1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 */
30
31 /*
32 * SPA: Storage Pool Allocator
33 *
34 * This file contains all the routines used when modifying on-disk SPA state.
35 * This includes opening, importing, destroying, exporting a pool, and syncing a
36 * pool.
37 */
38
39 #include <sys/zfs_context.h>
40 #include <sys/fm/fs/zfs.h>
41 #include <sys/spa_impl.h>
42 #include <sys/zio.h>
43 #include <sys/zio_checksum.h>
44 #include <sys/dmu.h>
45 #include <sys/dmu_tx.h>
46 #include <sys/zap.h>
47 #include <sys/zil.h>
48 #include <sys/ddt.h>
49 #include <sys/vdev_impl.h>
50 #include <sys/metaslab.h>
51 #include <sys/metaslab_impl.h>
52 #include <sys/uberblock_impl.h>
53 #include <sys/txg.h>
54 #include <sys/avl.h>
55 #include <sys/dmu_traverse.h>
56 #include <sys/dmu_objset.h>
57 #include <sys/unique.h>
58 #include <sys/dsl_pool.h>
59 #include <sys/dsl_dataset.h>
60 #include <sys/dsl_dir.h>
61 #include <sys/dsl_prop.h>
62 #include <sys/dsl_synctask.h>
63 #include <sys/fs/zfs.h>
64 #include <sys/arc.h>
65 #include <sys/callb.h>
66 #include <sys/systeminfo.h>
67 #include <sys/spa_boot.h>
68 #include <sys/zfs_ioctl.h>
69 #include <sys/dsl_scan.h>
70 #include <sys/zfeature.h>
71 #include <sys/dsl_destroy.h>
72
73 #ifdef _KERNEL
74 #include <sys/bootprops.h>
75 #include <sys/callb.h>
76 #include <sys/cpupart.h>
77 #include <sys/pool.h>
78 #include <sys/sysdc.h>
79 #include <sys/zone.h>
80 #endif /* _KERNEL */
81
82 #include "zfs_prop.h"
83 #include "zfs_comutil.h"
84
85 /*
86 * The interval, in seconds, at which failed configuration cache file writes
87 * should be retried.
88 */
89 static int zfs_ccw_retry_interval = 300;
90
91 typedef enum zti_modes {
92 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
93 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
94 ZTI_MODE_NULL, /* don't create a taskq */
95 ZTI_NMODES
96 } zti_modes_t;
97
98 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
99 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
100 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
101
102 #define ZTI_N(n) ZTI_P(n, 1)
103 #define ZTI_ONE ZTI_N(1)
104
105 typedef struct zio_taskq_info {
106 zti_modes_t zti_mode;
107 uint_t zti_value;
108 uint_t zti_count;
109 } zio_taskq_info_t;
110
111 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
112 "issue", "issue_high", "intr", "intr_high"
113 };
114
115 /*
116 * This table defines the taskq settings for each ZFS I/O type. When
117 * initializing a pool, we use this table to create an appropriately sized
118 * taskq. Some operations are low volume and therefore have a small, static
119 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
120 * macros. Other operations process a large amount of data; the ZTI_BATCH
121 * macro causes us to create a taskq oriented for throughput. Some operations
122 * are so high frequency and short-lived that the taskq itself can become a a
123 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
124 * additional degree of parallelism specified by the number of threads per-
125 * taskq and the number of taskqs; when dispatching an event in this case, the
126 * particular taskq is chosen at random.
127 *
128 * The different taskq priorities are to handle the different contexts (issue
129 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
130 * need to be handled with minimum delay.
131 */
132 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
133 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
134 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
135 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
136 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
137 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
138 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
139 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
140 };
141
142 static void spa_sync_version(void *arg, dmu_tx_t *tx);
143 static void spa_sync_props(void *arg, dmu_tx_t *tx);
144 static boolean_t spa_has_active_shared_spare(spa_t *spa);
145 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
146 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
147 char **ereport);
148 static void spa_vdev_resilver_done(spa_t *spa);
149
150 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
151 id_t zio_taskq_psrset_bind = PS_NONE;
152 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
153 uint_t zio_taskq_basedc = 80; /* base duty cycle */
154
155 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
156 extern int zfs_sync_pass_deferred_free;
157
158 /*
159 * This (illegal) pool name is used when temporarily importing a spa_t in order
160 * to get the vdev stats associated with the imported devices.
161 */
162 #define TRYIMPORT_NAME "$import"
163
164 /*
165 * ==========================================================================
166 * SPA properties routines
167 * ==========================================================================
168 */
169
170 /*
171 * Add a (source=src, propname=propval) list to an nvlist.
172 */
173 static void
spa_prop_add_list(nvlist_t * nvl,zpool_prop_t prop,char * strval,uint64_t intval,zprop_source_t src)174 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
175 uint64_t intval, zprop_source_t src)
176 {
177 const char *propname = zpool_prop_to_name(prop);
178 nvlist_t *propval;
179
180 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
181 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
182
183 if (strval != NULL)
184 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
185 else
186 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
187
188 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
189 nvlist_free(propval);
190 }
191
192 /*
193 * Get property values from the spa configuration.
194 */
195 static void
spa_prop_get_config(spa_t * spa,nvlist_t ** nvp)196 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
197 {
198 vdev_t *rvd = spa->spa_root_vdev;
199 dsl_pool_t *pool = spa->spa_dsl_pool;
200 uint64_t size, alloc, cap, version;
201 zprop_source_t src = ZPROP_SRC_NONE;
202 spa_config_dirent_t *dp;
203 metaslab_class_t *mc = spa_normal_class(spa);
204
205 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
206
207 if (rvd != NULL) {
208 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
209 size = metaslab_class_get_space(spa_normal_class(spa));
210 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
211 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
212 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
213 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
214 size - alloc, src);
215
216 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
217 metaslab_class_fragmentation(mc), src);
218 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
219 metaslab_class_expandable_space(mc), src);
220 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
221 (spa_mode(spa) == FREAD), src);
222
223 cap = (size == 0) ? 0 : (alloc * 100 / size);
224 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
225
226 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
227 ddt_get_pool_dedup_ratio(spa), src);
228
229 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
230 rvd->vdev_state, src);
231
232 version = spa_version(spa);
233 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
234 src = ZPROP_SRC_DEFAULT;
235 else
236 src = ZPROP_SRC_LOCAL;
237 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
238 }
239
240 if (pool != NULL) {
241 /*
242 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
243 * when opening pools before this version freedir will be NULL.
244 */
245 if (pool->dp_free_dir != NULL) {
246 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
247 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
248 src);
249 } else {
250 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
251 NULL, 0, src);
252 }
253
254 if (pool->dp_leak_dir != NULL) {
255 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
256 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
257 src);
258 } else {
259 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
260 NULL, 0, src);
261 }
262 }
263
264 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
265
266 if (spa->spa_comment != NULL) {
267 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
268 0, ZPROP_SRC_LOCAL);
269 }
270
271 if (spa->spa_root != NULL)
272 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
273 0, ZPROP_SRC_LOCAL);
274
275 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
276 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
277 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
278 } else {
279 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
280 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
281 }
282
283 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
284 if (dp->scd_path == NULL) {
285 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
286 "none", 0, ZPROP_SRC_LOCAL);
287 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
288 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
289 dp->scd_path, 0, ZPROP_SRC_LOCAL);
290 }
291 }
292 }
293
294 /*
295 * Get zpool property values.
296 */
297 int
spa_prop_get(spa_t * spa,nvlist_t ** nvp)298 spa_prop_get(spa_t *spa, nvlist_t **nvp)
299 {
300 objset_t *mos = spa->spa_meta_objset;
301 zap_cursor_t zc;
302 zap_attribute_t za;
303 int err;
304
305 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
306
307 mutex_enter(&spa->spa_props_lock);
308
309 /*
310 * Get properties from the spa config.
311 */
312 spa_prop_get_config(spa, nvp);
313
314 /* If no pool property object, no more prop to get. */
315 if (mos == NULL || spa->spa_pool_props_object == 0) {
316 mutex_exit(&spa->spa_props_lock);
317 return (0);
318 }
319
320 /*
321 * Get properties from the MOS pool property object.
322 */
323 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
324 (err = zap_cursor_retrieve(&zc, &za)) == 0;
325 zap_cursor_advance(&zc)) {
326 uint64_t intval = 0;
327 char *strval = NULL;
328 zprop_source_t src = ZPROP_SRC_DEFAULT;
329 zpool_prop_t prop;
330
331 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
332 continue;
333
334 switch (za.za_integer_length) {
335 case 8:
336 /* integer property */
337 if (za.za_first_integer !=
338 zpool_prop_default_numeric(prop))
339 src = ZPROP_SRC_LOCAL;
340
341 if (prop == ZPOOL_PROP_BOOTFS) {
342 dsl_pool_t *dp;
343 dsl_dataset_t *ds = NULL;
344
345 dp = spa_get_dsl(spa);
346 dsl_pool_config_enter(dp, FTAG);
347 if (err = dsl_dataset_hold_obj(dp,
348 za.za_first_integer, FTAG, &ds)) {
349 dsl_pool_config_exit(dp, FTAG);
350 break;
351 }
352
353 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
354 KM_SLEEP);
355 dsl_dataset_name(ds, strval);
356 dsl_dataset_rele(ds, FTAG);
357 dsl_pool_config_exit(dp, FTAG);
358 } else {
359 strval = NULL;
360 intval = za.za_first_integer;
361 }
362
363 spa_prop_add_list(*nvp, prop, strval, intval, src);
364
365 if (strval != NULL)
366 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
367
368 break;
369
370 case 1:
371 /* string property */
372 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
373 err = zap_lookup(mos, spa->spa_pool_props_object,
374 za.za_name, 1, za.za_num_integers, strval);
375 if (err) {
376 kmem_free(strval, za.za_num_integers);
377 break;
378 }
379 spa_prop_add_list(*nvp, prop, strval, 0, src);
380 kmem_free(strval, za.za_num_integers);
381 break;
382
383 default:
384 break;
385 }
386 }
387 zap_cursor_fini(&zc);
388 mutex_exit(&spa->spa_props_lock);
389 out:
390 if (err && err != ENOENT) {
391 nvlist_free(*nvp);
392 *nvp = NULL;
393 return (err);
394 }
395
396 return (0);
397 }
398
399 /*
400 * Validate the given pool properties nvlist and modify the list
401 * for the property values to be set.
402 */
403 static int
spa_prop_validate(spa_t * spa,nvlist_t * props)404 spa_prop_validate(spa_t *spa, nvlist_t *props)
405 {
406 nvpair_t *elem;
407 int error = 0, reset_bootfs = 0;
408 uint64_t objnum = 0;
409 boolean_t has_feature = B_FALSE;
410
411 elem = NULL;
412 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
413 uint64_t intval;
414 char *strval, *slash, *check, *fname;
415 const char *propname = nvpair_name(elem);
416 zpool_prop_t prop = zpool_name_to_prop(propname);
417
418 switch (prop) {
419 case ZPROP_INVAL:
420 if (!zpool_prop_feature(propname)) {
421 error = SET_ERROR(EINVAL);
422 break;
423 }
424
425 /*
426 * Sanitize the input.
427 */
428 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
429 error = SET_ERROR(EINVAL);
430 break;
431 }
432
433 if (nvpair_value_uint64(elem, &intval) != 0) {
434 error = SET_ERROR(EINVAL);
435 break;
436 }
437
438 if (intval != 0) {
439 error = SET_ERROR(EINVAL);
440 break;
441 }
442
443 fname = strchr(propname, '@') + 1;
444 if (zfeature_lookup_name(fname, NULL) != 0) {
445 error = SET_ERROR(EINVAL);
446 break;
447 }
448
449 has_feature = B_TRUE;
450 break;
451
452 case ZPOOL_PROP_VERSION:
453 error = nvpair_value_uint64(elem, &intval);
454 if (!error &&
455 (intval < spa_version(spa) ||
456 intval > SPA_VERSION_BEFORE_FEATURES ||
457 has_feature))
458 error = SET_ERROR(EINVAL);
459 break;
460
461 case ZPOOL_PROP_DELEGATION:
462 case ZPOOL_PROP_AUTOREPLACE:
463 case ZPOOL_PROP_LISTSNAPS:
464 case ZPOOL_PROP_AUTOEXPAND:
465 error = nvpair_value_uint64(elem, &intval);
466 if (!error && intval > 1)
467 error = SET_ERROR(EINVAL);
468 break;
469
470 case ZPOOL_PROP_BOOTFS:
471 /*
472 * If the pool version is less than SPA_VERSION_BOOTFS,
473 * or the pool is still being created (version == 0),
474 * the bootfs property cannot be set.
475 */
476 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
477 error = SET_ERROR(ENOTSUP);
478 break;
479 }
480
481 /*
482 * Make sure the vdev config is bootable
483 */
484 if (!vdev_is_bootable(spa->spa_root_vdev)) {
485 error = SET_ERROR(ENOTSUP);
486 break;
487 }
488
489 reset_bootfs = 1;
490
491 error = nvpair_value_string(elem, &strval);
492
493 if (!error) {
494 objset_t *os;
495 uint64_t propval;
496
497 if (strval == NULL || strval[0] == '\0') {
498 objnum = zpool_prop_default_numeric(
499 ZPOOL_PROP_BOOTFS);
500 break;
501 }
502
503 if (error = dmu_objset_hold(strval, FTAG, &os))
504 break;
505
506 /*
507 * Must be ZPL, and its property settings
508 * must be supported by GRUB (compression
509 * is not gzip, and large blocks are not used).
510 */
511
512 if (dmu_objset_type(os) != DMU_OST_ZFS) {
513 error = SET_ERROR(ENOTSUP);
514 } else if ((error =
515 dsl_prop_get_int_ds(dmu_objset_ds(os),
516 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
517 &propval)) == 0 &&
518 !BOOTFS_COMPRESS_VALID(propval)) {
519 error = SET_ERROR(ENOTSUP);
520 } else if ((error =
521 dsl_prop_get_int_ds(dmu_objset_ds(os),
522 zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
523 &propval)) == 0 &&
524 propval > SPA_OLD_MAXBLOCKSIZE) {
525 error = SET_ERROR(ENOTSUP);
526 } else {
527 objnum = dmu_objset_id(os);
528 }
529 dmu_objset_rele(os, FTAG);
530 }
531 break;
532
533 case ZPOOL_PROP_FAILUREMODE:
534 error = nvpair_value_uint64(elem, &intval);
535 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
536 intval > ZIO_FAILURE_MODE_PANIC))
537 error = SET_ERROR(EINVAL);
538
539 /*
540 * This is a special case which only occurs when
541 * the pool has completely failed. This allows
542 * the user to change the in-core failmode property
543 * without syncing it out to disk (I/Os might
544 * currently be blocked). We do this by returning
545 * EIO to the caller (spa_prop_set) to trick it
546 * into thinking we encountered a property validation
547 * error.
548 */
549 if (!error && spa_suspended(spa)) {
550 spa->spa_failmode = intval;
551 error = SET_ERROR(EIO);
552 }
553 break;
554
555 case ZPOOL_PROP_CACHEFILE:
556 if ((error = nvpair_value_string(elem, &strval)) != 0)
557 break;
558
559 if (strval[0] == '\0')
560 break;
561
562 if (strcmp(strval, "none") == 0)
563 break;
564
565 if (strval[0] != '/') {
566 error = SET_ERROR(EINVAL);
567 break;
568 }
569
570 slash = strrchr(strval, '/');
571 ASSERT(slash != NULL);
572
573 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
574 strcmp(slash, "/..") == 0)
575 error = SET_ERROR(EINVAL);
576 break;
577
578 case ZPOOL_PROP_COMMENT:
579 if ((error = nvpair_value_string(elem, &strval)) != 0)
580 break;
581 for (check = strval; *check != '\0'; check++) {
582 /*
583 * The kernel doesn't have an easy isprint()
584 * check. For this kernel check, we merely
585 * check ASCII apart from DEL. Fix this if
586 * there is an easy-to-use kernel isprint().
587 */
588 if (*check >= 0x7f) {
589 error = SET_ERROR(EINVAL);
590 break;
591 }
592 }
593 if (strlen(strval) > ZPROP_MAX_COMMENT)
594 error = E2BIG;
595 break;
596
597 case ZPOOL_PROP_DEDUPDITTO:
598 if (spa_version(spa) < SPA_VERSION_DEDUP)
599 error = SET_ERROR(ENOTSUP);
600 else
601 error = nvpair_value_uint64(elem, &intval);
602 if (error == 0 &&
603 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
604 error = SET_ERROR(EINVAL);
605 break;
606 }
607
608 if (error)
609 break;
610 }
611
612 if (!error && reset_bootfs) {
613 error = nvlist_remove(props,
614 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
615
616 if (!error) {
617 error = nvlist_add_uint64(props,
618 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
619 }
620 }
621
622 return (error);
623 }
624
625 void
spa_configfile_set(spa_t * spa,nvlist_t * nvp,boolean_t need_sync)626 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
627 {
628 char *cachefile;
629 spa_config_dirent_t *dp;
630
631 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
632 &cachefile) != 0)
633 return;
634
635 dp = kmem_alloc(sizeof (spa_config_dirent_t),
636 KM_SLEEP);
637
638 if (cachefile[0] == '\0')
639 dp->scd_path = spa_strdup(spa_config_path);
640 else if (strcmp(cachefile, "none") == 0)
641 dp->scd_path = NULL;
642 else
643 dp->scd_path = spa_strdup(cachefile);
644
645 list_insert_head(&spa->spa_config_list, dp);
646 if (need_sync)
647 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
648 }
649
650 int
spa_prop_set(spa_t * spa,nvlist_t * nvp)651 spa_prop_set(spa_t *spa, nvlist_t *nvp)
652 {
653 int error;
654 nvpair_t *elem = NULL;
655 boolean_t need_sync = B_FALSE;
656
657 if ((error = spa_prop_validate(spa, nvp)) != 0)
658 return (error);
659
660 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
661 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
662
663 if (prop == ZPOOL_PROP_CACHEFILE ||
664 prop == ZPOOL_PROP_ALTROOT ||
665 prop == ZPOOL_PROP_READONLY)
666 continue;
667
668 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
669 uint64_t ver;
670
671 if (prop == ZPOOL_PROP_VERSION) {
672 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
673 } else {
674 ASSERT(zpool_prop_feature(nvpair_name(elem)));
675 ver = SPA_VERSION_FEATURES;
676 need_sync = B_TRUE;
677 }
678
679 /* Save time if the version is already set. */
680 if (ver == spa_version(spa))
681 continue;
682
683 /*
684 * In addition to the pool directory object, we might
685 * create the pool properties object, the features for
686 * read object, the features for write object, or the
687 * feature descriptions object.
688 */
689 error = dsl_sync_task(spa->spa_name, NULL,
690 spa_sync_version, &ver,
691 6, ZFS_SPACE_CHECK_RESERVED);
692 if (error)
693 return (error);
694 continue;
695 }
696
697 need_sync = B_TRUE;
698 break;
699 }
700
701 if (need_sync) {
702 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
703 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
704 }
705
706 return (0);
707 }
708
709 /*
710 * If the bootfs property value is dsobj, clear it.
711 */
712 void
spa_prop_clear_bootfs(spa_t * spa,uint64_t dsobj,dmu_tx_t * tx)713 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
714 {
715 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
716 VERIFY(zap_remove(spa->spa_meta_objset,
717 spa->spa_pool_props_object,
718 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
719 spa->spa_bootfs = 0;
720 }
721 }
722
723 /*ARGSUSED*/
724 static int
spa_change_guid_check(void * arg,dmu_tx_t * tx)725 spa_change_guid_check(void *arg, dmu_tx_t *tx)
726 {
727 uint64_t *newguid = arg;
728 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
729 vdev_t *rvd = spa->spa_root_vdev;
730 uint64_t vdev_state;
731
732 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
733 vdev_state = rvd->vdev_state;
734 spa_config_exit(spa, SCL_STATE, FTAG);
735
736 if (vdev_state != VDEV_STATE_HEALTHY)
737 return (SET_ERROR(ENXIO));
738
739 ASSERT3U(spa_guid(spa), !=, *newguid);
740
741 return (0);
742 }
743
744 static void
spa_change_guid_sync(void * arg,dmu_tx_t * tx)745 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
746 {
747 uint64_t *newguid = arg;
748 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
749 uint64_t oldguid;
750 vdev_t *rvd = spa->spa_root_vdev;
751
752 oldguid = spa_guid(spa);
753
754 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
755 rvd->vdev_guid = *newguid;
756 rvd->vdev_guid_sum += (*newguid - oldguid);
757 vdev_config_dirty(rvd);
758 spa_config_exit(spa, SCL_STATE, FTAG);
759
760 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
761 oldguid, *newguid);
762 }
763
764 /*
765 * Change the GUID for the pool. This is done so that we can later
766 * re-import a pool built from a clone of our own vdevs. We will modify
767 * the root vdev's guid, our own pool guid, and then mark all of our
768 * vdevs dirty. Note that we must make sure that all our vdevs are
769 * online when we do this, or else any vdevs that weren't present
770 * would be orphaned from our pool. We are also going to issue a
771 * sysevent to update any watchers.
772 */
773 int
spa_change_guid(spa_t * spa)774 spa_change_guid(spa_t *spa)
775 {
776 int error;
777 uint64_t guid;
778
779 mutex_enter(&spa->spa_vdev_top_lock);
780 mutex_enter(&spa_namespace_lock);
781 guid = spa_generate_guid(NULL);
782
783 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
784 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
785
786 if (error == 0) {
787 spa_config_sync(spa, B_FALSE, B_TRUE);
788 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
789 }
790
791 mutex_exit(&spa_namespace_lock);
792 mutex_exit(&spa->spa_vdev_top_lock);
793
794 return (error);
795 }
796
797 /*
798 * ==========================================================================
799 * SPA state manipulation (open/create/destroy/import/export)
800 * ==========================================================================
801 */
802
803 static int
spa_error_entry_compare(const void * a,const void * b)804 spa_error_entry_compare(const void *a, const void *b)
805 {
806 spa_error_entry_t *sa = (spa_error_entry_t *)a;
807 spa_error_entry_t *sb = (spa_error_entry_t *)b;
808 int ret;
809
810 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
811 sizeof (zbookmark_phys_t));
812
813 if (ret < 0)
814 return (-1);
815 else if (ret > 0)
816 return (1);
817 else
818 return (0);
819 }
820
821 /*
822 * Utility function which retrieves copies of the current logs and
823 * re-initializes them in the process.
824 */
825 void
spa_get_errlists(spa_t * spa,avl_tree_t * last,avl_tree_t * scrub)826 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
827 {
828 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
829
830 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
831 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
832
833 avl_create(&spa->spa_errlist_scrub,
834 spa_error_entry_compare, sizeof (spa_error_entry_t),
835 offsetof(spa_error_entry_t, se_avl));
836 avl_create(&spa->spa_errlist_last,
837 spa_error_entry_compare, sizeof (spa_error_entry_t),
838 offsetof(spa_error_entry_t, se_avl));
839 }
840
841 static void
spa_taskqs_init(spa_t * spa,zio_type_t t,zio_taskq_type_t q)842 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
843 {
844 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
845 enum zti_modes mode = ztip->zti_mode;
846 uint_t value = ztip->zti_value;
847 uint_t count = ztip->zti_count;
848 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
849 char name[32];
850 uint_t flags = 0;
851 boolean_t batch = B_FALSE;
852
853 if (mode == ZTI_MODE_NULL) {
854 tqs->stqs_count = 0;
855 tqs->stqs_taskq = NULL;
856 return;
857 }
858
859 ASSERT3U(count, >, 0);
860
861 tqs->stqs_count = count;
862 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
863
864 switch (mode) {
865 case ZTI_MODE_FIXED:
866 ASSERT3U(value, >=, 1);
867 value = MAX(value, 1);
868 break;
869
870 case ZTI_MODE_BATCH:
871 batch = B_TRUE;
872 flags |= TASKQ_THREADS_CPU_PCT;
873 value = zio_taskq_batch_pct;
874 break;
875
876 default:
877 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
878 "spa_activate()",
879 zio_type_name[t], zio_taskq_types[q], mode, value);
880 break;
881 }
882
883 for (uint_t i = 0; i < count; i++) {
884 taskq_t *tq;
885
886 if (count > 1) {
887 (void) snprintf(name, sizeof (name), "%s_%s_%u",
888 zio_type_name[t], zio_taskq_types[q], i);
889 } else {
890 (void) snprintf(name, sizeof (name), "%s_%s",
891 zio_type_name[t], zio_taskq_types[q]);
892 }
893
894 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
895 if (batch)
896 flags |= TASKQ_DC_BATCH;
897
898 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
899 spa->spa_proc, zio_taskq_basedc, flags);
900 } else {
901 pri_t pri = maxclsyspri;
902 /*
903 * The write issue taskq can be extremely CPU
904 * intensive. Run it at slightly lower priority
905 * than the other taskqs.
906 */
907 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
908 pri--;
909
910 tq = taskq_create_proc(name, value, pri, 50,
911 INT_MAX, spa->spa_proc, flags);
912 }
913
914 tqs->stqs_taskq[i] = tq;
915 }
916 }
917
918 static void
spa_taskqs_fini(spa_t * spa,zio_type_t t,zio_taskq_type_t q)919 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
920 {
921 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
922
923 if (tqs->stqs_taskq == NULL) {
924 ASSERT0(tqs->stqs_count);
925 return;
926 }
927
928 for (uint_t i = 0; i < tqs->stqs_count; i++) {
929 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
930 taskq_destroy(tqs->stqs_taskq[i]);
931 }
932
933 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
934 tqs->stqs_taskq = NULL;
935 }
936
937 /*
938 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
939 * Note that a type may have multiple discrete taskqs to avoid lock contention
940 * on the taskq itself. In that case we choose which taskq at random by using
941 * the low bits of gethrtime().
942 */
943 void
spa_taskq_dispatch_ent(spa_t * spa,zio_type_t t,zio_taskq_type_t q,task_func_t * func,void * arg,uint_t flags,taskq_ent_t * ent)944 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
945 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
946 {
947 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
948 taskq_t *tq;
949
950 ASSERT3P(tqs->stqs_taskq, !=, NULL);
951 ASSERT3U(tqs->stqs_count, !=, 0);
952
953 if (tqs->stqs_count == 1) {
954 tq = tqs->stqs_taskq[0];
955 } else {
956 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
957 }
958
959 taskq_dispatch_ent(tq, func, arg, flags, ent);
960 }
961
962 static void
spa_create_zio_taskqs(spa_t * spa)963 spa_create_zio_taskqs(spa_t *spa)
964 {
965 for (int t = 0; t < ZIO_TYPES; t++) {
966 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
967 spa_taskqs_init(spa, t, q);
968 }
969 }
970 }
971
972 #ifdef _KERNEL
973 static void
spa_thread(void * arg)974 spa_thread(void *arg)
975 {
976 callb_cpr_t cprinfo;
977
978 spa_t *spa = arg;
979 user_t *pu = PTOU(curproc);
980
981 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
982 spa->spa_name);
983
984 ASSERT(curproc != &p0);
985 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
986 "zpool-%s", spa->spa_name);
987 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
988
989 /* bind this thread to the requested psrset */
990 if (zio_taskq_psrset_bind != PS_NONE) {
991 pool_lock();
992 mutex_enter(&cpu_lock);
993 mutex_enter(&pidlock);
994 mutex_enter(&curproc->p_lock);
995
996 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
997 0, NULL, NULL) == 0) {
998 curthread->t_bind_pset = zio_taskq_psrset_bind;
999 } else {
1000 cmn_err(CE_WARN,
1001 "Couldn't bind process for zfs pool \"%s\" to "
1002 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1003 }
1004
1005 mutex_exit(&curproc->p_lock);
1006 mutex_exit(&pidlock);
1007 mutex_exit(&cpu_lock);
1008 pool_unlock();
1009 }
1010
1011 if (zio_taskq_sysdc) {
1012 sysdc_thread_enter(curthread, 100, 0);
1013 }
1014
1015 spa->spa_proc = curproc;
1016 spa->spa_did = curthread->t_did;
1017
1018 spa_create_zio_taskqs(spa);
1019
1020 mutex_enter(&spa->spa_proc_lock);
1021 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1022
1023 spa->spa_proc_state = SPA_PROC_ACTIVE;
1024 cv_broadcast(&spa->spa_proc_cv);
1025
1026 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1027 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1028 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1029 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1030
1031 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1032 spa->spa_proc_state = SPA_PROC_GONE;
1033 spa->spa_proc = &p0;
1034 cv_broadcast(&spa->spa_proc_cv);
1035 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1036
1037 mutex_enter(&curproc->p_lock);
1038 lwp_exit();
1039 }
1040 #endif
1041
1042 /*
1043 * Activate an uninitialized pool.
1044 */
1045 static void
spa_activate(spa_t * spa,int mode)1046 spa_activate(spa_t *spa, int mode)
1047 {
1048 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1049
1050 spa->spa_state = POOL_STATE_ACTIVE;
1051 spa->spa_mode = mode;
1052
1053 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1054 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1055
1056 /* Try to create a covering process */
1057 mutex_enter(&spa->spa_proc_lock);
1058 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1059 ASSERT(spa->spa_proc == &p0);
1060 spa->spa_did = 0;
1061
1062 /* Only create a process if we're going to be around a while. */
1063 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1064 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1065 NULL, 0) == 0) {
1066 spa->spa_proc_state = SPA_PROC_CREATED;
1067 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1068 cv_wait(&spa->spa_proc_cv,
1069 &spa->spa_proc_lock);
1070 }
1071 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1072 ASSERT(spa->spa_proc != &p0);
1073 ASSERT(spa->spa_did != 0);
1074 } else {
1075 #ifdef _KERNEL
1076 cmn_err(CE_WARN,
1077 "Couldn't create process for zfs pool \"%s\"\n",
1078 spa->spa_name);
1079 #endif
1080 }
1081 }
1082 mutex_exit(&spa->spa_proc_lock);
1083
1084 /* If we didn't create a process, we need to create our taskqs. */
1085 if (spa->spa_proc == &p0) {
1086 spa_create_zio_taskqs(spa);
1087 }
1088
1089 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1090 offsetof(vdev_t, vdev_config_dirty_node));
1091 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1092 offsetof(objset_t, os_evicting_node));
1093 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1094 offsetof(vdev_t, vdev_state_dirty_node));
1095
1096 txg_list_create(&spa->spa_vdev_txg_list,
1097 offsetof(struct vdev, vdev_txg_node));
1098
1099 avl_create(&spa->spa_errlist_scrub,
1100 spa_error_entry_compare, sizeof (spa_error_entry_t),
1101 offsetof(spa_error_entry_t, se_avl));
1102 avl_create(&spa->spa_errlist_last,
1103 spa_error_entry_compare, sizeof (spa_error_entry_t),
1104 offsetof(spa_error_entry_t, se_avl));
1105 }
1106
1107 /*
1108 * Opposite of spa_activate().
1109 */
1110 static void
spa_deactivate(spa_t * spa)1111 spa_deactivate(spa_t *spa)
1112 {
1113 ASSERT(spa->spa_sync_on == B_FALSE);
1114 ASSERT(spa->spa_dsl_pool == NULL);
1115 ASSERT(spa->spa_root_vdev == NULL);
1116 ASSERT(spa->spa_async_zio_root == NULL);
1117 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1118
1119 spa_evicting_os_wait(spa);
1120
1121 txg_list_destroy(&spa->spa_vdev_txg_list);
1122
1123 list_destroy(&spa->spa_config_dirty_list);
1124 list_destroy(&spa->spa_evicting_os_list);
1125 list_destroy(&spa->spa_state_dirty_list);
1126
1127 for (int t = 0; t < ZIO_TYPES; t++) {
1128 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1129 spa_taskqs_fini(spa, t, q);
1130 }
1131 }
1132
1133 metaslab_class_destroy(spa->spa_normal_class);
1134 spa->spa_normal_class = NULL;
1135
1136 metaslab_class_destroy(spa->spa_log_class);
1137 spa->spa_log_class = NULL;
1138
1139 /*
1140 * If this was part of an import or the open otherwise failed, we may
1141 * still have errors left in the queues. Empty them just in case.
1142 */
1143 spa_errlog_drain(spa);
1144
1145 avl_destroy(&spa->spa_errlist_scrub);
1146 avl_destroy(&spa->spa_errlist_last);
1147
1148 spa->spa_state = POOL_STATE_UNINITIALIZED;
1149
1150 mutex_enter(&spa->spa_proc_lock);
1151 if (spa->spa_proc_state != SPA_PROC_NONE) {
1152 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1153 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1154 cv_broadcast(&spa->spa_proc_cv);
1155 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1156 ASSERT(spa->spa_proc != &p0);
1157 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1158 }
1159 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1160 spa->spa_proc_state = SPA_PROC_NONE;
1161 }
1162 ASSERT(spa->spa_proc == &p0);
1163 mutex_exit(&spa->spa_proc_lock);
1164
1165 /*
1166 * We want to make sure spa_thread() has actually exited the ZFS
1167 * module, so that the module can't be unloaded out from underneath
1168 * it.
1169 */
1170 if (spa->spa_did != 0) {
1171 thread_join(spa->spa_did);
1172 spa->spa_did = 0;
1173 }
1174 }
1175
1176 /*
1177 * Verify a pool configuration, and construct the vdev tree appropriately. This
1178 * will create all the necessary vdevs in the appropriate layout, with each vdev
1179 * in the CLOSED state. This will prep the pool before open/creation/import.
1180 * All vdev validation is done by the vdev_alloc() routine.
1181 */
1182 static int
spa_config_parse(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int atype)1183 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1184 uint_t id, int atype)
1185 {
1186 nvlist_t **child;
1187 uint_t children;
1188 int error;
1189
1190 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1191 return (error);
1192
1193 if ((*vdp)->vdev_ops->vdev_op_leaf)
1194 return (0);
1195
1196 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1197 &child, &children);
1198
1199 if (error == ENOENT)
1200 return (0);
1201
1202 if (error) {
1203 vdev_free(*vdp);
1204 *vdp = NULL;
1205 return (SET_ERROR(EINVAL));
1206 }
1207
1208 for (int c = 0; c < children; c++) {
1209 vdev_t *vd;
1210 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1211 atype)) != 0) {
1212 vdev_free(*vdp);
1213 *vdp = NULL;
1214 return (error);
1215 }
1216 }
1217
1218 ASSERT(*vdp != NULL);
1219
1220 return (0);
1221 }
1222
1223 /*
1224 * Opposite of spa_load().
1225 */
1226 static void
spa_unload(spa_t * spa)1227 spa_unload(spa_t *spa)
1228 {
1229 int i;
1230
1231 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1232
1233 /*
1234 * Stop async tasks.
1235 */
1236 spa_async_suspend(spa);
1237
1238 /*
1239 * Stop syncing.
1240 */
1241 if (spa->spa_sync_on) {
1242 txg_sync_stop(spa->spa_dsl_pool);
1243 spa->spa_sync_on = B_FALSE;
1244 }
1245
1246 /*
1247 * Wait for any outstanding async I/O to complete.
1248 */
1249 if (spa->spa_async_zio_root != NULL) {
1250 for (int i = 0; i < max_ncpus; i++)
1251 (void) zio_wait(spa->spa_async_zio_root[i]);
1252 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1253 spa->spa_async_zio_root = NULL;
1254 }
1255
1256 bpobj_close(&spa->spa_deferred_bpobj);
1257
1258 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1259
1260 /*
1261 * Close all vdevs.
1262 */
1263 if (spa->spa_root_vdev)
1264 vdev_free(spa->spa_root_vdev);
1265 ASSERT(spa->spa_root_vdev == NULL);
1266
1267 /*
1268 * Close the dsl pool.
1269 */
1270 if (spa->spa_dsl_pool) {
1271 dsl_pool_close(spa->spa_dsl_pool);
1272 spa->spa_dsl_pool = NULL;
1273 spa->spa_meta_objset = NULL;
1274 }
1275
1276 ddt_unload(spa);
1277
1278
1279 /*
1280 * Drop and purge level 2 cache
1281 */
1282 spa_l2cache_drop(spa);
1283
1284 for (i = 0; i < spa->spa_spares.sav_count; i++)
1285 vdev_free(spa->spa_spares.sav_vdevs[i]);
1286 if (spa->spa_spares.sav_vdevs) {
1287 kmem_free(spa->spa_spares.sav_vdevs,
1288 spa->spa_spares.sav_count * sizeof (void *));
1289 spa->spa_spares.sav_vdevs = NULL;
1290 }
1291 if (spa->spa_spares.sav_config) {
1292 nvlist_free(spa->spa_spares.sav_config);
1293 spa->spa_spares.sav_config = NULL;
1294 }
1295 spa->spa_spares.sav_count = 0;
1296
1297 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1298 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1299 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1300 }
1301 if (spa->spa_l2cache.sav_vdevs) {
1302 kmem_free(spa->spa_l2cache.sav_vdevs,
1303 spa->spa_l2cache.sav_count * sizeof (void *));
1304 spa->spa_l2cache.sav_vdevs = NULL;
1305 }
1306 if (spa->spa_l2cache.sav_config) {
1307 nvlist_free(spa->spa_l2cache.sav_config);
1308 spa->spa_l2cache.sav_config = NULL;
1309 }
1310 spa->spa_l2cache.sav_count = 0;
1311
1312 spa->spa_async_suspended = 0;
1313
1314 if (spa->spa_comment != NULL) {
1315 spa_strfree(spa->spa_comment);
1316 spa->spa_comment = NULL;
1317 }
1318
1319 spa_config_exit(spa, SCL_ALL, FTAG);
1320 }
1321
1322 /*
1323 * Load (or re-load) the current list of vdevs describing the active spares for
1324 * this pool. When this is called, we have some form of basic information in
1325 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1326 * then re-generate a more complete list including status information.
1327 */
1328 static void
spa_load_spares(spa_t * spa)1329 spa_load_spares(spa_t *spa)
1330 {
1331 nvlist_t **spares;
1332 uint_t nspares;
1333 int i;
1334 vdev_t *vd, *tvd;
1335
1336 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1337
1338 /*
1339 * First, close and free any existing spare vdevs.
1340 */
1341 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1342 vd = spa->spa_spares.sav_vdevs[i];
1343
1344 /* Undo the call to spa_activate() below */
1345 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1346 B_FALSE)) != NULL && tvd->vdev_isspare)
1347 spa_spare_remove(tvd);
1348 vdev_close(vd);
1349 vdev_free(vd);
1350 }
1351
1352 if (spa->spa_spares.sav_vdevs)
1353 kmem_free(spa->spa_spares.sav_vdevs,
1354 spa->spa_spares.sav_count * sizeof (void *));
1355
1356 if (spa->spa_spares.sav_config == NULL)
1357 nspares = 0;
1358 else
1359 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1360 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1361
1362 spa->spa_spares.sav_count = (int)nspares;
1363 spa->spa_spares.sav_vdevs = NULL;
1364
1365 if (nspares == 0)
1366 return;
1367
1368 /*
1369 * Construct the array of vdevs, opening them to get status in the
1370 * process. For each spare, there is potentially two different vdev_t
1371 * structures associated with it: one in the list of spares (used only
1372 * for basic validation purposes) and one in the active vdev
1373 * configuration (if it's spared in). During this phase we open and
1374 * validate each vdev on the spare list. If the vdev also exists in the
1375 * active configuration, then we also mark this vdev as an active spare.
1376 */
1377 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1378 KM_SLEEP);
1379 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1380 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1381 VDEV_ALLOC_SPARE) == 0);
1382 ASSERT(vd != NULL);
1383
1384 spa->spa_spares.sav_vdevs[i] = vd;
1385
1386 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1387 B_FALSE)) != NULL) {
1388 if (!tvd->vdev_isspare)
1389 spa_spare_add(tvd);
1390
1391 /*
1392 * We only mark the spare active if we were successfully
1393 * able to load the vdev. Otherwise, importing a pool
1394 * with a bad active spare would result in strange
1395 * behavior, because multiple pool would think the spare
1396 * is actively in use.
1397 *
1398 * There is a vulnerability here to an equally bizarre
1399 * circumstance, where a dead active spare is later
1400 * brought back to life (onlined or otherwise). Given
1401 * the rarity of this scenario, and the extra complexity
1402 * it adds, we ignore the possibility.
1403 */
1404 if (!vdev_is_dead(tvd))
1405 spa_spare_activate(tvd);
1406 }
1407
1408 vd->vdev_top = vd;
1409 vd->vdev_aux = &spa->spa_spares;
1410
1411 if (vdev_open(vd) != 0)
1412 continue;
1413
1414 if (vdev_validate_aux(vd) == 0)
1415 spa_spare_add(vd);
1416 }
1417
1418 /*
1419 * Recompute the stashed list of spares, with status information
1420 * this time.
1421 */
1422 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1423 DATA_TYPE_NVLIST_ARRAY) == 0);
1424
1425 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1426 KM_SLEEP);
1427 for (i = 0; i < spa->spa_spares.sav_count; i++)
1428 spares[i] = vdev_config_generate(spa,
1429 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1430 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1431 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1432 for (i = 0; i < spa->spa_spares.sav_count; i++)
1433 nvlist_free(spares[i]);
1434 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1435 }
1436
1437 /*
1438 * Load (or re-load) the current list of vdevs describing the active l2cache for
1439 * this pool. When this is called, we have some form of basic information in
1440 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1441 * then re-generate a more complete list including status information.
1442 * Devices which are already active have their details maintained, and are
1443 * not re-opened.
1444 */
1445 static void
spa_load_l2cache(spa_t * spa)1446 spa_load_l2cache(spa_t *spa)
1447 {
1448 nvlist_t **l2cache;
1449 uint_t nl2cache;
1450 int i, j, oldnvdevs;
1451 uint64_t guid;
1452 vdev_t *vd, **oldvdevs, **newvdevs;
1453 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1454
1455 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1456
1457 if (sav->sav_config != NULL) {
1458 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1459 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1460 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1461 } else {
1462 nl2cache = 0;
1463 newvdevs = NULL;
1464 }
1465
1466 oldvdevs = sav->sav_vdevs;
1467 oldnvdevs = sav->sav_count;
1468 sav->sav_vdevs = NULL;
1469 sav->sav_count = 0;
1470
1471 /*
1472 * Process new nvlist of vdevs.
1473 */
1474 for (i = 0; i < nl2cache; i++) {
1475 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1476 &guid) == 0);
1477
1478 newvdevs[i] = NULL;
1479 for (j = 0; j < oldnvdevs; j++) {
1480 vd = oldvdevs[j];
1481 if (vd != NULL && guid == vd->vdev_guid) {
1482 /*
1483 * Retain previous vdev for add/remove ops.
1484 */
1485 newvdevs[i] = vd;
1486 oldvdevs[j] = NULL;
1487 break;
1488 }
1489 }
1490
1491 if (newvdevs[i] == NULL) {
1492 /*
1493 * Create new vdev
1494 */
1495 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1496 VDEV_ALLOC_L2CACHE) == 0);
1497 ASSERT(vd != NULL);
1498 newvdevs[i] = vd;
1499
1500 /*
1501 * Commit this vdev as an l2cache device,
1502 * even if it fails to open.
1503 */
1504 spa_l2cache_add(vd);
1505
1506 vd->vdev_top = vd;
1507 vd->vdev_aux = sav;
1508
1509 spa_l2cache_activate(vd);
1510
1511 if (vdev_open(vd) != 0)
1512 continue;
1513
1514 (void) vdev_validate_aux(vd);
1515
1516 if (!vdev_is_dead(vd)) {
1517 boolean_t do_rebuild = B_FALSE;
1518
1519 (void) nvlist_lookup_boolean_value(l2cache[i],
1520 ZPOOL_CONFIG_L2CACHE_PERSISTENT,
1521 &do_rebuild);
1522 l2arc_add_vdev(spa, vd, do_rebuild);
1523 }
1524 }
1525 }
1526
1527 /*
1528 * Purge vdevs that were dropped
1529 */
1530 for (i = 0; i < oldnvdevs; i++) {
1531 uint64_t pool;
1532
1533 vd = oldvdevs[i];
1534 if (vd != NULL) {
1535 ASSERT(vd->vdev_isl2cache);
1536
1537 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1538 pool != 0ULL && l2arc_vdev_present(vd))
1539 l2arc_remove_vdev(vd);
1540 vdev_clear_stats(vd);
1541 vdev_free(vd);
1542 }
1543 }
1544
1545 if (oldvdevs)
1546 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1547
1548 if (sav->sav_config == NULL)
1549 goto out;
1550
1551 sav->sav_vdevs = newvdevs;
1552 sav->sav_count = (int)nl2cache;
1553
1554 /*
1555 * Recompute the stashed list of l2cache devices, with status
1556 * information this time.
1557 */
1558 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1559 DATA_TYPE_NVLIST_ARRAY) == 0);
1560
1561 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1562 for (i = 0; i < sav->sav_count; i++)
1563 l2cache[i] = vdev_config_generate(spa,
1564 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1565 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1566 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1567 out:
1568 for (i = 0; i < sav->sav_count; i++)
1569 nvlist_free(l2cache[i]);
1570 if (sav->sav_count)
1571 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1572 }
1573
1574 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)1575 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1576 {
1577 dmu_buf_t *db;
1578 char *packed = NULL;
1579 size_t nvsize = 0;
1580 int error;
1581 *value = NULL;
1582
1583 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1584 if (error != 0)
1585 return (error);
1586
1587 nvsize = *(uint64_t *)db->db_data;
1588 dmu_buf_rele(db, FTAG);
1589
1590 packed = kmem_alloc(nvsize, KM_SLEEP);
1591 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1592 DMU_READ_PREFETCH);
1593 if (error == 0)
1594 error = nvlist_unpack(packed, nvsize, value, 0);
1595 kmem_free(packed, nvsize);
1596
1597 return (error);
1598 }
1599
1600 /*
1601 * Checks to see if the given vdev could not be opened, in which case we post a
1602 * sysevent to notify the autoreplace code that the device has been removed.
1603 */
1604 static void
spa_check_removed(vdev_t * vd)1605 spa_check_removed(vdev_t *vd)
1606 {
1607 for (int c = 0; c < vd->vdev_children; c++)
1608 spa_check_removed(vd->vdev_child[c]);
1609
1610 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1611 !vd->vdev_ishole) {
1612 zfs_post_autoreplace(vd->vdev_spa, vd);
1613 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1614 }
1615 }
1616
1617 /*
1618 * Validate the current config against the MOS config
1619 */
1620 static boolean_t
spa_config_valid(spa_t * spa,nvlist_t * config)1621 spa_config_valid(spa_t *spa, nvlist_t *config)
1622 {
1623 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1624 nvlist_t *nv;
1625
1626 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1627
1628 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1629 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1630
1631 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1632
1633 /*
1634 * If we're doing a normal import, then build up any additional
1635 * diagnostic information about missing devices in this config.
1636 * We'll pass this up to the user for further processing.
1637 */
1638 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1639 nvlist_t **child, *nv;
1640 uint64_t idx = 0;
1641
1642 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1643 KM_SLEEP);
1644 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1645
1646 for (int c = 0; c < rvd->vdev_children; c++) {
1647 vdev_t *tvd = rvd->vdev_child[c];
1648 vdev_t *mtvd = mrvd->vdev_child[c];
1649
1650 if (tvd->vdev_ops == &vdev_missing_ops &&
1651 mtvd->vdev_ops != &vdev_missing_ops &&
1652 mtvd->vdev_islog)
1653 child[idx++] = vdev_config_generate(spa, mtvd,
1654 B_FALSE, 0);
1655 }
1656
1657 if (idx) {
1658 VERIFY(nvlist_add_nvlist_array(nv,
1659 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1660 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1661 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1662
1663 for (int i = 0; i < idx; i++)
1664 nvlist_free(child[i]);
1665 }
1666 nvlist_free(nv);
1667 kmem_free(child, rvd->vdev_children * sizeof (char **));
1668 }
1669
1670 /*
1671 * Compare the root vdev tree with the information we have
1672 * from the MOS config (mrvd). Check each top-level vdev
1673 * with the corresponding MOS config top-level (mtvd).
1674 */
1675 for (int c = 0; c < rvd->vdev_children; c++) {
1676 vdev_t *tvd = rvd->vdev_child[c];
1677 vdev_t *mtvd = mrvd->vdev_child[c];
1678
1679 /*
1680 * Resolve any "missing" vdevs in the current configuration.
1681 * If we find that the MOS config has more accurate information
1682 * about the top-level vdev then use that vdev instead.
1683 */
1684 if (tvd->vdev_ops == &vdev_missing_ops &&
1685 mtvd->vdev_ops != &vdev_missing_ops) {
1686
1687 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1688 continue;
1689
1690 /*
1691 * Device specific actions.
1692 */
1693 if (mtvd->vdev_islog) {
1694 spa_set_log_state(spa, SPA_LOG_CLEAR);
1695 } else {
1696 /*
1697 * XXX - once we have 'readonly' pool
1698 * support we should be able to handle
1699 * missing data devices by transitioning
1700 * the pool to readonly.
1701 */
1702 continue;
1703 }
1704
1705 /*
1706 * Swap the missing vdev with the data we were
1707 * able to obtain from the MOS config.
1708 */
1709 vdev_remove_child(rvd, tvd);
1710 vdev_remove_child(mrvd, mtvd);
1711
1712 vdev_add_child(rvd, mtvd);
1713 vdev_add_child(mrvd, tvd);
1714
1715 spa_config_exit(spa, SCL_ALL, FTAG);
1716 vdev_load(mtvd);
1717 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1718
1719 vdev_reopen(rvd);
1720 } else if (mtvd->vdev_islog) {
1721 /*
1722 * Load the slog device's state from the MOS config
1723 * since it's possible that the label does not
1724 * contain the most up-to-date information.
1725 */
1726 vdev_load_log_state(tvd, mtvd);
1727 vdev_reopen(tvd);
1728 }
1729 }
1730 vdev_free(mrvd);
1731 spa_config_exit(spa, SCL_ALL, FTAG);
1732
1733 /*
1734 * Ensure we were able to validate the config.
1735 */
1736 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1737 }
1738
1739 /*
1740 * Check for missing log devices
1741 */
1742 static boolean_t
spa_check_logs(spa_t * spa)1743 spa_check_logs(spa_t *spa)
1744 {
1745 boolean_t rv = B_FALSE;
1746 dsl_pool_t *dp = spa_get_dsl(spa);
1747
1748 switch (spa->spa_log_state) {
1749 case SPA_LOG_MISSING:
1750 /* need to recheck in case slog has been restored */
1751 case SPA_LOG_UNKNOWN:
1752 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1753 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1754 if (rv)
1755 spa_set_log_state(spa, SPA_LOG_MISSING);
1756 break;
1757 }
1758 return (rv);
1759 }
1760
1761 static boolean_t
spa_passivate_log(spa_t * spa)1762 spa_passivate_log(spa_t *spa)
1763 {
1764 vdev_t *rvd = spa->spa_root_vdev;
1765 boolean_t slog_found = B_FALSE;
1766
1767 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1768
1769 if (!spa_has_slogs(spa))
1770 return (B_FALSE);
1771
1772 for (int c = 0; c < rvd->vdev_children; c++) {
1773 vdev_t *tvd = rvd->vdev_child[c];
1774 metaslab_group_t *mg = tvd->vdev_mg;
1775
1776 if (tvd->vdev_islog) {
1777 metaslab_group_passivate(mg);
1778 slog_found = B_TRUE;
1779 }
1780 }
1781
1782 return (slog_found);
1783 }
1784
1785 static void
spa_activate_log(spa_t * spa)1786 spa_activate_log(spa_t *spa)
1787 {
1788 vdev_t *rvd = spa->spa_root_vdev;
1789
1790 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1791
1792 for (int c = 0; c < rvd->vdev_children; c++) {
1793 vdev_t *tvd = rvd->vdev_child[c];
1794 metaslab_group_t *mg = tvd->vdev_mg;
1795
1796 if (tvd->vdev_islog)
1797 metaslab_group_activate(mg);
1798 }
1799 }
1800
1801 int
spa_offline_log(spa_t * spa)1802 spa_offline_log(spa_t *spa)
1803 {
1804 int error;
1805
1806 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1807 NULL, DS_FIND_CHILDREN);
1808 if (error == 0) {
1809 /*
1810 * We successfully offlined the log device, sync out the
1811 * current txg so that the "stubby" block can be removed
1812 * by zil_sync().
1813 */
1814 txg_wait_synced(spa->spa_dsl_pool, 0);
1815 }
1816 return (error);
1817 }
1818
1819 static void
spa_aux_check_removed(spa_aux_vdev_t * sav)1820 spa_aux_check_removed(spa_aux_vdev_t *sav)
1821 {
1822 for (int i = 0; i < sav->sav_count; i++)
1823 spa_check_removed(sav->sav_vdevs[i]);
1824 }
1825
1826 void
spa_claim_notify(zio_t * zio)1827 spa_claim_notify(zio_t *zio)
1828 {
1829 spa_t *spa = zio->io_spa;
1830
1831 if (zio->io_error)
1832 return;
1833
1834 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1835 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1836 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1837 mutex_exit(&spa->spa_props_lock);
1838 }
1839
1840 typedef struct spa_load_error {
1841 uint64_t sle_meta_count;
1842 uint64_t sle_data_count;
1843 } spa_load_error_t;
1844
1845 static void
spa_load_verify_done(zio_t * zio)1846 spa_load_verify_done(zio_t *zio)
1847 {
1848 blkptr_t *bp = zio->io_bp;
1849 spa_load_error_t *sle = zio->io_private;
1850 dmu_object_type_t type = BP_GET_TYPE(bp);
1851 int error = zio->io_error;
1852 spa_t *spa = zio->io_spa;
1853
1854 if (error) {
1855 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1856 type != DMU_OT_INTENT_LOG)
1857 atomic_inc_64(&sle->sle_meta_count);
1858 else
1859 atomic_inc_64(&sle->sle_data_count);
1860 }
1861 zio_data_buf_free(zio->io_data, zio->io_size);
1862
1863 mutex_enter(&spa->spa_scrub_lock);
1864 spa->spa_scrub_inflight--;
1865 cv_broadcast(&spa->spa_scrub_io_cv);
1866 mutex_exit(&spa->spa_scrub_lock);
1867 }
1868
1869 /*
1870 * Maximum number of concurrent scrub i/os to create while verifying
1871 * a pool while importing it.
1872 */
1873 int spa_load_verify_maxinflight = 10000;
1874 boolean_t spa_load_verify_metadata = B_TRUE;
1875 boolean_t spa_load_verify_data = B_TRUE;
1876
1877 /*ARGSUSED*/
1878 static int
spa_load_verify_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)1879 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1880 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1881 {
1882 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1883 return (0);
1884 /*
1885 * Note: normally this routine will not be called if
1886 * spa_load_verify_metadata is not set. However, it may be useful
1887 * to manually set the flag after the traversal has begun.
1888 */
1889 if (!spa_load_verify_metadata)
1890 return (0);
1891 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1892 return (0);
1893
1894 zio_t *rio = arg;
1895 size_t size = BP_GET_PSIZE(bp);
1896 void *data = zio_data_buf_alloc(size);
1897
1898 mutex_enter(&spa->spa_scrub_lock);
1899 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1900 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1901 spa->spa_scrub_inflight++;
1902 mutex_exit(&spa->spa_scrub_lock);
1903
1904 zio_nowait(zio_read(rio, spa, bp, data, size,
1905 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1906 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1907 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1908 return (0);
1909 }
1910
1911 static int
spa_load_verify(spa_t * spa)1912 spa_load_verify(spa_t *spa)
1913 {
1914 zio_t *rio;
1915 spa_load_error_t sle = { 0 };
1916 zpool_rewind_policy_t policy;
1917 boolean_t verify_ok = B_FALSE;
1918 int error = 0;
1919
1920 zpool_get_rewind_policy(spa->spa_config, &policy);
1921
1922 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1923 return (0);
1924
1925 rio = zio_root(spa, NULL, &sle,
1926 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1927
1928 if (spa_load_verify_metadata) {
1929 error = traverse_pool(spa, spa->spa_verify_min_txg,
1930 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1931 spa_load_verify_cb, rio);
1932 }
1933
1934 (void) zio_wait(rio);
1935
1936 spa->spa_load_meta_errors = sle.sle_meta_count;
1937 spa->spa_load_data_errors = sle.sle_data_count;
1938
1939 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1940 sle.sle_data_count <= policy.zrp_maxdata) {
1941 int64_t loss = 0;
1942
1943 verify_ok = B_TRUE;
1944 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1945 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1946
1947 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1948 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1949 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1950 VERIFY(nvlist_add_int64(spa->spa_load_info,
1951 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1952 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1953 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1954 } else {
1955 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1956 }
1957
1958 if (error) {
1959 if (error != ENXIO && error != EIO)
1960 error = SET_ERROR(EIO);
1961 return (error);
1962 }
1963
1964 return (verify_ok ? 0 : EIO);
1965 }
1966
1967 /*
1968 * Find a value in the pool props object.
1969 */
1970 static void
spa_prop_find(spa_t * spa,zpool_prop_t prop,uint64_t * val)1971 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1972 {
1973 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1974 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1975 }
1976
1977 /*
1978 * Find a value in the pool directory object.
1979 */
1980 static int
spa_dir_prop(spa_t * spa,const char * name,uint64_t * val)1981 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1982 {
1983 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1984 name, sizeof (uint64_t), 1, val));
1985 }
1986
1987 static int
spa_vdev_err(vdev_t * vdev,vdev_aux_t aux,int err)1988 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1989 {
1990 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1991 return (err);
1992 }
1993
1994 /*
1995 * Fix up config after a partly-completed split. This is done with the
1996 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1997 * pool have that entry in their config, but only the splitting one contains
1998 * a list of all the guids of the vdevs that are being split off.
1999 *
2000 * This function determines what to do with that list: either rejoin
2001 * all the disks to the pool, or complete the splitting process. To attempt
2002 * the rejoin, each disk that is offlined is marked online again, and
2003 * we do a reopen() call. If the vdev label for every disk that was
2004 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2005 * then we call vdev_split() on each disk, and complete the split.
2006 *
2007 * Otherwise we leave the config alone, with all the vdevs in place in
2008 * the original pool.
2009 */
2010 static void
spa_try_repair(spa_t * spa,nvlist_t * config)2011 spa_try_repair(spa_t *spa, nvlist_t *config)
2012 {
2013 uint_t extracted;
2014 uint64_t *glist;
2015 uint_t i, gcount;
2016 nvlist_t *nvl;
2017 vdev_t **vd;
2018 boolean_t attempt_reopen;
2019
2020 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2021 return;
2022
2023 /* check that the config is complete */
2024 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2025 &glist, &gcount) != 0)
2026 return;
2027
2028 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2029
2030 /* attempt to online all the vdevs & validate */
2031 attempt_reopen = B_TRUE;
2032 for (i = 0; i < gcount; i++) {
2033 if (glist[i] == 0) /* vdev is hole */
2034 continue;
2035
2036 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2037 if (vd[i] == NULL) {
2038 /*
2039 * Don't bother attempting to reopen the disks;
2040 * just do the split.
2041 */
2042 attempt_reopen = B_FALSE;
2043 } else {
2044 /* attempt to re-online it */
2045 vd[i]->vdev_offline = B_FALSE;
2046 }
2047 }
2048
2049 if (attempt_reopen) {
2050 vdev_reopen(spa->spa_root_vdev);
2051
2052 /* check each device to see what state it's in */
2053 for (extracted = 0, i = 0; i < gcount; i++) {
2054 if (vd[i] != NULL &&
2055 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2056 break;
2057 ++extracted;
2058 }
2059 }
2060
2061 /*
2062 * If every disk has been moved to the new pool, or if we never
2063 * even attempted to look at them, then we split them off for
2064 * good.
2065 */
2066 if (!attempt_reopen || gcount == extracted) {
2067 for (i = 0; i < gcount; i++)
2068 if (vd[i] != NULL)
2069 vdev_split(vd[i]);
2070 vdev_reopen(spa->spa_root_vdev);
2071 }
2072
2073 kmem_free(vd, gcount * sizeof (vdev_t *));
2074 }
2075
2076 static int
spa_load(spa_t * spa,spa_load_state_t state,spa_import_type_t type,boolean_t mosconfig)2077 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2078 boolean_t mosconfig)
2079 {
2080 nvlist_t *config = spa->spa_config;
2081 char *ereport = FM_EREPORT_ZFS_POOL;
2082 char *comment;
2083 int error;
2084 uint64_t pool_guid;
2085 nvlist_t *nvl;
2086
2087 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2088 return (SET_ERROR(EINVAL));
2089
2090 ASSERT(spa->spa_comment == NULL);
2091 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2092 spa->spa_comment = spa_strdup(comment);
2093
2094 /*
2095 * Versioning wasn't explicitly added to the label until later, so if
2096 * it's not present treat it as the initial version.
2097 */
2098 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2099 &spa->spa_ubsync.ub_version) != 0)
2100 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2101
2102 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2103 &spa->spa_config_txg);
2104
2105 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2106 spa_guid_exists(pool_guid, 0)) {
2107 error = SET_ERROR(EEXIST);
2108 } else {
2109 spa->spa_config_guid = pool_guid;
2110
2111 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2112 &nvl) == 0) {
2113 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2114 KM_SLEEP) == 0);
2115 }
2116
2117 nvlist_free(spa->spa_load_info);
2118 spa->spa_load_info = fnvlist_alloc();
2119
2120 gethrestime(&spa->spa_loaded_ts);
2121 error = spa_load_impl(spa, pool_guid, config, state, type,
2122 mosconfig, &ereport);
2123 }
2124
2125 /*
2126 * Don't count references from objsets that are already closed
2127 * and are making their way through the eviction process.
2128 */
2129 spa_evicting_os_wait(spa);
2130 spa->spa_minref = refcount_count(&spa->spa_refcount);
2131 if (error) {
2132 if (error != EEXIST) {
2133 spa->spa_loaded_ts.tv_sec = 0;
2134 spa->spa_loaded_ts.tv_nsec = 0;
2135 }
2136 if (error != EBADF) {
2137 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2138 }
2139 }
2140 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2141 spa->spa_ena = 0;
2142
2143 return (error);
2144 }
2145
2146 /*
2147 * Load an existing storage pool, using the pool's builtin spa_config as a
2148 * source of configuration information.
2149 */
2150 static int
spa_load_impl(spa_t * spa,uint64_t pool_guid,nvlist_t * config,spa_load_state_t state,spa_import_type_t type,boolean_t mosconfig,char ** ereport)2151 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2152 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2153 char **ereport)
2154 {
2155 int error = 0;
2156 nvlist_t *nvroot = NULL;
2157 nvlist_t *label;
2158 vdev_t *rvd;
2159 uberblock_t *ub = &spa->spa_uberblock;
2160 uint64_t children, config_cache_txg = spa->spa_config_txg;
2161 int orig_mode = spa->spa_mode;
2162 int parse;
2163 uint64_t obj;
2164 boolean_t missing_feat_write = B_FALSE;
2165
2166 /*
2167 * If this is an untrusted config, access the pool in read-only mode.
2168 * This prevents things like resilvering recently removed devices.
2169 */
2170 if (!mosconfig)
2171 spa->spa_mode = FREAD;
2172
2173 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2174
2175 spa->spa_load_state = state;
2176
2177 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2178 return (SET_ERROR(EINVAL));
2179
2180 parse = (type == SPA_IMPORT_EXISTING ?
2181 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2182
2183 /*
2184 * Create "The Godfather" zio to hold all async IOs
2185 */
2186 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2187 KM_SLEEP);
2188 for (int i = 0; i < max_ncpus; i++) {
2189 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2190 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2191 ZIO_FLAG_GODFATHER);
2192 }
2193
2194 /*
2195 * Parse the configuration into a vdev tree. We explicitly set the
2196 * value that will be returned by spa_version() since parsing the
2197 * configuration requires knowing the version number.
2198 */
2199 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2200 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2201 spa_config_exit(spa, SCL_ALL, FTAG);
2202
2203 if (error != 0)
2204 return (error);
2205
2206 ASSERT(spa->spa_root_vdev == rvd);
2207 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2208 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2209
2210 if (type != SPA_IMPORT_ASSEMBLE) {
2211 ASSERT(spa_guid(spa) == pool_guid);
2212 }
2213
2214 /*
2215 * Try to open all vdevs, loading each label in the process.
2216 */
2217 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2218 error = vdev_open(rvd);
2219 spa_config_exit(spa, SCL_ALL, FTAG);
2220 if (error != 0)
2221 return (error);
2222
2223 /*
2224 * We need to validate the vdev labels against the configuration that
2225 * we have in hand, which is dependent on the setting of mosconfig. If
2226 * mosconfig is true then we're validating the vdev labels based on
2227 * that config. Otherwise, we're validating against the cached config
2228 * (zpool.cache) that was read when we loaded the zfs module, and then
2229 * later we will recursively call spa_load() and validate against
2230 * the vdev config.
2231 *
2232 * If we're assembling a new pool that's been split off from an
2233 * existing pool, the labels haven't yet been updated so we skip
2234 * validation for now.
2235 */
2236 if (type != SPA_IMPORT_ASSEMBLE) {
2237 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2238 error = vdev_validate(rvd, mosconfig);
2239 spa_config_exit(spa, SCL_ALL, FTAG);
2240
2241 if (error != 0)
2242 return (error);
2243
2244 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2245 return (SET_ERROR(ENXIO));
2246 }
2247
2248 /*
2249 * Find the best uberblock.
2250 */
2251 vdev_uberblock_load(rvd, ub, &label);
2252
2253 /*
2254 * If we weren't able to find a single valid uberblock, return failure.
2255 */
2256 if (ub->ub_txg == 0) {
2257 nvlist_free(label);
2258 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2259 }
2260
2261 /*
2262 * If the pool has an unsupported version we can't open it.
2263 */
2264 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2265 nvlist_free(label);
2266 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2267 }
2268
2269 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2270 nvlist_t *features;
2271
2272 /*
2273 * If we weren't able to find what's necessary for reading the
2274 * MOS in the label, return failure.
2275 */
2276 if (label == NULL || nvlist_lookup_nvlist(label,
2277 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2278 nvlist_free(label);
2279 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2280 ENXIO));
2281 }
2282
2283 /*
2284 * Update our in-core representation with the definitive values
2285 * from the label.
2286 */
2287 nvlist_free(spa->spa_label_features);
2288 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2289 }
2290
2291 nvlist_free(label);
2292
2293 /*
2294 * Look through entries in the label nvlist's features_for_read. If
2295 * there is a feature listed there which we don't understand then we
2296 * cannot open a pool.
2297 */
2298 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2299 nvlist_t *unsup_feat;
2300
2301 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2302 0);
2303
2304 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2305 NULL); nvp != NULL;
2306 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2307 if (!zfeature_is_supported(nvpair_name(nvp))) {
2308 VERIFY(nvlist_add_string(unsup_feat,
2309 nvpair_name(nvp), "") == 0);
2310 }
2311 }
2312
2313 if (!nvlist_empty(unsup_feat)) {
2314 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2315 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2316 nvlist_free(unsup_feat);
2317 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2318 ENOTSUP));
2319 }
2320
2321 nvlist_free(unsup_feat);
2322 }
2323
2324 /*
2325 * If the vdev guid sum doesn't match the uberblock, we have an
2326 * incomplete configuration. We first check to see if the pool
2327 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2328 * If it is, defer the vdev_guid_sum check till later so we
2329 * can handle missing vdevs.
2330 */
2331 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2332 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2333 rvd->vdev_guid_sum != ub->ub_guid_sum)
2334 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2335
2336 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2337 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2338 spa_try_repair(spa, config);
2339 spa_config_exit(spa, SCL_ALL, FTAG);
2340 nvlist_free(spa->spa_config_splitting);
2341 spa->spa_config_splitting = NULL;
2342 }
2343
2344 /*
2345 * Initialize internal SPA structures.
2346 */
2347 spa->spa_state = POOL_STATE_ACTIVE;
2348 spa->spa_ubsync = spa->spa_uberblock;
2349 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2350 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2351 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2352 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2353 spa->spa_claim_max_txg = spa->spa_first_txg;
2354 spa->spa_prev_software_version = ub->ub_software_version;
2355
2356 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2357 if (error)
2358 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2359 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2360
2361 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2362 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2363
2364 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2365 boolean_t missing_feat_read = B_FALSE;
2366 nvlist_t *unsup_feat, *enabled_feat;
2367
2368 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2369 &spa->spa_feat_for_read_obj) != 0) {
2370 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2371 }
2372
2373 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2374 &spa->spa_feat_for_write_obj) != 0) {
2375 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2376 }
2377
2378 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2379 &spa->spa_feat_desc_obj) != 0) {
2380 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2381 }
2382
2383 enabled_feat = fnvlist_alloc();
2384 unsup_feat = fnvlist_alloc();
2385
2386 if (!spa_features_check(spa, B_FALSE,
2387 unsup_feat, enabled_feat))
2388 missing_feat_read = B_TRUE;
2389
2390 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2391 if (!spa_features_check(spa, B_TRUE,
2392 unsup_feat, enabled_feat)) {
2393 missing_feat_write = B_TRUE;
2394 }
2395 }
2396
2397 fnvlist_add_nvlist(spa->spa_load_info,
2398 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2399
2400 if (!nvlist_empty(unsup_feat)) {
2401 fnvlist_add_nvlist(spa->spa_load_info,
2402 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2403 }
2404
2405 fnvlist_free(enabled_feat);
2406 fnvlist_free(unsup_feat);
2407
2408 if (!missing_feat_read) {
2409 fnvlist_add_boolean(spa->spa_load_info,
2410 ZPOOL_CONFIG_CAN_RDONLY);
2411 }
2412
2413 /*
2414 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2415 * twofold: to determine whether the pool is available for
2416 * import in read-write mode and (if it is not) whether the
2417 * pool is available for import in read-only mode. If the pool
2418 * is available for import in read-write mode, it is displayed
2419 * as available in userland; if it is not available for import
2420 * in read-only mode, it is displayed as unavailable in
2421 * userland. If the pool is available for import in read-only
2422 * mode but not read-write mode, it is displayed as unavailable
2423 * in userland with a special note that the pool is actually
2424 * available for open in read-only mode.
2425 *
2426 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2427 * missing a feature for write, we must first determine whether
2428 * the pool can be opened read-only before returning to
2429 * userland in order to know whether to display the
2430 * abovementioned note.
2431 */
2432 if (missing_feat_read || (missing_feat_write &&
2433 spa_writeable(spa))) {
2434 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2435 ENOTSUP));
2436 }
2437
2438 /*
2439 * Load refcounts for ZFS features from disk into an in-memory
2440 * cache during SPA initialization.
2441 */
2442 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2443 uint64_t refcount;
2444
2445 error = feature_get_refcount_from_disk(spa,
2446 &spa_feature_table[i], &refcount);
2447 if (error == 0) {
2448 spa->spa_feat_refcount_cache[i] = refcount;
2449 } else if (error == ENOTSUP) {
2450 spa->spa_feat_refcount_cache[i] =
2451 SPA_FEATURE_DISABLED;
2452 } else {
2453 return (spa_vdev_err(rvd,
2454 VDEV_AUX_CORRUPT_DATA, EIO));
2455 }
2456 }
2457 }
2458
2459 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2460 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2461 &spa->spa_feat_enabled_txg_obj) != 0)
2462 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2463 }
2464
2465 spa->spa_is_initializing = B_TRUE;
2466 error = dsl_pool_open(spa->spa_dsl_pool);
2467 spa->spa_is_initializing = B_FALSE;
2468 if (error != 0)
2469 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2470
2471 if (!mosconfig) {
2472 uint64_t hostid;
2473 nvlist_t *policy = NULL, *nvconfig;
2474
2475 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2476 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2477
2478 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2479 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2480 char *hostname;
2481 unsigned long myhostid = 0;
2482
2483 VERIFY(nvlist_lookup_string(nvconfig,
2484 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2485
2486 #ifdef _KERNEL
2487 myhostid = zone_get_hostid(NULL);
2488 #else /* _KERNEL */
2489 /*
2490 * We're emulating the system's hostid in userland, so
2491 * we can't use zone_get_hostid().
2492 */
2493 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2494 #endif /* _KERNEL */
2495 if (hostid != 0 && myhostid != 0 &&
2496 hostid != myhostid) {
2497 nvlist_free(nvconfig);
2498 cmn_err(CE_WARN, "pool '%s' could not be "
2499 "loaded as it was last accessed by "
2500 "another system (host: %s hostid: 0x%lx). "
2501 "See: http://illumos.org/msg/ZFS-8000-EY",
2502 spa_name(spa), hostname,
2503 (unsigned long)hostid);
2504 return (SET_ERROR(EBADF));
2505 }
2506 }
2507 if (nvlist_lookup_nvlist(spa->spa_config,
2508 ZPOOL_REWIND_POLICY, &policy) == 0)
2509 VERIFY(nvlist_add_nvlist(nvconfig,
2510 ZPOOL_REWIND_POLICY, policy) == 0);
2511
2512 spa_config_set(spa, nvconfig);
2513 spa_unload(spa);
2514 spa_deactivate(spa);
2515 spa_activate(spa, orig_mode);
2516
2517 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2518 }
2519
2520 /* Grab the secret checksum salt from the MOS. */
2521 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2522 DMU_POOL_CHECKSUM_SALT, 1,
2523 sizeof (spa->spa_cksum_salt.zcs_bytes),
2524 spa->spa_cksum_salt.zcs_bytes);
2525 if (error == ENOENT) {
2526 /* Generate a new salt for subsequent use */
2527 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2528 sizeof (spa->spa_cksum_salt.zcs_bytes));
2529 } else if (error != 0) {
2530 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2531 }
2532
2533 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2534 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2535 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2536 if (error != 0)
2537 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2538
2539 /*
2540 * Load the bit that tells us to use the new accounting function
2541 * (raid-z deflation). If we have an older pool, this will not
2542 * be present.
2543 */
2544 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2545 if (error != 0 && error != ENOENT)
2546 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2547
2548 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2549 &spa->spa_creation_version);
2550 if (error != 0 && error != ENOENT)
2551 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2552
2553 /*
2554 * Load the persistent error log. If we have an older pool, this will
2555 * not be present.
2556 */
2557 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2558 if (error != 0 && error != ENOENT)
2559 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2560
2561 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2562 &spa->spa_errlog_scrub);
2563 if (error != 0 && error != ENOENT)
2564 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2565
2566 /*
2567 * Load the history object. If we have an older pool, this
2568 * will not be present.
2569 */
2570 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2571 if (error != 0 && error != ENOENT)
2572 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2573
2574 /*
2575 * If we're assembling the pool from the split-off vdevs of
2576 * an existing pool, we don't want to attach the spares & cache
2577 * devices.
2578 */
2579
2580 /*
2581 * Load any hot spares for this pool.
2582 */
2583 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2584 if (error != 0 && error != ENOENT)
2585 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2586 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2587 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2588 if (load_nvlist(spa, spa->spa_spares.sav_object,
2589 &spa->spa_spares.sav_config) != 0)
2590 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2591
2592 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2593 spa_load_spares(spa);
2594 spa_config_exit(spa, SCL_ALL, FTAG);
2595 } else if (error == 0) {
2596 spa->spa_spares.sav_sync = B_TRUE;
2597 }
2598
2599 /*
2600 * Load any level 2 ARC devices for this pool.
2601 */
2602 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2603 &spa->spa_l2cache.sav_object);
2604 if (error != 0 && error != ENOENT)
2605 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2606 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2607 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2608 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2609 &spa->spa_l2cache.sav_config) != 0)
2610 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2611
2612 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2613 spa_load_l2cache(spa);
2614 spa_config_exit(spa, SCL_ALL, FTAG);
2615 } else if (error == 0) {
2616 spa->spa_l2cache.sav_sync = B_TRUE;
2617 }
2618
2619 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2620
2621 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2622 if (error && error != ENOENT)
2623 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2624
2625 if (error == 0) {
2626 uint64_t autoreplace;
2627
2628 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2629 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2630 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2631 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2632 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2633 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2634 &spa->spa_dedup_ditto);
2635
2636 spa->spa_autoreplace = (autoreplace != 0);
2637 }
2638
2639 /*
2640 * If the 'autoreplace' property is set, then post a resource notifying
2641 * the ZFS DE that it should not issue any faults for unopenable
2642 * devices. We also iterate over the vdevs, and post a sysevent for any
2643 * unopenable vdevs so that the normal autoreplace handler can take
2644 * over.
2645 */
2646 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2647 spa_check_removed(spa->spa_root_vdev);
2648 /*
2649 * For the import case, this is done in spa_import(), because
2650 * at this point we're using the spare definitions from
2651 * the MOS config, not necessarily from the userland config.
2652 */
2653 if (state != SPA_LOAD_IMPORT) {
2654 spa_aux_check_removed(&spa->spa_spares);
2655 spa_aux_check_removed(&spa->spa_l2cache);
2656 }
2657 }
2658
2659 /*
2660 * Load the vdev state for all toplevel vdevs.
2661 */
2662 vdev_load(rvd);
2663
2664 /*
2665 * Propagate the leaf DTLs we just loaded all the way up the tree.
2666 */
2667 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2668 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2669 spa_config_exit(spa, SCL_ALL, FTAG);
2670
2671 /*
2672 * Load the DDTs (dedup tables).
2673 */
2674 error = ddt_load(spa);
2675 if (error != 0)
2676 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2677
2678 spa_update_dspace(spa);
2679
2680 /*
2681 * Validate the config, using the MOS config to fill in any
2682 * information which might be missing. If we fail to validate
2683 * the config then declare the pool unfit for use. If we're
2684 * assembling a pool from a split, the log is not transferred
2685 * over.
2686 */
2687 if (type != SPA_IMPORT_ASSEMBLE) {
2688 nvlist_t *nvconfig;
2689
2690 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2691 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2692
2693 if (!spa_config_valid(spa, nvconfig)) {
2694 nvlist_free(nvconfig);
2695 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2696 ENXIO));
2697 }
2698 nvlist_free(nvconfig);
2699
2700 /*
2701 * Now that we've validated the config, check the state of the
2702 * root vdev. If it can't be opened, it indicates one or
2703 * more toplevel vdevs are faulted.
2704 */
2705 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2706 return (SET_ERROR(ENXIO));
2707
2708 if (spa_writeable(spa) && spa_check_logs(spa)) {
2709 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2710 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2711 }
2712 }
2713
2714 if (missing_feat_write) {
2715 ASSERT(state == SPA_LOAD_TRYIMPORT);
2716
2717 /*
2718 * At this point, we know that we can open the pool in
2719 * read-only mode but not read-write mode. We now have enough
2720 * information and can return to userland.
2721 */
2722 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2723 }
2724
2725 /*
2726 * We've successfully opened the pool, verify that we're ready
2727 * to start pushing transactions.
2728 */
2729 if (state != SPA_LOAD_TRYIMPORT) {
2730 if (error = spa_load_verify(spa))
2731 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2732 error));
2733 }
2734
2735 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2736 spa->spa_load_max_txg == UINT64_MAX)) {
2737 dmu_tx_t *tx;
2738 int need_update = B_FALSE;
2739 dsl_pool_t *dp = spa_get_dsl(spa);
2740
2741 ASSERT(state != SPA_LOAD_TRYIMPORT);
2742
2743 /*
2744 * Claim log blocks that haven't been committed yet.
2745 * This must all happen in a single txg.
2746 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2747 * invoked from zil_claim_log_block()'s i/o done callback.
2748 * Price of rollback is that we abandon the log.
2749 */
2750 spa->spa_claiming = B_TRUE;
2751
2752 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2753 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2754 zil_claim, tx, DS_FIND_CHILDREN);
2755 dmu_tx_commit(tx);
2756
2757 spa->spa_claiming = B_FALSE;
2758
2759 spa_set_log_state(spa, SPA_LOG_GOOD);
2760 spa->spa_sync_on = B_TRUE;
2761 txg_sync_start(spa->spa_dsl_pool);
2762
2763 /*
2764 * Wait for all claims to sync. We sync up to the highest
2765 * claimed log block birth time so that claimed log blocks
2766 * don't appear to be from the future. spa_claim_max_txg
2767 * will have been set for us by either zil_check_log_chain()
2768 * (invoked from spa_check_logs()) or zil_claim() above.
2769 */
2770 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2771
2772 /*
2773 * If the config cache is stale, or we have uninitialized
2774 * metaslabs (see spa_vdev_add()), then update the config.
2775 *
2776 * If this is a verbatim import, trust the current
2777 * in-core spa_config and update the disk labels.
2778 */
2779 if (config_cache_txg != spa->spa_config_txg ||
2780 state == SPA_LOAD_IMPORT ||
2781 state == SPA_LOAD_RECOVER ||
2782 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2783 need_update = B_TRUE;
2784
2785 for (int c = 0; c < rvd->vdev_children; c++)
2786 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2787 need_update = B_TRUE;
2788
2789 /*
2790 * Update the config cache asychronously in case we're the
2791 * root pool, in which case the config cache isn't writable yet.
2792 */
2793 if (need_update)
2794 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2795
2796 /*
2797 * Check all DTLs to see if anything needs resilvering.
2798 */
2799 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2800 vdev_resilver_needed(rvd, NULL, NULL))
2801 spa_async_request(spa, SPA_ASYNC_RESILVER);
2802
2803 /*
2804 * Log the fact that we booted up (so that we can detect if
2805 * we rebooted in the middle of an operation).
2806 */
2807 spa_history_log_version(spa, "open");
2808
2809 /*
2810 * Delete any inconsistent datasets.
2811 */
2812 (void) dmu_objset_find(spa_name(spa),
2813 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2814
2815 /*
2816 * Clean up any stale temporary dataset userrefs.
2817 */
2818 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2819 }
2820
2821 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2822
2823 return (0);
2824 }
2825
2826 static int
spa_load_retry(spa_t * spa,spa_load_state_t state,int mosconfig)2827 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2828 {
2829 int mode = spa->spa_mode;
2830
2831 spa_unload(spa);
2832 spa_deactivate(spa);
2833
2834 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2835
2836 spa_activate(spa, mode);
2837 spa_async_suspend(spa);
2838
2839 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2840 }
2841
2842 /*
2843 * If spa_load() fails this function will try loading prior txg's. If
2844 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2845 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2846 * function will not rewind the pool and will return the same error as
2847 * spa_load().
2848 */
2849 static int
spa_load_best(spa_t * spa,spa_load_state_t state,int mosconfig,uint64_t max_request,int rewind_flags)2850 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2851 uint64_t max_request, int rewind_flags)
2852 {
2853 nvlist_t *loadinfo = NULL;
2854 nvlist_t *config = NULL;
2855 int load_error, rewind_error;
2856 uint64_t safe_rewind_txg;
2857 uint64_t min_txg;
2858
2859 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2860 spa->spa_load_max_txg = spa->spa_load_txg;
2861 spa_set_log_state(spa, SPA_LOG_CLEAR);
2862 } else {
2863 spa->spa_load_max_txg = max_request;
2864 if (max_request != UINT64_MAX)
2865 spa->spa_extreme_rewind = B_TRUE;
2866 }
2867
2868 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2869 mosconfig);
2870 if (load_error == 0)
2871 return (0);
2872
2873 if (spa->spa_root_vdev != NULL)
2874 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2875
2876 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2877 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2878
2879 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2880 nvlist_free(config);
2881 return (load_error);
2882 }
2883
2884 if (state == SPA_LOAD_RECOVER) {
2885 /* Price of rolling back is discarding txgs, including log */
2886 spa_set_log_state(spa, SPA_LOG_CLEAR);
2887 } else {
2888 /*
2889 * If we aren't rolling back save the load info from our first
2890 * import attempt so that we can restore it after attempting
2891 * to rewind.
2892 */
2893 loadinfo = spa->spa_load_info;
2894 spa->spa_load_info = fnvlist_alloc();
2895 }
2896
2897 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2898 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2899 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2900 TXG_INITIAL : safe_rewind_txg;
2901
2902 /*
2903 * Continue as long as we're finding errors, we're still within
2904 * the acceptable rewind range, and we're still finding uberblocks
2905 */
2906 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2907 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2908 if (spa->spa_load_max_txg < safe_rewind_txg)
2909 spa->spa_extreme_rewind = B_TRUE;
2910 rewind_error = spa_load_retry(spa, state, mosconfig);
2911 }
2912
2913 spa->spa_extreme_rewind = B_FALSE;
2914 spa->spa_load_max_txg = UINT64_MAX;
2915
2916 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2917 spa_config_set(spa, config);
2918
2919 if (state == SPA_LOAD_RECOVER) {
2920 ASSERT3P(loadinfo, ==, NULL);
2921 return (rewind_error);
2922 } else {
2923 /* Store the rewind info as part of the initial load info */
2924 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2925 spa->spa_load_info);
2926
2927 /* Restore the initial load info */
2928 fnvlist_free(spa->spa_load_info);
2929 spa->spa_load_info = loadinfo;
2930
2931 return (load_error);
2932 }
2933 }
2934
2935 /*
2936 * Pool Open/Import
2937 *
2938 * The import case is identical to an open except that the configuration is sent
2939 * down from userland, instead of grabbed from the configuration cache. For the
2940 * case of an open, the pool configuration will exist in the
2941 * POOL_STATE_UNINITIALIZED state.
2942 *
2943 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2944 * the same time open the pool, without having to keep around the spa_t in some
2945 * ambiguous state.
2946 */
2947 static int
spa_open_common(const char * pool,spa_t ** spapp,void * tag,nvlist_t * nvpolicy,nvlist_t ** config)2948 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2949 nvlist_t **config)
2950 {
2951 spa_t *spa;
2952 spa_load_state_t state = SPA_LOAD_OPEN;
2953 int error;
2954 int locked = B_FALSE;
2955
2956 *spapp = NULL;
2957
2958 /*
2959 * As disgusting as this is, we need to support recursive calls to this
2960 * function because dsl_dir_open() is called during spa_load(), and ends
2961 * up calling spa_open() again. The real fix is to figure out how to
2962 * avoid dsl_dir_open() calling this in the first place.
2963 */
2964 if (mutex_owner(&spa_namespace_lock) != curthread) {
2965 mutex_enter(&spa_namespace_lock);
2966 locked = B_TRUE;
2967 }
2968
2969 if ((spa = spa_lookup(pool)) == NULL) {
2970 if (locked)
2971 mutex_exit(&spa_namespace_lock);
2972 return (SET_ERROR(ENOENT));
2973 }
2974
2975 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2976 zpool_rewind_policy_t policy;
2977
2978 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2979 &policy);
2980 if (policy.zrp_request & ZPOOL_DO_REWIND)
2981 state = SPA_LOAD_RECOVER;
2982
2983 spa_activate(spa, spa_mode_global);
2984
2985 if (state != SPA_LOAD_RECOVER)
2986 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2987
2988 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2989 policy.zrp_request);
2990
2991 if (error == EBADF) {
2992 /*
2993 * If vdev_validate() returns failure (indicated by
2994 * EBADF), it indicates that one of the vdevs indicates
2995 * that the pool has been exported or destroyed. If
2996 * this is the case, the config cache is out of sync and
2997 * we should remove the pool from the namespace.
2998 */
2999 spa_unload(spa);
3000 spa_deactivate(spa);
3001 spa_config_sync(spa, B_TRUE, B_TRUE);
3002 spa_remove(spa);
3003 if (locked)
3004 mutex_exit(&spa_namespace_lock);
3005 return (SET_ERROR(ENOENT));
3006 }
3007
3008 if (error) {
3009 /*
3010 * We can't open the pool, but we still have useful
3011 * information: the state of each vdev after the
3012 * attempted vdev_open(). Return this to the user.
3013 */
3014 if (config != NULL && spa->spa_config) {
3015 VERIFY(nvlist_dup(spa->spa_config, config,
3016 KM_SLEEP) == 0);
3017 VERIFY(nvlist_add_nvlist(*config,
3018 ZPOOL_CONFIG_LOAD_INFO,
3019 spa->spa_load_info) == 0);
3020 }
3021 spa_unload(spa);
3022 spa_deactivate(spa);
3023 spa->spa_last_open_failed = error;
3024 if (locked)
3025 mutex_exit(&spa_namespace_lock);
3026 *spapp = NULL;
3027 return (error);
3028 }
3029 }
3030
3031 spa_open_ref(spa, tag);
3032
3033 if (config != NULL)
3034 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3035
3036 /*
3037 * If we've recovered the pool, pass back any information we
3038 * gathered while doing the load.
3039 */
3040 if (state == SPA_LOAD_RECOVER) {
3041 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3042 spa->spa_load_info) == 0);
3043 }
3044
3045 if (locked) {
3046 spa->spa_last_open_failed = 0;
3047 spa->spa_last_ubsync_txg = 0;
3048 spa->spa_load_txg = 0;
3049 mutex_exit(&spa_namespace_lock);
3050 }
3051
3052 *spapp = spa;
3053
3054 return (0);
3055 }
3056
3057 int
spa_open_rewind(const char * name,spa_t ** spapp,void * tag,nvlist_t * policy,nvlist_t ** config)3058 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3059 nvlist_t **config)
3060 {
3061 return (spa_open_common(name, spapp, tag, policy, config));
3062 }
3063
3064 int
spa_open(const char * name,spa_t ** spapp,void * tag)3065 spa_open(const char *name, spa_t **spapp, void *tag)
3066 {
3067 return (spa_open_common(name, spapp, tag, NULL, NULL));
3068 }
3069
3070 /*
3071 * Lookup the given spa_t, incrementing the inject count in the process,
3072 * preventing it from being exported or destroyed.
3073 */
3074 spa_t *
spa_inject_addref(char * name)3075 spa_inject_addref(char *name)
3076 {
3077 spa_t *spa;
3078
3079 mutex_enter(&spa_namespace_lock);
3080 if ((spa = spa_lookup(name)) == NULL) {
3081 mutex_exit(&spa_namespace_lock);
3082 return (NULL);
3083 }
3084 spa->spa_inject_ref++;
3085 mutex_exit(&spa_namespace_lock);
3086
3087 return (spa);
3088 }
3089
3090 void
spa_inject_delref(spa_t * spa)3091 spa_inject_delref(spa_t *spa)
3092 {
3093 mutex_enter(&spa_namespace_lock);
3094 spa->spa_inject_ref--;
3095 mutex_exit(&spa_namespace_lock);
3096 }
3097
3098 /*
3099 * Add spares device information to the nvlist.
3100 */
3101 static void
spa_add_spares(spa_t * spa,nvlist_t * config)3102 spa_add_spares(spa_t *spa, nvlist_t *config)
3103 {
3104 nvlist_t **spares;
3105 uint_t i, nspares;
3106 nvlist_t *nvroot;
3107 uint64_t guid;
3108 vdev_stat_t *vs;
3109 uint_t vsc;
3110 uint64_t pool;
3111
3112 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3113
3114 if (spa->spa_spares.sav_count == 0)
3115 return;
3116
3117 VERIFY(nvlist_lookup_nvlist(config,
3118 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3119 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3120 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3121 if (nspares != 0) {
3122 VERIFY(nvlist_add_nvlist_array(nvroot,
3123 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3124 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3125 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3126
3127 /*
3128 * Go through and find any spares which have since been
3129 * repurposed as an active spare. If this is the case, update
3130 * their status appropriately.
3131 */
3132 for (i = 0; i < nspares; i++) {
3133 VERIFY(nvlist_lookup_uint64(spares[i],
3134 ZPOOL_CONFIG_GUID, &guid) == 0);
3135 if (spa_spare_exists(guid, &pool, NULL) &&
3136 pool != 0ULL) {
3137 VERIFY(nvlist_lookup_uint64_array(
3138 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3139 (uint64_t **)&vs, &vsc) == 0);
3140 vs->vs_state = VDEV_STATE_CANT_OPEN;
3141 vs->vs_aux = VDEV_AUX_SPARED;
3142 }
3143 }
3144 }
3145 }
3146
3147 /*
3148 * Add l2cache device information to the nvlist, including vdev stats.
3149 */
3150 static void
spa_add_l2cache(spa_t * spa,nvlist_t * config)3151 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3152 {
3153 nvlist_t **l2cache;
3154 uint_t i, j, nl2cache;
3155 nvlist_t *nvroot;
3156 uint64_t guid;
3157 vdev_t *vd;
3158 vdev_stat_t *vs;
3159 uint_t vsc;
3160
3161 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3162
3163 if (spa->spa_l2cache.sav_count == 0)
3164 return;
3165
3166 VERIFY(nvlist_lookup_nvlist(config,
3167 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3168 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3169 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3170 if (nl2cache != 0) {
3171 VERIFY(nvlist_add_nvlist_array(nvroot,
3172 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3173 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3174 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3175
3176 /*
3177 * Update level 2 cache device stats.
3178 */
3179
3180 for (i = 0; i < nl2cache; i++) {
3181 VERIFY(nvlist_lookup_uint64(l2cache[i],
3182 ZPOOL_CONFIG_GUID, &guid) == 0);
3183
3184 vd = NULL;
3185 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3186 if (guid ==
3187 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3188 vd = spa->spa_l2cache.sav_vdevs[j];
3189 break;
3190 }
3191 }
3192 ASSERT(vd != NULL);
3193
3194 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3195 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3196 == 0);
3197 vdev_get_stats(vd, vs);
3198 }
3199 }
3200 }
3201
3202 static void
spa_add_feature_stats(spa_t * spa,nvlist_t * config)3203 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3204 {
3205 nvlist_t *features;
3206 zap_cursor_t zc;
3207 zap_attribute_t za;
3208
3209 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3210 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3211
3212 if (spa->spa_feat_for_read_obj != 0) {
3213 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3214 spa->spa_feat_for_read_obj);
3215 zap_cursor_retrieve(&zc, &za) == 0;
3216 zap_cursor_advance(&zc)) {
3217 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3218 za.za_num_integers == 1);
3219 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3220 za.za_first_integer));
3221 }
3222 zap_cursor_fini(&zc);
3223 }
3224
3225 if (spa->spa_feat_for_write_obj != 0) {
3226 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3227 spa->spa_feat_for_write_obj);
3228 zap_cursor_retrieve(&zc, &za) == 0;
3229 zap_cursor_advance(&zc)) {
3230 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3231 za.za_num_integers == 1);
3232 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3233 za.za_first_integer));
3234 }
3235 zap_cursor_fini(&zc);
3236 }
3237
3238 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3239 features) == 0);
3240 nvlist_free(features);
3241 }
3242
3243 int
spa_get_stats(const char * name,nvlist_t ** config,char * altroot,size_t buflen)3244 spa_get_stats(const char *name, nvlist_t **config,
3245 char *altroot, size_t buflen)
3246 {
3247 int error;
3248 spa_t *spa;
3249
3250 *config = NULL;
3251 error = spa_open_common(name, &spa, FTAG, NULL, config);
3252
3253 if (spa != NULL) {
3254 /*
3255 * This still leaves a window of inconsistency where the spares
3256 * or l2cache devices could change and the config would be
3257 * self-inconsistent.
3258 */
3259 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3260
3261 if (*config != NULL) {
3262 uint64_t loadtimes[2];
3263
3264 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3265 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3266 VERIFY(nvlist_add_uint64_array(*config,
3267 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3268
3269 VERIFY(nvlist_add_uint64(*config,
3270 ZPOOL_CONFIG_ERRCOUNT,
3271 spa_get_errlog_size(spa)) == 0);
3272
3273 if (spa_suspended(spa))
3274 VERIFY(nvlist_add_uint64(*config,
3275 ZPOOL_CONFIG_SUSPENDED,
3276 spa->spa_failmode) == 0);
3277
3278 spa_add_spares(spa, *config);
3279 spa_add_l2cache(spa, *config);
3280 spa_add_feature_stats(spa, *config);
3281 }
3282 }
3283
3284 /*
3285 * We want to get the alternate root even for faulted pools, so we cheat
3286 * and call spa_lookup() directly.
3287 */
3288 if (altroot) {
3289 if (spa == NULL) {
3290 mutex_enter(&spa_namespace_lock);
3291 spa = spa_lookup(name);
3292 if (spa)
3293 spa_altroot(spa, altroot, buflen);
3294 else
3295 altroot[0] = '\0';
3296 spa = NULL;
3297 mutex_exit(&spa_namespace_lock);
3298 } else {
3299 spa_altroot(spa, altroot, buflen);
3300 }
3301 }
3302
3303 if (spa != NULL) {
3304 spa_config_exit(spa, SCL_CONFIG, FTAG);
3305 spa_close(spa, FTAG);
3306 }
3307
3308 return (error);
3309 }
3310
3311 /*
3312 * Validate that the auxiliary device array is well formed. We must have an
3313 * array of nvlists, each which describes a valid leaf vdev. If this is an
3314 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3315 * specified, as long as they are well-formed.
3316 */
3317 static int
spa_validate_aux_devs(spa_t * spa,nvlist_t * nvroot,uint64_t crtxg,int mode,spa_aux_vdev_t * sav,const char * config,uint64_t version,vdev_labeltype_t label)3318 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3319 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3320 vdev_labeltype_t label)
3321 {
3322 nvlist_t **dev;
3323 uint_t i, ndev;
3324 vdev_t *vd;
3325 int error;
3326
3327 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3328
3329 /*
3330 * It's acceptable to have no devs specified.
3331 */
3332 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3333 return (0);
3334
3335 if (ndev == 0)
3336 return (SET_ERROR(EINVAL));
3337
3338 /*
3339 * Make sure the pool is formatted with a version that supports this
3340 * device type.
3341 */
3342 if (spa_version(spa) < version)
3343 return (SET_ERROR(ENOTSUP));
3344
3345 /*
3346 * Set the pending device list so we correctly handle device in-use
3347 * checking.
3348 */
3349 sav->sav_pending = dev;
3350 sav->sav_npending = ndev;
3351
3352 for (i = 0; i < ndev; i++) {
3353 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3354 mode)) != 0)
3355 goto out;
3356
3357 if (!vd->vdev_ops->vdev_op_leaf) {
3358 vdev_free(vd);
3359 error = SET_ERROR(EINVAL);
3360 goto out;
3361 }
3362
3363 /*
3364 * The L2ARC currently only supports disk devices in
3365 * kernel context. For user-level testing, we allow it.
3366 */
3367 #ifdef _KERNEL
3368 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3369 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3370 error = SET_ERROR(ENOTBLK);
3371 vdev_free(vd);
3372 goto out;
3373 }
3374 #endif
3375 vd->vdev_top = vd;
3376
3377 if ((error = vdev_open(vd)) == 0 &&
3378 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3379 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3380 vd->vdev_guid) == 0);
3381 }
3382
3383 vdev_free(vd);
3384
3385 if (error &&
3386 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3387 goto out;
3388 else
3389 error = 0;
3390 }
3391
3392 out:
3393 sav->sav_pending = NULL;
3394 sav->sav_npending = 0;
3395 return (error);
3396 }
3397
3398 static int
spa_validate_aux(spa_t * spa,nvlist_t * nvroot,uint64_t crtxg,int mode)3399 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3400 {
3401 int error;
3402
3403 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3404
3405 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3406 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3407 VDEV_LABEL_SPARE)) != 0) {
3408 return (error);
3409 }
3410
3411 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3412 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3413 VDEV_LABEL_L2CACHE));
3414 }
3415
3416 static void
spa_set_aux_vdevs(spa_aux_vdev_t * sav,nvlist_t ** devs,int ndevs,const char * config)3417 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3418 const char *config)
3419 {
3420 int i;
3421
3422 if (sav->sav_config != NULL) {
3423 nvlist_t **olddevs;
3424 uint_t oldndevs;
3425 nvlist_t **newdevs;
3426
3427 /*
3428 * Generate new dev list by concatentating with the
3429 * current dev list.
3430 */
3431 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3432 &olddevs, &oldndevs) == 0);
3433
3434 newdevs = kmem_alloc(sizeof (void *) *
3435 (ndevs + oldndevs), KM_SLEEP);
3436 for (i = 0; i < oldndevs; i++)
3437 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3438 KM_SLEEP) == 0);
3439 for (i = 0; i < ndevs; i++)
3440 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3441 KM_SLEEP) == 0);
3442
3443 VERIFY(nvlist_remove(sav->sav_config, config,
3444 DATA_TYPE_NVLIST_ARRAY) == 0);
3445
3446 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3447 config, newdevs, ndevs + oldndevs) == 0);
3448 for (i = 0; i < oldndevs + ndevs; i++)
3449 nvlist_free(newdevs[i]);
3450 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3451 } else {
3452 /*
3453 * Generate a new dev list.
3454 */
3455 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3456 KM_SLEEP) == 0);
3457 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3458 devs, ndevs) == 0);
3459 }
3460 }
3461
3462 /*
3463 * Stop and drop level 2 ARC devices
3464 */
3465 void
spa_l2cache_drop(spa_t * spa)3466 spa_l2cache_drop(spa_t *spa)
3467 {
3468 vdev_t *vd;
3469 int i;
3470 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3471
3472 for (i = 0; i < sav->sav_count; i++) {
3473 uint64_t pool;
3474
3475 vd = sav->sav_vdevs[i];
3476 ASSERT(vd != NULL);
3477
3478 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3479 pool != 0ULL && l2arc_vdev_present(vd))
3480 l2arc_remove_vdev(vd);
3481 }
3482 }
3483
3484 /*
3485 * Pool Creation
3486 */
3487 int
spa_create(const char * pool,nvlist_t * nvroot,nvlist_t * props,nvlist_t * zplprops)3488 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3489 nvlist_t *zplprops)
3490 {
3491 spa_t *spa;
3492 char *altroot = NULL;
3493 vdev_t *rvd;
3494 dsl_pool_t *dp;
3495 dmu_tx_t *tx;
3496 int error = 0;
3497 uint64_t txg = TXG_INITIAL;
3498 nvlist_t **spares, **l2cache;
3499 uint_t nspares, nl2cache;
3500 uint64_t version, obj;
3501 boolean_t has_features;
3502
3503 /*
3504 * If this pool already exists, return failure.
3505 */
3506 mutex_enter(&spa_namespace_lock);
3507 if (spa_lookup(pool) != NULL) {
3508 mutex_exit(&spa_namespace_lock);
3509 return (SET_ERROR(EEXIST));
3510 }
3511
3512 /*
3513 * Allocate a new spa_t structure.
3514 */
3515 (void) nvlist_lookup_string(props,
3516 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3517 spa = spa_add(pool, NULL, altroot);
3518 spa_activate(spa, spa_mode_global);
3519
3520 if (props && (error = spa_prop_validate(spa, props))) {
3521 spa_deactivate(spa);
3522 spa_remove(spa);
3523 mutex_exit(&spa_namespace_lock);
3524 return (error);
3525 }
3526
3527 has_features = B_FALSE;
3528 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3529 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3530 if (zpool_prop_feature(nvpair_name(elem)))
3531 has_features = B_TRUE;
3532 }
3533
3534 if (has_features || nvlist_lookup_uint64(props,
3535 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3536 version = SPA_VERSION;
3537 }
3538 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3539
3540 spa->spa_first_txg = txg;
3541 spa->spa_uberblock.ub_txg = txg - 1;
3542 spa->spa_uberblock.ub_version = version;
3543 spa->spa_ubsync = spa->spa_uberblock;
3544
3545 /*
3546 * Create "The Godfather" zio to hold all async IOs
3547 */
3548 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3549 KM_SLEEP);
3550 for (int i = 0; i < max_ncpus; i++) {
3551 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3552 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3553 ZIO_FLAG_GODFATHER);
3554 }
3555
3556 /*
3557 * Create the root vdev.
3558 */
3559 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3560
3561 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3562
3563 ASSERT(error != 0 || rvd != NULL);
3564 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3565
3566 if (error == 0 && !zfs_allocatable_devs(nvroot))
3567 error = SET_ERROR(EINVAL);
3568
3569 if (error == 0 &&
3570 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3571 (error = spa_validate_aux(spa, nvroot, txg,
3572 VDEV_ALLOC_ADD)) == 0) {
3573 for (int c = 0; c < rvd->vdev_children; c++) {
3574 vdev_metaslab_set_size(rvd->vdev_child[c]);
3575 vdev_expand(rvd->vdev_child[c], txg);
3576 }
3577 }
3578
3579 spa_config_exit(spa, SCL_ALL, FTAG);
3580
3581 if (error != 0) {
3582 spa_unload(spa);
3583 spa_deactivate(spa);
3584 spa_remove(spa);
3585 mutex_exit(&spa_namespace_lock);
3586 return (error);
3587 }
3588
3589 /*
3590 * Get the list of spares, if specified.
3591 */
3592 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3593 &spares, &nspares) == 0) {
3594 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3595 KM_SLEEP) == 0);
3596 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3597 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3598 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3599 spa_load_spares(spa);
3600 spa_config_exit(spa, SCL_ALL, FTAG);
3601 spa->spa_spares.sav_sync = B_TRUE;
3602 }
3603
3604 /*
3605 * Get the list of level 2 cache devices, if specified.
3606 */
3607 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3608 &l2cache, &nl2cache) == 0) {
3609 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3610 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3611 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3612 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3613 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3614 spa_load_l2cache(spa);
3615 spa_config_exit(spa, SCL_ALL, FTAG);
3616 spa->spa_l2cache.sav_sync = B_TRUE;
3617 }
3618
3619 spa->spa_is_initializing = B_TRUE;
3620 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3621 spa->spa_meta_objset = dp->dp_meta_objset;
3622 spa->spa_is_initializing = B_FALSE;
3623
3624 /*
3625 * Create DDTs (dedup tables).
3626 */
3627 ddt_create(spa);
3628
3629 spa_update_dspace(spa);
3630
3631 tx = dmu_tx_create_assigned(dp, txg);
3632
3633 /*
3634 * Create the pool config object.
3635 */
3636 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3637 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3638 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3639
3640 if (zap_add(spa->spa_meta_objset,
3641 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3642 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3643 cmn_err(CE_PANIC, "failed to add pool config");
3644 }
3645
3646 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3647 spa_feature_create_zap_objects(spa, tx);
3648
3649 if (zap_add(spa->spa_meta_objset,
3650 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3651 sizeof (uint64_t), 1, &version, tx) != 0) {
3652 cmn_err(CE_PANIC, "failed to add pool version");
3653 }
3654
3655 /* Newly created pools with the right version are always deflated. */
3656 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3657 spa->spa_deflate = TRUE;
3658 if (zap_add(spa->spa_meta_objset,
3659 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3660 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3661 cmn_err(CE_PANIC, "failed to add deflate");
3662 }
3663 }
3664
3665 /*
3666 * Create the deferred-free bpobj. Turn off compression
3667 * because sync-to-convergence takes longer if the blocksize
3668 * keeps changing.
3669 */
3670 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3671 dmu_object_set_compress(spa->spa_meta_objset, obj,
3672 ZIO_COMPRESS_OFF, tx);
3673 if (zap_add(spa->spa_meta_objset,
3674 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3675 sizeof (uint64_t), 1, &obj, tx) != 0) {
3676 cmn_err(CE_PANIC, "failed to add bpobj");
3677 }
3678 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3679 spa->spa_meta_objset, obj));
3680
3681 /*
3682 * Create the pool's history object.
3683 */
3684 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3685 spa_history_create_obj(spa, tx);
3686
3687 /*
3688 * Generate some random noise for salted checksums to operate on.
3689 */
3690 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3691 sizeof (spa->spa_cksum_salt.zcs_bytes));
3692
3693 /*
3694 * Set pool properties.
3695 */
3696 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3697 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3698 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3699 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3700
3701 if (props != NULL) {
3702 spa_configfile_set(spa, props, B_FALSE);
3703 spa_sync_props(props, tx);
3704 }
3705
3706 dmu_tx_commit(tx);
3707
3708 spa->spa_sync_on = B_TRUE;
3709 txg_sync_start(spa->spa_dsl_pool);
3710
3711 /*
3712 * We explicitly wait for the first transaction to complete so that our
3713 * bean counters are appropriately updated.
3714 */
3715 txg_wait_synced(spa->spa_dsl_pool, txg);
3716
3717 spa_config_sync(spa, B_FALSE, B_TRUE);
3718 spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3719
3720 spa_history_log_version(spa, "create");
3721
3722 /*
3723 * Don't count references from objsets that are already closed
3724 * and are making their way through the eviction process.
3725 */
3726 spa_evicting_os_wait(spa);
3727 spa->spa_minref = refcount_count(&spa->spa_refcount);
3728
3729 mutex_exit(&spa_namespace_lock);
3730
3731 return (0);
3732 }
3733
3734 #ifdef _KERNEL
3735 /*
3736 * Get the root pool information from the root disk, then import the root pool
3737 * during the system boot up time.
3738 */
3739 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3740
3741 static nvlist_t *
spa_generate_rootconf(char * devpath,char * devid,uint64_t * guid)3742 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3743 {
3744 nvlist_t *config;
3745 nvlist_t *nvtop, *nvroot;
3746 uint64_t pgid;
3747
3748 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3749 return (NULL);
3750
3751 /*
3752 * Add this top-level vdev to the child array.
3753 */
3754 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3755 &nvtop) == 0);
3756 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3757 &pgid) == 0);
3758 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3759
3760 /*
3761 * Put this pool's top-level vdevs into a root vdev.
3762 */
3763 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3764 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3765 VDEV_TYPE_ROOT) == 0);
3766 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3767 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3768 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3769 &nvtop, 1) == 0);
3770
3771 /*
3772 * Replace the existing vdev_tree with the new root vdev in
3773 * this pool's configuration (remove the old, add the new).
3774 */
3775 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3776 nvlist_free(nvroot);
3777 return (config);
3778 }
3779
3780 /*
3781 * Walk the vdev tree and see if we can find a device with "better"
3782 * configuration. A configuration is "better" if the label on that
3783 * device has a more recent txg.
3784 */
3785 static void
spa_alt_rootvdev(vdev_t * vd,vdev_t ** avd,uint64_t * txg)3786 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3787 {
3788 for (int c = 0; c < vd->vdev_children; c++)
3789 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3790
3791 if (vd->vdev_ops->vdev_op_leaf) {
3792 nvlist_t *label;
3793 uint64_t label_txg;
3794
3795 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3796 &label) != 0)
3797 return;
3798
3799 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3800 &label_txg) == 0);
3801
3802 /*
3803 * Do we have a better boot device?
3804 */
3805 if (label_txg > *txg) {
3806 *txg = label_txg;
3807 *avd = vd;
3808 }
3809 nvlist_free(label);
3810 }
3811 }
3812
3813 /*
3814 * Import a root pool.
3815 *
3816 * For x86. devpath_list will consist of devid and/or physpath name of
3817 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3818 * The GRUB "findroot" command will return the vdev we should boot.
3819 *
3820 * For Sparc, devpath_list consists the physpath name of the booting device
3821 * no matter the rootpool is a single device pool or a mirrored pool.
3822 * e.g.
3823 * "/pci@1f,0/ide@d/disk@0,0:a"
3824 */
3825 int
spa_import_rootpool(char * devpath,char * devid)3826 spa_import_rootpool(char *devpath, char *devid)
3827 {
3828 spa_t *spa;
3829 vdev_t *rvd, *bvd, *avd = NULL;
3830 nvlist_t *config, *nvtop;
3831 uint64_t guid, txg;
3832 char *pname;
3833 int error;
3834
3835 /*
3836 * Read the label from the boot device and generate a configuration.
3837 */
3838 config = spa_generate_rootconf(devpath, devid, &guid);
3839 #if defined(_OBP) && defined(_KERNEL)
3840 if (config == NULL) {
3841 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3842 /* iscsi boot */
3843 get_iscsi_bootpath_phy(devpath);
3844 config = spa_generate_rootconf(devpath, devid, &guid);
3845 }
3846 }
3847 #endif
3848 if (config == NULL) {
3849 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3850 devpath);
3851 return (SET_ERROR(EIO));
3852 }
3853
3854 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3855 &pname) == 0);
3856 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3857
3858 mutex_enter(&spa_namespace_lock);
3859 if ((spa = spa_lookup(pname)) != NULL) {
3860 /*
3861 * Remove the existing root pool from the namespace so that we
3862 * can replace it with the correct config we just read in.
3863 */
3864 spa_remove(spa);
3865 }
3866
3867 spa = spa_add(pname, config, NULL);
3868 spa->spa_is_root = B_TRUE;
3869 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3870
3871 /*
3872 * Build up a vdev tree based on the boot device's label config.
3873 */
3874 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3875 &nvtop) == 0);
3876 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3877 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3878 VDEV_ALLOC_ROOTPOOL);
3879 spa_config_exit(spa, SCL_ALL, FTAG);
3880 if (error) {
3881 mutex_exit(&spa_namespace_lock);
3882 nvlist_free(config);
3883 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3884 pname);
3885 return (error);
3886 }
3887
3888 /*
3889 * Get the boot vdev.
3890 */
3891 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3892 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3893 (u_longlong_t)guid);
3894 error = SET_ERROR(ENOENT);
3895 goto out;
3896 }
3897
3898 /*
3899 * Determine if there is a better boot device.
3900 */
3901 avd = bvd;
3902 spa_alt_rootvdev(rvd, &avd, &txg);
3903 if (avd != bvd) {
3904 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3905 "try booting from '%s'", avd->vdev_path);
3906 error = SET_ERROR(EINVAL);
3907 goto out;
3908 }
3909
3910 /*
3911 * If the boot device is part of a spare vdev then ensure that
3912 * we're booting off the active spare.
3913 */
3914 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3915 !bvd->vdev_isspare) {
3916 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3917 "try booting from '%s'",
3918 bvd->vdev_parent->
3919 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3920 error = SET_ERROR(EINVAL);
3921 goto out;
3922 }
3923
3924 error = 0;
3925 out:
3926 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3927 vdev_free(rvd);
3928 spa_config_exit(spa, SCL_ALL, FTAG);
3929 mutex_exit(&spa_namespace_lock);
3930
3931 nvlist_free(config);
3932 return (error);
3933 }
3934
3935 #endif
3936
3937 /*
3938 * Import a non-root pool into the system.
3939 */
3940 int
spa_import(const char * pool,nvlist_t * config,nvlist_t * props,uint64_t flags)3941 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3942 {
3943 spa_t *spa;
3944 char *altroot = NULL;
3945 spa_load_state_t state = SPA_LOAD_IMPORT;
3946 zpool_rewind_policy_t policy;
3947 uint64_t mode = spa_mode_global;
3948 uint64_t readonly = B_FALSE;
3949 int error;
3950 nvlist_t *nvroot;
3951 nvlist_t **spares, **l2cache;
3952 uint_t nspares, nl2cache;
3953
3954 /*
3955 * If a pool with this name exists, return failure.
3956 */
3957 mutex_enter(&spa_namespace_lock);
3958 if (spa_lookup(pool) != NULL) {
3959 mutex_exit(&spa_namespace_lock);
3960 return (SET_ERROR(EEXIST));
3961 }
3962
3963 /*
3964 * Create and initialize the spa structure.
3965 */
3966 (void) nvlist_lookup_string(props,
3967 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3968 (void) nvlist_lookup_uint64(props,
3969 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3970 if (readonly)
3971 mode = FREAD;
3972 spa = spa_add(pool, config, altroot);
3973 spa->spa_import_flags = flags;
3974
3975 /*
3976 * Verbatim import - Take a pool and insert it into the namespace
3977 * as if it had been loaded at boot.
3978 */
3979 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3980 if (props != NULL)
3981 spa_configfile_set(spa, props, B_FALSE);
3982
3983 spa_config_sync(spa, B_FALSE, B_TRUE);
3984 spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
3985
3986 mutex_exit(&spa_namespace_lock);
3987 return (0);
3988 }
3989
3990 spa_activate(spa, mode);
3991
3992 /*
3993 * Don't start async tasks until we know everything is healthy.
3994 */
3995 spa_async_suspend(spa);
3996
3997 zpool_get_rewind_policy(config, &policy);
3998 if (policy.zrp_request & ZPOOL_DO_REWIND)
3999 state = SPA_LOAD_RECOVER;
4000
4001 /*
4002 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
4003 * because the user-supplied config is actually the one to trust when
4004 * doing an import.
4005 */
4006 if (state != SPA_LOAD_RECOVER)
4007 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4008
4009 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4010 policy.zrp_request);
4011
4012 /*
4013 * Propagate anything learned while loading the pool and pass it
4014 * back to caller (i.e. rewind info, missing devices, etc).
4015 */
4016 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4017 spa->spa_load_info) == 0);
4018
4019 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4020 /*
4021 * Toss any existing sparelist, as it doesn't have any validity
4022 * anymore, and conflicts with spa_has_spare().
4023 */
4024 if (spa->spa_spares.sav_config) {
4025 nvlist_free(spa->spa_spares.sav_config);
4026 spa->spa_spares.sav_config = NULL;
4027 spa_load_spares(spa);
4028 }
4029 if (spa->spa_l2cache.sav_config) {
4030 nvlist_free(spa->spa_l2cache.sav_config);
4031 spa->spa_l2cache.sav_config = NULL;
4032 spa_load_l2cache(spa);
4033 }
4034
4035 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4036 &nvroot) == 0);
4037 if (error == 0)
4038 error = spa_validate_aux(spa, nvroot, -1ULL,
4039 VDEV_ALLOC_SPARE);
4040 if (error == 0)
4041 error = spa_validate_aux(spa, nvroot, -1ULL,
4042 VDEV_ALLOC_L2CACHE);
4043 spa_config_exit(spa, SCL_ALL, FTAG);
4044
4045 if (props != NULL)
4046 spa_configfile_set(spa, props, B_FALSE);
4047
4048 if (error != 0 || (props && spa_writeable(spa) &&
4049 (error = spa_prop_set(spa, props)))) {
4050 spa_unload(spa);
4051 spa_deactivate(spa);
4052 spa_remove(spa);
4053 mutex_exit(&spa_namespace_lock);
4054 return (error);
4055 }
4056
4057 spa_async_resume(spa);
4058
4059 /*
4060 * Override any spares and level 2 cache devices as specified by
4061 * the user, as these may have correct device names/devids, etc.
4062 */
4063 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4064 &spares, &nspares) == 0) {
4065 if (spa->spa_spares.sav_config)
4066 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4067 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4068 else
4069 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4070 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4071 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4072 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4073 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4074 spa_load_spares(spa);
4075 spa_config_exit(spa, SCL_ALL, FTAG);
4076 spa->spa_spares.sav_sync = B_TRUE;
4077 }
4078 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4079 &l2cache, &nl2cache) == 0) {
4080 if (spa->spa_l2cache.sav_config)
4081 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4082 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4083 else
4084 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4085 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4086 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4087 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4088 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4089 spa_load_l2cache(spa);
4090 spa_config_exit(spa, SCL_ALL, FTAG);
4091 spa->spa_l2cache.sav_sync = B_TRUE;
4092 }
4093
4094 /*
4095 * Check for any removed devices.
4096 */
4097 if (spa->spa_autoreplace) {
4098 spa_aux_check_removed(&spa->spa_spares);
4099 spa_aux_check_removed(&spa->spa_l2cache);
4100 }
4101
4102 if (spa_writeable(spa)) {
4103 /*
4104 * Update the config cache to include the newly-imported pool.
4105 */
4106 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4107 }
4108
4109 /*
4110 * It's possible that the pool was expanded while it was exported.
4111 * We kick off an async task to handle this for us.
4112 */
4113 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4114
4115 spa_history_log_version(spa, "import");
4116
4117 spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4118
4119 mutex_exit(&spa_namespace_lock);
4120
4121 return (0);
4122 }
4123
4124 nvlist_t *
spa_tryimport(nvlist_t * tryconfig)4125 spa_tryimport(nvlist_t *tryconfig)
4126 {
4127 nvlist_t *config = NULL;
4128 char *poolname;
4129 spa_t *spa;
4130 uint64_t state;
4131 int error;
4132
4133 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4134 return (NULL);
4135
4136 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4137 return (NULL);
4138
4139 /*
4140 * Create and initialize the spa structure.
4141 */
4142 mutex_enter(&spa_namespace_lock);
4143 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4144 spa_activate(spa, FREAD);
4145
4146 /*
4147 * Pass off the heavy lifting to spa_load().
4148 * Pass TRUE for mosconfig because the user-supplied config
4149 * is actually the one to trust when doing an import.
4150 */
4151 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4152
4153 /*
4154 * If 'tryconfig' was at least parsable, return the current config.
4155 */
4156 if (spa->spa_root_vdev != NULL) {
4157 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4158 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4159 poolname) == 0);
4160 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4161 state) == 0);
4162 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4163 spa->spa_uberblock.ub_timestamp) == 0);
4164 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4165 spa->spa_load_info) == 0);
4166
4167 /*
4168 * If the bootfs property exists on this pool then we
4169 * copy it out so that external consumers can tell which
4170 * pools are bootable.
4171 */
4172 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4173 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4174
4175 /*
4176 * We have to play games with the name since the
4177 * pool was opened as TRYIMPORT_NAME.
4178 */
4179 if (dsl_dsobj_to_dsname(spa_name(spa),
4180 spa->spa_bootfs, tmpname) == 0) {
4181 char *cp;
4182 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4183
4184 cp = strchr(tmpname, '/');
4185 if (cp == NULL) {
4186 (void) strlcpy(dsname, tmpname,
4187 MAXPATHLEN);
4188 } else {
4189 (void) snprintf(dsname, MAXPATHLEN,
4190 "%s/%s", poolname, ++cp);
4191 }
4192 VERIFY(nvlist_add_string(config,
4193 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4194 kmem_free(dsname, MAXPATHLEN);
4195 }
4196 kmem_free(tmpname, MAXPATHLEN);
4197 }
4198
4199 /*
4200 * Add the list of hot spares and level 2 cache devices.
4201 */
4202 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4203 spa_add_spares(spa, config);
4204 spa_add_l2cache(spa, config);
4205 spa_config_exit(spa, SCL_CONFIG, FTAG);
4206 }
4207
4208 spa_unload(spa);
4209 spa_deactivate(spa);
4210 spa_remove(spa);
4211 mutex_exit(&spa_namespace_lock);
4212
4213 return (config);
4214 }
4215
4216 /*
4217 * Pool export/destroy
4218 *
4219 * The act of destroying or exporting a pool is very simple. We make sure there
4220 * is no more pending I/O and any references to the pool are gone. Then, we
4221 * update the pool state and sync all the labels to disk, removing the
4222 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4223 * we don't sync the labels or remove the configuration cache.
4224 */
4225 static int
spa_export_common(char * pool,int new_state,nvlist_t ** oldconfig,boolean_t force,boolean_t hardforce)4226 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4227 boolean_t force, boolean_t hardforce)
4228 {
4229 spa_t *spa;
4230
4231 if (oldconfig)
4232 *oldconfig = NULL;
4233
4234 if (!(spa_mode_global & FWRITE))
4235 return (SET_ERROR(EROFS));
4236
4237 mutex_enter(&spa_namespace_lock);
4238 if ((spa = spa_lookup(pool)) == NULL) {
4239 mutex_exit(&spa_namespace_lock);
4240 return (SET_ERROR(ENOENT));
4241 }
4242
4243 /*
4244 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4245 * reacquire the namespace lock, and see if we can export.
4246 */
4247 spa_open_ref(spa, FTAG);
4248 mutex_exit(&spa_namespace_lock);
4249 spa_async_suspend(spa);
4250 mutex_enter(&spa_namespace_lock);
4251 spa_close(spa, FTAG);
4252
4253 /*
4254 * The pool will be in core if it's openable,
4255 * in which case we can modify its state.
4256 */
4257 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4258 /*
4259 * Objsets may be open only because they're dirty, so we
4260 * have to force it to sync before checking spa_refcnt.
4261 */
4262 txg_wait_synced(spa->spa_dsl_pool, 0);
4263 spa_evicting_os_wait(spa);
4264
4265 /*
4266 * A pool cannot be exported or destroyed if there are active
4267 * references. If we are resetting a pool, allow references by
4268 * fault injection handlers.
4269 */
4270 if (!spa_refcount_zero(spa) ||
4271 (spa->spa_inject_ref != 0 &&
4272 new_state != POOL_STATE_UNINITIALIZED)) {
4273 spa_async_resume(spa);
4274 mutex_exit(&spa_namespace_lock);
4275 return (SET_ERROR(EBUSY));
4276 }
4277
4278 /*
4279 * A pool cannot be exported if it has an active shared spare.
4280 * This is to prevent other pools stealing the active spare
4281 * from an exported pool. At user's own will, such pool can
4282 * be forcedly exported.
4283 */
4284 if (!force && new_state == POOL_STATE_EXPORTED &&
4285 spa_has_active_shared_spare(spa)) {
4286 spa_async_resume(spa);
4287 mutex_exit(&spa_namespace_lock);
4288 return (SET_ERROR(EXDEV));
4289 }
4290
4291 /*
4292 * We want this to be reflected on every label,
4293 * so mark them all dirty. spa_unload() will do the
4294 * final sync that pushes these changes out.
4295 */
4296 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4297 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4298 spa->spa_state = new_state;
4299 spa->spa_final_txg = spa_last_synced_txg(spa) +
4300 TXG_DEFER_SIZE + 1;
4301 vdev_config_dirty(spa->spa_root_vdev);
4302 spa_config_exit(spa, SCL_ALL, FTAG);
4303 }
4304 }
4305
4306 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4307
4308 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4309 spa_unload(spa);
4310 spa_deactivate(spa);
4311 }
4312
4313 if (oldconfig && spa->spa_config)
4314 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4315
4316 if (new_state != POOL_STATE_UNINITIALIZED) {
4317 if (!hardforce)
4318 spa_config_sync(spa, B_TRUE, B_TRUE);
4319 spa_remove(spa);
4320 }
4321 mutex_exit(&spa_namespace_lock);
4322
4323 return (0);
4324 }
4325
4326 /*
4327 * Destroy a storage pool.
4328 */
4329 int
spa_destroy(char * pool)4330 spa_destroy(char *pool)
4331 {
4332 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4333 B_FALSE, B_FALSE));
4334 }
4335
4336 /*
4337 * Export a storage pool.
4338 */
4339 int
spa_export(char * pool,nvlist_t ** oldconfig,boolean_t force,boolean_t hardforce)4340 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4341 boolean_t hardforce)
4342 {
4343 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4344 force, hardforce));
4345 }
4346
4347 /*
4348 * Similar to spa_export(), this unloads the spa_t without actually removing it
4349 * from the namespace in any way.
4350 */
4351 int
spa_reset(char * pool)4352 spa_reset(char *pool)
4353 {
4354 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4355 B_FALSE, B_FALSE));
4356 }
4357
4358 /*
4359 * ==========================================================================
4360 * Device manipulation
4361 * ==========================================================================
4362 */
4363
4364 /*
4365 * Add a device to a storage pool.
4366 */
4367 int
spa_vdev_add(spa_t * spa,nvlist_t * nvroot)4368 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4369 {
4370 uint64_t txg, id;
4371 int error;
4372 vdev_t *rvd = spa->spa_root_vdev;
4373 vdev_t *vd, *tvd;
4374 nvlist_t **spares, **l2cache;
4375 uint_t nspares, nl2cache;
4376
4377 ASSERT(spa_writeable(spa));
4378
4379 txg = spa_vdev_enter(spa);
4380
4381 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4382 VDEV_ALLOC_ADD)) != 0)
4383 return (spa_vdev_exit(spa, NULL, txg, error));
4384
4385 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4386
4387 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4388 &nspares) != 0)
4389 nspares = 0;
4390
4391 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4392 &nl2cache) != 0)
4393 nl2cache = 0;
4394
4395 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4396 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4397
4398 if (vd->vdev_children != 0 &&
4399 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4400 return (spa_vdev_exit(spa, vd, txg, error));
4401
4402 /*
4403 * We must validate the spares and l2cache devices after checking the
4404 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4405 */
4406 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4407 return (spa_vdev_exit(spa, vd, txg, error));
4408
4409 /*
4410 * Transfer each new top-level vdev from vd to rvd.
4411 */
4412 for (int c = 0; c < vd->vdev_children; c++) {
4413
4414 /*
4415 * Set the vdev id to the first hole, if one exists.
4416 */
4417 for (id = 0; id < rvd->vdev_children; id++) {
4418 if (rvd->vdev_child[id]->vdev_ishole) {
4419 vdev_free(rvd->vdev_child[id]);
4420 break;
4421 }
4422 }
4423 tvd = vd->vdev_child[c];
4424 vdev_remove_child(vd, tvd);
4425 tvd->vdev_id = id;
4426 vdev_add_child(rvd, tvd);
4427 vdev_config_dirty(tvd);
4428 }
4429
4430 if (nspares != 0) {
4431 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4432 ZPOOL_CONFIG_SPARES);
4433 spa_load_spares(spa);
4434 spa->spa_spares.sav_sync = B_TRUE;
4435 }
4436
4437 if (nl2cache != 0) {
4438 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4439 ZPOOL_CONFIG_L2CACHE);
4440 spa_load_l2cache(spa);
4441 spa->spa_l2cache.sav_sync = B_TRUE;
4442 }
4443
4444 /*
4445 * We have to be careful when adding new vdevs to an existing pool.
4446 * If other threads start allocating from these vdevs before we
4447 * sync the config cache, and we lose power, then upon reboot we may
4448 * fail to open the pool because there are DVAs that the config cache
4449 * can't translate. Therefore, we first add the vdevs without
4450 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4451 * and then let spa_config_update() initialize the new metaslabs.
4452 *
4453 * spa_load() checks for added-but-not-initialized vdevs, so that
4454 * if we lose power at any point in this sequence, the remaining
4455 * steps will be completed the next time we load the pool.
4456 */
4457 (void) spa_vdev_exit(spa, vd, txg, 0);
4458
4459 mutex_enter(&spa_namespace_lock);
4460 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4461 spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4462 mutex_exit(&spa_namespace_lock);
4463
4464 return (0);
4465 }
4466
4467 /*
4468 * Attach a device to a mirror. The arguments are the path to any device
4469 * in the mirror, and the nvroot for the new device. If the path specifies
4470 * a device that is not mirrored, we automatically insert the mirror vdev.
4471 *
4472 * If 'replacing' is specified, the new device is intended to replace the
4473 * existing device; in this case the two devices are made into their own
4474 * mirror using the 'replacing' vdev, which is functionally identical to
4475 * the mirror vdev (it actually reuses all the same ops) but has a few
4476 * extra rules: you can't attach to it after it's been created, and upon
4477 * completion of resilvering, the first disk (the one being replaced)
4478 * is automatically detached.
4479 */
4480 int
spa_vdev_attach(spa_t * spa,uint64_t guid,nvlist_t * nvroot,int replacing)4481 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4482 {
4483 uint64_t txg, dtl_max_txg;
4484 vdev_t *rvd = spa->spa_root_vdev;
4485 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4486 vdev_ops_t *pvops;
4487 char *oldvdpath, *newvdpath;
4488 int newvd_isspare;
4489 int error;
4490
4491 ASSERT(spa_writeable(spa));
4492
4493 txg = spa_vdev_enter(spa);
4494
4495 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4496
4497 if (oldvd == NULL)
4498 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4499
4500 if (!oldvd->vdev_ops->vdev_op_leaf)
4501 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4502
4503 pvd = oldvd->vdev_parent;
4504
4505 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4506 VDEV_ALLOC_ATTACH)) != 0)
4507 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4508
4509 if (newrootvd->vdev_children != 1)
4510 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4511
4512 newvd = newrootvd->vdev_child[0];
4513
4514 if (!newvd->vdev_ops->vdev_op_leaf)
4515 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4516
4517 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4518 return (spa_vdev_exit(spa, newrootvd, txg, error));
4519
4520 /*
4521 * Spares can't replace logs
4522 */
4523 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4524 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4525
4526 if (!replacing) {
4527 /*
4528 * For attach, the only allowable parent is a mirror or the root
4529 * vdev.
4530 */
4531 if (pvd->vdev_ops != &vdev_mirror_ops &&
4532 pvd->vdev_ops != &vdev_root_ops)
4533 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4534
4535 pvops = &vdev_mirror_ops;
4536 } else {
4537 /*
4538 * Active hot spares can only be replaced by inactive hot
4539 * spares.
4540 */
4541 if (pvd->vdev_ops == &vdev_spare_ops &&
4542 oldvd->vdev_isspare &&
4543 !spa_has_spare(spa, newvd->vdev_guid))
4544 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4545
4546 /*
4547 * If the source is a hot spare, and the parent isn't already a
4548 * spare, then we want to create a new hot spare. Otherwise, we
4549 * want to create a replacing vdev. The user is not allowed to
4550 * attach to a spared vdev child unless the 'isspare' state is
4551 * the same (spare replaces spare, non-spare replaces
4552 * non-spare).
4553 */
4554 if (pvd->vdev_ops == &vdev_replacing_ops &&
4555 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4556 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4557 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4558 newvd->vdev_isspare != oldvd->vdev_isspare) {
4559 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4560 }
4561
4562 if (newvd->vdev_isspare)
4563 pvops = &vdev_spare_ops;
4564 else
4565 pvops = &vdev_replacing_ops;
4566 }
4567
4568 /*
4569 * Make sure the new device is big enough.
4570 */
4571 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4572 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4573
4574 /*
4575 * The new device cannot have a higher alignment requirement
4576 * than the top-level vdev.
4577 */
4578 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4579 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4580
4581 /*
4582 * If this is an in-place replacement, update oldvd's path and devid
4583 * to make it distinguishable from newvd, and unopenable from now on.
4584 */
4585 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4586 spa_strfree(oldvd->vdev_path);
4587 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4588 KM_SLEEP);
4589 (void) sprintf(oldvd->vdev_path, "%s/%s",
4590 newvd->vdev_path, "old");
4591 if (oldvd->vdev_devid != NULL) {
4592 spa_strfree(oldvd->vdev_devid);
4593 oldvd->vdev_devid = NULL;
4594 }
4595 }
4596
4597 /* mark the device being resilvered */
4598 newvd->vdev_resilver_txg = txg;
4599
4600 /*
4601 * If the parent is not a mirror, or if we're replacing, insert the new
4602 * mirror/replacing/spare vdev above oldvd.
4603 */
4604 if (pvd->vdev_ops != pvops)
4605 pvd = vdev_add_parent(oldvd, pvops);
4606
4607 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4608 ASSERT(pvd->vdev_ops == pvops);
4609 ASSERT(oldvd->vdev_parent == pvd);
4610
4611 /*
4612 * Extract the new device from its root and add it to pvd.
4613 */
4614 vdev_remove_child(newrootvd, newvd);
4615 newvd->vdev_id = pvd->vdev_children;
4616 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4617 vdev_add_child(pvd, newvd);
4618
4619 tvd = newvd->vdev_top;
4620 ASSERT(pvd->vdev_top == tvd);
4621 ASSERT(tvd->vdev_parent == rvd);
4622
4623 vdev_config_dirty(tvd);
4624
4625 /*
4626 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4627 * for any dmu_sync-ed blocks. It will propagate upward when
4628 * spa_vdev_exit() calls vdev_dtl_reassess().
4629 */
4630 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4631
4632 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4633 dtl_max_txg - TXG_INITIAL);
4634
4635 if (newvd->vdev_isspare) {
4636 spa_spare_activate(newvd);
4637 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4638 }
4639
4640 oldvdpath = spa_strdup(oldvd->vdev_path);
4641 newvdpath = spa_strdup(newvd->vdev_path);
4642 newvd_isspare = newvd->vdev_isspare;
4643
4644 /*
4645 * Mark newvd's DTL dirty in this txg.
4646 */
4647 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4648
4649 /*
4650 * Schedule the resilver to restart in the future. We do this to
4651 * ensure that dmu_sync-ed blocks have been stitched into the
4652 * respective datasets.
4653 */
4654 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4655
4656 if (spa->spa_bootfs)
4657 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4658
4659 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4660
4661 /*
4662 * Commit the config
4663 */
4664 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4665
4666 spa_history_log_internal(spa, "vdev attach", NULL,
4667 "%s vdev=%s %s vdev=%s",
4668 replacing && newvd_isspare ? "spare in" :
4669 replacing ? "replace" : "attach", newvdpath,
4670 replacing ? "for" : "to", oldvdpath);
4671
4672 spa_strfree(oldvdpath);
4673 spa_strfree(newvdpath);
4674
4675 return (0);
4676 }
4677
4678 /*
4679 * Detach a device from a mirror or replacing vdev.
4680 *
4681 * If 'replace_done' is specified, only detach if the parent
4682 * is a replacing vdev.
4683 */
4684 int
spa_vdev_detach(spa_t * spa,uint64_t guid,uint64_t pguid,int replace_done)4685 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4686 {
4687 uint64_t txg;
4688 int error;
4689 vdev_t *rvd = spa->spa_root_vdev;
4690 vdev_t *vd, *pvd, *cvd, *tvd;
4691 boolean_t unspare = B_FALSE;
4692 uint64_t unspare_guid = 0;
4693 char *vdpath;
4694
4695 ASSERT(spa_writeable(spa));
4696
4697 txg = spa_vdev_enter(spa);
4698
4699 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4700
4701 if (vd == NULL)
4702 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4703
4704 if (!vd->vdev_ops->vdev_op_leaf)
4705 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4706
4707 pvd = vd->vdev_parent;
4708
4709 /*
4710 * If the parent/child relationship is not as expected, don't do it.
4711 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4712 * vdev that's replacing B with C. The user's intent in replacing
4713 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4714 * the replace by detaching C, the expected behavior is to end up
4715 * M(A,B). But suppose that right after deciding to detach C,
4716 * the replacement of B completes. We would have M(A,C), and then
4717 * ask to detach C, which would leave us with just A -- not what
4718 * the user wanted. To prevent this, we make sure that the
4719 * parent/child relationship hasn't changed -- in this example,
4720 * that C's parent is still the replacing vdev R.
4721 */
4722 if (pvd->vdev_guid != pguid && pguid != 0)
4723 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4724
4725 /*
4726 * Only 'replacing' or 'spare' vdevs can be replaced.
4727 */
4728 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4729 pvd->vdev_ops != &vdev_spare_ops)
4730 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4731
4732 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4733 spa_version(spa) >= SPA_VERSION_SPARES);
4734
4735 /*
4736 * Only mirror, replacing, and spare vdevs support detach.
4737 */
4738 if (pvd->vdev_ops != &vdev_replacing_ops &&
4739 pvd->vdev_ops != &vdev_mirror_ops &&
4740 pvd->vdev_ops != &vdev_spare_ops)
4741 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4742
4743 /*
4744 * If this device has the only valid copy of some data,
4745 * we cannot safely detach it.
4746 */
4747 if (vdev_dtl_required(vd))
4748 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4749
4750 ASSERT(pvd->vdev_children >= 2);
4751
4752 /*
4753 * If we are detaching the second disk from a replacing vdev, then
4754 * check to see if we changed the original vdev's path to have "/old"
4755 * at the end in spa_vdev_attach(). If so, undo that change now.
4756 */
4757 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4758 vd->vdev_path != NULL) {
4759 size_t len = strlen(vd->vdev_path);
4760
4761 for (int c = 0; c < pvd->vdev_children; c++) {
4762 cvd = pvd->vdev_child[c];
4763
4764 if (cvd == vd || cvd->vdev_path == NULL)
4765 continue;
4766
4767 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4768 strcmp(cvd->vdev_path + len, "/old") == 0) {
4769 spa_strfree(cvd->vdev_path);
4770 cvd->vdev_path = spa_strdup(vd->vdev_path);
4771 break;
4772 }
4773 }
4774 }
4775
4776 /*
4777 * If we are detaching the original disk from a spare, then it implies
4778 * that the spare should become a real disk, and be removed from the
4779 * active spare list for the pool.
4780 */
4781 if (pvd->vdev_ops == &vdev_spare_ops &&
4782 vd->vdev_id == 0 &&
4783 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4784 unspare = B_TRUE;
4785
4786 /*
4787 * Erase the disk labels so the disk can be used for other things.
4788 * This must be done after all other error cases are handled,
4789 * but before we disembowel vd (so we can still do I/O to it).
4790 * But if we can't do it, don't treat the error as fatal --
4791 * it may be that the unwritability of the disk is the reason
4792 * it's being detached!
4793 */
4794 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4795
4796 /*
4797 * Remove vd from its parent and compact the parent's children.
4798 */
4799 vdev_remove_child(pvd, vd);
4800 vdev_compact_children(pvd);
4801
4802 /*
4803 * Remember one of the remaining children so we can get tvd below.
4804 */
4805 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4806
4807 /*
4808 * If we need to remove the remaining child from the list of hot spares,
4809 * do it now, marking the vdev as no longer a spare in the process.
4810 * We must do this before vdev_remove_parent(), because that can
4811 * change the GUID if it creates a new toplevel GUID. For a similar
4812 * reason, we must remove the spare now, in the same txg as the detach;
4813 * otherwise someone could attach a new sibling, change the GUID, and
4814 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4815 */
4816 if (unspare) {
4817 ASSERT(cvd->vdev_isspare);
4818 spa_spare_remove(cvd);
4819 unspare_guid = cvd->vdev_guid;
4820 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4821 cvd->vdev_unspare = B_TRUE;
4822 }
4823
4824 /*
4825 * If the parent mirror/replacing vdev only has one child,
4826 * the parent is no longer needed. Remove it from the tree.
4827 */
4828 if (pvd->vdev_children == 1) {
4829 if (pvd->vdev_ops == &vdev_spare_ops)
4830 cvd->vdev_unspare = B_FALSE;
4831 vdev_remove_parent(cvd);
4832 }
4833
4834
4835 /*
4836 * We don't set tvd until now because the parent we just removed
4837 * may have been the previous top-level vdev.
4838 */
4839 tvd = cvd->vdev_top;
4840 ASSERT(tvd->vdev_parent == rvd);
4841
4842 /*
4843 * Reevaluate the parent vdev state.
4844 */
4845 vdev_propagate_state(cvd);
4846
4847 /*
4848 * If the 'autoexpand' property is set on the pool then automatically
4849 * try to expand the size of the pool. For example if the device we
4850 * just detached was smaller than the others, it may be possible to
4851 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4852 * first so that we can obtain the updated sizes of the leaf vdevs.
4853 */
4854 if (spa->spa_autoexpand) {
4855 vdev_reopen(tvd);
4856 vdev_expand(tvd, txg);
4857 }
4858
4859 vdev_config_dirty(tvd);
4860
4861 /*
4862 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4863 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4864 * But first make sure we're not on any *other* txg's DTL list, to
4865 * prevent vd from being accessed after it's freed.
4866 */
4867 vdpath = spa_strdup(vd->vdev_path);
4868 for (int t = 0; t < TXG_SIZE; t++)
4869 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4870 vd->vdev_detached = B_TRUE;
4871 vdev_dirty(tvd, VDD_DTL, vd, txg);
4872
4873 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4874
4875 /* hang on to the spa before we release the lock */
4876 spa_open_ref(spa, FTAG);
4877
4878 error = spa_vdev_exit(spa, vd, txg, 0);
4879
4880 spa_history_log_internal(spa, "detach", NULL,
4881 "vdev=%s", vdpath);
4882 spa_strfree(vdpath);
4883
4884 /*
4885 * If this was the removal of the original device in a hot spare vdev,
4886 * then we want to go through and remove the device from the hot spare
4887 * list of every other pool.
4888 */
4889 if (unspare) {
4890 spa_t *altspa = NULL;
4891
4892 mutex_enter(&spa_namespace_lock);
4893 while ((altspa = spa_next(altspa)) != NULL) {
4894 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4895 altspa == spa)
4896 continue;
4897
4898 spa_open_ref(altspa, FTAG);
4899 mutex_exit(&spa_namespace_lock);
4900 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4901 mutex_enter(&spa_namespace_lock);
4902 spa_close(altspa, FTAG);
4903 }
4904 mutex_exit(&spa_namespace_lock);
4905
4906 /* search the rest of the vdevs for spares to remove */
4907 spa_vdev_resilver_done(spa);
4908 }
4909
4910 /* all done with the spa; OK to release */
4911 mutex_enter(&spa_namespace_lock);
4912 spa_close(spa, FTAG);
4913 mutex_exit(&spa_namespace_lock);
4914
4915 return (error);
4916 }
4917
4918 /*
4919 * Split a set of devices from their mirrors, and create a new pool from them.
4920 */
4921 int
spa_vdev_split_mirror(spa_t * spa,char * newname,nvlist_t * config,nvlist_t * props,boolean_t exp)4922 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4923 nvlist_t *props, boolean_t exp)
4924 {
4925 int error = 0;
4926 uint64_t txg, *glist;
4927 spa_t *newspa;
4928 uint_t c, children, lastlog;
4929 nvlist_t **child, *nvl, *tmp;
4930 dmu_tx_t *tx;
4931 char *altroot = NULL;
4932 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4933 boolean_t activate_slog;
4934
4935 ASSERT(spa_writeable(spa));
4936
4937 txg = spa_vdev_enter(spa);
4938
4939 /* clear the log and flush everything up to now */
4940 activate_slog = spa_passivate_log(spa);
4941 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4942 error = spa_offline_log(spa);
4943 txg = spa_vdev_config_enter(spa);
4944
4945 if (activate_slog)
4946 spa_activate_log(spa);
4947
4948 if (error != 0)
4949 return (spa_vdev_exit(spa, NULL, txg, error));
4950
4951 /* check new spa name before going any further */
4952 if (spa_lookup(newname) != NULL)
4953 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4954
4955 /*
4956 * scan through all the children to ensure they're all mirrors
4957 */
4958 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4959 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4960 &children) != 0)
4961 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4962
4963 /* first, check to ensure we've got the right child count */
4964 rvd = spa->spa_root_vdev;
4965 lastlog = 0;
4966 for (c = 0; c < rvd->vdev_children; c++) {
4967 vdev_t *vd = rvd->vdev_child[c];
4968
4969 /* don't count the holes & logs as children */
4970 if (vd->vdev_islog || vd->vdev_ishole) {
4971 if (lastlog == 0)
4972 lastlog = c;
4973 continue;
4974 }
4975
4976 lastlog = 0;
4977 }
4978 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4979 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4980
4981 /* next, ensure no spare or cache devices are part of the split */
4982 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4983 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4984 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4985
4986 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4987 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4988
4989 /* then, loop over each vdev and validate it */
4990 for (c = 0; c < children; c++) {
4991 uint64_t is_hole = 0;
4992
4993 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4994 &is_hole);
4995
4996 if (is_hole != 0) {
4997 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4998 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4999 continue;
5000 } else {
5001 error = SET_ERROR(EINVAL);
5002 break;
5003 }
5004 }
5005
5006 /* which disk is going to be split? */
5007 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5008 &glist[c]) != 0) {
5009 error = SET_ERROR(EINVAL);
5010 break;
5011 }
5012
5013 /* look it up in the spa */
5014 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5015 if (vml[c] == NULL) {
5016 error = SET_ERROR(ENODEV);
5017 break;
5018 }
5019
5020 /* make sure there's nothing stopping the split */
5021 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5022 vml[c]->vdev_islog ||
5023 vml[c]->vdev_ishole ||
5024 vml[c]->vdev_isspare ||
5025 vml[c]->vdev_isl2cache ||
5026 !vdev_writeable(vml[c]) ||
5027 vml[c]->vdev_children != 0 ||
5028 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5029 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5030 error = SET_ERROR(EINVAL);
5031 break;
5032 }
5033
5034 if (vdev_dtl_required(vml[c])) {
5035 error = SET_ERROR(EBUSY);
5036 break;
5037 }
5038
5039 /* we need certain info from the top level */
5040 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5041 vml[c]->vdev_top->vdev_ms_array) == 0);
5042 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5043 vml[c]->vdev_top->vdev_ms_shift) == 0);
5044 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5045 vml[c]->vdev_top->vdev_asize) == 0);
5046 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5047 vml[c]->vdev_top->vdev_ashift) == 0);
5048 }
5049
5050 if (error != 0) {
5051 kmem_free(vml, children * sizeof (vdev_t *));
5052 kmem_free(glist, children * sizeof (uint64_t));
5053 return (spa_vdev_exit(spa, NULL, txg, error));
5054 }
5055
5056 /* stop writers from using the disks */
5057 for (c = 0; c < children; c++) {
5058 if (vml[c] != NULL)
5059 vml[c]->vdev_offline = B_TRUE;
5060 }
5061 vdev_reopen(spa->spa_root_vdev);
5062
5063 /*
5064 * Temporarily record the splitting vdevs in the spa config. This
5065 * will disappear once the config is regenerated.
5066 */
5067 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5068 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5069 glist, children) == 0);
5070 kmem_free(glist, children * sizeof (uint64_t));
5071
5072 mutex_enter(&spa->spa_props_lock);
5073 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5074 nvl) == 0);
5075 mutex_exit(&spa->spa_props_lock);
5076 spa->spa_config_splitting = nvl;
5077 vdev_config_dirty(spa->spa_root_vdev);
5078
5079 /* configure and create the new pool */
5080 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5081 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5082 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5083 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5084 spa_version(spa)) == 0);
5085 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5086 spa->spa_config_txg) == 0);
5087 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5088 spa_generate_guid(NULL)) == 0);
5089 (void) nvlist_lookup_string(props,
5090 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5091
5092 /* add the new pool to the namespace */
5093 newspa = spa_add(newname, config, altroot);
5094 newspa->spa_config_txg = spa->spa_config_txg;
5095 spa_set_log_state(newspa, SPA_LOG_CLEAR);
5096
5097 /* release the spa config lock, retaining the namespace lock */
5098 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5099
5100 if (zio_injection_enabled)
5101 zio_handle_panic_injection(spa, FTAG, 1);
5102
5103 spa_activate(newspa, spa_mode_global);
5104 spa_async_suspend(newspa);
5105
5106 /* create the new pool from the disks of the original pool */
5107 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5108 if (error)
5109 goto out;
5110
5111 /* if that worked, generate a real config for the new pool */
5112 if (newspa->spa_root_vdev != NULL) {
5113 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5114 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5115 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5116 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5117 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5118 B_TRUE));
5119 }
5120
5121 /* set the props */
5122 if (props != NULL) {
5123 spa_configfile_set(newspa, props, B_FALSE);
5124 error = spa_prop_set(newspa, props);
5125 if (error)
5126 goto out;
5127 }
5128
5129 /* flush everything */
5130 txg = spa_vdev_config_enter(newspa);
5131 vdev_config_dirty(newspa->spa_root_vdev);
5132 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5133
5134 if (zio_injection_enabled)
5135 zio_handle_panic_injection(spa, FTAG, 2);
5136
5137 spa_async_resume(newspa);
5138
5139 /* finally, update the original pool's config */
5140 txg = spa_vdev_config_enter(spa);
5141 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5142 error = dmu_tx_assign(tx, TXG_WAIT);
5143 if (error != 0)
5144 dmu_tx_abort(tx);
5145 for (c = 0; c < children; c++) {
5146 if (vml[c] != NULL) {
5147 vdev_split(vml[c]);
5148 if (error == 0)
5149 spa_history_log_internal(spa, "detach", tx,
5150 "vdev=%s", vml[c]->vdev_path);
5151 vdev_free(vml[c]);
5152 }
5153 }
5154 vdev_config_dirty(spa->spa_root_vdev);
5155 spa->spa_config_splitting = NULL;
5156 nvlist_free(nvl);
5157 if (error == 0)
5158 dmu_tx_commit(tx);
5159 (void) spa_vdev_exit(spa, NULL, txg, 0);
5160
5161 if (zio_injection_enabled)
5162 zio_handle_panic_injection(spa, FTAG, 3);
5163
5164 /* split is complete; log a history record */
5165 spa_history_log_internal(newspa, "split", NULL,
5166 "from pool %s", spa_name(spa));
5167
5168 kmem_free(vml, children * sizeof (vdev_t *));
5169
5170 /* if we're not going to mount the filesystems in userland, export */
5171 if (exp)
5172 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5173 B_FALSE, B_FALSE);
5174
5175 return (error);
5176
5177 out:
5178 spa_unload(newspa);
5179 spa_deactivate(newspa);
5180 spa_remove(newspa);
5181
5182 txg = spa_vdev_config_enter(spa);
5183
5184 /* re-online all offlined disks */
5185 for (c = 0; c < children; c++) {
5186 if (vml[c] != NULL)
5187 vml[c]->vdev_offline = B_FALSE;
5188 }
5189 vdev_reopen(spa->spa_root_vdev);
5190
5191 nvlist_free(spa->spa_config_splitting);
5192 spa->spa_config_splitting = NULL;
5193 (void) spa_vdev_exit(spa, NULL, txg, error);
5194
5195 kmem_free(vml, children * sizeof (vdev_t *));
5196 return (error);
5197 }
5198
5199 static nvlist_t *
spa_nvlist_lookup_by_guid(nvlist_t ** nvpp,int count,uint64_t target_guid)5200 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5201 {
5202 for (int i = 0; i < count; i++) {
5203 uint64_t guid;
5204
5205 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5206 &guid) == 0);
5207
5208 if (guid == target_guid)
5209 return (nvpp[i]);
5210 }
5211
5212 return (NULL);
5213 }
5214
5215 static void
spa_vdev_remove_aux(nvlist_t * config,char * name,nvlist_t ** dev,int count,nvlist_t * dev_to_remove)5216 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5217 nvlist_t *dev_to_remove)
5218 {
5219 nvlist_t **newdev = NULL;
5220
5221 if (count > 1)
5222 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5223
5224 for (int i = 0, j = 0; i < count; i++) {
5225 if (dev[i] == dev_to_remove)
5226 continue;
5227 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5228 }
5229
5230 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5231 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5232
5233 for (int i = 0; i < count - 1; i++)
5234 nvlist_free(newdev[i]);
5235
5236 if (count > 1)
5237 kmem_free(newdev, (count - 1) * sizeof (void *));
5238 }
5239
5240 /*
5241 * Evacuate the device.
5242 */
5243 static int
spa_vdev_remove_evacuate(spa_t * spa,vdev_t * vd)5244 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5245 {
5246 uint64_t txg;
5247 int error = 0;
5248
5249 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5250 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5251 ASSERT(vd == vd->vdev_top);
5252
5253 /*
5254 * Evacuate the device. We don't hold the config lock as writer
5255 * since we need to do I/O but we do keep the
5256 * spa_namespace_lock held. Once this completes the device
5257 * should no longer have any blocks allocated on it.
5258 */
5259 if (vd->vdev_islog) {
5260 if (vd->vdev_stat.vs_alloc != 0)
5261 error = spa_offline_log(spa);
5262 } else {
5263 error = SET_ERROR(ENOTSUP);
5264 }
5265
5266 if (error)
5267 return (error);
5268
5269 /*
5270 * The evacuation succeeded. Remove any remaining MOS metadata
5271 * associated with this vdev, and wait for these changes to sync.
5272 */
5273 ASSERT0(vd->vdev_stat.vs_alloc);
5274 txg = spa_vdev_config_enter(spa);
5275 vd->vdev_removing = B_TRUE;
5276 vdev_dirty_leaves(vd, VDD_DTL, txg);
5277 vdev_config_dirty(vd);
5278 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5279
5280 return (0);
5281 }
5282
5283 /*
5284 * Complete the removal by cleaning up the namespace.
5285 */
5286 static void
spa_vdev_remove_from_namespace(spa_t * spa,vdev_t * vd)5287 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5288 {
5289 vdev_t *rvd = spa->spa_root_vdev;
5290 uint64_t id = vd->vdev_id;
5291 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5292
5293 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5294 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5295 ASSERT(vd == vd->vdev_top);
5296
5297 /*
5298 * Only remove any devices which are empty.
5299 */
5300 if (vd->vdev_stat.vs_alloc != 0)
5301 return;
5302
5303 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5304
5305 if (list_link_active(&vd->vdev_state_dirty_node))
5306 vdev_state_clean(vd);
5307 if (list_link_active(&vd->vdev_config_dirty_node))
5308 vdev_config_clean(vd);
5309
5310 vdev_free(vd);
5311
5312 if (last_vdev) {
5313 vdev_compact_children(rvd);
5314 } else {
5315 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5316 vdev_add_child(rvd, vd);
5317 }
5318 vdev_config_dirty(rvd);
5319
5320 /*
5321 * Reassess the health of our root vdev.
5322 */
5323 vdev_reopen(rvd);
5324 }
5325
5326 /*
5327 * Remove a device from the pool -
5328 *
5329 * Removing a device from the vdev namespace requires several steps
5330 * and can take a significant amount of time. As a result we use
5331 * the spa_vdev_config_[enter/exit] functions which allow us to
5332 * grab and release the spa_config_lock while still holding the namespace
5333 * lock. During each step the configuration is synced out.
5334 *
5335 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5336 * devices.
5337 */
5338 int
spa_vdev_remove(spa_t * spa,uint64_t guid,boolean_t unspare)5339 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5340 {
5341 vdev_t *vd;
5342 metaslab_group_t *mg;
5343 nvlist_t **spares, **l2cache, *nv;
5344 uint64_t txg = 0;
5345 uint_t nspares, nl2cache;
5346 int error = 0;
5347 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5348
5349 ASSERT(spa_writeable(spa));
5350
5351 if (!locked)
5352 txg = spa_vdev_enter(spa);
5353
5354 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5355
5356 if (spa->spa_spares.sav_vdevs != NULL &&
5357 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5358 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5359 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5360 /*
5361 * Only remove the hot spare if it's not currently in use
5362 * in this pool.
5363 */
5364 if (vd == NULL || unspare) {
5365 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5366 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5367 spa_load_spares(spa);
5368 spa->spa_spares.sav_sync = B_TRUE;
5369 } else {
5370 error = SET_ERROR(EBUSY);
5371 }
5372 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5373 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5374 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5375 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5376 /*
5377 * Cache devices can always be removed.
5378 */
5379 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5380 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5381 spa_load_l2cache(spa);
5382 spa->spa_l2cache.sav_sync = B_TRUE;
5383 } else if (vd != NULL && vd->vdev_islog) {
5384 ASSERT(!locked);
5385 ASSERT(vd == vd->vdev_top);
5386
5387 mg = vd->vdev_mg;
5388
5389 /*
5390 * Stop allocating from this vdev.
5391 */
5392 metaslab_group_passivate(mg);
5393
5394 /*
5395 * Wait for the youngest allocations and frees to sync,
5396 * and then wait for the deferral of those frees to finish.
5397 */
5398 spa_vdev_config_exit(spa, NULL,
5399 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5400
5401 /*
5402 * Attempt to evacuate the vdev.
5403 */
5404 error = spa_vdev_remove_evacuate(spa, vd);
5405
5406 txg = spa_vdev_config_enter(spa);
5407
5408 /*
5409 * If we couldn't evacuate the vdev, unwind.
5410 */
5411 if (error) {
5412 metaslab_group_activate(mg);
5413 return (spa_vdev_exit(spa, NULL, txg, error));
5414 }
5415
5416 /*
5417 * Clean up the vdev namespace.
5418 */
5419 spa_vdev_remove_from_namespace(spa, vd);
5420
5421 } else if (vd != NULL) {
5422 /*
5423 * Normal vdevs cannot be removed (yet).
5424 */
5425 error = SET_ERROR(ENOTSUP);
5426 } else {
5427 /*
5428 * There is no vdev of any kind with the specified guid.
5429 */
5430 error = SET_ERROR(ENOENT);
5431 }
5432
5433 if (!locked)
5434 return (spa_vdev_exit(spa, NULL, txg, error));
5435
5436 return (error);
5437 }
5438
5439 /*
5440 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5441 * currently spared, so we can detach it.
5442 */
5443 static vdev_t *
spa_vdev_resilver_done_hunt(vdev_t * vd)5444 spa_vdev_resilver_done_hunt(vdev_t *vd)
5445 {
5446 vdev_t *newvd, *oldvd;
5447
5448 for (int c = 0; c < vd->vdev_children; c++) {
5449 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5450 if (oldvd != NULL)
5451 return (oldvd);
5452 }
5453
5454 /*
5455 * Check for a completed replacement. We always consider the first
5456 * vdev in the list to be the oldest vdev, and the last one to be
5457 * the newest (see spa_vdev_attach() for how that works). In
5458 * the case where the newest vdev is faulted, we will not automatically
5459 * remove it after a resilver completes. This is OK as it will require
5460 * user intervention to determine which disk the admin wishes to keep.
5461 */
5462 if (vd->vdev_ops == &vdev_replacing_ops) {
5463 ASSERT(vd->vdev_children > 1);
5464
5465 newvd = vd->vdev_child[vd->vdev_children - 1];
5466 oldvd = vd->vdev_child[0];
5467
5468 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5469 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5470 !vdev_dtl_required(oldvd))
5471 return (oldvd);
5472 }
5473
5474 /*
5475 * Check for a completed resilver with the 'unspare' flag set.
5476 */
5477 if (vd->vdev_ops == &vdev_spare_ops) {
5478 vdev_t *first = vd->vdev_child[0];
5479 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5480
5481 if (last->vdev_unspare) {
5482 oldvd = first;
5483 newvd = last;
5484 } else if (first->vdev_unspare) {
5485 oldvd = last;
5486 newvd = first;
5487 } else {
5488 oldvd = NULL;
5489 }
5490
5491 if (oldvd != NULL &&
5492 vdev_dtl_empty(newvd, DTL_MISSING) &&
5493 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5494 !vdev_dtl_required(oldvd))
5495 return (oldvd);
5496
5497 /*
5498 * If there are more than two spares attached to a disk,
5499 * and those spares are not required, then we want to
5500 * attempt to free them up now so that they can be used
5501 * by other pools. Once we're back down to a single
5502 * disk+spare, we stop removing them.
5503 */
5504 if (vd->vdev_children > 2) {
5505 newvd = vd->vdev_child[1];
5506
5507 if (newvd->vdev_isspare && last->vdev_isspare &&
5508 vdev_dtl_empty(last, DTL_MISSING) &&
5509 vdev_dtl_empty(last, DTL_OUTAGE) &&
5510 !vdev_dtl_required(newvd))
5511 return (newvd);
5512 }
5513 }
5514
5515 return (NULL);
5516 }
5517
5518 static void
spa_vdev_resilver_done(spa_t * spa)5519 spa_vdev_resilver_done(spa_t *spa)
5520 {
5521 vdev_t *vd, *pvd, *ppvd;
5522 uint64_t guid, sguid, pguid, ppguid;
5523
5524 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5525
5526 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5527 pvd = vd->vdev_parent;
5528 ppvd = pvd->vdev_parent;
5529 guid = vd->vdev_guid;
5530 pguid = pvd->vdev_guid;
5531 ppguid = ppvd->vdev_guid;
5532 sguid = 0;
5533 /*
5534 * If we have just finished replacing a hot spared device, then
5535 * we need to detach the parent's first child (the original hot
5536 * spare) as well.
5537 */
5538 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5539 ppvd->vdev_children == 2) {
5540 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5541 sguid = ppvd->vdev_child[1]->vdev_guid;
5542 }
5543 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5544
5545 spa_config_exit(spa, SCL_ALL, FTAG);
5546 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5547 return;
5548 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5549 return;
5550 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5551 }
5552
5553 spa_config_exit(spa, SCL_ALL, FTAG);
5554 }
5555
5556 /*
5557 * Update the stored path or FRU for this vdev.
5558 */
5559 int
spa_vdev_set_common(spa_t * spa,uint64_t guid,const char * value,boolean_t ispath)5560 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5561 boolean_t ispath)
5562 {
5563 vdev_t *vd;
5564 boolean_t sync = B_FALSE;
5565
5566 ASSERT(spa_writeable(spa));
5567
5568 spa_vdev_state_enter(spa, SCL_ALL);
5569
5570 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5571 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5572
5573 if (!vd->vdev_ops->vdev_op_leaf)
5574 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5575
5576 if (ispath) {
5577 if (strcmp(value, vd->vdev_path) != 0) {
5578 spa_strfree(vd->vdev_path);
5579 vd->vdev_path = spa_strdup(value);
5580 sync = B_TRUE;
5581 }
5582 } else {
5583 if (vd->vdev_fru == NULL) {
5584 vd->vdev_fru = spa_strdup(value);
5585 sync = B_TRUE;
5586 } else if (strcmp(value, vd->vdev_fru) != 0) {
5587 spa_strfree(vd->vdev_fru);
5588 vd->vdev_fru = spa_strdup(value);
5589 sync = B_TRUE;
5590 }
5591 }
5592
5593 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5594 }
5595
5596 int
spa_vdev_setpath(spa_t * spa,uint64_t guid,const char * newpath)5597 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5598 {
5599 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5600 }
5601
5602 int
spa_vdev_setfru(spa_t * spa,uint64_t guid,const char * newfru)5603 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5604 {
5605 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5606 }
5607
5608 /*
5609 * ==========================================================================
5610 * SPA Scanning
5611 * ==========================================================================
5612 */
5613
5614 int
spa_scan_stop(spa_t * spa)5615 spa_scan_stop(spa_t *spa)
5616 {
5617 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5618 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5619 return (SET_ERROR(EBUSY));
5620 return (dsl_scan_cancel(spa->spa_dsl_pool));
5621 }
5622
5623 int
spa_scan(spa_t * spa,pool_scan_func_t func)5624 spa_scan(spa_t *spa, pool_scan_func_t func)
5625 {
5626 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5627
5628 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5629 return (SET_ERROR(ENOTSUP));
5630
5631 /*
5632 * If a resilver was requested, but there is no DTL on a
5633 * writeable leaf device, we have nothing to do.
5634 */
5635 if (func == POOL_SCAN_RESILVER &&
5636 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5637 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5638 return (0);
5639 }
5640
5641 return (dsl_scan(spa->spa_dsl_pool, func));
5642 }
5643
5644 /*
5645 * ==========================================================================
5646 * SPA async task processing
5647 * ==========================================================================
5648 */
5649
5650 static void
spa_async_remove(spa_t * spa,vdev_t * vd)5651 spa_async_remove(spa_t *spa, vdev_t *vd)
5652 {
5653 if (vd->vdev_remove_wanted) {
5654 vd->vdev_remove_wanted = B_FALSE;
5655 vd->vdev_delayed_close = B_FALSE;
5656 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5657
5658 /*
5659 * We want to clear the stats, but we don't want to do a full
5660 * vdev_clear() as that will cause us to throw away
5661 * degraded/faulted state as well as attempt to reopen the
5662 * device, all of which is a waste.
5663 */
5664 vd->vdev_stat.vs_read_errors = 0;
5665 vd->vdev_stat.vs_write_errors = 0;
5666 vd->vdev_stat.vs_checksum_errors = 0;
5667
5668 vdev_state_dirty(vd->vdev_top);
5669 }
5670
5671 for (int c = 0; c < vd->vdev_children; c++)
5672 spa_async_remove(spa, vd->vdev_child[c]);
5673 }
5674
5675 static void
spa_async_probe(spa_t * spa,vdev_t * vd)5676 spa_async_probe(spa_t *spa, vdev_t *vd)
5677 {
5678 if (vd->vdev_probe_wanted) {
5679 vd->vdev_probe_wanted = B_FALSE;
5680 vdev_reopen(vd); /* vdev_open() does the actual probe */
5681 }
5682
5683 for (int c = 0; c < vd->vdev_children; c++)
5684 spa_async_probe(spa, vd->vdev_child[c]);
5685 }
5686
5687 static void
spa_async_autoexpand(spa_t * spa,vdev_t * vd)5688 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5689 {
5690 sysevent_id_t eid;
5691 nvlist_t *attr;
5692 char *physpath;
5693
5694 if (!spa->spa_autoexpand)
5695 return;
5696
5697 for (int c = 0; c < vd->vdev_children; c++) {
5698 vdev_t *cvd = vd->vdev_child[c];
5699 spa_async_autoexpand(spa, cvd);
5700 }
5701
5702 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5703 return;
5704
5705 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5706 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5707
5708 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5709 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5710
5711 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5712 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5713
5714 nvlist_free(attr);
5715 kmem_free(physpath, MAXPATHLEN);
5716 }
5717
5718 static void
spa_async_thread(spa_t * spa)5719 spa_async_thread(spa_t *spa)
5720 {
5721 int tasks;
5722
5723 ASSERT(spa->spa_sync_on);
5724
5725 mutex_enter(&spa->spa_async_lock);
5726 tasks = spa->spa_async_tasks;
5727 spa->spa_async_tasks = 0;
5728 mutex_exit(&spa->spa_async_lock);
5729
5730 /*
5731 * See if the config needs to be updated.
5732 */
5733 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5734 uint64_t old_space, new_space;
5735
5736 mutex_enter(&spa_namespace_lock);
5737 old_space = metaslab_class_get_space(spa_normal_class(spa));
5738 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5739 new_space = metaslab_class_get_space(spa_normal_class(spa));
5740 mutex_exit(&spa_namespace_lock);
5741
5742 /*
5743 * If the pool grew as a result of the config update,
5744 * then log an internal history event.
5745 */
5746 if (new_space != old_space) {
5747 spa_history_log_internal(spa, "vdev online", NULL,
5748 "pool '%s' size: %llu(+%llu)",
5749 spa_name(spa), new_space, new_space - old_space);
5750 }
5751 }
5752
5753 /*
5754 * See if any devices need to be marked REMOVED.
5755 */
5756 if (tasks & SPA_ASYNC_REMOVE) {
5757 spa_vdev_state_enter(spa, SCL_NONE);
5758 spa_async_remove(spa, spa->spa_root_vdev);
5759 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5760 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5761 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5762 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5763 (void) spa_vdev_state_exit(spa, NULL, 0);
5764 }
5765
5766 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5767 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5768 spa_async_autoexpand(spa, spa->spa_root_vdev);
5769 spa_config_exit(spa, SCL_CONFIG, FTAG);
5770 }
5771
5772 /*
5773 * See if any devices need to be probed.
5774 */
5775 if (tasks & SPA_ASYNC_PROBE) {
5776 spa_vdev_state_enter(spa, SCL_NONE);
5777 spa_async_probe(spa, spa->spa_root_vdev);
5778 (void) spa_vdev_state_exit(spa, NULL, 0);
5779 }
5780
5781 /*
5782 * If any devices are done replacing, detach them.
5783 */
5784 if (tasks & SPA_ASYNC_RESILVER_DONE)
5785 spa_vdev_resilver_done(spa);
5786
5787 /*
5788 * Kick off a resilver.
5789 */
5790 if (tasks & SPA_ASYNC_RESILVER)
5791 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5792
5793 /*
5794 * Kick off L2 cache rebuilding.
5795 */
5796 if (tasks & SPA_ASYNC_L2CACHE_REBUILD)
5797 l2arc_spa_rebuild_start(spa);
5798
5799 /*
5800 * Let the world know that we're done.
5801 */
5802 mutex_enter(&spa->spa_async_lock);
5803 spa->spa_async_thread = NULL;
5804 cv_broadcast(&spa->spa_async_cv);
5805 mutex_exit(&spa->spa_async_lock);
5806 thread_exit();
5807 }
5808
5809 void
spa_async_suspend(spa_t * spa)5810 spa_async_suspend(spa_t *spa)
5811 {
5812 mutex_enter(&spa->spa_async_lock);
5813 spa->spa_async_suspended++;
5814 while (spa->spa_async_thread != NULL)
5815 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5816 mutex_exit(&spa->spa_async_lock);
5817 }
5818
5819 void
spa_async_resume(spa_t * spa)5820 spa_async_resume(spa_t *spa)
5821 {
5822 mutex_enter(&spa->spa_async_lock);
5823 ASSERT(spa->spa_async_suspended != 0);
5824 spa->spa_async_suspended--;
5825 mutex_exit(&spa->spa_async_lock);
5826 }
5827
5828 static boolean_t
spa_async_tasks_pending(spa_t * spa)5829 spa_async_tasks_pending(spa_t *spa)
5830 {
5831 uint_t non_config_tasks;
5832 uint_t config_task;
5833 boolean_t config_task_suspended;
5834
5835 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5836 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5837 if (spa->spa_ccw_fail_time == 0) {
5838 config_task_suspended = B_FALSE;
5839 } else {
5840 config_task_suspended =
5841 (gethrtime() - spa->spa_ccw_fail_time) <
5842 (zfs_ccw_retry_interval * NANOSEC);
5843 }
5844
5845 return (non_config_tasks || (config_task && !config_task_suspended));
5846 }
5847
5848 static void
spa_async_dispatch(spa_t * spa)5849 spa_async_dispatch(spa_t *spa)
5850 {
5851 mutex_enter(&spa->spa_async_lock);
5852 if (spa_async_tasks_pending(spa) &&
5853 !spa->spa_async_suspended &&
5854 spa->spa_async_thread == NULL &&
5855 rootdir != NULL)
5856 spa->spa_async_thread = thread_create(NULL, 0,
5857 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5858 mutex_exit(&spa->spa_async_lock);
5859 }
5860
5861 void
spa_async_request(spa_t * spa,int task)5862 spa_async_request(spa_t *spa, int task)
5863 {
5864 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5865 mutex_enter(&spa->spa_async_lock);
5866 spa->spa_async_tasks |= task;
5867 mutex_exit(&spa->spa_async_lock);
5868 }
5869
5870 /*
5871 * ==========================================================================
5872 * SPA syncing routines
5873 * ==========================================================================
5874 */
5875
5876 static int
bpobj_enqueue_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)5877 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5878 {
5879 bpobj_t *bpo = arg;
5880 bpobj_enqueue(bpo, bp, tx);
5881 return (0);
5882 }
5883
5884 static int
spa_free_sync_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)5885 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5886 {
5887 zio_t *zio = arg;
5888
5889 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5890 zio->io_flags));
5891 return (0);
5892 }
5893
5894 /*
5895 * Note: this simple function is not inlined to make it easier to dtrace the
5896 * amount of time spent syncing frees.
5897 */
5898 static void
spa_sync_frees(spa_t * spa,bplist_t * bpl,dmu_tx_t * tx)5899 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5900 {
5901 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5902 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5903 VERIFY(zio_wait(zio) == 0);
5904 }
5905
5906 /*
5907 * Note: this simple function is not inlined to make it easier to dtrace the
5908 * amount of time spent syncing deferred frees.
5909 */
5910 static void
spa_sync_deferred_frees(spa_t * spa,dmu_tx_t * tx)5911 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5912 {
5913 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5914 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5915 spa_free_sync_cb, zio, tx), ==, 0);
5916 VERIFY0(zio_wait(zio));
5917 }
5918
5919
5920 static void
spa_sync_nvlist(spa_t * spa,uint64_t obj,nvlist_t * nv,dmu_tx_t * tx)5921 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5922 {
5923 char *packed = NULL;
5924 size_t bufsize;
5925 size_t nvsize = 0;
5926 dmu_buf_t *db;
5927
5928 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5929
5930 /*
5931 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5932 * information. This avoids the dmu_buf_will_dirty() path and
5933 * saves us a pre-read to get data we don't actually care about.
5934 */
5935 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5936 packed = kmem_alloc(bufsize, KM_SLEEP);
5937
5938 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5939 KM_SLEEP) == 0);
5940 bzero(packed + nvsize, bufsize - nvsize);
5941
5942 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5943
5944 kmem_free(packed, bufsize);
5945
5946 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5947 dmu_buf_will_dirty(db, tx);
5948 *(uint64_t *)db->db_data = nvsize;
5949 dmu_buf_rele(db, FTAG);
5950 }
5951
5952 static void
spa_sync_aux_dev(spa_t * spa,spa_aux_vdev_t * sav,dmu_tx_t * tx,const char * config,const char * entry)5953 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5954 const char *config, const char *entry)
5955 {
5956 nvlist_t *nvroot;
5957 nvlist_t **list;
5958 int i;
5959
5960 if (!sav->sav_sync)
5961 return;
5962
5963 /*
5964 * Update the MOS nvlist describing the list of available devices.
5965 * spa_validate_aux() will have already made sure this nvlist is
5966 * valid and the vdevs are labeled appropriately.
5967 */
5968 if (sav->sav_object == 0) {
5969 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5970 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5971 sizeof (uint64_t), tx);
5972 VERIFY(zap_update(spa->spa_meta_objset,
5973 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5974 &sav->sav_object, tx) == 0);
5975 }
5976
5977 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5978 if (sav->sav_count == 0) {
5979 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5980 } else {
5981 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5982 for (i = 0; i < sav->sav_count; i++)
5983 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5984 B_FALSE, VDEV_CONFIG_L2CACHE);
5985 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5986 sav->sav_count) == 0);
5987 for (i = 0; i < sav->sav_count; i++)
5988 nvlist_free(list[i]);
5989 kmem_free(list, sav->sav_count * sizeof (void *));
5990 }
5991
5992 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5993 nvlist_free(nvroot);
5994
5995 sav->sav_sync = B_FALSE;
5996 }
5997
5998 static void
spa_sync_config_object(spa_t * spa,dmu_tx_t * tx)5999 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6000 {
6001 nvlist_t *config;
6002
6003 if (list_is_empty(&spa->spa_config_dirty_list))
6004 return;
6005
6006 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6007
6008 config = spa_config_generate(spa, spa->spa_root_vdev,
6009 dmu_tx_get_txg(tx), B_FALSE);
6010
6011 /*
6012 * If we're upgrading the spa version then make sure that
6013 * the config object gets updated with the correct version.
6014 */
6015 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6016 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6017 spa->spa_uberblock.ub_version);
6018
6019 spa_config_exit(spa, SCL_STATE, FTAG);
6020
6021 nvlist_free(spa->spa_config_syncing);
6022 spa->spa_config_syncing = config;
6023
6024 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6025 }
6026
6027 static void
spa_sync_version(void * arg,dmu_tx_t * tx)6028 spa_sync_version(void *arg, dmu_tx_t *tx)
6029 {
6030 uint64_t *versionp = arg;
6031 uint64_t version = *versionp;
6032 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6033
6034 /*
6035 * Setting the version is special cased when first creating the pool.
6036 */
6037 ASSERT(tx->tx_txg != TXG_INITIAL);
6038
6039 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6040 ASSERT(version >= spa_version(spa));
6041
6042 spa->spa_uberblock.ub_version = version;
6043 vdev_config_dirty(spa->spa_root_vdev);
6044 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6045 }
6046
6047 /*
6048 * Set zpool properties.
6049 */
6050 static void
spa_sync_props(void * arg,dmu_tx_t * tx)6051 spa_sync_props(void *arg, dmu_tx_t *tx)
6052 {
6053 nvlist_t *nvp = arg;
6054 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6055 objset_t *mos = spa->spa_meta_objset;
6056 nvpair_t *elem = NULL;
6057
6058 mutex_enter(&spa->spa_props_lock);
6059
6060 while ((elem = nvlist_next_nvpair(nvp, elem))) {
6061 uint64_t intval;
6062 char *strval, *fname;
6063 zpool_prop_t prop;
6064 const char *propname;
6065 zprop_type_t proptype;
6066 spa_feature_t fid;
6067
6068 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6069 case ZPROP_INVAL:
6070 /*
6071 * We checked this earlier in spa_prop_validate().
6072 */
6073 ASSERT(zpool_prop_feature(nvpair_name(elem)));
6074
6075 fname = strchr(nvpair_name(elem), '@') + 1;
6076 VERIFY0(zfeature_lookup_name(fname, &fid));
6077
6078 spa_feature_enable(spa, fid, tx);
6079 spa_history_log_internal(spa, "set", tx,
6080 "%s=enabled", nvpair_name(elem));
6081 break;
6082
6083 case ZPOOL_PROP_VERSION:
6084 intval = fnvpair_value_uint64(elem);
6085 /*
6086 * The version is synced seperatly before other
6087 * properties and should be correct by now.
6088 */
6089 ASSERT3U(spa_version(spa), >=, intval);
6090 break;
6091
6092 case ZPOOL_PROP_ALTROOT:
6093 /*
6094 * 'altroot' is a non-persistent property. It should
6095 * have been set temporarily at creation or import time.
6096 */
6097 ASSERT(spa->spa_root != NULL);
6098 break;
6099
6100 case ZPOOL_PROP_READONLY:
6101 case ZPOOL_PROP_CACHEFILE:
6102 /*
6103 * 'readonly' and 'cachefile' are also non-persisitent
6104 * properties.
6105 */
6106 break;
6107 case ZPOOL_PROP_COMMENT:
6108 strval = fnvpair_value_string(elem);
6109 if (spa->spa_comment != NULL)
6110 spa_strfree(spa->spa_comment);
6111 spa->spa_comment = spa_strdup(strval);
6112 /*
6113 * We need to dirty the configuration on all the vdevs
6114 * so that their labels get updated. It's unnecessary
6115 * to do this for pool creation since the vdev's
6116 * configuratoin has already been dirtied.
6117 */
6118 if (tx->tx_txg != TXG_INITIAL)
6119 vdev_config_dirty(spa->spa_root_vdev);
6120 spa_history_log_internal(spa, "set", tx,
6121 "%s=%s", nvpair_name(elem), strval);
6122 break;
6123 default:
6124 /*
6125 * Set pool property values in the poolprops mos object.
6126 */
6127 if (spa->spa_pool_props_object == 0) {
6128 spa->spa_pool_props_object =
6129 zap_create_link(mos, DMU_OT_POOL_PROPS,
6130 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6131 tx);
6132 }
6133
6134 /* normalize the property name */
6135 propname = zpool_prop_to_name(prop);
6136 proptype = zpool_prop_get_type(prop);
6137
6138 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6139 ASSERT(proptype == PROP_TYPE_STRING);
6140 strval = fnvpair_value_string(elem);
6141 VERIFY0(zap_update(mos,
6142 spa->spa_pool_props_object, propname,
6143 1, strlen(strval) + 1, strval, tx));
6144 spa_history_log_internal(spa, "set", tx,
6145 "%s=%s", nvpair_name(elem), strval);
6146 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6147 intval = fnvpair_value_uint64(elem);
6148
6149 if (proptype == PROP_TYPE_INDEX) {
6150 const char *unused;
6151 VERIFY0(zpool_prop_index_to_string(
6152 prop, intval, &unused));
6153 }
6154 VERIFY0(zap_update(mos,
6155 spa->spa_pool_props_object, propname,
6156 8, 1, &intval, tx));
6157 spa_history_log_internal(spa, "set", tx,
6158 "%s=%lld", nvpair_name(elem), intval);
6159 } else {
6160 ASSERT(0); /* not allowed */
6161 }
6162
6163 switch (prop) {
6164 case ZPOOL_PROP_DELEGATION:
6165 spa->spa_delegation = intval;
6166 break;
6167 case ZPOOL_PROP_BOOTFS:
6168 spa->spa_bootfs = intval;
6169 break;
6170 case ZPOOL_PROP_FAILUREMODE:
6171 spa->spa_failmode = intval;
6172 break;
6173 case ZPOOL_PROP_AUTOEXPAND:
6174 spa->spa_autoexpand = intval;
6175 if (tx->tx_txg != TXG_INITIAL)
6176 spa_async_request(spa,
6177 SPA_ASYNC_AUTOEXPAND);
6178 break;
6179 case ZPOOL_PROP_DEDUPDITTO:
6180 spa->spa_dedup_ditto = intval;
6181 break;
6182 default:
6183 break;
6184 }
6185 }
6186
6187 }
6188
6189 mutex_exit(&spa->spa_props_lock);
6190 }
6191
6192 /*
6193 * Perform one-time upgrade on-disk changes. spa_version() does not
6194 * reflect the new version this txg, so there must be no changes this
6195 * txg to anything that the upgrade code depends on after it executes.
6196 * Therefore this must be called after dsl_pool_sync() does the sync
6197 * tasks.
6198 */
6199 static void
spa_sync_upgrades(spa_t * spa,dmu_tx_t * tx)6200 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6201 {
6202 dsl_pool_t *dp = spa->spa_dsl_pool;
6203
6204 ASSERT(spa->spa_sync_pass == 1);
6205
6206 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6207
6208 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6209 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6210 dsl_pool_create_origin(dp, tx);
6211
6212 /* Keeping the origin open increases spa_minref */
6213 spa->spa_minref += 3;
6214 }
6215
6216 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6217 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6218 dsl_pool_upgrade_clones(dp, tx);
6219 }
6220
6221 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6222 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6223 dsl_pool_upgrade_dir_clones(dp, tx);
6224
6225 /* Keeping the freedir open increases spa_minref */
6226 spa->spa_minref += 3;
6227 }
6228
6229 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6230 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6231 spa_feature_create_zap_objects(spa, tx);
6232 }
6233
6234 /*
6235 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6236 * when possibility to use lz4 compression for metadata was added
6237 * Old pools that have this feature enabled must be upgraded to have
6238 * this feature active
6239 */
6240 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6241 boolean_t lz4_en = spa_feature_is_enabled(spa,
6242 SPA_FEATURE_LZ4_COMPRESS);
6243 boolean_t lz4_ac = spa_feature_is_active(spa,
6244 SPA_FEATURE_LZ4_COMPRESS);
6245
6246 if (lz4_en && !lz4_ac)
6247 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6248 }
6249
6250 /*
6251 * If we haven't written the salt, do so now. Note that the
6252 * feature may not be activated yet, but that's fine since
6253 * the presence of this ZAP entry is backwards compatible.
6254 */
6255 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6256 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6257 VERIFY0(zap_add(spa->spa_meta_objset,
6258 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6259 sizeof (spa->spa_cksum_salt.zcs_bytes),
6260 spa->spa_cksum_salt.zcs_bytes, tx));
6261 }
6262
6263 rrw_exit(&dp->dp_config_rwlock, FTAG);
6264 }
6265
6266 /*
6267 * Sync the specified transaction group. New blocks may be dirtied as
6268 * part of the process, so we iterate until it converges.
6269 */
6270 void
spa_sync(spa_t * spa,uint64_t txg)6271 spa_sync(spa_t *spa, uint64_t txg)
6272 {
6273 dsl_pool_t *dp = spa->spa_dsl_pool;
6274 objset_t *mos = spa->spa_meta_objset;
6275 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6276 vdev_t *rvd = spa->spa_root_vdev;
6277 vdev_t *vd;
6278 dmu_tx_t *tx;
6279 int error;
6280
6281 VERIFY(spa_writeable(spa));
6282
6283 /*
6284 * Lock out configuration changes.
6285 */
6286 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6287
6288 spa->spa_syncing_txg = txg;
6289 spa->spa_sync_pass = 0;
6290
6291 /*
6292 * If there are any pending vdev state changes, convert them
6293 * into config changes that go out with this transaction group.
6294 */
6295 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6296 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6297 /*
6298 * We need the write lock here because, for aux vdevs,
6299 * calling vdev_config_dirty() modifies sav_config.
6300 * This is ugly and will become unnecessary when we
6301 * eliminate the aux vdev wart by integrating all vdevs
6302 * into the root vdev tree.
6303 */
6304 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6305 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6306 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6307 vdev_state_clean(vd);
6308 vdev_config_dirty(vd);
6309 }
6310 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6311 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6312 }
6313 spa_config_exit(spa, SCL_STATE, FTAG);
6314
6315 tx = dmu_tx_create_assigned(dp, txg);
6316
6317 spa->spa_sync_starttime = gethrtime();
6318 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6319 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6320
6321 /*
6322 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6323 * set spa_deflate if we have no raid-z vdevs.
6324 */
6325 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6326 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6327 int i;
6328
6329 for (i = 0; i < rvd->vdev_children; i++) {
6330 vd = rvd->vdev_child[i];
6331 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6332 break;
6333 }
6334 if (i == rvd->vdev_children) {
6335 spa->spa_deflate = TRUE;
6336 VERIFY(0 == zap_add(spa->spa_meta_objset,
6337 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6338 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6339 }
6340 }
6341
6342 /*
6343 * Iterate to convergence.
6344 */
6345 do {
6346 int pass = ++spa->spa_sync_pass;
6347
6348 spa_sync_config_object(spa, tx);
6349 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6350 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6351 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6352 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6353 spa_errlog_sync(spa, txg);
6354 dsl_pool_sync(dp, txg);
6355
6356 if (pass < zfs_sync_pass_deferred_free) {
6357 spa_sync_frees(spa, free_bpl, tx);
6358 } else {
6359 /*
6360 * We can not defer frees in pass 1, because
6361 * we sync the deferred frees later in pass 1.
6362 */
6363 ASSERT3U(pass, >, 1);
6364 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6365 &spa->spa_deferred_bpobj, tx);
6366 }
6367
6368 ddt_sync(spa, txg);
6369 dsl_scan_sync(dp, tx);
6370
6371 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6372 vdev_sync(vd, txg);
6373
6374 if (pass == 1) {
6375 spa_sync_upgrades(spa, tx);
6376 ASSERT3U(txg, >=,
6377 spa->spa_uberblock.ub_rootbp.blk_birth);
6378 /*
6379 * Note: We need to check if the MOS is dirty
6380 * because we could have marked the MOS dirty
6381 * without updating the uberblock (e.g. if we
6382 * have sync tasks but no dirty user data). We
6383 * need to check the uberblock's rootbp because
6384 * it is updated if we have synced out dirty
6385 * data (though in this case the MOS will most
6386 * likely also be dirty due to second order
6387 * effects, we don't want to rely on that here).
6388 */
6389 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6390 !dmu_objset_is_dirty(mos, txg)) {
6391 /*
6392 * Nothing changed on the first pass,
6393 * therefore this TXG is a no-op. Avoid
6394 * syncing deferred frees, so that we
6395 * can keep this TXG as a no-op.
6396 */
6397 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6398 txg));
6399 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6400 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6401 break;
6402 }
6403 spa_sync_deferred_frees(spa, tx);
6404 }
6405
6406 } while (dmu_objset_is_dirty(mos, txg));
6407
6408 /*
6409 * Rewrite the vdev configuration (which includes the uberblock)
6410 * to commit the transaction group.
6411 *
6412 * If there are no dirty vdevs, we sync the uberblock to a few
6413 * random top-level vdevs that are known to be visible in the
6414 * config cache (see spa_vdev_add() for a complete description).
6415 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6416 */
6417 for (;;) {
6418 /*
6419 * We hold SCL_STATE to prevent vdev open/close/etc.
6420 * while we're attempting to write the vdev labels.
6421 */
6422 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6423
6424 if (list_is_empty(&spa->spa_config_dirty_list)) {
6425 vdev_t *svd[SPA_DVAS_PER_BP];
6426 int svdcount = 0;
6427 int children = rvd->vdev_children;
6428 int c0 = spa_get_random(children);
6429
6430 for (int c = 0; c < children; c++) {
6431 vd = rvd->vdev_child[(c0 + c) % children];
6432 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6433 continue;
6434 svd[svdcount++] = vd;
6435 if (svdcount == SPA_DVAS_PER_BP)
6436 break;
6437 }
6438 error = vdev_config_sync(svd, svdcount, txg);
6439 } else {
6440 error = vdev_config_sync(rvd->vdev_child,
6441 rvd->vdev_children, txg);
6442 }
6443
6444 if (error == 0)
6445 spa->spa_last_synced_guid = rvd->vdev_guid;
6446
6447 spa_config_exit(spa, SCL_STATE, FTAG);
6448
6449 if (error == 0)
6450 break;
6451 zio_suspend(spa, NULL);
6452 zio_resume_wait(spa);
6453 }
6454 dmu_tx_commit(tx);
6455
6456 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6457
6458 /*
6459 * Clear the dirty config list.
6460 */
6461 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6462 vdev_config_clean(vd);
6463
6464 /*
6465 * Now that the new config has synced transactionally,
6466 * let it become visible to the config cache.
6467 */
6468 if (spa->spa_config_syncing != NULL) {
6469 spa_config_set(spa, spa->spa_config_syncing);
6470 spa->spa_config_txg = txg;
6471 spa->spa_config_syncing = NULL;
6472 }
6473
6474 spa->spa_ubsync = spa->spa_uberblock;
6475
6476 dsl_pool_sync_done(dp, txg);
6477
6478 /*
6479 * Update usable space statistics.
6480 */
6481 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6482 vdev_sync_done(vd, txg);
6483
6484 spa_update_dspace(spa);
6485
6486 /*
6487 * It had better be the case that we didn't dirty anything
6488 * since vdev_config_sync().
6489 */
6490 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6491 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6492 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6493
6494 spa->spa_sync_pass = 0;
6495
6496 spa_config_exit(spa, SCL_CONFIG, FTAG);
6497
6498 spa_handle_ignored_writes(spa);
6499
6500 /*
6501 * If any async tasks have been requested, kick them off.
6502 */
6503 spa_async_dispatch(spa);
6504 }
6505
6506 /*
6507 * Sync all pools. We don't want to hold the namespace lock across these
6508 * operations, so we take a reference on the spa_t and drop the lock during the
6509 * sync.
6510 */
6511 void
spa_sync_allpools(void)6512 spa_sync_allpools(void)
6513 {
6514 spa_t *spa = NULL;
6515 mutex_enter(&spa_namespace_lock);
6516 while ((spa = spa_next(spa)) != NULL) {
6517 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6518 !spa_writeable(spa) || spa_suspended(spa))
6519 continue;
6520 spa_open_ref(spa, FTAG);
6521 mutex_exit(&spa_namespace_lock);
6522 txg_wait_synced(spa_get_dsl(spa), 0);
6523 mutex_enter(&spa_namespace_lock);
6524 spa_close(spa, FTAG);
6525 }
6526 mutex_exit(&spa_namespace_lock);
6527 }
6528
6529 /*
6530 * ==========================================================================
6531 * Miscellaneous routines
6532 * ==========================================================================
6533 */
6534
6535 /*
6536 * Remove all pools in the system.
6537 */
6538 void
spa_evict_all(void)6539 spa_evict_all(void)
6540 {
6541 spa_t *spa;
6542
6543 /*
6544 * Remove all cached state. All pools should be closed now,
6545 * so every spa in the AVL tree should be unreferenced.
6546 */
6547 mutex_enter(&spa_namespace_lock);
6548 while ((spa = spa_next(NULL)) != NULL) {
6549 /*
6550 * Stop async tasks. The async thread may need to detach
6551 * a device that's been replaced, which requires grabbing
6552 * spa_namespace_lock, so we must drop it here.
6553 */
6554 spa_open_ref(spa, FTAG);
6555 mutex_exit(&spa_namespace_lock);
6556 spa_async_suspend(spa);
6557 mutex_enter(&spa_namespace_lock);
6558 spa_close(spa, FTAG);
6559
6560 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6561 spa_unload(spa);
6562 spa_deactivate(spa);
6563 }
6564 spa_remove(spa);
6565 }
6566 mutex_exit(&spa_namespace_lock);
6567 }
6568
6569 vdev_t *
spa_lookup_by_guid(spa_t * spa,uint64_t guid,boolean_t aux)6570 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6571 {
6572 vdev_t *vd;
6573 int i;
6574
6575 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6576 return (vd);
6577
6578 if (aux) {
6579 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6580 vd = spa->spa_l2cache.sav_vdevs[i];
6581 if (vd->vdev_guid == guid)
6582 return (vd);
6583 }
6584
6585 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6586 vd = spa->spa_spares.sav_vdevs[i];
6587 if (vd->vdev_guid == guid)
6588 return (vd);
6589 }
6590 }
6591
6592 return (NULL);
6593 }
6594
6595 void
spa_upgrade(spa_t * spa,uint64_t version)6596 spa_upgrade(spa_t *spa, uint64_t version)
6597 {
6598 ASSERT(spa_writeable(spa));
6599
6600 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6601
6602 /*
6603 * This should only be called for a non-faulted pool, and since a
6604 * future version would result in an unopenable pool, this shouldn't be
6605 * possible.
6606 */
6607 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6608 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6609
6610 spa->spa_uberblock.ub_version = version;
6611 vdev_config_dirty(spa->spa_root_vdev);
6612
6613 spa_config_exit(spa, SCL_ALL, FTAG);
6614
6615 txg_wait_synced(spa_get_dsl(spa), 0);
6616 }
6617
6618 boolean_t
spa_has_spare(spa_t * spa,uint64_t guid)6619 spa_has_spare(spa_t *spa, uint64_t guid)
6620 {
6621 int i;
6622 uint64_t spareguid;
6623 spa_aux_vdev_t *sav = &spa->spa_spares;
6624
6625 for (i = 0; i < sav->sav_count; i++)
6626 if (sav->sav_vdevs[i]->vdev_guid == guid)
6627 return (B_TRUE);
6628
6629 for (i = 0; i < sav->sav_npending; i++) {
6630 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6631 &spareguid) == 0 && spareguid == guid)
6632 return (B_TRUE);
6633 }
6634
6635 return (B_FALSE);
6636 }
6637
6638 /*
6639 * Check if a pool has an active shared spare device.
6640 * Note: reference count of an active spare is 2, as a spare and as a replace
6641 */
6642 static boolean_t
spa_has_active_shared_spare(spa_t * spa)6643 spa_has_active_shared_spare(spa_t *spa)
6644 {
6645 int i, refcnt;
6646 uint64_t pool;
6647 spa_aux_vdev_t *sav = &spa->spa_spares;
6648
6649 for (i = 0; i < sav->sav_count; i++) {
6650 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6651 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6652 refcnt > 2)
6653 return (B_TRUE);
6654 }
6655
6656 return (B_FALSE);
6657 }
6658
6659 /*
6660 * Post a sysevent corresponding to the given event. The 'name' must be one of
6661 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6662 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6663 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6664 * or zdb as real changes.
6665 */
6666 void
spa_event_notify(spa_t * spa,vdev_t * vd,const char * name)6667 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6668 {
6669 #ifdef _KERNEL
6670 sysevent_t *ev;
6671 sysevent_attr_list_t *attr = NULL;
6672 sysevent_value_t value;
6673 sysevent_id_t eid;
6674
6675 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6676 SE_SLEEP);
6677
6678 value.value_type = SE_DATA_TYPE_STRING;
6679 value.value.sv_string = spa_name(spa);
6680 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6681 goto done;
6682
6683 value.value_type = SE_DATA_TYPE_UINT64;
6684 value.value.sv_uint64 = spa_guid(spa);
6685 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6686 goto done;
6687
6688 if (vd) {
6689 value.value_type = SE_DATA_TYPE_UINT64;
6690 value.value.sv_uint64 = vd->vdev_guid;
6691 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6692 SE_SLEEP) != 0)
6693 goto done;
6694
6695 if (vd->vdev_path) {
6696 value.value_type = SE_DATA_TYPE_STRING;
6697 value.value.sv_string = vd->vdev_path;
6698 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6699 &value, SE_SLEEP) != 0)
6700 goto done;
6701 }
6702 }
6703
6704 if (sysevent_attach_attributes(ev, attr) != 0)
6705 goto done;
6706 attr = NULL;
6707
6708 (void) log_sysevent(ev, SE_SLEEP, &eid);
6709
6710 done:
6711 if (attr)
6712 sysevent_free_attr(attr);
6713 sysevent_free(ev);
6714 #endif
6715 }
6716