xref: /freebsd/sys/contrib/openzfs/module/zfs/spa_misc.c (revision 53a2e2635ab2d17bed1de7b4e0d782dd23ceb6ea)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
25  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2017 Datto Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
31  * Copyright (c) 2023, 2024, Klara Inc.
32  */
33 
34 #include <sys/zfs_context.h>
35 #include <sys/zfs_chksum.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/zio_compress.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/zap.h>
43 #include <sys/zil.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/vdev_initialize.h>
46 #include <sys/vdev_trim.h>
47 #include <sys/vdev_file.h>
48 #include <sys/vdev_raidz.h>
49 #include <sys/metaslab.h>
50 #include <sys/uberblock_impl.h>
51 #include <sys/txg.h>
52 #include <sys/avl.h>
53 #include <sys/unique.h>
54 #include <sys/dsl_pool.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/fm/util.h>
58 #include <sys/dsl_scan.h>
59 #include <sys/fs/zfs.h>
60 #include <sys/metaslab_impl.h>
61 #include <sys/arc.h>
62 #include <sys/brt.h>
63 #include <sys/ddt.h>
64 #include <sys/kstat.h>
65 #include "zfs_prop.h"
66 #include <sys/btree.h>
67 #include <sys/zfeature.h>
68 #include <sys/qat.h>
69 #include <sys/zstd/zstd.h>
70 
71 /*
72  * SPA locking
73  *
74  * There are three basic locks for managing spa_t structures:
75  *
76  * spa_namespace_lock (global mutex)
77  *
78  *	This lock must be acquired to do any of the following:
79  *
80  *		- Lookup a spa_t by name
81  *		- Add or remove a spa_t from the namespace
82  *		- Increase spa_refcount from non-zero
83  *		- Check if spa_refcount is zero
84  *		- Rename a spa_t
85  *		- add/remove/attach/detach devices
86  *		- Held for the duration of create/destroy
87  *		- Held at the start and end of import and export
88  *
89  *	It does not need to handle recursion.  A create or destroy may
90  *	reference objects (files or zvols) in other pools, but by
91  *	definition they must have an existing reference, and will never need
92  *	to lookup a spa_t by name.
93  *
94  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
95  *
96  *	This reference count keep track of any active users of the spa_t.  The
97  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
98  *	the refcount is never really 'zero' - opening a pool implicitly keeps
99  *	some references in the DMU.  Internally we check against spa_minref, but
100  *	present the image of a zero/non-zero value to consumers.
101  *
102  * spa_config_lock[] (per-spa array of rwlocks)
103  *
104  *	This protects the spa_t from config changes, and must be held in
105  *	the following circumstances:
106  *
107  *		- RW_READER to perform I/O to the spa
108  *		- RW_WRITER to change the vdev config
109  *
110  * The locking order is fairly straightforward:
111  *
112  *		spa_namespace_lock	->	spa_refcount
113  *
114  *	The namespace lock must be acquired to increase the refcount from 0
115  *	or to check if it is zero.
116  *
117  *		spa_refcount		->	spa_config_lock[]
118  *
119  *	There must be at least one valid reference on the spa_t to acquire
120  *	the config lock.
121  *
122  *		spa_namespace_lock	->	spa_config_lock[]
123  *
124  *	The namespace lock must always be taken before the config lock.
125  *
126  *
127  * The spa_namespace_lock can be acquired directly and is globally visible.
128  *
129  * The namespace is manipulated using the following functions, all of which
130  * require the spa_namespace_lock to be held.
131  *
132  *	spa_lookup()		Lookup a spa_t by name.
133  *
134  *	spa_add()		Create a new spa_t in the namespace.
135  *
136  *	spa_remove()		Remove a spa_t from the namespace.  This also
137  *				frees up any memory associated with the spa_t.
138  *
139  *	spa_next()		Returns the next spa_t in the system, or the
140  *				first if NULL is passed.
141  *
142  *	spa_evict_all()		Shutdown and remove all spa_t structures in
143  *				the system.
144  *
145  *	spa_guid_exists()	Determine whether a pool/device guid exists.
146  *
147  * The spa_refcount is manipulated using the following functions:
148  *
149  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
150  *				called with spa_namespace_lock held if the
151  *				refcount is currently zero.
152  *
153  *	spa_close()		Remove a reference from the spa_t.  This will
154  *				not free the spa_t or remove it from the
155  *				namespace.  No locking is required.
156  *
157  *	spa_refcount_zero()	Returns true if the refcount is currently
158  *				zero.  Must be called with spa_namespace_lock
159  *				held.
160  *
161  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
162  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
163  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
164  *
165  * To read the configuration, it suffices to hold one of these locks as reader.
166  * To modify the configuration, you must hold all locks as writer.  To modify
167  * vdev state without altering the vdev tree's topology (e.g. online/offline),
168  * you must hold SCL_STATE and SCL_ZIO as writer.
169  *
170  * We use these distinct config locks to avoid recursive lock entry.
171  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
172  * block allocations (SCL_ALLOC), which may require reading space maps
173  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
174  *
175  * The spa config locks cannot be normal rwlocks because we need the
176  * ability to hand off ownership.  For example, SCL_ZIO is acquired
177  * by the issuing thread and later released by an interrupt thread.
178  * They do, however, obey the usual write-wanted semantics to prevent
179  * writer (i.e. system administrator) starvation.
180  *
181  * The lock acquisition rules are as follows:
182  *
183  * SCL_CONFIG
184  *	Protects changes to the vdev tree topology, such as vdev
185  *	add/remove/attach/detach.  Protects the dirty config list
186  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
187  *
188  * SCL_STATE
189  *	Protects changes to pool state and vdev state, such as vdev
190  *	online/offline/fault/degrade/clear.  Protects the dirty state list
191  *	(spa_state_dirty_list) and global pool state (spa_state).
192  *
193  * SCL_ALLOC
194  *	Protects changes to metaslab groups and classes.
195  *	Held as reader by metaslab_alloc() and metaslab_claim().
196  *
197  * SCL_ZIO
198  *	Held by bp-level zios (those which have no io_vd upon entry)
199  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
200  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
201  *
202  * SCL_FREE
203  *	Protects changes to metaslab groups and classes.
204  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
205  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
206  *	blocks in zio_done() while another i/o that holds either
207  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
208  *
209  * SCL_VDEV
210  *	Held as reader to prevent changes to the vdev tree during trivial
211  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
212  *	other locks, and lower than all of them, to ensure that it's safe
213  *	to acquire regardless of caller context.
214  *
215  * In addition, the following rules apply:
216  *
217  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
218  *	The lock ordering is SCL_CONFIG > spa_props_lock.
219  *
220  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
221  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
222  *	or zio_write_phys() -- the caller must ensure that the config cannot
223  *	cannot change in the interim, and that the vdev cannot be reopened.
224  *	SCL_STATE as reader suffices for both.
225  *
226  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
227  *
228  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
229  *				for writing.
230  *
231  *	spa_vdev_exit()		Release the config lock, wait for all I/O
232  *				to complete, sync the updated configs to the
233  *				cache, and release the namespace lock.
234  *
235  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
236  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
237  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
238  */
239 
240 avl_tree_t spa_namespace_avl;
241 kmutex_t spa_namespace_lock;
242 kcondvar_t spa_namespace_cv;
243 static const int spa_max_replication_override = SPA_DVAS_PER_BP;
244 
245 static kmutex_t spa_spare_lock;
246 static avl_tree_t spa_spare_avl;
247 static kmutex_t spa_l2cache_lock;
248 static avl_tree_t spa_l2cache_avl;
249 
250 spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
251 
252 #ifdef ZFS_DEBUG
253 /*
254  * Everything except dprintf, set_error, spa, and indirect_remap is on
255  * by default in debug builds.
256  */
257 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
258     ZFS_DEBUG_INDIRECT_REMAP);
259 #else
260 int zfs_flags = 0;
261 #endif
262 
263 /*
264  * zfs_recover can be set to nonzero to attempt to recover from
265  * otherwise-fatal errors, typically caused by on-disk corruption.  When
266  * set, calls to zfs_panic_recover() will turn into warning messages.
267  * This should only be used as a last resort, as it typically results
268  * in leaked space, or worse.
269  */
270 int zfs_recover = B_FALSE;
271 
272 /*
273  * If destroy encounters an EIO while reading metadata (e.g. indirect
274  * blocks), space referenced by the missing metadata can not be freed.
275  * Normally this causes the background destroy to become "stalled", as
276  * it is unable to make forward progress.  While in this stalled state,
277  * all remaining space to free from the error-encountering filesystem is
278  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
279  * permanently leak the space from indirect blocks that can not be read,
280  * and continue to free everything else that it can.
281  *
282  * The default, "stalling" behavior is useful if the storage partially
283  * fails (i.e. some but not all i/os fail), and then later recovers.  In
284  * this case, we will be able to continue pool operations while it is
285  * partially failed, and when it recovers, we can continue to free the
286  * space, with no leaks.  However, note that this case is actually
287  * fairly rare.
288  *
289  * Typically pools either (a) fail completely (but perhaps temporarily,
290  * e.g. a top-level vdev going offline), or (b) have localized,
291  * permanent errors (e.g. disk returns the wrong data due to bit flip or
292  * firmware bug).  In case (a), this setting does not matter because the
293  * pool will be suspended and the sync thread will not be able to make
294  * forward progress regardless.  In case (b), because the error is
295  * permanent, the best we can do is leak the minimum amount of space,
296  * which is what setting this flag will do.  Therefore, it is reasonable
297  * for this flag to normally be set, but we chose the more conservative
298  * approach of not setting it, so that there is no possibility of
299  * leaking space in the "partial temporary" failure case.
300  */
301 int zfs_free_leak_on_eio = B_FALSE;
302 
303 /*
304  * Expiration time in milliseconds. This value has two meanings. First it is
305  * used to determine when the spa_deadman() logic should fire. By default the
306  * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
307  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
308  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
309  * in one of three behaviors controlled by zfs_deadman_failmode.
310  */
311 uint64_t zfs_deadman_synctime_ms = 600000UL;  /* 10 min. */
312 
313 /*
314  * This value controls the maximum amount of time zio_wait() will block for an
315  * outstanding IO.  By default this is 300 seconds at which point the "hung"
316  * behavior will be applied as described for zfs_deadman_synctime_ms.
317  */
318 uint64_t zfs_deadman_ziotime_ms = 300000UL;  /* 5 min. */
319 
320 /*
321  * Check time in milliseconds. This defines the frequency at which we check
322  * for hung I/O.
323  */
324 uint64_t zfs_deadman_checktime_ms = 60000UL;  /* 1 min. */
325 
326 /*
327  * By default the deadman is enabled.
328  */
329 int zfs_deadman_enabled = B_TRUE;
330 
331 /*
332  * Controls the behavior of the deadman when it detects a "hung" I/O.
333  * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
334  *
335  * wait     - Wait for the "hung" I/O (default)
336  * continue - Attempt to recover from a "hung" I/O
337  * panic    - Panic the system
338  */
339 const char *zfs_deadman_failmode = "wait";
340 
341 /*
342  * The worst case is single-sector max-parity RAID-Z blocks, in which
343  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
344  * times the size; so just assume that.  Add to this the fact that
345  * we can have up to 3 DVAs per bp, and one more factor of 2 because
346  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
347  * the worst case is:
348  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
349  */
350 uint_t spa_asize_inflation = 24;
351 
352 /*
353  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
354  * the pool to be consumed (bounded by spa_max_slop).  This ensures that we
355  * don't run the pool completely out of space, due to unaccounted changes (e.g.
356  * to the MOS).  It also limits the worst-case time to allocate space.  If we
357  * have less than this amount of free space, most ZPL operations (e.g.  write,
358  * create) will return ENOSPC.  The ZIL metaslabs (spa_embedded_log_class) are
359  * also part of this 3.2% of space which can't be consumed by normal writes;
360  * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded
361  * log space.
362  *
363  * Certain operations (e.g. file removal, most administrative actions) can
364  * use half the slop space.  They will only return ENOSPC if less than half
365  * the slop space is free.  Typically, once the pool has less than the slop
366  * space free, the user will use these operations to free up space in the pool.
367  * These are the operations that call dsl_pool_adjustedsize() with the netfree
368  * argument set to TRUE.
369  *
370  * Operations that are almost guaranteed to free up space in the absence of
371  * a pool checkpoint can use up to three quarters of the slop space
372  * (e.g zfs destroy).
373  *
374  * A very restricted set of operations are always permitted, regardless of
375  * the amount of free space.  These are the operations that call
376  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
377  * increase in the amount of space used, it is possible to run the pool
378  * completely out of space, causing it to be permanently read-only.
379  *
380  * Note that on very small pools, the slop space will be larger than
381  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
382  * but we never allow it to be more than half the pool size.
383  *
384  * Further, on very large pools, the slop space will be smaller than
385  * 3.2%, to avoid reserving much more space than we actually need; bounded
386  * by spa_max_slop (128GB).
387  *
388  * See also the comments in zfs_space_check_t.
389  */
390 uint_t spa_slop_shift = 5;
391 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024;
392 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024;
393 
394 /*
395  * Number of allocators to use, per spa instance
396  */
397 static int spa_num_allocators = 4;
398 static int spa_cpus_per_allocator = 4;
399 
400 /*
401  * Spa active allocator.
402  * Valid values are zfs_active_allocator=<dynamic|cursor|new-dynamic>.
403  */
404 const char *zfs_active_allocator = "dynamic";
405 
406 void
spa_load_failed(spa_t * spa,const char * fmt,...)407 spa_load_failed(spa_t *spa, const char *fmt, ...)
408 {
409 	va_list adx;
410 	char buf[256];
411 
412 	va_start(adx, fmt);
413 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
414 	va_end(adx);
415 
416 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
417 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
418 }
419 
420 void
spa_load_note(spa_t * spa,const char * fmt,...)421 spa_load_note(spa_t *spa, const char *fmt, ...)
422 {
423 	va_list adx;
424 	char buf[256];
425 
426 	va_start(adx, fmt);
427 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
428 	va_end(adx);
429 
430 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
431 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
432 
433 	spa_import_progress_set_notes_nolog(spa, "%s", buf);
434 }
435 
436 /*
437  * By default dedup and user data indirects land in the special class
438  */
439 static int zfs_ddt_data_is_special = B_TRUE;
440 static int zfs_user_indirect_is_special = B_TRUE;
441 
442 /*
443  * The percentage of special class final space reserved for metadata only.
444  * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
445  * let metadata into the class.
446  */
447 static uint_t zfs_special_class_metadata_reserve_pct = 25;
448 
449 /*
450  * ==========================================================================
451  * SPA config locking
452  * ==========================================================================
453  */
454 static void
spa_config_lock_init(spa_t * spa)455 spa_config_lock_init(spa_t *spa)
456 {
457 	for (int i = 0; i < SCL_LOCKS; i++) {
458 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
459 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
460 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
461 		scl->scl_writer = NULL;
462 		scl->scl_write_wanted = 0;
463 		scl->scl_count = 0;
464 	}
465 }
466 
467 static void
spa_config_lock_destroy(spa_t * spa)468 spa_config_lock_destroy(spa_t *spa)
469 {
470 	for (int i = 0; i < SCL_LOCKS; i++) {
471 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
472 		mutex_destroy(&scl->scl_lock);
473 		cv_destroy(&scl->scl_cv);
474 		ASSERT0P(scl->scl_writer);
475 		ASSERT0(scl->scl_write_wanted);
476 		ASSERT0(scl->scl_count);
477 	}
478 }
479 
480 int
spa_config_tryenter(spa_t * spa,int locks,const void * tag,krw_t rw)481 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw)
482 {
483 	for (int i = 0; i < SCL_LOCKS; i++) {
484 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
485 		if (!(locks & (1 << i)))
486 			continue;
487 		mutex_enter(&scl->scl_lock);
488 		if (rw == RW_READER) {
489 			if (scl->scl_writer || scl->scl_write_wanted) {
490 				mutex_exit(&scl->scl_lock);
491 				spa_config_exit(spa, locks & ((1 << i) - 1),
492 				    tag);
493 				return (0);
494 			}
495 		} else {
496 			ASSERT(scl->scl_writer != curthread);
497 			if (scl->scl_count != 0) {
498 				mutex_exit(&scl->scl_lock);
499 				spa_config_exit(spa, locks & ((1 << i) - 1),
500 				    tag);
501 				return (0);
502 			}
503 			scl->scl_writer = curthread;
504 		}
505 		scl->scl_count++;
506 		mutex_exit(&scl->scl_lock);
507 	}
508 	return (1);
509 }
510 
511 static void
spa_config_enter_impl(spa_t * spa,int locks,const void * tag,krw_t rw,int mmp_flag)512 spa_config_enter_impl(spa_t *spa, int locks, const void *tag, krw_t rw,
513     int mmp_flag)
514 {
515 	(void) tag;
516 	int wlocks_held = 0;
517 
518 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
519 
520 	for (int i = 0; i < SCL_LOCKS; i++) {
521 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
522 		if (scl->scl_writer == curthread)
523 			wlocks_held |= (1 << i);
524 		if (!(locks & (1 << i)))
525 			continue;
526 		mutex_enter(&scl->scl_lock);
527 		if (rw == RW_READER) {
528 			while (scl->scl_writer ||
529 			    (!mmp_flag && scl->scl_write_wanted)) {
530 				cv_wait(&scl->scl_cv, &scl->scl_lock);
531 			}
532 		} else {
533 			ASSERT(scl->scl_writer != curthread);
534 			while (scl->scl_count != 0) {
535 				scl->scl_write_wanted++;
536 				cv_wait(&scl->scl_cv, &scl->scl_lock);
537 				scl->scl_write_wanted--;
538 			}
539 			scl->scl_writer = curthread;
540 		}
541 		scl->scl_count++;
542 		mutex_exit(&scl->scl_lock);
543 	}
544 	ASSERT3U(wlocks_held, <=, locks);
545 }
546 
547 void
spa_config_enter(spa_t * spa,int locks,const void * tag,krw_t rw)548 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
549 {
550 	spa_config_enter_impl(spa, locks, tag, rw, 0);
551 }
552 
553 /*
554  * The spa_config_enter_mmp() allows the mmp thread to cut in front of
555  * outstanding write lock requests. This is needed since the mmp updates are
556  * time sensitive and failure to service them promptly will result in a
557  * suspended pool. This pool suspension has been seen in practice when there is
558  * a single disk in a pool that is responding slowly and presumably about to
559  * fail.
560  */
561 
562 void
spa_config_enter_mmp(spa_t * spa,int locks,const void * tag,krw_t rw)563 spa_config_enter_mmp(spa_t *spa, int locks, const void *tag, krw_t rw)
564 {
565 	spa_config_enter_impl(spa, locks, tag, rw, 1);
566 }
567 
568 void
spa_config_exit(spa_t * spa,int locks,const void * tag)569 spa_config_exit(spa_t *spa, int locks, const void *tag)
570 {
571 	(void) tag;
572 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
573 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
574 		if (!(locks & (1 << i)))
575 			continue;
576 		mutex_enter(&scl->scl_lock);
577 		ASSERT(scl->scl_count > 0);
578 		if (--scl->scl_count == 0) {
579 			ASSERT(scl->scl_writer == NULL ||
580 			    scl->scl_writer == curthread);
581 			scl->scl_writer = NULL;	/* OK in either case */
582 			cv_broadcast(&scl->scl_cv);
583 		}
584 		mutex_exit(&scl->scl_lock);
585 	}
586 }
587 
588 int
spa_config_held(spa_t * spa,int locks,krw_t rw)589 spa_config_held(spa_t *spa, int locks, krw_t rw)
590 {
591 	int locks_held = 0;
592 
593 	for (int i = 0; i < SCL_LOCKS; i++) {
594 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
595 		if (!(locks & (1 << i)))
596 			continue;
597 		if ((rw == RW_READER && scl->scl_count != 0) ||
598 		    (rw == RW_WRITER && scl->scl_writer == curthread))
599 			locks_held |= 1 << i;
600 	}
601 
602 	return (locks_held);
603 }
604 
605 /*
606  * ==========================================================================
607  * SPA namespace functions
608  * ==========================================================================
609  */
610 
611 /*
612  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
613  * Returns NULL if no matching spa_t is found.
614  */
615 spa_t *
spa_lookup(const char * name)616 spa_lookup(const char *name)
617 {
618 	static spa_t search;	/* spa_t is large; don't allocate on stack */
619 	spa_t *spa;
620 	avl_index_t where;
621 	char *cp;
622 
623 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
624 
625 retry:
626 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
627 
628 	/*
629 	 * If it's a full dataset name, figure out the pool name and
630 	 * just use that.
631 	 */
632 	cp = strpbrk(search.spa_name, "/@#");
633 	if (cp != NULL)
634 		*cp = '\0';
635 
636 	spa = avl_find(&spa_namespace_avl, &search, &where);
637 	if (spa == NULL)
638 		return (NULL);
639 
640 	/*
641 	 * Avoid racing with import/export, which don't hold the namespace
642 	 * lock for their entire duration.
643 	 */
644 	if ((spa->spa_load_thread != NULL &&
645 	    spa->spa_load_thread != curthread) ||
646 	    (spa->spa_export_thread != NULL &&
647 	    spa->spa_export_thread != curthread)) {
648 		cv_wait(&spa_namespace_cv, &spa_namespace_lock);
649 		goto retry;
650 	}
651 
652 	return (spa);
653 }
654 
655 /*
656  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
657  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
658  * looking for potentially hung I/Os.
659  */
660 void
spa_deadman(void * arg)661 spa_deadman(void *arg)
662 {
663 	spa_t *spa = arg;
664 
665 	/* Disable the deadman if the pool is suspended. */
666 	if (spa_suspended(spa))
667 		return;
668 
669 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
670 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
671 	    (u_longlong_t)++spa->spa_deadman_calls);
672 	if (zfs_deadman_enabled)
673 		vdev_deadman(spa->spa_root_vdev, FTAG);
674 
675 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
676 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
677 	    MSEC_TO_TICK(zfs_deadman_checktime_ms));
678 }
679 
680 static int
spa_log_sm_sort_by_txg(const void * va,const void * vb)681 spa_log_sm_sort_by_txg(const void *va, const void *vb)
682 {
683 	const spa_log_sm_t *a = va;
684 	const spa_log_sm_t *b = vb;
685 
686 	return (TREE_CMP(a->sls_txg, b->sls_txg));
687 }
688 
689 /*
690  * Create an uninitialized spa_t with the given name.  Requires
691  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
692  * exist by calling spa_lookup() first.
693  */
694 spa_t *
spa_add(const char * name,nvlist_t * config,const char * altroot)695 spa_add(const char *name, nvlist_t *config, const char *altroot)
696 {
697 	spa_t *spa;
698 	spa_config_dirent_t *dp;
699 
700 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
701 
702 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
703 
704 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
705 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
706 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
707 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
708 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
709 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
710 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
711 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
712 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
713 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
714 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
715 	mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
716 	mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
717 	mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
718 	mutex_init(&spa->spa_txg_log_time_lock, NULL, MUTEX_DEFAULT, NULL);
719 
720 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
721 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
722 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
723 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
724 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
725 	cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
726 	cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
727 
728 	for (int t = 0; t < TXG_SIZE; t++)
729 		bplist_create(&spa->spa_free_bplist[t]);
730 
731 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
732 	spa->spa_state = POOL_STATE_UNINITIALIZED;
733 	spa->spa_freeze_txg = UINT64_MAX;
734 	spa->spa_final_txg = UINT64_MAX;
735 	spa->spa_load_max_txg = UINT64_MAX;
736 	spa->spa_proc = &p0;
737 	spa->spa_proc_state = SPA_PROC_NONE;
738 	spa->spa_trust_config = B_TRUE;
739 	spa->spa_hostid = zone_get_hostid(NULL);
740 
741 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
742 	spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
743 	spa_set_deadman_failmode(spa, zfs_deadman_failmode);
744 	spa_set_allocator(spa, zfs_active_allocator);
745 
746 	zfs_refcount_create(&spa->spa_refcount);
747 	spa_config_lock_init(spa);
748 	spa_stats_init(spa);
749 
750 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
751 	avl_add(&spa_namespace_avl, spa);
752 
753 	/*
754 	 * Set the alternate root, if there is one.
755 	 */
756 	if (altroot)
757 		spa->spa_root = spa_strdup(altroot);
758 
759 	/* Do not allow more allocators than fraction of CPUs. */
760 	spa->spa_alloc_count = MAX(MIN(spa_num_allocators,
761 	    boot_ncpus / MAX(spa_cpus_per_allocator, 1)), 1);
762 
763 	if (spa->spa_alloc_count > 1) {
764 		spa->spa_allocs_use = kmem_zalloc(offsetof(spa_allocs_use_t,
765 		    sau_inuse[spa->spa_alloc_count]), KM_SLEEP);
766 		mutex_init(&spa->spa_allocs_use->sau_lock, NULL, MUTEX_DEFAULT,
767 		    NULL);
768 	}
769 
770 	avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
771 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
772 	avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
773 	    sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
774 	list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
775 	    offsetof(log_summary_entry_t, lse_node));
776 
777 	/*
778 	 * Every pool starts with the default cachefile
779 	 */
780 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
781 	    offsetof(spa_config_dirent_t, scd_link));
782 
783 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
784 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
785 	list_insert_head(&spa->spa_config_list, dp);
786 
787 	VERIFY0(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, KM_SLEEP));
788 
789 	if (config != NULL) {
790 		nvlist_t *features;
791 
792 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
793 		    &features) == 0) {
794 			VERIFY0(nvlist_dup(features,
795 			    &spa->spa_label_features, 0));
796 		}
797 
798 		VERIFY0(nvlist_dup(config, &spa->spa_config, 0));
799 	}
800 
801 	if (spa->spa_label_features == NULL) {
802 		VERIFY0(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
803 		    KM_SLEEP));
804 	}
805 
806 	spa->spa_min_ashift = INT_MAX;
807 	spa->spa_max_ashift = 0;
808 	spa->spa_min_alloc = INT_MAX;
809 	spa->spa_gcd_alloc = INT_MAX;
810 
811 	/* Reset cached value */
812 	spa->spa_dedup_dspace = ~0ULL;
813 
814 	/*
815 	 * As a pool is being created, treat all features as disabled by
816 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
817 	 * refcount cache.
818 	 */
819 	for (int i = 0; i < SPA_FEATURES; i++) {
820 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
821 	}
822 
823 	list_create(&spa->spa_leaf_list, sizeof (vdev_t),
824 	    offsetof(vdev_t, vdev_leaf_node));
825 
826 	return (spa);
827 }
828 
829 /*
830  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
831  * spa_namespace_lock.  This is called only after the spa_t has been closed and
832  * deactivated.
833  */
834 void
spa_remove(spa_t * spa)835 spa_remove(spa_t *spa)
836 {
837 	spa_config_dirent_t *dp;
838 
839 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
840 	ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
841 	ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
842 	ASSERT0(spa->spa_waiters);
843 
844 	nvlist_free(spa->spa_config_splitting);
845 
846 	avl_remove(&spa_namespace_avl, spa);
847 
848 	if (spa->spa_root)
849 		spa_strfree(spa->spa_root);
850 
851 	while ((dp = list_remove_head(&spa->spa_config_list)) != NULL) {
852 		if (dp->scd_path != NULL)
853 			spa_strfree(dp->scd_path);
854 		kmem_free(dp, sizeof (spa_config_dirent_t));
855 	}
856 
857 	if (spa->spa_alloc_count > 1) {
858 		mutex_destroy(&spa->spa_allocs_use->sau_lock);
859 		kmem_free(spa->spa_allocs_use, offsetof(spa_allocs_use_t,
860 		    sau_inuse[spa->spa_alloc_count]));
861 	}
862 
863 	avl_destroy(&spa->spa_metaslabs_by_flushed);
864 	avl_destroy(&spa->spa_sm_logs_by_txg);
865 	list_destroy(&spa->spa_log_summary);
866 	list_destroy(&spa->spa_config_list);
867 	list_destroy(&spa->spa_leaf_list);
868 
869 	nvlist_free(spa->spa_label_features);
870 	nvlist_free(spa->spa_load_info);
871 	nvlist_free(spa->spa_feat_stats);
872 	spa_config_set(spa, NULL);
873 
874 	zfs_refcount_destroy(&spa->spa_refcount);
875 
876 	spa_stats_destroy(spa);
877 	spa_config_lock_destroy(spa);
878 
879 	for (int t = 0; t < TXG_SIZE; t++)
880 		bplist_destroy(&spa->spa_free_bplist[t]);
881 
882 	zio_checksum_templates_free(spa);
883 
884 	cv_destroy(&spa->spa_async_cv);
885 	cv_destroy(&spa->spa_evicting_os_cv);
886 	cv_destroy(&spa->spa_proc_cv);
887 	cv_destroy(&spa->spa_scrub_io_cv);
888 	cv_destroy(&spa->spa_suspend_cv);
889 	cv_destroy(&spa->spa_activities_cv);
890 	cv_destroy(&spa->spa_waiters_cv);
891 
892 	mutex_destroy(&spa->spa_flushed_ms_lock);
893 	mutex_destroy(&spa->spa_async_lock);
894 	mutex_destroy(&spa->spa_errlist_lock);
895 	mutex_destroy(&spa->spa_errlog_lock);
896 	mutex_destroy(&spa->spa_evicting_os_lock);
897 	mutex_destroy(&spa->spa_history_lock);
898 	mutex_destroy(&spa->spa_proc_lock);
899 	mutex_destroy(&spa->spa_props_lock);
900 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
901 	mutex_destroy(&spa->spa_scrub_lock);
902 	mutex_destroy(&spa->spa_suspend_lock);
903 	mutex_destroy(&spa->spa_vdev_top_lock);
904 	mutex_destroy(&spa->spa_feat_stats_lock);
905 	mutex_destroy(&spa->spa_activities_lock);
906 	mutex_destroy(&spa->spa_txg_log_time_lock);
907 
908 	kmem_free(spa, sizeof (spa_t));
909 }
910 
911 /*
912  * Given a pool, return the next pool in the namespace, or NULL if there is
913  * none.  If 'prev' is NULL, return the first pool.
914  */
915 spa_t *
spa_next(spa_t * prev)916 spa_next(spa_t *prev)
917 {
918 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
919 
920 	if (prev)
921 		return (AVL_NEXT(&spa_namespace_avl, prev));
922 	else
923 		return (avl_first(&spa_namespace_avl));
924 }
925 
926 /*
927  * ==========================================================================
928  * SPA refcount functions
929  * ==========================================================================
930  */
931 
932 /*
933  * Add a reference to the given spa_t.  Must have at least one reference, or
934  * have the namespace lock held.
935  */
936 void
spa_open_ref(spa_t * spa,const void * tag)937 spa_open_ref(spa_t *spa, const void *tag)
938 {
939 	ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
940 	    MUTEX_HELD(&spa_namespace_lock) ||
941 	    spa->spa_load_thread == curthread);
942 	(void) zfs_refcount_add(&spa->spa_refcount, tag);
943 }
944 
945 /*
946  * Remove a reference to the given spa_t.  Must have at least one reference, or
947  * have the namespace lock held or be part of a pool import/export.
948  */
949 void
spa_close(spa_t * spa,const void * tag)950 spa_close(spa_t *spa, const void *tag)
951 {
952 	ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
953 	    MUTEX_HELD(&spa_namespace_lock) ||
954 	    spa->spa_load_thread == curthread ||
955 	    spa->spa_export_thread == curthread);
956 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
957 }
958 
959 /*
960  * Remove a reference to the given spa_t held by a dsl dir that is
961  * being asynchronously released.  Async releases occur from a taskq
962  * performing eviction of dsl datasets and dirs.  The namespace lock
963  * isn't held and the hold by the object being evicted may contribute to
964  * spa_minref (e.g. dataset or directory released during pool export),
965  * so the asserts in spa_close() do not apply.
966  */
967 void
spa_async_close(spa_t * spa,const void * tag)968 spa_async_close(spa_t *spa, const void *tag)
969 {
970 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
971 }
972 
973 /*
974  * Check to see if the spa refcount is zero.  Must be called with
975  * spa_namespace_lock held or be the spa export thread.  We really
976  * compare against spa_minref, which is the  number of references
977  * acquired when opening a pool
978  */
979 boolean_t
spa_refcount_zero(spa_t * spa)980 spa_refcount_zero(spa_t *spa)
981 {
982 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
983 	    spa->spa_export_thread == curthread);
984 
985 	return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
986 }
987 
988 /*
989  * ==========================================================================
990  * SPA spare and l2cache tracking
991  * ==========================================================================
992  */
993 
994 /*
995  * Hot spares and cache devices are tracked using the same code below,
996  * for 'auxiliary' devices.
997  */
998 
999 typedef struct spa_aux {
1000 	uint64_t	aux_guid;
1001 	uint64_t	aux_pool;
1002 	avl_node_t	aux_avl;
1003 	int		aux_count;
1004 } spa_aux_t;
1005 
1006 static inline int
spa_aux_compare(const void * a,const void * b)1007 spa_aux_compare(const void *a, const void *b)
1008 {
1009 	const spa_aux_t *sa = (const spa_aux_t *)a;
1010 	const spa_aux_t *sb = (const spa_aux_t *)b;
1011 
1012 	return (TREE_CMP(sa->aux_guid, sb->aux_guid));
1013 }
1014 
1015 static void
spa_aux_add(vdev_t * vd,avl_tree_t * avl)1016 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
1017 {
1018 	avl_index_t where;
1019 	spa_aux_t search;
1020 	spa_aux_t *aux;
1021 
1022 	search.aux_guid = vd->vdev_guid;
1023 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
1024 		aux->aux_count++;
1025 	} else {
1026 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
1027 		aux->aux_guid = vd->vdev_guid;
1028 		aux->aux_count = 1;
1029 		avl_insert(avl, aux, where);
1030 	}
1031 }
1032 
1033 static void
spa_aux_remove(vdev_t * vd,avl_tree_t * avl)1034 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
1035 {
1036 	spa_aux_t search;
1037 	spa_aux_t *aux;
1038 	avl_index_t where;
1039 
1040 	search.aux_guid = vd->vdev_guid;
1041 	aux = avl_find(avl, &search, &where);
1042 
1043 	ASSERT(aux != NULL);
1044 
1045 	if (--aux->aux_count == 0) {
1046 		avl_remove(avl, aux);
1047 		kmem_free(aux, sizeof (spa_aux_t));
1048 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
1049 		aux->aux_pool = 0ULL;
1050 	}
1051 }
1052 
1053 static boolean_t
spa_aux_exists(uint64_t guid,uint64_t * pool,int * refcnt,avl_tree_t * avl)1054 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
1055 {
1056 	spa_aux_t search, *found;
1057 
1058 	search.aux_guid = guid;
1059 	found = avl_find(avl, &search, NULL);
1060 
1061 	if (pool) {
1062 		if (found)
1063 			*pool = found->aux_pool;
1064 		else
1065 			*pool = 0ULL;
1066 	}
1067 
1068 	if (refcnt) {
1069 		if (found)
1070 			*refcnt = found->aux_count;
1071 		else
1072 			*refcnt = 0;
1073 	}
1074 
1075 	return (found != NULL);
1076 }
1077 
1078 static void
spa_aux_activate(vdev_t * vd,avl_tree_t * avl)1079 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1080 {
1081 	spa_aux_t search, *found;
1082 	avl_index_t where;
1083 
1084 	search.aux_guid = vd->vdev_guid;
1085 	found = avl_find(avl, &search, &where);
1086 	ASSERT(found != NULL);
1087 	ASSERT(found->aux_pool == 0ULL);
1088 
1089 	found->aux_pool = spa_guid(vd->vdev_spa);
1090 }
1091 
1092 /*
1093  * Spares are tracked globally due to the following constraints:
1094  *
1095  *	- A spare may be part of multiple pools.
1096  *	- A spare may be added to a pool even if it's actively in use within
1097  *	  another pool.
1098  *	- A spare in use in any pool can only be the source of a replacement if
1099  *	  the target is a spare in the same pool.
1100  *
1101  * We keep track of all spares on the system through the use of a reference
1102  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1103  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1104  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1105  * inactive).  When a spare is made active (used to replace a device in the
1106  * pool), we also keep track of which pool its been made a part of.
1107  *
1108  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1109  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1110  * separate spare lock exists for the status query path, which does not need to
1111  * be completely consistent with respect to other vdev configuration changes.
1112  */
1113 
1114 static int
spa_spare_compare(const void * a,const void * b)1115 spa_spare_compare(const void *a, const void *b)
1116 {
1117 	return (spa_aux_compare(a, b));
1118 }
1119 
1120 void
spa_spare_add(vdev_t * vd)1121 spa_spare_add(vdev_t *vd)
1122 {
1123 	mutex_enter(&spa_spare_lock);
1124 	ASSERT(!vd->vdev_isspare);
1125 	spa_aux_add(vd, &spa_spare_avl);
1126 	vd->vdev_isspare = B_TRUE;
1127 	mutex_exit(&spa_spare_lock);
1128 }
1129 
1130 void
spa_spare_remove(vdev_t * vd)1131 spa_spare_remove(vdev_t *vd)
1132 {
1133 	mutex_enter(&spa_spare_lock);
1134 	ASSERT(vd->vdev_isspare);
1135 	spa_aux_remove(vd, &spa_spare_avl);
1136 	vd->vdev_isspare = B_FALSE;
1137 	mutex_exit(&spa_spare_lock);
1138 }
1139 
1140 boolean_t
spa_spare_exists(uint64_t guid,uint64_t * pool,int * refcnt)1141 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1142 {
1143 	boolean_t found;
1144 
1145 	mutex_enter(&spa_spare_lock);
1146 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1147 	mutex_exit(&spa_spare_lock);
1148 
1149 	return (found);
1150 }
1151 
1152 void
spa_spare_activate(vdev_t * vd)1153 spa_spare_activate(vdev_t *vd)
1154 {
1155 	mutex_enter(&spa_spare_lock);
1156 	ASSERT(vd->vdev_isspare);
1157 	spa_aux_activate(vd, &spa_spare_avl);
1158 	mutex_exit(&spa_spare_lock);
1159 }
1160 
1161 /*
1162  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1163  * Cache devices currently only support one pool per cache device, and so
1164  * for these devices the aux reference count is currently unused beyond 1.
1165  */
1166 
1167 static int
spa_l2cache_compare(const void * a,const void * b)1168 spa_l2cache_compare(const void *a, const void *b)
1169 {
1170 	return (spa_aux_compare(a, b));
1171 }
1172 
1173 void
spa_l2cache_add(vdev_t * vd)1174 spa_l2cache_add(vdev_t *vd)
1175 {
1176 	mutex_enter(&spa_l2cache_lock);
1177 	ASSERT(!vd->vdev_isl2cache);
1178 	spa_aux_add(vd, &spa_l2cache_avl);
1179 	vd->vdev_isl2cache = B_TRUE;
1180 	mutex_exit(&spa_l2cache_lock);
1181 }
1182 
1183 void
spa_l2cache_remove(vdev_t * vd)1184 spa_l2cache_remove(vdev_t *vd)
1185 {
1186 	mutex_enter(&spa_l2cache_lock);
1187 	ASSERT(vd->vdev_isl2cache);
1188 	spa_aux_remove(vd, &spa_l2cache_avl);
1189 	vd->vdev_isl2cache = B_FALSE;
1190 	mutex_exit(&spa_l2cache_lock);
1191 }
1192 
1193 boolean_t
spa_l2cache_exists(uint64_t guid,uint64_t * pool)1194 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1195 {
1196 	boolean_t found;
1197 
1198 	mutex_enter(&spa_l2cache_lock);
1199 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1200 	mutex_exit(&spa_l2cache_lock);
1201 
1202 	return (found);
1203 }
1204 
1205 void
spa_l2cache_activate(vdev_t * vd)1206 spa_l2cache_activate(vdev_t *vd)
1207 {
1208 	mutex_enter(&spa_l2cache_lock);
1209 	ASSERT(vd->vdev_isl2cache);
1210 	spa_aux_activate(vd, &spa_l2cache_avl);
1211 	mutex_exit(&spa_l2cache_lock);
1212 }
1213 
1214 /*
1215  * ==========================================================================
1216  * SPA vdev locking
1217  * ==========================================================================
1218  */
1219 
1220 /*
1221  * Lock the given spa_t for the purpose of adding or removing a vdev.
1222  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1223  * It returns the next transaction group for the spa_t.
1224  */
1225 uint64_t
spa_vdev_enter(spa_t * spa)1226 spa_vdev_enter(spa_t *spa)
1227 {
1228 	mutex_enter(&spa->spa_vdev_top_lock);
1229 	mutex_enter(&spa_namespace_lock);
1230 
1231 	ASSERT0(spa->spa_export_thread);
1232 
1233 	vdev_autotrim_stop_all(spa);
1234 
1235 	return (spa_vdev_config_enter(spa));
1236 }
1237 
1238 /*
1239  * The same as spa_vdev_enter() above but additionally takes the guid of
1240  * the vdev being detached.  When there is a rebuild in process it will be
1241  * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1242  * The rebuild is canceled if only a single child remains after the detach.
1243  */
1244 uint64_t
spa_vdev_detach_enter(spa_t * spa,uint64_t guid)1245 spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1246 {
1247 	mutex_enter(&spa->spa_vdev_top_lock);
1248 	mutex_enter(&spa_namespace_lock);
1249 
1250 	ASSERT0(spa->spa_export_thread);
1251 
1252 	vdev_autotrim_stop_all(spa);
1253 
1254 	if (guid != 0) {
1255 		vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1256 		if (vd) {
1257 			vdev_rebuild_stop_wait(vd->vdev_top);
1258 		}
1259 	}
1260 
1261 	return (spa_vdev_config_enter(spa));
1262 }
1263 
1264 /*
1265  * Internal implementation for spa_vdev_enter().  Used when a vdev
1266  * operation requires multiple syncs (i.e. removing a device) while
1267  * keeping the spa_namespace_lock held.
1268  */
1269 uint64_t
spa_vdev_config_enter(spa_t * spa)1270 spa_vdev_config_enter(spa_t *spa)
1271 {
1272 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1273 
1274 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1275 
1276 	return (spa_last_synced_txg(spa) + 1);
1277 }
1278 
1279 /*
1280  * Used in combination with spa_vdev_config_enter() to allow the syncing
1281  * of multiple transactions without releasing the spa_namespace_lock.
1282  */
1283 void
spa_vdev_config_exit(spa_t * spa,vdev_t * vd,uint64_t txg,int error,const char * tag)1284 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error,
1285     const char *tag)
1286 {
1287 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1288 
1289 	int config_changed = B_FALSE;
1290 
1291 	ASSERT(txg > spa_last_synced_txg(spa));
1292 
1293 	spa->spa_pending_vdev = NULL;
1294 
1295 	/*
1296 	 * Reassess the DTLs.
1297 	 */
1298 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
1299 
1300 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1301 		config_changed = B_TRUE;
1302 		spa->spa_config_generation++;
1303 	}
1304 
1305 	/*
1306 	 * Verify the metaslab classes.
1307 	 */
1308 	metaslab_class_validate(spa_normal_class(spa));
1309 	metaslab_class_validate(spa_log_class(spa));
1310 	metaslab_class_validate(spa_embedded_log_class(spa));
1311 	metaslab_class_validate(spa_special_class(spa));
1312 	metaslab_class_validate(spa_special_embedded_log_class(spa));
1313 	metaslab_class_validate(spa_dedup_class(spa));
1314 
1315 	spa_config_exit(spa, SCL_ALL, spa);
1316 
1317 	/*
1318 	 * Panic the system if the specified tag requires it.  This
1319 	 * is useful for ensuring that configurations are updated
1320 	 * transactionally.
1321 	 */
1322 	if (zio_injection_enabled)
1323 		zio_handle_panic_injection(spa, tag, 0);
1324 
1325 	/*
1326 	 * Note: this txg_wait_synced() is important because it ensures
1327 	 * that there won't be more than one config change per txg.
1328 	 * This allows us to use the txg as the generation number.
1329 	 */
1330 	if (error == 0)
1331 		txg_wait_synced(spa->spa_dsl_pool, txg);
1332 
1333 	if (vd != NULL) {
1334 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1335 		if (vd->vdev_ops->vdev_op_leaf) {
1336 			mutex_enter(&vd->vdev_initialize_lock);
1337 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1338 			    NULL);
1339 			mutex_exit(&vd->vdev_initialize_lock);
1340 
1341 			mutex_enter(&vd->vdev_trim_lock);
1342 			vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1343 			mutex_exit(&vd->vdev_trim_lock);
1344 		}
1345 
1346 		/*
1347 		 * The vdev may be both a leaf and top-level device.
1348 		 */
1349 		vdev_autotrim_stop_wait(vd);
1350 
1351 		spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
1352 		vdev_free(vd);
1353 		spa_config_exit(spa, SCL_STATE_ALL, spa);
1354 	}
1355 
1356 	/*
1357 	 * If the config changed, update the config cache.
1358 	 */
1359 	if (config_changed)
1360 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1361 }
1362 
1363 /*
1364  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1365  * locking of spa_vdev_enter(), we also want make sure the transactions have
1366  * synced to disk, and then update the global configuration cache with the new
1367  * information.
1368  */
1369 int
spa_vdev_exit(spa_t * spa,vdev_t * vd,uint64_t txg,int error)1370 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1371 {
1372 	vdev_autotrim_restart(spa);
1373 	vdev_rebuild_restart(spa);
1374 
1375 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1376 	mutex_exit(&spa_namespace_lock);
1377 	mutex_exit(&spa->spa_vdev_top_lock);
1378 
1379 	return (error);
1380 }
1381 
1382 /*
1383  * Lock the given spa_t for the purpose of changing vdev state.
1384  */
1385 void
spa_vdev_state_enter(spa_t * spa,int oplocks)1386 spa_vdev_state_enter(spa_t *spa, int oplocks)
1387 {
1388 	int locks = SCL_STATE_ALL | oplocks;
1389 
1390 	/*
1391 	 * Root pools may need to read of the underlying devfs filesystem
1392 	 * when opening up a vdev.  Unfortunately if we're holding the
1393 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1394 	 * the read from the root filesystem.  Instead we "prefetch"
1395 	 * the associated vnodes that we need prior to opening the
1396 	 * underlying devices and cache them so that we can prevent
1397 	 * any I/O when we are doing the actual open.
1398 	 */
1399 	if (spa_is_root(spa)) {
1400 		int low = locks & ~(SCL_ZIO - 1);
1401 		int high = locks & ~low;
1402 
1403 		spa_config_enter(spa, high, spa, RW_WRITER);
1404 		vdev_hold(spa->spa_root_vdev);
1405 		spa_config_enter(spa, low, spa, RW_WRITER);
1406 	} else {
1407 		spa_config_enter(spa, locks, spa, RW_WRITER);
1408 	}
1409 	spa->spa_vdev_locks = locks;
1410 }
1411 
1412 int
spa_vdev_state_exit(spa_t * spa,vdev_t * vd,int error)1413 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1414 {
1415 	boolean_t config_changed = B_FALSE;
1416 	vdev_t *vdev_top;
1417 
1418 	if (vd == NULL || vd == spa->spa_root_vdev) {
1419 		vdev_top = spa->spa_root_vdev;
1420 	} else {
1421 		vdev_top = vd->vdev_top;
1422 	}
1423 
1424 	if (vd != NULL || error == 0)
1425 		vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
1426 
1427 	if (vd != NULL) {
1428 		if (vd != spa->spa_root_vdev)
1429 			vdev_state_dirty(vdev_top);
1430 
1431 		config_changed = B_TRUE;
1432 		spa->spa_config_generation++;
1433 	}
1434 
1435 	if (spa_is_root(spa))
1436 		vdev_rele(spa->spa_root_vdev);
1437 
1438 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1439 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1440 
1441 	/*
1442 	 * If anything changed, wait for it to sync.  This ensures that,
1443 	 * from the system administrator's perspective, zpool(8) commands
1444 	 * are synchronous.  This is important for things like zpool offline:
1445 	 * when the command completes, you expect no further I/O from ZFS.
1446 	 */
1447 	if (vd != NULL)
1448 		txg_wait_synced(spa->spa_dsl_pool, 0);
1449 
1450 	/*
1451 	 * If the config changed, update the config cache.
1452 	 */
1453 	if (config_changed) {
1454 		mutex_enter(&spa_namespace_lock);
1455 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
1456 		mutex_exit(&spa_namespace_lock);
1457 	}
1458 
1459 	return (error);
1460 }
1461 
1462 /*
1463  * ==========================================================================
1464  * Miscellaneous functions
1465  * ==========================================================================
1466  */
1467 
1468 void
spa_activate_mos_feature(spa_t * spa,const char * feature,dmu_tx_t * tx)1469 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1470 {
1471 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1472 		fnvlist_add_boolean(spa->spa_label_features, feature);
1473 		/*
1474 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1475 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1476 		 * Thankfully, in this case we don't need to dirty the config
1477 		 * because it will be written out anyway when we finish
1478 		 * creating the pool.
1479 		 */
1480 		if (tx->tx_txg != TXG_INITIAL)
1481 			vdev_config_dirty(spa->spa_root_vdev);
1482 	}
1483 }
1484 
1485 void
spa_deactivate_mos_feature(spa_t * spa,const char * feature)1486 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1487 {
1488 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1489 		vdev_config_dirty(spa->spa_root_vdev);
1490 }
1491 
1492 /*
1493  * Return the spa_t associated with given pool_guid, if it exists.  If
1494  * device_guid is non-zero, determine whether the pool exists *and* contains
1495  * a device with the specified device_guid.
1496  */
1497 spa_t *
spa_by_guid(uint64_t pool_guid,uint64_t device_guid)1498 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1499 {
1500 	spa_t *spa;
1501 	avl_tree_t *t = &spa_namespace_avl;
1502 
1503 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1504 
1505 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1506 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1507 			continue;
1508 		if (spa->spa_root_vdev == NULL)
1509 			continue;
1510 		if (spa_guid(spa) == pool_guid) {
1511 			if (device_guid == 0)
1512 				break;
1513 
1514 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1515 			    device_guid) != NULL)
1516 				break;
1517 
1518 			/*
1519 			 * Check any devices we may be in the process of adding.
1520 			 */
1521 			if (spa->spa_pending_vdev) {
1522 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1523 				    device_guid) != NULL)
1524 					break;
1525 			}
1526 		}
1527 	}
1528 
1529 	return (spa);
1530 }
1531 
1532 /*
1533  * Determine whether a pool with the given pool_guid exists.
1534  */
1535 boolean_t
spa_guid_exists(uint64_t pool_guid,uint64_t device_guid)1536 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1537 {
1538 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1539 }
1540 
1541 char *
spa_strdup(const char * s)1542 spa_strdup(const char *s)
1543 {
1544 	size_t len;
1545 	char *new;
1546 
1547 	len = strlen(s);
1548 	new = kmem_alloc(len + 1, KM_SLEEP);
1549 	memcpy(new, s, len + 1);
1550 
1551 	return (new);
1552 }
1553 
1554 void
spa_strfree(char * s)1555 spa_strfree(char *s)
1556 {
1557 	kmem_free(s, strlen(s) + 1);
1558 }
1559 
1560 uint64_t
spa_generate_guid(spa_t * spa)1561 spa_generate_guid(spa_t *spa)
1562 {
1563 	uint64_t guid;
1564 
1565 	if (spa != NULL) {
1566 		do {
1567 			(void) random_get_pseudo_bytes((void *)&guid,
1568 			    sizeof (guid));
1569 		} while (guid == 0 || spa_guid_exists(spa_guid(spa), guid));
1570 	} else {
1571 		do {
1572 			(void) random_get_pseudo_bytes((void *)&guid,
1573 			    sizeof (guid));
1574 		} while (guid == 0 || spa_guid_exists(guid, 0));
1575 	}
1576 
1577 	return (guid);
1578 }
1579 
1580 static boolean_t
spa_load_guid_exists(uint64_t guid)1581 spa_load_guid_exists(uint64_t guid)
1582 {
1583 	avl_tree_t *t = &spa_namespace_avl;
1584 
1585 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1586 
1587 	for (spa_t *spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1588 		if (spa_load_guid(spa) == guid)
1589 			return (B_TRUE);
1590 	}
1591 
1592 	return (arc_async_flush_guid_inuse(guid));
1593 }
1594 
1595 uint64_t
spa_generate_load_guid(void)1596 spa_generate_load_guid(void)
1597 {
1598 	uint64_t guid;
1599 
1600 	do {
1601 		(void) random_get_pseudo_bytes((void *)&guid,
1602 		    sizeof (guid));
1603 	} while (guid == 0 || spa_load_guid_exists(guid));
1604 
1605 	return (guid);
1606 }
1607 
1608 void
snprintf_blkptr(char * buf,size_t buflen,const blkptr_t * bp)1609 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1610 {
1611 	char type[256];
1612 	const char *checksum = NULL;
1613 	const char *compress = NULL;
1614 
1615 	if (bp != NULL) {
1616 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1617 			dmu_object_byteswap_t bswap =
1618 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1619 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1620 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1621 			    "metadata" : "data",
1622 			    dmu_ot_byteswap[bswap].ob_name);
1623 		} else {
1624 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1625 			    sizeof (type));
1626 		}
1627 		if (!BP_IS_EMBEDDED(bp)) {
1628 			checksum =
1629 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1630 		}
1631 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1632 	}
1633 
1634 	SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum,
1635 	    compress);
1636 }
1637 
1638 void
spa_freeze(spa_t * spa)1639 spa_freeze(spa_t *spa)
1640 {
1641 	uint64_t freeze_txg = 0;
1642 
1643 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1644 	if (spa->spa_freeze_txg == UINT64_MAX) {
1645 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1646 		spa->spa_freeze_txg = freeze_txg;
1647 	}
1648 	spa_config_exit(spa, SCL_ALL, FTAG);
1649 	if (freeze_txg != 0)
1650 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1651 }
1652 
1653 void
zfs_panic_recover(const char * fmt,...)1654 zfs_panic_recover(const char *fmt, ...)
1655 {
1656 	va_list adx;
1657 
1658 	va_start(adx, fmt);
1659 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1660 	va_end(adx);
1661 }
1662 
1663 /*
1664  * This is a stripped-down version of strtoull, suitable only for converting
1665  * lowercase hexadecimal numbers that don't overflow.
1666  */
1667 uint64_t
zfs_strtonum(const char * str,char ** nptr)1668 zfs_strtonum(const char *str, char **nptr)
1669 {
1670 	uint64_t val = 0;
1671 	char c;
1672 	int digit;
1673 
1674 	while ((c = *str) != '\0') {
1675 		if (c >= '0' && c <= '9')
1676 			digit = c - '0';
1677 		else if (c >= 'a' && c <= 'f')
1678 			digit = 10 + c - 'a';
1679 		else
1680 			break;
1681 
1682 		val *= 16;
1683 		val += digit;
1684 
1685 		str++;
1686 	}
1687 
1688 	if (nptr)
1689 		*nptr = (char *)str;
1690 
1691 	return (val);
1692 }
1693 
1694 void
spa_activate_allocation_classes(spa_t * spa,dmu_tx_t * tx)1695 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1696 {
1697 	/*
1698 	 * We bump the feature refcount for each special vdev added to the pool
1699 	 */
1700 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1701 	spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1702 }
1703 
1704 /*
1705  * ==========================================================================
1706  * Accessor functions
1707  * ==========================================================================
1708  */
1709 
1710 boolean_t
spa_shutting_down(spa_t * spa)1711 spa_shutting_down(spa_t *spa)
1712 {
1713 	return (spa->spa_async_suspended);
1714 }
1715 
1716 dsl_pool_t *
spa_get_dsl(spa_t * spa)1717 spa_get_dsl(spa_t *spa)
1718 {
1719 	return (spa->spa_dsl_pool);
1720 }
1721 
1722 boolean_t
spa_is_initializing(spa_t * spa)1723 spa_is_initializing(spa_t *spa)
1724 {
1725 	return (spa->spa_is_initializing);
1726 }
1727 
1728 boolean_t
spa_indirect_vdevs_loaded(spa_t * spa)1729 spa_indirect_vdevs_loaded(spa_t *spa)
1730 {
1731 	return (spa->spa_indirect_vdevs_loaded);
1732 }
1733 
1734 blkptr_t *
spa_get_rootblkptr(spa_t * spa)1735 spa_get_rootblkptr(spa_t *spa)
1736 {
1737 	return (&spa->spa_ubsync.ub_rootbp);
1738 }
1739 
1740 void
spa_set_rootblkptr(spa_t * spa,const blkptr_t * bp)1741 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1742 {
1743 	spa->spa_uberblock.ub_rootbp = *bp;
1744 }
1745 
1746 void
spa_altroot(spa_t * spa,char * buf,size_t buflen)1747 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1748 {
1749 	if (spa->spa_root == NULL)
1750 		buf[0] = '\0';
1751 	else
1752 		(void) strlcpy(buf, spa->spa_root, buflen);
1753 }
1754 
1755 uint32_t
spa_sync_pass(spa_t * spa)1756 spa_sync_pass(spa_t *spa)
1757 {
1758 	return (spa->spa_sync_pass);
1759 }
1760 
1761 char *
spa_name(spa_t * spa)1762 spa_name(spa_t *spa)
1763 {
1764 	return (spa->spa_name);
1765 }
1766 
1767 uint64_t
spa_guid(spa_t * spa)1768 spa_guid(spa_t *spa)
1769 {
1770 	dsl_pool_t *dp = spa_get_dsl(spa);
1771 	uint64_t guid;
1772 
1773 	/*
1774 	 * If we fail to parse the config during spa_load(), we can go through
1775 	 * the error path (which posts an ereport) and end up here with no root
1776 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1777 	 * this case.
1778 	 */
1779 	if (spa->spa_root_vdev == NULL)
1780 		return (spa->spa_config_guid);
1781 
1782 	guid = spa->spa_last_synced_guid != 0 ?
1783 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1784 
1785 	/*
1786 	 * Return the most recently synced out guid unless we're
1787 	 * in syncing context.
1788 	 */
1789 	if (dp && dsl_pool_sync_context(dp))
1790 		return (spa->spa_root_vdev->vdev_guid);
1791 	else
1792 		return (guid);
1793 }
1794 
1795 uint64_t
spa_load_guid(spa_t * spa)1796 spa_load_guid(spa_t *spa)
1797 {
1798 	/*
1799 	 * This is a GUID that exists solely as a reference for the
1800 	 * purposes of the arc.  It is generated at load time, and
1801 	 * is never written to persistent storage.
1802 	 */
1803 	return (spa->spa_load_guid);
1804 }
1805 
1806 uint64_t
spa_last_synced_txg(spa_t * spa)1807 spa_last_synced_txg(spa_t *spa)
1808 {
1809 	return (spa->spa_ubsync.ub_txg);
1810 }
1811 
1812 uint64_t
spa_first_txg(spa_t * spa)1813 spa_first_txg(spa_t *spa)
1814 {
1815 	return (spa->spa_first_txg);
1816 }
1817 
1818 uint64_t
spa_syncing_txg(spa_t * spa)1819 spa_syncing_txg(spa_t *spa)
1820 {
1821 	return (spa->spa_syncing_txg);
1822 }
1823 
1824 /*
1825  * Return the last txg where data can be dirtied. The final txgs
1826  * will be used to just clear out any deferred frees that remain.
1827  */
1828 uint64_t
spa_final_dirty_txg(spa_t * spa)1829 spa_final_dirty_txg(spa_t *spa)
1830 {
1831 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1832 }
1833 
1834 pool_state_t
spa_state(spa_t * spa)1835 spa_state(spa_t *spa)
1836 {
1837 	return (spa->spa_state);
1838 }
1839 
1840 spa_load_state_t
spa_load_state(spa_t * spa)1841 spa_load_state(spa_t *spa)
1842 {
1843 	return (spa->spa_load_state);
1844 }
1845 
1846 uint64_t
spa_freeze_txg(spa_t * spa)1847 spa_freeze_txg(spa_t *spa)
1848 {
1849 	return (spa->spa_freeze_txg);
1850 }
1851 
1852 /*
1853  * Return the inflated asize for a logical write in bytes. This is used by the
1854  * DMU to calculate the space a logical write will require on disk.
1855  * If lsize is smaller than the largest physical block size allocatable on this
1856  * pool we use its value instead, since the write will end up using the whole
1857  * block anyway.
1858  */
1859 uint64_t
spa_get_worst_case_asize(spa_t * spa,uint64_t lsize)1860 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1861 {
1862 	if (lsize == 0)
1863 		return (0);	/* No inflation needed */
1864 	return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1865 }
1866 
1867 /*
1868  * Return the amount of slop space in bytes.  It is typically 1/32 of the pool
1869  * (3.2%), minus the embedded log space.  On very small pools, it may be
1870  * slightly larger than this.  On very large pools, it will be capped to
1871  * the value of spa_max_slop.  The embedded log space is not included in
1872  * spa_dspace.  By subtracting it, the usable space (per "zfs list") is a
1873  * constant 97% of the total space, regardless of metaslab size (assuming the
1874  * default spa_slop_shift=5 and a non-tiny pool).
1875  *
1876  * See the comment above spa_slop_shift for more details.
1877  */
1878 uint64_t
spa_get_slop_space(spa_t * spa)1879 spa_get_slop_space(spa_t *spa)
1880 {
1881 	uint64_t space = 0;
1882 	uint64_t slop = 0;
1883 
1884 	/*
1885 	 * Make sure spa_dedup_dspace has been set.
1886 	 */
1887 	if (spa->spa_dedup_dspace == ~0ULL)
1888 		spa_update_dspace(spa);
1889 
1890 	space = spa->spa_rdspace;
1891 	slop = MIN(space >> spa_slop_shift, spa_max_slop);
1892 
1893 	/*
1894 	 * Subtract the embedded log space, but no more than half the (3.2%)
1895 	 * unusable space.  Note, the "no more than half" is only relevant if
1896 	 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
1897 	 * default.
1898 	 */
1899 	uint64_t embedded_log =
1900 	    metaslab_class_get_dspace(spa_embedded_log_class(spa));
1901 	embedded_log += metaslab_class_get_dspace(
1902 	    spa_special_embedded_log_class(spa));
1903 	slop -= MIN(embedded_log, slop >> 1);
1904 
1905 	/*
1906 	 * Slop space should be at least spa_min_slop, but no more than half
1907 	 * the entire pool.
1908 	 */
1909 	slop = MAX(slop, MIN(space >> 1, spa_min_slop));
1910 	return (slop);
1911 }
1912 
1913 uint64_t
spa_get_dspace(spa_t * spa)1914 spa_get_dspace(spa_t *spa)
1915 {
1916 	return (spa->spa_dspace);
1917 }
1918 
1919 uint64_t
spa_get_checkpoint_space(spa_t * spa)1920 spa_get_checkpoint_space(spa_t *spa)
1921 {
1922 	return (spa->spa_checkpoint_info.sci_dspace);
1923 }
1924 
1925 void
spa_update_dspace(spa_t * spa)1926 spa_update_dspace(spa_t *spa)
1927 {
1928 	spa->spa_rdspace = metaslab_class_get_dspace(spa_normal_class(spa));
1929 	if (spa->spa_nonallocating_dspace > 0) {
1930 		/*
1931 		 * Subtract the space provided by all non-allocating vdevs that
1932 		 * contribute to dspace.  If a file is overwritten, its old
1933 		 * blocks are freed and new blocks are allocated.  If there are
1934 		 * no snapshots of the file, the available space should remain
1935 		 * the same.  The old blocks could be freed from the
1936 		 * non-allocating vdev, but the new blocks must be allocated on
1937 		 * other (allocating) vdevs.  By reserving the entire size of
1938 		 * the non-allocating vdevs (including allocated space), we
1939 		 * ensure that there will be enough space on the allocating
1940 		 * vdevs for this file overwrite to succeed.
1941 		 *
1942 		 * Note that the DMU/DSL doesn't actually know or care
1943 		 * how much space is allocated (it does its own tracking
1944 		 * of how much space has been logically used).  So it
1945 		 * doesn't matter that the data we are moving may be
1946 		 * allocated twice (on the old device and the new device).
1947 		 */
1948 		ASSERT3U(spa->spa_rdspace, >=, spa->spa_nonallocating_dspace);
1949 		spa->spa_rdspace -= spa->spa_nonallocating_dspace;
1950 	}
1951 	spa->spa_dspace = spa->spa_rdspace + ddt_get_dedup_dspace(spa) +
1952 	    brt_get_dspace(spa);
1953 }
1954 
1955 /*
1956  * Return the failure mode that has been set to this pool. The default
1957  * behavior will be to block all I/Os when a complete failure occurs.
1958  */
1959 uint64_t
spa_get_failmode(spa_t * spa)1960 spa_get_failmode(spa_t *spa)
1961 {
1962 	return (spa->spa_failmode);
1963 }
1964 
1965 boolean_t
spa_suspended(spa_t * spa)1966 spa_suspended(spa_t *spa)
1967 {
1968 	return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1969 }
1970 
1971 uint64_t
spa_version(spa_t * spa)1972 spa_version(spa_t *spa)
1973 {
1974 	return (spa->spa_ubsync.ub_version);
1975 }
1976 
1977 boolean_t
spa_deflate(spa_t * spa)1978 spa_deflate(spa_t *spa)
1979 {
1980 	return (spa->spa_deflate);
1981 }
1982 
1983 metaslab_class_t *
spa_normal_class(spa_t * spa)1984 spa_normal_class(spa_t *spa)
1985 {
1986 	return (spa->spa_normal_class);
1987 }
1988 
1989 metaslab_class_t *
spa_log_class(spa_t * spa)1990 spa_log_class(spa_t *spa)
1991 {
1992 	return (spa->spa_log_class);
1993 }
1994 
1995 metaslab_class_t *
spa_embedded_log_class(spa_t * spa)1996 spa_embedded_log_class(spa_t *spa)
1997 {
1998 	return (spa->spa_embedded_log_class);
1999 }
2000 
2001 metaslab_class_t *
spa_special_class(spa_t * spa)2002 spa_special_class(spa_t *spa)
2003 {
2004 	return (spa->spa_special_class);
2005 }
2006 
2007 metaslab_class_t *
spa_special_embedded_log_class(spa_t * spa)2008 spa_special_embedded_log_class(spa_t *spa)
2009 {
2010 	return (spa->spa_special_embedded_log_class);
2011 }
2012 
2013 metaslab_class_t *
spa_dedup_class(spa_t * spa)2014 spa_dedup_class(spa_t *spa)
2015 {
2016 	return (spa->spa_dedup_class);
2017 }
2018 
2019 boolean_t
spa_special_has_ddt(spa_t * spa)2020 spa_special_has_ddt(spa_t *spa)
2021 {
2022 	return (zfs_ddt_data_is_special && spa_has_special(spa));
2023 }
2024 
2025 /*
2026  * Locate an appropriate allocation class
2027  */
2028 metaslab_class_t *
spa_preferred_class(spa_t * spa,const zio_t * zio)2029 spa_preferred_class(spa_t *spa, const zio_t *zio)
2030 {
2031 	metaslab_class_t *mc = zio->io_metaslab_class;
2032 	boolean_t tried_dedup = (mc == spa_dedup_class(spa));
2033 	boolean_t tried_special = (mc == spa_special_class(spa));
2034 	const zio_prop_t *zp = &zio->io_prop;
2035 
2036 	/*
2037 	 * Override object type for the purposes of selecting a storage class.
2038 	 * Primarily for DMU_OTN_ types where we can't explicitly control their
2039 	 * storage class; instead, choose a static type most closely matches
2040 	 * what we want.
2041 	 */
2042 	dmu_object_type_t objtype =
2043 	    zp->zp_storage_type == DMU_OT_NONE ?
2044 	    zp->zp_type : zp->zp_storage_type;
2045 
2046 	/*
2047 	 * ZIL allocations determine their class in zio_alloc_zil().
2048 	 */
2049 	ASSERT(objtype != DMU_OT_INTENT_LOG);
2050 
2051 	if (DMU_OT_IS_DDT(objtype)) {
2052 		if (spa_has_dedup(spa) && !tried_dedup && !tried_special)
2053 			return (spa_dedup_class(spa));
2054 		else if (spa_special_has_ddt(spa) && !tried_special)
2055 			return (spa_special_class(spa));
2056 		else
2057 			return (spa_normal_class(spa));
2058 	}
2059 
2060 	/* Indirect blocks for user data can land in special if allowed */
2061 	if (zp->zp_level > 0 &&
2062 	    (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
2063 		if (zfs_user_indirect_is_special && spa_has_special(spa) &&
2064 		    !tried_special)
2065 			return (spa_special_class(spa));
2066 		else
2067 			return (spa_normal_class(spa));
2068 	}
2069 
2070 	if (DMU_OT_IS_METADATA(objtype) || zp->zp_level > 0) {
2071 		if (spa_has_special(spa) && !tried_special)
2072 			return (spa_special_class(spa));
2073 		else
2074 			return (spa_normal_class(spa));
2075 	}
2076 
2077 	/*
2078 	 * Allow small file or zvol blocks in special class if opted in by
2079 	 * the special_smallblk property. However, always leave a reserve of
2080 	 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
2081 	 */
2082 	if ((DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL) &&
2083 	    spa_has_special(spa) && !tried_special &&
2084 	    zio->io_size <= zp->zp_zpl_smallblk) {
2085 		metaslab_class_t *special = spa_special_class(spa);
2086 		uint64_t alloc = metaslab_class_get_alloc(special);
2087 		uint64_t space = metaslab_class_get_space(special);
2088 		uint64_t limit =
2089 		    (space * (100 - zfs_special_class_metadata_reserve_pct))
2090 		    / 100;
2091 
2092 		if (alloc < limit)
2093 			return (special);
2094 	}
2095 
2096 	return (spa_normal_class(spa));
2097 }
2098 
2099 void
spa_evicting_os_register(spa_t * spa,objset_t * os)2100 spa_evicting_os_register(spa_t *spa, objset_t *os)
2101 {
2102 	mutex_enter(&spa->spa_evicting_os_lock);
2103 	list_insert_head(&spa->spa_evicting_os_list, os);
2104 	mutex_exit(&spa->spa_evicting_os_lock);
2105 }
2106 
2107 void
spa_evicting_os_deregister(spa_t * spa,objset_t * os)2108 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
2109 {
2110 	mutex_enter(&spa->spa_evicting_os_lock);
2111 	list_remove(&spa->spa_evicting_os_list, os);
2112 	cv_broadcast(&spa->spa_evicting_os_cv);
2113 	mutex_exit(&spa->spa_evicting_os_lock);
2114 }
2115 
2116 void
spa_evicting_os_wait(spa_t * spa)2117 spa_evicting_os_wait(spa_t *spa)
2118 {
2119 	mutex_enter(&spa->spa_evicting_os_lock);
2120 	while (!list_is_empty(&spa->spa_evicting_os_list))
2121 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
2122 	mutex_exit(&spa->spa_evicting_os_lock);
2123 
2124 	dmu_buf_user_evict_wait();
2125 }
2126 
2127 int
spa_max_replication(spa_t * spa)2128 spa_max_replication(spa_t *spa)
2129 {
2130 	/*
2131 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
2132 	 * handle BPs with more than one DVA allocated.  Set our max
2133 	 * replication level accordingly.
2134 	 */
2135 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
2136 		return (1);
2137 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
2138 }
2139 
2140 int
spa_prev_software_version(spa_t * spa)2141 spa_prev_software_version(spa_t *spa)
2142 {
2143 	return (spa->spa_prev_software_version);
2144 }
2145 
2146 uint64_t
spa_deadman_synctime(spa_t * spa)2147 spa_deadman_synctime(spa_t *spa)
2148 {
2149 	return (spa->spa_deadman_synctime);
2150 }
2151 
2152 spa_autotrim_t
spa_get_autotrim(spa_t * spa)2153 spa_get_autotrim(spa_t *spa)
2154 {
2155 	return (spa->spa_autotrim);
2156 }
2157 
2158 uint64_t
spa_deadman_ziotime(spa_t * spa)2159 spa_deadman_ziotime(spa_t *spa)
2160 {
2161 	return (spa->spa_deadman_ziotime);
2162 }
2163 
2164 uint64_t
spa_get_deadman_failmode(spa_t * spa)2165 spa_get_deadman_failmode(spa_t *spa)
2166 {
2167 	return (spa->spa_deadman_failmode);
2168 }
2169 
2170 void
spa_set_deadman_failmode(spa_t * spa,const char * failmode)2171 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2172 {
2173 	if (strcmp(failmode, "wait") == 0)
2174 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2175 	else if (strcmp(failmode, "continue") == 0)
2176 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2177 	else if (strcmp(failmode, "panic") == 0)
2178 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2179 	else
2180 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2181 }
2182 
2183 void
spa_set_deadman_ziotime(hrtime_t ns)2184 spa_set_deadman_ziotime(hrtime_t ns)
2185 {
2186 	spa_t *spa = NULL;
2187 
2188 	if (spa_mode_global != SPA_MODE_UNINIT) {
2189 		mutex_enter(&spa_namespace_lock);
2190 		while ((spa = spa_next(spa)) != NULL)
2191 			spa->spa_deadman_ziotime = ns;
2192 		mutex_exit(&spa_namespace_lock);
2193 	}
2194 }
2195 
2196 void
spa_set_deadman_synctime(hrtime_t ns)2197 spa_set_deadman_synctime(hrtime_t ns)
2198 {
2199 	spa_t *spa = NULL;
2200 
2201 	if (spa_mode_global != SPA_MODE_UNINIT) {
2202 		mutex_enter(&spa_namespace_lock);
2203 		while ((spa = spa_next(spa)) != NULL)
2204 			spa->spa_deadman_synctime = ns;
2205 		mutex_exit(&spa_namespace_lock);
2206 	}
2207 }
2208 
2209 uint64_t
dva_get_dsize_sync(spa_t * spa,const dva_t * dva)2210 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2211 {
2212 	uint64_t asize = DVA_GET_ASIZE(dva);
2213 	uint64_t dsize = asize;
2214 
2215 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2216 
2217 	if (asize != 0 && spa->spa_deflate) {
2218 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2219 		if (vd != NULL)
2220 			dsize = (asize >> SPA_MINBLOCKSHIFT) *
2221 			    vd->vdev_deflate_ratio;
2222 	}
2223 
2224 	return (dsize);
2225 }
2226 
2227 uint64_t
bp_get_dsize_sync(spa_t * spa,const blkptr_t * bp)2228 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2229 {
2230 	uint64_t dsize = 0;
2231 
2232 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2233 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2234 
2235 	return (dsize);
2236 }
2237 
2238 uint64_t
bp_get_dsize(spa_t * spa,const blkptr_t * bp)2239 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2240 {
2241 	uint64_t dsize = 0;
2242 
2243 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2244 
2245 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2246 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2247 
2248 	spa_config_exit(spa, SCL_VDEV, FTAG);
2249 
2250 	return (dsize);
2251 }
2252 
2253 uint64_t
spa_dirty_data(spa_t * spa)2254 spa_dirty_data(spa_t *spa)
2255 {
2256 	return (spa->spa_dsl_pool->dp_dirty_total);
2257 }
2258 
2259 /*
2260  * ==========================================================================
2261  * SPA Import Progress Routines
2262  * ==========================================================================
2263  */
2264 
2265 typedef struct spa_import_progress {
2266 	uint64_t		pool_guid;	/* unique id for updates */
2267 	char			*pool_name;
2268 	spa_load_state_t	spa_load_state;
2269 	char			*spa_load_notes;
2270 	uint64_t		mmp_sec_remaining;	/* MMP activity check */
2271 	uint64_t		spa_load_max_txg;	/* rewind txg */
2272 	procfs_list_node_t	smh_node;
2273 } spa_import_progress_t;
2274 
2275 spa_history_list_t *spa_import_progress_list = NULL;
2276 
2277 static int
spa_import_progress_show_header(struct seq_file * f)2278 spa_import_progress_show_header(struct seq_file *f)
2279 {
2280 	seq_printf(f, "%-20s %-14s %-14s %-12s %-16s %s\n", "pool_guid",
2281 	    "load_state", "multihost_secs", "max_txg",
2282 	    "pool_name", "notes");
2283 	return (0);
2284 }
2285 
2286 static int
spa_import_progress_show(struct seq_file * f,void * data)2287 spa_import_progress_show(struct seq_file *f, void *data)
2288 {
2289 	spa_import_progress_t *sip = (spa_import_progress_t *)data;
2290 
2291 	seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %-16s %s\n",
2292 	    (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2293 	    (u_longlong_t)sip->mmp_sec_remaining,
2294 	    (u_longlong_t)sip->spa_load_max_txg,
2295 	    (sip->pool_name ? sip->pool_name : "-"),
2296 	    (sip->spa_load_notes ? sip->spa_load_notes : "-"));
2297 
2298 	return (0);
2299 }
2300 
2301 /* Remove oldest elements from list until there are no more than 'size' left */
2302 static void
spa_import_progress_truncate(spa_history_list_t * shl,unsigned int size)2303 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2304 {
2305 	spa_import_progress_t *sip;
2306 	while (shl->size > size) {
2307 		sip = list_remove_head(&shl->procfs_list.pl_list);
2308 		if (sip->pool_name)
2309 			spa_strfree(sip->pool_name);
2310 		if (sip->spa_load_notes)
2311 			kmem_strfree(sip->spa_load_notes);
2312 		kmem_free(sip, sizeof (spa_import_progress_t));
2313 		shl->size--;
2314 	}
2315 
2316 	IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2317 }
2318 
2319 static void
spa_import_progress_init(void)2320 spa_import_progress_init(void)
2321 {
2322 	spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2323 	    KM_SLEEP);
2324 
2325 	spa_import_progress_list->size = 0;
2326 
2327 	spa_import_progress_list->procfs_list.pl_private =
2328 	    spa_import_progress_list;
2329 
2330 	procfs_list_install("zfs",
2331 	    NULL,
2332 	    "import_progress",
2333 	    0644,
2334 	    &spa_import_progress_list->procfs_list,
2335 	    spa_import_progress_show,
2336 	    spa_import_progress_show_header,
2337 	    NULL,
2338 	    offsetof(spa_import_progress_t, smh_node));
2339 }
2340 
2341 static void
spa_import_progress_destroy(void)2342 spa_import_progress_destroy(void)
2343 {
2344 	spa_history_list_t *shl = spa_import_progress_list;
2345 	procfs_list_uninstall(&shl->procfs_list);
2346 	spa_import_progress_truncate(shl, 0);
2347 	procfs_list_destroy(&shl->procfs_list);
2348 	kmem_free(shl, sizeof (spa_history_list_t));
2349 }
2350 
2351 int
spa_import_progress_set_state(uint64_t pool_guid,spa_load_state_t load_state)2352 spa_import_progress_set_state(uint64_t pool_guid,
2353     spa_load_state_t load_state)
2354 {
2355 	spa_history_list_t *shl = spa_import_progress_list;
2356 	spa_import_progress_t *sip;
2357 	int error = ENOENT;
2358 
2359 	if (shl->size == 0)
2360 		return (0);
2361 
2362 	mutex_enter(&shl->procfs_list.pl_lock);
2363 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2364 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2365 		if (sip->pool_guid == pool_guid) {
2366 			sip->spa_load_state = load_state;
2367 			if (sip->spa_load_notes != NULL) {
2368 				kmem_strfree(sip->spa_load_notes);
2369 				sip->spa_load_notes = NULL;
2370 			}
2371 			error = 0;
2372 			break;
2373 		}
2374 	}
2375 	mutex_exit(&shl->procfs_list.pl_lock);
2376 
2377 	return (error);
2378 }
2379 
2380 static void
spa_import_progress_set_notes_impl(spa_t * spa,boolean_t log_dbgmsg,const char * fmt,va_list adx)2381 spa_import_progress_set_notes_impl(spa_t *spa, boolean_t log_dbgmsg,
2382     const char *fmt, va_list adx)
2383 {
2384 	spa_history_list_t *shl = spa_import_progress_list;
2385 	spa_import_progress_t *sip;
2386 	uint64_t pool_guid = spa_guid(spa);
2387 
2388 	if (shl->size == 0)
2389 		return;
2390 
2391 	char *notes = kmem_vasprintf(fmt, adx);
2392 
2393 	mutex_enter(&shl->procfs_list.pl_lock);
2394 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2395 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2396 		if (sip->pool_guid == pool_guid) {
2397 			if (sip->spa_load_notes != NULL) {
2398 				kmem_strfree(sip->spa_load_notes);
2399 				sip->spa_load_notes = NULL;
2400 			}
2401 			sip->spa_load_notes = notes;
2402 			if (log_dbgmsg)
2403 				zfs_dbgmsg("'%s' %s", sip->pool_name, notes);
2404 			notes = NULL;
2405 			break;
2406 		}
2407 	}
2408 	mutex_exit(&shl->procfs_list.pl_lock);
2409 	if (notes != NULL)
2410 		kmem_strfree(notes);
2411 }
2412 
2413 void
spa_import_progress_set_notes(spa_t * spa,const char * fmt,...)2414 spa_import_progress_set_notes(spa_t *spa, const char *fmt, ...)
2415 {
2416 	va_list adx;
2417 
2418 	va_start(adx, fmt);
2419 	spa_import_progress_set_notes_impl(spa, B_TRUE, fmt, adx);
2420 	va_end(adx);
2421 }
2422 
2423 void
spa_import_progress_set_notes_nolog(spa_t * spa,const char * fmt,...)2424 spa_import_progress_set_notes_nolog(spa_t *spa, const char *fmt, ...)
2425 {
2426 	va_list adx;
2427 
2428 	va_start(adx, fmt);
2429 	spa_import_progress_set_notes_impl(spa, B_FALSE, fmt, adx);
2430 	va_end(adx);
2431 }
2432 
2433 int
spa_import_progress_set_max_txg(uint64_t pool_guid,uint64_t load_max_txg)2434 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2435 {
2436 	spa_history_list_t *shl = spa_import_progress_list;
2437 	spa_import_progress_t *sip;
2438 	int error = ENOENT;
2439 
2440 	if (shl->size == 0)
2441 		return (0);
2442 
2443 	mutex_enter(&shl->procfs_list.pl_lock);
2444 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2445 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2446 		if (sip->pool_guid == pool_guid) {
2447 			sip->spa_load_max_txg = load_max_txg;
2448 			error = 0;
2449 			break;
2450 		}
2451 	}
2452 	mutex_exit(&shl->procfs_list.pl_lock);
2453 
2454 	return (error);
2455 }
2456 
2457 int
spa_import_progress_set_mmp_check(uint64_t pool_guid,uint64_t mmp_sec_remaining)2458 spa_import_progress_set_mmp_check(uint64_t pool_guid,
2459     uint64_t mmp_sec_remaining)
2460 {
2461 	spa_history_list_t *shl = spa_import_progress_list;
2462 	spa_import_progress_t *sip;
2463 	int error = ENOENT;
2464 
2465 	if (shl->size == 0)
2466 		return (0);
2467 
2468 	mutex_enter(&shl->procfs_list.pl_lock);
2469 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2470 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2471 		if (sip->pool_guid == pool_guid) {
2472 			sip->mmp_sec_remaining = mmp_sec_remaining;
2473 			error = 0;
2474 			break;
2475 		}
2476 	}
2477 	mutex_exit(&shl->procfs_list.pl_lock);
2478 
2479 	return (error);
2480 }
2481 
2482 /*
2483  * A new import is in progress, add an entry.
2484  */
2485 void
spa_import_progress_add(spa_t * spa)2486 spa_import_progress_add(spa_t *spa)
2487 {
2488 	spa_history_list_t *shl = spa_import_progress_list;
2489 	spa_import_progress_t *sip;
2490 	const char *poolname = NULL;
2491 
2492 	sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2493 	sip->pool_guid = spa_guid(spa);
2494 
2495 	(void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2496 	    &poolname);
2497 	if (poolname == NULL)
2498 		poolname = spa_name(spa);
2499 	sip->pool_name = spa_strdup(poolname);
2500 	sip->spa_load_state = spa_load_state(spa);
2501 	sip->spa_load_notes = NULL;
2502 
2503 	mutex_enter(&shl->procfs_list.pl_lock);
2504 	procfs_list_add(&shl->procfs_list, sip);
2505 	shl->size++;
2506 	mutex_exit(&shl->procfs_list.pl_lock);
2507 }
2508 
2509 void
spa_import_progress_remove(uint64_t pool_guid)2510 spa_import_progress_remove(uint64_t pool_guid)
2511 {
2512 	spa_history_list_t *shl = spa_import_progress_list;
2513 	spa_import_progress_t *sip;
2514 
2515 	mutex_enter(&shl->procfs_list.pl_lock);
2516 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2517 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2518 		if (sip->pool_guid == pool_guid) {
2519 			if (sip->pool_name)
2520 				spa_strfree(sip->pool_name);
2521 			if (sip->spa_load_notes)
2522 				spa_strfree(sip->spa_load_notes);
2523 			list_remove(&shl->procfs_list.pl_list, sip);
2524 			shl->size--;
2525 			kmem_free(sip, sizeof (spa_import_progress_t));
2526 			break;
2527 		}
2528 	}
2529 	mutex_exit(&shl->procfs_list.pl_lock);
2530 }
2531 
2532 /*
2533  * ==========================================================================
2534  * Initialization and Termination
2535  * ==========================================================================
2536  */
2537 
2538 static int
spa_name_compare(const void * a1,const void * a2)2539 spa_name_compare(const void *a1, const void *a2)
2540 {
2541 	const spa_t *s1 = a1;
2542 	const spa_t *s2 = a2;
2543 	int s;
2544 
2545 	s = strcmp(s1->spa_name, s2->spa_name);
2546 
2547 	return (TREE_ISIGN(s));
2548 }
2549 
2550 void
spa_init(spa_mode_t mode)2551 spa_init(spa_mode_t mode)
2552 {
2553 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2554 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2555 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2556 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2557 
2558 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2559 	    offsetof(spa_t, spa_avl));
2560 
2561 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2562 	    offsetof(spa_aux_t, aux_avl));
2563 
2564 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2565 	    offsetof(spa_aux_t, aux_avl));
2566 
2567 	spa_mode_global = mode;
2568 
2569 #ifndef _KERNEL
2570 	if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
2571 		struct sigaction sa;
2572 
2573 		sa.sa_flags = SA_SIGINFO;
2574 		sigemptyset(&sa.sa_mask);
2575 		sa.sa_sigaction = arc_buf_sigsegv;
2576 
2577 		if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2578 			perror("could not enable watchpoints: "
2579 			    "sigaction(SIGSEGV, ...) = ");
2580 		} else {
2581 			arc_watch = B_TRUE;
2582 		}
2583 	}
2584 #endif
2585 
2586 	fm_init();
2587 	zfs_refcount_init();
2588 	unique_init();
2589 	zfs_btree_init();
2590 	metaslab_stat_init();
2591 	brt_init();
2592 	ddt_init();
2593 	zio_init();
2594 	dmu_init();
2595 	zil_init();
2596 	vdev_mirror_stat_init();
2597 	vdev_raidz_math_init();
2598 	vdev_file_init();
2599 	zfs_prop_init();
2600 	chksum_init();
2601 	zpool_prop_init();
2602 	zpool_feature_init();
2603 	vdev_prop_init();
2604 	l2arc_start();
2605 	scan_init();
2606 	qat_init();
2607 	spa_import_progress_init();
2608 	zap_init();
2609 }
2610 
2611 void
spa_fini(void)2612 spa_fini(void)
2613 {
2614 	l2arc_stop();
2615 
2616 	spa_evict_all();
2617 
2618 	vdev_file_fini();
2619 	vdev_mirror_stat_fini();
2620 	vdev_raidz_math_fini();
2621 	chksum_fini();
2622 	zil_fini();
2623 	dmu_fini();
2624 	zio_fini();
2625 	ddt_fini();
2626 	brt_fini();
2627 	metaslab_stat_fini();
2628 	zfs_btree_fini();
2629 	unique_fini();
2630 	zfs_refcount_fini();
2631 	fm_fini();
2632 	scan_fini();
2633 	qat_fini();
2634 	spa_import_progress_destroy();
2635 	zap_fini();
2636 
2637 	avl_destroy(&spa_namespace_avl);
2638 	avl_destroy(&spa_spare_avl);
2639 	avl_destroy(&spa_l2cache_avl);
2640 
2641 	cv_destroy(&spa_namespace_cv);
2642 	mutex_destroy(&spa_namespace_lock);
2643 	mutex_destroy(&spa_spare_lock);
2644 	mutex_destroy(&spa_l2cache_lock);
2645 }
2646 
2647 boolean_t
spa_has_dedup(spa_t * spa)2648 spa_has_dedup(spa_t *spa)
2649 {
2650 	return (spa->spa_dedup_class->mc_groups != 0);
2651 }
2652 
2653 /*
2654  * Return whether this pool has a dedicated slog device. No locking needed.
2655  * It's not a problem if the wrong answer is returned as it's only for
2656  * performance and not correctness.
2657  */
2658 boolean_t
spa_has_slogs(spa_t * spa)2659 spa_has_slogs(spa_t *spa)
2660 {
2661 	return (spa->spa_log_class->mc_groups != 0);
2662 }
2663 
2664 boolean_t
spa_has_special(spa_t * spa)2665 spa_has_special(spa_t *spa)
2666 {
2667 	return (spa->spa_special_class->mc_groups != 0);
2668 }
2669 
2670 spa_log_state_t
spa_get_log_state(spa_t * spa)2671 spa_get_log_state(spa_t *spa)
2672 {
2673 	return (spa->spa_log_state);
2674 }
2675 
2676 void
spa_set_log_state(spa_t * spa,spa_log_state_t state)2677 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2678 {
2679 	spa->spa_log_state = state;
2680 }
2681 
2682 boolean_t
spa_is_root(spa_t * spa)2683 spa_is_root(spa_t *spa)
2684 {
2685 	return (spa->spa_is_root);
2686 }
2687 
2688 boolean_t
spa_writeable(spa_t * spa)2689 spa_writeable(spa_t *spa)
2690 {
2691 	return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
2692 }
2693 
2694 /*
2695  * Returns true if there is a pending sync task in any of the current
2696  * syncing txg, the current quiescing txg, or the current open txg.
2697  */
2698 boolean_t
spa_has_pending_synctask(spa_t * spa)2699 spa_has_pending_synctask(spa_t *spa)
2700 {
2701 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2702 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2703 }
2704 
2705 spa_mode_t
spa_mode(spa_t * spa)2706 spa_mode(spa_t *spa)
2707 {
2708 	return (spa->spa_mode);
2709 }
2710 
2711 uint64_t
spa_get_last_scrubbed_txg(spa_t * spa)2712 spa_get_last_scrubbed_txg(spa_t *spa)
2713 {
2714 	return (spa->spa_scrubbed_last_txg);
2715 }
2716 
2717 uint64_t
spa_bootfs(spa_t * spa)2718 spa_bootfs(spa_t *spa)
2719 {
2720 	return (spa->spa_bootfs);
2721 }
2722 
2723 uint64_t
spa_delegation(spa_t * spa)2724 spa_delegation(spa_t *spa)
2725 {
2726 	return (spa->spa_delegation);
2727 }
2728 
2729 objset_t *
spa_meta_objset(spa_t * spa)2730 spa_meta_objset(spa_t *spa)
2731 {
2732 	return (spa->spa_meta_objset);
2733 }
2734 
2735 enum zio_checksum
spa_dedup_checksum(spa_t * spa)2736 spa_dedup_checksum(spa_t *spa)
2737 {
2738 	return (spa->spa_dedup_checksum);
2739 }
2740 
2741 /*
2742  * Reset pool scan stat per scan pass (or reboot).
2743  */
2744 void
spa_scan_stat_init(spa_t * spa)2745 spa_scan_stat_init(spa_t *spa)
2746 {
2747 	/* data not stored on disk */
2748 	spa->spa_scan_pass_start = gethrestime_sec();
2749 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2750 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2751 	else
2752 		spa->spa_scan_pass_scrub_pause = 0;
2753 
2754 	if (dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan))
2755 		spa->spa_scan_pass_errorscrub_pause = spa->spa_scan_pass_start;
2756 	else
2757 		spa->spa_scan_pass_errorscrub_pause = 0;
2758 
2759 	spa->spa_scan_pass_scrub_spent_paused = 0;
2760 	spa->spa_scan_pass_exam = 0;
2761 	spa->spa_scan_pass_issued = 0;
2762 
2763 	// error scrub stats
2764 	spa->spa_scan_pass_errorscrub_spent_paused = 0;
2765 }
2766 
2767 /*
2768  * Get scan stats for zpool status reports
2769  */
2770 int
spa_scan_get_stats(spa_t * spa,pool_scan_stat_t * ps)2771 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2772 {
2773 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2774 
2775 	if (scn == NULL || (scn->scn_phys.scn_func == POOL_SCAN_NONE &&
2776 	    scn->errorscrub_phys.dep_func == POOL_SCAN_NONE))
2777 		return (SET_ERROR(ENOENT));
2778 
2779 	memset(ps, 0, sizeof (pool_scan_stat_t));
2780 
2781 	/* data stored on disk */
2782 	ps->pss_func = scn->scn_phys.scn_func;
2783 	ps->pss_state = scn->scn_phys.scn_state;
2784 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2785 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2786 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2787 	ps->pss_examined = scn->scn_phys.scn_examined;
2788 	ps->pss_skipped = scn->scn_phys.scn_skipped;
2789 	ps->pss_processed = scn->scn_phys.scn_processed;
2790 	ps->pss_errors = scn->scn_phys.scn_errors;
2791 
2792 	/* data not stored on disk */
2793 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2794 	ps->pss_pass_start = spa->spa_scan_pass_start;
2795 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2796 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2797 	ps->pss_pass_issued = spa->spa_scan_pass_issued;
2798 	ps->pss_issued =
2799 	    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2800 
2801 	/* error scrub data stored on disk */
2802 	ps->pss_error_scrub_func = scn->errorscrub_phys.dep_func;
2803 	ps->pss_error_scrub_state = scn->errorscrub_phys.dep_state;
2804 	ps->pss_error_scrub_start = scn->errorscrub_phys.dep_start_time;
2805 	ps->pss_error_scrub_end = scn->errorscrub_phys.dep_end_time;
2806 	ps->pss_error_scrub_examined = scn->errorscrub_phys.dep_examined;
2807 	ps->pss_error_scrub_to_be_examined =
2808 	    scn->errorscrub_phys.dep_to_examine;
2809 
2810 	/* error scrub data not stored on disk */
2811 	ps->pss_pass_error_scrub_pause = spa->spa_scan_pass_errorscrub_pause;
2812 
2813 	return (0);
2814 }
2815 
2816 int
spa_maxblocksize(spa_t * spa)2817 spa_maxblocksize(spa_t *spa)
2818 {
2819 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2820 		return (SPA_MAXBLOCKSIZE);
2821 	else
2822 		return (SPA_OLD_MAXBLOCKSIZE);
2823 }
2824 
2825 
2826 /*
2827  * Returns the txg that the last device removal completed. No indirect mappings
2828  * have been added since this txg.
2829  */
2830 uint64_t
spa_get_last_removal_txg(spa_t * spa)2831 spa_get_last_removal_txg(spa_t *spa)
2832 {
2833 	uint64_t vdevid;
2834 	uint64_t ret = -1ULL;
2835 
2836 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2837 	/*
2838 	 * sr_prev_indirect_vdev is only modified while holding all the
2839 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2840 	 * examining it.
2841 	 */
2842 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2843 
2844 	while (vdevid != -1ULL) {
2845 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2846 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2847 
2848 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2849 
2850 		/*
2851 		 * If the removal did not remap any data, we don't care.
2852 		 */
2853 		if (vdev_indirect_births_count(vib) != 0) {
2854 			ret = vdev_indirect_births_last_entry_txg(vib);
2855 			break;
2856 		}
2857 
2858 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2859 	}
2860 	spa_config_exit(spa, SCL_VDEV, FTAG);
2861 
2862 	IMPLY(ret != -1ULL,
2863 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2864 
2865 	return (ret);
2866 }
2867 
2868 int
spa_maxdnodesize(spa_t * spa)2869 spa_maxdnodesize(spa_t *spa)
2870 {
2871 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2872 		return (DNODE_MAX_SIZE);
2873 	else
2874 		return (DNODE_MIN_SIZE);
2875 }
2876 
2877 boolean_t
spa_multihost(spa_t * spa)2878 spa_multihost(spa_t *spa)
2879 {
2880 	return (spa->spa_multihost ? B_TRUE : B_FALSE);
2881 }
2882 
2883 uint32_t
spa_get_hostid(spa_t * spa)2884 spa_get_hostid(spa_t *spa)
2885 {
2886 	return (spa->spa_hostid);
2887 }
2888 
2889 boolean_t
spa_trust_config(spa_t * spa)2890 spa_trust_config(spa_t *spa)
2891 {
2892 	return (spa->spa_trust_config);
2893 }
2894 
2895 uint64_t
spa_missing_tvds_allowed(spa_t * spa)2896 spa_missing_tvds_allowed(spa_t *spa)
2897 {
2898 	return (spa->spa_missing_tvds_allowed);
2899 }
2900 
2901 space_map_t *
spa_syncing_log_sm(spa_t * spa)2902 spa_syncing_log_sm(spa_t *spa)
2903 {
2904 	return (spa->spa_syncing_log_sm);
2905 }
2906 
2907 void
spa_set_missing_tvds(spa_t * spa,uint64_t missing)2908 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2909 {
2910 	spa->spa_missing_tvds = missing;
2911 }
2912 
2913 /*
2914  * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2915  */
2916 const char *
spa_state_to_name(spa_t * spa)2917 spa_state_to_name(spa_t *spa)
2918 {
2919 	ASSERT3P(spa, !=, NULL);
2920 
2921 	/*
2922 	 * it is possible for the spa to exist, without root vdev
2923 	 * as the spa transitions during import/export
2924 	 */
2925 	vdev_t *rvd = spa->spa_root_vdev;
2926 	if (rvd == NULL) {
2927 		return ("TRANSITIONING");
2928 	}
2929 	vdev_state_t state = rvd->vdev_state;
2930 	vdev_aux_t aux = rvd->vdev_stat.vs_aux;
2931 
2932 	if (spa_suspended(spa))
2933 		return ("SUSPENDED");
2934 
2935 	switch (state) {
2936 	case VDEV_STATE_CLOSED:
2937 	case VDEV_STATE_OFFLINE:
2938 		return ("OFFLINE");
2939 	case VDEV_STATE_REMOVED:
2940 		return ("REMOVED");
2941 	case VDEV_STATE_CANT_OPEN:
2942 		if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2943 			return ("FAULTED");
2944 		else if (aux == VDEV_AUX_SPLIT_POOL)
2945 			return ("SPLIT");
2946 		else
2947 			return ("UNAVAIL");
2948 	case VDEV_STATE_FAULTED:
2949 		return ("FAULTED");
2950 	case VDEV_STATE_DEGRADED:
2951 		return ("DEGRADED");
2952 	case VDEV_STATE_HEALTHY:
2953 		return ("ONLINE");
2954 	default:
2955 		break;
2956 	}
2957 
2958 	return ("UNKNOWN");
2959 }
2960 
2961 boolean_t
spa_top_vdevs_spacemap_addressable(spa_t * spa)2962 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2963 {
2964 	vdev_t *rvd = spa->spa_root_vdev;
2965 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2966 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2967 			return (B_FALSE);
2968 	}
2969 	return (B_TRUE);
2970 }
2971 
2972 boolean_t
spa_has_checkpoint(spa_t * spa)2973 spa_has_checkpoint(spa_t *spa)
2974 {
2975 	return (spa->spa_checkpoint_txg != 0);
2976 }
2977 
2978 boolean_t
spa_importing_readonly_checkpoint(spa_t * spa)2979 spa_importing_readonly_checkpoint(spa_t *spa)
2980 {
2981 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2982 	    spa->spa_mode == SPA_MODE_READ);
2983 }
2984 
2985 uint64_t
spa_min_claim_txg(spa_t * spa)2986 spa_min_claim_txg(spa_t *spa)
2987 {
2988 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2989 
2990 	if (checkpoint_txg != 0)
2991 		return (checkpoint_txg + 1);
2992 
2993 	return (spa->spa_first_txg);
2994 }
2995 
2996 /*
2997  * If there is a checkpoint, async destroys may consume more space from
2998  * the pool instead of freeing it. In an attempt to save the pool from
2999  * getting suspended when it is about to run out of space, we stop
3000  * processing async destroys.
3001  */
3002 boolean_t
spa_suspend_async_destroy(spa_t * spa)3003 spa_suspend_async_destroy(spa_t *spa)
3004 {
3005 	dsl_pool_t *dp = spa_get_dsl(spa);
3006 
3007 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
3008 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
3009 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
3010 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
3011 
3012 	if (spa_has_checkpoint(spa) && avail == 0)
3013 		return (B_TRUE);
3014 
3015 	return (B_FALSE);
3016 }
3017 
3018 #if defined(_KERNEL)
3019 
3020 int
param_set_deadman_failmode_common(const char * val)3021 param_set_deadman_failmode_common(const char *val)
3022 {
3023 	spa_t *spa = NULL;
3024 	char *p;
3025 
3026 	if (val == NULL)
3027 		return (SET_ERROR(EINVAL));
3028 
3029 	if ((p = strchr(val, '\n')) != NULL)
3030 		*p = '\0';
3031 
3032 	if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
3033 	    strcmp(val, "panic"))
3034 		return (SET_ERROR(EINVAL));
3035 
3036 	if (spa_mode_global != SPA_MODE_UNINIT) {
3037 		mutex_enter(&spa_namespace_lock);
3038 		while ((spa = spa_next(spa)) != NULL)
3039 			spa_set_deadman_failmode(spa, val);
3040 		mutex_exit(&spa_namespace_lock);
3041 	}
3042 
3043 	return (0);
3044 }
3045 #endif
3046 
3047 /* Namespace manipulation */
3048 EXPORT_SYMBOL(spa_lookup);
3049 EXPORT_SYMBOL(spa_add);
3050 EXPORT_SYMBOL(spa_remove);
3051 EXPORT_SYMBOL(spa_next);
3052 
3053 /* Refcount functions */
3054 EXPORT_SYMBOL(spa_open_ref);
3055 EXPORT_SYMBOL(spa_close);
3056 EXPORT_SYMBOL(spa_refcount_zero);
3057 
3058 /* Pool configuration lock */
3059 EXPORT_SYMBOL(spa_config_tryenter);
3060 EXPORT_SYMBOL(spa_config_enter);
3061 EXPORT_SYMBOL(spa_config_exit);
3062 EXPORT_SYMBOL(spa_config_held);
3063 
3064 /* Pool vdev add/remove lock */
3065 EXPORT_SYMBOL(spa_vdev_enter);
3066 EXPORT_SYMBOL(spa_vdev_exit);
3067 
3068 /* Pool vdev state change lock */
3069 EXPORT_SYMBOL(spa_vdev_state_enter);
3070 EXPORT_SYMBOL(spa_vdev_state_exit);
3071 
3072 /* Accessor functions */
3073 EXPORT_SYMBOL(spa_shutting_down);
3074 EXPORT_SYMBOL(spa_get_dsl);
3075 EXPORT_SYMBOL(spa_get_rootblkptr);
3076 EXPORT_SYMBOL(spa_set_rootblkptr);
3077 EXPORT_SYMBOL(spa_altroot);
3078 EXPORT_SYMBOL(spa_sync_pass);
3079 EXPORT_SYMBOL(spa_name);
3080 EXPORT_SYMBOL(spa_guid);
3081 EXPORT_SYMBOL(spa_last_synced_txg);
3082 EXPORT_SYMBOL(spa_first_txg);
3083 EXPORT_SYMBOL(spa_syncing_txg);
3084 EXPORT_SYMBOL(spa_version);
3085 EXPORT_SYMBOL(spa_state);
3086 EXPORT_SYMBOL(spa_load_state);
3087 EXPORT_SYMBOL(spa_freeze_txg);
3088 EXPORT_SYMBOL(spa_get_dspace);
3089 EXPORT_SYMBOL(spa_update_dspace);
3090 EXPORT_SYMBOL(spa_deflate);
3091 EXPORT_SYMBOL(spa_normal_class);
3092 EXPORT_SYMBOL(spa_log_class);
3093 EXPORT_SYMBOL(spa_special_class);
3094 EXPORT_SYMBOL(spa_preferred_class);
3095 EXPORT_SYMBOL(spa_max_replication);
3096 EXPORT_SYMBOL(spa_prev_software_version);
3097 EXPORT_SYMBOL(spa_get_failmode);
3098 EXPORT_SYMBOL(spa_suspended);
3099 EXPORT_SYMBOL(spa_bootfs);
3100 EXPORT_SYMBOL(spa_delegation);
3101 EXPORT_SYMBOL(spa_meta_objset);
3102 EXPORT_SYMBOL(spa_maxblocksize);
3103 EXPORT_SYMBOL(spa_maxdnodesize);
3104 
3105 /* Miscellaneous support routines */
3106 EXPORT_SYMBOL(spa_guid_exists);
3107 EXPORT_SYMBOL(spa_strdup);
3108 EXPORT_SYMBOL(spa_strfree);
3109 EXPORT_SYMBOL(spa_generate_guid);
3110 EXPORT_SYMBOL(snprintf_blkptr);
3111 EXPORT_SYMBOL(spa_freeze);
3112 EXPORT_SYMBOL(spa_upgrade);
3113 EXPORT_SYMBOL(spa_evict_all);
3114 EXPORT_SYMBOL(spa_lookup_by_guid);
3115 EXPORT_SYMBOL(spa_has_spare);
3116 EXPORT_SYMBOL(dva_get_dsize_sync);
3117 EXPORT_SYMBOL(bp_get_dsize_sync);
3118 EXPORT_SYMBOL(bp_get_dsize);
3119 EXPORT_SYMBOL(spa_has_slogs);
3120 EXPORT_SYMBOL(spa_is_root);
3121 EXPORT_SYMBOL(spa_writeable);
3122 EXPORT_SYMBOL(spa_mode);
3123 EXPORT_SYMBOL(spa_namespace_lock);
3124 EXPORT_SYMBOL(spa_trust_config);
3125 EXPORT_SYMBOL(spa_missing_tvds_allowed);
3126 EXPORT_SYMBOL(spa_set_missing_tvds);
3127 EXPORT_SYMBOL(spa_state_to_name);
3128 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
3129 EXPORT_SYMBOL(spa_min_claim_txg);
3130 EXPORT_SYMBOL(spa_suspend_async_destroy);
3131 EXPORT_SYMBOL(spa_has_checkpoint);
3132 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
3133 
3134 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
3135 	"Set additional debugging flags");
3136 
3137 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
3138 	"Set to attempt to recover from fatal errors");
3139 
3140 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
3141 	"Set to ignore IO errors during free and permanently leak the space");
3142 
3143 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW,
3144 	"Dead I/O check interval in milliseconds");
3145 
3146 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW,
3147 	"Enable deadman timer");
3148 
3149 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW,
3150 	"SPA size estimate multiplication factor");
3151 
3152 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
3153 	"Place DDT data into the special class");
3154 
3155 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
3156 	"Place user data indirect blocks into the special class");
3157 
3158 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
3159 	param_set_deadman_failmode, param_get_charp, ZMOD_RW,
3160 	"Failmode for deadman timer");
3161 
3162 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
3163 	param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW,
3164 	"Pool sync expiration time in milliseconds");
3165 
3166 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
3167 	param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW,
3168 	"IO expiration time in milliseconds");
3169 
3170 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW,
3171 	"Small file blocks in special vdevs depends on this much "
3172 	"free space available");
3173 
3174 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
3175 	param_get_uint, ZMOD_RW, "Reserved free space in pool");
3176 
3177 ZFS_MODULE_PARAM(zfs, spa_, num_allocators, INT, ZMOD_RW,
3178 	"Number of allocators per spa");
3179 
3180 ZFS_MODULE_PARAM(zfs, spa_, cpus_per_allocator, INT, ZMOD_RW,
3181 	"Minimum number of CPUs per allocators");
3182