, sip);
2572 	shl->size++;
2573 	mutex_exit(&shl->procfs_list.pl_lock);
2574 }
2575 
2576 void
spa_import_progress_remove(uint64_t pool_guid)2577 spa_import_progress_remove(uint64_t pool_guid)
2578 {
2579 	spa_history_list_t *shl = spa_import_progress_list;
2580 	spa_import_progress_t *sip;
2581 
2582 	mutex_enter(&shl->procfs_list.pl_lock);
2583 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2584 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2585 		if (sip->pool_guid == pool_guid) {
2586 			if (sip->pool_name)
2587 				spa_strfree(sip->pool_name);
2588 			if (sip->spa_load_notes)
2589 				spa_strfree(sip->spa_load_notes);
2590 			list_remove(&shl->procfs_list.pl_list, sip);
2591 			shl->size--;
2592 			kmem_free(sip, sizeof (spa_import_progress_t));
2593 			break;
2594 		}
2595 	}
2596 	mutex_exit(&shl->procfs_list.pl_lock);
2597 }
2598 
2599 /*
2600  * ==========================================================================
2601  * Initialization and Termination
2602  * ==========================================================================
2603  */
2604 
2605 static int
spa_name_compare(const void * a1,const void * a2)2606 spa_name_compare(const void *a1, const void *a2)
2607 {
2608 	const spa_t *s1 = a1;
2609 	const spa_t *s2 = a2;
2610 	int s;
2611 
2612 	s = strcmp(s1->spa_name, s2->spa_name);
2613 
2614 	return (TREE_ISIGN(s));
2615 }
2616 
2617 void
spa_init(spa_mode_t mode)2618 spa_init(spa_mode_t mode)
2619 {
2620 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2621 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2622 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2623 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2624 
2625 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2626 	    offsetof(spa_t, spa_avl));
2627 
2628 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2629 	    offsetof(spa_aux_t, aux_avl));
2630 
2631 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2632 	    offsetof(spa_aux_t, aux_avl));
2633 
2634 	spa_mode_global = mode;
2635 
2636 #ifndef _KERNEL
2637 	if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
2638 		struct sigaction sa;
2639 
2640 		sa.sa_flags = SA_SIGINFO;
2641 		sigemptyset(&sa.sa_mask);
2642 		sa.sa_sigaction = arc_buf_sigsegv;
2643 
2644 		if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2645 			perror("could not enable watchpoints: "
2646 			    "sigaction(SIGSEGV, ...) = ");
2647 		} else {
2648 			arc_watch = B_TRUE;
2649 		}
2650 	}
2651 #endif
2652 
2653 	fm_init();
2654 	zfs_refcount_init();
2655 	unique_init();
2656 	zfs_btree_init();
2657 	metaslab_stat_init();
2658 	brt_init();
2659 	ddt_init();
2660 	zio_init();
2661 	dmu_init();
2662 	zil_init();
2663 	vdev_mirror_stat_init();
2664 	vdev_raidz_math_init();
2665 	vdev_file_init();
2666 	zfs_prop_init();
2667 	chksum_init();
2668 	zpool_prop_init();
2669 	zpool_feature_init();
2670 	vdev_prop_init();
2671 	l2arc_start();
2672 	scan_init();
2673 	qat_init();
2674 	spa_import_progress_init();
2675 	zap_init();
2676 }
2677 
2678 void
spa_fini(void)2679 spa_fini(void)
2680 {
2681 	l2arc_stop();
2682 
2683 	spa_evict_all();
2684 
2685 	vdev_file_fini();
2686 	vdev_mirror_stat_fini();
2687 	vdev_raidz_math_fini();
2688 	chksum_fini();
2689 	zil_fini();
2690 	dmu_fini();
2691 	zio_fini();
2692 	ddt_fini();
2693 	brt_fini();
2694 	metaslab_stat_fini();
2695 	zfs_btree_fini();
2696 	unique_fini();
2697 	zfs_refcount_fini();
2698 	fm_fini();
2699 	scan_fini();
2700 	qat_fini();
2701 	spa_import_progress_destroy();
2702 	zap_fini();
2703 
2704 	avl_destroy(&spa_namespace_avl);
2705 	avl_destroy(&spa_spare_avl);
2706 	avl_destroy(&spa_l2cache_avl);
2707 
2708 	cv_destroy(&spa_namespace_cv);
2709 	mutex_destroy(&spa_namespace_lock);
2710 	mutex_destroy(&spa_spare_lock);
2711 	mutex_destroy(&spa_l2cache_lock);
2712 }
2713 
2714 boolean_t
spa_has_dedup(spa_t * spa)2715 spa_has_dedup(spa_t *spa)
2716 {
2717 	return (spa->spa_dedup_class->mc_groups != 0);
2718 }
2719 
2720 /*
2721  * Return whether this pool has a dedicated slog device. No locking needed.
2722  * It's not a problem if the wrong answer is returned as it's only for
2723  * performance and not correctness.
2724  */
2725 boolean_t
spa_has_slogs(spa_t * spa)2726 spa_has_slogs(spa_t *spa)
2727 {
2728 	return (spa->spa_log_class->mc_groups != 0);
2729 }
2730 
2731 boolean_t
spa_has_special(spa_t * spa)2732 spa_has_special(spa_t *spa)
2733 {
2734 	return (spa->spa_special_class->mc_groups != 0);
2735 }
2736 
2737 spa_log_state_t
spa_get_log_state(spa_t * spa)2738 spa_get_log_state(spa_t *spa)
2739 {
2740 	return (spa->spa_log_state);
2741 }
2742 
2743 void
spa_set_log_state(spa_t * spa,spa_log_state_t state)2744 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2745 {
2746 	spa->spa_log_state = state;
2747 }
2748 
2749 boolean_t
spa_is_root(spa_t * spa)2750 spa_is_root(spa_t *spa)
2751 {
2752 	return (spa->spa_is_root);
2753 }
2754 
2755 boolean_t
spa_writeable(spa_t * spa)2756 spa_writeable(spa_t *spa)
2757 {
2758 	return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
2759 }
2760 
2761 /*
2762  * Returns true if there is a pending sync task in any of the current
2763  * syncing txg, the current quiescing txg, or the current open txg.
2764  */
2765 boolean_t
spa_has_pending_synctask(spa_t * spa)2766 spa_has_pending_synctask(spa_t *spa)
2767 {
2768 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2769 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2770 }
2771 
2772 spa_mode_t
spa_mode(spa_t * spa)2773 spa_mode(spa_t *spa)
2774 {
2775 	return (spa->spa_mode);
2776 }
2777 
2778 uint64_t
spa_get_last_scrubbed_txg(spa_t * spa)2779 spa_get_last_scrubbed_txg(spa_t *spa)
2780 {
2781 	return (spa->spa_scrubbed_last_txg);
2782 }
2783 
2784 uint64_t
spa_bootfs(spa_t * spa)2785 spa_bootfs(spa_t *spa)
2786 {
2787 	return (spa->spa_bootfs);
2788 }
2789 
2790 uint64_t
spa_delegation(spa_t * spa)2791 spa_delegation(spa_t *spa)
2792 {
2793 	return (spa->spa_delegation);
2794 }
2795 
2796 objset_t *
spa_meta_objset(spa_t * spa)2797 spa_meta_objset(spa_t *spa)
2798 {
2799 	return (spa->spa_meta_objset);
2800 }
2801 
2802 enum zio_checksum
spa_dedup_checksum(spa_t * spa)2803 spa_dedup_checksum(spa_t *spa)
2804 {
2805 	return (spa->spa_dedup_checksum);
2806 }
2807 
2808 /*
2809  * Reset pool scan stat per scan pass (or reboot).
2810  */
2811 void
spa_scan_stat_init(spa_t * spa)2812 spa_scan_stat_init(spa_t *spa)
2813 {
2814 	/* data not stored on disk */
2815 	spa->spa_scan_pass_start = gethrestime_sec();
2816 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2817 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2818 	else
2819 		spa->spa_scan_pass_scrub_pause = 0;
2820 
2821 	if (dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan))
2822 		spa->spa_scan_pass_errorscrub_pause = spa->spa_scan_pass_start;
2823 	else
2824 		spa->spa_scan_pass_errorscrub_pause = 0;
2825 
2826 	spa->spa_scan_pass_scrub_spent_paused = 0;
2827 	spa->spa_scan_pass_exam = 0;
2828 	spa->spa_scan_pass_issued = 0;
2829 
2830 	// error scrub stats
2831 	spa->spa_scan_pass_errorscrub_spent_paused = 0;
2832 }
2833 
2834 /*
2835  * Get scan stats for zpool status reports
2836  */
2837 int
spa_scan_get_stats(spa_t * spa,pool_scan_stat_t * ps)2838 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2839 {
2840 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2841 
2842 	if (scn == NULL || (scn->scn_phys.scn_func == POOL_SCAN_NONE &&
2843 	    scn->errorscrub_phys.dep_func == POOL_SCAN_NONE))
2844 		return (SET_ERROR(ENOENT));
2845 
2846 	memset(ps, 0, sizeof (pool_scan_stat_t));
2847 
2848 	/* data stored on disk */
2849 	ps->pss_func = scn->scn_phys.scn_func;
2850 	ps->pss_state = scn->scn_phys.scn_state;
2851 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2852 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2853 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2854 	ps->pss_examined = scn->scn_phys.scn_examined;
2855 	ps->pss_skipped = scn->scn_phys.scn_skipped;
2856 	ps->pss_processed = scn->scn_phys.scn_processed;
2857 	ps->pss_errors = scn->scn_phys.scn_errors;
2858 
2859 	/* data not stored on disk */
2860 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2861 	ps->pss_pass_start = spa->spa_scan_pass_start;
2862 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2863 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2864 	ps->pss_pass_issued = spa->spa_scan_pass_issued;
2865 	ps->pss_issued =
2866 	    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2867 
2868 	/* error scrub data stored on disk */
2869 	ps->pss_error_scrub_func = scn->errorscrub_phys.dep_func;
2870 	ps->pss_error_scrub_state = scn->errorscrub_phys.dep_state;
2871 	ps->pss_error_scrub_start = scn->errorscrub_phys.dep_start_time;
2872 	ps->pss_error_scrub_end = scn->errorscrub_phys.dep_end_time;
2873 	ps->pss_error_scrub_examined = scn->errorscrub_phys.dep_examined;
2874 	ps->pss_error_scrub_to_be_examined =
2875 	    scn->errorscrub_phys.dep_to_examine;
2876 
2877 	/* error scrub data not stored on disk */
2878 	ps->pss_pass_error_scrub_pause = spa->spa_scan_pass_errorscrub_pause;
2879 
2880 	return (0);
2881 }
2882 
2883 int
spa_maxblocksize(spa_t * spa)2884 spa_maxblocksize(spa_t *spa)
2885 {
2886 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2887 		return (SPA_MAXBLOCKSIZE);
2888 	else
2889 		return (SPA_OLD_MAXBLOCKSIZE);
2890 }
2891 
2892 
2893 /*
2894  * Returns the txg that the last device removal completed. No indirect mappings
2895  * have been added since this txg.
2896  */
2897 uint64_t
spa_get_last_removal_txg(spa_t * spa)2898 spa_get_last_removal_txg(spa_t *spa)
2899 {
2900 	uint64_t vdevid;
2901 	uint64_t ret = -1ULL;
2902 
2903 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2904 	/*
2905 	 * sr_prev_indirect_vdev is only modified while holding all the
2906 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2907 	 * examining it.
2908 	 */
2909 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2910 
2911 	while (vdevid != -1ULL) {
2912 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2913 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2914 
2915 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2916 
2917 		/*
2918 		 * If the removal did not remap any data, we don't care.
2919 		 */
2920 		if (vdev_indirect_births_count(vib) != 0) {
2921 			ret = vdev_indirect_births_last_entry_txg(vib);
2922 			break;
2923 		}
2924 
2925 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2926 	}
2927 	spa_config_exit(spa, SCL_VDEV, FTAG);
2928 
2929 	IMPLY(ret != -1ULL,
2930 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2931 
2932 	return (ret);
2933 }
2934 
2935 int
spa_maxdnodesize(spa_t * spa)2936 spa_maxdnodesize(spa_t *spa)
2937 {
2938 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2939 		return (DNODE_MAX_SIZE);
2940 	else
2941 		return (DNODE_MIN_SIZE);
2942 }
2943 
2944 boolean_t
spa_multihost(spa_t * spa)2945 spa_multihost(spa_t *spa)
2946 {
2947 	return (spa->spa_multihost ? B_TRUE : B_FALSE);
2948 }
2949 
2950 uint32_t
spa_get_hostid(spa_t * spa)2951 spa_get_hostid(spa_t *spa)
2952 {
2953 	return (spa->spa_hostid);
2954 }
2955 
2956 boolean_t
spa_trust_config(spa_t * spa)2957 spa_trust_config(spa_t *spa)
2958 {
2959 	return (spa->spa_trust_config);
2960 }
2961 
2962 uint64_t
spa_missing_tvds_allowed(spa_t * spa)2963 spa_missing_tvds_allowed(spa_t *spa)
2964 {
2965 	return (spa->spa_missing_tvds_allowed);
2966 }
2967 
2968 space_map_t *
spa_syncing_log_sm(spa_t * spa)2969 spa_syncing_log_sm(spa_t *spa)
2970 {
2971 	return (spa->spa_syncing_log_sm);
2972 }
2973 
2974 void
spa_set_missing_tvds(spa_t * spa,uint64_t missing)2975 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2976 {
2977 	spa->spa_missing_tvds = missing;
2978 }
2979 
2980 /*
2981  * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2982  */
2983 const char *
spa_state_to_name(spa_t * spa)2984 spa_state_to_name(spa_t *spa)
2985 {
2986 	ASSERT3P(spa, !=, NULL);
2987 
2988 	/*
2989 	 * it is possible for the spa to exist, without root vdev
2990 	 * as the spa transitions during import/export
2991 	 */
2992 	vdev_t *rvd = spa->spa_root_vdev;
2993 	if (rvd == NULL) {
2994 		return ("TRANSITIONING");
2995 	}
2996 	vdev_state_t state = rvd->vdev_state;
2997 	vdev_aux_t aux = rvd->vdev_stat.vs_aux;
2998 
2999 	if (spa_suspended(spa))
3000 		return ("SUSPENDED");
3001 
3002 	switch (state) {
3003 	case VDEV_STATE_CLOSED:
3004 	case VDEV_STATE_OFFLINE:
3005 		return ("OFFLINE");
3006 	case VDEV_STATE_REMOVED:
3007 		return ("REMOVED");
3008 	case VDEV_STATE_CANT_OPEN:
3009 		if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
3010 			return ("FAULTED");
3011 		else if (aux == VDEV_AUX_SPLIT_POOL)
3012 			return ("SPLIT");
3013 		else
3014 			return ("UNAVAIL");
3015 	case VDEV_STATE_FAULTED:
3016 		return ("FAULTED");
3017 	case VDEV_STATE_DEGRADED:
3018 		return ("DEGRADED");
3019 	case VDEV_STATE_HEALTHY:
3020 		return ("ONLINE");
3021 	default:
3022 		break;
3023 	}
3024 
3025 	return ("UNKNOWN");
3026 }
3027 
3028 boolean_t
spa_top_vdevs_spacemap_addressable(spa_t * spa)3029 spa_top_vdevs_spacemap_addressable(spa_t *spa)
3030 {
3031 	vdev_t *rvd = spa->spa_root_vdev;
3032 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
3033 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
3034 			return (B_FALSE);
3035 	}
3036 	return (B_TRUE);
3037 }
3038 
3039 boolean_t
spa_has_checkpoint(spa_t * spa)3040 spa_has_checkpoint(spa_t *spa)
3041 {
3042 	return (spa->spa_checkpoint_txg != 0);
3043 }
3044 
3045 boolean_t
spa_importing_readonly_checkpoint(spa_t * spa)3046 spa_importing_readonly_checkpoint(spa_t *spa)
3047 {
3048 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
3049 	    spa->spa_mode == SPA_MODE_READ);
3050 }
3051 
3052 uint64_t
spa_min_claim_txg(spa_t * spa)3053 spa_min_claim_txg(spa_t *spa)
3054 {
3055 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
3056 
3057 	if (checkpoint_txg != 0)
3058 		return (checkpoint_txg + 1);
3059 
3060 	return (spa->spa_first_txg);
3061 }
3062 
3063 /*
3064  * If there is a checkpoint, async destroys may consume more space from
3065  * the pool instead of freeing it. In an attempt to save the pool from
3066  * getting suspended when it is about to run out of space, we stop
3067  * processing async destroys.
3068  */
3069 boolean_t
spa_suspend_async_destroy(spa_t * spa)3070 spa_suspend_async_destroy(spa_t *spa)
3071 {
3072 	dsl_pool_t *dp = spa_get_dsl(spa);
3073 
3074 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
3075 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
3076 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
3077 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
3078 
3079 	if (spa_has_checkpoint(spa) && avail == 0)
3080 		return (B_TRUE);
3081 
3082 	return (B_FALSE);
3083 }
3084 
3085 #if defined(_KERNEL)
3086 
3087 int
param_set_deadman_failmode_common(const char * val)3088 param_set_deadman_failmode_common(const char *val)
3089 {
3090 	spa_t *spa = NULL;
3091 	char *p;
3092 
3093 	if (val == NULL)
3094 		return (SET_ERROR(EINVAL));
3095 
3096 	if ((p = strchr(val, '\n')) != NULL)
3097 		*p = '\0';
3098 
3099 	if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
3100 	    strcmp(val, "panic"))
3101 		return (SET_ERROR(EINVAL));
3102 
3103 	if (spa_mode_global != SPA_MODE_UNINIT) {
3104 		spa_namespace_enter(FTAG);
3105 		while ((spa = spa_next(spa)) != NULL)
3106 			spa_set_deadman_failmode(spa, val);
3107 		spa_namespace_exit(FTAG);
3108 	}
3109 
3110 	return (0);
3111 }
3112 #endif
3113 
3114 /* Namespace manipulation */
3115 EXPORT_SYMBOL(spa_lookup);
3116 EXPORT_SYMBOL(spa_add);
3117 EXPORT_SYMBOL(spa_remove);
3118 EXPORT_SYMBOL(spa_next);
3119 
3120 /* Refcount functions */
3121 EXPORT_SYMBOL(spa_open_ref);
3122 EXPORT_SYMBOL(spa_close);
3123 EXPORT_SYMBOL(spa_refcount_zero);
3124 
3125 /* Pool configuration lock */
3126 EXPORT_SYMBOL(spa_config_tryenter);
3127 EXPORT_SYMBOL(spa_config_enter);
3128 EXPORT_SYMBOL(spa_config_exit);
3129 EXPORT_SYMBOL(spa_config_held);
3130 
3131 /* Pool vdev add/remove lock */
3132 EXPORT_SYMBOL(spa_vdev_enter);
3133 EXPORT_SYMBOL(spa_vdev_exit);
3134 
3135 /* Pool vdev state change lock */
3136 EXPORT_SYMBOL(spa_vdev_state_enter);
3137 EXPORT_SYMBOL(spa_vdev_state_exit);
3138 
3139 /* Accessor functions */
3140 EXPORT_SYMBOL(spa_shutting_down);
3141 EXPORT_SYMBOL(spa_get_dsl);
3142 EXPORT_SYMBOL(spa_get_rootblkptr);
3143 EXPORT_SYMBOL(spa_set_rootblkptr);
3144 EXPORT_SYMBOL(spa_altroot);
3145 EXPORT_SYMBOL(spa_sync_pass);
3146 EXPORT_SYMBOL(spa_name);
3147 EXPORT_SYMBOL(spa_guid);
3148 EXPORT_SYMBOL(spa_last_synced_txg);
3149 EXPORT_SYMBOL(spa_first_txg);
3150 EXPORT_SYMBOL(spa_syncing_txg);
3151 EXPORT_SYMBOL(spa_version);
3152 EXPORT_SYMBOL(spa_state);
3153 EXPORT_SYMBOL(spa_load_state);
3154 EXPORT_SYMBOL(spa_freeze_txg);
3155 EXPORT_SYMBOL(spa_get_min_alloc_range); /* for Lustre */
3156 EXPORT_SYMBOL(spa_get_dspace);
3157 EXPORT_SYMBOL(spa_update_dspace);
3158 EXPORT_SYMBOL(spa_deflate);
3159 EXPORT_SYMBOL(spa_normal_class);
3160 EXPORT_SYMBOL(spa_log_class);
3161 EXPORT_SYMBOL(spa_special_class);
3162 EXPORT_SYMBOL(spa_preferred_class);
3163 EXPORT_SYMBOL(spa_max_replication);
3164 EXPORT_SYMBOL(spa_prev_software_version);
3165 EXPORT_SYMBOL(spa_get_failmode);
3166 EXPORT_SYMBOL(spa_suspended);
3167 EXPORT_SYMBOL(spa_bootfs);
3168 EXPORT_SYMBOL(spa_delegation);
3169 EXPORT_SYMBOL(spa_meta_objset);
3170 EXPORT_SYMBOL(spa_maxblocksize);
3171 EXPORT_SYMBOL(spa_maxdnodesize);
3172 
3173 /* Miscellaneous support routines */
3174 EXPORT_SYMBOL(spa_guid_exists);
3175 EXPORT_SYMBOL(spa_strdup);
3176 EXPORT_SYMBOL(spa_strfree);
3177 EXPORT_SYMBOL(spa_generate_guid);
3178 EXPORT_SYMBOL(snprintf_blkptr);
3179 EXPORT_SYMBOL(spa_freeze);
3180 EXPORT_SYMBOL(spa_upgrade);
3181 EXPORT_SYMBOL(spa_evict_all);
3182 EXPORT_SYMBOL(spa_lookup_by_guid);
3183 EXPORT_SYMBOL(spa_has_spare);
3184 EXPORT_SYMBOL(dva_get_dsize_sync);
3185 EXPORT_SYMBOL(bp_get_dsize_sync);
3186 EXPORT_SYMBOL(bp_get_dsize);
3187 EXPORT_SYMBOL(spa_has_slogs);
3188 EXPORT_SYMBOL(spa_is_root);
3189 EXPORT_SYMBOL(spa_writeable);
3190 EXPORT_SYMBOL(spa_mode);
3191 EXPORT_SYMBOL(spa_trust_config);
3192 EXPORT_SYMBOL(spa_missing_tvds_allowed);
3193 EXPORT_SYMBOL(spa_set_missing_tvds);
3194 EXPORT_SYMBOL(spa_state_to_name);
3195 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
3196 EXPORT_SYMBOL(spa_min_claim_txg);
3197 EXPORT_SYMBOL(spa_suspend_async_destroy);
3198 EXPORT_SYMBOL(spa_has_checkpoint);
3199 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
3200 
3201 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
3202 	"Set additional debugging flags");
3203 
3204 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
3205 	"Set to attempt to recover from fatal errors");
3206 
3207 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
3208 	"Set to ignore IO errors during free and permanently leak the space");
3209 
3210 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW,
3211 	"Dead I/O check interval in milliseconds");
3212 
3213 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW,
3214 	"Enable deadman timer");
3215 
3216 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW,
3217 	"SPA size estimate multiplication factor");
3218 
3219 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
3220 	"Place DDT data into the special class");
3221 
3222 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
3223 	"Place user data indirect blocks into the special class");
3224 
3225 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
3226 	param_set_deadman_failmode, param_get_charp, ZMOD_RW,
3227 	"Failmode for deadman timer");
3228 
3229 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
3230 	param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW,
3231 	"Pool sync expiration time in milliseconds");
3232 
3233 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
3234 	param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW,
3235 	"IO expiration time in milliseconds");
3236 
3237 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW,
3238 	"Small file blocks in special vdevs depends on this much "
3239 	"free space available");
3240 
3241 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
3242 	param_get_uint, ZMOD_RW, "Reserved free space in pool");
3243 
3244 ZFS_MODULE_PARAM(zfs, spa_, num_allocators, INT, ZMOD_RW,
3245 	"Number of allocators per spa");
3246 
3247 ZFS_MODULE_PARAM(zfs, spa_, cpus_per_allocator, INT, ZMOD_RW,
3248 	"Minimum number of CPUs per allocators");
3249