1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 */
28
29 /*
30 * SPA: Storage Pool Allocator
31 *
32 * This file contains all the routines used when modifying on-disk SPA state.
33 * This includes opening, importing, destroying, exporting a pool, and syncing a
34 * pool.
35 */
36
37 #include <sys/zfs_context.h>
38 #include <sys/fm/fs/zfs.h>
39 #include <sys/spa_impl.h>
40 #include <sys/zio.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu.h>
43 #include <sys/dmu_tx.h>
44 #include <sys/zap.h>
45 #include <sys/zil.h>
46 #include <sys/ddt.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/metaslab.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/uberblock_impl.h>
51 #include <sys/txg.h>
52 #include <sys/avl.h>
53 #include <sys/dmu_traverse.h>
54 #include <sys/dmu_objset.h>
55 #include <sys/unique.h>
56 #include <sys/dsl_pool.h>
57 #include <sys/dsl_dataset.h>
58 #include <sys/dsl_dir.h>
59 #include <sys/dsl_prop.h>
60 #include <sys/dsl_synctask.h>
61 #include <sys/fs/zfs.h>
62 #include <sys/arc.h>
63 #include <sys/callb.h>
64 #include <sys/systeminfo.h>
65 #include <sys/spa_boot.h>
66 #include <sys/zfs_ioctl.h>
67 #include <sys/dsl_scan.h>
68 #include <sys/zfeature.h>
69 #include <sys/dsl_destroy.h>
70
71 #ifdef _KERNEL
72 #include <sys/bootprops.h>
73 #include <sys/callb.h>
74 #include <sys/cpupart.h>
75 #include <sys/pool.h>
76 #include <sys/sysdc.h>
77 #include <sys/zone.h>
78 #endif /* _KERNEL */
79
80 #include "zfs_prop.h"
81 #include "zfs_comutil.h"
82
83 /*
84 * The interval, in seconds, at which failed configuration cache file writes
85 * should be retried.
86 */
87 static int zfs_ccw_retry_interval = 300;
88
89 typedef enum zti_modes {
90 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
91 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
92 ZTI_MODE_NULL, /* don't create a taskq */
93 ZTI_NMODES
94 } zti_modes_t;
95
96 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
97 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
98 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
99
100 #define ZTI_N(n) ZTI_P(n, 1)
101 #define ZTI_ONE ZTI_N(1)
102
103 typedef struct zio_taskq_info {
104 zti_modes_t zti_mode;
105 uint_t zti_value;
106 uint_t zti_count;
107 } zio_taskq_info_t;
108
109 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
110 "issue", "issue_high", "intr", "intr_high"
111 };
112
113 /*
114 * This table defines the taskq settings for each ZFS I/O type. When
115 * initializing a pool, we use this table to create an appropriately sized
116 * taskq. Some operations are low volume and therefore have a small, static
117 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
118 * macros. Other operations process a large amount of data; the ZTI_BATCH
119 * macro causes us to create a taskq oriented for throughput. Some operations
120 * are so high frequency and short-lived that the taskq itself can become a a
121 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
122 * additional degree of parallelism specified by the number of threads per-
123 * taskq and the number of taskqs; when dispatching an event in this case, the
124 * particular taskq is chosen at random.
125 *
126 * The different taskq priorities are to handle the different contexts (issue
127 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
128 * need to be handled with minimum delay.
129 */
130 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
131 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
132 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
133 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
134 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
135 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
137 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
138 };
139
140 static void spa_sync_version(void *arg, dmu_tx_t *tx);
141 static void spa_sync_props(void *arg, dmu_tx_t *tx);
142 static boolean_t spa_has_active_shared_spare(spa_t *spa);
143 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
144 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
145 char **ereport);
146 static void spa_vdev_resilver_done(spa_t *spa);
147
148 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
149 id_t zio_taskq_psrset_bind = PS_NONE;
150 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
151 uint_t zio_taskq_basedc = 80; /* base duty cycle */
152
153 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
154 extern int zfs_sync_pass_deferred_free;
155
156 /*
157 * This (illegal) pool name is used when temporarily importing a spa_t in order
158 * to get the vdev stats associated with the imported devices.
159 */
160 #define TRYIMPORT_NAME "$import"
161
162 /*
163 * ==========================================================================
164 * SPA properties routines
165 * ==========================================================================
166 */
167
168 /*
169 * Add a (source=src, propname=propval) list to an nvlist.
170 */
171 static void
spa_prop_add_list(nvlist_t * nvl,zpool_prop_t prop,char * strval,uint64_t intval,zprop_source_t src)172 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
173 uint64_t intval, zprop_source_t src)
174 {
175 const char *propname = zpool_prop_to_name(prop);
176 nvlist_t *propval;
177
178 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
179 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
180
181 if (strval != NULL)
182 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
183 else
184 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
185
186 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
187 nvlist_free(propval);
188 }
189
190 /*
191 * Get property values from the spa configuration.
192 */
193 static void
spa_prop_get_config(spa_t * spa,nvlist_t ** nvp)194 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
195 {
196 vdev_t *rvd = spa->spa_root_vdev;
197 dsl_pool_t *pool = spa->spa_dsl_pool;
198 uint64_t size, alloc, cap, version;
199 zprop_source_t src = ZPROP_SRC_NONE;
200 spa_config_dirent_t *dp;
201 metaslab_class_t *mc = spa_normal_class(spa);
202
203 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
204
205 if (rvd != NULL) {
206 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
207 size = metaslab_class_get_space(spa_normal_class(spa));
208 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
209 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
210 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
211 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
212 size - alloc, src);
213
214 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
215 metaslab_class_fragmentation(mc), src);
216 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
217 metaslab_class_expandable_space(mc), src);
218 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
219 (spa_mode(spa) == FREAD), src);
220
221 cap = (size == 0) ? 0 : (alloc * 100 / size);
222 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
223
224 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
225 ddt_get_pool_dedup_ratio(spa), src);
226
227 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
228 rvd->vdev_state, src);
229
230 version = spa_version(spa);
231 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
232 src = ZPROP_SRC_DEFAULT;
233 else
234 src = ZPROP_SRC_LOCAL;
235 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
236 }
237
238 if (pool != NULL) {
239 /*
240 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
241 * when opening pools before this version freedir will be NULL.
242 */
243 if (pool->dp_free_dir != NULL) {
244 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
245 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
246 src);
247 } else {
248 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
249 NULL, 0, src);
250 }
251
252 if (pool->dp_leak_dir != NULL) {
253 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
254 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
255 src);
256 } else {
257 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
258 NULL, 0, src);
259 }
260 }
261
262 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
263
264 if (spa->spa_comment != NULL) {
265 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
266 0, ZPROP_SRC_LOCAL);
267 }
268
269 if (spa->spa_root != NULL)
270 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
271 0, ZPROP_SRC_LOCAL);
272
273 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
274 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
275 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
276 } else {
277 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
278 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
279 }
280
281 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
282 if (dp->scd_path == NULL) {
283 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
284 "none", 0, ZPROP_SRC_LOCAL);
285 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
286 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
287 dp->scd_path, 0, ZPROP_SRC_LOCAL);
288 }
289 }
290 }
291
292 /*
293 * Get zpool property values.
294 */
295 int
spa_prop_get(spa_t * spa,nvlist_t ** nvp)296 spa_prop_get(spa_t *spa, nvlist_t **nvp)
297 {
298 objset_t *mos = spa->spa_meta_objset;
299 zap_cursor_t zc;
300 zap_attribute_t za;
301 int err;
302
303 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
304
305 mutex_enter(&spa->spa_props_lock);
306
307 /*
308 * Get properties from the spa config.
309 */
310 spa_prop_get_config(spa, nvp);
311
312 /* If no pool property object, no more prop to get. */
313 if (mos == NULL || spa->spa_pool_props_object == 0) {
314 mutex_exit(&spa->spa_props_lock);
315 return (0);
316 }
317
318 /*
319 * Get properties from the MOS pool property object.
320 */
321 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
322 (err = zap_cursor_retrieve(&zc, &za)) == 0;
323 zap_cursor_advance(&zc)) {
324 uint64_t intval = 0;
325 char *strval = NULL;
326 zprop_source_t src = ZPROP_SRC_DEFAULT;
327 zpool_prop_t prop;
328
329 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
330 continue;
331
332 switch (za.za_integer_length) {
333 case 8:
334 /* integer property */
335 if (za.za_first_integer !=
336 zpool_prop_default_numeric(prop))
337 src = ZPROP_SRC_LOCAL;
338
339 if (prop == ZPOOL_PROP_BOOTFS) {
340 dsl_pool_t *dp;
341 dsl_dataset_t *ds = NULL;
342
343 dp = spa_get_dsl(spa);
344 dsl_pool_config_enter(dp, FTAG);
345 if (err = dsl_dataset_hold_obj(dp,
346 za.za_first_integer, FTAG, &ds)) {
347 dsl_pool_config_exit(dp, FTAG);
348 break;
349 }
350
351 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
352 KM_SLEEP);
353 dsl_dataset_name(ds, strval);
354 dsl_dataset_rele(ds, FTAG);
355 dsl_pool_config_exit(dp, FTAG);
356 } else {
357 strval = NULL;
358 intval = za.za_first_integer;
359 }
360
361 spa_prop_add_list(*nvp, prop, strval, intval, src);
362
363 if (strval != NULL)
364 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
365
366 break;
367
368 case 1:
369 /* string property */
370 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
371 err = zap_lookup(mos, spa->spa_pool_props_object,
372 za.za_name, 1, za.za_num_integers, strval);
373 if (err) {
374 kmem_free(strval, za.za_num_integers);
375 break;
376 }
377 spa_prop_add_list(*nvp, prop, strval, 0, src);
378 kmem_free(strval, za.za_num_integers);
379 break;
380
381 default:
382 break;
383 }
384 }
385 zap_cursor_fini(&zc);
386 mutex_exit(&spa->spa_props_lock);
387 out:
388 if (err && err != ENOENT) {
389 nvlist_free(*nvp);
390 *nvp = NULL;
391 return (err);
392 }
393
394 return (0);
395 }
396
397 /*
398 * Validate the given pool properties nvlist and modify the list
399 * for the property values to be set.
400 */
401 static int
spa_prop_validate(spa_t * spa,nvlist_t * props)402 spa_prop_validate(spa_t *spa, nvlist_t *props)
403 {
404 nvpair_t *elem;
405 int error = 0, reset_bootfs = 0;
406 uint64_t objnum = 0;
407 boolean_t has_feature = B_FALSE;
408
409 elem = NULL;
410 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
411 uint64_t intval;
412 char *strval, *slash, *check, *fname;
413 const char *propname = nvpair_name(elem);
414 zpool_prop_t prop = zpool_name_to_prop(propname);
415
416 switch (prop) {
417 case ZPROP_INVAL:
418 if (!zpool_prop_feature(propname)) {
419 error = SET_ERROR(EINVAL);
420 break;
421 }
422
423 /*
424 * Sanitize the input.
425 */
426 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
427 error = SET_ERROR(EINVAL);
428 break;
429 }
430
431 if (nvpair_value_uint64(elem, &intval) != 0) {
432 error = SET_ERROR(EINVAL);
433 break;
434 }
435
436 if (intval != 0) {
437 error = SET_ERROR(EINVAL);
438 break;
439 }
440
441 fname = strchr(propname, '@') + 1;
442 if (zfeature_lookup_name(fname, NULL) != 0) {
443 error = SET_ERROR(EINVAL);
444 break;
445 }
446
447 has_feature = B_TRUE;
448 break;
449
450 case ZPOOL_PROP_VERSION:
451 error = nvpair_value_uint64(elem, &intval);
452 if (!error &&
453 (intval < spa_version(spa) ||
454 intval > SPA_VERSION_BEFORE_FEATURES ||
455 has_feature))
456 error = SET_ERROR(EINVAL);
457 break;
458
459 case ZPOOL_PROP_DELEGATION:
460 case ZPOOL_PROP_AUTOREPLACE:
461 case ZPOOL_PROP_LISTSNAPS:
462 case ZPOOL_PROP_AUTOEXPAND:
463 error = nvpair_value_uint64(elem, &intval);
464 if (!error && intval > 1)
465 error = SET_ERROR(EINVAL);
466 break;
467
468 case ZPOOL_PROP_BOOTFS:
469 /*
470 * If the pool version is less than SPA_VERSION_BOOTFS,
471 * or the pool is still being created (version == 0),
472 * the bootfs property cannot be set.
473 */
474 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
475 error = SET_ERROR(ENOTSUP);
476 break;
477 }
478
479 /*
480 * Make sure the vdev config is bootable
481 */
482 if (!vdev_is_bootable(spa->spa_root_vdev)) {
483 error = SET_ERROR(ENOTSUP);
484 break;
485 }
486
487 reset_bootfs = 1;
488
489 error = nvpair_value_string(elem, &strval);
490
491 if (!error) {
492 objset_t *os;
493 uint64_t propval;
494
495 if (strval == NULL || strval[0] == '\0') {
496 objnum = zpool_prop_default_numeric(
497 ZPOOL_PROP_BOOTFS);
498 break;
499 }
500
501 if (error = dmu_objset_hold(strval, FTAG, &os))
502 break;
503
504 /*
505 * Must be ZPL, and its property settings
506 * must be supported by GRUB (compression
507 * is not gzip, and large blocks are not used).
508 */
509
510 if (dmu_objset_type(os) != DMU_OST_ZFS) {
511 error = SET_ERROR(ENOTSUP);
512 } else if ((error =
513 dsl_prop_get_int_ds(dmu_objset_ds(os),
514 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
515 &propval)) == 0 &&
516 !BOOTFS_COMPRESS_VALID(propval)) {
517 error = SET_ERROR(ENOTSUP);
518 } else if ((error =
519 dsl_prop_get_int_ds(dmu_objset_ds(os),
520 zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
521 &propval)) == 0 &&
522 propval > SPA_OLD_MAXBLOCKSIZE) {
523 error = SET_ERROR(ENOTSUP);
524 } else {
525 objnum = dmu_objset_id(os);
526 }
527 dmu_objset_rele(os, FTAG);
528 }
529 break;
530
531 case ZPOOL_PROP_FAILUREMODE:
532 error = nvpair_value_uint64(elem, &intval);
533 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
534 intval > ZIO_FAILURE_MODE_PANIC))
535 error = SET_ERROR(EINVAL);
536
537 /*
538 * This is a special case which only occurs when
539 * the pool has completely failed. This allows
540 * the user to change the in-core failmode property
541 * without syncing it out to disk (I/Os might
542 * currently be blocked). We do this by returning
543 * EIO to the caller (spa_prop_set) to trick it
544 * into thinking we encountered a property validation
545 * error.
546 */
547 if (!error && spa_suspended(spa)) {
548 spa->spa_failmode = intval;
549 error = SET_ERROR(EIO);
550 }
551 break;
552
553 case ZPOOL_PROP_CACHEFILE:
554 if ((error = nvpair_value_string(elem, &strval)) != 0)
555 break;
556
557 if (strval[0] == '\0')
558 break;
559
560 if (strcmp(strval, "none") == 0)
561 break;
562
563 if (strval[0] != '/') {
564 error = SET_ERROR(EINVAL);
565 break;
566 }
567
568 slash = strrchr(strval, '/');
569 ASSERT(slash != NULL);
570
571 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
572 strcmp(slash, "/..") == 0)
573 error = SET_ERROR(EINVAL);
574 break;
575
576 case ZPOOL_PROP_COMMENT:
577 if ((error = nvpair_value_string(elem, &strval)) != 0)
578 break;
579 for (check = strval; *check != '\0'; check++) {
580 /*
581 * The kernel doesn't have an easy isprint()
582 * check. For this kernel check, we merely
583 * check ASCII apart from DEL. Fix this if
584 * there is an easy-to-use kernel isprint().
585 */
586 if (*check >= 0x7f) {
587 error = SET_ERROR(EINVAL);
588 break;
589 }
590 check++;
591 }
592 if (strlen(strval) > ZPROP_MAX_COMMENT)
593 error = E2BIG;
594 break;
595
596 case ZPOOL_PROP_DEDUPDITTO:
597 if (spa_version(spa) < SPA_VERSION_DEDUP)
598 error = SET_ERROR(ENOTSUP);
599 else
600 error = nvpair_value_uint64(elem, &intval);
601 if (error == 0 &&
602 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
603 error = SET_ERROR(EINVAL);
604 break;
605 }
606
607 if (error)
608 break;
609 }
610
611 if (!error && reset_bootfs) {
612 error = nvlist_remove(props,
613 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
614
615 if (!error) {
616 error = nvlist_add_uint64(props,
617 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
618 }
619 }
620
621 return (error);
622 }
623
624 void
spa_configfile_set(spa_t * spa,nvlist_t * nvp,boolean_t need_sync)625 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
626 {
627 char *cachefile;
628 spa_config_dirent_t *dp;
629
630 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
631 &cachefile) != 0)
632 return;
633
634 dp = kmem_alloc(sizeof (spa_config_dirent_t),
635 KM_SLEEP);
636
637 if (cachefile[0] == '\0')
638 dp->scd_path = spa_strdup(spa_config_path);
639 else if (strcmp(cachefile, "none") == 0)
640 dp->scd_path = NULL;
641 else
642 dp->scd_path = spa_strdup(cachefile);
643
644 list_insert_head(&spa->spa_config_list, dp);
645 if (need_sync)
646 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
647 }
648
649 int
spa_prop_set(spa_t * spa,nvlist_t * nvp)650 spa_prop_set(spa_t *spa, nvlist_t *nvp)
651 {
652 int error;
653 nvpair_t *elem = NULL;
654 boolean_t need_sync = B_FALSE;
655
656 if ((error = spa_prop_validate(spa, nvp)) != 0)
657 return (error);
658
659 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
660 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
661
662 if (prop == ZPOOL_PROP_CACHEFILE ||
663 prop == ZPOOL_PROP_ALTROOT ||
664 prop == ZPOOL_PROP_READONLY)
665 continue;
666
667 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
668 uint64_t ver;
669
670 if (prop == ZPOOL_PROP_VERSION) {
671 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
672 } else {
673 ASSERT(zpool_prop_feature(nvpair_name(elem)));
674 ver = SPA_VERSION_FEATURES;
675 need_sync = B_TRUE;
676 }
677
678 /* Save time if the version is already set. */
679 if (ver == spa_version(spa))
680 continue;
681
682 /*
683 * In addition to the pool directory object, we might
684 * create the pool properties object, the features for
685 * read object, the features for write object, or the
686 * feature descriptions object.
687 */
688 error = dsl_sync_task(spa->spa_name, NULL,
689 spa_sync_version, &ver,
690 6, ZFS_SPACE_CHECK_RESERVED);
691 if (error)
692 return (error);
693 continue;
694 }
695
696 need_sync = B_TRUE;
697 break;
698 }
699
700 if (need_sync) {
701 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
702 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
703 }
704
705 return (0);
706 }
707
708 /*
709 * If the bootfs property value is dsobj, clear it.
710 */
711 void
spa_prop_clear_bootfs(spa_t * spa,uint64_t dsobj,dmu_tx_t * tx)712 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
713 {
714 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
715 VERIFY(zap_remove(spa->spa_meta_objset,
716 spa->spa_pool_props_object,
717 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
718 spa->spa_bootfs = 0;
719 }
720 }
721
722 /*ARGSUSED*/
723 static int
spa_change_guid_check(void * arg,dmu_tx_t * tx)724 spa_change_guid_check(void *arg, dmu_tx_t *tx)
725 {
726 uint64_t *newguid = arg;
727 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
728 vdev_t *rvd = spa->spa_root_vdev;
729 uint64_t vdev_state;
730
731 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
732 vdev_state = rvd->vdev_state;
733 spa_config_exit(spa, SCL_STATE, FTAG);
734
735 if (vdev_state != VDEV_STATE_HEALTHY)
736 return (SET_ERROR(ENXIO));
737
738 ASSERT3U(spa_guid(spa), !=, *newguid);
739
740 return (0);
741 }
742
743 static void
spa_change_guid_sync(void * arg,dmu_tx_t * tx)744 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
745 {
746 uint64_t *newguid = arg;
747 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
748 uint64_t oldguid;
749 vdev_t *rvd = spa->spa_root_vdev;
750
751 oldguid = spa_guid(spa);
752
753 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
754 rvd->vdev_guid = *newguid;
755 rvd->vdev_guid_sum += (*newguid - oldguid);
756 vdev_config_dirty(rvd);
757 spa_config_exit(spa, SCL_STATE, FTAG);
758
759 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
760 oldguid, *newguid);
761 }
762
763 /*
764 * Change the GUID for the pool. This is done so that we can later
765 * re-import a pool built from a clone of our own vdevs. We will modify
766 * the root vdev's guid, our own pool guid, and then mark all of our
767 * vdevs dirty. Note that we must make sure that all our vdevs are
768 * online when we do this, or else any vdevs that weren't present
769 * would be orphaned from our pool. We are also going to issue a
770 * sysevent to update any watchers.
771 */
772 int
spa_change_guid(spa_t * spa)773 spa_change_guid(spa_t *spa)
774 {
775 int error;
776 uint64_t guid;
777
778 mutex_enter(&spa->spa_vdev_top_lock);
779 mutex_enter(&spa_namespace_lock);
780 guid = spa_generate_guid(NULL);
781
782 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
783 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
784
785 if (error == 0) {
786 spa_config_sync(spa, B_FALSE, B_TRUE);
787 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
788 }
789
790 mutex_exit(&spa_namespace_lock);
791 mutex_exit(&spa->spa_vdev_top_lock);
792
793 return (error);
794 }
795
796 /*
797 * ==========================================================================
798 * SPA state manipulation (open/create/destroy/import/export)
799 * ==========================================================================
800 */
801
802 static int
spa_error_entry_compare(const void * a,const void * b)803 spa_error_entry_compare(const void *a, const void *b)
804 {
805 spa_error_entry_t *sa = (spa_error_entry_t *)a;
806 spa_error_entry_t *sb = (spa_error_entry_t *)b;
807 int ret;
808
809 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
810 sizeof (zbookmark_phys_t));
811
812 if (ret < 0)
813 return (-1);
814 else if (ret > 0)
815 return (1);
816 else
817 return (0);
818 }
819
820 /*
821 * Utility function which retrieves copies of the current logs and
822 * re-initializes them in the process.
823 */
824 void
spa_get_errlists(spa_t * spa,avl_tree_t * last,avl_tree_t * scrub)825 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
826 {
827 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
828
829 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
830 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
831
832 avl_create(&spa->spa_errlist_scrub,
833 spa_error_entry_compare, sizeof (spa_error_entry_t),
834 offsetof(spa_error_entry_t, se_avl));
835 avl_create(&spa->spa_errlist_last,
836 spa_error_entry_compare, sizeof (spa_error_entry_t),
837 offsetof(spa_error_entry_t, se_avl));
838 }
839
840 static void
spa_taskqs_init(spa_t * spa,zio_type_t t,zio_taskq_type_t q)841 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
842 {
843 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
844 enum zti_modes mode = ztip->zti_mode;
845 uint_t value = ztip->zti_value;
846 uint_t count = ztip->zti_count;
847 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
848 char name[32];
849 uint_t flags = 0;
850 boolean_t batch = B_FALSE;
851
852 if (mode == ZTI_MODE_NULL) {
853 tqs->stqs_count = 0;
854 tqs->stqs_taskq = NULL;
855 return;
856 }
857
858 ASSERT3U(count, >, 0);
859
860 tqs->stqs_count = count;
861 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
862
863 switch (mode) {
864 case ZTI_MODE_FIXED:
865 ASSERT3U(value, >=, 1);
866 value = MAX(value, 1);
867 break;
868
869 case ZTI_MODE_BATCH:
870 batch = B_TRUE;
871 flags |= TASKQ_THREADS_CPU_PCT;
872 value = zio_taskq_batch_pct;
873 break;
874
875 default:
876 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
877 "spa_activate()",
878 zio_type_name[t], zio_taskq_types[q], mode, value);
879 break;
880 }
881
882 for (uint_t i = 0; i < count; i++) {
883 taskq_t *tq;
884
885 if (count > 1) {
886 (void) snprintf(name, sizeof (name), "%s_%s_%u",
887 zio_type_name[t], zio_taskq_types[q], i);
888 } else {
889 (void) snprintf(name, sizeof (name), "%s_%s",
890 zio_type_name[t], zio_taskq_types[q]);
891 }
892
893 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
894 if (batch)
895 flags |= TASKQ_DC_BATCH;
896
897 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
898 spa->spa_proc, zio_taskq_basedc, flags);
899 } else {
900 pri_t pri = maxclsyspri;
901 /*
902 * The write issue taskq can be extremely CPU
903 * intensive. Run it at slightly lower priority
904 * than the other taskqs.
905 */
906 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
907 pri--;
908
909 tq = taskq_create_proc(name, value, pri, 50,
910 INT_MAX, spa->spa_proc, flags);
911 }
912
913 tqs->stqs_taskq[i] = tq;
914 }
915 }
916
917 static void
spa_taskqs_fini(spa_t * spa,zio_type_t t,zio_taskq_type_t q)918 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
919 {
920 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
921
922 if (tqs->stqs_taskq == NULL) {
923 ASSERT0(tqs->stqs_count);
924 return;
925 }
926
927 for (uint_t i = 0; i < tqs->stqs_count; i++) {
928 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
929 taskq_destroy(tqs->stqs_taskq[i]);
930 }
931
932 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
933 tqs->stqs_taskq = NULL;
934 }
935
936 /*
937 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
938 * Note that a type may have multiple discrete taskqs to avoid lock contention
939 * on the taskq itself. In that case we choose which taskq at random by using
940 * the low bits of gethrtime().
941 */
942 void
spa_taskq_dispatch_ent(spa_t * spa,zio_type_t t,zio_taskq_type_t q,task_func_t * func,void * arg,uint_t flags,taskq_ent_t * ent)943 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
944 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
945 {
946 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
947 taskq_t *tq;
948
949 ASSERT3P(tqs->stqs_taskq, !=, NULL);
950 ASSERT3U(tqs->stqs_count, !=, 0);
951
952 if (tqs->stqs_count == 1) {
953 tq = tqs->stqs_taskq[0];
954 } else {
955 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
956 }
957
958 taskq_dispatch_ent(tq, func, arg, flags, ent);
959 }
960
961 static void
spa_create_zio_taskqs(spa_t * spa)962 spa_create_zio_taskqs(spa_t *spa)
963 {
964 for (int t = 0; t < ZIO_TYPES; t++) {
965 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
966 spa_taskqs_init(spa, t, q);
967 }
968 }
969 }
970
971 #ifdef _KERNEL
972 static void
spa_thread(void * arg)973 spa_thread(void *arg)
974 {
975 callb_cpr_t cprinfo;
976
977 spa_t *spa = arg;
978 user_t *pu = PTOU(curproc);
979
980 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
981 spa->spa_name);
982
983 ASSERT(curproc != &p0);
984 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
985 "zpool-%s", spa->spa_name);
986 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
987
988 /* bind this thread to the requested psrset */
989 if (zio_taskq_psrset_bind != PS_NONE) {
990 pool_lock();
991 mutex_enter(&cpu_lock);
992 mutex_enter(&pidlock);
993 mutex_enter(&curproc->p_lock);
994
995 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
996 0, NULL, NULL) == 0) {
997 curthread->t_bind_pset = zio_taskq_psrset_bind;
998 } else {
999 cmn_err(CE_WARN,
1000 "Couldn't bind process for zfs pool \"%s\" to "
1001 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1002 }
1003
1004 mutex_exit(&curproc->p_lock);
1005 mutex_exit(&pidlock);
1006 mutex_exit(&cpu_lock);
1007 pool_unlock();
1008 }
1009
1010 if (zio_taskq_sysdc) {
1011 sysdc_thread_enter(curthread, 100, 0);
1012 }
1013
1014 spa->spa_proc = curproc;
1015 spa->spa_did = curthread->t_did;
1016
1017 spa_create_zio_taskqs(spa);
1018
1019 mutex_enter(&spa->spa_proc_lock);
1020 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1021
1022 spa->spa_proc_state = SPA_PROC_ACTIVE;
1023 cv_broadcast(&spa->spa_proc_cv);
1024
1025 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1026 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1027 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1028 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1029
1030 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1031 spa->spa_proc_state = SPA_PROC_GONE;
1032 spa->spa_proc = &p0;
1033 cv_broadcast(&spa->spa_proc_cv);
1034 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1035
1036 mutex_enter(&curproc->p_lock);
1037 lwp_exit();
1038 }
1039 #endif
1040
1041 /*
1042 * Activate an uninitialized pool.
1043 */
1044 static void
spa_activate(spa_t * spa,int mode)1045 spa_activate(spa_t *spa, int mode)
1046 {
1047 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1048
1049 spa->spa_state = POOL_STATE_ACTIVE;
1050 spa->spa_mode = mode;
1051
1052 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1053 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1054
1055 /* Try to create a covering process */
1056 mutex_enter(&spa->spa_proc_lock);
1057 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1058 ASSERT(spa->spa_proc == &p0);
1059 spa->spa_did = 0;
1060
1061 /* Only create a process if we're going to be around a while. */
1062 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1063 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1064 NULL, 0) == 0) {
1065 spa->spa_proc_state = SPA_PROC_CREATED;
1066 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1067 cv_wait(&spa->spa_proc_cv,
1068 &spa->spa_proc_lock);
1069 }
1070 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1071 ASSERT(spa->spa_proc != &p0);
1072 ASSERT(spa->spa_did != 0);
1073 } else {
1074 #ifdef _KERNEL
1075 cmn_err(CE_WARN,
1076 "Couldn't create process for zfs pool \"%s\"\n",
1077 spa->spa_name);
1078 #endif
1079 }
1080 }
1081 mutex_exit(&spa->spa_proc_lock);
1082
1083 /* If we didn't create a process, we need to create our taskqs. */
1084 if (spa->spa_proc == &p0) {
1085 spa_create_zio_taskqs(spa);
1086 }
1087
1088 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1089 offsetof(vdev_t, vdev_config_dirty_node));
1090 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1091 offsetof(objset_t, os_evicting_node));
1092 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1093 offsetof(vdev_t, vdev_state_dirty_node));
1094
1095 txg_list_create(&spa->spa_vdev_txg_list,
1096 offsetof(struct vdev, vdev_txg_node));
1097
1098 avl_create(&spa->spa_errlist_scrub,
1099 spa_error_entry_compare, sizeof (spa_error_entry_t),
1100 offsetof(spa_error_entry_t, se_avl));
1101 avl_create(&spa->spa_errlist_last,
1102 spa_error_entry_compare, sizeof (spa_error_entry_t),
1103 offsetof(spa_error_entry_t, se_avl));
1104 }
1105
1106 /*
1107 * Opposite of spa_activate().
1108 */
1109 static void
spa_deactivate(spa_t * spa)1110 spa_deactivate(spa_t *spa)
1111 {
1112 ASSERT(spa->spa_sync_on == B_FALSE);
1113 ASSERT(spa->spa_dsl_pool == NULL);
1114 ASSERT(spa->spa_root_vdev == NULL);
1115 ASSERT(spa->spa_async_zio_root == NULL);
1116 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1117
1118 spa_evicting_os_wait(spa);
1119
1120 txg_list_destroy(&spa->spa_vdev_txg_list);
1121
1122 list_destroy(&spa->spa_config_dirty_list);
1123 list_destroy(&spa->spa_evicting_os_list);
1124 list_destroy(&spa->spa_state_dirty_list);
1125
1126 for (int t = 0; t < ZIO_TYPES; t++) {
1127 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1128 spa_taskqs_fini(spa, t, q);
1129 }
1130 }
1131
1132 metaslab_class_destroy(spa->spa_normal_class);
1133 spa->spa_normal_class = NULL;
1134
1135 metaslab_class_destroy(spa->spa_log_class);
1136 spa->spa_log_class = NULL;
1137
1138 /*
1139 * If this was part of an import or the open otherwise failed, we may
1140 * still have errors left in the queues. Empty them just in case.
1141 */
1142 spa_errlog_drain(spa);
1143
1144 avl_destroy(&spa->spa_errlist_scrub);
1145 avl_destroy(&spa->spa_errlist_last);
1146
1147 spa->spa_state = POOL_STATE_UNINITIALIZED;
1148
1149 mutex_enter(&spa->spa_proc_lock);
1150 if (spa->spa_proc_state != SPA_PROC_NONE) {
1151 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1152 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1153 cv_broadcast(&spa->spa_proc_cv);
1154 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1155 ASSERT(spa->spa_proc != &p0);
1156 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1157 }
1158 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1159 spa->spa_proc_state = SPA_PROC_NONE;
1160 }
1161 ASSERT(spa->spa_proc == &p0);
1162 mutex_exit(&spa->spa_proc_lock);
1163
1164 /*
1165 * We want to make sure spa_thread() has actually exited the ZFS
1166 * module, so that the module can't be unloaded out from underneath
1167 * it.
1168 */
1169 if (spa->spa_did != 0) {
1170 thread_join(spa->spa_did);
1171 spa->spa_did = 0;
1172 }
1173 }
1174
1175 /*
1176 * Verify a pool configuration, and construct the vdev tree appropriately. This
1177 * will create all the necessary vdevs in the appropriate layout, with each vdev
1178 * in the CLOSED state. This will prep the pool before open/creation/import.
1179 * All vdev validation is done by the vdev_alloc() routine.
1180 */
1181 static int
spa_config_parse(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int atype)1182 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1183 uint_t id, int atype)
1184 {
1185 nvlist_t **child;
1186 uint_t children;
1187 int error;
1188
1189 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1190 return (error);
1191
1192 if ((*vdp)->vdev_ops->vdev_op_leaf)
1193 return (0);
1194
1195 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1196 &child, &children);
1197
1198 if (error == ENOENT)
1199 return (0);
1200
1201 if (error) {
1202 vdev_free(*vdp);
1203 *vdp = NULL;
1204 return (SET_ERROR(EINVAL));
1205 }
1206
1207 for (int c = 0; c < children; c++) {
1208 vdev_t *vd;
1209 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1210 atype)) != 0) {
1211 vdev_free(*vdp);
1212 *vdp = NULL;
1213 return (error);
1214 }
1215 }
1216
1217 ASSERT(*vdp != NULL);
1218
1219 return (0);
1220 }
1221
1222 /*
1223 * Opposite of spa_load().
1224 */
1225 static void
spa_unload(spa_t * spa)1226 spa_unload(spa_t *spa)
1227 {
1228 int i;
1229
1230 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1231
1232 /*
1233 * Stop async tasks.
1234 */
1235 spa_async_suspend(spa);
1236
1237 /*
1238 * Stop syncing.
1239 */
1240 if (spa->spa_sync_on) {
1241 txg_sync_stop(spa->spa_dsl_pool);
1242 spa->spa_sync_on = B_FALSE;
1243 }
1244
1245 /*
1246 * Wait for any outstanding async I/O to complete.
1247 */
1248 if (spa->spa_async_zio_root != NULL) {
1249 for (int i = 0; i < max_ncpus; i++)
1250 (void) zio_wait(spa->spa_async_zio_root[i]);
1251 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1252 spa->spa_async_zio_root = NULL;
1253 }
1254
1255 bpobj_close(&spa->spa_deferred_bpobj);
1256
1257 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1258
1259 /*
1260 * Close all vdevs.
1261 */
1262 if (spa->spa_root_vdev)
1263 vdev_free(spa->spa_root_vdev);
1264 ASSERT(spa->spa_root_vdev == NULL);
1265
1266 /*
1267 * Close the dsl pool.
1268 */
1269 if (spa->spa_dsl_pool) {
1270 dsl_pool_close(spa->spa_dsl_pool);
1271 spa->spa_dsl_pool = NULL;
1272 spa->spa_meta_objset = NULL;
1273 }
1274
1275 ddt_unload(spa);
1276
1277
1278 /*
1279 * Drop and purge level 2 cache
1280 */
1281 spa_l2cache_drop(spa);
1282
1283 for (i = 0; i < spa->spa_spares.sav_count; i++)
1284 vdev_free(spa->spa_spares.sav_vdevs[i]);
1285 if (spa->spa_spares.sav_vdevs) {
1286 kmem_free(spa->spa_spares.sav_vdevs,
1287 spa->spa_spares.sav_count * sizeof (void *));
1288 spa->spa_spares.sav_vdevs = NULL;
1289 }
1290 if (spa->spa_spares.sav_config) {
1291 nvlist_free(spa->spa_spares.sav_config);
1292 spa->spa_spares.sav_config = NULL;
1293 }
1294 spa->spa_spares.sav_count = 0;
1295
1296 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1297 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1298 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1299 }
1300 if (spa->spa_l2cache.sav_vdevs) {
1301 kmem_free(spa->spa_l2cache.sav_vdevs,
1302 spa->spa_l2cache.sav_count * sizeof (void *));
1303 spa->spa_l2cache.sav_vdevs = NULL;
1304 }
1305 if (spa->spa_l2cache.sav_config) {
1306 nvlist_free(spa->spa_l2cache.sav_config);
1307 spa->spa_l2cache.sav_config = NULL;
1308 }
1309 spa->spa_l2cache.sav_count = 0;
1310
1311 spa->spa_async_suspended = 0;
1312
1313 if (spa->spa_comment != NULL) {
1314 spa_strfree(spa->spa_comment);
1315 spa->spa_comment = NULL;
1316 }
1317
1318 spa_config_exit(spa, SCL_ALL, FTAG);
1319 }
1320
1321 /*
1322 * Load (or re-load) the current list of vdevs describing the active spares for
1323 * this pool. When this is called, we have some form of basic information in
1324 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1325 * then re-generate a more complete list including status information.
1326 */
1327 static void
spa_load_spares(spa_t * spa)1328 spa_load_spares(spa_t *spa)
1329 {
1330 nvlist_t **spares;
1331 uint_t nspares;
1332 int i;
1333 vdev_t *vd, *tvd;
1334
1335 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1336
1337 /*
1338 * First, close and free any existing spare vdevs.
1339 */
1340 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1341 vd = spa->spa_spares.sav_vdevs[i];
1342
1343 /* Undo the call to spa_activate() below */
1344 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1345 B_FALSE)) != NULL && tvd->vdev_isspare)
1346 spa_spare_remove(tvd);
1347 vdev_close(vd);
1348 vdev_free(vd);
1349 }
1350
1351 if (spa->spa_spares.sav_vdevs)
1352 kmem_free(spa->spa_spares.sav_vdevs,
1353 spa->spa_spares.sav_count * sizeof (void *));
1354
1355 if (spa->spa_spares.sav_config == NULL)
1356 nspares = 0;
1357 else
1358 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1359 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1360
1361 spa->spa_spares.sav_count = (int)nspares;
1362 spa->spa_spares.sav_vdevs = NULL;
1363
1364 if (nspares == 0)
1365 return;
1366
1367 /*
1368 * Construct the array of vdevs, opening them to get status in the
1369 * process. For each spare, there is potentially two different vdev_t
1370 * structures associated with it: one in the list of spares (used only
1371 * for basic validation purposes) and one in the active vdev
1372 * configuration (if it's spared in). During this phase we open and
1373 * validate each vdev on the spare list. If the vdev also exists in the
1374 * active configuration, then we also mark this vdev as an active spare.
1375 */
1376 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1377 KM_SLEEP);
1378 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1379 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1380 VDEV_ALLOC_SPARE) == 0);
1381 ASSERT(vd != NULL);
1382
1383 spa->spa_spares.sav_vdevs[i] = vd;
1384
1385 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1386 B_FALSE)) != NULL) {
1387 if (!tvd->vdev_isspare)
1388 spa_spare_add(tvd);
1389
1390 /*
1391 * We only mark the spare active if we were successfully
1392 * able to load the vdev. Otherwise, importing a pool
1393 * with a bad active spare would result in strange
1394 * behavior, because multiple pool would think the spare
1395 * is actively in use.
1396 *
1397 * There is a vulnerability here to an equally bizarre
1398 * circumstance, where a dead active spare is later
1399 * brought back to life (onlined or otherwise). Given
1400 * the rarity of this scenario, and the extra complexity
1401 * it adds, we ignore the possibility.
1402 */
1403 if (!vdev_is_dead(tvd))
1404 spa_spare_activate(tvd);
1405 }
1406
1407 vd->vdev_top = vd;
1408 vd->vdev_aux = &spa->spa_spares;
1409
1410 if (vdev_open(vd) != 0)
1411 continue;
1412
1413 if (vdev_validate_aux(vd) == 0)
1414 spa_spare_add(vd);
1415 }
1416
1417 /*
1418 * Recompute the stashed list of spares, with status information
1419 * this time.
1420 */
1421 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1422 DATA_TYPE_NVLIST_ARRAY) == 0);
1423
1424 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1425 KM_SLEEP);
1426 for (i = 0; i < spa->spa_spares.sav_count; i++)
1427 spares[i] = vdev_config_generate(spa,
1428 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1429 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1430 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1431 for (i = 0; i < spa->spa_spares.sav_count; i++)
1432 nvlist_free(spares[i]);
1433 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1434 }
1435
1436 /*
1437 * Load (or re-load) the current list of vdevs describing the active l2cache for
1438 * this pool. When this is called, we have some form of basic information in
1439 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1440 * then re-generate a more complete list including status information.
1441 * Devices which are already active have their details maintained, and are
1442 * not re-opened.
1443 */
1444 static void
spa_load_l2cache(spa_t * spa)1445 spa_load_l2cache(spa_t *spa)
1446 {
1447 nvlist_t **l2cache;
1448 uint_t nl2cache;
1449 int i, j, oldnvdevs;
1450 uint64_t guid;
1451 vdev_t *vd, **oldvdevs, **newvdevs;
1452 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1453
1454 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1455
1456 if (sav->sav_config != NULL) {
1457 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1458 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1459 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1460 } else {
1461 nl2cache = 0;
1462 newvdevs = NULL;
1463 }
1464
1465 oldvdevs = sav->sav_vdevs;
1466 oldnvdevs = sav->sav_count;
1467 sav->sav_vdevs = NULL;
1468 sav->sav_count = 0;
1469
1470 /*
1471 * Process new nvlist of vdevs.
1472 */
1473 for (i = 0; i < nl2cache; i++) {
1474 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1475 &guid) == 0);
1476
1477 newvdevs[i] = NULL;
1478 for (j = 0; j < oldnvdevs; j++) {
1479 vd = oldvdevs[j];
1480 if (vd != NULL && guid == vd->vdev_guid) {
1481 /*
1482 * Retain previous vdev for add/remove ops.
1483 */
1484 newvdevs[i] = vd;
1485 oldvdevs[j] = NULL;
1486 break;
1487 }
1488 }
1489
1490 if (newvdevs[i] == NULL) {
1491 /*
1492 * Create new vdev
1493 */
1494 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1495 VDEV_ALLOC_L2CACHE) == 0);
1496 ASSERT(vd != NULL);
1497 newvdevs[i] = vd;
1498
1499 /*
1500 * Commit this vdev as an l2cache device,
1501 * even if it fails to open.
1502 */
1503 spa_l2cache_add(vd);
1504
1505 vd->vdev_top = vd;
1506 vd->vdev_aux = sav;
1507
1508 spa_l2cache_activate(vd);
1509
1510 if (vdev_open(vd) != 0)
1511 continue;
1512
1513 (void) vdev_validate_aux(vd);
1514
1515 if (!vdev_is_dead(vd)) {
1516 boolean_t do_rebuild = B_FALSE;
1517
1518 (void) nvlist_lookup_boolean_value(l2cache[i],
1519 ZPOOL_CONFIG_L2CACHE_PERSISTENT,
1520 &do_rebuild);
1521 l2arc_add_vdev(spa, vd, do_rebuild);
1522 }
1523 }
1524 }
1525
1526 /*
1527 * Purge vdevs that were dropped
1528 */
1529 for (i = 0; i < oldnvdevs; i++) {
1530 uint64_t pool;
1531
1532 vd = oldvdevs[i];
1533 if (vd != NULL) {
1534 ASSERT(vd->vdev_isl2cache);
1535
1536 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1537 pool != 0ULL && l2arc_vdev_present(vd))
1538 l2arc_remove_vdev(vd);
1539 vdev_clear_stats(vd);
1540 vdev_free(vd);
1541 }
1542 }
1543
1544 if (oldvdevs)
1545 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1546
1547 if (sav->sav_config == NULL)
1548 goto out;
1549
1550 sav->sav_vdevs = newvdevs;
1551 sav->sav_count = (int)nl2cache;
1552
1553 /*
1554 * Recompute the stashed list of l2cache devices, with status
1555 * information this time.
1556 */
1557 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1558 DATA_TYPE_NVLIST_ARRAY) == 0);
1559
1560 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1561 for (i = 0; i < sav->sav_count; i++)
1562 l2cache[i] = vdev_config_generate(spa,
1563 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1564 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1565 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1566 out:
1567 for (i = 0; i < sav->sav_count; i++)
1568 nvlist_free(l2cache[i]);
1569 if (sav->sav_count)
1570 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1571 }
1572
1573 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)1574 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1575 {
1576 dmu_buf_t *db;
1577 char *packed = NULL;
1578 size_t nvsize = 0;
1579 int error;
1580 *value = NULL;
1581
1582 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1583 if (error != 0)
1584 return (error);
1585
1586 nvsize = *(uint64_t *)db->db_data;
1587 dmu_buf_rele(db, FTAG);
1588
1589 packed = kmem_alloc(nvsize, KM_SLEEP);
1590 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1591 DMU_READ_PREFETCH);
1592 if (error == 0)
1593 error = nvlist_unpack(packed, nvsize, value, 0);
1594 kmem_free(packed, nvsize);
1595
1596 return (error);
1597 }
1598
1599 /*
1600 * Checks to see if the given vdev could not be opened, in which case we post a
1601 * sysevent to notify the autoreplace code that the device has been removed.
1602 */
1603 static void
spa_check_removed(vdev_t * vd)1604 spa_check_removed(vdev_t *vd)
1605 {
1606 for (int c = 0; c < vd->vdev_children; c++)
1607 spa_check_removed(vd->vdev_child[c]);
1608
1609 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1610 !vd->vdev_ishole) {
1611 zfs_post_autoreplace(vd->vdev_spa, vd);
1612 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1613 }
1614 }
1615
1616 /*
1617 * Validate the current config against the MOS config
1618 */
1619 static boolean_t
spa_config_valid(spa_t * spa,nvlist_t * config)1620 spa_config_valid(spa_t *spa, nvlist_t *config)
1621 {
1622 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1623 nvlist_t *nv;
1624
1625 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1626
1627 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1628 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1629
1630 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1631
1632 /*
1633 * If we're doing a normal import, then build up any additional
1634 * diagnostic information about missing devices in this config.
1635 * We'll pass this up to the user for further processing.
1636 */
1637 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1638 nvlist_t **child, *nv;
1639 uint64_t idx = 0;
1640
1641 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1642 KM_SLEEP);
1643 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1644
1645 for (int c = 0; c < rvd->vdev_children; c++) {
1646 vdev_t *tvd = rvd->vdev_child[c];
1647 vdev_t *mtvd = mrvd->vdev_child[c];
1648
1649 if (tvd->vdev_ops == &vdev_missing_ops &&
1650 mtvd->vdev_ops != &vdev_missing_ops &&
1651 mtvd->vdev_islog)
1652 child[idx++] = vdev_config_generate(spa, mtvd,
1653 B_FALSE, 0);
1654 }
1655
1656 if (idx) {
1657 VERIFY(nvlist_add_nvlist_array(nv,
1658 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1659 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1660 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1661
1662 for (int i = 0; i < idx; i++)
1663 nvlist_free(child[i]);
1664 }
1665 nvlist_free(nv);
1666 kmem_free(child, rvd->vdev_children * sizeof (char **));
1667 }
1668
1669 /*
1670 * Compare the root vdev tree with the information we have
1671 * from the MOS config (mrvd). Check each top-level vdev
1672 * with the corresponding MOS config top-level (mtvd).
1673 */
1674 for (int c = 0; c < rvd->vdev_children; c++) {
1675 vdev_t *tvd = rvd->vdev_child[c];
1676 vdev_t *mtvd = mrvd->vdev_child[c];
1677
1678 /*
1679 * Resolve any "missing" vdevs in the current configuration.
1680 * If we find that the MOS config has more accurate information
1681 * about the top-level vdev then use that vdev instead.
1682 */
1683 if (tvd->vdev_ops == &vdev_missing_ops &&
1684 mtvd->vdev_ops != &vdev_missing_ops) {
1685
1686 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1687 continue;
1688
1689 /*
1690 * Device specific actions.
1691 */
1692 if (mtvd->vdev_islog) {
1693 spa_set_log_state(spa, SPA_LOG_CLEAR);
1694 } else {
1695 /*
1696 * XXX - once we have 'readonly' pool
1697 * support we should be able to handle
1698 * missing data devices by transitioning
1699 * the pool to readonly.
1700 */
1701 continue;
1702 }
1703
1704 /*
1705 * Swap the missing vdev with the data we were
1706 * able to obtain from the MOS config.
1707 */
1708 vdev_remove_child(rvd, tvd);
1709 vdev_remove_child(mrvd, mtvd);
1710
1711 vdev_add_child(rvd, mtvd);
1712 vdev_add_child(mrvd, tvd);
1713
1714 spa_config_exit(spa, SCL_ALL, FTAG);
1715 vdev_load(mtvd);
1716 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1717
1718 vdev_reopen(rvd);
1719 } else if (mtvd->vdev_islog) {
1720 /*
1721 * Load the slog device's state from the MOS config
1722 * since it's possible that the label does not
1723 * contain the most up-to-date information.
1724 */
1725 vdev_load_log_state(tvd, mtvd);
1726 vdev_reopen(tvd);
1727 }
1728 }
1729 vdev_free(mrvd);
1730 spa_config_exit(spa, SCL_ALL, FTAG);
1731
1732 /*
1733 * Ensure we were able to validate the config.
1734 */
1735 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1736 }
1737
1738 /*
1739 * Check for missing log devices
1740 */
1741 static boolean_t
spa_check_logs(spa_t * spa)1742 spa_check_logs(spa_t *spa)
1743 {
1744 boolean_t rv = B_FALSE;
1745 dsl_pool_t *dp = spa_get_dsl(spa);
1746
1747 switch (spa->spa_log_state) {
1748 case SPA_LOG_MISSING:
1749 /* need to recheck in case slog has been restored */
1750 case SPA_LOG_UNKNOWN:
1751 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1752 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1753 if (rv)
1754 spa_set_log_state(spa, SPA_LOG_MISSING);
1755 break;
1756 }
1757 return (rv);
1758 }
1759
1760 static boolean_t
spa_passivate_log(spa_t * spa)1761 spa_passivate_log(spa_t *spa)
1762 {
1763 vdev_t *rvd = spa->spa_root_vdev;
1764 boolean_t slog_found = B_FALSE;
1765
1766 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1767
1768 if (!spa_has_slogs(spa))
1769 return (B_FALSE);
1770
1771 for (int c = 0; c < rvd->vdev_children; c++) {
1772 vdev_t *tvd = rvd->vdev_child[c];
1773 metaslab_group_t *mg = tvd->vdev_mg;
1774
1775 if (tvd->vdev_islog) {
1776 metaslab_group_passivate(mg);
1777 slog_found = B_TRUE;
1778 }
1779 }
1780
1781 return (slog_found);
1782 }
1783
1784 static void
spa_activate_log(spa_t * spa)1785 spa_activate_log(spa_t *spa)
1786 {
1787 vdev_t *rvd = spa->spa_root_vdev;
1788
1789 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1790
1791 for (int c = 0; c < rvd->vdev_children; c++) {
1792 vdev_t *tvd = rvd->vdev_child[c];
1793 metaslab_group_t *mg = tvd->vdev_mg;
1794
1795 if (tvd->vdev_islog)
1796 metaslab_group_activate(mg);
1797 }
1798 }
1799
1800 int
spa_offline_log(spa_t * spa)1801 spa_offline_log(spa_t *spa)
1802 {
1803 int error;
1804
1805 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1806 NULL, DS_FIND_CHILDREN);
1807 if (error == 0) {
1808 /*
1809 * We successfully offlined the log device, sync out the
1810 * current txg so that the "stubby" block can be removed
1811 * by zil_sync().
1812 */
1813 txg_wait_synced(spa->spa_dsl_pool, 0);
1814 }
1815 return (error);
1816 }
1817
1818 static void
spa_aux_check_removed(spa_aux_vdev_t * sav)1819 spa_aux_check_removed(spa_aux_vdev_t *sav)
1820 {
1821 for (int i = 0; i < sav->sav_count; i++)
1822 spa_check_removed(sav->sav_vdevs[i]);
1823 }
1824
1825 void
spa_claim_notify(zio_t * zio)1826 spa_claim_notify(zio_t *zio)
1827 {
1828 spa_t *spa = zio->io_spa;
1829
1830 if (zio->io_error)
1831 return;
1832
1833 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1834 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1835 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1836 mutex_exit(&spa->spa_props_lock);
1837 }
1838
1839 typedef struct spa_load_error {
1840 uint64_t sle_meta_count;
1841 uint64_t sle_data_count;
1842 } spa_load_error_t;
1843
1844 static void
spa_load_verify_done(zio_t * zio)1845 spa_load_verify_done(zio_t *zio)
1846 {
1847 blkptr_t *bp = zio->io_bp;
1848 spa_load_error_t *sle = zio->io_private;
1849 dmu_object_type_t type = BP_GET_TYPE(bp);
1850 int error = zio->io_error;
1851 spa_t *spa = zio->io_spa;
1852
1853 if (error) {
1854 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1855 type != DMU_OT_INTENT_LOG)
1856 atomic_inc_64(&sle->sle_meta_count);
1857 else
1858 atomic_inc_64(&sle->sle_data_count);
1859 }
1860 zio_data_buf_free(zio->io_data, zio->io_size);
1861
1862 mutex_enter(&spa->spa_scrub_lock);
1863 spa->spa_scrub_inflight--;
1864 cv_broadcast(&spa->spa_scrub_io_cv);
1865 mutex_exit(&spa->spa_scrub_lock);
1866 }
1867
1868 /*
1869 * Maximum number of concurrent scrub i/os to create while verifying
1870 * a pool while importing it.
1871 */
1872 int spa_load_verify_maxinflight = 10000;
1873 boolean_t spa_load_verify_metadata = B_TRUE;
1874 boolean_t spa_load_verify_data = B_TRUE;
1875
1876 /*ARGSUSED*/
1877 static int
spa_load_verify_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)1878 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1879 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1880 {
1881 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1882 return (0);
1883 /*
1884 * Note: normally this routine will not be called if
1885 * spa_load_verify_metadata is not set. However, it may be useful
1886 * to manually set the flag after the traversal has begun.
1887 */
1888 if (!spa_load_verify_metadata)
1889 return (0);
1890 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1891 return (0);
1892
1893 zio_t *rio = arg;
1894 size_t size = BP_GET_PSIZE(bp);
1895 void *data = zio_data_buf_alloc(size);
1896
1897 mutex_enter(&spa->spa_scrub_lock);
1898 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1899 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1900 spa->spa_scrub_inflight++;
1901 mutex_exit(&spa->spa_scrub_lock);
1902
1903 zio_nowait(zio_read(rio, spa, bp, data, size,
1904 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1905 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1906 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1907 return (0);
1908 }
1909
1910 static int
spa_load_verify(spa_t * spa)1911 spa_load_verify(spa_t *spa)
1912 {
1913 zio_t *rio;
1914 spa_load_error_t sle = { 0 };
1915 zpool_rewind_policy_t policy;
1916 boolean_t verify_ok = B_FALSE;
1917 int error = 0;
1918
1919 zpool_get_rewind_policy(spa->spa_config, &policy);
1920
1921 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1922 return (0);
1923
1924 rio = zio_root(spa, NULL, &sle,
1925 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1926
1927 if (spa_load_verify_metadata) {
1928 error = traverse_pool(spa, spa->spa_verify_min_txg,
1929 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1930 spa_load_verify_cb, rio);
1931 }
1932
1933 (void) zio_wait(rio);
1934
1935 spa->spa_load_meta_errors = sle.sle_meta_count;
1936 spa->spa_load_data_errors = sle.sle_data_count;
1937
1938 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1939 sle.sle_data_count <= policy.zrp_maxdata) {
1940 int64_t loss = 0;
1941
1942 verify_ok = B_TRUE;
1943 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1944 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1945
1946 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1947 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1948 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1949 VERIFY(nvlist_add_int64(spa->spa_load_info,
1950 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1951 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1952 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1953 } else {
1954 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1955 }
1956
1957 if (error) {
1958 if (error != ENXIO && error != EIO)
1959 error = SET_ERROR(EIO);
1960 return (error);
1961 }
1962
1963 return (verify_ok ? 0 : EIO);
1964 }
1965
1966 /*
1967 * Find a value in the pool props object.
1968 */
1969 static void
spa_prop_find(spa_t * spa,zpool_prop_t prop,uint64_t * val)1970 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1971 {
1972 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1973 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1974 }
1975
1976 /*
1977 * Find a value in the pool directory object.
1978 */
1979 static int
spa_dir_prop(spa_t * spa,const char * name,uint64_t * val)1980 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1981 {
1982 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1983 name, sizeof (uint64_t), 1, val));
1984 }
1985
1986 static int
spa_vdev_err(vdev_t * vdev,vdev_aux_t aux,int err)1987 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1988 {
1989 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1990 return (err);
1991 }
1992
1993 /*
1994 * Fix up config after a partly-completed split. This is done with the
1995 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1996 * pool have that entry in their config, but only the splitting one contains
1997 * a list of all the guids of the vdevs that are being split off.
1998 *
1999 * This function determines what to do with that list: either rejoin
2000 * all the disks to the pool, or complete the splitting process. To attempt
2001 * the rejoin, each disk that is offlined is marked online again, and
2002 * we do a reopen() call. If the vdev label for every disk that was
2003 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2004 * then we call vdev_split() on each disk, and complete the split.
2005 *
2006 * Otherwise we leave the config alone, with all the vdevs in place in
2007 * the original pool.
2008 */
2009 static void
spa_try_repair(spa_t * spa,nvlist_t * config)2010 spa_try_repair(spa_t *spa, nvlist_t *config)
2011 {
2012 uint_t extracted;
2013 uint64_t *glist;
2014 uint_t i, gcount;
2015 nvlist_t *nvl;
2016 vdev_t **vd;
2017 boolean_t attempt_reopen;
2018
2019 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2020 return;
2021
2022 /* check that the config is complete */
2023 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2024 &glist, &gcount) != 0)
2025 return;
2026
2027 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2028
2029 /* attempt to online all the vdevs & validate */
2030 attempt_reopen = B_TRUE;
2031 for (i = 0; i < gcount; i++) {
2032 if (glist[i] == 0) /* vdev is hole */
2033 continue;
2034
2035 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2036 if (vd[i] == NULL) {
2037 /*
2038 * Don't bother attempting to reopen the disks;
2039 * just do the split.
2040 */
2041 attempt_reopen = B_FALSE;
2042 } else {
2043 /* attempt to re-online it */
2044 vd[i]->vdev_offline = B_FALSE;
2045 }
2046 }
2047
2048 if (attempt_reopen) {
2049 vdev_reopen(spa->spa_root_vdev);
2050
2051 /* check each device to see what state it's in */
2052 for (extracted = 0, i = 0; i < gcount; i++) {
2053 if (vd[i] != NULL &&
2054 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2055 break;
2056 ++extracted;
2057 }
2058 }
2059
2060 /*
2061 * If every disk has been moved to the new pool, or if we never
2062 * even attempted to look at them, then we split them off for
2063 * good.
2064 */
2065 if (!attempt_reopen || gcount == extracted) {
2066 for (i = 0; i < gcount; i++)
2067 if (vd[i] != NULL)
2068 vdev_split(vd[i]);
2069 vdev_reopen(spa->spa_root_vdev);
2070 }
2071
2072 kmem_free(vd, gcount * sizeof (vdev_t *));
2073 }
2074
2075 static int
spa_load(spa_t * spa,spa_load_state_t state,spa_import_type_t type,boolean_t mosconfig)2076 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2077 boolean_t mosconfig)
2078 {
2079 nvlist_t *config = spa->spa_config;
2080 char *ereport = FM_EREPORT_ZFS_POOL;
2081 char *comment;
2082 int error;
2083 uint64_t pool_guid;
2084 nvlist_t *nvl;
2085
2086 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2087 return (SET_ERROR(EINVAL));
2088
2089 ASSERT(spa->spa_comment == NULL);
2090 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2091 spa->spa_comment = spa_strdup(comment);
2092
2093 /*
2094 * Versioning wasn't explicitly added to the label until later, so if
2095 * it's not present treat it as the initial version.
2096 */
2097 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2098 &spa->spa_ubsync.ub_version) != 0)
2099 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2100
2101 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2102 &spa->spa_config_txg);
2103
2104 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2105 spa_guid_exists(pool_guid, 0)) {
2106 error = SET_ERROR(EEXIST);
2107 } else {
2108 spa->spa_config_guid = pool_guid;
2109
2110 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2111 &nvl) == 0) {
2112 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2113 KM_SLEEP) == 0);
2114 }
2115
2116 nvlist_free(spa->spa_load_info);
2117 spa->spa_load_info = fnvlist_alloc();
2118
2119 gethrestime(&spa->spa_loaded_ts);
2120 error = spa_load_impl(spa, pool_guid, config, state, type,
2121 mosconfig, &ereport);
2122 }
2123
2124 /*
2125 * Don't count references from objsets that are already closed
2126 * and are making their way through the eviction process.
2127 */
2128 spa_evicting_os_wait(spa);
2129 spa->spa_minref = refcount_count(&spa->spa_refcount);
2130 if (error) {
2131 if (error != EEXIST) {
2132 spa->spa_loaded_ts.tv_sec = 0;
2133 spa->spa_loaded_ts.tv_nsec = 0;
2134 }
2135 if (error != EBADF) {
2136 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2137 }
2138 }
2139 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2140 spa->spa_ena = 0;
2141
2142 return (error);
2143 }
2144
2145 /*
2146 * Load an existing storage pool, using the pool's builtin spa_config as a
2147 * source of configuration information.
2148 */
2149 static int
spa_load_impl(spa_t * spa,uint64_t pool_guid,nvlist_t * config,spa_load_state_t state,spa_import_type_t type,boolean_t mosconfig,char ** ereport)2150 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2151 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2152 char **ereport)
2153 {
2154 int error = 0;
2155 nvlist_t *nvroot = NULL;
2156 nvlist_t *label;
2157 vdev_t *rvd;
2158 uberblock_t *ub = &spa->spa_uberblock;
2159 uint64_t children, config_cache_txg = spa->spa_config_txg;
2160 int orig_mode = spa->spa_mode;
2161 int parse;
2162 uint64_t obj;
2163 boolean_t missing_feat_write = B_FALSE;
2164
2165 /*
2166 * If this is an untrusted config, access the pool in read-only mode.
2167 * This prevents things like resilvering recently removed devices.
2168 */
2169 if (!mosconfig)
2170 spa->spa_mode = FREAD;
2171
2172 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2173
2174 spa->spa_load_state = state;
2175
2176 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2177 return (SET_ERROR(EINVAL));
2178
2179 parse = (type == SPA_IMPORT_EXISTING ?
2180 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2181
2182 /*
2183 * Create "The Godfather" zio to hold all async IOs
2184 */
2185 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2186 KM_SLEEP);
2187 for (int i = 0; i < max_ncpus; i++) {
2188 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2189 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2190 ZIO_FLAG_GODFATHER);
2191 }
2192
2193 /*
2194 * Parse the configuration into a vdev tree. We explicitly set the
2195 * value that will be returned by spa_version() since parsing the
2196 * configuration requires knowing the version number.
2197 */
2198 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2199 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2200 spa_config_exit(spa, SCL_ALL, FTAG);
2201
2202 if (error != 0)
2203 return (error);
2204
2205 ASSERT(spa->spa_root_vdev == rvd);
2206 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2207 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2208
2209 if (type != SPA_IMPORT_ASSEMBLE) {
2210 ASSERT(spa_guid(spa) == pool_guid);
2211 }
2212
2213 /*
2214 * Try to open all vdevs, loading each label in the process.
2215 */
2216 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2217 error = vdev_open(rvd);
2218 spa_config_exit(spa, SCL_ALL, FTAG);
2219 if (error != 0)
2220 return (error);
2221
2222 /*
2223 * We need to validate the vdev labels against the configuration that
2224 * we have in hand, which is dependent on the setting of mosconfig. If
2225 * mosconfig is true then we're validating the vdev labels based on
2226 * that config. Otherwise, we're validating against the cached config
2227 * (zpool.cache) that was read when we loaded the zfs module, and then
2228 * later we will recursively call spa_load() and validate against
2229 * the vdev config.
2230 *
2231 * If we're assembling a new pool that's been split off from an
2232 * existing pool, the labels haven't yet been updated so we skip
2233 * validation for now.
2234 */
2235 if (type != SPA_IMPORT_ASSEMBLE) {
2236 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2237 error = vdev_validate(rvd, mosconfig);
2238 spa_config_exit(spa, SCL_ALL, FTAG);
2239
2240 if (error != 0)
2241 return (error);
2242
2243 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2244 return (SET_ERROR(ENXIO));
2245 }
2246
2247 /*
2248 * Find the best uberblock.
2249 */
2250 vdev_uberblock_load(rvd, ub, &label);
2251
2252 /*
2253 * If we weren't able to find a single valid uberblock, return failure.
2254 */
2255 if (ub->ub_txg == 0) {
2256 nvlist_free(label);
2257 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2258 }
2259
2260 /*
2261 * If the pool has an unsupported version we can't open it.
2262 */
2263 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2264 nvlist_free(label);
2265 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2266 }
2267
2268 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2269 nvlist_t *features;
2270
2271 /*
2272 * If we weren't able to find what's necessary for reading the
2273 * MOS in the label, return failure.
2274 */
2275 if (label == NULL || nvlist_lookup_nvlist(label,
2276 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2277 nvlist_free(label);
2278 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2279 ENXIO));
2280 }
2281
2282 /*
2283 * Update our in-core representation with the definitive values
2284 * from the label.
2285 */
2286 nvlist_free(spa->spa_label_features);
2287 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2288 }
2289
2290 nvlist_free(label);
2291
2292 /*
2293 * Look through entries in the label nvlist's features_for_read. If
2294 * there is a feature listed there which we don't understand then we
2295 * cannot open a pool.
2296 */
2297 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2298 nvlist_t *unsup_feat;
2299
2300 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2301 0);
2302
2303 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2304 NULL); nvp != NULL;
2305 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2306 if (!zfeature_is_supported(nvpair_name(nvp))) {
2307 VERIFY(nvlist_add_string(unsup_feat,
2308 nvpair_name(nvp), "") == 0);
2309 }
2310 }
2311
2312 if (!nvlist_empty(unsup_feat)) {
2313 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2314 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2315 nvlist_free(unsup_feat);
2316 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2317 ENOTSUP));
2318 }
2319
2320 nvlist_free(unsup_feat);
2321 }
2322
2323 /*
2324 * If the vdev guid sum doesn't match the uberblock, we have an
2325 * incomplete configuration. We first check to see if the pool
2326 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2327 * If it is, defer the vdev_guid_sum check till later so we
2328 * can handle missing vdevs.
2329 */
2330 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2331 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2332 rvd->vdev_guid_sum != ub->ub_guid_sum)
2333 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2334
2335 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2336 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2337 spa_try_repair(spa, config);
2338 spa_config_exit(spa, SCL_ALL, FTAG);
2339 nvlist_free(spa->spa_config_splitting);
2340 spa->spa_config_splitting = NULL;
2341 }
2342
2343 /*
2344 * Initialize internal SPA structures.
2345 */
2346 spa->spa_state = POOL_STATE_ACTIVE;
2347 spa->spa_ubsync = spa->spa_uberblock;
2348 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2349 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2350 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2351 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2352 spa->spa_claim_max_txg = spa->spa_first_txg;
2353 spa->spa_prev_software_version = ub->ub_software_version;
2354
2355 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2356 if (error)
2357 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2358 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2359
2360 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2361 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2362
2363 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2364 boolean_t missing_feat_read = B_FALSE;
2365 nvlist_t *unsup_feat, *enabled_feat;
2366
2367 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2368 &spa->spa_feat_for_read_obj) != 0) {
2369 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2370 }
2371
2372 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2373 &spa->spa_feat_for_write_obj) != 0) {
2374 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2375 }
2376
2377 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2378 &spa->spa_feat_desc_obj) != 0) {
2379 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2380 }
2381
2382 enabled_feat = fnvlist_alloc();
2383 unsup_feat = fnvlist_alloc();
2384
2385 if (!spa_features_check(spa, B_FALSE,
2386 unsup_feat, enabled_feat))
2387 missing_feat_read = B_TRUE;
2388
2389 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2390 if (!spa_features_check(spa, B_TRUE,
2391 unsup_feat, enabled_feat)) {
2392 missing_feat_write = B_TRUE;
2393 }
2394 }
2395
2396 fnvlist_add_nvlist(spa->spa_load_info,
2397 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2398
2399 if (!nvlist_empty(unsup_feat)) {
2400 fnvlist_add_nvlist(spa->spa_load_info,
2401 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2402 }
2403
2404 fnvlist_free(enabled_feat);
2405 fnvlist_free(unsup_feat);
2406
2407 if (!missing_feat_read) {
2408 fnvlist_add_boolean(spa->spa_load_info,
2409 ZPOOL_CONFIG_CAN_RDONLY);
2410 }
2411
2412 /*
2413 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2414 * twofold: to determine whether the pool is available for
2415 * import in read-write mode and (if it is not) whether the
2416 * pool is available for import in read-only mode. If the pool
2417 * is available for import in read-write mode, it is displayed
2418 * as available in userland; if it is not available for import
2419 * in read-only mode, it is displayed as unavailable in
2420 * userland. If the pool is available for import in read-only
2421 * mode but not read-write mode, it is displayed as unavailable
2422 * in userland with a special note that the pool is actually
2423 * available for open in read-only mode.
2424 *
2425 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2426 * missing a feature for write, we must first determine whether
2427 * the pool can be opened read-only before returning to
2428 * userland in order to know whether to display the
2429 * abovementioned note.
2430 */
2431 if (missing_feat_read || (missing_feat_write &&
2432 spa_writeable(spa))) {
2433 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2434 ENOTSUP));
2435 }
2436
2437 /*
2438 * Load refcounts for ZFS features from disk into an in-memory
2439 * cache during SPA initialization.
2440 */
2441 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2442 uint64_t refcount;
2443
2444 error = feature_get_refcount_from_disk(spa,
2445 &spa_feature_table[i], &refcount);
2446 if (error == 0) {
2447 spa->spa_feat_refcount_cache[i] = refcount;
2448 } else if (error == ENOTSUP) {
2449 spa->spa_feat_refcount_cache[i] =
2450 SPA_FEATURE_DISABLED;
2451 } else {
2452 return (spa_vdev_err(rvd,
2453 VDEV_AUX_CORRUPT_DATA, EIO));
2454 }
2455 }
2456 }
2457
2458 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2459 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2460 &spa->spa_feat_enabled_txg_obj) != 0)
2461 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2462 }
2463
2464 spa->spa_is_initializing = B_TRUE;
2465 error = dsl_pool_open(spa->spa_dsl_pool);
2466 spa->spa_is_initializing = B_FALSE;
2467 if (error != 0)
2468 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2469
2470 if (!mosconfig) {
2471 uint64_t hostid;
2472 nvlist_t *policy = NULL, *nvconfig;
2473
2474 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2475 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2476
2477 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2478 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2479 char *hostname;
2480 unsigned long myhostid = 0;
2481
2482 VERIFY(nvlist_lookup_string(nvconfig,
2483 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2484
2485 #ifdef _KERNEL
2486 myhostid = zone_get_hostid(NULL);
2487 #else /* _KERNEL */
2488 /*
2489 * We're emulating the system's hostid in userland, so
2490 * we can't use zone_get_hostid().
2491 */
2492 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2493 #endif /* _KERNEL */
2494 if (hostid != 0 && myhostid != 0 &&
2495 hostid != myhostid) {
2496 nvlist_free(nvconfig);
2497 cmn_err(CE_WARN, "pool '%s' could not be "
2498 "loaded as it was last accessed by "
2499 "another system (host: %s hostid: 0x%lx). "
2500 "See: http://illumos.org/msg/ZFS-8000-EY",
2501 spa_name(spa), hostname,
2502 (unsigned long)hostid);
2503 return (SET_ERROR(EBADF));
2504 }
2505 }
2506 if (nvlist_lookup_nvlist(spa->spa_config,
2507 ZPOOL_REWIND_POLICY, &policy) == 0)
2508 VERIFY(nvlist_add_nvlist(nvconfig,
2509 ZPOOL_REWIND_POLICY, policy) == 0);
2510
2511 spa_config_set(spa, nvconfig);
2512 spa_unload(spa);
2513 spa_deactivate(spa);
2514 spa_activate(spa, orig_mode);
2515
2516 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2517 }
2518
2519 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2520 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2521 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2522 if (error != 0)
2523 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2524
2525 /*
2526 * Load the bit that tells us to use the new accounting function
2527 * (raid-z deflation). If we have an older pool, this will not
2528 * be present.
2529 */
2530 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2531 if (error != 0 && error != ENOENT)
2532 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2533
2534 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2535 &spa->spa_creation_version);
2536 if (error != 0 && error != ENOENT)
2537 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2538
2539 /*
2540 * Load the persistent error log. If we have an older pool, this will
2541 * not be present.
2542 */
2543 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2544 if (error != 0 && error != ENOENT)
2545 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2546
2547 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2548 &spa->spa_errlog_scrub);
2549 if (error != 0 && error != ENOENT)
2550 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2551
2552 /*
2553 * Load the history object. If we have an older pool, this
2554 * will not be present.
2555 */
2556 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2557 if (error != 0 && error != ENOENT)
2558 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2559
2560 /*
2561 * If we're assembling the pool from the split-off vdevs of
2562 * an existing pool, we don't want to attach the spares & cache
2563 * devices.
2564 */
2565
2566 /*
2567 * Load any hot spares for this pool.
2568 */
2569 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2570 if (error != 0 && error != ENOENT)
2571 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2572 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2573 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2574 if (load_nvlist(spa, spa->spa_spares.sav_object,
2575 &spa->spa_spares.sav_config) != 0)
2576 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2577
2578 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2579 spa_load_spares(spa);
2580 spa_config_exit(spa, SCL_ALL, FTAG);
2581 } else if (error == 0) {
2582 spa->spa_spares.sav_sync = B_TRUE;
2583 }
2584
2585 /*
2586 * Load any level 2 ARC devices for this pool.
2587 */
2588 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2589 &spa->spa_l2cache.sav_object);
2590 if (error != 0 && error != ENOENT)
2591 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2592 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2593 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2594 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2595 &spa->spa_l2cache.sav_config) != 0)
2596 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2597
2598 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2599 spa_load_l2cache(spa);
2600 spa_config_exit(spa, SCL_ALL, FTAG);
2601 } else if (error == 0) {
2602 spa->spa_l2cache.sav_sync = B_TRUE;
2603 }
2604
2605 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2606
2607 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2608 if (error && error != ENOENT)
2609 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2610
2611 if (error == 0) {
2612 uint64_t autoreplace;
2613
2614 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2615 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2616 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2617 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2618 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2619 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2620 &spa->spa_dedup_ditto);
2621
2622 spa->spa_autoreplace = (autoreplace != 0);
2623 }
2624
2625 /*
2626 * If the 'autoreplace' property is set, then post a resource notifying
2627 * the ZFS DE that it should not issue any faults for unopenable
2628 * devices. We also iterate over the vdevs, and post a sysevent for any
2629 * unopenable vdevs so that the normal autoreplace handler can take
2630 * over.
2631 */
2632 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2633 spa_check_removed(spa->spa_root_vdev);
2634 /*
2635 * For the import case, this is done in spa_import(), because
2636 * at this point we're using the spare definitions from
2637 * the MOS config, not necessarily from the userland config.
2638 */
2639 if (state != SPA_LOAD_IMPORT) {
2640 spa_aux_check_removed(&spa->spa_spares);
2641 spa_aux_check_removed(&spa->spa_l2cache);
2642 }
2643 }
2644
2645 /*
2646 * Load the vdev state for all toplevel vdevs.
2647 */
2648 vdev_load(rvd);
2649
2650 /*
2651 * Propagate the leaf DTLs we just loaded all the way up the tree.
2652 */
2653 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2654 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2655 spa_config_exit(spa, SCL_ALL, FTAG);
2656
2657 /*
2658 * Load the DDTs (dedup tables).
2659 */
2660 error = ddt_load(spa);
2661 if (error != 0)
2662 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2663
2664 spa_update_dspace(spa);
2665
2666 /*
2667 * Validate the config, using the MOS config to fill in any
2668 * information which might be missing. If we fail to validate
2669 * the config then declare the pool unfit for use. If we're
2670 * assembling a pool from a split, the log is not transferred
2671 * over.
2672 */
2673 if (type != SPA_IMPORT_ASSEMBLE) {
2674 nvlist_t *nvconfig;
2675
2676 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2677 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2678
2679 if (!spa_config_valid(spa, nvconfig)) {
2680 nvlist_free(nvconfig);
2681 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2682 ENXIO));
2683 }
2684 nvlist_free(nvconfig);
2685
2686 /*
2687 * Now that we've validated the config, check the state of the
2688 * root vdev. If it can't be opened, it indicates one or
2689 * more toplevel vdevs are faulted.
2690 */
2691 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2692 return (SET_ERROR(ENXIO));
2693
2694 if (spa_writeable(spa) && spa_check_logs(spa)) {
2695 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2696 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2697 }
2698 }
2699
2700 if (missing_feat_write) {
2701 ASSERT(state == SPA_LOAD_TRYIMPORT);
2702
2703 /*
2704 * At this point, we know that we can open the pool in
2705 * read-only mode but not read-write mode. We now have enough
2706 * information and can return to userland.
2707 */
2708 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2709 }
2710
2711 /*
2712 * We've successfully opened the pool, verify that we're ready
2713 * to start pushing transactions.
2714 */
2715 if (state != SPA_LOAD_TRYIMPORT) {
2716 if (error = spa_load_verify(spa))
2717 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2718 error));
2719 }
2720
2721 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2722 spa->spa_load_max_txg == UINT64_MAX)) {
2723 dmu_tx_t *tx;
2724 int need_update = B_FALSE;
2725 dsl_pool_t *dp = spa_get_dsl(spa);
2726
2727 ASSERT(state != SPA_LOAD_TRYIMPORT);
2728
2729 /*
2730 * Claim log blocks that haven't been committed yet.
2731 * This must all happen in a single txg.
2732 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2733 * invoked from zil_claim_log_block()'s i/o done callback.
2734 * Price of rollback is that we abandon the log.
2735 */
2736 spa->spa_claiming = B_TRUE;
2737
2738 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2739 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2740 zil_claim, tx, DS_FIND_CHILDREN);
2741 dmu_tx_commit(tx);
2742
2743 spa->spa_claiming = B_FALSE;
2744
2745 spa_set_log_state(spa, SPA_LOG_GOOD);
2746 spa->spa_sync_on = B_TRUE;
2747 txg_sync_start(spa->spa_dsl_pool);
2748
2749 /*
2750 * Wait for all claims to sync. We sync up to the highest
2751 * claimed log block birth time so that claimed log blocks
2752 * don't appear to be from the future. spa_claim_max_txg
2753 * will have been set for us by either zil_check_log_chain()
2754 * (invoked from spa_check_logs()) or zil_claim() above.
2755 */
2756 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2757
2758 /*
2759 * If the config cache is stale, or we have uninitialized
2760 * metaslabs (see spa_vdev_add()), then update the config.
2761 *
2762 * If this is a verbatim import, trust the current
2763 * in-core spa_config and update the disk labels.
2764 */
2765 if (config_cache_txg != spa->spa_config_txg ||
2766 state == SPA_LOAD_IMPORT ||
2767 state == SPA_LOAD_RECOVER ||
2768 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2769 need_update = B_TRUE;
2770
2771 for (int c = 0; c < rvd->vdev_children; c++)
2772 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2773 need_update = B_TRUE;
2774
2775 /*
2776 * Update the config cache asychronously in case we're the
2777 * root pool, in which case the config cache isn't writable yet.
2778 */
2779 if (need_update)
2780 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2781
2782 /*
2783 * Check all DTLs to see if anything needs resilvering.
2784 */
2785 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2786 vdev_resilver_needed(rvd, NULL, NULL))
2787 spa_async_request(spa, SPA_ASYNC_RESILVER);
2788
2789 /*
2790 * Log the fact that we booted up (so that we can detect if
2791 * we rebooted in the middle of an operation).
2792 */
2793 spa_history_log_version(spa, "open");
2794
2795 /*
2796 * Delete any inconsistent datasets.
2797 */
2798 (void) dmu_objset_find(spa_name(spa),
2799 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2800
2801 /*
2802 * Clean up any stale temporary dataset userrefs.
2803 */
2804 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2805 }
2806
2807 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2808
2809 return (0);
2810 }
2811
2812 static int
spa_load_retry(spa_t * spa,spa_load_state_t state,int mosconfig)2813 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2814 {
2815 int mode = spa->spa_mode;
2816
2817 spa_unload(spa);
2818 spa_deactivate(spa);
2819
2820 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2821
2822 spa_activate(spa, mode);
2823 spa_async_suspend(spa);
2824
2825 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2826 }
2827
2828 /*
2829 * If spa_load() fails this function will try loading prior txg's. If
2830 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2831 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2832 * function will not rewind the pool and will return the same error as
2833 * spa_load().
2834 */
2835 static int
spa_load_best(spa_t * spa,spa_load_state_t state,int mosconfig,uint64_t max_request,int rewind_flags)2836 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2837 uint64_t max_request, int rewind_flags)
2838 {
2839 nvlist_t *loadinfo = NULL;
2840 nvlist_t *config = NULL;
2841 int load_error, rewind_error;
2842 uint64_t safe_rewind_txg;
2843 uint64_t min_txg;
2844
2845 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2846 spa->spa_load_max_txg = spa->spa_load_txg;
2847 spa_set_log_state(spa, SPA_LOG_CLEAR);
2848 } else {
2849 spa->spa_load_max_txg = max_request;
2850 if (max_request != UINT64_MAX)
2851 spa->spa_extreme_rewind = B_TRUE;
2852 }
2853
2854 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2855 mosconfig);
2856 if (load_error == 0)
2857 return (0);
2858
2859 if (spa->spa_root_vdev != NULL)
2860 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2861
2862 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2863 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2864
2865 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2866 nvlist_free(config);
2867 return (load_error);
2868 }
2869
2870 if (state == SPA_LOAD_RECOVER) {
2871 /* Price of rolling back is discarding txgs, including log */
2872 spa_set_log_state(spa, SPA_LOG_CLEAR);
2873 } else {
2874 /*
2875 * If we aren't rolling back save the load info from our first
2876 * import attempt so that we can restore it after attempting
2877 * to rewind.
2878 */
2879 loadinfo = spa->spa_load_info;
2880 spa->spa_load_info = fnvlist_alloc();
2881 }
2882
2883 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2884 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2885 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2886 TXG_INITIAL : safe_rewind_txg;
2887
2888 /*
2889 * Continue as long as we're finding errors, we're still within
2890 * the acceptable rewind range, and we're still finding uberblocks
2891 */
2892 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2893 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2894 if (spa->spa_load_max_txg < safe_rewind_txg)
2895 spa->spa_extreme_rewind = B_TRUE;
2896 rewind_error = spa_load_retry(spa, state, mosconfig);
2897 }
2898
2899 spa->spa_extreme_rewind = B_FALSE;
2900 spa->spa_load_max_txg = UINT64_MAX;
2901
2902 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2903 spa_config_set(spa, config);
2904
2905 if (state == SPA_LOAD_RECOVER) {
2906 ASSERT3P(loadinfo, ==, NULL);
2907 return (rewind_error);
2908 } else {
2909 /* Store the rewind info as part of the initial load info */
2910 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2911 spa->spa_load_info);
2912
2913 /* Restore the initial load info */
2914 fnvlist_free(spa->spa_load_info);
2915 spa->spa_load_info = loadinfo;
2916
2917 return (load_error);
2918 }
2919 }
2920
2921 /*
2922 * Pool Open/Import
2923 *
2924 * The import case is identical to an open except that the configuration is sent
2925 * down from userland, instead of grabbed from the configuration cache. For the
2926 * case of an open, the pool configuration will exist in the
2927 * POOL_STATE_UNINITIALIZED state.
2928 *
2929 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2930 * the same time open the pool, without having to keep around the spa_t in some
2931 * ambiguous state.
2932 */
2933 static int
spa_open_common(const char * pool,spa_t ** spapp,void * tag,nvlist_t * nvpolicy,nvlist_t ** config)2934 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2935 nvlist_t **config)
2936 {
2937 spa_t *spa;
2938 spa_load_state_t state = SPA_LOAD_OPEN;
2939 int error;
2940 int locked = B_FALSE;
2941
2942 *spapp = NULL;
2943
2944 /*
2945 * As disgusting as this is, we need to support recursive calls to this
2946 * function because dsl_dir_open() is called during spa_load(), and ends
2947 * up calling spa_open() again. The real fix is to figure out how to
2948 * avoid dsl_dir_open() calling this in the first place.
2949 */
2950 if (mutex_owner(&spa_namespace_lock) != curthread) {
2951 mutex_enter(&spa_namespace_lock);
2952 locked = B_TRUE;
2953 }
2954
2955 if ((spa = spa_lookup(pool)) == NULL) {
2956 if (locked)
2957 mutex_exit(&spa_namespace_lock);
2958 return (SET_ERROR(ENOENT));
2959 }
2960
2961 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2962 zpool_rewind_policy_t policy;
2963
2964 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2965 &policy);
2966 if (policy.zrp_request & ZPOOL_DO_REWIND)
2967 state = SPA_LOAD_RECOVER;
2968
2969 spa_activate(spa, spa_mode_global);
2970
2971 if (state != SPA_LOAD_RECOVER)
2972 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2973
2974 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2975 policy.zrp_request);
2976
2977 if (error == EBADF) {
2978 /*
2979 * If vdev_validate() returns failure (indicated by
2980 * EBADF), it indicates that one of the vdevs indicates
2981 * that the pool has been exported or destroyed. If
2982 * this is the case, the config cache is out of sync and
2983 * we should remove the pool from the namespace.
2984 */
2985 spa_unload(spa);
2986 spa_deactivate(spa);
2987 spa_config_sync(spa, B_TRUE, B_TRUE);
2988 spa_remove(spa);
2989 if (locked)
2990 mutex_exit(&spa_namespace_lock);
2991 return (SET_ERROR(ENOENT));
2992 }
2993
2994 if (error) {
2995 /*
2996 * We can't open the pool, but we still have useful
2997 * information: the state of each vdev after the
2998 * attempted vdev_open(). Return this to the user.
2999 */
3000 if (config != NULL && spa->spa_config) {
3001 VERIFY(nvlist_dup(spa->spa_config, config,
3002 KM_SLEEP) == 0);
3003 VERIFY(nvlist_add_nvlist(*config,
3004 ZPOOL_CONFIG_LOAD_INFO,
3005 spa->spa_load_info) == 0);
3006 }
3007 spa_unload(spa);
3008 spa_deactivate(spa);
3009 spa->spa_last_open_failed = error;
3010 if (locked)
3011 mutex_exit(&spa_namespace_lock);
3012 *spapp = NULL;
3013 return (error);
3014 }
3015 }
3016
3017 spa_open_ref(spa, tag);
3018
3019 if (config != NULL)
3020 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3021
3022 /*
3023 * If we've recovered the pool, pass back any information we
3024 * gathered while doing the load.
3025 */
3026 if (state == SPA_LOAD_RECOVER) {
3027 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3028 spa->spa_load_info) == 0);
3029 }
3030
3031 if (locked) {
3032 spa->spa_last_open_failed = 0;
3033 spa->spa_last_ubsync_txg = 0;
3034 spa->spa_load_txg = 0;
3035 mutex_exit(&spa_namespace_lock);
3036 }
3037
3038 *spapp = spa;
3039
3040 return (0);
3041 }
3042
3043 int
spa_open_rewind(const char * name,spa_t ** spapp,void * tag,nvlist_t * policy,nvlist_t ** config)3044 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3045 nvlist_t **config)
3046 {
3047 return (spa_open_common(name, spapp, tag, policy, config));
3048 }
3049
3050 int
spa_open(const char * name,spa_t ** spapp,void * tag)3051 spa_open(const char *name, spa_t **spapp, void *tag)
3052 {
3053 return (spa_open_common(name, spapp, tag, NULL, NULL));
3054 }
3055
3056 /*
3057 * Lookup the given spa_t, incrementing the inject count in the process,
3058 * preventing it from being exported or destroyed.
3059 */
3060 spa_t *
spa_inject_addref(char * name)3061 spa_inject_addref(char *name)
3062 {
3063 spa_t *spa;
3064
3065 mutex_enter(&spa_namespace_lock);
3066 if ((spa = spa_lookup(name)) == NULL) {
3067 mutex_exit(&spa_namespace_lock);
3068 return (NULL);
3069 }
3070 spa->spa_inject_ref++;
3071 mutex_exit(&spa_namespace_lock);
3072
3073 return (spa);
3074 }
3075
3076 void
spa_inject_delref(spa_t * spa)3077 spa_inject_delref(spa_t *spa)
3078 {
3079 mutex_enter(&spa_namespace_lock);
3080 spa->spa_inject_ref--;
3081 mutex_exit(&spa_namespace_lock);
3082 }
3083
3084 /*
3085 * Add spares device information to the nvlist.
3086 */
3087 static void
spa_add_spares(spa_t * spa,nvlist_t * config)3088 spa_add_spares(spa_t *spa, nvlist_t *config)
3089 {
3090 nvlist_t **spares;
3091 uint_t i, nspares;
3092 nvlist_t *nvroot;
3093 uint64_t guid;
3094 vdev_stat_t *vs;
3095 uint_t vsc;
3096 uint64_t pool;
3097
3098 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3099
3100 if (spa->spa_spares.sav_count == 0)
3101 return;
3102
3103 VERIFY(nvlist_lookup_nvlist(config,
3104 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3105 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3106 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3107 if (nspares != 0) {
3108 VERIFY(nvlist_add_nvlist_array(nvroot,
3109 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3110 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3111 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3112
3113 /*
3114 * Go through and find any spares which have since been
3115 * repurposed as an active spare. If this is the case, update
3116 * their status appropriately.
3117 */
3118 for (i = 0; i < nspares; i++) {
3119 VERIFY(nvlist_lookup_uint64(spares[i],
3120 ZPOOL_CONFIG_GUID, &guid) == 0);
3121 if (spa_spare_exists(guid, &pool, NULL) &&
3122 pool != 0ULL) {
3123 VERIFY(nvlist_lookup_uint64_array(
3124 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3125 (uint64_t **)&vs, &vsc) == 0);
3126 vs->vs_state = VDEV_STATE_CANT_OPEN;
3127 vs->vs_aux = VDEV_AUX_SPARED;
3128 }
3129 }
3130 }
3131 }
3132
3133 /*
3134 * Add l2cache device information to the nvlist, including vdev stats.
3135 */
3136 static void
spa_add_l2cache(spa_t * spa,nvlist_t * config)3137 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3138 {
3139 nvlist_t **l2cache;
3140 uint_t i, j, nl2cache;
3141 nvlist_t *nvroot;
3142 uint64_t guid;
3143 vdev_t *vd;
3144 vdev_stat_t *vs;
3145 uint_t vsc;
3146
3147 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3148
3149 if (spa->spa_l2cache.sav_count == 0)
3150 return;
3151
3152 VERIFY(nvlist_lookup_nvlist(config,
3153 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3154 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3155 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3156 if (nl2cache != 0) {
3157 VERIFY(nvlist_add_nvlist_array(nvroot,
3158 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3159 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3160 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3161
3162 /*
3163 * Update level 2 cache device stats.
3164 */
3165
3166 for (i = 0; i < nl2cache; i++) {
3167 VERIFY(nvlist_lookup_uint64(l2cache[i],
3168 ZPOOL_CONFIG_GUID, &guid) == 0);
3169
3170 vd = NULL;
3171 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3172 if (guid ==
3173 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3174 vd = spa->spa_l2cache.sav_vdevs[j];
3175 break;
3176 }
3177 }
3178 ASSERT(vd != NULL);
3179
3180 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3181 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3182 == 0);
3183 vdev_get_stats(vd, vs);
3184 }
3185 }
3186 }
3187
3188 static void
spa_add_feature_stats(spa_t * spa,nvlist_t * config)3189 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3190 {
3191 nvlist_t *features;
3192 zap_cursor_t zc;
3193 zap_attribute_t za;
3194
3195 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3196 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3197
3198 if (spa->spa_feat_for_read_obj != 0) {
3199 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3200 spa->spa_feat_for_read_obj);
3201 zap_cursor_retrieve(&zc, &za) == 0;
3202 zap_cursor_advance(&zc)) {
3203 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3204 za.za_num_integers == 1);
3205 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3206 za.za_first_integer));
3207 }
3208 zap_cursor_fini(&zc);
3209 }
3210
3211 if (spa->spa_feat_for_write_obj != 0) {
3212 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3213 spa->spa_feat_for_write_obj);
3214 zap_cursor_retrieve(&zc, &za) == 0;
3215 zap_cursor_advance(&zc)) {
3216 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3217 za.za_num_integers == 1);
3218 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3219 za.za_first_integer));
3220 }
3221 zap_cursor_fini(&zc);
3222 }
3223
3224 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3225 features) == 0);
3226 nvlist_free(features);
3227 }
3228
3229 int
spa_get_stats(const char * name,nvlist_t ** config,char * altroot,size_t buflen)3230 spa_get_stats(const char *name, nvlist_t **config,
3231 char *altroot, size_t buflen)
3232 {
3233 int error;
3234 spa_t *spa;
3235
3236 *config = NULL;
3237 error = spa_open_common(name, &spa, FTAG, NULL, config);
3238
3239 if (spa != NULL) {
3240 /*
3241 * This still leaves a window of inconsistency where the spares
3242 * or l2cache devices could change and the config would be
3243 * self-inconsistent.
3244 */
3245 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3246
3247 if (*config != NULL) {
3248 uint64_t loadtimes[2];
3249
3250 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3251 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3252 VERIFY(nvlist_add_uint64_array(*config,
3253 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3254
3255 VERIFY(nvlist_add_uint64(*config,
3256 ZPOOL_CONFIG_ERRCOUNT,
3257 spa_get_errlog_size(spa)) == 0);
3258
3259 if (spa_suspended(spa))
3260 VERIFY(nvlist_add_uint64(*config,
3261 ZPOOL_CONFIG_SUSPENDED,
3262 spa->spa_failmode) == 0);
3263
3264 spa_add_spares(spa, *config);
3265 spa_add_l2cache(spa, *config);
3266 spa_add_feature_stats(spa, *config);
3267 }
3268 }
3269
3270 /*
3271 * We want to get the alternate root even for faulted pools, so we cheat
3272 * and call spa_lookup() directly.
3273 */
3274 if (altroot) {
3275 if (spa == NULL) {
3276 mutex_enter(&spa_namespace_lock);
3277 spa = spa_lookup(name);
3278 if (spa)
3279 spa_altroot(spa, altroot, buflen);
3280 else
3281 altroot[0] = '\0';
3282 spa = NULL;
3283 mutex_exit(&spa_namespace_lock);
3284 } else {
3285 spa_altroot(spa, altroot, buflen);
3286 }
3287 }
3288
3289 if (spa != NULL) {
3290 spa_config_exit(spa, SCL_CONFIG, FTAG);
3291 spa_close(spa, FTAG);
3292 }
3293
3294 return (error);
3295 }
3296
3297 /*
3298 * Validate that the auxiliary device array is well formed. We must have an
3299 * array of nvlists, each which describes a valid leaf vdev. If this is an
3300 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3301 * specified, as long as they are well-formed.
3302 */
3303 static int
spa_validate_aux_devs(spa_t * spa,nvlist_t * nvroot,uint64_t crtxg,int mode,spa_aux_vdev_t * sav,const char * config,uint64_t version,vdev_labeltype_t label)3304 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3305 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3306 vdev_labeltype_t label)
3307 {
3308 nvlist_t **dev;
3309 uint_t i, ndev;
3310 vdev_t *vd;
3311 int error;
3312
3313 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3314
3315 /*
3316 * It's acceptable to have no devs specified.
3317 */
3318 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3319 return (0);
3320
3321 if (ndev == 0)
3322 return (SET_ERROR(EINVAL));
3323
3324 /*
3325 * Make sure the pool is formatted with a version that supports this
3326 * device type.
3327 */
3328 if (spa_version(spa) < version)
3329 return (SET_ERROR(ENOTSUP));
3330
3331 /*
3332 * Set the pending device list so we correctly handle device in-use
3333 * checking.
3334 */
3335 sav->sav_pending = dev;
3336 sav->sav_npending = ndev;
3337
3338 for (i = 0; i < ndev; i++) {
3339 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3340 mode)) != 0)
3341 goto out;
3342
3343 if (!vd->vdev_ops->vdev_op_leaf) {
3344 vdev_free(vd);
3345 error = SET_ERROR(EINVAL);
3346 goto out;
3347 }
3348
3349 /*
3350 * The L2ARC currently only supports disk devices in
3351 * kernel context. For user-level testing, we allow it.
3352 */
3353 #ifdef _KERNEL
3354 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3355 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3356 error = SET_ERROR(ENOTBLK);
3357 vdev_free(vd);
3358 goto out;
3359 }
3360 #endif
3361 vd->vdev_top = vd;
3362
3363 if ((error = vdev_open(vd)) == 0 &&
3364 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3365 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3366 vd->vdev_guid) == 0);
3367 }
3368
3369 vdev_free(vd);
3370
3371 if (error &&
3372 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3373 goto out;
3374 else
3375 error = 0;
3376 }
3377
3378 out:
3379 sav->sav_pending = NULL;
3380 sav->sav_npending = 0;
3381 return (error);
3382 }
3383
3384 static int
spa_validate_aux(spa_t * spa,nvlist_t * nvroot,uint64_t crtxg,int mode)3385 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3386 {
3387 int error;
3388
3389 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3390
3391 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3392 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3393 VDEV_LABEL_SPARE)) != 0) {
3394 return (error);
3395 }
3396
3397 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3398 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3399 VDEV_LABEL_L2CACHE));
3400 }
3401
3402 static void
spa_set_aux_vdevs(spa_aux_vdev_t * sav,nvlist_t ** devs,int ndevs,const char * config)3403 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3404 const char *config)
3405 {
3406 int i;
3407
3408 if (sav->sav_config != NULL) {
3409 nvlist_t **olddevs;
3410 uint_t oldndevs;
3411 nvlist_t **newdevs;
3412
3413 /*
3414 * Generate new dev list by concatentating with the
3415 * current dev list.
3416 */
3417 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3418 &olddevs, &oldndevs) == 0);
3419
3420 newdevs = kmem_alloc(sizeof (void *) *
3421 (ndevs + oldndevs), KM_SLEEP);
3422 for (i = 0; i < oldndevs; i++)
3423 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3424 KM_SLEEP) == 0);
3425 for (i = 0; i < ndevs; i++)
3426 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3427 KM_SLEEP) == 0);
3428
3429 VERIFY(nvlist_remove(sav->sav_config, config,
3430 DATA_TYPE_NVLIST_ARRAY) == 0);
3431
3432 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3433 config, newdevs, ndevs + oldndevs) == 0);
3434 for (i = 0; i < oldndevs + ndevs; i++)
3435 nvlist_free(newdevs[i]);
3436 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3437 } else {
3438 /*
3439 * Generate a new dev list.
3440 */
3441 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3442 KM_SLEEP) == 0);
3443 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3444 devs, ndevs) == 0);
3445 }
3446 }
3447
3448 /*
3449 * Stop and drop level 2 ARC devices
3450 */
3451 void
spa_l2cache_drop(spa_t * spa)3452 spa_l2cache_drop(spa_t *spa)
3453 {
3454 vdev_t *vd;
3455 int i;
3456 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3457
3458 for (i = 0; i < sav->sav_count; i++) {
3459 uint64_t pool;
3460
3461 vd = sav->sav_vdevs[i];
3462 ASSERT(vd != NULL);
3463
3464 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3465 pool != 0ULL && l2arc_vdev_present(vd))
3466 l2arc_remove_vdev(vd);
3467 }
3468 }
3469
3470 /*
3471 * Pool Creation
3472 */
3473 int
spa_create(const char * pool,nvlist_t * nvroot,nvlist_t * props,nvlist_t * zplprops)3474 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3475 nvlist_t *zplprops)
3476 {
3477 spa_t *spa;
3478 char *altroot = NULL;
3479 vdev_t *rvd;
3480 dsl_pool_t *dp;
3481 dmu_tx_t *tx;
3482 int error = 0;
3483 uint64_t txg = TXG_INITIAL;
3484 nvlist_t **spares, **l2cache;
3485 uint_t nspares, nl2cache;
3486 uint64_t version, obj;
3487 boolean_t has_features;
3488
3489 /*
3490 * If this pool already exists, return failure.
3491 */
3492 mutex_enter(&spa_namespace_lock);
3493 if (spa_lookup(pool) != NULL) {
3494 mutex_exit(&spa_namespace_lock);
3495 return (SET_ERROR(EEXIST));
3496 }
3497
3498 /*
3499 * Allocate a new spa_t structure.
3500 */
3501 (void) nvlist_lookup_string(props,
3502 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3503 spa = spa_add(pool, NULL, altroot);
3504 spa_activate(spa, spa_mode_global);
3505
3506 if (props && (error = spa_prop_validate(spa, props))) {
3507 spa_deactivate(spa);
3508 spa_remove(spa);
3509 mutex_exit(&spa_namespace_lock);
3510 return (error);
3511 }
3512
3513 has_features = B_FALSE;
3514 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3515 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3516 if (zpool_prop_feature(nvpair_name(elem)))
3517 has_features = B_TRUE;
3518 }
3519
3520 if (has_features || nvlist_lookup_uint64(props,
3521 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3522 version = SPA_VERSION;
3523 }
3524 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3525
3526 spa->spa_first_txg = txg;
3527 spa->spa_uberblock.ub_txg = txg - 1;
3528 spa->spa_uberblock.ub_version = version;
3529 spa->spa_ubsync = spa->spa_uberblock;
3530
3531 /*
3532 * Create "The Godfather" zio to hold all async IOs
3533 */
3534 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3535 KM_SLEEP);
3536 for (int i = 0; i < max_ncpus; i++) {
3537 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3538 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3539 ZIO_FLAG_GODFATHER);
3540 }
3541
3542 /*
3543 * Create the root vdev.
3544 */
3545 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3546
3547 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3548
3549 ASSERT(error != 0 || rvd != NULL);
3550 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3551
3552 if (error == 0 && !zfs_allocatable_devs(nvroot))
3553 error = SET_ERROR(EINVAL);
3554
3555 if (error == 0 &&
3556 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3557 (error = spa_validate_aux(spa, nvroot, txg,
3558 VDEV_ALLOC_ADD)) == 0) {
3559 for (int c = 0; c < rvd->vdev_children; c++) {
3560 vdev_metaslab_set_size(rvd->vdev_child[c]);
3561 vdev_expand(rvd->vdev_child[c], txg);
3562 }
3563 }
3564
3565 spa_config_exit(spa, SCL_ALL, FTAG);
3566
3567 if (error != 0) {
3568 spa_unload(spa);
3569 spa_deactivate(spa);
3570 spa_remove(spa);
3571 mutex_exit(&spa_namespace_lock);
3572 return (error);
3573 }
3574
3575 /*
3576 * Get the list of spares, if specified.
3577 */
3578 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3579 &spares, &nspares) == 0) {
3580 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3581 KM_SLEEP) == 0);
3582 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3583 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3584 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3585 spa_load_spares(spa);
3586 spa_config_exit(spa, SCL_ALL, FTAG);
3587 spa->spa_spares.sav_sync = B_TRUE;
3588 }
3589
3590 /*
3591 * Get the list of level 2 cache devices, if specified.
3592 */
3593 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3594 &l2cache, &nl2cache) == 0) {
3595 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3596 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3597 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3598 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3599 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3600 spa_load_l2cache(spa);
3601 spa_config_exit(spa, SCL_ALL, FTAG);
3602 spa->spa_l2cache.sav_sync = B_TRUE;
3603 }
3604
3605 spa->spa_is_initializing = B_TRUE;
3606 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3607 spa->spa_meta_objset = dp->dp_meta_objset;
3608 spa->spa_is_initializing = B_FALSE;
3609
3610 /*
3611 * Create DDTs (dedup tables).
3612 */
3613 ddt_create(spa);
3614
3615 spa_update_dspace(spa);
3616
3617 tx = dmu_tx_create_assigned(dp, txg);
3618
3619 /*
3620 * Create the pool config object.
3621 */
3622 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3623 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3624 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3625
3626 if (zap_add(spa->spa_meta_objset,
3627 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3628 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3629 cmn_err(CE_PANIC, "failed to add pool config");
3630 }
3631
3632 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3633 spa_feature_create_zap_objects(spa, tx);
3634
3635 if (zap_add(spa->spa_meta_objset,
3636 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3637 sizeof (uint64_t), 1, &version, tx) != 0) {
3638 cmn_err(CE_PANIC, "failed to add pool version");
3639 }
3640
3641 /* Newly created pools with the right version are always deflated. */
3642 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3643 spa->spa_deflate = TRUE;
3644 if (zap_add(spa->spa_meta_objset,
3645 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3646 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3647 cmn_err(CE_PANIC, "failed to add deflate");
3648 }
3649 }
3650
3651 /*
3652 * Create the deferred-free bpobj. Turn off compression
3653 * because sync-to-convergence takes longer if the blocksize
3654 * keeps changing.
3655 */
3656 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3657 dmu_object_set_compress(spa->spa_meta_objset, obj,
3658 ZIO_COMPRESS_OFF, tx);
3659 if (zap_add(spa->spa_meta_objset,
3660 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3661 sizeof (uint64_t), 1, &obj, tx) != 0) {
3662 cmn_err(CE_PANIC, "failed to add bpobj");
3663 }
3664 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3665 spa->spa_meta_objset, obj));
3666
3667 /*
3668 * Create the pool's history object.
3669 */
3670 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3671 spa_history_create_obj(spa, tx);
3672
3673 /*
3674 * Set pool properties.
3675 */
3676 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3677 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3678 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3679 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3680
3681 if (props != NULL) {
3682 spa_configfile_set(spa, props, B_FALSE);
3683 spa_sync_props(props, tx);
3684 }
3685
3686 dmu_tx_commit(tx);
3687
3688 spa->spa_sync_on = B_TRUE;
3689 txg_sync_start(spa->spa_dsl_pool);
3690
3691 /*
3692 * We explicitly wait for the first transaction to complete so that our
3693 * bean counters are appropriately updated.
3694 */
3695 txg_wait_synced(spa->spa_dsl_pool, txg);
3696
3697 spa_config_sync(spa, B_FALSE, B_TRUE);
3698
3699 spa_history_log_version(spa, "create");
3700
3701 /*
3702 * Don't count references from objsets that are already closed
3703 * and are making their way through the eviction process.
3704 */
3705 spa_evicting_os_wait(spa);
3706 spa->spa_minref = refcount_count(&spa->spa_refcount);
3707
3708 mutex_exit(&spa_namespace_lock);
3709
3710 return (0);
3711 }
3712
3713 #ifdef _KERNEL
3714 /*
3715 * Get the root pool information from the root disk, then import the root pool
3716 * during the system boot up time.
3717 */
3718 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3719
3720 static nvlist_t *
spa_generate_rootconf(char * devpath,char * devid,uint64_t * guid)3721 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3722 {
3723 nvlist_t *config;
3724 nvlist_t *nvtop, *nvroot;
3725 uint64_t pgid;
3726
3727 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3728 return (NULL);
3729
3730 /*
3731 * Add this top-level vdev to the child array.
3732 */
3733 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3734 &nvtop) == 0);
3735 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3736 &pgid) == 0);
3737 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3738
3739 /*
3740 * Put this pool's top-level vdevs into a root vdev.
3741 */
3742 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3743 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3744 VDEV_TYPE_ROOT) == 0);
3745 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3746 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3747 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3748 &nvtop, 1) == 0);
3749
3750 /*
3751 * Replace the existing vdev_tree with the new root vdev in
3752 * this pool's configuration (remove the old, add the new).
3753 */
3754 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3755 nvlist_free(nvroot);
3756 return (config);
3757 }
3758
3759 /*
3760 * Walk the vdev tree and see if we can find a device with "better"
3761 * configuration. A configuration is "better" if the label on that
3762 * device has a more recent txg.
3763 */
3764 static void
spa_alt_rootvdev(vdev_t * vd,vdev_t ** avd,uint64_t * txg)3765 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3766 {
3767 for (int c = 0; c < vd->vdev_children; c++)
3768 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3769
3770 if (vd->vdev_ops->vdev_op_leaf) {
3771 nvlist_t *label;
3772 uint64_t label_txg;
3773
3774 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3775 &label) != 0)
3776 return;
3777
3778 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3779 &label_txg) == 0);
3780
3781 /*
3782 * Do we have a better boot device?
3783 */
3784 if (label_txg > *txg) {
3785 *txg = label_txg;
3786 *avd = vd;
3787 }
3788 nvlist_free(label);
3789 }
3790 }
3791
3792 /*
3793 * Import a root pool.
3794 *
3795 * For x86. devpath_list will consist of devid and/or physpath name of
3796 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3797 * The GRUB "findroot" command will return the vdev we should boot.
3798 *
3799 * For Sparc, devpath_list consists the physpath name of the booting device
3800 * no matter the rootpool is a single device pool or a mirrored pool.
3801 * e.g.
3802 * "/pci@1f,0/ide@d/disk@0,0:a"
3803 */
3804 int
spa_import_rootpool(char * devpath,char * devid)3805 spa_import_rootpool(char *devpath, char *devid)
3806 {
3807 spa_t *spa;
3808 vdev_t *rvd, *bvd, *avd = NULL;
3809 nvlist_t *config, *nvtop;
3810 uint64_t guid, txg;
3811 char *pname;
3812 int error;
3813
3814 /*
3815 * Read the label from the boot device and generate a configuration.
3816 */
3817 config = spa_generate_rootconf(devpath, devid, &guid);
3818 #if defined(_OBP) && defined(_KERNEL)
3819 if (config == NULL) {
3820 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3821 /* iscsi boot */
3822 get_iscsi_bootpath_phy(devpath);
3823 config = spa_generate_rootconf(devpath, devid, &guid);
3824 }
3825 }
3826 #endif
3827 if (config == NULL) {
3828 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3829 devpath);
3830 return (SET_ERROR(EIO));
3831 }
3832
3833 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3834 &pname) == 0);
3835 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3836
3837 mutex_enter(&spa_namespace_lock);
3838 if ((spa = spa_lookup(pname)) != NULL) {
3839 /*
3840 * Remove the existing root pool from the namespace so that we
3841 * can replace it with the correct config we just read in.
3842 */
3843 spa_remove(spa);
3844 }
3845
3846 spa = spa_add(pname, config, NULL);
3847 spa->spa_is_root = B_TRUE;
3848 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3849
3850 /*
3851 * Build up a vdev tree based on the boot device's label config.
3852 */
3853 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3854 &nvtop) == 0);
3855 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3856 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3857 VDEV_ALLOC_ROOTPOOL);
3858 spa_config_exit(spa, SCL_ALL, FTAG);
3859 if (error) {
3860 mutex_exit(&spa_namespace_lock);
3861 nvlist_free(config);
3862 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3863 pname);
3864 return (error);
3865 }
3866
3867 /*
3868 * Get the boot vdev.
3869 */
3870 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3871 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3872 (u_longlong_t)guid);
3873 error = SET_ERROR(ENOENT);
3874 goto out;
3875 }
3876
3877 /*
3878 * Determine if there is a better boot device.
3879 */
3880 avd = bvd;
3881 spa_alt_rootvdev(rvd, &avd, &txg);
3882 if (avd != bvd) {
3883 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3884 "try booting from '%s'", avd->vdev_path);
3885 error = SET_ERROR(EINVAL);
3886 goto out;
3887 }
3888
3889 /*
3890 * If the boot device is part of a spare vdev then ensure that
3891 * we're booting off the active spare.
3892 */
3893 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3894 !bvd->vdev_isspare) {
3895 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3896 "try booting from '%s'",
3897 bvd->vdev_parent->
3898 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3899 error = SET_ERROR(EINVAL);
3900 goto out;
3901 }
3902
3903 error = 0;
3904 out:
3905 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3906 vdev_free(rvd);
3907 spa_config_exit(spa, SCL_ALL, FTAG);
3908 mutex_exit(&spa_namespace_lock);
3909
3910 nvlist_free(config);
3911 return (error);
3912 }
3913
3914 #endif
3915
3916 /*
3917 * Import a non-root pool into the system.
3918 */
3919 int
spa_import(const char * pool,nvlist_t * config,nvlist_t * props,uint64_t flags)3920 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3921 {
3922 spa_t *spa;
3923 char *altroot = NULL;
3924 spa_load_state_t state = SPA_LOAD_IMPORT;
3925 zpool_rewind_policy_t policy;
3926 uint64_t mode = spa_mode_global;
3927 uint64_t readonly = B_FALSE;
3928 int error;
3929 nvlist_t *nvroot;
3930 nvlist_t **spares, **l2cache;
3931 uint_t nspares, nl2cache;
3932
3933 /*
3934 * If a pool with this name exists, return failure.
3935 */
3936 mutex_enter(&spa_namespace_lock);
3937 if (spa_lookup(pool) != NULL) {
3938 mutex_exit(&spa_namespace_lock);
3939 return (SET_ERROR(EEXIST));
3940 }
3941
3942 /*
3943 * Create and initialize the spa structure.
3944 */
3945 (void) nvlist_lookup_string(props,
3946 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3947 (void) nvlist_lookup_uint64(props,
3948 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3949 if (readonly)
3950 mode = FREAD;
3951 spa = spa_add(pool, config, altroot);
3952 spa->spa_import_flags = flags;
3953
3954 /*
3955 * Verbatim import - Take a pool and insert it into the namespace
3956 * as if it had been loaded at boot.
3957 */
3958 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3959 if (props != NULL)
3960 spa_configfile_set(spa, props, B_FALSE);
3961
3962 spa_config_sync(spa, B_FALSE, B_TRUE);
3963
3964 mutex_exit(&spa_namespace_lock);
3965 return (0);
3966 }
3967
3968 spa_activate(spa, mode);
3969
3970 /*
3971 * Don't start async tasks until we know everything is healthy.
3972 */
3973 spa_async_suspend(spa);
3974
3975 zpool_get_rewind_policy(config, &policy);
3976 if (policy.zrp_request & ZPOOL_DO_REWIND)
3977 state = SPA_LOAD_RECOVER;
3978
3979 /*
3980 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3981 * because the user-supplied config is actually the one to trust when
3982 * doing an import.
3983 */
3984 if (state != SPA_LOAD_RECOVER)
3985 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3986
3987 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3988 policy.zrp_request);
3989
3990 /*
3991 * Propagate anything learned while loading the pool and pass it
3992 * back to caller (i.e. rewind info, missing devices, etc).
3993 */
3994 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3995 spa->spa_load_info) == 0);
3996
3997 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3998 /*
3999 * Toss any existing sparelist, as it doesn't have any validity
4000 * anymore, and conflicts with spa_has_spare().
4001 */
4002 if (spa->spa_spares.sav_config) {
4003 nvlist_free(spa->spa_spares.sav_config);
4004 spa->spa_spares.sav_config = NULL;
4005 spa_load_spares(spa);
4006 }
4007 if (spa->spa_l2cache.sav_config) {
4008 nvlist_free(spa->spa_l2cache.sav_config);
4009 spa->spa_l2cache.sav_config = NULL;
4010 spa_load_l2cache(spa);
4011 }
4012
4013 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4014 &nvroot) == 0);
4015 if (error == 0)
4016 error = spa_validate_aux(spa, nvroot, -1ULL,
4017 VDEV_ALLOC_SPARE);
4018 if (error == 0)
4019 error = spa_validate_aux(spa, nvroot, -1ULL,
4020 VDEV_ALLOC_L2CACHE);
4021 spa_config_exit(spa, SCL_ALL, FTAG);
4022
4023 if (props != NULL)
4024 spa_configfile_set(spa, props, B_FALSE);
4025
4026 if (error != 0 || (props && spa_writeable(spa) &&
4027 (error = spa_prop_set(spa, props)))) {
4028 spa_unload(spa);
4029 spa_deactivate(spa);
4030 spa_remove(spa);
4031 mutex_exit(&spa_namespace_lock);
4032 return (error);
4033 }
4034
4035 spa_async_resume(spa);
4036
4037 /*
4038 * Override any spares and level 2 cache devices as specified by
4039 * the user, as these may have correct device names/devids, etc.
4040 */
4041 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4042 &spares, &nspares) == 0) {
4043 if (spa->spa_spares.sav_config)
4044 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4045 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4046 else
4047 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4048 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4049 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4050 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4051 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4052 spa_load_spares(spa);
4053 spa_config_exit(spa, SCL_ALL, FTAG);
4054 spa->spa_spares.sav_sync = B_TRUE;
4055 }
4056 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4057 &l2cache, &nl2cache) == 0) {
4058 if (spa->spa_l2cache.sav_config)
4059 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4060 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4061 else
4062 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4063 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4064 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4065 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4066 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4067 spa_load_l2cache(spa);
4068 spa_config_exit(spa, SCL_ALL, FTAG);
4069 spa->spa_l2cache.sav_sync = B_TRUE;
4070 }
4071
4072 /*
4073 * Check for any removed devices.
4074 */
4075 if (spa->spa_autoreplace) {
4076 spa_aux_check_removed(&spa->spa_spares);
4077 spa_aux_check_removed(&spa->spa_l2cache);
4078 }
4079
4080 if (spa_writeable(spa)) {
4081 /*
4082 * Update the config cache to include the newly-imported pool.
4083 */
4084 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4085 }
4086
4087 /*
4088 * It's possible that the pool was expanded while it was exported.
4089 * We kick off an async task to handle this for us.
4090 */
4091 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4092
4093 mutex_exit(&spa_namespace_lock);
4094 spa_history_log_version(spa, "import");
4095
4096 return (0);
4097 }
4098
4099 nvlist_t *
spa_tryimport(nvlist_t * tryconfig)4100 spa_tryimport(nvlist_t *tryconfig)
4101 {
4102 nvlist_t *config = NULL;
4103 char *poolname;
4104 spa_t *spa;
4105 uint64_t state;
4106 int error;
4107
4108 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4109 return (NULL);
4110
4111 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4112 return (NULL);
4113
4114 /*
4115 * Create and initialize the spa structure.
4116 */
4117 mutex_enter(&spa_namespace_lock);
4118 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4119 spa_activate(spa, FREAD);
4120
4121 /*
4122 * Pass off the heavy lifting to spa_load().
4123 * Pass TRUE for mosconfig because the user-supplied config
4124 * is actually the one to trust when doing an import.
4125 */
4126 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4127
4128 /*
4129 * If 'tryconfig' was at least parsable, return the current config.
4130 */
4131 if (spa->spa_root_vdev != NULL) {
4132 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4133 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4134 poolname) == 0);
4135 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4136 state) == 0);
4137 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4138 spa->spa_uberblock.ub_timestamp) == 0);
4139 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4140 spa->spa_load_info) == 0);
4141
4142 /*
4143 * If the bootfs property exists on this pool then we
4144 * copy it out so that external consumers can tell which
4145 * pools are bootable.
4146 */
4147 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4148 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4149
4150 /*
4151 * We have to play games with the name since the
4152 * pool was opened as TRYIMPORT_NAME.
4153 */
4154 if (dsl_dsobj_to_dsname(spa_name(spa),
4155 spa->spa_bootfs, tmpname) == 0) {
4156 char *cp;
4157 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4158
4159 cp = strchr(tmpname, '/');
4160 if (cp == NULL) {
4161 (void) strlcpy(dsname, tmpname,
4162 MAXPATHLEN);
4163 } else {
4164 (void) snprintf(dsname, MAXPATHLEN,
4165 "%s/%s", poolname, ++cp);
4166 }
4167 VERIFY(nvlist_add_string(config,
4168 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4169 kmem_free(dsname, MAXPATHLEN);
4170 }
4171 kmem_free(tmpname, MAXPATHLEN);
4172 }
4173
4174 /*
4175 * Add the list of hot spares and level 2 cache devices.
4176 */
4177 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4178 spa_add_spares(spa, config);
4179 spa_add_l2cache(spa, config);
4180 spa_config_exit(spa, SCL_CONFIG, FTAG);
4181 }
4182
4183 spa_unload(spa);
4184 spa_deactivate(spa);
4185 spa_remove(spa);
4186 mutex_exit(&spa_namespace_lock);
4187
4188 return (config);
4189 }
4190
4191 /*
4192 * Pool export/destroy
4193 *
4194 * The act of destroying or exporting a pool is very simple. We make sure there
4195 * is no more pending I/O and any references to the pool are gone. Then, we
4196 * update the pool state and sync all the labels to disk, removing the
4197 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4198 * we don't sync the labels or remove the configuration cache.
4199 */
4200 static int
spa_export_common(char * pool,int new_state,nvlist_t ** oldconfig,boolean_t force,boolean_t hardforce)4201 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4202 boolean_t force, boolean_t hardforce)
4203 {
4204 spa_t *spa;
4205
4206 if (oldconfig)
4207 *oldconfig = NULL;
4208
4209 if (!(spa_mode_global & FWRITE))
4210 return (SET_ERROR(EROFS));
4211
4212 mutex_enter(&spa_namespace_lock);
4213 if ((spa = spa_lookup(pool)) == NULL) {
4214 mutex_exit(&spa_namespace_lock);
4215 return (SET_ERROR(ENOENT));
4216 }
4217
4218 /*
4219 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4220 * reacquire the namespace lock, and see if we can export.
4221 */
4222 spa_open_ref(spa, FTAG);
4223 mutex_exit(&spa_namespace_lock);
4224 spa_async_suspend(spa);
4225 mutex_enter(&spa_namespace_lock);
4226 spa_close(spa, FTAG);
4227
4228 /*
4229 * The pool will be in core if it's openable,
4230 * in which case we can modify its state.
4231 */
4232 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4233 /*
4234 * Objsets may be open only because they're dirty, so we
4235 * have to force it to sync before checking spa_refcnt.
4236 */
4237 txg_wait_synced(spa->spa_dsl_pool, 0);
4238 spa_evicting_os_wait(spa);
4239
4240 /*
4241 * A pool cannot be exported or destroyed if there are active
4242 * references. If we are resetting a pool, allow references by
4243 * fault injection handlers.
4244 */
4245 if (!spa_refcount_zero(spa) ||
4246 (spa->spa_inject_ref != 0 &&
4247 new_state != POOL_STATE_UNINITIALIZED)) {
4248 spa_async_resume(spa);
4249 mutex_exit(&spa_namespace_lock);
4250 return (SET_ERROR(EBUSY));
4251 }
4252
4253 /*
4254 * A pool cannot be exported if it has an active shared spare.
4255 * This is to prevent other pools stealing the active spare
4256 * from an exported pool. At user's own will, such pool can
4257 * be forcedly exported.
4258 */
4259 if (!force && new_state == POOL_STATE_EXPORTED &&
4260 spa_has_active_shared_spare(spa)) {
4261 spa_async_resume(spa);
4262 mutex_exit(&spa_namespace_lock);
4263 return (SET_ERROR(EXDEV));
4264 }
4265
4266 /*
4267 * We want this to be reflected on every label,
4268 * so mark them all dirty. spa_unload() will do the
4269 * final sync that pushes these changes out.
4270 */
4271 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4272 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4273 spa->spa_state = new_state;
4274 spa->spa_final_txg = spa_last_synced_txg(spa) +
4275 TXG_DEFER_SIZE + 1;
4276 vdev_config_dirty(spa->spa_root_vdev);
4277 spa_config_exit(spa, SCL_ALL, FTAG);
4278 }
4279 }
4280
4281 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4282
4283 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4284 spa_unload(spa);
4285 spa_deactivate(spa);
4286 }
4287
4288 if (oldconfig && spa->spa_config)
4289 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4290
4291 if (new_state != POOL_STATE_UNINITIALIZED) {
4292 if (!hardforce)
4293 spa_config_sync(spa, B_TRUE, B_TRUE);
4294 spa_remove(spa);
4295 }
4296 mutex_exit(&spa_namespace_lock);
4297
4298 return (0);
4299 }
4300
4301 /*
4302 * Destroy a storage pool.
4303 */
4304 int
spa_destroy(char * pool)4305 spa_destroy(char *pool)
4306 {
4307 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4308 B_FALSE, B_FALSE));
4309 }
4310
4311 /*
4312 * Export a storage pool.
4313 */
4314 int
spa_export(char * pool,nvlist_t ** oldconfig,boolean_t force,boolean_t hardforce)4315 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4316 boolean_t hardforce)
4317 {
4318 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4319 force, hardforce));
4320 }
4321
4322 /*
4323 * Similar to spa_export(), this unloads the spa_t without actually removing it
4324 * from the namespace in any way.
4325 */
4326 int
spa_reset(char * pool)4327 spa_reset(char *pool)
4328 {
4329 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4330 B_FALSE, B_FALSE));
4331 }
4332
4333 /*
4334 * ==========================================================================
4335 * Device manipulation
4336 * ==========================================================================
4337 */
4338
4339 /*
4340 * Add a device to a storage pool.
4341 */
4342 int
spa_vdev_add(spa_t * spa,nvlist_t * nvroot)4343 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4344 {
4345 uint64_t txg, id;
4346 int error;
4347 vdev_t *rvd = spa->spa_root_vdev;
4348 vdev_t *vd, *tvd;
4349 nvlist_t **spares, **l2cache;
4350 uint_t nspares, nl2cache;
4351
4352 ASSERT(spa_writeable(spa));
4353
4354 txg = spa_vdev_enter(spa);
4355
4356 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4357 VDEV_ALLOC_ADD)) != 0)
4358 return (spa_vdev_exit(spa, NULL, txg, error));
4359
4360 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4361
4362 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4363 &nspares) != 0)
4364 nspares = 0;
4365
4366 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4367 &nl2cache) != 0)
4368 nl2cache = 0;
4369
4370 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4371 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4372
4373 if (vd->vdev_children != 0 &&
4374 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4375 return (spa_vdev_exit(spa, vd, txg, error));
4376
4377 /*
4378 * We must validate the spares and l2cache devices after checking the
4379 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4380 */
4381 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4382 return (spa_vdev_exit(spa, vd, txg, error));
4383
4384 /*
4385 * Transfer each new top-level vdev from vd to rvd.
4386 */
4387 for (int c = 0; c < vd->vdev_children; c++) {
4388
4389 /*
4390 * Set the vdev id to the first hole, if one exists.
4391 */
4392 for (id = 0; id < rvd->vdev_children; id++) {
4393 if (rvd->vdev_child[id]->vdev_ishole) {
4394 vdev_free(rvd->vdev_child[id]);
4395 break;
4396 }
4397 }
4398 tvd = vd->vdev_child[c];
4399 vdev_remove_child(vd, tvd);
4400 tvd->vdev_id = id;
4401 vdev_add_child(rvd, tvd);
4402 vdev_config_dirty(tvd);
4403 }
4404
4405 if (nspares != 0) {
4406 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4407 ZPOOL_CONFIG_SPARES);
4408 spa_load_spares(spa);
4409 spa->spa_spares.sav_sync = B_TRUE;
4410 }
4411
4412 if (nl2cache != 0) {
4413 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4414 ZPOOL_CONFIG_L2CACHE);
4415 spa_load_l2cache(spa);
4416 spa->spa_l2cache.sav_sync = B_TRUE;
4417 }
4418
4419 /*
4420 * We have to be careful when adding new vdevs to an existing pool.
4421 * If other threads start allocating from these vdevs before we
4422 * sync the config cache, and we lose power, then upon reboot we may
4423 * fail to open the pool because there are DVAs that the config cache
4424 * can't translate. Therefore, we first add the vdevs without
4425 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4426 * and then let spa_config_update() initialize the new metaslabs.
4427 *
4428 * spa_load() checks for added-but-not-initialized vdevs, so that
4429 * if we lose power at any point in this sequence, the remaining
4430 * steps will be completed the next time we load the pool.
4431 */
4432 (void) spa_vdev_exit(spa, vd, txg, 0);
4433
4434 mutex_enter(&spa_namespace_lock);
4435 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4436 mutex_exit(&spa_namespace_lock);
4437
4438 return (0);
4439 }
4440
4441 /*
4442 * Attach a device to a mirror. The arguments are the path to any device
4443 * in the mirror, and the nvroot for the new device. If the path specifies
4444 * a device that is not mirrored, we automatically insert the mirror vdev.
4445 *
4446 * If 'replacing' is specified, the new device is intended to replace the
4447 * existing device; in this case the two devices are made into their own
4448 * mirror using the 'replacing' vdev, which is functionally identical to
4449 * the mirror vdev (it actually reuses all the same ops) but has a few
4450 * extra rules: you can't attach to it after it's been created, and upon
4451 * completion of resilvering, the first disk (the one being replaced)
4452 * is automatically detached.
4453 */
4454 int
spa_vdev_attach(spa_t * spa,uint64_t guid,nvlist_t * nvroot,int replacing)4455 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4456 {
4457 uint64_t txg, dtl_max_txg;
4458 vdev_t *rvd = spa->spa_root_vdev;
4459 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4460 vdev_ops_t *pvops;
4461 char *oldvdpath, *newvdpath;
4462 int newvd_isspare;
4463 int error;
4464
4465 ASSERT(spa_writeable(spa));
4466
4467 txg = spa_vdev_enter(spa);
4468
4469 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4470
4471 if (oldvd == NULL)
4472 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4473
4474 if (!oldvd->vdev_ops->vdev_op_leaf)
4475 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4476
4477 pvd = oldvd->vdev_parent;
4478
4479 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4480 VDEV_ALLOC_ATTACH)) != 0)
4481 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4482
4483 if (newrootvd->vdev_children != 1)
4484 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4485
4486 newvd = newrootvd->vdev_child[0];
4487
4488 if (!newvd->vdev_ops->vdev_op_leaf)
4489 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4490
4491 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4492 return (spa_vdev_exit(spa, newrootvd, txg, error));
4493
4494 /*
4495 * Spares can't replace logs
4496 */
4497 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4498 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4499
4500 if (!replacing) {
4501 /*
4502 * For attach, the only allowable parent is a mirror or the root
4503 * vdev.
4504 */
4505 if (pvd->vdev_ops != &vdev_mirror_ops &&
4506 pvd->vdev_ops != &vdev_root_ops)
4507 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4508
4509 pvops = &vdev_mirror_ops;
4510 } else {
4511 /*
4512 * Active hot spares can only be replaced by inactive hot
4513 * spares.
4514 */
4515 if (pvd->vdev_ops == &vdev_spare_ops &&
4516 oldvd->vdev_isspare &&
4517 !spa_has_spare(spa, newvd->vdev_guid))
4518 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4519
4520 /*
4521 * If the source is a hot spare, and the parent isn't already a
4522 * spare, then we want to create a new hot spare. Otherwise, we
4523 * want to create a replacing vdev. The user is not allowed to
4524 * attach to a spared vdev child unless the 'isspare' state is
4525 * the same (spare replaces spare, non-spare replaces
4526 * non-spare).
4527 */
4528 if (pvd->vdev_ops == &vdev_replacing_ops &&
4529 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4530 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4531 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4532 newvd->vdev_isspare != oldvd->vdev_isspare) {
4533 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4534 }
4535
4536 if (newvd->vdev_isspare)
4537 pvops = &vdev_spare_ops;
4538 else
4539 pvops = &vdev_replacing_ops;
4540 }
4541
4542 /*
4543 * Make sure the new device is big enough.
4544 */
4545 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4546 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4547
4548 /*
4549 * The new device cannot have a higher alignment requirement
4550 * than the top-level vdev.
4551 */
4552 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4553 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4554
4555 /*
4556 * If this is an in-place replacement, update oldvd's path and devid
4557 * to make it distinguishable from newvd, and unopenable from now on.
4558 */
4559 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4560 spa_strfree(oldvd->vdev_path);
4561 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4562 KM_SLEEP);
4563 (void) sprintf(oldvd->vdev_path, "%s/%s",
4564 newvd->vdev_path, "old");
4565 if (oldvd->vdev_devid != NULL) {
4566 spa_strfree(oldvd->vdev_devid);
4567 oldvd->vdev_devid = NULL;
4568 }
4569 }
4570
4571 /* mark the device being resilvered */
4572 newvd->vdev_resilver_txg = txg;
4573
4574 /*
4575 * If the parent is not a mirror, or if we're replacing, insert the new
4576 * mirror/replacing/spare vdev above oldvd.
4577 */
4578 if (pvd->vdev_ops != pvops)
4579 pvd = vdev_add_parent(oldvd, pvops);
4580
4581 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4582 ASSERT(pvd->vdev_ops == pvops);
4583 ASSERT(oldvd->vdev_parent == pvd);
4584
4585 /*
4586 * Extract the new device from its root and add it to pvd.
4587 */
4588 vdev_remove_child(newrootvd, newvd);
4589 newvd->vdev_id = pvd->vdev_children;
4590 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4591 vdev_add_child(pvd, newvd);
4592
4593 tvd = newvd->vdev_top;
4594 ASSERT(pvd->vdev_top == tvd);
4595 ASSERT(tvd->vdev_parent == rvd);
4596
4597 vdev_config_dirty(tvd);
4598
4599 /*
4600 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4601 * for any dmu_sync-ed blocks. It will propagate upward when
4602 * spa_vdev_exit() calls vdev_dtl_reassess().
4603 */
4604 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4605
4606 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4607 dtl_max_txg - TXG_INITIAL);
4608
4609 if (newvd->vdev_isspare) {
4610 spa_spare_activate(newvd);
4611 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4612 }
4613
4614 oldvdpath = spa_strdup(oldvd->vdev_path);
4615 newvdpath = spa_strdup(newvd->vdev_path);
4616 newvd_isspare = newvd->vdev_isspare;
4617
4618 /*
4619 * Mark newvd's DTL dirty in this txg.
4620 */
4621 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4622
4623 /*
4624 * Schedule the resilver to restart in the future. We do this to
4625 * ensure that dmu_sync-ed blocks have been stitched into the
4626 * respective datasets.
4627 */
4628 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4629
4630 /*
4631 * Commit the config
4632 */
4633 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4634
4635 spa_history_log_internal(spa, "vdev attach", NULL,
4636 "%s vdev=%s %s vdev=%s",
4637 replacing && newvd_isspare ? "spare in" :
4638 replacing ? "replace" : "attach", newvdpath,
4639 replacing ? "for" : "to", oldvdpath);
4640
4641 spa_strfree(oldvdpath);
4642 spa_strfree(newvdpath);
4643
4644 if (spa->spa_bootfs)
4645 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4646
4647 return (0);
4648 }
4649
4650 /*
4651 * Detach a device from a mirror or replacing vdev.
4652 *
4653 * If 'replace_done' is specified, only detach if the parent
4654 * is a replacing vdev.
4655 */
4656 int
spa_vdev_detach(spa_t * spa,uint64_t guid,uint64_t pguid,int replace_done)4657 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4658 {
4659 uint64_t txg;
4660 int error;
4661 vdev_t *rvd = spa->spa_root_vdev;
4662 vdev_t *vd, *pvd, *cvd, *tvd;
4663 boolean_t unspare = B_FALSE;
4664 uint64_t unspare_guid = 0;
4665 char *vdpath;
4666
4667 ASSERT(spa_writeable(spa));
4668
4669 txg = spa_vdev_enter(spa);
4670
4671 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4672
4673 if (vd == NULL)
4674 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4675
4676 if (!vd->vdev_ops->vdev_op_leaf)
4677 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4678
4679 pvd = vd->vdev_parent;
4680
4681 /*
4682 * If the parent/child relationship is not as expected, don't do it.
4683 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4684 * vdev that's replacing B with C. The user's intent in replacing
4685 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4686 * the replace by detaching C, the expected behavior is to end up
4687 * M(A,B). But suppose that right after deciding to detach C,
4688 * the replacement of B completes. We would have M(A,C), and then
4689 * ask to detach C, which would leave us with just A -- not what
4690 * the user wanted. To prevent this, we make sure that the
4691 * parent/child relationship hasn't changed -- in this example,
4692 * that C's parent is still the replacing vdev R.
4693 */
4694 if (pvd->vdev_guid != pguid && pguid != 0)
4695 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4696
4697 /*
4698 * Only 'replacing' or 'spare' vdevs can be replaced.
4699 */
4700 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4701 pvd->vdev_ops != &vdev_spare_ops)
4702 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4703
4704 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4705 spa_version(spa) >= SPA_VERSION_SPARES);
4706
4707 /*
4708 * Only mirror, replacing, and spare vdevs support detach.
4709 */
4710 if (pvd->vdev_ops != &vdev_replacing_ops &&
4711 pvd->vdev_ops != &vdev_mirror_ops &&
4712 pvd->vdev_ops != &vdev_spare_ops)
4713 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4714
4715 /*
4716 * If this device has the only valid copy of some data,
4717 * we cannot safely detach it.
4718 */
4719 if (vdev_dtl_required(vd))
4720 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4721
4722 ASSERT(pvd->vdev_children >= 2);
4723
4724 /*
4725 * If we are detaching the second disk from a replacing vdev, then
4726 * check to see if we changed the original vdev's path to have "/old"
4727 * at the end in spa_vdev_attach(). If so, undo that change now.
4728 */
4729 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4730 vd->vdev_path != NULL) {
4731 size_t len = strlen(vd->vdev_path);
4732
4733 for (int c = 0; c < pvd->vdev_children; c++) {
4734 cvd = pvd->vdev_child[c];
4735
4736 if (cvd == vd || cvd->vdev_path == NULL)
4737 continue;
4738
4739 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4740 strcmp(cvd->vdev_path + len, "/old") == 0) {
4741 spa_strfree(cvd->vdev_path);
4742 cvd->vdev_path = spa_strdup(vd->vdev_path);
4743 break;
4744 }
4745 }
4746 }
4747
4748 /*
4749 * If we are detaching the original disk from a spare, then it implies
4750 * that the spare should become a real disk, and be removed from the
4751 * active spare list for the pool.
4752 */
4753 if (pvd->vdev_ops == &vdev_spare_ops &&
4754 vd->vdev_id == 0 &&
4755 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4756 unspare = B_TRUE;
4757
4758 /*
4759 * Erase the disk labels so the disk can be used for other things.
4760 * This must be done after all other error cases are handled,
4761 * but before we disembowel vd (so we can still do I/O to it).
4762 * But if we can't do it, don't treat the error as fatal --
4763 * it may be that the unwritability of the disk is the reason
4764 * it's being detached!
4765 */
4766 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4767
4768 /*
4769 * Remove vd from its parent and compact the parent's children.
4770 */
4771 vdev_remove_child(pvd, vd);
4772 vdev_compact_children(pvd);
4773
4774 /*
4775 * Remember one of the remaining children so we can get tvd below.
4776 */
4777 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4778
4779 /*
4780 * If we need to remove the remaining child from the list of hot spares,
4781 * do it now, marking the vdev as no longer a spare in the process.
4782 * We must do this before vdev_remove_parent(), because that can
4783 * change the GUID if it creates a new toplevel GUID. For a similar
4784 * reason, we must remove the spare now, in the same txg as the detach;
4785 * otherwise someone could attach a new sibling, change the GUID, and
4786 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4787 */
4788 if (unspare) {
4789 ASSERT(cvd->vdev_isspare);
4790 spa_spare_remove(cvd);
4791 unspare_guid = cvd->vdev_guid;
4792 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4793 cvd->vdev_unspare = B_TRUE;
4794 }
4795
4796 /*
4797 * If the parent mirror/replacing vdev only has one child,
4798 * the parent is no longer needed. Remove it from the tree.
4799 */
4800 if (pvd->vdev_children == 1) {
4801 if (pvd->vdev_ops == &vdev_spare_ops)
4802 cvd->vdev_unspare = B_FALSE;
4803 vdev_remove_parent(cvd);
4804 }
4805
4806
4807 /*
4808 * We don't set tvd until now because the parent we just removed
4809 * may have been the previous top-level vdev.
4810 */
4811 tvd = cvd->vdev_top;
4812 ASSERT(tvd->vdev_parent == rvd);
4813
4814 /*
4815 * Reevaluate the parent vdev state.
4816 */
4817 vdev_propagate_state(cvd);
4818
4819 /*
4820 * If the 'autoexpand' property is set on the pool then automatically
4821 * try to expand the size of the pool. For example if the device we
4822 * just detached was smaller than the others, it may be possible to
4823 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4824 * first so that we can obtain the updated sizes of the leaf vdevs.
4825 */
4826 if (spa->spa_autoexpand) {
4827 vdev_reopen(tvd);
4828 vdev_expand(tvd, txg);
4829 }
4830
4831 vdev_config_dirty(tvd);
4832
4833 /*
4834 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4835 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4836 * But first make sure we're not on any *other* txg's DTL list, to
4837 * prevent vd from being accessed after it's freed.
4838 */
4839 vdpath = spa_strdup(vd->vdev_path);
4840 for (int t = 0; t < TXG_SIZE; t++)
4841 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4842 vd->vdev_detached = B_TRUE;
4843 vdev_dirty(tvd, VDD_DTL, vd, txg);
4844
4845 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4846
4847 /* hang on to the spa before we release the lock */
4848 spa_open_ref(spa, FTAG);
4849
4850 error = spa_vdev_exit(spa, vd, txg, 0);
4851
4852 spa_history_log_internal(spa, "detach", NULL,
4853 "vdev=%s", vdpath);
4854 spa_strfree(vdpath);
4855
4856 /*
4857 * If this was the removal of the original device in a hot spare vdev,
4858 * then we want to go through and remove the device from the hot spare
4859 * list of every other pool.
4860 */
4861 if (unspare) {
4862 spa_t *altspa = NULL;
4863
4864 mutex_enter(&spa_namespace_lock);
4865 while ((altspa = spa_next(altspa)) != NULL) {
4866 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4867 altspa == spa)
4868 continue;
4869
4870 spa_open_ref(altspa, FTAG);
4871 mutex_exit(&spa_namespace_lock);
4872 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4873 mutex_enter(&spa_namespace_lock);
4874 spa_close(altspa, FTAG);
4875 }
4876 mutex_exit(&spa_namespace_lock);
4877
4878 /* search the rest of the vdevs for spares to remove */
4879 spa_vdev_resilver_done(spa);
4880 }
4881
4882 /* all done with the spa; OK to release */
4883 mutex_enter(&spa_namespace_lock);
4884 spa_close(spa, FTAG);
4885 mutex_exit(&spa_namespace_lock);
4886
4887 return (error);
4888 }
4889
4890 /*
4891 * Split a set of devices from their mirrors, and create a new pool from them.
4892 */
4893 int
spa_vdev_split_mirror(spa_t * spa,char * newname,nvlist_t * config,nvlist_t * props,boolean_t exp)4894 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4895 nvlist_t *props, boolean_t exp)
4896 {
4897 int error = 0;
4898 uint64_t txg, *glist;
4899 spa_t *newspa;
4900 uint_t c, children, lastlog;
4901 nvlist_t **child, *nvl, *tmp;
4902 dmu_tx_t *tx;
4903 char *altroot = NULL;
4904 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4905 boolean_t activate_slog;
4906
4907 ASSERT(spa_writeable(spa));
4908
4909 txg = spa_vdev_enter(spa);
4910
4911 /* clear the log and flush everything up to now */
4912 activate_slog = spa_passivate_log(spa);
4913 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4914 error = spa_offline_log(spa);
4915 txg = spa_vdev_config_enter(spa);
4916
4917 if (activate_slog)
4918 spa_activate_log(spa);
4919
4920 if (error != 0)
4921 return (spa_vdev_exit(spa, NULL, txg, error));
4922
4923 /* check new spa name before going any further */
4924 if (spa_lookup(newname) != NULL)
4925 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4926
4927 /*
4928 * scan through all the children to ensure they're all mirrors
4929 */
4930 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4931 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4932 &children) != 0)
4933 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4934
4935 /* first, check to ensure we've got the right child count */
4936 rvd = spa->spa_root_vdev;
4937 lastlog = 0;
4938 for (c = 0; c < rvd->vdev_children; c++) {
4939 vdev_t *vd = rvd->vdev_child[c];
4940
4941 /* don't count the holes & logs as children */
4942 if (vd->vdev_islog || vd->vdev_ishole) {
4943 if (lastlog == 0)
4944 lastlog = c;
4945 continue;
4946 }
4947
4948 lastlog = 0;
4949 }
4950 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4951 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4952
4953 /* next, ensure no spare or cache devices are part of the split */
4954 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4955 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4956 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4957
4958 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4959 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4960
4961 /* then, loop over each vdev and validate it */
4962 for (c = 0; c < children; c++) {
4963 uint64_t is_hole = 0;
4964
4965 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4966 &is_hole);
4967
4968 if (is_hole != 0) {
4969 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4970 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4971 continue;
4972 } else {
4973 error = SET_ERROR(EINVAL);
4974 break;
4975 }
4976 }
4977
4978 /* which disk is going to be split? */
4979 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4980 &glist[c]) != 0) {
4981 error = SET_ERROR(EINVAL);
4982 break;
4983 }
4984
4985 /* look it up in the spa */
4986 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4987 if (vml[c] == NULL) {
4988 error = SET_ERROR(ENODEV);
4989 break;
4990 }
4991
4992 /* make sure there's nothing stopping the split */
4993 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4994 vml[c]->vdev_islog ||
4995 vml[c]->vdev_ishole ||
4996 vml[c]->vdev_isspare ||
4997 vml[c]->vdev_isl2cache ||
4998 !vdev_writeable(vml[c]) ||
4999 vml[c]->vdev_children != 0 ||
5000 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5001 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5002 error = SET_ERROR(EINVAL);
5003 break;
5004 }
5005
5006 if (vdev_dtl_required(vml[c])) {
5007 error = SET_ERROR(EBUSY);
5008 break;
5009 }
5010
5011 /* we need certain info from the top level */
5012 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5013 vml[c]->vdev_top->vdev_ms_array) == 0);
5014 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5015 vml[c]->vdev_top->vdev_ms_shift) == 0);
5016 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5017 vml[c]->vdev_top->vdev_asize) == 0);
5018 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5019 vml[c]->vdev_top->vdev_ashift) == 0);
5020 }
5021
5022 if (error != 0) {
5023 kmem_free(vml, children * sizeof (vdev_t *));
5024 kmem_free(glist, children * sizeof (uint64_t));
5025 return (spa_vdev_exit(spa, NULL, txg, error));
5026 }
5027
5028 /* stop writers from using the disks */
5029 for (c = 0; c < children; c++) {
5030 if (vml[c] != NULL)
5031 vml[c]->vdev_offline = B_TRUE;
5032 }
5033 vdev_reopen(spa->spa_root_vdev);
5034
5035 /*
5036 * Temporarily record the splitting vdevs in the spa config. This
5037 * will disappear once the config is regenerated.
5038 */
5039 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5040 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5041 glist, children) == 0);
5042 kmem_free(glist, children * sizeof (uint64_t));
5043
5044 mutex_enter(&spa->spa_props_lock);
5045 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5046 nvl) == 0);
5047 mutex_exit(&spa->spa_props_lock);
5048 spa->spa_config_splitting = nvl;
5049 vdev_config_dirty(spa->spa_root_vdev);
5050
5051 /* configure and create the new pool */
5052 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5053 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5054 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5055 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5056 spa_version(spa)) == 0);
5057 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5058 spa->spa_config_txg) == 0);
5059 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5060 spa_generate_guid(NULL)) == 0);
5061 (void) nvlist_lookup_string(props,
5062 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5063
5064 /* add the new pool to the namespace */
5065 newspa = spa_add(newname, config, altroot);
5066 newspa->spa_config_txg = spa->spa_config_txg;
5067 spa_set_log_state(newspa, SPA_LOG_CLEAR);
5068
5069 /* release the spa config lock, retaining the namespace lock */
5070 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5071
5072 if (zio_injection_enabled)
5073 zio_handle_panic_injection(spa, FTAG, 1);
5074
5075 spa_activate(newspa, spa_mode_global);
5076 spa_async_suspend(newspa);
5077
5078 /* create the new pool from the disks of the original pool */
5079 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5080 if (error)
5081 goto out;
5082
5083 /* if that worked, generate a real config for the new pool */
5084 if (newspa->spa_root_vdev != NULL) {
5085 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5086 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5087 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5088 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5089 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5090 B_TRUE));
5091 }
5092
5093 /* set the props */
5094 if (props != NULL) {
5095 spa_configfile_set(newspa, props, B_FALSE);
5096 error = spa_prop_set(newspa, props);
5097 if (error)
5098 goto out;
5099 }
5100
5101 /* flush everything */
5102 txg = spa_vdev_config_enter(newspa);
5103 vdev_config_dirty(newspa->spa_root_vdev);
5104 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5105
5106 if (zio_injection_enabled)
5107 zio_handle_panic_injection(spa, FTAG, 2);
5108
5109 spa_async_resume(newspa);
5110
5111 /* finally, update the original pool's config */
5112 txg = spa_vdev_config_enter(spa);
5113 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5114 error = dmu_tx_assign(tx, TXG_WAIT);
5115 if (error != 0)
5116 dmu_tx_abort(tx);
5117 for (c = 0; c < children; c++) {
5118 if (vml[c] != NULL) {
5119 vdev_split(vml[c]);
5120 if (error == 0)
5121 spa_history_log_internal(spa, "detach", tx,
5122 "vdev=%s", vml[c]->vdev_path);
5123 vdev_free(vml[c]);
5124 }
5125 }
5126 vdev_config_dirty(spa->spa_root_vdev);
5127 spa->spa_config_splitting = NULL;
5128 nvlist_free(nvl);
5129 if (error == 0)
5130 dmu_tx_commit(tx);
5131 (void) spa_vdev_exit(spa, NULL, txg, 0);
5132
5133 if (zio_injection_enabled)
5134 zio_handle_panic_injection(spa, FTAG, 3);
5135
5136 /* split is complete; log a history record */
5137 spa_history_log_internal(newspa, "split", NULL,
5138 "from pool %s", spa_name(spa));
5139
5140 kmem_free(vml, children * sizeof (vdev_t *));
5141
5142 /* if we're not going to mount the filesystems in userland, export */
5143 if (exp)
5144 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5145 B_FALSE, B_FALSE);
5146
5147 return (error);
5148
5149 out:
5150 spa_unload(newspa);
5151 spa_deactivate(newspa);
5152 spa_remove(newspa);
5153
5154 txg = spa_vdev_config_enter(spa);
5155
5156 /* re-online all offlined disks */
5157 for (c = 0; c < children; c++) {
5158 if (vml[c] != NULL)
5159 vml[c]->vdev_offline = B_FALSE;
5160 }
5161 vdev_reopen(spa->spa_root_vdev);
5162
5163 nvlist_free(spa->spa_config_splitting);
5164 spa->spa_config_splitting = NULL;
5165 (void) spa_vdev_exit(spa, NULL, txg, error);
5166
5167 kmem_free(vml, children * sizeof (vdev_t *));
5168 return (error);
5169 }
5170
5171 static nvlist_t *
spa_nvlist_lookup_by_guid(nvlist_t ** nvpp,int count,uint64_t target_guid)5172 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5173 {
5174 for (int i = 0; i < count; i++) {
5175 uint64_t guid;
5176
5177 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5178 &guid) == 0);
5179
5180 if (guid == target_guid)
5181 return (nvpp[i]);
5182 }
5183
5184 return (NULL);
5185 }
5186
5187 static void
spa_vdev_remove_aux(nvlist_t * config,char * name,nvlist_t ** dev,int count,nvlist_t * dev_to_remove)5188 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5189 nvlist_t *dev_to_remove)
5190 {
5191 nvlist_t **newdev = NULL;
5192
5193 if (count > 1)
5194 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5195
5196 for (int i = 0, j = 0; i < count; i++) {
5197 if (dev[i] == dev_to_remove)
5198 continue;
5199 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5200 }
5201
5202 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5203 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5204
5205 for (int i = 0; i < count - 1; i++)
5206 nvlist_free(newdev[i]);
5207
5208 if (count > 1)
5209 kmem_free(newdev, (count - 1) * sizeof (void *));
5210 }
5211
5212 /*
5213 * Evacuate the device.
5214 */
5215 static int
spa_vdev_remove_evacuate(spa_t * spa,vdev_t * vd)5216 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5217 {
5218 uint64_t txg;
5219 int error = 0;
5220
5221 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5222 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5223 ASSERT(vd == vd->vdev_top);
5224
5225 /*
5226 * Evacuate the device. We don't hold the config lock as writer
5227 * since we need to do I/O but we do keep the
5228 * spa_namespace_lock held. Once this completes the device
5229 * should no longer have any blocks allocated on it.
5230 */
5231 if (vd->vdev_islog) {
5232 if (vd->vdev_stat.vs_alloc != 0)
5233 error = spa_offline_log(spa);
5234 } else {
5235 error = SET_ERROR(ENOTSUP);
5236 }
5237
5238 if (error)
5239 return (error);
5240
5241 /*
5242 * The evacuation succeeded. Remove any remaining MOS metadata
5243 * associated with this vdev, and wait for these changes to sync.
5244 */
5245 ASSERT0(vd->vdev_stat.vs_alloc);
5246 txg = spa_vdev_config_enter(spa);
5247 vd->vdev_removing = B_TRUE;
5248 vdev_dirty_leaves(vd, VDD_DTL, txg);
5249 vdev_config_dirty(vd);
5250 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5251
5252 return (0);
5253 }
5254
5255 /*
5256 * Complete the removal by cleaning up the namespace.
5257 */
5258 static void
spa_vdev_remove_from_namespace(spa_t * spa,vdev_t * vd)5259 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5260 {
5261 vdev_t *rvd = spa->spa_root_vdev;
5262 uint64_t id = vd->vdev_id;
5263 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5264
5265 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5266 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5267 ASSERT(vd == vd->vdev_top);
5268
5269 /*
5270 * Only remove any devices which are empty.
5271 */
5272 if (vd->vdev_stat.vs_alloc != 0)
5273 return;
5274
5275 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5276
5277 if (list_link_active(&vd->vdev_state_dirty_node))
5278 vdev_state_clean(vd);
5279 if (list_link_active(&vd->vdev_config_dirty_node))
5280 vdev_config_clean(vd);
5281
5282 vdev_free(vd);
5283
5284 if (last_vdev) {
5285 vdev_compact_children(rvd);
5286 } else {
5287 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5288 vdev_add_child(rvd, vd);
5289 }
5290 vdev_config_dirty(rvd);
5291
5292 /*
5293 * Reassess the health of our root vdev.
5294 */
5295 vdev_reopen(rvd);
5296 }
5297
5298 /*
5299 * Remove a device from the pool -
5300 *
5301 * Removing a device from the vdev namespace requires several steps
5302 * and can take a significant amount of time. As a result we use
5303 * the spa_vdev_config_[enter/exit] functions which allow us to
5304 * grab and release the spa_config_lock while still holding the namespace
5305 * lock. During each step the configuration is synced out.
5306 *
5307 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5308 * devices.
5309 */
5310 int
spa_vdev_remove(spa_t * spa,uint64_t guid,boolean_t unspare)5311 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5312 {
5313 vdev_t *vd;
5314 metaslab_group_t *mg;
5315 nvlist_t **spares, **l2cache, *nv;
5316 uint64_t txg = 0;
5317 uint_t nspares, nl2cache;
5318 int error = 0;
5319 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5320
5321 ASSERT(spa_writeable(spa));
5322
5323 if (!locked)
5324 txg = spa_vdev_enter(spa);
5325
5326 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5327
5328 if (spa->spa_spares.sav_vdevs != NULL &&
5329 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5330 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5331 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5332 /*
5333 * Only remove the hot spare if it's not currently in use
5334 * in this pool.
5335 */
5336 if (vd == NULL || unspare) {
5337 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5338 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5339 spa_load_spares(spa);
5340 spa->spa_spares.sav_sync = B_TRUE;
5341 } else {
5342 error = SET_ERROR(EBUSY);
5343 }
5344 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5345 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5346 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5347 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5348 /*
5349 * Cache devices can always be removed.
5350 */
5351 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5352 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5353 spa_load_l2cache(spa);
5354 spa->spa_l2cache.sav_sync = B_TRUE;
5355 } else if (vd != NULL && vd->vdev_islog) {
5356 ASSERT(!locked);
5357 ASSERT(vd == vd->vdev_top);
5358
5359 mg = vd->vdev_mg;
5360
5361 /*
5362 * Stop allocating from this vdev.
5363 */
5364 metaslab_group_passivate(mg);
5365
5366 /*
5367 * Wait for the youngest allocations and frees to sync,
5368 * and then wait for the deferral of those frees to finish.
5369 */
5370 spa_vdev_config_exit(spa, NULL,
5371 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5372
5373 /*
5374 * Attempt to evacuate the vdev.
5375 */
5376 error = spa_vdev_remove_evacuate(spa, vd);
5377
5378 txg = spa_vdev_config_enter(spa);
5379
5380 /*
5381 * If we couldn't evacuate the vdev, unwind.
5382 */
5383 if (error) {
5384 metaslab_group_activate(mg);
5385 return (spa_vdev_exit(spa, NULL, txg, error));
5386 }
5387
5388 /*
5389 * Clean up the vdev namespace.
5390 */
5391 spa_vdev_remove_from_namespace(spa, vd);
5392
5393 } else if (vd != NULL) {
5394 /*
5395 * Normal vdevs cannot be removed (yet).
5396 */
5397 error = SET_ERROR(ENOTSUP);
5398 } else {
5399 /*
5400 * There is no vdev of any kind with the specified guid.
5401 */
5402 error = SET_ERROR(ENOENT);
5403 }
5404
5405 if (!locked)
5406 return (spa_vdev_exit(spa, NULL, txg, error));
5407
5408 return (error);
5409 }
5410
5411 /*
5412 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5413 * currently spared, so we can detach it.
5414 */
5415 static vdev_t *
spa_vdev_resilver_done_hunt(vdev_t * vd)5416 spa_vdev_resilver_done_hunt(vdev_t *vd)
5417 {
5418 vdev_t *newvd, *oldvd;
5419
5420 for (int c = 0; c < vd->vdev_children; c++) {
5421 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5422 if (oldvd != NULL)
5423 return (oldvd);
5424 }
5425
5426 /*
5427 * Check for a completed replacement. We always consider the first
5428 * vdev in the list to be the oldest vdev, and the last one to be
5429 * the newest (see spa_vdev_attach() for how that works). In
5430 * the case where the newest vdev is faulted, we will not automatically
5431 * remove it after a resilver completes. This is OK as it will require
5432 * user intervention to determine which disk the admin wishes to keep.
5433 */
5434 if (vd->vdev_ops == &vdev_replacing_ops) {
5435 ASSERT(vd->vdev_children > 1);
5436
5437 newvd = vd->vdev_child[vd->vdev_children - 1];
5438 oldvd = vd->vdev_child[0];
5439
5440 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5441 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5442 !vdev_dtl_required(oldvd))
5443 return (oldvd);
5444 }
5445
5446 /*
5447 * Check for a completed resilver with the 'unspare' flag set.
5448 */
5449 if (vd->vdev_ops == &vdev_spare_ops) {
5450 vdev_t *first = vd->vdev_child[0];
5451 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5452
5453 if (last->vdev_unspare) {
5454 oldvd = first;
5455 newvd = last;
5456 } else if (first->vdev_unspare) {
5457 oldvd = last;
5458 newvd = first;
5459 } else {
5460 oldvd = NULL;
5461 }
5462
5463 if (oldvd != NULL &&
5464 vdev_dtl_empty(newvd, DTL_MISSING) &&
5465 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5466 !vdev_dtl_required(oldvd))
5467 return (oldvd);
5468
5469 /*
5470 * If there are more than two spares attached to a disk,
5471 * and those spares are not required, then we want to
5472 * attempt to free them up now so that they can be used
5473 * by other pools. Once we're back down to a single
5474 * disk+spare, we stop removing them.
5475 */
5476 if (vd->vdev_children > 2) {
5477 newvd = vd->vdev_child[1];
5478
5479 if (newvd->vdev_isspare && last->vdev_isspare &&
5480 vdev_dtl_empty(last, DTL_MISSING) &&
5481 vdev_dtl_empty(last, DTL_OUTAGE) &&
5482 !vdev_dtl_required(newvd))
5483 return (newvd);
5484 }
5485 }
5486
5487 return (NULL);
5488 }
5489
5490 static void
spa_vdev_resilver_done(spa_t * spa)5491 spa_vdev_resilver_done(spa_t *spa)
5492 {
5493 vdev_t *vd, *pvd, *ppvd;
5494 uint64_t guid, sguid, pguid, ppguid;
5495
5496 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5497
5498 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5499 pvd = vd->vdev_parent;
5500 ppvd = pvd->vdev_parent;
5501 guid = vd->vdev_guid;
5502 pguid = pvd->vdev_guid;
5503 ppguid = ppvd->vdev_guid;
5504 sguid = 0;
5505 /*
5506 * If we have just finished replacing a hot spared device, then
5507 * we need to detach the parent's first child (the original hot
5508 * spare) as well.
5509 */
5510 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5511 ppvd->vdev_children == 2) {
5512 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5513 sguid = ppvd->vdev_child[1]->vdev_guid;
5514 }
5515 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5516
5517 spa_config_exit(spa, SCL_ALL, FTAG);
5518 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5519 return;
5520 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5521 return;
5522 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5523 }
5524
5525 spa_config_exit(spa, SCL_ALL, FTAG);
5526 }
5527
5528 /*
5529 * Update the stored path or FRU for this vdev.
5530 */
5531 int
spa_vdev_set_common(spa_t * spa,uint64_t guid,const char * value,boolean_t ispath)5532 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5533 boolean_t ispath)
5534 {
5535 vdev_t *vd;
5536 boolean_t sync = B_FALSE;
5537
5538 ASSERT(spa_writeable(spa));
5539
5540 spa_vdev_state_enter(spa, SCL_ALL);
5541
5542 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5543 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5544
5545 if (!vd->vdev_ops->vdev_op_leaf)
5546 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5547
5548 if (ispath) {
5549 if (strcmp(value, vd->vdev_path) != 0) {
5550 spa_strfree(vd->vdev_path);
5551 vd->vdev_path = spa_strdup(value);
5552 sync = B_TRUE;
5553 }
5554 } else {
5555 if (vd->vdev_fru == NULL) {
5556 vd->vdev_fru = spa_strdup(value);
5557 sync = B_TRUE;
5558 } else if (strcmp(value, vd->vdev_fru) != 0) {
5559 spa_strfree(vd->vdev_fru);
5560 vd->vdev_fru = spa_strdup(value);
5561 sync = B_TRUE;
5562 }
5563 }
5564
5565 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5566 }
5567
5568 int
spa_vdev_setpath(spa_t * spa,uint64_t guid,const char * newpath)5569 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5570 {
5571 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5572 }
5573
5574 int
spa_vdev_setfru(spa_t * spa,uint64_t guid,const char * newfru)5575 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5576 {
5577 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5578 }
5579
5580 /*
5581 * ==========================================================================
5582 * SPA Scanning
5583 * ==========================================================================
5584 */
5585
5586 int
spa_scan_stop(spa_t * spa)5587 spa_scan_stop(spa_t *spa)
5588 {
5589 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5590 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5591 return (SET_ERROR(EBUSY));
5592 return (dsl_scan_cancel(spa->spa_dsl_pool));
5593 }
5594
5595 int
spa_scan(spa_t * spa,pool_scan_func_t func)5596 spa_scan(spa_t *spa, pool_scan_func_t func)
5597 {
5598 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5599
5600 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5601 return (SET_ERROR(ENOTSUP));
5602
5603 /*
5604 * If a resilver was requested, but there is no DTL on a
5605 * writeable leaf device, we have nothing to do.
5606 */
5607 if (func == POOL_SCAN_RESILVER &&
5608 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5609 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5610 return (0);
5611 }
5612
5613 return (dsl_scan(spa->spa_dsl_pool, func));
5614 }
5615
5616 /*
5617 * ==========================================================================
5618 * SPA async task processing
5619 * ==========================================================================
5620 */
5621
5622 static void
spa_async_remove(spa_t * spa,vdev_t * vd)5623 spa_async_remove(spa_t *spa, vdev_t *vd)
5624 {
5625 if (vd->vdev_remove_wanted) {
5626 vd->vdev_remove_wanted = B_FALSE;
5627 vd->vdev_delayed_close = B_FALSE;
5628 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5629
5630 /*
5631 * We want to clear the stats, but we don't want to do a full
5632 * vdev_clear() as that will cause us to throw away
5633 * degraded/faulted state as well as attempt to reopen the
5634 * device, all of which is a waste.
5635 */
5636 vd->vdev_stat.vs_read_errors = 0;
5637 vd->vdev_stat.vs_write_errors = 0;
5638 vd->vdev_stat.vs_checksum_errors = 0;
5639
5640 vdev_state_dirty(vd->vdev_top);
5641 }
5642
5643 for (int c = 0; c < vd->vdev_children; c++)
5644 spa_async_remove(spa, vd->vdev_child[c]);
5645 }
5646
5647 static void
spa_async_probe(spa_t * spa,vdev_t * vd)5648 spa_async_probe(spa_t *spa, vdev_t *vd)
5649 {
5650 if (vd->vdev_probe_wanted) {
5651 vd->vdev_probe_wanted = B_FALSE;
5652 vdev_reopen(vd); /* vdev_open() does the actual probe */
5653 }
5654
5655 for (int c = 0; c < vd->vdev_children; c++)
5656 spa_async_probe(spa, vd->vdev_child[c]);
5657 }
5658
5659 static void
spa_async_autoexpand(spa_t * spa,vdev_t * vd)5660 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5661 {
5662 sysevent_id_t eid;
5663 nvlist_t *attr;
5664 char *physpath;
5665
5666 if (!spa->spa_autoexpand)
5667 return;
5668
5669 for (int c = 0; c < vd->vdev_children; c++) {
5670 vdev_t *cvd = vd->vdev_child[c];
5671 spa_async_autoexpand(spa, cvd);
5672 }
5673
5674 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5675 return;
5676
5677 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5678 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5679
5680 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5681 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5682
5683 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5684 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5685
5686 nvlist_free(attr);
5687 kmem_free(physpath, MAXPATHLEN);
5688 }
5689
5690 static void
spa_async_thread(spa_t * spa)5691 spa_async_thread(spa_t *spa)
5692 {
5693 int tasks;
5694
5695 ASSERT(spa->spa_sync_on);
5696
5697 mutex_enter(&spa->spa_async_lock);
5698 tasks = spa->spa_async_tasks;
5699 spa->spa_async_tasks = 0;
5700 mutex_exit(&spa->spa_async_lock);
5701
5702 /*
5703 * See if the config needs to be updated.
5704 */
5705 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5706 uint64_t old_space, new_space;
5707
5708 mutex_enter(&spa_namespace_lock);
5709 old_space = metaslab_class_get_space(spa_normal_class(spa));
5710 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5711 new_space = metaslab_class_get_space(spa_normal_class(spa));
5712 mutex_exit(&spa_namespace_lock);
5713
5714 /*
5715 * If the pool grew as a result of the config update,
5716 * then log an internal history event.
5717 */
5718 if (new_space != old_space) {
5719 spa_history_log_internal(spa, "vdev online", NULL,
5720 "pool '%s' size: %llu(+%llu)",
5721 spa_name(spa), new_space, new_space - old_space);
5722 }
5723 }
5724
5725 /*
5726 * See if any devices need to be marked REMOVED.
5727 */
5728 if (tasks & SPA_ASYNC_REMOVE) {
5729 spa_vdev_state_enter(spa, SCL_NONE);
5730 spa_async_remove(spa, spa->spa_root_vdev);
5731 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5732 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5733 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5734 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5735 (void) spa_vdev_state_exit(spa, NULL, 0);
5736 }
5737
5738 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5739 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5740 spa_async_autoexpand(spa, spa->spa_root_vdev);
5741 spa_config_exit(spa, SCL_CONFIG, FTAG);
5742 }
5743
5744 /*
5745 * See if any devices need to be probed.
5746 */
5747 if (tasks & SPA_ASYNC_PROBE) {
5748 spa_vdev_state_enter(spa, SCL_NONE);
5749 spa_async_probe(spa, spa->spa_root_vdev);
5750 (void) spa_vdev_state_exit(spa, NULL, 0);
5751 }
5752
5753 /*
5754 * If any devices are done replacing, detach them.
5755 */
5756 if (tasks & SPA_ASYNC_RESILVER_DONE)
5757 spa_vdev_resilver_done(spa);
5758
5759 /*
5760 * Kick off a resilver.
5761 */
5762 if (tasks & SPA_ASYNC_RESILVER)
5763 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5764
5765 /*
5766 * Kick off L2 cache rebuilding.
5767 */
5768 if (tasks & SPA_ASYNC_L2CACHE_REBUILD)
5769 l2arc_spa_rebuild_start(spa);
5770
5771 /*
5772 * Let the world know that we're done.
5773 */
5774 mutex_enter(&spa->spa_async_lock);
5775 spa->spa_async_thread = NULL;
5776 cv_broadcast(&spa->spa_async_cv);
5777 mutex_exit(&spa->spa_async_lock);
5778 thread_exit();
5779 }
5780
5781 void
spa_async_suspend(spa_t * spa)5782 spa_async_suspend(spa_t *spa)
5783 {
5784 mutex_enter(&spa->spa_async_lock);
5785 spa->spa_async_suspended++;
5786 while (spa->spa_async_thread != NULL)
5787 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5788 mutex_exit(&spa->spa_async_lock);
5789 }
5790
5791 void
spa_async_resume(spa_t * spa)5792 spa_async_resume(spa_t *spa)
5793 {
5794 mutex_enter(&spa->spa_async_lock);
5795 ASSERT(spa->spa_async_suspended != 0);
5796 spa->spa_async_suspended--;
5797 mutex_exit(&spa->spa_async_lock);
5798 }
5799
5800 static boolean_t
spa_async_tasks_pending(spa_t * spa)5801 spa_async_tasks_pending(spa_t *spa)
5802 {
5803 uint_t non_config_tasks;
5804 uint_t config_task;
5805 boolean_t config_task_suspended;
5806
5807 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5808 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5809 if (spa->spa_ccw_fail_time == 0) {
5810 config_task_suspended = B_FALSE;
5811 } else {
5812 config_task_suspended =
5813 (gethrtime() - spa->spa_ccw_fail_time) <
5814 (zfs_ccw_retry_interval * NANOSEC);
5815 }
5816
5817 return (non_config_tasks || (config_task && !config_task_suspended));
5818 }
5819
5820 static void
spa_async_dispatch(spa_t * spa)5821 spa_async_dispatch(spa_t *spa)
5822 {
5823 mutex_enter(&spa->spa_async_lock);
5824 if (spa_async_tasks_pending(spa) &&
5825 !spa->spa_async_suspended &&
5826 spa->spa_async_thread == NULL &&
5827 rootdir != NULL)
5828 spa->spa_async_thread = thread_create(NULL, 0,
5829 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5830 mutex_exit(&spa->spa_async_lock);
5831 }
5832
5833 void
spa_async_request(spa_t * spa,int task)5834 spa_async_request(spa_t *spa, int task)
5835 {
5836 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5837 mutex_enter(&spa->spa_async_lock);
5838 spa->spa_async_tasks |= task;
5839 mutex_exit(&spa->spa_async_lock);
5840 }
5841
5842 /*
5843 * ==========================================================================
5844 * SPA syncing routines
5845 * ==========================================================================
5846 */
5847
5848 static int
bpobj_enqueue_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)5849 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5850 {
5851 bpobj_t *bpo = arg;
5852 bpobj_enqueue(bpo, bp, tx);
5853 return (0);
5854 }
5855
5856 static int
spa_free_sync_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)5857 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5858 {
5859 zio_t *zio = arg;
5860
5861 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5862 zio->io_flags));
5863 return (0);
5864 }
5865
5866 /*
5867 * Note: this simple function is not inlined to make it easier to dtrace the
5868 * amount of time spent syncing frees.
5869 */
5870 static void
spa_sync_frees(spa_t * spa,bplist_t * bpl,dmu_tx_t * tx)5871 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5872 {
5873 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5874 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5875 VERIFY(zio_wait(zio) == 0);
5876 }
5877
5878 /*
5879 * Note: this simple function is not inlined to make it easier to dtrace the
5880 * amount of time spent syncing deferred frees.
5881 */
5882 static void
spa_sync_deferred_frees(spa_t * spa,dmu_tx_t * tx)5883 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5884 {
5885 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5886 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5887 spa_free_sync_cb, zio, tx), ==, 0);
5888 VERIFY0(zio_wait(zio));
5889 }
5890
5891
5892 static void
spa_sync_nvlist(spa_t * spa,uint64_t obj,nvlist_t * nv,dmu_tx_t * tx)5893 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5894 {
5895 char *packed = NULL;
5896 size_t bufsize;
5897 size_t nvsize = 0;
5898 dmu_buf_t *db;
5899
5900 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5901
5902 /*
5903 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5904 * information. This avoids the dmu_buf_will_dirty() path and
5905 * saves us a pre-read to get data we don't actually care about.
5906 */
5907 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5908 packed = kmem_alloc(bufsize, KM_SLEEP);
5909
5910 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5911 KM_SLEEP) == 0);
5912 bzero(packed + nvsize, bufsize - nvsize);
5913
5914 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5915
5916 kmem_free(packed, bufsize);
5917
5918 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5919 dmu_buf_will_dirty(db, tx);
5920 *(uint64_t *)db->db_data = nvsize;
5921 dmu_buf_rele(db, FTAG);
5922 }
5923
5924 static void
spa_sync_aux_dev(spa_t * spa,spa_aux_vdev_t * sav,dmu_tx_t * tx,const char * config,const char * entry)5925 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5926 const char *config, const char *entry)
5927 {
5928 nvlist_t *nvroot;
5929 nvlist_t **list;
5930 int i;
5931
5932 if (!sav->sav_sync)
5933 return;
5934
5935 /*
5936 * Update the MOS nvlist describing the list of available devices.
5937 * spa_validate_aux() will have already made sure this nvlist is
5938 * valid and the vdevs are labeled appropriately.
5939 */
5940 if (sav->sav_object == 0) {
5941 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5942 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5943 sizeof (uint64_t), tx);
5944 VERIFY(zap_update(spa->spa_meta_objset,
5945 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5946 &sav->sav_object, tx) == 0);
5947 }
5948
5949 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5950 if (sav->sav_count == 0) {
5951 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5952 } else {
5953 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5954 for (i = 0; i < sav->sav_count; i++)
5955 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5956 B_FALSE, VDEV_CONFIG_L2CACHE);
5957 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5958 sav->sav_count) == 0);
5959 for (i = 0; i < sav->sav_count; i++)
5960 nvlist_free(list[i]);
5961 kmem_free(list, sav->sav_count * sizeof (void *));
5962 }
5963
5964 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5965 nvlist_free(nvroot);
5966
5967 sav->sav_sync = B_FALSE;
5968 }
5969
5970 static void
spa_sync_config_object(spa_t * spa,dmu_tx_t * tx)5971 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5972 {
5973 nvlist_t *config;
5974
5975 if (list_is_empty(&spa->spa_config_dirty_list))
5976 return;
5977
5978 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5979
5980 config = spa_config_generate(spa, spa->spa_root_vdev,
5981 dmu_tx_get_txg(tx), B_FALSE);
5982
5983 /*
5984 * If we're upgrading the spa version then make sure that
5985 * the config object gets updated with the correct version.
5986 */
5987 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5988 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5989 spa->spa_uberblock.ub_version);
5990
5991 spa_config_exit(spa, SCL_STATE, FTAG);
5992
5993 if (spa->spa_config_syncing)
5994 nvlist_free(spa->spa_config_syncing);
5995 spa->spa_config_syncing = config;
5996
5997 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5998 }
5999
6000 static void
spa_sync_version(void * arg,dmu_tx_t * tx)6001 spa_sync_version(void *arg, dmu_tx_t *tx)
6002 {
6003 uint64_t *versionp = arg;
6004 uint64_t version = *versionp;
6005 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6006
6007 /*
6008 * Setting the version is special cased when first creating the pool.
6009 */
6010 ASSERT(tx->tx_txg != TXG_INITIAL);
6011
6012 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6013 ASSERT(version >= spa_version(spa));
6014
6015 spa->spa_uberblock.ub_version = version;
6016 vdev_config_dirty(spa->spa_root_vdev);
6017 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6018 }
6019
6020 /*
6021 * Set zpool properties.
6022 */
6023 static void
spa_sync_props(void * arg,dmu_tx_t * tx)6024 spa_sync_props(void *arg, dmu_tx_t *tx)
6025 {
6026 nvlist_t *nvp = arg;
6027 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6028 objset_t *mos = spa->spa_meta_objset;
6029 nvpair_t *elem = NULL;
6030
6031 mutex_enter(&spa->spa_props_lock);
6032
6033 while ((elem = nvlist_next_nvpair(nvp, elem))) {
6034 uint64_t intval;
6035 char *strval, *fname;
6036 zpool_prop_t prop;
6037 const char *propname;
6038 zprop_type_t proptype;
6039 spa_feature_t fid;
6040
6041 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6042 case ZPROP_INVAL:
6043 /*
6044 * We checked this earlier in spa_prop_validate().
6045 */
6046 ASSERT(zpool_prop_feature(nvpair_name(elem)));
6047
6048 fname = strchr(nvpair_name(elem), '@') + 1;
6049 VERIFY0(zfeature_lookup_name(fname, &fid));
6050
6051 spa_feature_enable(spa, fid, tx);
6052 spa_history_log_internal(spa, "set", tx,
6053 "%s=enabled", nvpair_name(elem));
6054 break;
6055
6056 case ZPOOL_PROP_VERSION:
6057 intval = fnvpair_value_uint64(elem);
6058 /*
6059 * The version is synced seperatly before other
6060 * properties and should be correct by now.
6061 */
6062 ASSERT3U(spa_version(spa), >=, intval);
6063 break;
6064
6065 case ZPOOL_PROP_ALTROOT:
6066 /*
6067 * 'altroot' is a non-persistent property. It should
6068 * have been set temporarily at creation or import time.
6069 */
6070 ASSERT(spa->spa_root != NULL);
6071 break;
6072
6073 case ZPOOL_PROP_READONLY:
6074 case ZPOOL_PROP_CACHEFILE:
6075 /*
6076 * 'readonly' and 'cachefile' are also non-persisitent
6077 * properties.
6078 */
6079 break;
6080 case ZPOOL_PROP_COMMENT:
6081 strval = fnvpair_value_string(elem);
6082 if (spa->spa_comment != NULL)
6083 spa_strfree(spa->spa_comment);
6084 spa->spa_comment = spa_strdup(strval);
6085 /*
6086 * We need to dirty the configuration on all the vdevs
6087 * so that their labels get updated. It's unnecessary
6088 * to do this for pool creation since the vdev's
6089 * configuratoin has already been dirtied.
6090 */
6091 if (tx->tx_txg != TXG_INITIAL)
6092 vdev_config_dirty(spa->spa_root_vdev);
6093 spa_history_log_internal(spa, "set", tx,
6094 "%s=%s", nvpair_name(elem), strval);
6095 break;
6096 default:
6097 /*
6098 * Set pool property values in the poolprops mos object.
6099 */
6100 if (spa->spa_pool_props_object == 0) {
6101 spa->spa_pool_props_object =
6102 zap_create_link(mos, DMU_OT_POOL_PROPS,
6103 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6104 tx);
6105 }
6106
6107 /* normalize the property name */
6108 propname = zpool_prop_to_name(prop);
6109 proptype = zpool_prop_get_type(prop);
6110
6111 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6112 ASSERT(proptype == PROP_TYPE_STRING);
6113 strval = fnvpair_value_string(elem);
6114 VERIFY0(zap_update(mos,
6115 spa->spa_pool_props_object, propname,
6116 1, strlen(strval) + 1, strval, tx));
6117 spa_history_log_internal(spa, "set", tx,
6118 "%s=%s", nvpair_name(elem), strval);
6119 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6120 intval = fnvpair_value_uint64(elem);
6121
6122 if (proptype == PROP_TYPE_INDEX) {
6123 const char *unused;
6124 VERIFY0(zpool_prop_index_to_string(
6125 prop, intval, &unused));
6126 }
6127 VERIFY0(zap_update(mos,
6128 spa->spa_pool_props_object, propname,
6129 8, 1, &intval, tx));
6130 spa_history_log_internal(spa, "set", tx,
6131 "%s=%lld", nvpair_name(elem), intval);
6132 } else {
6133 ASSERT(0); /* not allowed */
6134 }
6135
6136 switch (prop) {
6137 case ZPOOL_PROP_DELEGATION:
6138 spa->spa_delegation = intval;
6139 break;
6140 case ZPOOL_PROP_BOOTFS:
6141 spa->spa_bootfs = intval;
6142 break;
6143 case ZPOOL_PROP_FAILUREMODE:
6144 spa->spa_failmode = intval;
6145 break;
6146 case ZPOOL_PROP_AUTOEXPAND:
6147 spa->spa_autoexpand = intval;
6148 if (tx->tx_txg != TXG_INITIAL)
6149 spa_async_request(spa,
6150 SPA_ASYNC_AUTOEXPAND);
6151 break;
6152 case ZPOOL_PROP_DEDUPDITTO:
6153 spa->spa_dedup_ditto = intval;
6154 break;
6155 default:
6156 break;
6157 }
6158 }
6159
6160 }
6161
6162 mutex_exit(&spa->spa_props_lock);
6163 }
6164
6165 /*
6166 * Perform one-time upgrade on-disk changes. spa_version() does not
6167 * reflect the new version this txg, so there must be no changes this
6168 * txg to anything that the upgrade code depends on after it executes.
6169 * Therefore this must be called after dsl_pool_sync() does the sync
6170 * tasks.
6171 */
6172 static void
spa_sync_upgrades(spa_t * spa,dmu_tx_t * tx)6173 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6174 {
6175 dsl_pool_t *dp = spa->spa_dsl_pool;
6176
6177 ASSERT(spa->spa_sync_pass == 1);
6178
6179 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6180
6181 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6182 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6183 dsl_pool_create_origin(dp, tx);
6184
6185 /* Keeping the origin open increases spa_minref */
6186 spa->spa_minref += 3;
6187 }
6188
6189 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6190 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6191 dsl_pool_upgrade_clones(dp, tx);
6192 }
6193
6194 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6195 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6196 dsl_pool_upgrade_dir_clones(dp, tx);
6197
6198 /* Keeping the freedir open increases spa_minref */
6199 spa->spa_minref += 3;
6200 }
6201
6202 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6203 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6204 spa_feature_create_zap_objects(spa, tx);
6205 }
6206
6207 /*
6208 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6209 * when possibility to use lz4 compression for metadata was added
6210 * Old pools that have this feature enabled must be upgraded to have
6211 * this feature active
6212 */
6213 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6214 boolean_t lz4_en = spa_feature_is_enabled(spa,
6215 SPA_FEATURE_LZ4_COMPRESS);
6216 boolean_t lz4_ac = spa_feature_is_active(spa,
6217 SPA_FEATURE_LZ4_COMPRESS);
6218
6219 if (lz4_en && !lz4_ac)
6220 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6221 }
6222 rrw_exit(&dp->dp_config_rwlock, FTAG);
6223 }
6224
6225 /*
6226 * Sync the specified transaction group. New blocks may be dirtied as
6227 * part of the process, so we iterate until it converges.
6228 */
6229 void
spa_sync(spa_t * spa,uint64_t txg)6230 spa_sync(spa_t *spa, uint64_t txg)
6231 {
6232 dsl_pool_t *dp = spa->spa_dsl_pool;
6233 objset_t *mos = spa->spa_meta_objset;
6234 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6235 vdev_t *rvd = spa->spa_root_vdev;
6236 vdev_t *vd;
6237 dmu_tx_t *tx;
6238 int error;
6239
6240 VERIFY(spa_writeable(spa));
6241
6242 /*
6243 * Lock out configuration changes.
6244 */
6245 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6246
6247 spa->spa_syncing_txg = txg;
6248 spa->spa_sync_pass = 0;
6249
6250 /*
6251 * If there are any pending vdev state changes, convert them
6252 * into config changes that go out with this transaction group.
6253 */
6254 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6255 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6256 /*
6257 * We need the write lock here because, for aux vdevs,
6258 * calling vdev_config_dirty() modifies sav_config.
6259 * This is ugly and will become unnecessary when we
6260 * eliminate the aux vdev wart by integrating all vdevs
6261 * into the root vdev tree.
6262 */
6263 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6264 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6265 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6266 vdev_state_clean(vd);
6267 vdev_config_dirty(vd);
6268 }
6269 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6270 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6271 }
6272 spa_config_exit(spa, SCL_STATE, FTAG);
6273
6274 tx = dmu_tx_create_assigned(dp, txg);
6275
6276 spa->spa_sync_starttime = gethrtime();
6277 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6278 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6279
6280 /*
6281 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6282 * set spa_deflate if we have no raid-z vdevs.
6283 */
6284 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6285 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6286 int i;
6287
6288 for (i = 0; i < rvd->vdev_children; i++) {
6289 vd = rvd->vdev_child[i];
6290 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6291 break;
6292 }
6293 if (i == rvd->vdev_children) {
6294 spa->spa_deflate = TRUE;
6295 VERIFY(0 == zap_add(spa->spa_meta_objset,
6296 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6297 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6298 }
6299 }
6300
6301 /*
6302 * Iterate to convergence.
6303 */
6304 do {
6305 int pass = ++spa->spa_sync_pass;
6306
6307 spa_sync_config_object(spa, tx);
6308 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6309 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6310 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6311 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6312 spa_errlog_sync(spa, txg);
6313 dsl_pool_sync(dp, txg);
6314
6315 if (pass < zfs_sync_pass_deferred_free) {
6316 spa_sync_frees(spa, free_bpl, tx);
6317 } else {
6318 /*
6319 * We can not defer frees in pass 1, because
6320 * we sync the deferred frees later in pass 1.
6321 */
6322 ASSERT3U(pass, >, 1);
6323 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6324 &spa->spa_deferred_bpobj, tx);
6325 }
6326
6327 ddt_sync(spa, txg);
6328 dsl_scan_sync(dp, tx);
6329
6330 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6331 vdev_sync(vd, txg);
6332
6333 if (pass == 1) {
6334 spa_sync_upgrades(spa, tx);
6335 ASSERT3U(txg, >=,
6336 spa->spa_uberblock.ub_rootbp.blk_birth);
6337 /*
6338 * Note: We need to check if the MOS is dirty
6339 * because we could have marked the MOS dirty
6340 * without updating the uberblock (e.g. if we
6341 * have sync tasks but no dirty user data). We
6342 * need to check the uberblock's rootbp because
6343 * it is updated if we have synced out dirty
6344 * data (though in this case the MOS will most
6345 * likely also be dirty due to second order
6346 * effects, we don't want to rely on that here).
6347 */
6348 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6349 !dmu_objset_is_dirty(mos, txg)) {
6350 /*
6351 * Nothing changed on the first pass,
6352 * therefore this TXG is a no-op. Avoid
6353 * syncing deferred frees, so that we
6354 * can keep this TXG as a no-op.
6355 */
6356 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6357 txg));
6358 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6359 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6360 break;
6361 }
6362 spa_sync_deferred_frees(spa, tx);
6363 }
6364
6365 } while (dmu_objset_is_dirty(mos, txg));
6366
6367 /*
6368 * Rewrite the vdev configuration (which includes the uberblock)
6369 * to commit the transaction group.
6370 *
6371 * If there are no dirty vdevs, we sync the uberblock to a few
6372 * random top-level vdevs that are known to be visible in the
6373 * config cache (see spa_vdev_add() for a complete description).
6374 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6375 */
6376 for (;;) {
6377 /*
6378 * We hold SCL_STATE to prevent vdev open/close/etc.
6379 * while we're attempting to write the vdev labels.
6380 */
6381 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6382
6383 if (list_is_empty(&spa->spa_config_dirty_list)) {
6384 vdev_t *svd[SPA_DVAS_PER_BP];
6385 int svdcount = 0;
6386 int children = rvd->vdev_children;
6387 int c0 = spa_get_random(children);
6388
6389 for (int c = 0; c < children; c++) {
6390 vd = rvd->vdev_child[(c0 + c) % children];
6391 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6392 continue;
6393 svd[svdcount++] = vd;
6394 if (svdcount == SPA_DVAS_PER_BP)
6395 break;
6396 }
6397 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6398 if (error != 0)
6399 error = vdev_config_sync(svd, svdcount, txg,
6400 B_TRUE);
6401 } else {
6402 error = vdev_config_sync(rvd->vdev_child,
6403 rvd->vdev_children, txg, B_FALSE);
6404 if (error != 0)
6405 error = vdev_config_sync(rvd->vdev_child,
6406 rvd->vdev_children, txg, B_TRUE);
6407 }
6408
6409 if (error == 0)
6410 spa->spa_last_synced_guid = rvd->vdev_guid;
6411
6412 spa_config_exit(spa, SCL_STATE, FTAG);
6413
6414 if (error == 0)
6415 break;
6416 zio_suspend(spa, NULL);
6417 zio_resume_wait(spa);
6418 }
6419 dmu_tx_commit(tx);
6420
6421 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6422
6423 /*
6424 * Clear the dirty config list.
6425 */
6426 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6427 vdev_config_clean(vd);
6428
6429 /*
6430 * Now that the new config has synced transactionally,
6431 * let it become visible to the config cache.
6432 */
6433 if (spa->spa_config_syncing != NULL) {
6434 spa_config_set(spa, spa->spa_config_syncing);
6435 spa->spa_config_txg = txg;
6436 spa->spa_config_syncing = NULL;
6437 }
6438
6439 spa->spa_ubsync = spa->spa_uberblock;
6440
6441 dsl_pool_sync_done(dp, txg);
6442
6443 /*
6444 * Update usable space statistics.
6445 */
6446 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6447 vdev_sync_done(vd, txg);
6448
6449 spa_update_dspace(spa);
6450
6451 /*
6452 * It had better be the case that we didn't dirty anything
6453 * since vdev_config_sync().
6454 */
6455 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6456 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6457 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6458
6459 spa->spa_sync_pass = 0;
6460
6461 spa_config_exit(spa, SCL_CONFIG, FTAG);
6462
6463 spa_handle_ignored_writes(spa);
6464
6465 /*
6466 * If any async tasks have been requested, kick them off.
6467 */
6468 spa_async_dispatch(spa);
6469 }
6470
6471 /*
6472 * Sync all pools. We don't want to hold the namespace lock across these
6473 * operations, so we take a reference on the spa_t and drop the lock during the
6474 * sync.
6475 */
6476 void
spa_sync_allpools(void)6477 spa_sync_allpools(void)
6478 {
6479 spa_t *spa = NULL;
6480 mutex_enter(&spa_namespace_lock);
6481 while ((spa = spa_next(spa)) != NULL) {
6482 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6483 !spa_writeable(spa) || spa_suspended(spa))
6484 continue;
6485 spa_open_ref(spa, FTAG);
6486 mutex_exit(&spa_namespace_lock);
6487 txg_wait_synced(spa_get_dsl(spa), 0);
6488 mutex_enter(&spa_namespace_lock);
6489 spa_close(spa, FTAG);
6490 }
6491 mutex_exit(&spa_namespace_lock);
6492 }
6493
6494 /*
6495 * ==========================================================================
6496 * Miscellaneous routines
6497 * ==========================================================================
6498 */
6499
6500 /*
6501 * Remove all pools in the system.
6502 */
6503 void
spa_evict_all(void)6504 spa_evict_all(void)
6505 {
6506 spa_t *spa;
6507
6508 /*
6509 * Remove all cached state. All pools should be closed now,
6510 * so every spa in the AVL tree should be unreferenced.
6511 */
6512 mutex_enter(&spa_namespace_lock);
6513 while ((spa = spa_next(NULL)) != NULL) {
6514 /*
6515 * Stop async tasks. The async thread may need to detach
6516 * a device that's been replaced, which requires grabbing
6517 * spa_namespace_lock, so we must drop it here.
6518 */
6519 spa_open_ref(spa, FTAG);
6520 mutex_exit(&spa_namespace_lock);
6521 spa_async_suspend(spa);
6522 mutex_enter(&spa_namespace_lock);
6523 spa_close(spa, FTAG);
6524
6525 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6526 spa_unload(spa);
6527 spa_deactivate(spa);
6528 }
6529 spa_remove(spa);
6530 }
6531 mutex_exit(&spa_namespace_lock);
6532 }
6533
6534 vdev_t *
spa_lookup_by_guid(spa_t * spa,uint64_t guid,boolean_t aux)6535 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6536 {
6537 vdev_t *vd;
6538 int i;
6539
6540 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6541 return (vd);
6542
6543 if (aux) {
6544 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6545 vd = spa->spa_l2cache.sav_vdevs[i];
6546 if (vd->vdev_guid == guid)
6547 return (vd);
6548 }
6549
6550 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6551 vd = spa->spa_spares.sav_vdevs[i];
6552 if (vd->vdev_guid == guid)
6553 return (vd);
6554 }
6555 }
6556
6557 return (NULL);
6558 }
6559
6560 void
spa_upgrade(spa_t * spa,uint64_t version)6561 spa_upgrade(spa_t *spa, uint64_t version)
6562 {
6563 ASSERT(spa_writeable(spa));
6564
6565 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6566
6567 /*
6568 * This should only be called for a non-faulted pool, and since a
6569 * future version would result in an unopenable pool, this shouldn't be
6570 * possible.
6571 */
6572 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6573 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6574
6575 spa->spa_uberblock.ub_version = version;
6576 vdev_config_dirty(spa->spa_root_vdev);
6577
6578 spa_config_exit(spa, SCL_ALL, FTAG);
6579
6580 txg_wait_synced(spa_get_dsl(spa), 0);
6581 }
6582
6583 boolean_t
spa_has_spare(spa_t * spa,uint64_t guid)6584 spa_has_spare(spa_t *spa, uint64_t guid)
6585 {
6586 int i;
6587 uint64_t spareguid;
6588 spa_aux_vdev_t *sav = &spa->spa_spares;
6589
6590 for (i = 0; i < sav->sav_count; i++)
6591 if (sav->sav_vdevs[i]->vdev_guid == guid)
6592 return (B_TRUE);
6593
6594 for (i = 0; i < sav->sav_npending; i++) {
6595 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6596 &spareguid) == 0 && spareguid == guid)
6597 return (B_TRUE);
6598 }
6599
6600 return (B_FALSE);
6601 }
6602
6603 /*
6604 * Check if a pool has an active shared spare device.
6605 * Note: reference count of an active spare is 2, as a spare and as a replace
6606 */
6607 static boolean_t
spa_has_active_shared_spare(spa_t * spa)6608 spa_has_active_shared_spare(spa_t *spa)
6609 {
6610 int i, refcnt;
6611 uint64_t pool;
6612 spa_aux_vdev_t *sav = &spa->spa_spares;
6613
6614 for (i = 0; i < sav->sav_count; i++) {
6615 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6616 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6617 refcnt > 2)
6618 return (B_TRUE);
6619 }
6620
6621 return (B_FALSE);
6622 }
6623
6624 /*
6625 * Post a sysevent corresponding to the given event. The 'name' must be one of
6626 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6627 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6628 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6629 * or zdb as real changes.
6630 */
6631 void
spa_event_notify(spa_t * spa,vdev_t * vd,const char * name)6632 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6633 {
6634 #ifdef _KERNEL
6635 sysevent_t *ev;
6636 sysevent_attr_list_t *attr = NULL;
6637 sysevent_value_t value;
6638 sysevent_id_t eid;
6639
6640 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6641 SE_SLEEP);
6642
6643 value.value_type = SE_DATA_TYPE_STRING;
6644 value.value.sv_string = spa_name(spa);
6645 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6646 goto done;
6647
6648 value.value_type = SE_DATA_TYPE_UINT64;
6649 value.value.sv_uint64 = spa_guid(spa);
6650 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6651 goto done;
6652
6653 if (vd) {
6654 value.value_type = SE_DATA_TYPE_UINT64;
6655 value.value.sv_uint64 = vd->vdev_guid;
6656 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6657 SE_SLEEP) != 0)
6658 goto done;
6659
6660 if (vd->vdev_path) {
6661 value.value_type = SE_DATA_TYPE_STRING;
6662 value.value.sv_string = vd->vdev_path;
6663 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6664 &value, SE_SLEEP) != 0)
6665 goto done;
6666 }
6667 }
6668
6669 if (sysevent_attach_attributes(ev, attr) != 0)
6670 goto done;
6671 attr = NULL;
6672
6673 (void) log_sysevent(ev, SE_SLEEP, &eid);
6674
6675 done:
6676 if (attr)
6677 sysevent_free_attr(attr);
6678 sysevent_free(ev);
6679 #endif
6680 }
6681