xref: /freebsd/sys/contrib/openzfs/module/zfs/spa_checkpoint.c (revision e716630d4cf89e69ec3f675ebfceee09f1a85e05)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2017 by Delphix. All rights reserved.
24  */
25 
26 /*
27  * Storage Pool Checkpoint
28  *
29  * A storage pool checkpoint can be thought of as a pool-wide snapshot or
30  * a stable version of extreme rewind that guarantees no blocks from the
31  * checkpointed state will have been overwritten. It remembers the entire
32  * state of the storage pool (e.g. snapshots, dataset names, etc..) from the
33  * point that it was taken and the user can rewind back to that point even if
34  * they applied destructive operations on their datasets or even enabled new
35  * zpool on-disk features. If a pool has a checkpoint that is no longer
36  * needed, the user can discard it.
37  *
38  * == On disk data structures used ==
39  *
40  * - The pool has a new feature flag and a new entry in the MOS. The feature
41  *   flag is set to active when we create the checkpoint and remains active
42  *   until the checkpoint is fully discarded. The entry in the MOS config
43  *   (DMU_POOL_ZPOOL_CHECKPOINT) is populated with the uberblock that
44  *   references the state of the pool when we take the checkpoint. The entry
45  *   remains populated until we start discarding the checkpoint or we rewind
46  *   back to it.
47  *
48  * - Each vdev contains a vdev-wide space map while the pool has a checkpoint,
49  *   which persists until the checkpoint is fully discarded. The space map
50  *   contains entries that have been freed in the current state of the pool
51  *   but we want to keep around in case we decide to rewind to the checkpoint.
52  *   [see vdev_checkpoint_sm]
53  *
54  * - Each metaslab's ms_sm space map behaves the same as without the
55  *   checkpoint, with the only exception being the scenario when we free
56  *   blocks that belong to the checkpoint. In this case, these blocks remain
57  *   ALLOCATED in the metaslab's space map and they are added as FREE in the
58  *   vdev's checkpoint space map.
59  *
60  * - Each uberblock has a field (ub_checkpoint_txg) which holds the txg that
61  *   the uberblock was checkpointed. For normal uberblocks this field is 0.
62  *
63  * == Overview of operations ==
64  *
65  * - To create a checkpoint, we first wait for the current TXG to be synced,
66  *   so we can use the most recently synced uberblock (spa_ubsync) as the
67  *   checkpointed uberblock. Then we use an early synctask to place that
68  *   uberblock in MOS config, increment the feature flag for the checkpoint
69  *   (marking it active), and setting spa_checkpoint_txg (see its use below)
70  *   to the TXG of the checkpointed uberblock. We use an early synctask for
71  *   the aforementioned operations to ensure that no blocks were dirtied
72  *   between the current TXG and the TXG of the checkpointed uberblock
73  *   (e.g the previous txg).
74  *
75  * - When a checkpoint exists, we need to ensure that the blocks that
76  *   belong to the checkpoint are freed but never reused. This means that
77  *   these blocks should never end up in the ms_allocatable or the ms_freeing
78  *   trees of a metaslab. Therefore, whenever there is a checkpoint the new
79  *   ms_checkpointing tree is used in addition to the aforementioned ones.
80  *
81  *   Whenever a block is freed and we find out that it is referenced by the
82  *   checkpoint (we find out by comparing its birth to spa_checkpoint_txg),
83  *   we place it in the ms_checkpointing tree instead of the ms_freeingtree.
84  *   This way, we divide the blocks that are being freed into checkpointed
85  *   and not-checkpointed blocks.
86  *
87  *   In order to persist these frees, we write the extents from the
88  *   ms_freeingtree to the ms_sm as usual, and the extents from the
89  *   ms_checkpointing tree to the vdev_checkpoint_sm. This way, these
90  *   checkpointed extents will remain allocated in the metaslab's ms_sm space
91  *   map, and therefore won't be reused [see metaslab_sync()]. In addition,
92  *   when we discard the checkpoint, we can find the entries that have
93  *   actually been freed in vdev_checkpoint_sm.
94  *   [see spa_checkpoint_discard_thread_sync()]
95  *
96  * - To discard the checkpoint we use an early synctask to delete the
97  *   checkpointed uberblock from the MOS config, set spa_checkpoint_txg to 0,
98  *   and wakeup the discarding zthr thread (an open-context async thread).
99  *   We use an early synctask to ensure that the operation happens before any
100  *   new data end up in the checkpoint's data structures.
101  *
102  *   Once the synctask is done and the discarding zthr is awake, we discard
103  *   the checkpointed data over multiple TXGs by having the zthr prefetching
104  *   entries from vdev_checkpoint_sm and then starting a synctask that places
105  *   them as free blocks into their respective ms_allocatable and ms_sm
106  *   structures.
107  *   [see spa_checkpoint_discard_thread()]
108  *
109  *   When there are no entries left in the vdev_checkpoint_sm of all
110  *   top-level vdevs, a final synctask runs that decrements the feature flag.
111  *
112  * - To rewind to the checkpoint, we first use the current uberblock and
113  *   open the MOS so we can access the checkpointed uberblock from the MOS
114  *   config. After we retrieve the checkpointed uberblock, we use it as the
115  *   current uberblock for the pool by writing it to disk with an updated
116  *   TXG, opening its version of the MOS, and moving on as usual from there.
117  *   [see spa_ld_checkpoint_rewind()]
118  *
119  *   An important note on rewinding to the checkpoint has to do with how we
120  *   handle ZIL blocks. In the scenario of a rewind, we clear out any ZIL
121  *   blocks that have not been claimed by the time we took the checkpoint
122  *   as they should no longer be valid.
123  *   [see comment in zil_claim()]
124  *
125  * == Miscellaneous information ==
126  *
127  * - In the hypothetical event that we take a checkpoint, remove a vdev,
128  *   and attempt to rewind, the rewind would fail as the checkpointed
129  *   uberblock would reference data in the removed device. For this reason
130  *   and others of similar nature, we disallow the following operations that
131  *   can change the config:
132  *   	vdev removal and attach/detach, mirror splitting, and pool reguid.
133  *
134  * - As most of the checkpoint logic is implemented in the SPA and doesn't
135  *   distinguish datasets when it comes to space accounting, having a
136  *   checkpoint can potentially break the boundaries set by dataset
137  *   reservations.
138  */
139 
140 #include <sys/dmu_tx.h>
141 #include <sys/dsl_dir.h>
142 #include <sys/dsl_synctask.h>
143 #include <sys/metaslab_impl.h>
144 #include <sys/spa.h>
145 #include <sys/spa_impl.h>
146 #include <sys/spa_checkpoint.h>
147 #include <sys/vdev_impl.h>
148 #include <sys/zap.h>
149 #include <sys/zfeature.h>
150 
151 /*
152  * The following parameter limits the amount of memory to be used for the
153  * prefetching of the checkpoint space map done on each vdev while
154  * discarding the checkpoint.
155  *
156  * The reason it exists is because top-level vdevs with long checkpoint
157  * space maps can potentially take up a lot of memory depending on the
158  * amount of checkpointed data that has been freed within them while
159  * the pool had a checkpoint.
160  */
161 static uint64_t zfs_spa_discard_memory_limit = 16 * 1024 * 1024;
162 
163 int
spa_checkpoint_get_stats(spa_t * spa,pool_checkpoint_stat_t * pcs)164 spa_checkpoint_get_stats(spa_t *spa, pool_checkpoint_stat_t *pcs)
165 {
166 	if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT))
167 		return (SET_ERROR(ZFS_ERR_NO_CHECKPOINT));
168 
169 	memset(pcs, 0, sizeof (pool_checkpoint_stat_t));
170 
171 	int error = zap_contains(spa_meta_objset(spa),
172 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT);
173 	ASSERT(error == 0 || error == ENOENT);
174 
175 	if (error == ENOENT)
176 		pcs->pcs_state = CS_CHECKPOINT_DISCARDING;
177 	else
178 		pcs->pcs_state = CS_CHECKPOINT_EXISTS;
179 
180 	pcs->pcs_space = spa->spa_checkpoint_info.sci_dspace;
181 	pcs->pcs_start_time = spa->spa_checkpoint_info.sci_timestamp;
182 
183 	return (0);
184 }
185 
186 static void
spa_checkpoint_discard_complete_sync(void * arg,dmu_tx_t * tx)187 spa_checkpoint_discard_complete_sync(void *arg, dmu_tx_t *tx)
188 {
189 	spa_t *spa = arg;
190 
191 	spa->spa_checkpoint_info.sci_timestamp = 0;
192 
193 	spa_feature_decr(spa, SPA_FEATURE_POOL_CHECKPOINT, tx);
194 	spa_notify_waiters(spa);
195 
196 	spa_history_log_internal(spa, "spa discard checkpoint", tx,
197 	    "finished discarding checkpointed state from the pool");
198 }
199 
200 typedef struct spa_checkpoint_discard_sync_callback_arg {
201 	vdev_t *sdc_vd;
202 	uint64_t sdc_txg;
203 	uint64_t sdc_entry_limit;
204 } spa_checkpoint_discard_sync_callback_arg_t;
205 
206 static int
spa_checkpoint_discard_sync_callback(space_map_entry_t * sme,void * arg)207 spa_checkpoint_discard_sync_callback(space_map_entry_t *sme, void *arg)
208 {
209 	spa_checkpoint_discard_sync_callback_arg_t *sdc = arg;
210 	vdev_t *vd = sdc->sdc_vd;
211 	metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
212 	uint64_t end = sme->sme_offset + sme->sme_run;
213 
214 	if (sdc->sdc_entry_limit == 0)
215 		return (SET_ERROR(EINTR));
216 
217 	/*
218 	 * Since the space map is not condensed, we know that
219 	 * none of its entries is crossing the boundaries of
220 	 * its respective metaslab.
221 	 *
222 	 * That said, there is no fundamental requirement that
223 	 * the checkpoint's space map entries should not cross
224 	 * metaslab boundaries. So if needed we could add code
225 	 * that handles metaslab-crossing segments in the future.
226 	 */
227 	VERIFY3U(sme->sme_type, ==, SM_FREE);
228 	VERIFY3U(sme->sme_offset, >=, ms->ms_start);
229 	VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
230 
231 	/*
232 	 * At this point we should not be processing any
233 	 * other frees concurrently, so the lock is technically
234 	 * unnecessary. We use the lock anyway though to
235 	 * potentially save ourselves from future headaches.
236 	 */
237 	mutex_enter(&ms->ms_lock);
238 	if (range_tree_is_empty(ms->ms_freeing))
239 		vdev_dirty(vd, VDD_METASLAB, ms, sdc->sdc_txg);
240 	range_tree_add(ms->ms_freeing, sme->sme_offset, sme->sme_run);
241 	mutex_exit(&ms->ms_lock);
242 
243 	ASSERT3U(vd->vdev_spa->spa_checkpoint_info.sci_dspace, >=,
244 	    sme->sme_run);
245 	ASSERT3U(vd->vdev_stat.vs_checkpoint_space, >=, sme->sme_run);
246 
247 	vd->vdev_spa->spa_checkpoint_info.sci_dspace -= sme->sme_run;
248 	vd->vdev_stat.vs_checkpoint_space -= sme->sme_run;
249 	sdc->sdc_entry_limit--;
250 
251 	return (0);
252 }
253 
254 #ifdef ZFS_DEBUG
255 static void
spa_checkpoint_accounting_verify(spa_t * spa)256 spa_checkpoint_accounting_verify(spa_t *spa)
257 {
258 	vdev_t *rvd = spa->spa_root_vdev;
259 	uint64_t ckpoint_sm_space_sum = 0;
260 	uint64_t vs_ckpoint_space_sum = 0;
261 
262 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
263 		vdev_t *vd = rvd->vdev_child[c];
264 
265 		if (vd->vdev_checkpoint_sm != NULL) {
266 			ckpoint_sm_space_sum +=
267 			    -space_map_allocated(vd->vdev_checkpoint_sm);
268 			vs_ckpoint_space_sum +=
269 			    vd->vdev_stat.vs_checkpoint_space;
270 			ASSERT3U(ckpoint_sm_space_sum, ==,
271 			    vs_ckpoint_space_sum);
272 		} else {
273 			ASSERT0(vd->vdev_stat.vs_checkpoint_space);
274 		}
275 	}
276 	ASSERT3U(spa->spa_checkpoint_info.sci_dspace, ==, ckpoint_sm_space_sum);
277 }
278 #endif
279 
280 static void
spa_checkpoint_discard_thread_sync(void * arg,dmu_tx_t * tx)281 spa_checkpoint_discard_thread_sync(void *arg, dmu_tx_t *tx)
282 {
283 	vdev_t *vd = arg;
284 	int error;
285 
286 	/*
287 	 * The space map callback is applied only to non-debug entries.
288 	 * Because the number of debug entries is less or equal to the
289 	 * number of non-debug entries, we want to ensure that we only
290 	 * read what we prefetched from open-context.
291 	 *
292 	 * Thus, we set the maximum entries that the space map callback
293 	 * will be applied to be half the entries that could fit in the
294 	 * imposed memory limit.
295 	 *
296 	 * Note that since this is a conservative estimate we also
297 	 * assume the worst case scenario in our computation where each
298 	 * entry is two-word.
299 	 */
300 	uint64_t max_entry_limit =
301 	    (zfs_spa_discard_memory_limit / (2 * sizeof (uint64_t))) >> 1;
302 
303 	/*
304 	 * Iterate from the end of the space map towards the beginning,
305 	 * placing its entries on ms_freeing and removing them from the
306 	 * space map. The iteration stops if one of the following
307 	 * conditions is true:
308 	 *
309 	 * 1] We reached the beginning of the space map. At this point
310 	 *    the space map should be completely empty and
311 	 *    space_map_incremental_destroy should have returned 0.
312 	 *    The next step would be to free and close the space map
313 	 *    and remove its entry from its vdev's top zap. This allows
314 	 *    spa_checkpoint_discard_thread() to move on to the next vdev.
315 	 *
316 	 * 2] We reached the memory limit (amount of memory used to hold
317 	 *    space map entries in memory) and space_map_incremental_destroy
318 	 *    returned EINTR. This means that there are entries remaining
319 	 *    in the space map that will be cleared in a future invocation
320 	 *    of this function by spa_checkpoint_discard_thread().
321 	 */
322 	spa_checkpoint_discard_sync_callback_arg_t sdc;
323 	sdc.sdc_vd = vd;
324 	sdc.sdc_txg = tx->tx_txg;
325 	sdc.sdc_entry_limit = max_entry_limit;
326 
327 	uint64_t words_before =
328 	    space_map_length(vd->vdev_checkpoint_sm) / sizeof (uint64_t);
329 
330 	error = space_map_incremental_destroy(vd->vdev_checkpoint_sm,
331 	    spa_checkpoint_discard_sync_callback, &sdc, tx);
332 
333 	uint64_t words_after =
334 	    space_map_length(vd->vdev_checkpoint_sm) / sizeof (uint64_t);
335 
336 #ifdef ZFS_DEBUG
337 	spa_checkpoint_accounting_verify(vd->vdev_spa);
338 #endif
339 
340 	zfs_dbgmsg("discarding checkpoint: txg %llu, vdev id %lld, "
341 	    "deleted %llu words - %llu words are left",
342 	    (u_longlong_t)tx->tx_txg, (longlong_t)vd->vdev_id,
343 	    (u_longlong_t)(words_before - words_after),
344 	    (u_longlong_t)words_after);
345 
346 	if (error != EINTR) {
347 		if (error != 0) {
348 			zfs_panic_recover("zfs: error %lld was returned "
349 			    "while incrementally destroying the checkpoint "
350 			    "space map of vdev %llu\n",
351 			    (longlong_t)error, vd->vdev_id);
352 		}
353 		ASSERT0(words_after);
354 		ASSERT0(space_map_allocated(vd->vdev_checkpoint_sm));
355 		ASSERT0(space_map_length(vd->vdev_checkpoint_sm));
356 
357 		space_map_free(vd->vdev_checkpoint_sm, tx);
358 		space_map_close(vd->vdev_checkpoint_sm);
359 		vd->vdev_checkpoint_sm = NULL;
360 
361 		VERIFY0(zap_remove(spa_meta_objset(vd->vdev_spa),
362 		    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, tx));
363 	}
364 }
365 
366 static boolean_t
spa_checkpoint_discard_is_done(spa_t * spa)367 spa_checkpoint_discard_is_done(spa_t *spa)
368 {
369 	vdev_t *rvd = spa->spa_root_vdev;
370 
371 	ASSERT(!spa_has_checkpoint(spa));
372 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT));
373 
374 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
375 		if (rvd->vdev_child[c]->vdev_checkpoint_sm != NULL)
376 			return (B_FALSE);
377 		ASSERT0(rvd->vdev_child[c]->vdev_stat.vs_checkpoint_space);
378 	}
379 
380 	return (B_TRUE);
381 }
382 
383 boolean_t
spa_checkpoint_discard_thread_check(void * arg,zthr_t * zthr)384 spa_checkpoint_discard_thread_check(void *arg, zthr_t *zthr)
385 {
386 	(void) zthr;
387 	spa_t *spa = arg;
388 
389 	if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT))
390 		return (B_FALSE);
391 
392 	if (spa_has_checkpoint(spa))
393 		return (B_FALSE);
394 
395 	return (B_TRUE);
396 }
397 
398 void
spa_checkpoint_discard_thread(void * arg,zthr_t * zthr)399 spa_checkpoint_discard_thread(void *arg, zthr_t *zthr)
400 {
401 	spa_t *spa = arg;
402 	vdev_t *rvd = spa->spa_root_vdev;
403 
404 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
405 		vdev_t *vd = rvd->vdev_child[c];
406 
407 		while (vd->vdev_checkpoint_sm != NULL) {
408 			space_map_t *checkpoint_sm = vd->vdev_checkpoint_sm;
409 			int numbufs;
410 			dmu_buf_t **dbp;
411 
412 			if (zthr_iscancelled(zthr))
413 				return;
414 
415 			ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
416 
417 			uint64_t size = MIN(space_map_length(checkpoint_sm),
418 			    zfs_spa_discard_memory_limit);
419 			uint64_t offset =
420 			    space_map_length(checkpoint_sm) - size;
421 
422 			/*
423 			 * Ensure that the part of the space map that will
424 			 * be destroyed by the synctask, is prefetched in
425 			 * memory before the synctask runs.
426 			 */
427 			int error = dmu_buf_hold_array_by_bonus(
428 			    checkpoint_sm->sm_dbuf, offset, size,
429 			    B_TRUE, FTAG, &numbufs, &dbp);
430 			if (error != 0) {
431 				zfs_panic_recover("zfs: error %d was returned "
432 				    "while prefetching checkpoint space map "
433 				    "entries of vdev %llu\n",
434 				    error, vd->vdev_id);
435 			}
436 
437 			VERIFY0(dsl_sync_task(spa->spa_name, NULL,
438 			    spa_checkpoint_discard_thread_sync, vd,
439 			    0, ZFS_SPACE_CHECK_NONE));
440 
441 			dmu_buf_rele_array(dbp, numbufs, FTAG);
442 		}
443 	}
444 
445 	VERIFY(spa_checkpoint_discard_is_done(spa));
446 	VERIFY0(spa->spa_checkpoint_info.sci_dspace);
447 	VERIFY0(dsl_sync_task(spa->spa_name, NULL,
448 	    spa_checkpoint_discard_complete_sync, spa,
449 	    0, ZFS_SPACE_CHECK_NONE));
450 }
451 
452 
453 static int
spa_checkpoint_check(void * arg,dmu_tx_t * tx)454 spa_checkpoint_check(void *arg, dmu_tx_t *tx)
455 {
456 	(void) arg;
457 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
458 
459 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_POOL_CHECKPOINT))
460 		return (SET_ERROR(ENOTSUP));
461 
462 	if (!spa_top_vdevs_spacemap_addressable(spa))
463 		return (SET_ERROR(ZFS_ERR_VDEV_TOO_BIG));
464 
465 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
466 		return (SET_ERROR(ZFS_ERR_DEVRM_IN_PROGRESS));
467 
468 	if (spa->spa_raidz_expand != NULL)
469 		return (SET_ERROR(ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS));
470 
471 	if (spa->spa_checkpoint_txg != 0)
472 		return (SET_ERROR(ZFS_ERR_CHECKPOINT_EXISTS));
473 
474 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT))
475 		return (SET_ERROR(ZFS_ERR_DISCARDING_CHECKPOINT));
476 
477 	return (0);
478 }
479 
480 static void
spa_checkpoint_sync(void * arg,dmu_tx_t * tx)481 spa_checkpoint_sync(void *arg, dmu_tx_t *tx)
482 {
483 	(void) arg;
484 	dsl_pool_t *dp = dmu_tx_pool(tx);
485 	spa_t *spa = dp->dp_spa;
486 	uberblock_t checkpoint = spa->spa_ubsync;
487 
488 	/*
489 	 * At this point, there should not be a checkpoint in the MOS.
490 	 */
491 	ASSERT3U(zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
492 	    DMU_POOL_ZPOOL_CHECKPOINT), ==, ENOENT);
493 
494 	ASSERT0(spa->spa_checkpoint_info.sci_timestamp);
495 	ASSERT0(spa->spa_checkpoint_info.sci_dspace);
496 
497 	/*
498 	 * Since the checkpointed uberblock is the one that just got synced
499 	 * (we use spa_ubsync), its txg must be equal to the txg number of
500 	 * the txg we are syncing, minus 1.
501 	 */
502 	ASSERT3U(checkpoint.ub_txg, ==, spa->spa_syncing_txg - 1);
503 
504 	/*
505 	 * Once the checkpoint is in place, we need to ensure that none of
506 	 * its blocks will be marked for reuse after it has been freed.
507 	 * When there is a checkpoint and a block is freed, we compare its
508 	 * birth txg to the txg of the checkpointed uberblock to see if the
509 	 * block is part of the checkpoint or not. Therefore, we have to set
510 	 * spa_checkpoint_txg before any frees happen in this txg (which is
511 	 * why this is done as an early_synctask as explained in the comment
512 	 * in spa_checkpoint()).
513 	 */
514 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
515 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
516 
517 	checkpoint.ub_checkpoint_txg = checkpoint.ub_txg;
518 	VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
519 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT,
520 	    sizeof (uint64_t), sizeof (uberblock_t) / sizeof (uint64_t),
521 	    &checkpoint, tx));
522 
523 	/*
524 	 * Increment the feature refcount and thus activate the feature.
525 	 * Note that the feature will be deactivated when we've
526 	 * completely discarded all checkpointed state (both vdev
527 	 * space maps and uberblock).
528 	 */
529 	spa_feature_incr(spa, SPA_FEATURE_POOL_CHECKPOINT, tx);
530 
531 	spa_history_log_internal(spa, "spa checkpoint", tx,
532 	    "checkpointed uberblock txg=%llu", (u_longlong_t)checkpoint.ub_txg);
533 }
534 
535 /*
536  * Create a checkpoint for the pool.
537  */
538 int
spa_checkpoint(const char * pool)539 spa_checkpoint(const char *pool)
540 {
541 	int error;
542 	spa_t *spa;
543 
544 	error = spa_open(pool, &spa, FTAG);
545 	if (error != 0)
546 		return (error);
547 
548 	mutex_enter(&spa->spa_vdev_top_lock);
549 
550 	/*
551 	 * Wait for current syncing txg to finish so the latest synced
552 	 * uberblock (spa_ubsync) has all the changes that we expect
553 	 * to see if we were to revert later to the checkpoint. In other
554 	 * words we want the checkpointed uberblock to include/reference
555 	 * all the changes that were pending at the time that we issued
556 	 * the checkpoint command.
557 	 */
558 	txg_wait_synced(spa_get_dsl(spa), 0);
559 
560 	/*
561 	 * As the checkpointed uberblock references blocks from the previous
562 	 * txg (spa_ubsync) we want to ensure that are not freeing any of
563 	 * these blocks in the same txg that the following synctask will
564 	 * run. Thus, we run it as an early synctask, so the dirty changes
565 	 * that are synced to disk afterwards during zios and other synctasks
566 	 * do not reuse checkpointed blocks.
567 	 */
568 	error = dsl_early_sync_task(pool, spa_checkpoint_check,
569 	    spa_checkpoint_sync, NULL, 0, ZFS_SPACE_CHECK_NORMAL);
570 
571 	mutex_exit(&spa->spa_vdev_top_lock);
572 
573 	spa_close(spa, FTAG);
574 	return (error);
575 }
576 
577 static int
spa_checkpoint_discard_check(void * arg,dmu_tx_t * tx)578 spa_checkpoint_discard_check(void *arg, dmu_tx_t *tx)
579 {
580 	(void) arg;
581 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
582 
583 	if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT))
584 		return (SET_ERROR(ZFS_ERR_NO_CHECKPOINT));
585 
586 	if (spa->spa_checkpoint_txg == 0)
587 		return (SET_ERROR(ZFS_ERR_DISCARDING_CHECKPOINT));
588 
589 	VERIFY0(zap_contains(spa_meta_objset(spa),
590 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT));
591 
592 	return (0);
593 }
594 
595 static void
spa_checkpoint_discard_sync(void * arg,dmu_tx_t * tx)596 spa_checkpoint_discard_sync(void *arg, dmu_tx_t *tx)
597 {
598 	(void) arg;
599 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
600 
601 	VERIFY0(zap_remove(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
602 	    DMU_POOL_ZPOOL_CHECKPOINT, tx));
603 
604 	spa->spa_checkpoint_txg = 0;
605 
606 	zthr_wakeup(spa->spa_checkpoint_discard_zthr);
607 
608 	spa_history_log_internal(spa, "spa discard checkpoint", tx,
609 	    "started discarding checkpointed state from the pool");
610 }
611 
612 /*
613  * Discard the checkpoint from a pool.
614  */
615 int
spa_checkpoint_discard(const char * pool)616 spa_checkpoint_discard(const char *pool)
617 {
618 	/*
619 	 * Similarly to spa_checkpoint(), we want our synctask to run
620 	 * before any pending dirty data are written to disk so they
621 	 * won't end up in the checkpoint's data structures (e.g.
622 	 * ms_checkpointing and vdev_checkpoint_sm) and re-create any
623 	 * space maps that the discarding open-context thread has
624 	 * deleted.
625 	 * [see spa_discard_checkpoint_sync and spa_discard_checkpoint_thread]
626 	 */
627 	return (dsl_early_sync_task(pool, spa_checkpoint_discard_check,
628 	    spa_checkpoint_discard_sync, NULL, 0,
629 	    ZFS_SPACE_CHECK_DISCARD_CHECKPOINT));
630 }
631 
632 EXPORT_SYMBOL(spa_checkpoint_get_stats);
633 EXPORT_SYMBOL(spa_checkpoint_discard_thread);
634 EXPORT_SYMBOL(spa_checkpoint_discard_thread_check);
635 
636 /* BEGIN CSTYLED */
637 ZFS_MODULE_PARAM(zfs_spa, zfs_spa_, discard_memory_limit, U64, ZMOD_RW,
638 	"Limit for memory used in prefetching the checkpoint space map done "
639 	"on each vdev while discarding the checkpoint");
640 /* END CSTYLED */
641