xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision d0abb9a6399accc9053e2808052be00a6754ecef)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
26  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  * Copyright 2013 Saso Kiselkov. All rights reserved.
29  * Copyright (c) 2014 Integros [integros.com]
30  * Copyright 2016 Toomas Soome <tsoome@me.com>
31  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
32  * Copyright 2018 Joyent, Inc.
33  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
34  * Copyright 2017 Joyent, Inc.
35  * Copyright (c) 2017, Intel Corporation.
36  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
37  * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
38  * Copyright (c) 2023, 2024, Klara Inc.
39  */
40 
41 /*
42  * SPA: Storage Pool Allocator
43  *
44  * This file contains all the routines used when modifying on-disk SPA state.
45  * This includes opening, importing, destroying, exporting a pool, and syncing a
46  * pool.
47  */
48 
49 #include <sys/zfs_context.h>
50 #include <sys/fm/fs/zfs.h>
51 #include <sys/spa_impl.h>
52 #include <sys/zio.h>
53 #include <sys/zio_checksum.h>
54 #include <sys/dmu.h>
55 #include <sys/dmu_tx.h>
56 #include <sys/zap.h>
57 #include <sys/zil.h>
58 #include <sys/brt.h>
59 #include <sys/ddt.h>
60 #include <sys/vdev_impl.h>
61 #include <sys/vdev_removal.h>
62 #include <sys/vdev_indirect_mapping.h>
63 #include <sys/vdev_indirect_births.h>
64 #include <sys/vdev_initialize.h>
65 #include <sys/vdev_rebuild.h>
66 #include <sys/vdev_trim.h>
67 #include <sys/vdev_disk.h>
68 #include <sys/vdev_raidz.h>
69 #include <sys/vdev_draid.h>
70 #include <sys/metaslab.h>
71 #include <sys/metaslab_impl.h>
72 #include <sys/mmp.h>
73 #include <sys/uberblock_impl.h>
74 #include <sys/txg.h>
75 #include <sys/avl.h>
76 #include <sys/bpobj.h>
77 #include <sys/dmu_traverse.h>
78 #include <sys/dmu_objset.h>
79 #include <sys/unique.h>
80 #include <sys/dsl_pool.h>
81 #include <sys/dsl_dataset.h>
82 #include <sys/dsl_dir.h>
83 #include <sys/dsl_prop.h>
84 #include <sys/dsl_synctask.h>
85 #include <sys/fs/zfs.h>
86 #include <sys/arc.h>
87 #include <sys/callb.h>
88 #include <sys/systeminfo.h>
89 #include <sys/zfs_ioctl.h>
90 #include <sys/dsl_scan.h>
91 #include <sys/zfeature.h>
92 #include <sys/dsl_destroy.h>
93 #include <sys/zvol.h>
94 
95 #ifdef	_KERNEL
96 #include <sys/fm/protocol.h>
97 #include <sys/fm/util.h>
98 #include <sys/callb.h>
99 #include <sys/zone.h>
100 #include <sys/vmsystm.h>
101 #endif	/* _KERNEL */
102 
103 #include "zfs_crrd.h"
104 #include "zfs_prop.h"
105 #include "zfs_comutil.h"
106 #include <cityhash.h>
107 
108 /*
109  * spa_thread() existed on Illumos as a parent thread for the various worker
110  * threads that actually run the pool, as a way to both reference the entire
111  * pool work as a single object, and to share properties like scheduling
112  * options. It has not yet been adapted to Linux or FreeBSD. This define is
113  * used to mark related parts of the code to make things easier for the reader,
114  * and to compile this code out. It can be removed when someone implements it,
115  * moves it to some Illumos-specific place, or removes it entirely.
116  */
117 #undef HAVE_SPA_THREAD
118 
119 /*
120  * The "System Duty Cycle" scheduling class is an Illumos feature to help
121  * prevent CPU-intensive kernel threads from affecting latency on interactive
122  * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is
123  * gated behind a define. On Illumos SDC depends on spa_thread(), but
124  * spa_thread() also has other uses, so this is a separate define.
125  */
126 #undef HAVE_SYSDC
127 
128 /*
129  * The interval, in seconds, at which failed configuration cache file writes
130  * should be retried.
131  */
132 int zfs_ccw_retry_interval = 300;
133 
134 typedef enum zti_modes {
135 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
136 	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
137 	ZTI_MODE_SYNC,			/* sync thread assigned */
138 	ZTI_MODE_NULL,			/* don't create a taskq */
139 	ZTI_NMODES
140 } zti_modes_t;
141 
142 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
143 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
144 #define	ZTI_SCALE	{ ZTI_MODE_SCALE, 0, 1 }
145 #define	ZTI_SYNC	{ ZTI_MODE_SYNC, 0, 1 }
146 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
147 
148 #define	ZTI_N(n)	ZTI_P(n, 1)
149 #define	ZTI_ONE		ZTI_N(1)
150 
151 typedef struct zio_taskq_info {
152 	zti_modes_t zti_mode;
153 	uint_t zti_value;
154 	uint_t zti_count;
155 } zio_taskq_info_t;
156 
157 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
158 	"iss", "iss_h", "int", "int_h"
159 };
160 
161 /*
162  * This table defines the taskq settings for each ZFS I/O type. When
163  * initializing a pool, we use this table to create an appropriately sized
164  * taskq. Some operations are low volume and therefore have a small, static
165  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
166  * macros. Other operations process a large amount of data; the ZTI_SCALE
167  * macro causes us to create a taskq oriented for throughput. Some operations
168  * are so high frequency and short-lived that the taskq itself can become a
169  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
170  * additional degree of parallelism specified by the number of threads per-
171  * taskq and the number of taskqs; when dispatching an event in this case, the
172  * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs
173  * that scales with the number of CPUs.
174  *
175  * The different taskq priorities are to handle the different contexts (issue
176  * and interrupt) and then to reserve threads for high priority I/Os that
177  * need to be handled with minimum delay.  Illumos taskq has unfair TQ_FRONT
178  * implementation, so separate high priority threads are used there.
179  */
180 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
181 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
182 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
183 	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* READ */
184 #ifdef illumos
185 	{ ZTI_SYNC,	ZTI_N(5),	ZTI_SCALE,	ZTI_N(5) }, /* WRITE */
186 #else
187 	{ ZTI_SYNC,	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* WRITE */
188 #endif
189 	{ ZTI_SCALE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
190 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
191 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FLUSH */
192 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
193 };
194 
195 static void spa_sync_version(void *arg, dmu_tx_t *tx);
196 static void spa_sync_props(void *arg, dmu_tx_t *tx);
197 static boolean_t spa_has_active_shared_spare(spa_t *spa);
198 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
199     const char **ereport);
200 static void spa_vdev_resilver_done(spa_t *spa);
201 
202 /*
203  * Percentage of all CPUs that can be used by the metaslab preload taskq.
204  */
205 static uint_t metaslab_preload_pct = 50;
206 
207 static uint_t	zio_taskq_batch_pct = 80;	  /* 1 thread per cpu in pset */
208 static uint_t	zio_taskq_batch_tpq;		  /* threads per taskq */
209 
210 #ifdef HAVE_SYSDC
211 static const boolean_t	zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
212 static const uint_t	zio_taskq_basedc = 80;	  /* base duty cycle */
213 #endif
214 
215 #ifdef HAVE_SPA_THREAD
216 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
217 #endif
218 
219 static uint_t	zio_taskq_write_tpq = 16;
220 
221 /*
222  * Report any spa_load_verify errors found, but do not fail spa_load.
223  * This is used by zdb to analyze non-idle pools.
224  */
225 boolean_t	spa_load_verify_dryrun = B_FALSE;
226 
227 /*
228  * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
229  * This is used by zdb for spacemaps verification.
230  */
231 boolean_t	spa_mode_readable_spacemaps = B_FALSE;
232 
233 /*
234  * This (illegal) pool name is used when temporarily importing a spa_t in order
235  * to get the vdev stats associated with the imported devices.
236  */
237 #define	TRYIMPORT_NAME	"$import"
238 
239 /*
240  * For debugging purposes: print out vdev tree during pool import.
241  */
242 static int		spa_load_print_vdev_tree = B_FALSE;
243 
244 /*
245  * A non-zero value for zfs_max_missing_tvds means that we allow importing
246  * pools with missing top-level vdevs. This is strictly intended for advanced
247  * pool recovery cases since missing data is almost inevitable. Pools with
248  * missing devices can only be imported read-only for safety reasons, and their
249  * fail-mode will be automatically set to "continue".
250  *
251  * With 1 missing vdev we should be able to import the pool and mount all
252  * datasets. User data that was not modified after the missing device has been
253  * added should be recoverable. This means that snapshots created prior to the
254  * addition of that device should be completely intact.
255  *
256  * With 2 missing vdevs, some datasets may fail to mount since there are
257  * dataset statistics that are stored as regular metadata. Some data might be
258  * recoverable if those vdevs were added recently.
259  *
260  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
261  * may be missing entirely. Chances of data recovery are very low. Note that
262  * there are also risks of performing an inadvertent rewind as we might be
263  * missing all the vdevs with the latest uberblocks.
264  */
265 uint64_t	zfs_max_missing_tvds = 0;
266 
267 /*
268  * The parameters below are similar to zfs_max_missing_tvds but are only
269  * intended for a preliminary open of the pool with an untrusted config which
270  * might be incomplete or out-dated.
271  *
272  * We are more tolerant for pools opened from a cachefile since we could have
273  * an out-dated cachefile where a device removal was not registered.
274  * We could have set the limit arbitrarily high but in the case where devices
275  * are really missing we would want to return the proper error codes; we chose
276  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
277  * and we get a chance to retrieve the trusted config.
278  */
279 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
280 
281 /*
282  * In the case where config was assembled by scanning device paths (/dev/dsks
283  * by default) we are less tolerant since all the existing devices should have
284  * been detected and we want spa_load to return the right error codes.
285  */
286 uint64_t	zfs_max_missing_tvds_scan = 0;
287 
288 /*
289  * Debugging aid that pauses spa_sync() towards the end.
290  */
291 static const boolean_t	zfs_pause_spa_sync = B_FALSE;
292 
293 /*
294  * Variables to indicate the livelist condense zthr func should wait at certain
295  * points for the livelist to be removed - used to test condense/destroy races
296  */
297 static int zfs_livelist_condense_zthr_pause = 0;
298 static int zfs_livelist_condense_sync_pause = 0;
299 
300 /*
301  * Variables to track whether or not condense cancellation has been
302  * triggered in testing.
303  */
304 static int zfs_livelist_condense_sync_cancel = 0;
305 static int zfs_livelist_condense_zthr_cancel = 0;
306 
307 /*
308  * Variable to track whether or not extra ALLOC blkptrs were added to a
309  * livelist entry while it was being condensed (caused by the way we track
310  * remapped blkptrs in dbuf_remap_impl)
311  */
312 static int zfs_livelist_condense_new_alloc = 0;
313 
314 /*
315  * Time variable to decide how often the txg should be added into the
316  * database (in seconds).
317  * The smallest available resolution is in minutes, which means an update occurs
318  * each time we reach `spa_note_txg_time` and the txg has changed. We provide
319  * a 256-slot ring buffer for minute-level resolution. The number is limited by
320  * the size of the structure we use and the maximum amount of bytes we can write
321  * into ZAP. Setting `spa_note_txg_time` to 10 minutes results in approximately
322  * 144 records per day. Given the 256 slots, this provides roughly 1.5 days of
323  * high-resolution data.
324  *
325  * The user can decrease `spa_note_txg_time` to increase resolution within
326  * a day, at the cost of retaining fewer days of data. Alternatively, increasing
327  * the interval allows storing data over a longer period, but with lower
328  * frequency.
329  *
330  * This parameter does not affect the daily or monthly databases, as those only
331  * store one record per day and per month, respectively.
332  */
333 static uint_t spa_note_txg_time = 10 * 60;
334 
335 /*
336  * How often flush txg database to a disk (in seconds).
337  * We flush data every time we write to it, making it the most reliable option.
338  * Since this happens every 10 minutes, it shouldn't introduce any noticeable
339  * overhead for the system. In case of failure, we will always have an
340  * up-to-date version of the database.
341  *
342  * The user can adjust the flush interval to a lower value, but it probably
343  * doesn't make sense to flush more often than the database is updated.
344  * The user can also increase the interval if they're concerned about the
345  * performance of writing the entire database to disk.
346  */
347 static uint_t spa_flush_txg_time = 10 * 60;
348 
349 /*
350  * ==========================================================================
351  * SPA properties routines
352  * ==========================================================================
353  */
354 
355 /*
356  * Add a (source=src, propname=propval) list to an nvlist.
357  */
358 static void
spa_prop_add_list(nvlist_t * nvl,zpool_prop_t prop,const char * strval,uint64_t intval,zprop_source_t src)359 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
360     uint64_t intval, zprop_source_t src)
361 {
362 	const char *propname = zpool_prop_to_name(prop);
363 	nvlist_t *propval;
364 
365 	propval = fnvlist_alloc();
366 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
367 
368 	if (strval != NULL)
369 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
370 	else
371 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
372 
373 	fnvlist_add_nvlist(nvl, propname, propval);
374 	nvlist_free(propval);
375 }
376 
377 static int
spa_prop_add(spa_t * spa,const char * propname,nvlist_t * outnvl)378 spa_prop_add(spa_t *spa, const char *propname, nvlist_t *outnvl)
379 {
380 	zpool_prop_t prop = zpool_name_to_prop(propname);
381 	zprop_source_t src = ZPROP_SRC_NONE;
382 	uint64_t intval;
383 	int err;
384 
385 	/*
386 	 * NB: Not all properties lookups via this API require
387 	 * the spa props lock, so they must explicitly grab it here.
388 	 */
389 	switch (prop) {
390 	case ZPOOL_PROP_DEDUPCACHED:
391 		err = ddt_get_pool_dedup_cached(spa, &intval);
392 		if (err != 0)
393 			return (SET_ERROR(err));
394 		break;
395 	default:
396 		return (SET_ERROR(EINVAL));
397 	}
398 
399 	spa_prop_add_list(outnvl, prop, NULL, intval, src);
400 
401 	return (0);
402 }
403 
404 int
spa_prop_get_nvlist(spa_t * spa,char ** props,unsigned int n_props,nvlist_t * outnvl)405 spa_prop_get_nvlist(spa_t *spa, char **props, unsigned int n_props,
406     nvlist_t *outnvl)
407 {
408 	int err = 0;
409 
410 	if (props == NULL)
411 		return (0);
412 
413 	for (unsigned int i = 0; i < n_props && err == 0; i++) {
414 		err = spa_prop_add(spa, props[i], outnvl);
415 	}
416 
417 	return (err);
418 }
419 
420 /*
421  * Add a user property (source=src, propname=propval) to an nvlist.
422  */
423 static void
spa_prop_add_user(nvlist_t * nvl,const char * propname,char * strval,zprop_source_t src)424 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
425     zprop_source_t src)
426 {
427 	nvlist_t *propval;
428 
429 	VERIFY0(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP));
430 	VERIFY0(nvlist_add_uint64(propval, ZPROP_SOURCE, src));
431 	VERIFY0(nvlist_add_string(propval, ZPROP_VALUE, strval));
432 	VERIFY0(nvlist_add_nvlist(nvl, propname, propval));
433 	nvlist_free(propval);
434 }
435 
436 /*
437  * Get property values from the spa configuration.
438  */
439 static void
spa_prop_get_config(spa_t * spa,nvlist_t * nv)440 spa_prop_get_config(spa_t *spa, nvlist_t *nv)
441 {
442 	vdev_t *rvd = spa->spa_root_vdev;
443 	dsl_pool_t *pool = spa->spa_dsl_pool;
444 	uint64_t size, alloc, cap, version;
445 	const zprop_source_t src = ZPROP_SRC_NONE;
446 	spa_config_dirent_t *dp;
447 	metaslab_class_t *mc = spa_normal_class(spa);
448 
449 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
450 
451 	if (rvd != NULL) {
452 		alloc = metaslab_class_get_alloc(mc);
453 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
454 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
455 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
456 		alloc += metaslab_class_get_alloc(
457 		    spa_special_embedded_log_class(spa));
458 
459 		size = metaslab_class_get_space(mc);
460 		size += metaslab_class_get_space(spa_special_class(spa));
461 		size += metaslab_class_get_space(spa_dedup_class(spa));
462 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
463 		size += metaslab_class_get_space(
464 		    spa_special_embedded_log_class(spa));
465 
466 		spa_prop_add_list(nv, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
467 		spa_prop_add_list(nv, ZPOOL_PROP_SIZE, NULL, size, src);
468 		spa_prop_add_list(nv, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
469 		spa_prop_add_list(nv, ZPOOL_PROP_FREE, NULL,
470 		    size - alloc, src);
471 		spa_prop_add_list(nv, ZPOOL_PROP_CHECKPOINT, NULL,
472 		    spa->spa_checkpoint_info.sci_dspace, src);
473 
474 		spa_prop_add_list(nv, ZPOOL_PROP_FRAGMENTATION, NULL,
475 		    metaslab_class_fragmentation(mc), src);
476 		spa_prop_add_list(nv, ZPOOL_PROP_EXPANDSZ, NULL,
477 		    metaslab_class_expandable_space(mc), src);
478 		spa_prop_add_list(nv, ZPOOL_PROP_READONLY, NULL,
479 		    (spa_mode(spa) == SPA_MODE_READ), src);
480 
481 		cap = (size == 0) ? 0 : (alloc * 100 / size);
482 		spa_prop_add_list(nv, ZPOOL_PROP_CAPACITY, NULL, cap, src);
483 
484 		spa_prop_add_list(nv, ZPOOL_PROP_DEDUPRATIO, NULL,
485 		    ddt_get_pool_dedup_ratio(spa), src);
486 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONEUSED, NULL,
487 		    brt_get_used(spa), src);
488 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONESAVED, NULL,
489 		    brt_get_saved(spa), src);
490 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONERATIO, NULL,
491 		    brt_get_ratio(spa), src);
492 
493 		spa_prop_add_list(nv, ZPOOL_PROP_DEDUP_TABLE_SIZE, NULL,
494 		    ddt_get_ddt_dsize(spa), src);
495 		spa_prop_add_list(nv, ZPOOL_PROP_HEALTH, NULL,
496 		    rvd->vdev_state, src);
497 		spa_prop_add_list(nv, ZPOOL_PROP_LAST_SCRUBBED_TXG, NULL,
498 		    spa_get_last_scrubbed_txg(spa), src);
499 
500 		version = spa_version(spa);
501 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
502 			spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
503 			    version, ZPROP_SRC_DEFAULT);
504 		} else {
505 			spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
506 			    version, ZPROP_SRC_LOCAL);
507 		}
508 		spa_prop_add_list(nv, ZPOOL_PROP_LOAD_GUID,
509 		    NULL, spa_load_guid(spa), src);
510 	}
511 
512 	if (pool != NULL) {
513 		/*
514 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
515 		 * when opening pools before this version freedir will be NULL.
516 		 */
517 		if (pool->dp_free_dir != NULL) {
518 			spa_prop_add_list(nv, ZPOOL_PROP_FREEING, NULL,
519 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
520 			    src);
521 		} else {
522 			spa_prop_add_list(nv, ZPOOL_PROP_FREEING,
523 			    NULL, 0, src);
524 		}
525 
526 		if (pool->dp_leak_dir != NULL) {
527 			spa_prop_add_list(nv, ZPOOL_PROP_LEAKED, NULL,
528 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
529 			    src);
530 		} else {
531 			spa_prop_add_list(nv, ZPOOL_PROP_LEAKED,
532 			    NULL, 0, src);
533 		}
534 	}
535 
536 	spa_prop_add_list(nv, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
537 
538 	if (spa->spa_comment != NULL) {
539 		spa_prop_add_list(nv, ZPOOL_PROP_COMMENT, spa->spa_comment,
540 		    0, ZPROP_SRC_LOCAL);
541 	}
542 
543 	if (spa->spa_compatibility != NULL) {
544 		spa_prop_add_list(nv, ZPOOL_PROP_COMPATIBILITY,
545 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
546 	}
547 
548 	if (spa->spa_root != NULL)
549 		spa_prop_add_list(nv, ZPOOL_PROP_ALTROOT, spa->spa_root,
550 		    0, ZPROP_SRC_LOCAL);
551 
552 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
553 		spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
554 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
555 	} else {
556 		spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
557 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
558 	}
559 
560 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
561 		spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
562 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
563 	} else {
564 		spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
565 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
566 	}
567 
568 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
569 		if (dp->scd_path == NULL) {
570 			spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
571 			    "none", 0, ZPROP_SRC_LOCAL);
572 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
573 			spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
574 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
575 		}
576 	}
577 }
578 
579 /*
580  * Get zpool property values.
581  */
582 int
spa_prop_get(spa_t * spa,nvlist_t * nv)583 spa_prop_get(spa_t *spa, nvlist_t *nv)
584 {
585 	objset_t *mos = spa->spa_meta_objset;
586 	zap_cursor_t zc;
587 	zap_attribute_t *za;
588 	dsl_pool_t *dp;
589 	int err = 0;
590 
591 	dp = spa_get_dsl(spa);
592 	dsl_pool_config_enter(dp, FTAG);
593 	za = zap_attribute_alloc();
594 	mutex_enter(&spa->spa_props_lock);
595 
596 	/*
597 	 * Get properties from the spa config.
598 	 */
599 	spa_prop_get_config(spa, nv);
600 
601 	/* If no pool property object, no more prop to get. */
602 	if (mos == NULL || spa->spa_pool_props_object == 0)
603 		goto out;
604 
605 	/*
606 	 * Get properties from the MOS pool property object.
607 	 */
608 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
609 	    (err = zap_cursor_retrieve(&zc, za)) == 0;
610 	    zap_cursor_advance(&zc)) {
611 		uint64_t intval = 0;
612 		char *strval = NULL;
613 		zprop_source_t src = ZPROP_SRC_DEFAULT;
614 		zpool_prop_t prop;
615 
616 		if ((prop = zpool_name_to_prop(za->za_name)) ==
617 		    ZPOOL_PROP_INVAL && !zfs_prop_user(za->za_name))
618 			continue;
619 
620 		switch (za->za_integer_length) {
621 		case 8:
622 			/* integer property */
623 			if (za->za_first_integer !=
624 			    zpool_prop_default_numeric(prop))
625 				src = ZPROP_SRC_LOCAL;
626 
627 			if (prop == ZPOOL_PROP_BOOTFS) {
628 				dsl_dataset_t *ds = NULL;
629 
630 				err = dsl_dataset_hold_obj(dp,
631 				    za->za_first_integer, FTAG, &ds);
632 				if (err != 0)
633 					break;
634 
635 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
636 				    KM_SLEEP);
637 				dsl_dataset_name(ds, strval);
638 				dsl_dataset_rele(ds, FTAG);
639 			} else {
640 				strval = NULL;
641 				intval = za->za_first_integer;
642 			}
643 
644 			spa_prop_add_list(nv, prop, strval, intval, src);
645 
646 			if (strval != NULL)
647 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
648 
649 			break;
650 
651 		case 1:
652 			/* string property */
653 			strval = kmem_alloc(za->za_num_integers, KM_SLEEP);
654 			err = zap_lookup(mos, spa->spa_pool_props_object,
655 			    za->za_name, 1, za->za_num_integers, strval);
656 			if (err) {
657 				kmem_free(strval, za->za_num_integers);
658 				break;
659 			}
660 			if (prop != ZPOOL_PROP_INVAL) {
661 				spa_prop_add_list(nv, prop, strval, 0, src);
662 			} else {
663 				src = ZPROP_SRC_LOCAL;
664 				spa_prop_add_user(nv, za->za_name, strval,
665 				    src);
666 			}
667 			kmem_free(strval, za->za_num_integers);
668 			break;
669 
670 		default:
671 			break;
672 		}
673 	}
674 	zap_cursor_fini(&zc);
675 out:
676 	mutex_exit(&spa->spa_props_lock);
677 	dsl_pool_config_exit(dp, FTAG);
678 	zap_attribute_free(za);
679 
680 	if (err && err != ENOENT)
681 		return (err);
682 
683 	return (0);
684 }
685 
686 /*
687  * Validate the given pool properties nvlist and modify the list
688  * for the property values to be set.
689  */
690 static int
spa_prop_validate(spa_t * spa,nvlist_t * props)691 spa_prop_validate(spa_t *spa, nvlist_t *props)
692 {
693 	nvpair_t *elem;
694 	int error = 0, reset_bootfs = 0;
695 	uint64_t objnum = 0;
696 	boolean_t has_feature = B_FALSE;
697 
698 	elem = NULL;
699 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
700 		uint64_t intval;
701 		const char *strval, *slash, *check, *fname;
702 		const char *propname = nvpair_name(elem);
703 		zpool_prop_t prop = zpool_name_to_prop(propname);
704 
705 		switch (prop) {
706 		case ZPOOL_PROP_INVAL:
707 			/*
708 			 * Sanitize the input.
709 			 */
710 			if (zfs_prop_user(propname)) {
711 				if (strlen(propname) >= ZAP_MAXNAMELEN) {
712 					error = SET_ERROR(ENAMETOOLONG);
713 					break;
714 				}
715 
716 				if (strlen(fnvpair_value_string(elem)) >=
717 				    ZAP_MAXVALUELEN) {
718 					error = SET_ERROR(E2BIG);
719 					break;
720 				}
721 			} else if (zpool_prop_feature(propname)) {
722 				if (nvpair_type(elem) != DATA_TYPE_UINT64) {
723 					error = SET_ERROR(EINVAL);
724 					break;
725 				}
726 
727 				if (nvpair_value_uint64(elem, &intval) != 0) {
728 					error = SET_ERROR(EINVAL);
729 					break;
730 				}
731 
732 				if (intval != 0) {
733 					error = SET_ERROR(EINVAL);
734 					break;
735 				}
736 
737 				fname = strchr(propname, '@') + 1;
738 				if (zfeature_lookup_name(fname, NULL) != 0) {
739 					error = SET_ERROR(EINVAL);
740 					break;
741 				}
742 
743 				has_feature = B_TRUE;
744 			} else {
745 				error = SET_ERROR(EINVAL);
746 				break;
747 			}
748 			break;
749 
750 		case ZPOOL_PROP_VERSION:
751 			error = nvpair_value_uint64(elem, &intval);
752 			if (!error &&
753 			    (intval < spa_version(spa) ||
754 			    intval > SPA_VERSION_BEFORE_FEATURES ||
755 			    has_feature))
756 				error = SET_ERROR(EINVAL);
757 			break;
758 
759 		case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
760 			error = nvpair_value_uint64(elem, &intval);
761 			break;
762 
763 		case ZPOOL_PROP_DELEGATION:
764 		case ZPOOL_PROP_AUTOREPLACE:
765 		case ZPOOL_PROP_LISTSNAPS:
766 		case ZPOOL_PROP_AUTOEXPAND:
767 		case ZPOOL_PROP_AUTOTRIM:
768 			error = nvpair_value_uint64(elem, &intval);
769 			if (!error && intval > 1)
770 				error = SET_ERROR(EINVAL);
771 			break;
772 
773 		case ZPOOL_PROP_MULTIHOST:
774 			error = nvpair_value_uint64(elem, &intval);
775 			if (!error && intval > 1)
776 				error = SET_ERROR(EINVAL);
777 
778 			if (!error) {
779 				uint32_t hostid = zone_get_hostid(NULL);
780 				if (hostid)
781 					spa->spa_hostid = hostid;
782 				else
783 					error = SET_ERROR(ENOTSUP);
784 			}
785 
786 			break;
787 
788 		case ZPOOL_PROP_BOOTFS:
789 			/*
790 			 * If the pool version is less than SPA_VERSION_BOOTFS,
791 			 * or the pool is still being created (version == 0),
792 			 * the bootfs property cannot be set.
793 			 */
794 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
795 				error = SET_ERROR(ENOTSUP);
796 				break;
797 			}
798 
799 			/*
800 			 * Make sure the vdev config is bootable
801 			 */
802 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
803 				error = SET_ERROR(ENOTSUP);
804 				break;
805 			}
806 
807 			reset_bootfs = 1;
808 
809 			error = nvpair_value_string(elem, &strval);
810 
811 			if (!error) {
812 				objset_t *os;
813 
814 				if (strval == NULL || strval[0] == '\0') {
815 					objnum = zpool_prop_default_numeric(
816 					    ZPOOL_PROP_BOOTFS);
817 					break;
818 				}
819 
820 				error = dmu_objset_hold(strval, FTAG, &os);
821 				if (error != 0)
822 					break;
823 
824 				/* Must be ZPL. */
825 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
826 					error = SET_ERROR(ENOTSUP);
827 				} else {
828 					objnum = dmu_objset_id(os);
829 				}
830 				dmu_objset_rele(os, FTAG);
831 			}
832 			break;
833 
834 		case ZPOOL_PROP_FAILUREMODE:
835 			error = nvpair_value_uint64(elem, &intval);
836 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
837 				error = SET_ERROR(EINVAL);
838 
839 			/*
840 			 * This is a special case which only occurs when
841 			 * the pool has completely failed. This allows
842 			 * the user to change the in-core failmode property
843 			 * without syncing it out to disk (I/Os might
844 			 * currently be blocked). We do this by returning
845 			 * EIO to the caller (spa_prop_set) to trick it
846 			 * into thinking we encountered a property validation
847 			 * error.
848 			 */
849 			if (!error && spa_suspended(spa)) {
850 				spa->spa_failmode = intval;
851 				error = SET_ERROR(EIO);
852 			}
853 			break;
854 
855 		case ZPOOL_PROP_CACHEFILE:
856 			if ((error = nvpair_value_string(elem, &strval)) != 0)
857 				break;
858 
859 			if (strval[0] == '\0')
860 				break;
861 
862 			if (strcmp(strval, "none") == 0)
863 				break;
864 
865 			if (strval[0] != '/') {
866 				error = SET_ERROR(EINVAL);
867 				break;
868 			}
869 
870 			slash = strrchr(strval, '/');
871 			ASSERT(slash != NULL);
872 
873 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
874 			    strcmp(slash, "/..") == 0)
875 				error = SET_ERROR(EINVAL);
876 			break;
877 
878 		case ZPOOL_PROP_COMMENT:
879 			if ((error = nvpair_value_string(elem, &strval)) != 0)
880 				break;
881 			for (check = strval; *check != '\0'; check++) {
882 				if (!isprint(*check)) {
883 					error = SET_ERROR(EINVAL);
884 					break;
885 				}
886 			}
887 			if (strlen(strval) > ZPROP_MAX_COMMENT)
888 				error = SET_ERROR(E2BIG);
889 			break;
890 
891 		default:
892 			break;
893 		}
894 
895 		if (error)
896 			break;
897 	}
898 
899 	(void) nvlist_remove_all(props,
900 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
901 
902 	if (!error && reset_bootfs) {
903 		error = nvlist_remove(props,
904 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
905 
906 		if (!error) {
907 			error = nvlist_add_uint64(props,
908 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
909 		}
910 	}
911 
912 	return (error);
913 }
914 
915 void
spa_configfile_set(spa_t * spa,nvlist_t * nvp,boolean_t need_sync)916 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
917 {
918 	const char *cachefile;
919 	spa_config_dirent_t *dp;
920 
921 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
922 	    &cachefile) != 0)
923 		return;
924 
925 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
926 	    KM_SLEEP);
927 
928 	if (cachefile[0] == '\0')
929 		dp->scd_path = spa_strdup(spa_config_path);
930 	else if (strcmp(cachefile, "none") == 0)
931 		dp->scd_path = NULL;
932 	else
933 		dp->scd_path = spa_strdup(cachefile);
934 
935 	list_insert_head(&spa->spa_config_list, dp);
936 	if (need_sync)
937 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
938 }
939 
940 int
spa_prop_set(spa_t * spa,nvlist_t * nvp)941 spa_prop_set(spa_t *spa, nvlist_t *nvp)
942 {
943 	int error;
944 	nvpair_t *elem = NULL;
945 	boolean_t need_sync = B_FALSE;
946 
947 	if ((error = spa_prop_validate(spa, nvp)) != 0)
948 		return (error);
949 
950 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
951 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
952 
953 		if (prop == ZPOOL_PROP_CACHEFILE ||
954 		    prop == ZPOOL_PROP_ALTROOT ||
955 		    prop == ZPOOL_PROP_READONLY)
956 			continue;
957 
958 		if (prop == ZPOOL_PROP_INVAL &&
959 		    zfs_prop_user(nvpair_name(elem))) {
960 			need_sync = B_TRUE;
961 			break;
962 		}
963 
964 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
965 			uint64_t ver = 0;
966 
967 			if (prop == ZPOOL_PROP_VERSION) {
968 				VERIFY0(nvpair_value_uint64(elem, &ver));
969 			} else {
970 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
971 				ver = SPA_VERSION_FEATURES;
972 				need_sync = B_TRUE;
973 			}
974 
975 			/* Save time if the version is already set. */
976 			if (ver == spa_version(spa))
977 				continue;
978 
979 			/*
980 			 * In addition to the pool directory object, we might
981 			 * create the pool properties object, the features for
982 			 * read object, the features for write object, or the
983 			 * feature descriptions object.
984 			 */
985 			error = dsl_sync_task(spa->spa_name, NULL,
986 			    spa_sync_version, &ver,
987 			    6, ZFS_SPACE_CHECK_RESERVED);
988 			if (error)
989 				return (error);
990 			continue;
991 		}
992 
993 		need_sync = B_TRUE;
994 		break;
995 	}
996 
997 	if (need_sync) {
998 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
999 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
1000 	}
1001 
1002 	return (0);
1003 }
1004 
1005 /*
1006  * If the bootfs property value is dsobj, clear it.
1007  */
1008 void
spa_prop_clear_bootfs(spa_t * spa,uint64_t dsobj,dmu_tx_t * tx)1009 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
1010 {
1011 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
1012 		VERIFY(zap_remove(spa->spa_meta_objset,
1013 		    spa->spa_pool_props_object,
1014 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
1015 		spa->spa_bootfs = 0;
1016 	}
1017 }
1018 
1019 static int
spa_change_guid_check(void * arg,dmu_tx_t * tx)1020 spa_change_guid_check(void *arg, dmu_tx_t *tx)
1021 {
1022 	uint64_t *newguid __maybe_unused = arg;
1023 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1024 	vdev_t *rvd = spa->spa_root_vdev;
1025 	uint64_t vdev_state;
1026 
1027 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1028 		int error = (spa_has_checkpoint(spa)) ?
1029 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
1030 		return (SET_ERROR(error));
1031 	}
1032 
1033 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1034 	vdev_state = rvd->vdev_state;
1035 	spa_config_exit(spa, SCL_STATE, FTAG);
1036 
1037 	if (vdev_state != VDEV_STATE_HEALTHY)
1038 		return (SET_ERROR(ENXIO));
1039 
1040 	ASSERT3U(spa_guid(spa), !=, *newguid);
1041 
1042 	return (0);
1043 }
1044 
1045 static void
spa_change_guid_sync(void * arg,dmu_tx_t * tx)1046 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
1047 {
1048 	uint64_t *newguid = arg;
1049 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1050 	uint64_t oldguid;
1051 	vdev_t *rvd = spa->spa_root_vdev;
1052 
1053 	oldguid = spa_guid(spa);
1054 
1055 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1056 	rvd->vdev_guid = *newguid;
1057 	rvd->vdev_guid_sum += (*newguid - oldguid);
1058 	vdev_config_dirty(rvd);
1059 	spa_config_exit(spa, SCL_STATE, FTAG);
1060 
1061 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
1062 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
1063 }
1064 
1065 /*
1066  * Change the GUID for the pool.  This is done so that we can later
1067  * re-import a pool built from a clone of our own vdevs.  We will modify
1068  * the root vdev's guid, our own pool guid, and then mark all of our
1069  * vdevs dirty.  Note that we must make sure that all our vdevs are
1070  * online when we do this, or else any vdevs that weren't present
1071  * would be orphaned from our pool.  We are also going to issue a
1072  * sysevent to update any watchers.
1073  *
1074  * The GUID of the pool will be changed to the value pointed to by guidp.
1075  * The GUID may not be set to the reserverd value of 0.
1076  * The new GUID will be generated if guidp is NULL.
1077  */
1078 int
spa_change_guid(spa_t * spa,const uint64_t * guidp)1079 spa_change_guid(spa_t *spa, const uint64_t *guidp)
1080 {
1081 	uint64_t guid;
1082 	int error;
1083 
1084 	mutex_enter(&spa->spa_vdev_top_lock);
1085 	mutex_enter(&spa_namespace_lock);
1086 
1087 	if (guidp != NULL) {
1088 		guid = *guidp;
1089 		if (guid == 0) {
1090 			error = SET_ERROR(EINVAL);
1091 			goto out;
1092 		}
1093 
1094 		if (spa_guid_exists(guid, 0)) {
1095 			error = SET_ERROR(EEXIST);
1096 			goto out;
1097 		}
1098 	} else {
1099 		guid = spa_generate_guid(NULL);
1100 	}
1101 
1102 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
1103 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
1104 
1105 	if (error == 0) {
1106 		/*
1107 		 * Clear the kobj flag from all the vdevs to allow
1108 		 * vdev_cache_process_kobj_evt() to post events to all the
1109 		 * vdevs since GUID is updated.
1110 		 */
1111 		vdev_clear_kobj_evt(spa->spa_root_vdev);
1112 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
1113 			vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
1114 
1115 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1116 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
1117 	}
1118 
1119 out:
1120 	mutex_exit(&spa_namespace_lock);
1121 	mutex_exit(&spa->spa_vdev_top_lock);
1122 
1123 	return (error);
1124 }
1125 
1126 /*
1127  * ==========================================================================
1128  * SPA state manipulation (open/create/destroy/import/export)
1129  * ==========================================================================
1130  */
1131 
1132 static int
spa_error_entry_compare(const void * a,const void * b)1133 spa_error_entry_compare(const void *a, const void *b)
1134 {
1135 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
1136 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
1137 	int ret;
1138 
1139 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
1140 	    sizeof (zbookmark_phys_t));
1141 
1142 	return (TREE_ISIGN(ret));
1143 }
1144 
1145 /*
1146  * Utility function which retrieves copies of the current logs and
1147  * re-initializes them in the process.
1148  */
1149 void
spa_get_errlists(spa_t * spa,avl_tree_t * last,avl_tree_t * scrub)1150 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1151 {
1152 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1153 
1154 	memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1155 	memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1156 
1157 	avl_create(&spa->spa_errlist_scrub,
1158 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1159 	    offsetof(spa_error_entry_t, se_avl));
1160 	avl_create(&spa->spa_errlist_last,
1161 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1162 	    offsetof(spa_error_entry_t, se_avl));
1163 }
1164 
1165 static void
spa_taskqs_init(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1166 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1167 {
1168 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1169 	enum zti_modes mode = ztip->zti_mode;
1170 	uint_t value = ztip->zti_value;
1171 	uint_t count = ztip->zti_count;
1172 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1173 	uint_t cpus, flags = TASKQ_DYNAMIC;
1174 
1175 	switch (mode) {
1176 	case ZTI_MODE_FIXED:
1177 		ASSERT3U(value, >, 0);
1178 		break;
1179 
1180 	case ZTI_MODE_SYNC:
1181 
1182 		/*
1183 		 * Create one wr_iss taskq for every 'zio_taskq_write_tpq' CPUs,
1184 		 * not to exceed the number of spa allocators, and align to it.
1185 		 */
1186 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1187 		count = MAX(1, cpus / MAX(1, zio_taskq_write_tpq));
1188 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1189 		count = MIN(count, spa->spa_alloc_count);
1190 		while (spa->spa_alloc_count % count != 0 &&
1191 		    spa->spa_alloc_count < count * 2)
1192 			count--;
1193 
1194 		/*
1195 		 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no
1196 		 * single taskq may have more threads than 100% of online cpus.
1197 		 */
1198 		value = (zio_taskq_batch_pct + count / 2) / count;
1199 		value = MIN(value, 100);
1200 		flags |= TASKQ_THREADS_CPU_PCT;
1201 		break;
1202 
1203 	case ZTI_MODE_SCALE:
1204 		flags |= TASKQ_THREADS_CPU_PCT;
1205 		/*
1206 		 * We want more taskqs to reduce lock contention, but we want
1207 		 * less for better request ordering and CPU utilization.
1208 		 */
1209 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1210 		if (zio_taskq_batch_tpq > 0) {
1211 			count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1212 			    zio_taskq_batch_tpq);
1213 		} else {
1214 			/*
1215 			 * Prefer 6 threads per taskq, but no more taskqs
1216 			 * than threads in them on large systems. For 80%:
1217 			 *
1218 			 *                 taskq   taskq   total
1219 			 * cpus    taskqs  percent threads threads
1220 			 * ------- ------- ------- ------- -------
1221 			 * 1       1       80%     1       1
1222 			 * 2       1       80%     1       1
1223 			 * 4       1       80%     3       3
1224 			 * 8       2       40%     3       6
1225 			 * 16      3       27%     4       12
1226 			 * 32      5       16%     5       25
1227 			 * 64      7       11%     7       49
1228 			 * 128     10      8%      10      100
1229 			 * 256     14      6%      15      210
1230 			 */
1231 			count = 1 + cpus / 6;
1232 			while (count * count > cpus)
1233 				count--;
1234 		}
1235 		/* Limit each taskq within 100% to not trigger assertion. */
1236 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1237 		value = (zio_taskq_batch_pct + count / 2) / count;
1238 		break;
1239 
1240 	case ZTI_MODE_NULL:
1241 		tqs->stqs_count = 0;
1242 		tqs->stqs_taskq = NULL;
1243 		return;
1244 
1245 	default:
1246 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1247 		    "spa_taskqs_init()",
1248 		    zio_type_name[t], zio_taskq_types[q], mode, value);
1249 		break;
1250 	}
1251 
1252 	ASSERT3U(count, >, 0);
1253 	tqs->stqs_count = count;
1254 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1255 
1256 	for (uint_t i = 0; i < count; i++) {
1257 		taskq_t *tq;
1258 		char name[32];
1259 
1260 		if (count > 1)
1261 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
1262 			    zio_type_name[t], zio_taskq_types[q], i);
1263 		else
1264 			(void) snprintf(name, sizeof (name), "%s_%s",
1265 			    zio_type_name[t], zio_taskq_types[q]);
1266 
1267 #ifdef HAVE_SYSDC
1268 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1269 			(void) zio_taskq_basedc;
1270 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1271 			    spa->spa_proc, zio_taskq_basedc, flags);
1272 		} else {
1273 #endif
1274 			/*
1275 			 * The write issue taskq can be extremely CPU
1276 			 * intensive.  Run it at slightly less important
1277 			 * priority than the other taskqs.
1278 			 */
1279 			const pri_t pri = (t == ZIO_TYPE_WRITE &&
1280 			    q == ZIO_TASKQ_ISSUE) ?
1281 			    wtqclsyspri : maxclsyspri;
1282 			tq = taskq_create_proc(name, value, pri, 50,
1283 			    INT_MAX, spa->spa_proc, flags);
1284 #ifdef HAVE_SYSDC
1285 		}
1286 #endif
1287 
1288 		tqs->stqs_taskq[i] = tq;
1289 	}
1290 }
1291 
1292 static void
spa_taskqs_fini(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1293 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1294 {
1295 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1296 
1297 	if (tqs->stqs_taskq == NULL) {
1298 		ASSERT0(tqs->stqs_count);
1299 		return;
1300 	}
1301 
1302 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1303 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1304 		taskq_destroy(tqs->stqs_taskq[i]);
1305 	}
1306 
1307 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1308 	tqs->stqs_taskq = NULL;
1309 }
1310 
1311 #ifdef _KERNEL
1312 /*
1313  * The READ and WRITE rows of zio_taskqs are configurable at module load time
1314  * by setting zio_taskq_read or zio_taskq_write.
1315  *
1316  * Example (the defaults for READ and WRITE)
1317  *   zio_taskq_read='fixed,1,8 null scale null'
1318  *   zio_taskq_write='sync null scale null'
1319  *
1320  * Each sets the entire row at a time.
1321  *
1322  * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number
1323  * of threads per taskq.
1324  *
1325  * 'null' can only be set on the high-priority queues (queue selection for
1326  * high-priority queues will fall back to the regular queue if the high-pri
1327  * is NULL.
1328  */
1329 static const char *const modes[ZTI_NMODES] = {
1330 	"fixed", "scale", "sync", "null"
1331 };
1332 
1333 /* Parse the incoming config string. Modifies cfg */
1334 static int
spa_taskq_param_set(zio_type_t t,char * cfg)1335 spa_taskq_param_set(zio_type_t t, char *cfg)
1336 {
1337 	int err = 0;
1338 
1339 	zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}};
1340 
1341 	char *next = cfg, *tok, *c;
1342 
1343 	/*
1344 	 * Parse out each element from the string and fill `row`. The entire
1345 	 * row has to be set at once, so any errors are flagged by just
1346 	 * breaking out of this loop early.
1347 	 */
1348 	uint_t q;
1349 	for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1350 		/* `next` is the start of the config */
1351 		if (next == NULL)
1352 			break;
1353 
1354 		/* Eat up leading space */
1355 		while (isspace(*next))
1356 			next++;
1357 		if (*next == '\0')
1358 			break;
1359 
1360 		/* Mode ends at space or end of string */
1361 		tok = next;
1362 		next = strchr(tok, ' ');
1363 		if (next != NULL) *next++ = '\0';
1364 
1365 		/* Parameters start after a comma */
1366 		c = strchr(tok, ',');
1367 		if (c != NULL) *c++ = '\0';
1368 
1369 		/* Match mode string */
1370 		uint_t mode;
1371 		for (mode = 0; mode < ZTI_NMODES; mode++)
1372 			if (strcmp(tok, modes[mode]) == 0)
1373 				break;
1374 		if (mode == ZTI_NMODES)
1375 			break;
1376 
1377 		/* Invalid canary */
1378 		row[q].zti_mode = ZTI_NMODES;
1379 
1380 		/* Per-mode setup */
1381 		switch (mode) {
1382 
1383 		/*
1384 		 * FIXED is parameterised: number of queues, and number of
1385 		 * threads per queue.
1386 		 */
1387 		case ZTI_MODE_FIXED: {
1388 			/* No parameters? */
1389 			if (c == NULL || *c == '\0')
1390 				break;
1391 
1392 			/* Find next parameter */
1393 			tok = c;
1394 			c = strchr(tok, ',');
1395 			if (c == NULL)
1396 				break;
1397 
1398 			/* Take digits and convert */
1399 			unsigned long long nq;
1400 			if (!(isdigit(*tok)))
1401 				break;
1402 			err = ddi_strtoull(tok, &tok, 10, &nq);
1403 			/* Must succeed and also end at the next param sep */
1404 			if (err != 0 || tok != c)
1405 				break;
1406 
1407 			/* Move past the comma */
1408 			tok++;
1409 			/* Need another number */
1410 			if (!(isdigit(*tok)))
1411 				break;
1412 			/* Remember start to make sure we moved */
1413 			c = tok;
1414 
1415 			/* Take digits */
1416 			unsigned long long ntpq;
1417 			err = ddi_strtoull(tok, &tok, 10, &ntpq);
1418 			/* Must succeed, and moved forward */
1419 			if (err != 0 || tok == c || *tok != '\0')
1420 				break;
1421 
1422 			/*
1423 			 * sanity; zero queues/threads make no sense, and
1424 			 * 16K is almost certainly more than anyone will ever
1425 			 * need and avoids silly numbers like UINT32_MAX
1426 			 */
1427 			if (nq == 0 || nq >= 16384 ||
1428 			    ntpq == 0 || ntpq >= 16384)
1429 				break;
1430 
1431 			const zio_taskq_info_t zti = ZTI_P(ntpq, nq);
1432 			row[q] = zti;
1433 			break;
1434 		}
1435 
1436 		case ZTI_MODE_SCALE: {
1437 			const zio_taskq_info_t zti = ZTI_SCALE;
1438 			row[q] = zti;
1439 			break;
1440 		}
1441 
1442 		case ZTI_MODE_SYNC: {
1443 			const zio_taskq_info_t zti = ZTI_SYNC;
1444 			row[q] = zti;
1445 			break;
1446 		}
1447 
1448 		case ZTI_MODE_NULL: {
1449 			/*
1450 			 * Can only null the high-priority queues; the general-
1451 			 * purpose ones have to exist.
1452 			 */
1453 			if (q != ZIO_TASKQ_ISSUE_HIGH &&
1454 			    q != ZIO_TASKQ_INTERRUPT_HIGH)
1455 				break;
1456 
1457 			const zio_taskq_info_t zti = ZTI_NULL;
1458 			row[q] = zti;
1459 			break;
1460 		}
1461 
1462 		default:
1463 			break;
1464 		}
1465 
1466 		/* Ensure we set a mode */
1467 		if (row[q].zti_mode == ZTI_NMODES)
1468 			break;
1469 	}
1470 
1471 	/* Didn't get a full row, fail */
1472 	if (q < ZIO_TASKQ_TYPES)
1473 		return (SET_ERROR(EINVAL));
1474 
1475 	/* Eat trailing space */
1476 	if (next != NULL)
1477 		while (isspace(*next))
1478 			next++;
1479 
1480 	/* If there's anything left over then fail */
1481 	if (next != NULL && *next != '\0')
1482 		return (SET_ERROR(EINVAL));
1483 
1484 	/* Success! Copy it into the real config */
1485 	for (q = 0; q < ZIO_TASKQ_TYPES; q++)
1486 		zio_taskqs[t][q] = row[q];
1487 
1488 	return (0);
1489 }
1490 
1491 static int
spa_taskq_param_get(zio_type_t t,char * buf,boolean_t add_newline)1492 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline)
1493 {
1494 	int pos = 0;
1495 
1496 	/* Build paramater string from live config */
1497 	const char *sep = "";
1498 	for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) {
1499 		const zio_taskq_info_t *zti = &zio_taskqs[t][q];
1500 		if (zti->zti_mode == ZTI_MODE_FIXED)
1501 			pos += sprintf(&buf[pos], "%s%s,%u,%u", sep,
1502 			    modes[zti->zti_mode], zti->zti_count,
1503 			    zti->zti_value);
1504 		else
1505 			pos += sprintf(&buf[pos], "%s%s", sep,
1506 			    modes[zti->zti_mode]);
1507 		sep = " ";
1508 	}
1509 
1510 	if (add_newline)
1511 		buf[pos++] = '\n';
1512 	buf[pos] = '\0';
1513 
1514 	return (pos);
1515 }
1516 
1517 #ifdef __linux__
1518 static int
spa_taskq_read_param_set(const char * val,zfs_kernel_param_t * kp)1519 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp)
1520 {
1521 	char *cfg = kmem_strdup(val);
1522 	int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg);
1523 	kmem_free(cfg, strlen(val)+1);
1524 	return (-err);
1525 }
1526 static int
spa_taskq_read_param_get(char * buf,zfs_kernel_param_t * kp)1527 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp)
1528 {
1529 	return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE));
1530 }
1531 
1532 static int
spa_taskq_write_param_set(const char * val,zfs_kernel_param_t * kp)1533 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp)
1534 {
1535 	char *cfg = kmem_strdup(val);
1536 	int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg);
1537 	kmem_free(cfg, strlen(val)+1);
1538 	return (-err);
1539 }
1540 static int
spa_taskq_write_param_get(char * buf,zfs_kernel_param_t * kp)1541 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp)
1542 {
1543 	return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE));
1544 }
1545 #else
1546 /*
1547  * On FreeBSD load-time parameters can be set up before malloc() is available,
1548  * so we have to do all the parsing work on the stack.
1549  */
1550 #define	SPA_TASKQ_PARAM_MAX	(128)
1551 
1552 static int
spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)1553 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)
1554 {
1555 	char buf[SPA_TASKQ_PARAM_MAX];
1556 	int err;
1557 
1558 	(void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE);
1559 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1560 	if (err || req->newptr == NULL)
1561 		return (err);
1562 	return (spa_taskq_param_set(ZIO_TYPE_READ, buf));
1563 }
1564 
1565 static int
spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)1566 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)
1567 {
1568 	char buf[SPA_TASKQ_PARAM_MAX];
1569 	int err;
1570 
1571 	(void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE);
1572 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1573 	if (err || req->newptr == NULL)
1574 		return (err);
1575 	return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf));
1576 }
1577 #endif
1578 #endif /* _KERNEL */
1579 
1580 /*
1581  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1582  * Note that a type may have multiple discrete taskqs to avoid lock contention
1583  * on the taskq itself.
1584  */
1585 void
spa_taskq_dispatch(spa_t * spa,zio_type_t t,zio_taskq_type_t q,task_func_t * func,zio_t * zio,boolean_t cutinline)1586 spa_taskq_dispatch(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1587     task_func_t *func, zio_t *zio, boolean_t cutinline)
1588 {
1589 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1590 	taskq_t *tq;
1591 
1592 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1593 	ASSERT3U(tqs->stqs_count, !=, 0);
1594 
1595 	/*
1596 	 * NB: We are assuming that the zio can only be dispatched
1597 	 * to a single taskq at a time.  It would be a grievous error
1598 	 * to dispatch the zio to another taskq at the same time.
1599 	 */
1600 	ASSERT(zio);
1601 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1602 
1603 	if (tqs->stqs_count == 1) {
1604 		tq = tqs->stqs_taskq[0];
1605 	} else if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) &&
1606 	    ZIO_HAS_ALLOCATOR(zio)) {
1607 		tq = tqs->stqs_taskq[zio->io_allocator % tqs->stqs_count];
1608 	} else {
1609 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1610 	}
1611 
1612 	taskq_dispatch_ent(tq, func, zio, cutinline ? TQ_FRONT : 0,
1613 	    &zio->io_tqent);
1614 }
1615 
1616 static void
spa_create_zio_taskqs(spa_t * spa)1617 spa_create_zio_taskqs(spa_t *spa)
1618 {
1619 	for (int t = 0; t < ZIO_TYPES; t++) {
1620 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1621 			spa_taskqs_init(spa, t, q);
1622 		}
1623 	}
1624 }
1625 
1626 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1627 static void
spa_thread(void * arg)1628 spa_thread(void *arg)
1629 {
1630 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1631 	callb_cpr_t cprinfo;
1632 
1633 	spa_t *spa = arg;
1634 	user_t *pu = PTOU(curproc);
1635 
1636 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1637 	    spa->spa_name);
1638 
1639 	ASSERT(curproc != &p0);
1640 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1641 	    "zpool-%s", spa->spa_name);
1642 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1643 
1644 	/* bind this thread to the requested psrset */
1645 	if (zio_taskq_psrset_bind != PS_NONE) {
1646 		pool_lock();
1647 		mutex_enter(&cpu_lock);
1648 		mutex_enter(&pidlock);
1649 		mutex_enter(&curproc->p_lock);
1650 
1651 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1652 		    0, NULL, NULL) == 0)  {
1653 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1654 		} else {
1655 			cmn_err(CE_WARN,
1656 			    "Couldn't bind process for zfs pool \"%s\" to "
1657 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1658 		}
1659 
1660 		mutex_exit(&curproc->p_lock);
1661 		mutex_exit(&pidlock);
1662 		mutex_exit(&cpu_lock);
1663 		pool_unlock();
1664 	}
1665 
1666 #ifdef HAVE_SYSDC
1667 	if (zio_taskq_sysdc) {
1668 		sysdc_thread_enter(curthread, 100, 0);
1669 	}
1670 #endif
1671 
1672 	spa->spa_proc = curproc;
1673 	spa->spa_did = curthread->t_did;
1674 
1675 	spa_create_zio_taskqs(spa);
1676 
1677 	mutex_enter(&spa->spa_proc_lock);
1678 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1679 
1680 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1681 	cv_broadcast(&spa->spa_proc_cv);
1682 
1683 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1684 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1685 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1686 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1687 
1688 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1689 	spa->spa_proc_state = SPA_PROC_GONE;
1690 	spa->spa_proc = &p0;
1691 	cv_broadcast(&spa->spa_proc_cv);
1692 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1693 
1694 	mutex_enter(&curproc->p_lock);
1695 	lwp_exit();
1696 }
1697 #endif
1698 
1699 extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1700 
1701 /*
1702  * Activate an uninitialized pool.
1703  */
1704 static void
spa_activate(spa_t * spa,spa_mode_t mode)1705 spa_activate(spa_t *spa, spa_mode_t mode)
1706 {
1707 	metaslab_ops_t *msp = metaslab_allocator(spa);
1708 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1709 
1710 	spa->spa_state = POOL_STATE_ACTIVE;
1711 	spa->spa_final_txg = UINT64_MAX;
1712 	spa->spa_mode = mode;
1713 	spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1714 
1715 	spa->spa_normal_class = metaslab_class_create(spa, "normal",
1716 	    msp, B_FALSE);
1717 	spa->spa_log_class = metaslab_class_create(spa, "log", msp, B_TRUE);
1718 	spa->spa_embedded_log_class = metaslab_class_create(spa,
1719 	    "embedded_log", msp, B_TRUE);
1720 	spa->spa_special_class = metaslab_class_create(spa, "special",
1721 	    msp, B_FALSE);
1722 	spa->spa_special_embedded_log_class = metaslab_class_create(spa,
1723 	    "special_embedded_log", msp, B_TRUE);
1724 	spa->spa_dedup_class = metaslab_class_create(spa, "dedup",
1725 	    msp, B_FALSE);
1726 
1727 	/* Try to create a covering process */
1728 	mutex_enter(&spa->spa_proc_lock);
1729 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1730 	ASSERT(spa->spa_proc == &p0);
1731 	spa->spa_did = 0;
1732 
1733 #ifdef HAVE_SPA_THREAD
1734 	/* Only create a process if we're going to be around a while. */
1735 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1736 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1737 		    NULL, 0) == 0) {
1738 			spa->spa_proc_state = SPA_PROC_CREATED;
1739 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1740 				cv_wait(&spa->spa_proc_cv,
1741 				    &spa->spa_proc_lock);
1742 			}
1743 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1744 			ASSERT(spa->spa_proc != &p0);
1745 			ASSERT(spa->spa_did != 0);
1746 		} else {
1747 #ifdef _KERNEL
1748 			cmn_err(CE_WARN,
1749 			    "Couldn't create process for zfs pool \"%s\"\n",
1750 			    spa->spa_name);
1751 #endif
1752 		}
1753 	}
1754 #endif /* HAVE_SPA_THREAD */
1755 	mutex_exit(&spa->spa_proc_lock);
1756 
1757 	/* If we didn't create a process, we need to create our taskqs. */
1758 	if (spa->spa_proc == &p0) {
1759 		spa_create_zio_taskqs(spa);
1760 	}
1761 
1762 	for (size_t i = 0; i < TXG_SIZE; i++) {
1763 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1764 		    ZIO_FLAG_CANFAIL);
1765 	}
1766 
1767 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1768 	    offsetof(vdev_t, vdev_config_dirty_node));
1769 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1770 	    offsetof(objset_t, os_evicting_node));
1771 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1772 	    offsetof(vdev_t, vdev_state_dirty_node));
1773 
1774 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1775 	    offsetof(struct vdev, vdev_txg_node));
1776 
1777 	avl_create(&spa->spa_errlist_scrub,
1778 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1779 	    offsetof(spa_error_entry_t, se_avl));
1780 	avl_create(&spa->spa_errlist_last,
1781 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1782 	    offsetof(spa_error_entry_t, se_avl));
1783 	avl_create(&spa->spa_errlist_healed,
1784 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1785 	    offsetof(spa_error_entry_t, se_avl));
1786 
1787 	spa_activate_os(spa);
1788 
1789 	spa_keystore_init(&spa->spa_keystore);
1790 
1791 	/*
1792 	 * This taskq is used to perform zvol-minor-related tasks
1793 	 * asynchronously. This has several advantages, including easy
1794 	 * resolution of various deadlocks.
1795 	 *
1796 	 * The taskq must be single threaded to ensure tasks are always
1797 	 * processed in the order in which they were dispatched.
1798 	 *
1799 	 * A taskq per pool allows one to keep the pools independent.
1800 	 * This way if one pool is suspended, it will not impact another.
1801 	 *
1802 	 * The preferred location to dispatch a zvol minor task is a sync
1803 	 * task. In this context, there is easy access to the spa_t and minimal
1804 	 * error handling is required because the sync task must succeed.
1805 	 */
1806 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1807 	    1, INT_MAX, 0);
1808 
1809 	/*
1810 	 * The taskq to preload metaslabs.
1811 	 */
1812 	spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1813 	    metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1814 	    TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1815 
1816 	/*
1817 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1818 	 * pool traverse code from monopolizing the global (and limited)
1819 	 * system_taskq by inappropriately scheduling long running tasks on it.
1820 	 */
1821 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1822 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1823 
1824 	/*
1825 	 * The taskq to upgrade datasets in this pool. Currently used by
1826 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1827 	 */
1828 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1829 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1830 }
1831 
1832 /*
1833  * Opposite of spa_activate().
1834  */
1835 static void
spa_deactivate(spa_t * spa)1836 spa_deactivate(spa_t *spa)
1837 {
1838 	ASSERT(spa->spa_sync_on == B_FALSE);
1839 	ASSERT0P(spa->spa_dsl_pool);
1840 	ASSERT0P(spa->spa_root_vdev);
1841 	ASSERT0P(spa->spa_async_zio_root);
1842 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1843 
1844 	spa_evicting_os_wait(spa);
1845 
1846 	if (spa->spa_zvol_taskq) {
1847 		taskq_destroy(spa->spa_zvol_taskq);
1848 		spa->spa_zvol_taskq = NULL;
1849 	}
1850 
1851 	if (spa->spa_metaslab_taskq) {
1852 		taskq_destroy(spa->spa_metaslab_taskq);
1853 		spa->spa_metaslab_taskq = NULL;
1854 	}
1855 
1856 	if (spa->spa_prefetch_taskq) {
1857 		taskq_destroy(spa->spa_prefetch_taskq);
1858 		spa->spa_prefetch_taskq = NULL;
1859 	}
1860 
1861 	if (spa->spa_upgrade_taskq) {
1862 		taskq_destroy(spa->spa_upgrade_taskq);
1863 		spa->spa_upgrade_taskq = NULL;
1864 	}
1865 
1866 	txg_list_destroy(&spa->spa_vdev_txg_list);
1867 
1868 	list_destroy(&spa->spa_config_dirty_list);
1869 	list_destroy(&spa->spa_evicting_os_list);
1870 	list_destroy(&spa->spa_state_dirty_list);
1871 
1872 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1873 
1874 	for (int t = 0; t < ZIO_TYPES; t++) {
1875 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1876 			spa_taskqs_fini(spa, t, q);
1877 		}
1878 	}
1879 
1880 	for (size_t i = 0; i < TXG_SIZE; i++) {
1881 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1882 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1883 		spa->spa_txg_zio[i] = NULL;
1884 	}
1885 
1886 	metaslab_class_destroy(spa->spa_normal_class);
1887 	spa->spa_normal_class = NULL;
1888 
1889 	metaslab_class_destroy(spa->spa_log_class);
1890 	spa->spa_log_class = NULL;
1891 
1892 	metaslab_class_destroy(spa->spa_embedded_log_class);
1893 	spa->spa_embedded_log_class = NULL;
1894 
1895 	metaslab_class_destroy(spa->spa_special_class);
1896 	spa->spa_special_class = NULL;
1897 
1898 	metaslab_class_destroy(spa->spa_special_embedded_log_class);
1899 	spa->spa_special_embedded_log_class = NULL;
1900 
1901 	metaslab_class_destroy(spa->spa_dedup_class);
1902 	spa->spa_dedup_class = NULL;
1903 
1904 	/*
1905 	 * If this was part of an import or the open otherwise failed, we may
1906 	 * still have errors left in the queues.  Empty them just in case.
1907 	 */
1908 	spa_errlog_drain(spa);
1909 	avl_destroy(&spa->spa_errlist_scrub);
1910 	avl_destroy(&spa->spa_errlist_last);
1911 	avl_destroy(&spa->spa_errlist_healed);
1912 
1913 	spa_keystore_fini(&spa->spa_keystore);
1914 
1915 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1916 
1917 	mutex_enter(&spa->spa_proc_lock);
1918 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1919 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1920 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1921 		cv_broadcast(&spa->spa_proc_cv);
1922 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1923 			ASSERT(spa->spa_proc != &p0);
1924 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1925 		}
1926 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1927 		spa->spa_proc_state = SPA_PROC_NONE;
1928 	}
1929 	ASSERT(spa->spa_proc == &p0);
1930 	mutex_exit(&spa->spa_proc_lock);
1931 
1932 	/*
1933 	 * We want to make sure spa_thread() has actually exited the ZFS
1934 	 * module, so that the module can't be unloaded out from underneath
1935 	 * it.
1936 	 */
1937 	if (spa->spa_did != 0) {
1938 		thread_join(spa->spa_did);
1939 		spa->spa_did = 0;
1940 	}
1941 
1942 	spa_deactivate_os(spa);
1943 
1944 }
1945 
1946 /*
1947  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1948  * will create all the necessary vdevs in the appropriate layout, with each vdev
1949  * in the CLOSED state.  This will prep the pool before open/creation/import.
1950  * All vdev validation is done by the vdev_alloc() routine.
1951  */
1952 int
spa_config_parse(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int atype)1953 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1954     uint_t id, int atype)
1955 {
1956 	nvlist_t **child;
1957 	uint_t children;
1958 	int error;
1959 
1960 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1961 		return (error);
1962 
1963 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1964 		return (0);
1965 
1966 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1967 	    &child, &children);
1968 
1969 	if (error == ENOENT)
1970 		return (0);
1971 
1972 	if (error) {
1973 		vdev_free(*vdp);
1974 		*vdp = NULL;
1975 		return (SET_ERROR(EINVAL));
1976 	}
1977 
1978 	for (int c = 0; c < children; c++) {
1979 		vdev_t *vd;
1980 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1981 		    atype)) != 0) {
1982 			vdev_free(*vdp);
1983 			*vdp = NULL;
1984 			return (error);
1985 		}
1986 	}
1987 
1988 	ASSERT(*vdp != NULL);
1989 
1990 	return (0);
1991 }
1992 
1993 static boolean_t
spa_should_flush_logs_on_unload(spa_t * spa)1994 spa_should_flush_logs_on_unload(spa_t *spa)
1995 {
1996 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1997 		return (B_FALSE);
1998 
1999 	if (!spa_writeable(spa))
2000 		return (B_FALSE);
2001 
2002 	if (!spa->spa_sync_on)
2003 		return (B_FALSE);
2004 
2005 	if (spa_state(spa) != POOL_STATE_EXPORTED)
2006 		return (B_FALSE);
2007 
2008 	if (zfs_keep_log_spacemaps_at_export)
2009 		return (B_FALSE);
2010 
2011 	return (B_TRUE);
2012 }
2013 
2014 /*
2015  * Opens a transaction that will set the flag that will instruct
2016  * spa_sync to attempt to flush all the metaslabs for that txg.
2017  */
2018 static void
spa_unload_log_sm_flush_all(spa_t * spa)2019 spa_unload_log_sm_flush_all(spa_t *spa)
2020 {
2021 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2022 	VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
2023 
2024 	ASSERT0(spa->spa_log_flushall_txg);
2025 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
2026 
2027 	dmu_tx_commit(tx);
2028 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
2029 }
2030 
2031 static void
spa_unload_log_sm_metadata(spa_t * spa)2032 spa_unload_log_sm_metadata(spa_t *spa)
2033 {
2034 	void *cookie = NULL;
2035 	spa_log_sm_t *sls;
2036 	log_summary_entry_t *e;
2037 
2038 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
2039 	    &cookie)) != NULL) {
2040 		VERIFY0(sls->sls_mscount);
2041 		kmem_free(sls, sizeof (spa_log_sm_t));
2042 	}
2043 
2044 	while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
2045 		VERIFY0(e->lse_mscount);
2046 		kmem_free(e, sizeof (log_summary_entry_t));
2047 	}
2048 
2049 	spa->spa_unflushed_stats.sus_nblocks = 0;
2050 	spa->spa_unflushed_stats.sus_memused = 0;
2051 	spa->spa_unflushed_stats.sus_blocklimit = 0;
2052 }
2053 
2054 static void
spa_destroy_aux_threads(spa_t * spa)2055 spa_destroy_aux_threads(spa_t *spa)
2056 {
2057 	if (spa->spa_condense_zthr != NULL) {
2058 		zthr_destroy(spa->spa_condense_zthr);
2059 		spa->spa_condense_zthr = NULL;
2060 	}
2061 	if (spa->spa_checkpoint_discard_zthr != NULL) {
2062 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
2063 		spa->spa_checkpoint_discard_zthr = NULL;
2064 	}
2065 	if (spa->spa_livelist_delete_zthr != NULL) {
2066 		zthr_destroy(spa->spa_livelist_delete_zthr);
2067 		spa->spa_livelist_delete_zthr = NULL;
2068 	}
2069 	if (spa->spa_livelist_condense_zthr != NULL) {
2070 		zthr_destroy(spa->spa_livelist_condense_zthr);
2071 		spa->spa_livelist_condense_zthr = NULL;
2072 	}
2073 	if (spa->spa_raidz_expand_zthr != NULL) {
2074 		zthr_destroy(spa->spa_raidz_expand_zthr);
2075 		spa->spa_raidz_expand_zthr = NULL;
2076 	}
2077 }
2078 
2079 static void
spa_sync_time_logger(spa_t * spa,uint64_t txg)2080 spa_sync_time_logger(spa_t *spa, uint64_t txg)
2081 {
2082 	uint64_t curtime;
2083 	dmu_tx_t *tx;
2084 
2085 	if (!spa_writeable(spa)) {
2086 		return;
2087 	}
2088 	curtime = gethrestime_sec();
2089 	if (curtime < spa->spa_last_noted_txg_time + spa_note_txg_time) {
2090 		return;
2091 	}
2092 
2093 	if (txg > spa->spa_last_noted_txg) {
2094 		spa->spa_last_noted_txg_time = curtime;
2095 		spa->spa_last_noted_txg = txg;
2096 
2097 		mutex_enter(&spa->spa_txg_log_time_lock);
2098 		dbrrd_add(&spa->spa_txg_log_time, curtime, txg);
2099 		mutex_exit(&spa->spa_txg_log_time_lock);
2100 	}
2101 
2102 	if (curtime < spa->spa_last_flush_txg_time + spa_flush_txg_time) {
2103 		return;
2104 	}
2105 	spa->spa_last_flush_txg_time = curtime;
2106 
2107 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2108 
2109 	VERIFY0(zap_update(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
2110 	    DMU_POOL_TXG_LOG_TIME_MINUTES, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2111 	    &spa->spa_txg_log_time.dbr_minutes, tx));
2112 	VERIFY0(zap_update(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
2113 	    DMU_POOL_TXG_LOG_TIME_DAYS, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2114 	    &spa->spa_txg_log_time.dbr_days, tx));
2115 	VERIFY0(zap_update(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
2116 	    DMU_POOL_TXG_LOG_TIME_MONTHS, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2117 	    &spa->spa_txg_log_time.dbr_months, tx));
2118 	dmu_tx_commit(tx);
2119 }
2120 
2121 static void
spa_unload_sync_time_logger(spa_t * spa)2122 spa_unload_sync_time_logger(spa_t *spa)
2123 {
2124 	uint64_t txg;
2125 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2126 	VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT));
2127 
2128 	txg = dmu_tx_get_txg(tx);
2129 	spa->spa_last_noted_txg_time = 0;
2130 	spa->spa_last_flush_txg_time = 0;
2131 	spa_sync_time_logger(spa, txg);
2132 
2133 	dmu_tx_commit(tx);
2134 }
2135 
2136 static void
spa_load_txg_log_time(spa_t * spa)2137 spa_load_txg_log_time(spa_t *spa)
2138 {
2139 	int error;
2140 
2141 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2142 	    DMU_POOL_TXG_LOG_TIME_MINUTES, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2143 	    &spa->spa_txg_log_time.dbr_minutes);
2144 	if (error != 0 && error != ENOENT) {
2145 		spa_load_note(spa, "unable to load a txg time database with "
2146 		    "minute resolution [error=%d]", error);
2147 	}
2148 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2149 	    DMU_POOL_TXG_LOG_TIME_DAYS, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2150 	    &spa->spa_txg_log_time.dbr_days);
2151 	if (error != 0 && error != ENOENT) {
2152 		spa_load_note(spa, "unable to load a txg time database with "
2153 		    "day resolution [error=%d]", error);
2154 	}
2155 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2156 	    DMU_POOL_TXG_LOG_TIME_MONTHS, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2157 	    &spa->spa_txg_log_time.dbr_months);
2158 	if (error != 0 && error != ENOENT) {
2159 		spa_load_note(spa, "unable to load a txg time database with "
2160 		    "month resolution [error=%d]", error);
2161 	}
2162 }
2163 
2164 static boolean_t
spa_should_sync_time_logger_on_unload(spa_t * spa)2165 spa_should_sync_time_logger_on_unload(spa_t *spa)
2166 {
2167 
2168 	if (!spa_writeable(spa))
2169 		return (B_FALSE);
2170 
2171 	if (!spa->spa_sync_on)
2172 		return (B_FALSE);
2173 
2174 	if (spa_state(spa) != POOL_STATE_EXPORTED)
2175 		return (B_FALSE);
2176 
2177 	if (spa->spa_last_noted_txg == 0)
2178 		return (B_FALSE);
2179 
2180 	return (B_TRUE);
2181 }
2182 
2183 
2184 /*
2185  * Opposite of spa_load().
2186  */
2187 static void
spa_unload(spa_t * spa)2188 spa_unload(spa_t *spa)
2189 {
2190 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
2191 	    spa->spa_export_thread == curthread);
2192 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
2193 
2194 	spa_import_progress_remove(spa_guid(spa));
2195 	spa_load_note(spa, "UNLOADING");
2196 
2197 	spa_wake_waiters(spa);
2198 
2199 	/*
2200 	 * If we have set the spa_final_txg, we have already performed the
2201 	 * tasks below in spa_export_common(). We should not redo it here since
2202 	 * we delay the final TXGs beyond what spa_final_txg is set at.
2203 	 */
2204 	if (spa->spa_final_txg == UINT64_MAX) {
2205 		if (spa_should_sync_time_logger_on_unload(spa))
2206 			spa_unload_sync_time_logger(spa);
2207 
2208 		/*
2209 		 * If the log space map feature is enabled and the pool is
2210 		 * getting exported (but not destroyed), we want to spend some
2211 		 * time flushing as many metaslabs as we can in an attempt to
2212 		 * destroy log space maps and save import time.
2213 		 */
2214 		if (spa_should_flush_logs_on_unload(spa))
2215 			spa_unload_log_sm_flush_all(spa);
2216 
2217 		/*
2218 		 * Stop async tasks.
2219 		 */
2220 		spa_async_suspend(spa);
2221 
2222 		if (spa->spa_root_vdev) {
2223 			vdev_t *root_vdev = spa->spa_root_vdev;
2224 			vdev_initialize_stop_all(root_vdev,
2225 			    VDEV_INITIALIZE_ACTIVE);
2226 			vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
2227 			vdev_autotrim_stop_all(spa);
2228 			vdev_rebuild_stop_all(spa);
2229 			l2arc_spa_rebuild_stop(spa);
2230 		}
2231 
2232 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2233 		spa->spa_final_txg = spa_last_synced_txg(spa) +
2234 		    TXG_DEFER_SIZE + 1;
2235 		spa_config_exit(spa, SCL_ALL, FTAG);
2236 	}
2237 
2238 	/*
2239 	 * Stop syncing.
2240 	 */
2241 	if (spa->spa_sync_on) {
2242 		txg_sync_stop(spa->spa_dsl_pool);
2243 		spa->spa_sync_on = B_FALSE;
2244 	}
2245 
2246 	/*
2247 	 * This ensures that there is no async metaslab prefetching
2248 	 * while we attempt to unload the spa.
2249 	 */
2250 	taskq_wait(spa->spa_metaslab_taskq);
2251 
2252 	if (spa->spa_mmp.mmp_thread)
2253 		mmp_thread_stop(spa);
2254 
2255 	/*
2256 	 * Wait for any outstanding async I/O to complete.
2257 	 */
2258 	if (spa->spa_async_zio_root != NULL) {
2259 		for (int i = 0; i < max_ncpus; i++)
2260 			(void) zio_wait(spa->spa_async_zio_root[i]);
2261 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
2262 		spa->spa_async_zio_root = NULL;
2263 	}
2264 
2265 	if (spa->spa_vdev_removal != NULL) {
2266 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
2267 		spa->spa_vdev_removal = NULL;
2268 	}
2269 
2270 	spa_destroy_aux_threads(spa);
2271 
2272 	spa_condense_fini(spa);
2273 
2274 	bpobj_close(&spa->spa_deferred_bpobj);
2275 
2276 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
2277 
2278 	/*
2279 	 * Close all vdevs.
2280 	 */
2281 	if (spa->spa_root_vdev)
2282 		vdev_free(spa->spa_root_vdev);
2283 	ASSERT0P(spa->spa_root_vdev);
2284 
2285 	/*
2286 	 * Close the dsl pool.
2287 	 */
2288 	if (spa->spa_dsl_pool) {
2289 		dsl_pool_close(spa->spa_dsl_pool);
2290 		spa->spa_dsl_pool = NULL;
2291 		spa->spa_meta_objset = NULL;
2292 	}
2293 
2294 	ddt_unload(spa);
2295 	brt_unload(spa);
2296 	spa_unload_log_sm_metadata(spa);
2297 
2298 	/*
2299 	 * Drop and purge level 2 cache
2300 	 */
2301 	spa_l2cache_drop(spa);
2302 
2303 	if (spa->spa_spares.sav_vdevs) {
2304 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
2305 			vdev_free(spa->spa_spares.sav_vdevs[i]);
2306 		kmem_free(spa->spa_spares.sav_vdevs,
2307 		    spa->spa_spares.sav_count * sizeof (void *));
2308 		spa->spa_spares.sav_vdevs = NULL;
2309 	}
2310 	if (spa->spa_spares.sav_config) {
2311 		nvlist_free(spa->spa_spares.sav_config);
2312 		spa->spa_spares.sav_config = NULL;
2313 	}
2314 	spa->spa_spares.sav_count = 0;
2315 
2316 	if (spa->spa_l2cache.sav_vdevs) {
2317 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
2318 			vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
2319 			vdev_free(spa->spa_l2cache.sav_vdevs[i]);
2320 		}
2321 		kmem_free(spa->spa_l2cache.sav_vdevs,
2322 		    spa->spa_l2cache.sav_count * sizeof (void *));
2323 		spa->spa_l2cache.sav_vdevs = NULL;
2324 	}
2325 	if (spa->spa_l2cache.sav_config) {
2326 		nvlist_free(spa->spa_l2cache.sav_config);
2327 		spa->spa_l2cache.sav_config = NULL;
2328 	}
2329 	spa->spa_l2cache.sav_count = 0;
2330 
2331 	spa->spa_async_suspended = 0;
2332 
2333 	spa->spa_indirect_vdevs_loaded = B_FALSE;
2334 
2335 	if (spa->spa_comment != NULL) {
2336 		spa_strfree(spa->spa_comment);
2337 		spa->spa_comment = NULL;
2338 	}
2339 	if (spa->spa_compatibility != NULL) {
2340 		spa_strfree(spa->spa_compatibility);
2341 		spa->spa_compatibility = NULL;
2342 	}
2343 
2344 	spa->spa_raidz_expand = NULL;
2345 	spa->spa_checkpoint_txg = 0;
2346 
2347 	spa_config_exit(spa, SCL_ALL, spa);
2348 }
2349 
2350 /*
2351  * Load (or re-load) the current list of vdevs describing the active spares for
2352  * this pool.  When this is called, we have some form of basic information in
2353  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
2354  * then re-generate a more complete list including status information.
2355  */
2356 void
spa_load_spares(spa_t * spa)2357 spa_load_spares(spa_t *spa)
2358 {
2359 	nvlist_t **spares;
2360 	uint_t nspares;
2361 	int i;
2362 	vdev_t *vd, *tvd;
2363 
2364 #ifndef _KERNEL
2365 	/*
2366 	 * zdb opens both the current state of the pool and the
2367 	 * checkpointed state (if present), with a different spa_t.
2368 	 *
2369 	 * As spare vdevs are shared among open pools, we skip loading
2370 	 * them when we load the checkpointed state of the pool.
2371 	 */
2372 	if (!spa_writeable(spa))
2373 		return;
2374 #endif
2375 
2376 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2377 
2378 	/*
2379 	 * First, close and free any existing spare vdevs.
2380 	 */
2381 	if (spa->spa_spares.sav_vdevs) {
2382 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
2383 			vd = spa->spa_spares.sav_vdevs[i];
2384 
2385 			/* Undo the call to spa_activate() below */
2386 			if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2387 			    B_FALSE)) != NULL && tvd->vdev_isspare)
2388 				spa_spare_remove(tvd);
2389 			vdev_close(vd);
2390 			vdev_free(vd);
2391 		}
2392 
2393 		kmem_free(spa->spa_spares.sav_vdevs,
2394 		    spa->spa_spares.sav_count * sizeof (void *));
2395 	}
2396 
2397 	if (spa->spa_spares.sav_config == NULL)
2398 		nspares = 0;
2399 	else
2400 		VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2401 		    ZPOOL_CONFIG_SPARES, &spares, &nspares));
2402 
2403 	spa->spa_spares.sav_count = (int)nspares;
2404 	spa->spa_spares.sav_vdevs = NULL;
2405 
2406 	if (nspares == 0)
2407 		return;
2408 
2409 	/*
2410 	 * Construct the array of vdevs, opening them to get status in the
2411 	 * process.   For each spare, there is potentially two different vdev_t
2412 	 * structures associated with it: one in the list of spares (used only
2413 	 * for basic validation purposes) and one in the active vdev
2414 	 * configuration (if it's spared in).  During this phase we open and
2415 	 * validate each vdev on the spare list.  If the vdev also exists in the
2416 	 * active configuration, then we also mark this vdev as an active spare.
2417 	 */
2418 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
2419 	    KM_SLEEP);
2420 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
2421 		VERIFY0(spa_config_parse(spa, &vd, spares[i], NULL, 0,
2422 		    VDEV_ALLOC_SPARE));
2423 		ASSERT(vd != NULL);
2424 
2425 		spa->spa_spares.sav_vdevs[i] = vd;
2426 
2427 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2428 		    B_FALSE)) != NULL) {
2429 			if (!tvd->vdev_isspare)
2430 				spa_spare_add(tvd);
2431 
2432 			/*
2433 			 * We only mark the spare active if we were successfully
2434 			 * able to load the vdev.  Otherwise, importing a pool
2435 			 * with a bad active spare would result in strange
2436 			 * behavior, because multiple pool would think the spare
2437 			 * is actively in use.
2438 			 *
2439 			 * There is a vulnerability here to an equally bizarre
2440 			 * circumstance, where a dead active spare is later
2441 			 * brought back to life (onlined or otherwise).  Given
2442 			 * the rarity of this scenario, and the extra complexity
2443 			 * it adds, we ignore the possibility.
2444 			 */
2445 			if (!vdev_is_dead(tvd))
2446 				spa_spare_activate(tvd);
2447 		}
2448 
2449 		vd->vdev_top = vd;
2450 		vd->vdev_aux = &spa->spa_spares;
2451 
2452 		if (vdev_open(vd) != 0)
2453 			continue;
2454 
2455 		if (vdev_validate_aux(vd) == 0)
2456 			spa_spare_add(vd);
2457 	}
2458 
2459 	/*
2460 	 * Recompute the stashed list of spares, with status information
2461 	 * this time.
2462 	 */
2463 	fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
2464 
2465 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
2466 	    KM_SLEEP);
2467 	for (i = 0; i < spa->spa_spares.sav_count; i++)
2468 		spares[i] = vdev_config_generate(spa,
2469 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
2470 	fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
2471 	    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
2472 	    spa->spa_spares.sav_count);
2473 	for (i = 0; i < spa->spa_spares.sav_count; i++)
2474 		nvlist_free(spares[i]);
2475 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
2476 }
2477 
2478 /*
2479  * Load (or re-load) the current list of vdevs describing the active l2cache for
2480  * this pool.  When this is called, we have some form of basic information in
2481  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
2482  * then re-generate a more complete list including status information.
2483  * Devices which are already active have their details maintained, and are
2484  * not re-opened.
2485  */
2486 void
spa_load_l2cache(spa_t * spa)2487 spa_load_l2cache(spa_t *spa)
2488 {
2489 	nvlist_t **l2cache = NULL;
2490 	uint_t nl2cache;
2491 	int i, j, oldnvdevs;
2492 	uint64_t guid;
2493 	vdev_t *vd, **oldvdevs, **newvdevs;
2494 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2495 
2496 #ifndef _KERNEL
2497 	/*
2498 	 * zdb opens both the current state of the pool and the
2499 	 * checkpointed state (if present), with a different spa_t.
2500 	 *
2501 	 * As L2 caches are part of the ARC which is shared among open
2502 	 * pools, we skip loading them when we load the checkpointed
2503 	 * state of the pool.
2504 	 */
2505 	if (!spa_writeable(spa))
2506 		return;
2507 #endif
2508 
2509 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2510 
2511 	oldvdevs = sav->sav_vdevs;
2512 	oldnvdevs = sav->sav_count;
2513 	sav->sav_vdevs = NULL;
2514 	sav->sav_count = 0;
2515 
2516 	if (sav->sav_config == NULL) {
2517 		nl2cache = 0;
2518 		newvdevs = NULL;
2519 		goto out;
2520 	}
2521 
2522 	VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
2523 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
2524 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
2525 
2526 	/*
2527 	 * Process new nvlist of vdevs.
2528 	 */
2529 	for (i = 0; i < nl2cache; i++) {
2530 		guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2531 
2532 		newvdevs[i] = NULL;
2533 		for (j = 0; j < oldnvdevs; j++) {
2534 			vd = oldvdevs[j];
2535 			if (vd != NULL && guid == vd->vdev_guid) {
2536 				/*
2537 				 * Retain previous vdev for add/remove ops.
2538 				 */
2539 				newvdevs[i] = vd;
2540 				oldvdevs[j] = NULL;
2541 				break;
2542 			}
2543 		}
2544 
2545 		if (newvdevs[i] == NULL) {
2546 			/*
2547 			 * Create new vdev
2548 			 */
2549 			VERIFY0(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2550 			    VDEV_ALLOC_L2CACHE));
2551 			ASSERT(vd != NULL);
2552 			newvdevs[i] = vd;
2553 
2554 			/*
2555 			 * Commit this vdev as an l2cache device,
2556 			 * even if it fails to open.
2557 			 */
2558 			spa_l2cache_add(vd);
2559 
2560 			vd->vdev_top = vd;
2561 			vd->vdev_aux = sav;
2562 
2563 			spa_l2cache_activate(vd);
2564 
2565 			if (vdev_open(vd) != 0)
2566 				continue;
2567 
2568 			(void) vdev_validate_aux(vd);
2569 
2570 			if (!vdev_is_dead(vd))
2571 				l2arc_add_vdev(spa, vd);
2572 
2573 			/*
2574 			 * Upon cache device addition to a pool or pool
2575 			 * creation with a cache device or if the header
2576 			 * of the device is invalid we issue an async
2577 			 * TRIM command for the whole device which will
2578 			 * execute if l2arc_trim_ahead > 0.
2579 			 */
2580 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2581 		}
2582 	}
2583 
2584 	sav->sav_vdevs = newvdevs;
2585 	sav->sav_count = (int)nl2cache;
2586 
2587 	/*
2588 	 * Recompute the stashed list of l2cache devices, with status
2589 	 * information this time.
2590 	 */
2591 	fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2592 
2593 	if (sav->sav_count > 0)
2594 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2595 		    KM_SLEEP);
2596 	for (i = 0; i < sav->sav_count; i++)
2597 		l2cache[i] = vdev_config_generate(spa,
2598 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2599 	fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2600 	    (const nvlist_t * const *)l2cache, sav->sav_count);
2601 
2602 out:
2603 	/*
2604 	 * Purge vdevs that were dropped
2605 	 */
2606 	if (oldvdevs) {
2607 		for (i = 0; i < oldnvdevs; i++) {
2608 			uint64_t pool;
2609 
2610 			vd = oldvdevs[i];
2611 			if (vd != NULL) {
2612 				ASSERT(vd->vdev_isl2cache);
2613 
2614 				if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2615 				    pool != 0ULL && l2arc_vdev_present(vd))
2616 					l2arc_remove_vdev(vd);
2617 				vdev_clear_stats(vd);
2618 				vdev_free(vd);
2619 			}
2620 		}
2621 
2622 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2623 	}
2624 
2625 	for (i = 0; i < sav->sav_count; i++)
2626 		nvlist_free(l2cache[i]);
2627 	if (sav->sav_count)
2628 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
2629 }
2630 
2631 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)2632 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2633 {
2634 	dmu_buf_t *db;
2635 	char *packed = NULL;
2636 	size_t nvsize = 0;
2637 	int error;
2638 	*value = NULL;
2639 
2640 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2641 	if (error)
2642 		return (error);
2643 
2644 	nvsize = *(uint64_t *)db->db_data;
2645 	dmu_buf_rele(db, FTAG);
2646 
2647 	packed = vmem_alloc(nvsize, KM_SLEEP);
2648 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2649 	    DMU_READ_PREFETCH);
2650 	if (error == 0)
2651 		error = nvlist_unpack(packed, nvsize, value, 0);
2652 	vmem_free(packed, nvsize);
2653 
2654 	return (error);
2655 }
2656 
2657 /*
2658  * Concrete top-level vdevs that are not missing and are not logs. At every
2659  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2660  */
2661 static uint64_t
spa_healthy_core_tvds(spa_t * spa)2662 spa_healthy_core_tvds(spa_t *spa)
2663 {
2664 	vdev_t *rvd = spa->spa_root_vdev;
2665 	uint64_t tvds = 0;
2666 
2667 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2668 		vdev_t *vd = rvd->vdev_child[i];
2669 		if (vd->vdev_islog)
2670 			continue;
2671 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2672 			tvds++;
2673 	}
2674 
2675 	return (tvds);
2676 }
2677 
2678 /*
2679  * Checks to see if the given vdev could not be opened, in which case we post a
2680  * sysevent to notify the autoreplace code that the device has been removed.
2681  */
2682 static void
spa_check_removed(vdev_t * vd)2683 spa_check_removed(vdev_t *vd)
2684 {
2685 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2686 		spa_check_removed(vd->vdev_child[c]);
2687 
2688 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2689 	    vdev_is_concrete(vd)) {
2690 		zfs_post_autoreplace(vd->vdev_spa, vd);
2691 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2692 	}
2693 }
2694 
2695 static int
spa_check_for_missing_logs(spa_t * spa)2696 spa_check_for_missing_logs(spa_t *spa)
2697 {
2698 	vdev_t *rvd = spa->spa_root_vdev;
2699 
2700 	/*
2701 	 * If we're doing a normal import, then build up any additional
2702 	 * diagnostic information about missing log devices.
2703 	 * We'll pass this up to the user for further processing.
2704 	 */
2705 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2706 		nvlist_t **child, *nv;
2707 		uint64_t idx = 0;
2708 
2709 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2710 		    KM_SLEEP);
2711 		nv = fnvlist_alloc();
2712 
2713 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2714 			vdev_t *tvd = rvd->vdev_child[c];
2715 
2716 			/*
2717 			 * We consider a device as missing only if it failed
2718 			 * to open (i.e. offline or faulted is not considered
2719 			 * as missing).
2720 			 */
2721 			if (tvd->vdev_islog &&
2722 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2723 				child[idx++] = vdev_config_generate(spa, tvd,
2724 				    B_FALSE, VDEV_CONFIG_MISSING);
2725 			}
2726 		}
2727 
2728 		if (idx > 0) {
2729 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2730 			    (const nvlist_t * const *)child, idx);
2731 			fnvlist_add_nvlist(spa->spa_load_info,
2732 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2733 
2734 			for (uint64_t i = 0; i < idx; i++)
2735 				nvlist_free(child[i]);
2736 		}
2737 		nvlist_free(nv);
2738 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2739 
2740 		if (idx > 0) {
2741 			spa_load_failed(spa, "some log devices are missing");
2742 			vdev_dbgmsg_print_tree(rvd, 2);
2743 			return (SET_ERROR(ENXIO));
2744 		}
2745 	} else {
2746 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2747 			vdev_t *tvd = rvd->vdev_child[c];
2748 
2749 			if (tvd->vdev_islog &&
2750 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2751 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2752 				spa_load_note(spa, "some log devices are "
2753 				    "missing, ZIL is dropped.");
2754 				vdev_dbgmsg_print_tree(rvd, 2);
2755 				break;
2756 			}
2757 		}
2758 	}
2759 
2760 	return (0);
2761 }
2762 
2763 /*
2764  * Check for missing log devices
2765  */
2766 static boolean_t
spa_check_logs(spa_t * spa)2767 spa_check_logs(spa_t *spa)
2768 {
2769 	boolean_t rv = B_FALSE;
2770 	dsl_pool_t *dp = spa_get_dsl(spa);
2771 
2772 	switch (spa->spa_log_state) {
2773 	default:
2774 		break;
2775 	case SPA_LOG_MISSING:
2776 		/* need to recheck in case slog has been restored */
2777 	case SPA_LOG_UNKNOWN:
2778 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2779 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2780 		if (rv)
2781 			spa_set_log_state(spa, SPA_LOG_MISSING);
2782 		break;
2783 	}
2784 	return (rv);
2785 }
2786 
2787 /*
2788  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2789  */
2790 static boolean_t
spa_passivate_log(spa_t * spa)2791 spa_passivate_log(spa_t *spa)
2792 {
2793 	vdev_t *rvd = spa->spa_root_vdev;
2794 	boolean_t slog_found = B_FALSE;
2795 
2796 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2797 
2798 	for (int c = 0; c < rvd->vdev_children; c++) {
2799 		vdev_t *tvd = rvd->vdev_child[c];
2800 
2801 		if (tvd->vdev_islog) {
2802 			ASSERT0P(tvd->vdev_log_mg);
2803 			metaslab_group_passivate(tvd->vdev_mg);
2804 			slog_found = B_TRUE;
2805 		}
2806 	}
2807 
2808 	return (slog_found);
2809 }
2810 
2811 /*
2812  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2813  */
2814 static void
spa_activate_log(spa_t * spa)2815 spa_activate_log(spa_t *spa)
2816 {
2817 	vdev_t *rvd = spa->spa_root_vdev;
2818 
2819 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2820 
2821 	for (int c = 0; c < rvd->vdev_children; c++) {
2822 		vdev_t *tvd = rvd->vdev_child[c];
2823 
2824 		if (tvd->vdev_islog) {
2825 			ASSERT0P(tvd->vdev_log_mg);
2826 			metaslab_group_activate(tvd->vdev_mg);
2827 		}
2828 	}
2829 }
2830 
2831 int
spa_reset_logs(spa_t * spa)2832 spa_reset_logs(spa_t *spa)
2833 {
2834 	int error;
2835 
2836 	error = dmu_objset_find(spa_name(spa), zil_reset,
2837 	    NULL, DS_FIND_CHILDREN);
2838 	if (error == 0) {
2839 		/*
2840 		 * We successfully offlined the log device, sync out the
2841 		 * current txg so that the "stubby" block can be removed
2842 		 * by zil_sync().
2843 		 */
2844 		txg_wait_synced(spa->spa_dsl_pool, 0);
2845 	}
2846 	return (error);
2847 }
2848 
2849 static void
spa_aux_check_removed(spa_aux_vdev_t * sav)2850 spa_aux_check_removed(spa_aux_vdev_t *sav)
2851 {
2852 	for (int i = 0; i < sav->sav_count; i++)
2853 		spa_check_removed(sav->sav_vdevs[i]);
2854 }
2855 
2856 void
spa_claim_notify(zio_t * zio)2857 spa_claim_notify(zio_t *zio)
2858 {
2859 	spa_t *spa = zio->io_spa;
2860 
2861 	if (zio->io_error)
2862 		return;
2863 
2864 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2865 	if (spa->spa_claim_max_txg < BP_GET_BIRTH(zio->io_bp))
2866 		spa->spa_claim_max_txg = BP_GET_BIRTH(zio->io_bp);
2867 	mutex_exit(&spa->spa_props_lock);
2868 }
2869 
2870 typedef struct spa_load_error {
2871 	boolean_t	sle_verify_data;
2872 	uint64_t	sle_meta_count;
2873 	uint64_t	sle_data_count;
2874 } spa_load_error_t;
2875 
2876 static void
spa_load_verify_done(zio_t * zio)2877 spa_load_verify_done(zio_t *zio)
2878 {
2879 	blkptr_t *bp = zio->io_bp;
2880 	spa_load_error_t *sle = zio->io_private;
2881 	dmu_object_type_t type = BP_GET_TYPE(bp);
2882 	int error = zio->io_error;
2883 	spa_t *spa = zio->io_spa;
2884 
2885 	abd_free(zio->io_abd);
2886 	if (error) {
2887 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2888 		    type != DMU_OT_INTENT_LOG)
2889 			atomic_inc_64(&sle->sle_meta_count);
2890 		else
2891 			atomic_inc_64(&sle->sle_data_count);
2892 	}
2893 
2894 	mutex_enter(&spa->spa_scrub_lock);
2895 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2896 	cv_broadcast(&spa->spa_scrub_io_cv);
2897 	mutex_exit(&spa->spa_scrub_lock);
2898 }
2899 
2900 /*
2901  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2902  * By default, we set it to 1/16th of the arc.
2903  */
2904 static uint_t spa_load_verify_shift = 4;
2905 static int spa_load_verify_metadata = B_TRUE;
2906 static int spa_load_verify_data = B_TRUE;
2907 
2908 static int
spa_load_verify_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)2909 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2910     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2911 {
2912 	zio_t *rio = arg;
2913 	spa_load_error_t *sle = rio->io_private;
2914 
2915 	(void) zilog, (void) dnp;
2916 
2917 	/*
2918 	 * Note: normally this routine will not be called if
2919 	 * spa_load_verify_metadata is not set.  However, it may be useful
2920 	 * to manually set the flag after the traversal has begun.
2921 	 */
2922 	if (!spa_load_verify_metadata)
2923 		return (0);
2924 
2925 	/*
2926 	 * Sanity check the block pointer in order to detect obvious damage
2927 	 * before using the contents in subsequent checks or in zio_read().
2928 	 * When damaged consider it to be a metadata error since we cannot
2929 	 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2930 	 */
2931 	if (zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2932 		atomic_inc_64(&sle->sle_meta_count);
2933 		return (0);
2934 	}
2935 
2936 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2937 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2938 		return (0);
2939 
2940 	if (!BP_IS_METADATA(bp) &&
2941 	    (!spa_load_verify_data || !sle->sle_verify_data))
2942 		return (0);
2943 
2944 	uint64_t maxinflight_bytes =
2945 	    arc_target_bytes() >> spa_load_verify_shift;
2946 	size_t size = BP_GET_PSIZE(bp);
2947 
2948 	mutex_enter(&spa->spa_scrub_lock);
2949 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2950 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2951 	spa->spa_load_verify_bytes += size;
2952 	mutex_exit(&spa->spa_scrub_lock);
2953 
2954 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2955 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2956 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2957 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2958 	return (0);
2959 }
2960 
2961 static int
verify_dataset_name_len(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)2962 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2963 {
2964 	(void) dp, (void) arg;
2965 
2966 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2967 		return (SET_ERROR(ENAMETOOLONG));
2968 
2969 	return (0);
2970 }
2971 
2972 static int
spa_load_verify(spa_t * spa)2973 spa_load_verify(spa_t *spa)
2974 {
2975 	zio_t *rio;
2976 	spa_load_error_t sle = { 0 };
2977 	zpool_load_policy_t policy;
2978 	boolean_t verify_ok = B_FALSE;
2979 	int error = 0;
2980 
2981 	zpool_get_load_policy(spa->spa_config, &policy);
2982 
2983 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2984 	    policy.zlp_maxmeta == UINT64_MAX)
2985 		return (0);
2986 
2987 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2988 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2989 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2990 	    DS_FIND_CHILDREN);
2991 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2992 	if (error != 0)
2993 		return (error);
2994 
2995 	/*
2996 	 * Verify data only if we are rewinding or error limit was set.
2997 	 * Otherwise nothing except dbgmsg care about it to waste time.
2998 	 */
2999 	sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
3000 	    (policy.zlp_maxdata < UINT64_MAX);
3001 
3002 	rio = zio_root(spa, NULL, &sle,
3003 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
3004 
3005 	if (spa_load_verify_metadata) {
3006 		if (spa->spa_extreme_rewind) {
3007 			spa_load_note(spa, "performing a complete scan of the "
3008 			    "pool since extreme rewind is on. This may take "
3009 			    "a very long time.\n  (spa_load_verify_data=%u, "
3010 			    "spa_load_verify_metadata=%u)",
3011 			    spa_load_verify_data, spa_load_verify_metadata);
3012 		}
3013 
3014 		error = traverse_pool(spa, spa->spa_verify_min_txg,
3015 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
3016 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
3017 	}
3018 
3019 	(void) zio_wait(rio);
3020 	ASSERT0(spa->spa_load_verify_bytes);
3021 
3022 	spa->spa_load_meta_errors = sle.sle_meta_count;
3023 	spa->spa_load_data_errors = sle.sle_data_count;
3024 
3025 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
3026 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
3027 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
3028 		    (u_longlong_t)sle.sle_data_count);
3029 	}
3030 
3031 	if (spa_load_verify_dryrun ||
3032 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
3033 	    sle.sle_data_count <= policy.zlp_maxdata)) {
3034 		int64_t loss = 0;
3035 
3036 		verify_ok = B_TRUE;
3037 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
3038 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
3039 
3040 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
3041 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
3042 		    spa->spa_load_txg_ts);
3043 		fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
3044 		    loss);
3045 		fnvlist_add_uint64(spa->spa_load_info,
3046 		    ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
3047 		fnvlist_add_uint64(spa->spa_load_info,
3048 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
3049 	} else {
3050 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
3051 	}
3052 
3053 	if (spa_load_verify_dryrun)
3054 		return (0);
3055 
3056 	if (error) {
3057 		if (error != ENXIO && error != EIO)
3058 			error = SET_ERROR(EIO);
3059 		return (error);
3060 	}
3061 
3062 	return (verify_ok ? 0 : EIO);
3063 }
3064 
3065 /*
3066  * Find a value in the pool props object.
3067  */
3068 static void
spa_prop_find(spa_t * spa,zpool_prop_t prop,uint64_t * val)3069 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
3070 {
3071 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
3072 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
3073 }
3074 
3075 /*
3076  * Find a value in the pool directory object.
3077  */
3078 static int
spa_dir_prop(spa_t * spa,const char * name,uint64_t * val,boolean_t log_enoent)3079 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
3080 {
3081 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3082 	    name, sizeof (uint64_t), 1, val);
3083 
3084 	if (error != 0 && (error != ENOENT || log_enoent)) {
3085 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
3086 		    "[error=%d]", name, error);
3087 	}
3088 
3089 	return (error);
3090 }
3091 
3092 static int
spa_vdev_err(vdev_t * vdev,vdev_aux_t aux,int err)3093 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
3094 {
3095 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
3096 	return (SET_ERROR(err));
3097 }
3098 
3099 boolean_t
spa_livelist_delete_check(spa_t * spa)3100 spa_livelist_delete_check(spa_t *spa)
3101 {
3102 	return (spa->spa_livelists_to_delete != 0);
3103 }
3104 
3105 static boolean_t
spa_livelist_delete_cb_check(void * arg,zthr_t * z)3106 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
3107 {
3108 	(void) z;
3109 	spa_t *spa = arg;
3110 	return (spa_livelist_delete_check(spa));
3111 }
3112 
3113 static int
delete_blkptr_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)3114 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3115 {
3116 	spa_t *spa = arg;
3117 	zio_free(spa, tx->tx_txg, bp);
3118 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3119 	    -bp_get_dsize_sync(spa, bp),
3120 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3121 	return (0);
3122 }
3123 
3124 static int
dsl_get_next_livelist_obj(objset_t * os,uint64_t zap_obj,uint64_t * llp)3125 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
3126 {
3127 	int err;
3128 	zap_cursor_t zc;
3129 	zap_attribute_t *za = zap_attribute_alloc();
3130 	zap_cursor_init(&zc, os, zap_obj);
3131 	err = zap_cursor_retrieve(&zc, za);
3132 	zap_cursor_fini(&zc);
3133 	if (err == 0)
3134 		*llp = za->za_first_integer;
3135 	zap_attribute_free(za);
3136 	return (err);
3137 }
3138 
3139 /*
3140  * Components of livelist deletion that must be performed in syncing
3141  * context: freeing block pointers and updating the pool-wide data
3142  * structures to indicate how much work is left to do
3143  */
3144 typedef struct sublist_delete_arg {
3145 	spa_t *spa;
3146 	dsl_deadlist_t *ll;
3147 	uint64_t key;
3148 	bplist_t *to_free;
3149 } sublist_delete_arg_t;
3150 
3151 static void
sublist_delete_sync(void * arg,dmu_tx_t * tx)3152 sublist_delete_sync(void *arg, dmu_tx_t *tx)
3153 {
3154 	sublist_delete_arg_t *sda = arg;
3155 	spa_t *spa = sda->spa;
3156 	dsl_deadlist_t *ll = sda->ll;
3157 	uint64_t key = sda->key;
3158 	bplist_t *to_free = sda->to_free;
3159 
3160 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
3161 	dsl_deadlist_remove_entry(ll, key, tx);
3162 }
3163 
3164 typedef struct livelist_delete_arg {
3165 	spa_t *spa;
3166 	uint64_t ll_obj;
3167 	uint64_t zap_obj;
3168 } livelist_delete_arg_t;
3169 
3170 static void
livelist_delete_sync(void * arg,dmu_tx_t * tx)3171 livelist_delete_sync(void *arg, dmu_tx_t *tx)
3172 {
3173 	livelist_delete_arg_t *lda = arg;
3174 	spa_t *spa = lda->spa;
3175 	uint64_t ll_obj = lda->ll_obj;
3176 	uint64_t zap_obj = lda->zap_obj;
3177 	objset_t *mos = spa->spa_meta_objset;
3178 	uint64_t count;
3179 
3180 	/* free the livelist and decrement the feature count */
3181 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
3182 	dsl_deadlist_free(mos, ll_obj, tx);
3183 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
3184 	VERIFY0(zap_count(mos, zap_obj, &count));
3185 	if (count == 0) {
3186 		/* no more livelists to delete */
3187 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
3188 		    DMU_POOL_DELETED_CLONES, tx));
3189 		VERIFY0(zap_destroy(mos, zap_obj, tx));
3190 		spa->spa_livelists_to_delete = 0;
3191 		spa_notify_waiters(spa);
3192 	}
3193 }
3194 
3195 /*
3196  * Load in the value for the livelist to be removed and open it. Then,
3197  * load its first sublist and determine which block pointers should actually
3198  * be freed. Then, call a synctask which performs the actual frees and updates
3199  * the pool-wide livelist data.
3200  */
3201 static void
spa_livelist_delete_cb(void * arg,zthr_t * z)3202 spa_livelist_delete_cb(void *arg, zthr_t *z)
3203 {
3204 	spa_t *spa = arg;
3205 	uint64_t ll_obj = 0, count;
3206 	objset_t *mos = spa->spa_meta_objset;
3207 	uint64_t zap_obj = spa->spa_livelists_to_delete;
3208 	/*
3209 	 * Determine the next livelist to delete. This function should only
3210 	 * be called if there is at least one deleted clone.
3211 	 */
3212 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
3213 	VERIFY0(zap_count(mos, ll_obj, &count));
3214 	if (count > 0) {
3215 		dsl_deadlist_t *ll;
3216 		dsl_deadlist_entry_t *dle;
3217 		bplist_t to_free;
3218 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
3219 		VERIFY0(dsl_deadlist_open(ll, mos, ll_obj));
3220 		dle = dsl_deadlist_first(ll);
3221 		ASSERT3P(dle, !=, NULL);
3222 		bplist_create(&to_free);
3223 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
3224 		    z, NULL);
3225 		if (err == 0) {
3226 			sublist_delete_arg_t sync_arg = {
3227 			    .spa = spa,
3228 			    .ll = ll,
3229 			    .key = dle->dle_mintxg,
3230 			    .to_free = &to_free
3231 			};
3232 			zfs_dbgmsg("deleting sublist (id %llu) from"
3233 			    " livelist %llu, %lld remaining",
3234 			    (u_longlong_t)dle->dle_bpobj.bpo_object,
3235 			    (u_longlong_t)ll_obj, (longlong_t)count - 1);
3236 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
3237 			    sublist_delete_sync, &sync_arg, 0,
3238 			    ZFS_SPACE_CHECK_DESTROY));
3239 		} else {
3240 			VERIFY3U(err, ==, EINTR);
3241 		}
3242 		bplist_clear(&to_free);
3243 		bplist_destroy(&to_free);
3244 		dsl_deadlist_close(ll);
3245 		kmem_free(ll, sizeof (dsl_deadlist_t));
3246 	} else {
3247 		livelist_delete_arg_t sync_arg = {
3248 		    .spa = spa,
3249 		    .ll_obj = ll_obj,
3250 		    .zap_obj = zap_obj
3251 		};
3252 		zfs_dbgmsg("deletion of livelist %llu completed",
3253 		    (u_longlong_t)ll_obj);
3254 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
3255 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
3256 	}
3257 }
3258 
3259 static void
spa_start_livelist_destroy_thread(spa_t * spa)3260 spa_start_livelist_destroy_thread(spa_t *spa)
3261 {
3262 	ASSERT0P(spa->spa_livelist_delete_zthr);
3263 	spa->spa_livelist_delete_zthr =
3264 	    zthr_create("z_livelist_destroy",
3265 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
3266 	    minclsyspri);
3267 }
3268 
3269 typedef struct livelist_new_arg {
3270 	bplist_t *allocs;
3271 	bplist_t *frees;
3272 } livelist_new_arg_t;
3273 
3274 static int
livelist_track_new_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3275 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3276     dmu_tx_t *tx)
3277 {
3278 	ASSERT0P(tx);
3279 	livelist_new_arg_t *lna = arg;
3280 	if (bp_freed) {
3281 		bplist_append(lna->frees, bp);
3282 	} else {
3283 		bplist_append(lna->allocs, bp);
3284 		zfs_livelist_condense_new_alloc++;
3285 	}
3286 	return (0);
3287 }
3288 
3289 typedef struct livelist_condense_arg {
3290 	spa_t *spa;
3291 	bplist_t to_keep;
3292 	uint64_t first_size;
3293 	uint64_t next_size;
3294 } livelist_condense_arg_t;
3295 
3296 static void
spa_livelist_condense_sync(void * arg,dmu_tx_t * tx)3297 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
3298 {
3299 	livelist_condense_arg_t *lca = arg;
3300 	spa_t *spa = lca->spa;
3301 	bplist_t new_frees;
3302 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
3303 
3304 	/* Have we been cancelled? */
3305 	if (spa->spa_to_condense.cancelled) {
3306 		zfs_livelist_condense_sync_cancel++;
3307 		goto out;
3308 	}
3309 
3310 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3311 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3312 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
3313 
3314 	/*
3315 	 * It's possible that the livelist was changed while the zthr was
3316 	 * running. Therefore, we need to check for new blkptrs in the two
3317 	 * entries being condensed and continue to track them in the livelist.
3318 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
3319 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
3320 	 * we need to sort them into two different bplists.
3321 	 */
3322 	uint64_t first_obj = first->dle_bpobj.bpo_object;
3323 	uint64_t next_obj = next->dle_bpobj.bpo_object;
3324 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3325 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3326 
3327 	bplist_create(&new_frees);
3328 	livelist_new_arg_t new_bps = {
3329 	    .allocs = &lca->to_keep,
3330 	    .frees = &new_frees,
3331 	};
3332 
3333 	if (cur_first_size > lca->first_size) {
3334 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
3335 		    livelist_track_new_cb, &new_bps, lca->first_size));
3336 	}
3337 	if (cur_next_size > lca->next_size) {
3338 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
3339 		    livelist_track_new_cb, &new_bps, lca->next_size));
3340 	}
3341 
3342 	dsl_deadlist_clear_entry(first, ll, tx);
3343 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
3344 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
3345 
3346 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
3347 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
3348 	bplist_destroy(&new_frees);
3349 
3350 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
3351 	dsl_dataset_name(ds, dsname);
3352 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
3353 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
3354 	    "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
3355 	    (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
3356 	    (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
3357 	    (u_longlong_t)cur_next_size,
3358 	    (u_longlong_t)first->dle_bpobj.bpo_object,
3359 	    (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
3360 out:
3361 	dmu_buf_rele(ds->ds_dbuf, spa);
3362 	spa->spa_to_condense.ds = NULL;
3363 	bplist_clear(&lca->to_keep);
3364 	bplist_destroy(&lca->to_keep);
3365 	kmem_free(lca, sizeof (livelist_condense_arg_t));
3366 	spa->spa_to_condense.syncing = B_FALSE;
3367 }
3368 
3369 static void
spa_livelist_condense_cb(void * arg,zthr_t * t)3370 spa_livelist_condense_cb(void *arg, zthr_t *t)
3371 {
3372 	while (zfs_livelist_condense_zthr_pause &&
3373 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3374 		delay(1);
3375 
3376 	spa_t *spa = arg;
3377 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3378 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3379 	uint64_t first_size, next_size;
3380 
3381 	livelist_condense_arg_t *lca =
3382 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
3383 	bplist_create(&lca->to_keep);
3384 
3385 	/*
3386 	 * Process the livelists (matching FREEs and ALLOCs) in open context
3387 	 * so we have minimal work in syncing context to condense.
3388 	 *
3389 	 * We save bpobj sizes (first_size and next_size) to use later in
3390 	 * syncing context to determine if entries were added to these sublists
3391 	 * while in open context. This is possible because the clone is still
3392 	 * active and open for normal writes and we want to make sure the new,
3393 	 * unprocessed blockpointers are inserted into the livelist normally.
3394 	 *
3395 	 * Note that dsl_process_sub_livelist() both stores the size number of
3396 	 * blockpointers and iterates over them while the bpobj's lock held, so
3397 	 * the sizes returned to us are consistent which what was actually
3398 	 * processed.
3399 	 */
3400 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
3401 	    &first_size);
3402 	if (err == 0)
3403 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
3404 		    t, &next_size);
3405 
3406 	if (err == 0) {
3407 		while (zfs_livelist_condense_sync_pause &&
3408 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3409 			delay(1);
3410 
3411 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3412 		dmu_tx_mark_netfree(tx);
3413 		dmu_tx_hold_space(tx, 1);
3414 		err = dmu_tx_assign(tx, DMU_TX_NOWAIT | DMU_TX_NOTHROTTLE);
3415 		if (err == 0) {
3416 			/*
3417 			 * Prevent the condense zthr restarting before
3418 			 * the synctask completes.
3419 			 */
3420 			spa->spa_to_condense.syncing = B_TRUE;
3421 			lca->spa = spa;
3422 			lca->first_size = first_size;
3423 			lca->next_size = next_size;
3424 			dsl_sync_task_nowait(spa_get_dsl(spa),
3425 			    spa_livelist_condense_sync, lca, tx);
3426 			dmu_tx_commit(tx);
3427 			return;
3428 		}
3429 	}
3430 	/*
3431 	 * Condensing can not continue: either it was externally stopped or
3432 	 * we were unable to assign to a tx because the pool has run out of
3433 	 * space. In the second case, we'll just end up trying to condense
3434 	 * again in a later txg.
3435 	 */
3436 	ASSERT(err != 0);
3437 	bplist_clear(&lca->to_keep);
3438 	bplist_destroy(&lca->to_keep);
3439 	kmem_free(lca, sizeof (livelist_condense_arg_t));
3440 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
3441 	spa->spa_to_condense.ds = NULL;
3442 	if (err == EINTR)
3443 		zfs_livelist_condense_zthr_cancel++;
3444 }
3445 
3446 /*
3447  * Check that there is something to condense but that a condense is not
3448  * already in progress and that condensing has not been cancelled.
3449  */
3450 static boolean_t
spa_livelist_condense_cb_check(void * arg,zthr_t * z)3451 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
3452 {
3453 	(void) z;
3454 	spa_t *spa = arg;
3455 	if ((spa->spa_to_condense.ds != NULL) &&
3456 	    (spa->spa_to_condense.syncing == B_FALSE) &&
3457 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
3458 		return (B_TRUE);
3459 	}
3460 	return (B_FALSE);
3461 }
3462 
3463 static void
spa_start_livelist_condensing_thread(spa_t * spa)3464 spa_start_livelist_condensing_thread(spa_t *spa)
3465 {
3466 	spa->spa_to_condense.ds = NULL;
3467 	spa->spa_to_condense.first = NULL;
3468 	spa->spa_to_condense.next = NULL;
3469 	spa->spa_to_condense.syncing = B_FALSE;
3470 	spa->spa_to_condense.cancelled = B_FALSE;
3471 
3472 	ASSERT0P(spa->spa_livelist_condense_zthr);
3473 	spa->spa_livelist_condense_zthr =
3474 	    zthr_create("z_livelist_condense",
3475 	    spa_livelist_condense_cb_check,
3476 	    spa_livelist_condense_cb, spa, minclsyspri);
3477 }
3478 
3479 static void
spa_spawn_aux_threads(spa_t * spa)3480 spa_spawn_aux_threads(spa_t *spa)
3481 {
3482 	ASSERT(spa_writeable(spa));
3483 
3484 	spa_start_raidz_expansion_thread(spa);
3485 	spa_start_indirect_condensing_thread(spa);
3486 	spa_start_livelist_destroy_thread(spa);
3487 	spa_start_livelist_condensing_thread(spa);
3488 
3489 	ASSERT0P(spa->spa_checkpoint_discard_zthr);
3490 	spa->spa_checkpoint_discard_zthr =
3491 	    zthr_create("z_checkpoint_discard",
3492 	    spa_checkpoint_discard_thread_check,
3493 	    spa_checkpoint_discard_thread, spa, minclsyspri);
3494 }
3495 
3496 /*
3497  * Fix up config after a partly-completed split.  This is done with the
3498  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
3499  * pool have that entry in their config, but only the splitting one contains
3500  * a list of all the guids of the vdevs that are being split off.
3501  *
3502  * This function determines what to do with that list: either rejoin
3503  * all the disks to the pool, or complete the splitting process.  To attempt
3504  * the rejoin, each disk that is offlined is marked online again, and
3505  * we do a reopen() call.  If the vdev label for every disk that was
3506  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
3507  * then we call vdev_split() on each disk, and complete the split.
3508  *
3509  * Otherwise we leave the config alone, with all the vdevs in place in
3510  * the original pool.
3511  */
3512 static void
spa_try_repair(spa_t * spa,nvlist_t * config)3513 spa_try_repair(spa_t *spa, nvlist_t *config)
3514 {
3515 	uint_t extracted;
3516 	uint64_t *glist;
3517 	uint_t i, gcount;
3518 	nvlist_t *nvl;
3519 	vdev_t **vd;
3520 	boolean_t attempt_reopen;
3521 
3522 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
3523 		return;
3524 
3525 	/* check that the config is complete */
3526 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3527 	    &glist, &gcount) != 0)
3528 		return;
3529 
3530 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3531 
3532 	/* attempt to online all the vdevs & validate */
3533 	attempt_reopen = B_TRUE;
3534 	for (i = 0; i < gcount; i++) {
3535 		if (glist[i] == 0)	/* vdev is hole */
3536 			continue;
3537 
3538 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3539 		if (vd[i] == NULL) {
3540 			/*
3541 			 * Don't bother attempting to reopen the disks;
3542 			 * just do the split.
3543 			 */
3544 			attempt_reopen = B_FALSE;
3545 		} else {
3546 			/* attempt to re-online it */
3547 			vd[i]->vdev_offline = B_FALSE;
3548 		}
3549 	}
3550 
3551 	if (attempt_reopen) {
3552 		vdev_reopen(spa->spa_root_vdev);
3553 
3554 		/* check each device to see what state it's in */
3555 		for (extracted = 0, i = 0; i < gcount; i++) {
3556 			if (vd[i] != NULL &&
3557 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3558 				break;
3559 			++extracted;
3560 		}
3561 	}
3562 
3563 	/*
3564 	 * If every disk has been moved to the new pool, or if we never
3565 	 * even attempted to look at them, then we split them off for
3566 	 * good.
3567 	 */
3568 	if (!attempt_reopen || gcount == extracted) {
3569 		for (i = 0; i < gcount; i++)
3570 			if (vd[i] != NULL)
3571 				vdev_split(vd[i]);
3572 		vdev_reopen(spa->spa_root_vdev);
3573 	}
3574 
3575 	kmem_free(vd, gcount * sizeof (vdev_t *));
3576 }
3577 
3578 static int
spa_load(spa_t * spa,spa_load_state_t state,spa_import_type_t type)3579 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3580 {
3581 	const char *ereport = FM_EREPORT_ZFS_POOL;
3582 	int error;
3583 
3584 	spa->spa_load_state = state;
3585 	(void) spa_import_progress_set_state(spa_guid(spa),
3586 	    spa_load_state(spa));
3587 	spa_import_progress_set_notes(spa, "spa_load()");
3588 
3589 	gethrestime(&spa->spa_loaded_ts);
3590 	error = spa_load_impl(spa, type, &ereport);
3591 
3592 	/*
3593 	 * Don't count references from objsets that are already closed
3594 	 * and are making their way through the eviction process.
3595 	 */
3596 	spa_evicting_os_wait(spa);
3597 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3598 	if (error) {
3599 		if (error != EEXIST) {
3600 			spa->spa_loaded_ts.tv_sec = 0;
3601 			spa->spa_loaded_ts.tv_nsec = 0;
3602 		}
3603 		if (error != EBADF) {
3604 			(void) zfs_ereport_post(ereport, spa,
3605 			    NULL, NULL, NULL, 0);
3606 		}
3607 	}
3608 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3609 	spa->spa_ena = 0;
3610 
3611 	(void) spa_import_progress_set_state(spa_guid(spa),
3612 	    spa_load_state(spa));
3613 
3614 	return (error);
3615 }
3616 
3617 #ifdef ZFS_DEBUG
3618 /*
3619  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3620  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3621  * spa's per-vdev ZAP list.
3622  */
3623 static uint64_t
vdev_count_verify_zaps(vdev_t * vd)3624 vdev_count_verify_zaps(vdev_t *vd)
3625 {
3626 	spa_t *spa = vd->vdev_spa;
3627 	uint64_t total = 0;
3628 
3629 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3630 	    vd->vdev_root_zap != 0) {
3631 		total++;
3632 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3633 		    spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3634 	}
3635 	if (vd->vdev_top_zap != 0) {
3636 		total++;
3637 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3638 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3639 	}
3640 	if (vd->vdev_leaf_zap != 0) {
3641 		total++;
3642 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3643 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3644 	}
3645 
3646 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3647 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
3648 	}
3649 
3650 	return (total);
3651 }
3652 #else
3653 #define	vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3654 #endif
3655 
3656 /*
3657  * Determine whether the activity check is required.
3658  */
3659 static boolean_t
spa_activity_check_required(spa_t * spa,uberblock_t * ub,nvlist_t * label,nvlist_t * config)3660 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3661     nvlist_t *config)
3662 {
3663 	uint64_t state = 0;
3664 	uint64_t hostid = 0;
3665 	uint64_t tryconfig_txg = 0;
3666 	uint64_t tryconfig_timestamp = 0;
3667 	uint16_t tryconfig_mmp_seq = 0;
3668 	nvlist_t *nvinfo;
3669 
3670 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3671 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3672 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3673 		    &tryconfig_txg);
3674 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3675 		    &tryconfig_timestamp);
3676 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3677 		    &tryconfig_mmp_seq);
3678 	}
3679 
3680 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3681 
3682 	/*
3683 	 * Disable the MMP activity check - This is used by zdb which
3684 	 * is intended to be used on potentially active pools.
3685 	 */
3686 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3687 		return (B_FALSE);
3688 
3689 	/*
3690 	 * Skip the activity check when the MMP feature is disabled.
3691 	 */
3692 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3693 		return (B_FALSE);
3694 
3695 	/*
3696 	 * If the tryconfig_ values are nonzero, they are the results of an
3697 	 * earlier tryimport.  If they all match the uberblock we just found,
3698 	 * then the pool has not changed and we return false so we do not test
3699 	 * a second time.
3700 	 */
3701 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3702 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3703 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
3704 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3705 		return (B_FALSE);
3706 
3707 	/*
3708 	 * Allow the activity check to be skipped when importing the pool
3709 	 * on the same host which last imported it.  Since the hostid from
3710 	 * configuration may be stale use the one read from the label.
3711 	 */
3712 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3713 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3714 
3715 	if (hostid == spa_get_hostid(spa))
3716 		return (B_FALSE);
3717 
3718 	/*
3719 	 * Skip the activity test when the pool was cleanly exported.
3720 	 */
3721 	if (state != POOL_STATE_ACTIVE)
3722 		return (B_FALSE);
3723 
3724 	return (B_TRUE);
3725 }
3726 
3727 /*
3728  * Nanoseconds the activity check must watch for changes on-disk.
3729  */
3730 static uint64_t
spa_activity_check_duration(spa_t * spa,uberblock_t * ub)3731 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3732 {
3733 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3734 	uint64_t multihost_interval = MSEC2NSEC(
3735 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3736 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3737 	    multihost_interval);
3738 
3739 	/*
3740 	 * Local tunables determine a minimum duration except for the case
3741 	 * where we know when the remote host will suspend the pool if MMP
3742 	 * writes do not land.
3743 	 *
3744 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3745 	 * these cases and times.
3746 	 */
3747 
3748 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3749 
3750 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3751 	    MMP_FAIL_INT(ub) > 0) {
3752 
3753 		/* MMP on remote host will suspend pool after failed writes */
3754 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3755 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3756 
3757 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3758 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3759 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3760 		    (u_longlong_t)MMP_FAIL_INT(ub),
3761 		    (u_longlong_t)MMP_INTERVAL(ub),
3762 		    (u_longlong_t)import_intervals);
3763 
3764 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3765 	    MMP_FAIL_INT(ub) == 0) {
3766 
3767 		/* MMP on remote host will never suspend pool */
3768 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3769 		    ub->ub_mmp_delay) * import_intervals);
3770 
3771 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3772 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3773 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3774 		    (u_longlong_t)MMP_INTERVAL(ub),
3775 		    (u_longlong_t)ub->ub_mmp_delay,
3776 		    (u_longlong_t)import_intervals);
3777 
3778 	} else if (MMP_VALID(ub)) {
3779 		/*
3780 		 * zfs-0.7 compatibility case
3781 		 */
3782 
3783 		import_delay = MAX(import_delay, (multihost_interval +
3784 		    ub->ub_mmp_delay) * import_intervals);
3785 
3786 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3787 		    "import_intervals=%llu leaves=%u",
3788 		    (u_longlong_t)import_delay,
3789 		    (u_longlong_t)ub->ub_mmp_delay,
3790 		    (u_longlong_t)import_intervals,
3791 		    vdev_count_leaves(spa));
3792 	} else {
3793 		/* Using local tunings is the only reasonable option */
3794 		zfs_dbgmsg("pool last imported on non-MMP aware "
3795 		    "host using import_delay=%llu multihost_interval=%llu "
3796 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3797 		    (u_longlong_t)multihost_interval,
3798 		    (u_longlong_t)import_intervals);
3799 	}
3800 
3801 	return (import_delay);
3802 }
3803 
3804 /*
3805  * Remote host activity check.
3806  *
3807  * error results:
3808  *          0 - no activity detected
3809  *  EREMOTEIO - remote activity detected
3810  *      EINTR - user canceled the operation
3811  */
3812 static int
spa_activity_check(spa_t * spa,uberblock_t * ub,nvlist_t * config,boolean_t importing)3813 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config,
3814     boolean_t importing)
3815 {
3816 	uint64_t txg = ub->ub_txg;
3817 	uint64_t timestamp = ub->ub_timestamp;
3818 	uint64_t mmp_config = ub->ub_mmp_config;
3819 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3820 	uint64_t import_delay;
3821 	hrtime_t import_expire, now;
3822 	nvlist_t *mmp_label = NULL;
3823 	vdev_t *rvd = spa->spa_root_vdev;
3824 	kcondvar_t cv;
3825 	kmutex_t mtx;
3826 	int error = 0;
3827 
3828 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3829 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3830 	mutex_enter(&mtx);
3831 
3832 	/*
3833 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3834 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3835 	 * the pool is known to be active on another host.
3836 	 *
3837 	 * Otherwise, the pool might be in use on another host.  Check for
3838 	 * changes in the uberblocks on disk if necessary.
3839 	 */
3840 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3841 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3842 		    ZPOOL_CONFIG_LOAD_INFO);
3843 
3844 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3845 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3846 			vdev_uberblock_load(rvd, ub, &mmp_label);
3847 			error = SET_ERROR(EREMOTEIO);
3848 			goto out;
3849 		}
3850 	}
3851 
3852 	import_delay = spa_activity_check_duration(spa, ub);
3853 
3854 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3855 	import_delay += import_delay * random_in_range(250) / 1000;
3856 
3857 	import_expire = gethrtime() + import_delay;
3858 
3859 	if (importing) {
3860 		spa_import_progress_set_notes(spa, "Checking MMP activity, "
3861 		    "waiting %llu ms", (u_longlong_t)NSEC2MSEC(import_delay));
3862 	}
3863 
3864 	int iterations = 0;
3865 	while ((now = gethrtime()) < import_expire) {
3866 		if (importing && iterations++ % 30 == 0) {
3867 			spa_import_progress_set_notes(spa, "Checking MMP "
3868 			    "activity, %llu ms remaining",
3869 			    (u_longlong_t)NSEC2MSEC(import_expire - now));
3870 		}
3871 
3872 		if (importing) {
3873 			(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3874 			    NSEC2SEC(import_expire - gethrtime()));
3875 		}
3876 
3877 		vdev_uberblock_load(rvd, ub, &mmp_label);
3878 
3879 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3880 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3881 			zfs_dbgmsg("multihost activity detected "
3882 			    "txg %llu ub_txg  %llu "
3883 			    "timestamp %llu ub_timestamp  %llu "
3884 			    "mmp_config %#llx ub_mmp_config %#llx",
3885 			    (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3886 			    (u_longlong_t)timestamp,
3887 			    (u_longlong_t)ub->ub_timestamp,
3888 			    (u_longlong_t)mmp_config,
3889 			    (u_longlong_t)ub->ub_mmp_config);
3890 
3891 			error = SET_ERROR(EREMOTEIO);
3892 			break;
3893 		}
3894 
3895 		if (mmp_label) {
3896 			nvlist_free(mmp_label);
3897 			mmp_label = NULL;
3898 		}
3899 
3900 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3901 		if (error != -1) {
3902 			error = SET_ERROR(EINTR);
3903 			break;
3904 		}
3905 		error = 0;
3906 	}
3907 
3908 out:
3909 	mutex_exit(&mtx);
3910 	mutex_destroy(&mtx);
3911 	cv_destroy(&cv);
3912 
3913 	/*
3914 	 * If the pool is determined to be active store the status in the
3915 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3916 	 * available from configuration read from disk store them as well.
3917 	 * This allows 'zpool import' to generate a more useful message.
3918 	 *
3919 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3920 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3921 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3922 	 */
3923 	if (error == EREMOTEIO) {
3924 		if (mmp_label) {
3925 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3926 				const char *hostname = fnvlist_lookup_string(
3927 				    mmp_label, ZPOOL_CONFIG_HOSTNAME);
3928 				fnvlist_add_string(spa->spa_load_info,
3929 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3930 			}
3931 
3932 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3933 				uint64_t hostid = fnvlist_lookup_uint64(
3934 				    mmp_label, ZPOOL_CONFIG_HOSTID);
3935 				fnvlist_add_uint64(spa->spa_load_info,
3936 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3937 			}
3938 		}
3939 
3940 		fnvlist_add_uint64(spa->spa_load_info,
3941 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3942 		fnvlist_add_uint64(spa->spa_load_info,
3943 		    ZPOOL_CONFIG_MMP_TXG, 0);
3944 
3945 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3946 	}
3947 
3948 	if (mmp_label)
3949 		nvlist_free(mmp_label);
3950 
3951 	return (error);
3952 }
3953 
3954 /*
3955  * Called from zfs_ioc_clear for a pool that was suspended
3956  * after failing mmp write checks.
3957  */
3958 boolean_t
spa_mmp_remote_host_activity(spa_t * spa)3959 spa_mmp_remote_host_activity(spa_t *spa)
3960 {
3961 	ASSERT(spa_multihost(spa) && spa_suspended(spa));
3962 
3963 	nvlist_t *best_label;
3964 	uberblock_t best_ub;
3965 
3966 	/*
3967 	 * Locate the best uberblock on disk
3968 	 */
3969 	vdev_uberblock_load(spa->spa_root_vdev, &best_ub, &best_label);
3970 	if (best_label) {
3971 		/*
3972 		 * confirm that the best hostid matches our hostid
3973 		 */
3974 		if (nvlist_exists(best_label, ZPOOL_CONFIG_HOSTID) &&
3975 		    spa_get_hostid(spa) !=
3976 		    fnvlist_lookup_uint64(best_label, ZPOOL_CONFIG_HOSTID)) {
3977 			nvlist_free(best_label);
3978 			return (B_TRUE);
3979 		}
3980 		nvlist_free(best_label);
3981 	} else {
3982 		return (B_TRUE);
3983 	}
3984 
3985 	if (!MMP_VALID(&best_ub) ||
3986 	    !MMP_FAIL_INT_VALID(&best_ub) ||
3987 	    MMP_FAIL_INT(&best_ub) == 0) {
3988 		return (B_TRUE);
3989 	}
3990 
3991 	if (best_ub.ub_txg != spa->spa_uberblock.ub_txg ||
3992 	    best_ub.ub_timestamp != spa->spa_uberblock.ub_timestamp) {
3993 		zfs_dbgmsg("txg mismatch detected during pool clear "
3994 		    "txg %llu ub_txg %llu timestamp %llu ub_timestamp %llu",
3995 		    (u_longlong_t)spa->spa_uberblock.ub_txg,
3996 		    (u_longlong_t)best_ub.ub_txg,
3997 		    (u_longlong_t)spa->spa_uberblock.ub_timestamp,
3998 		    (u_longlong_t)best_ub.ub_timestamp);
3999 		return (B_TRUE);
4000 	}
4001 
4002 	/*
4003 	 * Perform an activity check looking for any remote writer
4004 	 */
4005 	return (spa_activity_check(spa, &spa->spa_uberblock, spa->spa_config,
4006 	    B_FALSE) != 0);
4007 }
4008 
4009 static int
spa_verify_host(spa_t * spa,nvlist_t * mos_config)4010 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
4011 {
4012 	uint64_t hostid;
4013 	const char *hostname;
4014 	uint64_t myhostid = 0;
4015 
4016 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
4017 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
4018 		hostname = fnvlist_lookup_string(mos_config,
4019 		    ZPOOL_CONFIG_HOSTNAME);
4020 
4021 		myhostid = zone_get_hostid(NULL);
4022 
4023 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
4024 			cmn_err(CE_WARN, "pool '%s' could not be "
4025 			    "loaded as it was last accessed by "
4026 			    "another system (host: %s hostid: 0x%llx). "
4027 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
4028 			    "ZFS-8000-EY",
4029 			    spa_name(spa), hostname, (u_longlong_t)hostid);
4030 			spa_load_failed(spa, "hostid verification failed: pool "
4031 			    "last accessed by host: %s (hostid: 0x%llx)",
4032 			    hostname, (u_longlong_t)hostid);
4033 			return (SET_ERROR(EBADF));
4034 		}
4035 	}
4036 
4037 	return (0);
4038 }
4039 
4040 static int
spa_ld_parse_config(spa_t * spa,spa_import_type_t type)4041 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
4042 {
4043 	int error = 0;
4044 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
4045 	int parse;
4046 	vdev_t *rvd;
4047 	uint64_t pool_guid;
4048 	const char *comment;
4049 	const char *compatibility;
4050 
4051 	/*
4052 	 * Versioning wasn't explicitly added to the label until later, so if
4053 	 * it's not present treat it as the initial version.
4054 	 */
4055 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4056 	    &spa->spa_ubsync.ub_version) != 0)
4057 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4058 
4059 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
4060 		spa_load_failed(spa, "invalid config provided: '%s' missing",
4061 		    ZPOOL_CONFIG_POOL_GUID);
4062 		return (SET_ERROR(EINVAL));
4063 	}
4064 
4065 	/*
4066 	 * If we are doing an import, ensure that the pool is not already
4067 	 * imported by checking if its pool guid already exists in the
4068 	 * spa namespace.
4069 	 *
4070 	 * The only case that we allow an already imported pool to be
4071 	 * imported again, is when the pool is checkpointed and we want to
4072 	 * look at its checkpointed state from userland tools like zdb.
4073 	 */
4074 #ifdef _KERNEL
4075 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
4076 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
4077 	    spa_guid_exists(pool_guid, 0)) {
4078 #else
4079 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
4080 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
4081 	    spa_guid_exists(pool_guid, 0) &&
4082 	    !spa_importing_readonly_checkpoint(spa)) {
4083 #endif
4084 		spa_load_failed(spa, "a pool with guid %llu is already open",
4085 		    (u_longlong_t)pool_guid);
4086 		return (SET_ERROR(EEXIST));
4087 	}
4088 
4089 	spa->spa_config_guid = pool_guid;
4090 
4091 	nvlist_free(spa->spa_load_info);
4092 	spa->spa_load_info = fnvlist_alloc();
4093 
4094 	ASSERT0P(spa->spa_comment);
4095 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
4096 		spa->spa_comment = spa_strdup(comment);
4097 
4098 	ASSERT0P(spa->spa_compatibility);
4099 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
4100 	    &compatibility) == 0)
4101 		spa->spa_compatibility = spa_strdup(compatibility);
4102 
4103 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4104 	    &spa->spa_config_txg);
4105 
4106 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
4107 		spa->spa_config_splitting = fnvlist_dup(nvl);
4108 
4109 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
4110 		spa_load_failed(spa, "invalid config provided: '%s' missing",
4111 		    ZPOOL_CONFIG_VDEV_TREE);
4112 		return (SET_ERROR(EINVAL));
4113 	}
4114 
4115 	/*
4116 	 * Create "The Godfather" zio to hold all async IOs
4117 	 */
4118 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4119 	    KM_SLEEP);
4120 	for (int i = 0; i < max_ncpus; i++) {
4121 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4122 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4123 		    ZIO_FLAG_GODFATHER);
4124 	}
4125 
4126 	/*
4127 	 * Parse the configuration into a vdev tree.  We explicitly set the
4128 	 * value that will be returned by spa_version() since parsing the
4129 	 * configuration requires knowing the version number.
4130 	 */
4131 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4132 	parse = (type == SPA_IMPORT_EXISTING ?
4133 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
4134 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
4135 	spa_config_exit(spa, SCL_ALL, FTAG);
4136 
4137 	if (error != 0) {
4138 		spa_load_failed(spa, "unable to parse config [error=%d]",
4139 		    error);
4140 		return (error);
4141 	}
4142 
4143 	ASSERT(spa->spa_root_vdev == rvd);
4144 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
4145 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
4146 
4147 	if (type != SPA_IMPORT_ASSEMBLE) {
4148 		ASSERT(spa_guid(spa) == pool_guid);
4149 	}
4150 
4151 	return (0);
4152 }
4153 
4154 /*
4155  * Recursively open all vdevs in the vdev tree. This function is called twice:
4156  * first with the untrusted config, then with the trusted config.
4157  */
4158 static int
4159 spa_ld_open_vdevs(spa_t *spa)
4160 {
4161 	int error = 0;
4162 
4163 	/*
4164 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
4165 	 * missing/unopenable for the root vdev to be still considered openable.
4166 	 */
4167 	if (spa->spa_trust_config) {
4168 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
4169 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
4170 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
4171 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
4172 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
4173 	} else {
4174 		spa->spa_missing_tvds_allowed = 0;
4175 	}
4176 
4177 	spa->spa_missing_tvds_allowed =
4178 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
4179 
4180 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4181 	error = vdev_open(spa->spa_root_vdev);
4182 	spa_config_exit(spa, SCL_ALL, FTAG);
4183 
4184 	if (spa->spa_missing_tvds != 0) {
4185 		spa_load_note(spa, "vdev tree has %lld missing top-level "
4186 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
4187 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
4188 			/*
4189 			 * Although theoretically we could allow users to open
4190 			 * incomplete pools in RW mode, we'd need to add a lot
4191 			 * of extra logic (e.g. adjust pool space to account
4192 			 * for missing vdevs).
4193 			 * This limitation also prevents users from accidentally
4194 			 * opening the pool in RW mode during data recovery and
4195 			 * damaging it further.
4196 			 */
4197 			spa_load_note(spa, "pools with missing top-level "
4198 			    "vdevs can only be opened in read-only mode.");
4199 			error = SET_ERROR(ENXIO);
4200 		} else {
4201 			spa_load_note(spa, "current settings allow for maximum "
4202 			    "%lld missing top-level vdevs at this stage.",
4203 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
4204 		}
4205 	}
4206 	if (error != 0) {
4207 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
4208 		    error);
4209 	}
4210 	if (spa->spa_missing_tvds != 0 || error != 0)
4211 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
4212 
4213 	return (error);
4214 }
4215 
4216 /*
4217  * We need to validate the vdev labels against the configuration that
4218  * we have in hand. This function is called twice: first with an untrusted
4219  * config, then with a trusted config. The validation is more strict when the
4220  * config is trusted.
4221  */
4222 static int
4223 spa_ld_validate_vdevs(spa_t *spa)
4224 {
4225 	int error = 0;
4226 	vdev_t *rvd = spa->spa_root_vdev;
4227 
4228 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4229 	error = vdev_validate(rvd);
4230 	spa_config_exit(spa, SCL_ALL, FTAG);
4231 
4232 	if (error != 0) {
4233 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
4234 		return (error);
4235 	}
4236 
4237 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
4238 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
4239 		    "some vdevs");
4240 		vdev_dbgmsg_print_tree(rvd, 2);
4241 		return (SET_ERROR(ENXIO));
4242 	}
4243 
4244 	return (0);
4245 }
4246 
4247 static void
4248 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
4249 {
4250 	spa->spa_state = POOL_STATE_ACTIVE;
4251 	spa->spa_ubsync = spa->spa_uberblock;
4252 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
4253 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
4254 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
4255 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
4256 	spa->spa_claim_max_txg = spa->spa_first_txg;
4257 	spa->spa_prev_software_version = ub->ub_software_version;
4258 }
4259 
4260 static int
4261 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
4262 {
4263 	vdev_t *rvd = spa->spa_root_vdev;
4264 	nvlist_t *label;
4265 	uberblock_t *ub = &spa->spa_uberblock;
4266 	boolean_t activity_check = B_FALSE;
4267 
4268 	/*
4269 	 * If we are opening the checkpointed state of the pool by
4270 	 * rewinding to it, at this point we will have written the
4271 	 * checkpointed uberblock to the vdev labels, so searching
4272 	 * the labels will find the right uberblock.  However, if
4273 	 * we are opening the checkpointed state read-only, we have
4274 	 * not modified the labels. Therefore, we must ignore the
4275 	 * labels and continue using the spa_uberblock that was set
4276 	 * by spa_ld_checkpoint_rewind.
4277 	 *
4278 	 * Note that it would be fine to ignore the labels when
4279 	 * rewinding (opening writeable) as well. However, if we
4280 	 * crash just after writing the labels, we will end up
4281 	 * searching the labels. Doing so in the common case means
4282 	 * that this code path gets exercised normally, rather than
4283 	 * just in the edge case.
4284 	 */
4285 	if (ub->ub_checkpoint_txg != 0 &&
4286 	    spa_importing_readonly_checkpoint(spa)) {
4287 		spa_ld_select_uberblock_done(spa, ub);
4288 		return (0);
4289 	}
4290 
4291 	/*
4292 	 * Find the best uberblock.
4293 	 */
4294 	vdev_uberblock_load(rvd, ub, &label);
4295 
4296 	/*
4297 	 * If we weren't able to find a single valid uberblock, return failure.
4298 	 */
4299 	if (ub->ub_txg == 0) {
4300 		nvlist_free(label);
4301 		spa_load_failed(spa, "no valid uberblock found");
4302 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
4303 	}
4304 
4305 	if (spa->spa_load_max_txg != UINT64_MAX) {
4306 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
4307 		    (u_longlong_t)spa->spa_load_max_txg);
4308 	}
4309 	spa_load_note(spa, "using uberblock with txg=%llu",
4310 	    (u_longlong_t)ub->ub_txg);
4311 	if (ub->ub_raidz_reflow_info != 0) {
4312 		spa_load_note(spa, "uberblock raidz_reflow_info: "
4313 		    "state=%u offset=%llu",
4314 		    (int)RRSS_GET_STATE(ub),
4315 		    (u_longlong_t)RRSS_GET_OFFSET(ub));
4316 	}
4317 
4318 
4319 	/*
4320 	 * For pools which have the multihost property on determine if the
4321 	 * pool is truly inactive and can be safely imported.  Prevent
4322 	 * hosts which don't have a hostid set from importing the pool.
4323 	 */
4324 	activity_check = spa_activity_check_required(spa, ub, label,
4325 	    spa->spa_config);
4326 	if (activity_check) {
4327 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
4328 		    spa_get_hostid(spa) == 0) {
4329 			nvlist_free(label);
4330 			fnvlist_add_uint64(spa->spa_load_info,
4331 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4332 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4333 		}
4334 
4335 		int error =
4336 		    spa_activity_check(spa, ub, spa->spa_config, B_TRUE);
4337 		if (error) {
4338 			nvlist_free(label);
4339 			return (error);
4340 		}
4341 
4342 		fnvlist_add_uint64(spa->spa_load_info,
4343 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
4344 		fnvlist_add_uint64(spa->spa_load_info,
4345 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
4346 		fnvlist_add_uint16(spa->spa_load_info,
4347 		    ZPOOL_CONFIG_MMP_SEQ,
4348 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
4349 	}
4350 
4351 	/*
4352 	 * If the pool has an unsupported version we can't open it.
4353 	 */
4354 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
4355 		nvlist_free(label);
4356 		spa_load_failed(spa, "version %llu is not supported",
4357 		    (u_longlong_t)ub->ub_version);
4358 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
4359 	}
4360 
4361 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
4362 		nvlist_t *features;
4363 
4364 		/*
4365 		 * If we weren't able to find what's necessary for reading the
4366 		 * MOS in the label, return failure.
4367 		 */
4368 		if (label == NULL) {
4369 			spa_load_failed(spa, "label config unavailable");
4370 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4371 			    ENXIO));
4372 		}
4373 
4374 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
4375 		    &features) != 0) {
4376 			nvlist_free(label);
4377 			spa_load_failed(spa, "invalid label: '%s' missing",
4378 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
4379 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4380 			    ENXIO));
4381 		}
4382 
4383 		/*
4384 		 * Update our in-core representation with the definitive values
4385 		 * from the label.
4386 		 */
4387 		nvlist_free(spa->spa_label_features);
4388 		spa->spa_label_features = fnvlist_dup(features);
4389 	}
4390 
4391 	nvlist_free(label);
4392 
4393 	/*
4394 	 * Look through entries in the label nvlist's features_for_read. If
4395 	 * there is a feature listed there which we don't understand then we
4396 	 * cannot open a pool.
4397 	 */
4398 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
4399 		nvlist_t *unsup_feat;
4400 
4401 		unsup_feat = fnvlist_alloc();
4402 
4403 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
4404 		    NULL); nvp != NULL;
4405 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
4406 			if (!zfeature_is_supported(nvpair_name(nvp))) {
4407 				fnvlist_add_string(unsup_feat,
4408 				    nvpair_name(nvp), "");
4409 			}
4410 		}
4411 
4412 		if (!nvlist_empty(unsup_feat)) {
4413 			fnvlist_add_nvlist(spa->spa_load_info,
4414 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4415 			nvlist_free(unsup_feat);
4416 			spa_load_failed(spa, "some features are unsupported");
4417 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4418 			    ENOTSUP));
4419 		}
4420 
4421 		nvlist_free(unsup_feat);
4422 	}
4423 
4424 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
4425 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4426 		spa_try_repair(spa, spa->spa_config);
4427 		spa_config_exit(spa, SCL_ALL, FTAG);
4428 		nvlist_free(spa->spa_config_splitting);
4429 		spa->spa_config_splitting = NULL;
4430 	}
4431 
4432 	/*
4433 	 * Initialize internal SPA structures.
4434 	 */
4435 	spa_ld_select_uberblock_done(spa, ub);
4436 
4437 	return (0);
4438 }
4439 
4440 static int
4441 spa_ld_open_rootbp(spa_t *spa)
4442 {
4443 	int error = 0;
4444 	vdev_t *rvd = spa->spa_root_vdev;
4445 
4446 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
4447 	if (error != 0) {
4448 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
4449 		    "[error=%d]", error);
4450 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4451 	}
4452 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
4453 
4454 	return (0);
4455 }
4456 
4457 static int
4458 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
4459     boolean_t reloading)
4460 {
4461 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
4462 	nvlist_t *nv, *mos_config, *policy;
4463 	int error = 0, copy_error;
4464 	uint64_t healthy_tvds, healthy_tvds_mos;
4465 	uint64_t mos_config_txg;
4466 
4467 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
4468 	    != 0)
4469 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4470 
4471 	/*
4472 	 * If we're assembling a pool from a split, the config provided is
4473 	 * already trusted so there is nothing to do.
4474 	 */
4475 	if (type == SPA_IMPORT_ASSEMBLE)
4476 		return (0);
4477 
4478 	healthy_tvds = spa_healthy_core_tvds(spa);
4479 
4480 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
4481 	    != 0) {
4482 		spa_load_failed(spa, "unable to retrieve MOS config");
4483 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4484 	}
4485 
4486 	/*
4487 	 * If we are doing an open, pool owner wasn't verified yet, thus do
4488 	 * the verification here.
4489 	 */
4490 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
4491 		error = spa_verify_host(spa, mos_config);
4492 		if (error != 0) {
4493 			nvlist_free(mos_config);
4494 			return (error);
4495 		}
4496 	}
4497 
4498 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
4499 
4500 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4501 
4502 	/*
4503 	 * Build a new vdev tree from the trusted config
4504 	 */
4505 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
4506 	if (error != 0) {
4507 		nvlist_free(mos_config);
4508 		spa_config_exit(spa, SCL_ALL, FTAG);
4509 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
4510 		    error);
4511 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4512 	}
4513 
4514 	/*
4515 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
4516 	 * obtained by scanning /dev/dsk, then it will have the right vdev
4517 	 * paths. We update the trusted MOS config with this information.
4518 	 * We first try to copy the paths with vdev_copy_path_strict, which
4519 	 * succeeds only when both configs have exactly the same vdev tree.
4520 	 * If that fails, we fall back to a more flexible method that has a
4521 	 * best effort policy.
4522 	 */
4523 	copy_error = vdev_copy_path_strict(rvd, mrvd);
4524 	if (copy_error != 0 || spa_load_print_vdev_tree) {
4525 		spa_load_note(spa, "provided vdev tree:");
4526 		vdev_dbgmsg_print_tree(rvd, 2);
4527 		spa_load_note(spa, "MOS vdev tree:");
4528 		vdev_dbgmsg_print_tree(mrvd, 2);
4529 	}
4530 	if (copy_error != 0) {
4531 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
4532 		    "back to vdev_copy_path_relaxed");
4533 		vdev_copy_path_relaxed(rvd, mrvd);
4534 	}
4535 
4536 	vdev_close(rvd);
4537 	vdev_free(rvd);
4538 	spa->spa_root_vdev = mrvd;
4539 	rvd = mrvd;
4540 	spa_config_exit(spa, SCL_ALL, FTAG);
4541 
4542 	/*
4543 	 * If 'zpool import' used a cached config, then the on-disk hostid and
4544 	 * hostname may be different to the cached config in ways that should
4545 	 * prevent import.  Userspace can't discover this without a scan, but
4546 	 * we know, so we add these values to LOAD_INFO so the caller can know
4547 	 * the difference.
4548 	 *
4549 	 * Note that we have to do this before the config is regenerated,
4550 	 * because the new config will have the hostid and hostname for this
4551 	 * host, in readiness for import.
4552 	 */
4553 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
4554 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
4555 		    fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
4556 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
4557 		fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
4558 		    fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
4559 
4560 	/*
4561 	 * We will use spa_config if we decide to reload the spa or if spa_load
4562 	 * fails and we rewind. We must thus regenerate the config using the
4563 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
4564 	 * pass settings on how to load the pool and is not stored in the MOS.
4565 	 * We copy it over to our new, trusted config.
4566 	 */
4567 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
4568 	    ZPOOL_CONFIG_POOL_TXG);
4569 	nvlist_free(mos_config);
4570 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
4571 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
4572 	    &policy) == 0)
4573 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
4574 	spa_config_set(spa, mos_config);
4575 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
4576 
4577 	/*
4578 	 * Now that we got the config from the MOS, we should be more strict
4579 	 * in checking blkptrs and can make assumptions about the consistency
4580 	 * of the vdev tree. spa_trust_config must be set to true before opening
4581 	 * vdevs in order for them to be writeable.
4582 	 */
4583 	spa->spa_trust_config = B_TRUE;
4584 
4585 	/*
4586 	 * Open and validate the new vdev tree
4587 	 */
4588 	error = spa_ld_open_vdevs(spa);
4589 	if (error != 0)
4590 		return (error);
4591 
4592 	error = spa_ld_validate_vdevs(spa);
4593 	if (error != 0)
4594 		return (error);
4595 
4596 	if (copy_error != 0 || spa_load_print_vdev_tree) {
4597 		spa_load_note(spa, "final vdev tree:");
4598 		vdev_dbgmsg_print_tree(rvd, 2);
4599 	}
4600 
4601 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
4602 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
4603 		/*
4604 		 * Sanity check to make sure that we are indeed loading the
4605 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4606 		 * in the config provided and they happened to be the only ones
4607 		 * to have the latest uberblock, we could involuntarily perform
4608 		 * an extreme rewind.
4609 		 */
4610 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
4611 		if (healthy_tvds_mos - healthy_tvds >=
4612 		    SPA_SYNC_MIN_VDEVS) {
4613 			spa_load_note(spa, "config provided misses too many "
4614 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
4615 			    (u_longlong_t)healthy_tvds,
4616 			    (u_longlong_t)healthy_tvds_mos);
4617 			spa_load_note(spa, "vdev tree:");
4618 			vdev_dbgmsg_print_tree(rvd, 2);
4619 			if (reloading) {
4620 				spa_load_failed(spa, "config was already "
4621 				    "provided from MOS. Aborting.");
4622 				return (spa_vdev_err(rvd,
4623 				    VDEV_AUX_CORRUPT_DATA, EIO));
4624 			}
4625 			spa_load_note(spa, "spa must be reloaded using MOS "
4626 			    "config");
4627 			return (SET_ERROR(EAGAIN));
4628 		}
4629 	}
4630 
4631 	error = spa_check_for_missing_logs(spa);
4632 	if (error != 0)
4633 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4634 
4635 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4636 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4637 		    "guid sum (%llu != %llu)",
4638 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4639 		    (u_longlong_t)rvd->vdev_guid_sum);
4640 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4641 		    ENXIO));
4642 	}
4643 
4644 	return (0);
4645 }
4646 
4647 static int
4648 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4649 {
4650 	int error = 0;
4651 	vdev_t *rvd = spa->spa_root_vdev;
4652 
4653 	/*
4654 	 * Everything that we read before spa_remove_init() must be stored
4655 	 * on concreted vdevs.  Therefore we do this as early as possible.
4656 	 */
4657 	error = spa_remove_init(spa);
4658 	if (error != 0) {
4659 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4660 		    error);
4661 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4662 	}
4663 
4664 	/*
4665 	 * Retrieve information needed to condense indirect vdev mappings.
4666 	 */
4667 	error = spa_condense_init(spa);
4668 	if (error != 0) {
4669 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4670 		    error);
4671 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4672 	}
4673 
4674 	return (0);
4675 }
4676 
4677 static int
4678 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4679 {
4680 	int error = 0;
4681 	vdev_t *rvd = spa->spa_root_vdev;
4682 
4683 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4684 		boolean_t missing_feat_read = B_FALSE;
4685 		nvlist_t *unsup_feat, *enabled_feat;
4686 
4687 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4688 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4689 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4690 		}
4691 
4692 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4693 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4694 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4695 		}
4696 
4697 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4698 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4699 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4700 		}
4701 
4702 		enabled_feat = fnvlist_alloc();
4703 		unsup_feat = fnvlist_alloc();
4704 
4705 		if (!spa_features_check(spa, B_FALSE,
4706 		    unsup_feat, enabled_feat))
4707 			missing_feat_read = B_TRUE;
4708 
4709 		if (spa_writeable(spa) ||
4710 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4711 			if (!spa_features_check(spa, B_TRUE,
4712 			    unsup_feat, enabled_feat)) {
4713 				*missing_feat_writep = B_TRUE;
4714 			}
4715 		}
4716 
4717 		fnvlist_add_nvlist(spa->spa_load_info,
4718 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4719 
4720 		if (!nvlist_empty(unsup_feat)) {
4721 			fnvlist_add_nvlist(spa->spa_load_info,
4722 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4723 		}
4724 
4725 		fnvlist_free(enabled_feat);
4726 		fnvlist_free(unsup_feat);
4727 
4728 		if (!missing_feat_read) {
4729 			fnvlist_add_boolean(spa->spa_load_info,
4730 			    ZPOOL_CONFIG_CAN_RDONLY);
4731 		}
4732 
4733 		/*
4734 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4735 		 * twofold: to determine whether the pool is available for
4736 		 * import in read-write mode and (if it is not) whether the
4737 		 * pool is available for import in read-only mode. If the pool
4738 		 * is available for import in read-write mode, it is displayed
4739 		 * as available in userland; if it is not available for import
4740 		 * in read-only mode, it is displayed as unavailable in
4741 		 * userland. If the pool is available for import in read-only
4742 		 * mode but not read-write mode, it is displayed as unavailable
4743 		 * in userland with a special note that the pool is actually
4744 		 * available for open in read-only mode.
4745 		 *
4746 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4747 		 * missing a feature for write, we must first determine whether
4748 		 * the pool can be opened read-only before returning to
4749 		 * userland in order to know whether to display the
4750 		 * abovementioned note.
4751 		 */
4752 		if (missing_feat_read || (*missing_feat_writep &&
4753 		    spa_writeable(spa))) {
4754 			spa_load_failed(spa, "pool uses unsupported features");
4755 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4756 			    ENOTSUP));
4757 		}
4758 
4759 		/*
4760 		 * Load refcounts for ZFS features from disk into an in-memory
4761 		 * cache during SPA initialization.
4762 		 */
4763 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4764 			uint64_t refcount;
4765 
4766 			error = feature_get_refcount_from_disk(spa,
4767 			    &spa_feature_table[i], &refcount);
4768 			if (error == 0) {
4769 				spa->spa_feat_refcount_cache[i] = refcount;
4770 			} else if (error == ENOTSUP) {
4771 				spa->spa_feat_refcount_cache[i] =
4772 				    SPA_FEATURE_DISABLED;
4773 			} else {
4774 				spa_load_failed(spa, "error getting refcount "
4775 				    "for feature %s [error=%d]",
4776 				    spa_feature_table[i].fi_guid, error);
4777 				return (spa_vdev_err(rvd,
4778 				    VDEV_AUX_CORRUPT_DATA, EIO));
4779 			}
4780 		}
4781 	}
4782 
4783 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4784 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4785 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4786 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4787 	}
4788 
4789 	/*
4790 	 * Encryption was added before bookmark_v2, even though bookmark_v2
4791 	 * is now a dependency. If this pool has encryption enabled without
4792 	 * bookmark_v2, trigger an errata message.
4793 	 */
4794 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4795 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4796 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4797 	}
4798 
4799 	return (0);
4800 }
4801 
4802 static int
4803 spa_ld_load_special_directories(spa_t *spa)
4804 {
4805 	int error = 0;
4806 	vdev_t *rvd = spa->spa_root_vdev;
4807 
4808 	spa->spa_is_initializing = B_TRUE;
4809 	error = dsl_pool_open(spa->spa_dsl_pool);
4810 	spa->spa_is_initializing = B_FALSE;
4811 	if (error != 0) {
4812 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4813 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4814 	}
4815 
4816 	return (0);
4817 }
4818 
4819 static int
4820 spa_ld_get_props(spa_t *spa)
4821 {
4822 	int error = 0;
4823 	uint64_t obj;
4824 	vdev_t *rvd = spa->spa_root_vdev;
4825 
4826 	/* Grab the checksum salt from the MOS. */
4827 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4828 	    DMU_POOL_CHECKSUM_SALT, 1,
4829 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4830 	    spa->spa_cksum_salt.zcs_bytes);
4831 	if (error == ENOENT) {
4832 		/* Generate a new salt for subsequent use */
4833 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4834 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4835 	} else if (error != 0) {
4836 		spa_load_failed(spa, "unable to retrieve checksum salt from "
4837 		    "MOS [error=%d]", error);
4838 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4839 	}
4840 
4841 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4842 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4843 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4844 	if (error != 0) {
4845 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4846 		    "[error=%d]", error);
4847 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4848 	}
4849 
4850 	/*
4851 	 * Load the bit that tells us to use the new accounting function
4852 	 * (raid-z deflation).  If we have an older pool, this will not
4853 	 * be present.
4854 	 */
4855 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4856 	if (error != 0 && error != ENOENT)
4857 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4858 
4859 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4860 	    &spa->spa_creation_version, B_FALSE);
4861 	if (error != 0 && error != ENOENT)
4862 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4863 
4864 	/* Load time log */
4865 	spa_load_txg_log_time(spa);
4866 
4867 	/*
4868 	 * Load the persistent error log.  If we have an older pool, this will
4869 	 * not be present.
4870 	 */
4871 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4872 	    B_FALSE);
4873 	if (error != 0 && error != ENOENT)
4874 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4875 
4876 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4877 	    &spa->spa_errlog_scrub, B_FALSE);
4878 	if (error != 0 && error != ENOENT)
4879 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4880 
4881 	/* Load the last scrubbed txg. */
4882 	error = spa_dir_prop(spa, DMU_POOL_LAST_SCRUBBED_TXG,
4883 	    &spa->spa_scrubbed_last_txg, B_FALSE);
4884 	if (error != 0 && error != ENOENT)
4885 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4886 
4887 	/*
4888 	 * Load the livelist deletion field. If a livelist is queued for
4889 	 * deletion, indicate that in the spa
4890 	 */
4891 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4892 	    &spa->spa_livelists_to_delete, B_FALSE);
4893 	if (error != 0 && error != ENOENT)
4894 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4895 
4896 	/*
4897 	 * Load the history object.  If we have an older pool, this
4898 	 * will not be present.
4899 	 */
4900 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4901 	if (error != 0 && error != ENOENT)
4902 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4903 
4904 	/*
4905 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4906 	 * be present; in this case, defer its creation to a later time to
4907 	 * avoid dirtying the MOS this early / out of sync context. See
4908 	 * spa_sync_config_object.
4909 	 */
4910 
4911 	/* The sentinel is only available in the MOS config. */
4912 	nvlist_t *mos_config;
4913 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4914 		spa_load_failed(spa, "unable to retrieve MOS config");
4915 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4916 	}
4917 
4918 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4919 	    &spa->spa_all_vdev_zaps, B_FALSE);
4920 
4921 	if (error == ENOENT) {
4922 		VERIFY(!nvlist_exists(mos_config,
4923 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4924 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4925 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4926 	} else if (error != 0) {
4927 		nvlist_free(mos_config);
4928 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4929 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4930 		/*
4931 		 * An older version of ZFS overwrote the sentinel value, so
4932 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4933 		 * destruction to later; see spa_sync_config_object.
4934 		 */
4935 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4936 		/*
4937 		 * We're assuming that no vdevs have had their ZAPs created
4938 		 * before this. Better be sure of it.
4939 		 */
4940 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4941 	}
4942 	nvlist_free(mos_config);
4943 
4944 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4945 
4946 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4947 	    B_FALSE);
4948 	if (error && error != ENOENT)
4949 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4950 
4951 	if (error == 0) {
4952 		uint64_t autoreplace = 0;
4953 
4954 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4955 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4956 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4957 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4958 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4959 		spa_prop_find(spa, ZPOOL_PROP_DEDUP_TABLE_QUOTA,
4960 		    &spa->spa_dedup_table_quota);
4961 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4962 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4963 		spa->spa_autoreplace = (autoreplace != 0);
4964 	}
4965 
4966 	/*
4967 	 * If we are importing a pool with missing top-level vdevs,
4968 	 * we enforce that the pool doesn't panic or get suspended on
4969 	 * error since the likelihood of missing data is extremely high.
4970 	 */
4971 	if (spa->spa_missing_tvds > 0 &&
4972 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4973 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4974 		spa_load_note(spa, "forcing failmode to 'continue' "
4975 		    "as some top level vdevs are missing");
4976 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4977 	}
4978 
4979 	return (0);
4980 }
4981 
4982 static int
4983 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4984 {
4985 	int error = 0;
4986 	vdev_t *rvd = spa->spa_root_vdev;
4987 
4988 	/*
4989 	 * If we're assembling the pool from the split-off vdevs of
4990 	 * an existing pool, we don't want to attach the spares & cache
4991 	 * devices.
4992 	 */
4993 
4994 	/*
4995 	 * Load any hot spares for this pool.
4996 	 */
4997 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4998 	    B_FALSE);
4999 	if (error != 0 && error != ENOENT)
5000 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5001 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
5002 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
5003 		if (load_nvlist(spa, spa->spa_spares.sav_object,
5004 		    &spa->spa_spares.sav_config) != 0) {
5005 			spa_load_failed(spa, "error loading spares nvlist");
5006 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5007 		}
5008 
5009 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5010 		spa_load_spares(spa);
5011 		spa_config_exit(spa, SCL_ALL, FTAG);
5012 	} else if (error == 0) {
5013 		spa->spa_spares.sav_sync = B_TRUE;
5014 	}
5015 
5016 	/*
5017 	 * Load any level 2 ARC devices for this pool.
5018 	 */
5019 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
5020 	    &spa->spa_l2cache.sav_object, B_FALSE);
5021 	if (error != 0 && error != ENOENT)
5022 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5023 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
5024 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
5025 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
5026 		    &spa->spa_l2cache.sav_config) != 0) {
5027 			spa_load_failed(spa, "error loading l2cache nvlist");
5028 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5029 		}
5030 
5031 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5032 		spa_load_l2cache(spa);
5033 		spa_config_exit(spa, SCL_ALL, FTAG);
5034 	} else if (error == 0) {
5035 		spa->spa_l2cache.sav_sync = B_TRUE;
5036 	}
5037 
5038 	return (0);
5039 }
5040 
5041 static int
5042 spa_ld_load_vdev_metadata(spa_t *spa)
5043 {
5044 	int error = 0;
5045 	vdev_t *rvd = spa->spa_root_vdev;
5046 
5047 	/*
5048 	 * If the 'multihost' property is set, then never allow a pool to
5049 	 * be imported when the system hostid is zero.  The exception to
5050 	 * this rule is zdb which is always allowed to access pools.
5051 	 */
5052 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
5053 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
5054 		fnvlist_add_uint64(spa->spa_load_info,
5055 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
5056 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
5057 	}
5058 
5059 	/*
5060 	 * If the 'autoreplace' property is set, then post a resource notifying
5061 	 * the ZFS DE that it should not issue any faults for unopenable
5062 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
5063 	 * unopenable vdevs so that the normal autoreplace handler can take
5064 	 * over.
5065 	 */
5066 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
5067 		spa_check_removed(spa->spa_root_vdev);
5068 		/*
5069 		 * For the import case, this is done in spa_import(), because
5070 		 * at this point we're using the spare definitions from
5071 		 * the MOS config, not necessarily from the userland config.
5072 		 */
5073 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
5074 			spa_aux_check_removed(&spa->spa_spares);
5075 			spa_aux_check_removed(&spa->spa_l2cache);
5076 		}
5077 	}
5078 
5079 	/*
5080 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
5081 	 */
5082 	error = vdev_load(rvd);
5083 	if (error != 0) {
5084 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
5085 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
5086 	}
5087 
5088 	error = spa_ld_log_spacemaps(spa);
5089 	if (error != 0) {
5090 		spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
5091 		    error);
5092 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
5093 	}
5094 
5095 	/*
5096 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
5097 	 */
5098 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5099 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
5100 	spa_config_exit(spa, SCL_ALL, FTAG);
5101 
5102 	return (0);
5103 }
5104 
5105 static int
5106 spa_ld_load_dedup_tables(spa_t *spa)
5107 {
5108 	int error = 0;
5109 	vdev_t *rvd = spa->spa_root_vdev;
5110 
5111 	error = ddt_load(spa);
5112 	if (error != 0) {
5113 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
5114 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5115 	}
5116 
5117 	return (0);
5118 }
5119 
5120 static int
5121 spa_ld_load_brt(spa_t *spa)
5122 {
5123 	int error = 0;
5124 	vdev_t *rvd = spa->spa_root_vdev;
5125 
5126 	error = brt_load(spa);
5127 	if (error != 0) {
5128 		spa_load_failed(spa, "brt_load failed [error=%d]", error);
5129 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5130 	}
5131 
5132 	return (0);
5133 }
5134 
5135 static int
5136 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
5137 {
5138 	vdev_t *rvd = spa->spa_root_vdev;
5139 
5140 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
5141 		boolean_t missing = spa_check_logs(spa);
5142 		if (missing) {
5143 			if (spa->spa_missing_tvds != 0) {
5144 				spa_load_note(spa, "spa_check_logs failed "
5145 				    "so dropping the logs");
5146 			} else {
5147 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
5148 				spa_load_failed(spa, "spa_check_logs failed");
5149 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
5150 				    ENXIO));
5151 			}
5152 		}
5153 	}
5154 
5155 	return (0);
5156 }
5157 
5158 static int
5159 spa_ld_verify_pool_data(spa_t *spa)
5160 {
5161 	int error = 0;
5162 	vdev_t *rvd = spa->spa_root_vdev;
5163 
5164 	/*
5165 	 * We've successfully opened the pool, verify that we're ready
5166 	 * to start pushing transactions.
5167 	 */
5168 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
5169 		error = spa_load_verify(spa);
5170 		if (error != 0) {
5171 			spa_load_failed(spa, "spa_load_verify failed "
5172 			    "[error=%d]", error);
5173 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
5174 			    error));
5175 		}
5176 	}
5177 
5178 	return (0);
5179 }
5180 
5181 static void
5182 spa_ld_claim_log_blocks(spa_t *spa)
5183 {
5184 	dmu_tx_t *tx;
5185 	dsl_pool_t *dp = spa_get_dsl(spa);
5186 
5187 	/*
5188 	 * Claim log blocks that haven't been committed yet.
5189 	 * This must all happen in a single txg.
5190 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
5191 	 * invoked from zil_claim_log_block()'s i/o done callback.
5192 	 * Price of rollback is that we abandon the log.
5193 	 */
5194 	spa->spa_claiming = B_TRUE;
5195 
5196 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
5197 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
5198 	    zil_claim, tx, DS_FIND_CHILDREN);
5199 	dmu_tx_commit(tx);
5200 
5201 	spa->spa_claiming = B_FALSE;
5202 
5203 	spa_set_log_state(spa, SPA_LOG_GOOD);
5204 }
5205 
5206 static void
5207 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
5208     boolean_t update_config_cache)
5209 {
5210 	vdev_t *rvd = spa->spa_root_vdev;
5211 	int need_update = B_FALSE;
5212 
5213 	/*
5214 	 * If the config cache is stale, or we have uninitialized
5215 	 * metaslabs (see spa_vdev_add()), then update the config.
5216 	 *
5217 	 * If this is a verbatim import, trust the current
5218 	 * in-core spa_config and update the disk labels.
5219 	 */
5220 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
5221 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
5222 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
5223 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
5224 		need_update = B_TRUE;
5225 
5226 	for (int c = 0; c < rvd->vdev_children; c++)
5227 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
5228 			need_update = B_TRUE;
5229 
5230 	/*
5231 	 * Update the config cache asynchronously in case we're the
5232 	 * root pool, in which case the config cache isn't writable yet.
5233 	 */
5234 	if (need_update)
5235 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
5236 }
5237 
5238 static void
5239 spa_ld_prepare_for_reload(spa_t *spa)
5240 {
5241 	spa_mode_t mode = spa->spa_mode;
5242 	int async_suspended = spa->spa_async_suspended;
5243 
5244 	spa_unload(spa);
5245 	spa_deactivate(spa);
5246 	spa_activate(spa, mode);
5247 
5248 	/*
5249 	 * We save the value of spa_async_suspended as it gets reset to 0 by
5250 	 * spa_unload(). We want to restore it back to the original value before
5251 	 * returning as we might be calling spa_async_resume() later.
5252 	 */
5253 	spa->spa_async_suspended = async_suspended;
5254 }
5255 
5256 static int
5257 spa_ld_read_checkpoint_txg(spa_t *spa)
5258 {
5259 	uberblock_t checkpoint;
5260 	int error = 0;
5261 
5262 	ASSERT0(spa->spa_checkpoint_txg);
5263 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
5264 	    spa->spa_load_thread == curthread);
5265 
5266 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5267 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5268 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5269 
5270 	if (error == ENOENT)
5271 		return (0);
5272 
5273 	if (error != 0)
5274 		return (error);
5275 
5276 	ASSERT3U(checkpoint.ub_txg, !=, 0);
5277 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
5278 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
5279 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
5280 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
5281 
5282 	return (0);
5283 }
5284 
5285 static int
5286 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
5287 {
5288 	int error = 0;
5289 
5290 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5291 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5292 
5293 	/*
5294 	 * Never trust the config that is provided unless we are assembling
5295 	 * a pool following a split.
5296 	 * This means don't trust blkptrs and the vdev tree in general. This
5297 	 * also effectively puts the spa in read-only mode since
5298 	 * spa_writeable() checks for spa_trust_config to be true.
5299 	 * We will later load a trusted config from the MOS.
5300 	 */
5301 	if (type != SPA_IMPORT_ASSEMBLE)
5302 		spa->spa_trust_config = B_FALSE;
5303 
5304 	/*
5305 	 * Parse the config provided to create a vdev tree.
5306 	 */
5307 	error = spa_ld_parse_config(spa, type);
5308 	if (error != 0)
5309 		return (error);
5310 
5311 	spa_import_progress_add(spa);
5312 
5313 	/*
5314 	 * Now that we have the vdev tree, try to open each vdev. This involves
5315 	 * opening the underlying physical device, retrieving its geometry and
5316 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
5317 	 * based on the success of those operations. After this we'll be ready
5318 	 * to read from the vdevs.
5319 	 */
5320 	error = spa_ld_open_vdevs(spa);
5321 	if (error != 0)
5322 		return (error);
5323 
5324 	/*
5325 	 * Read the label of each vdev and make sure that the GUIDs stored
5326 	 * there match the GUIDs in the config provided.
5327 	 * If we're assembling a new pool that's been split off from an
5328 	 * existing pool, the labels haven't yet been updated so we skip
5329 	 * validation for now.
5330 	 */
5331 	if (type != SPA_IMPORT_ASSEMBLE) {
5332 		error = spa_ld_validate_vdevs(spa);
5333 		if (error != 0)
5334 			return (error);
5335 	}
5336 
5337 	/*
5338 	 * Read all vdev labels to find the best uberblock (i.e. latest,
5339 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
5340 	 * get the list of features required to read blkptrs in the MOS from
5341 	 * the vdev label with the best uberblock and verify that our version
5342 	 * of zfs supports them all.
5343 	 */
5344 	error = spa_ld_select_uberblock(spa, type);
5345 	if (error != 0)
5346 		return (error);
5347 
5348 	/*
5349 	 * Pass that uberblock to the dsl_pool layer which will open the root
5350 	 * blkptr. This blkptr points to the latest version of the MOS and will
5351 	 * allow us to read its contents.
5352 	 */
5353 	error = spa_ld_open_rootbp(spa);
5354 	if (error != 0)
5355 		return (error);
5356 
5357 	return (0);
5358 }
5359 
5360 static int
5361 spa_ld_checkpoint_rewind(spa_t *spa)
5362 {
5363 	uberblock_t checkpoint;
5364 	int error = 0;
5365 
5366 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5367 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5368 
5369 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5370 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5371 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5372 
5373 	if (error != 0) {
5374 		spa_load_failed(spa, "unable to retrieve checkpointed "
5375 		    "uberblock from the MOS config [error=%d]", error);
5376 
5377 		if (error == ENOENT)
5378 			error = ZFS_ERR_NO_CHECKPOINT;
5379 
5380 		return (error);
5381 	}
5382 
5383 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
5384 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
5385 
5386 	/*
5387 	 * We need to update the txg and timestamp of the checkpointed
5388 	 * uberblock to be higher than the latest one. This ensures that
5389 	 * the checkpointed uberblock is selected if we were to close and
5390 	 * reopen the pool right after we've written it in the vdev labels.
5391 	 * (also see block comment in vdev_uberblock_compare)
5392 	 */
5393 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
5394 	checkpoint.ub_timestamp = gethrestime_sec();
5395 
5396 	/*
5397 	 * Set current uberblock to be the checkpointed uberblock.
5398 	 */
5399 	spa->spa_uberblock = checkpoint;
5400 
5401 	/*
5402 	 * If we are doing a normal rewind, then the pool is open for
5403 	 * writing and we sync the "updated" checkpointed uberblock to
5404 	 * disk. Once this is done, we've basically rewound the whole
5405 	 * pool and there is no way back.
5406 	 *
5407 	 * There are cases when we don't want to attempt and sync the
5408 	 * checkpointed uberblock to disk because we are opening a
5409 	 * pool as read-only. Specifically, verifying the checkpointed
5410 	 * state with zdb, and importing the checkpointed state to get
5411 	 * a "preview" of its content.
5412 	 */
5413 	if (spa_writeable(spa)) {
5414 		vdev_t *rvd = spa->spa_root_vdev;
5415 
5416 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5417 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
5418 		int svdcount = 0;
5419 		int children = rvd->vdev_children;
5420 		int c0 = random_in_range(children);
5421 
5422 		for (int c = 0; c < children; c++) {
5423 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
5424 
5425 			/* Stop when revisiting the first vdev */
5426 			if (c > 0 && svd[0] == vd)
5427 				break;
5428 
5429 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
5430 			    !vdev_is_concrete(vd))
5431 				continue;
5432 
5433 			svd[svdcount++] = vd;
5434 			if (svdcount == SPA_SYNC_MIN_VDEVS)
5435 				break;
5436 		}
5437 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
5438 		if (error == 0)
5439 			spa->spa_last_synced_guid = rvd->vdev_guid;
5440 		spa_config_exit(spa, SCL_ALL, FTAG);
5441 
5442 		if (error != 0) {
5443 			spa_load_failed(spa, "failed to write checkpointed "
5444 			    "uberblock to the vdev labels [error=%d]", error);
5445 			return (error);
5446 		}
5447 	}
5448 
5449 	return (0);
5450 }
5451 
5452 static int
5453 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
5454     boolean_t *update_config_cache)
5455 {
5456 	int error;
5457 
5458 	/*
5459 	 * Parse the config for pool, open and validate vdevs,
5460 	 * select an uberblock, and use that uberblock to open
5461 	 * the MOS.
5462 	 */
5463 	error = spa_ld_mos_init(spa, type);
5464 	if (error != 0)
5465 		return (error);
5466 
5467 	/*
5468 	 * Retrieve the trusted config stored in the MOS and use it to create
5469 	 * a new, exact version of the vdev tree, then reopen all vdevs.
5470 	 */
5471 	error = spa_ld_trusted_config(spa, type, B_FALSE);
5472 	if (error == EAGAIN) {
5473 		if (update_config_cache != NULL)
5474 			*update_config_cache = B_TRUE;
5475 
5476 		/*
5477 		 * Redo the loading process with the trusted config if it is
5478 		 * too different from the untrusted config.
5479 		 */
5480 		spa_ld_prepare_for_reload(spa);
5481 		spa_load_note(spa, "RELOADING");
5482 		error = spa_ld_mos_init(spa, type);
5483 		if (error != 0)
5484 			return (error);
5485 
5486 		error = spa_ld_trusted_config(spa, type, B_TRUE);
5487 		if (error != 0)
5488 			return (error);
5489 
5490 	} else if (error != 0) {
5491 		return (error);
5492 	}
5493 
5494 	return (0);
5495 }
5496 
5497 /*
5498  * Load an existing storage pool, using the config provided. This config
5499  * describes which vdevs are part of the pool and is later validated against
5500  * partial configs present in each vdev's label and an entire copy of the
5501  * config stored in the MOS.
5502  */
5503 static int
5504 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
5505 {
5506 	int error = 0;
5507 	boolean_t missing_feat_write = B_FALSE;
5508 	boolean_t checkpoint_rewind =
5509 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5510 	boolean_t update_config_cache = B_FALSE;
5511 	hrtime_t load_start = gethrtime();
5512 
5513 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5514 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5515 
5516 	spa_load_note(spa, "LOADING");
5517 
5518 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
5519 	if (error != 0)
5520 		return (error);
5521 
5522 	/*
5523 	 * If we are rewinding to the checkpoint then we need to repeat
5524 	 * everything we've done so far in this function but this time
5525 	 * selecting the checkpointed uberblock and using that to open
5526 	 * the MOS.
5527 	 */
5528 	if (checkpoint_rewind) {
5529 		/*
5530 		 * If we are rewinding to the checkpoint update config cache
5531 		 * anyway.
5532 		 */
5533 		update_config_cache = B_TRUE;
5534 
5535 		/*
5536 		 * Extract the checkpointed uberblock from the current MOS
5537 		 * and use this as the pool's uberblock from now on. If the
5538 		 * pool is imported as writeable we also write the checkpoint
5539 		 * uberblock to the labels, making the rewind permanent.
5540 		 */
5541 		error = spa_ld_checkpoint_rewind(spa);
5542 		if (error != 0)
5543 			return (error);
5544 
5545 		/*
5546 		 * Redo the loading process again with the
5547 		 * checkpointed uberblock.
5548 		 */
5549 		spa_ld_prepare_for_reload(spa);
5550 		spa_load_note(spa, "LOADING checkpointed uberblock");
5551 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
5552 		if (error != 0)
5553 			return (error);
5554 	}
5555 
5556 	/*
5557 	 * Drop the namespace lock for the rest of the function.
5558 	 */
5559 	spa->spa_load_thread = curthread;
5560 	mutex_exit(&spa_namespace_lock);
5561 
5562 	/*
5563 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
5564 	 */
5565 	spa_import_progress_set_notes(spa, "Loading checkpoint txg");
5566 	error = spa_ld_read_checkpoint_txg(spa);
5567 	if (error != 0)
5568 		goto fail;
5569 
5570 	/*
5571 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
5572 	 * from the pool and their contents were re-mapped to other vdevs. Note
5573 	 * that everything that we read before this step must have been
5574 	 * rewritten on concrete vdevs after the last device removal was
5575 	 * initiated. Otherwise we could be reading from indirect vdevs before
5576 	 * we have loaded their mappings.
5577 	 */
5578 	spa_import_progress_set_notes(spa, "Loading indirect vdev metadata");
5579 	error = spa_ld_open_indirect_vdev_metadata(spa);
5580 	if (error != 0)
5581 		goto fail;
5582 
5583 	/*
5584 	 * Retrieve the full list of active features from the MOS and check if
5585 	 * they are all supported.
5586 	 */
5587 	spa_import_progress_set_notes(spa, "Checking feature flags");
5588 	error = spa_ld_check_features(spa, &missing_feat_write);
5589 	if (error != 0)
5590 		goto fail;
5591 
5592 	/*
5593 	 * Load several special directories from the MOS needed by the dsl_pool
5594 	 * layer.
5595 	 */
5596 	spa_import_progress_set_notes(spa, "Loading special MOS directories");
5597 	error = spa_ld_load_special_directories(spa);
5598 	if (error != 0)
5599 		goto fail;
5600 
5601 	/*
5602 	 * Retrieve pool properties from the MOS.
5603 	 */
5604 	spa_import_progress_set_notes(spa, "Loading properties");
5605 	error = spa_ld_get_props(spa);
5606 	if (error != 0)
5607 		goto fail;
5608 
5609 	/*
5610 	 * Retrieve the list of auxiliary devices - cache devices and spares -
5611 	 * and open them.
5612 	 */
5613 	spa_import_progress_set_notes(spa, "Loading AUX vdevs");
5614 	error = spa_ld_open_aux_vdevs(spa, type);
5615 	if (error != 0)
5616 		goto fail;
5617 
5618 	/*
5619 	 * Load the metadata for all vdevs. Also check if unopenable devices
5620 	 * should be autoreplaced.
5621 	 */
5622 	spa_import_progress_set_notes(spa, "Loading vdev metadata");
5623 	error = spa_ld_load_vdev_metadata(spa);
5624 	if (error != 0)
5625 		goto fail;
5626 
5627 	spa_import_progress_set_notes(spa, "Loading dedup tables");
5628 	error = spa_ld_load_dedup_tables(spa);
5629 	if (error != 0)
5630 		goto fail;
5631 
5632 	spa_import_progress_set_notes(spa, "Loading BRT");
5633 	error = spa_ld_load_brt(spa);
5634 	if (error != 0)
5635 		goto fail;
5636 
5637 	/*
5638 	 * Verify the logs now to make sure we don't have any unexpected errors
5639 	 * when we claim log blocks later.
5640 	 */
5641 	spa_import_progress_set_notes(spa, "Verifying Log Devices");
5642 	error = spa_ld_verify_logs(spa, type, ereport);
5643 	if (error != 0)
5644 		goto fail;
5645 
5646 	if (missing_feat_write) {
5647 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5648 
5649 		/*
5650 		 * At this point, we know that we can open the pool in
5651 		 * read-only mode but not read-write mode. We now have enough
5652 		 * information and can return to userland.
5653 		 */
5654 		error = spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5655 		    ENOTSUP);
5656 		goto fail;
5657 	}
5658 
5659 	/*
5660 	 * Traverse the last txgs to make sure the pool was left off in a safe
5661 	 * state. When performing an extreme rewind, we verify the whole pool,
5662 	 * which can take a very long time.
5663 	 */
5664 	spa_import_progress_set_notes(spa, "Verifying pool data");
5665 	error = spa_ld_verify_pool_data(spa);
5666 	if (error != 0)
5667 		goto fail;
5668 
5669 	/*
5670 	 * Calculate the deflated space for the pool. This must be done before
5671 	 * we write anything to the pool because we'd need to update the space
5672 	 * accounting using the deflated sizes.
5673 	 */
5674 	spa_import_progress_set_notes(spa, "Calculating deflated space");
5675 	spa_update_dspace(spa);
5676 
5677 	/*
5678 	 * We have now retrieved all the information we needed to open the
5679 	 * pool. If we are importing the pool in read-write mode, a few
5680 	 * additional steps must be performed to finish the import.
5681 	 */
5682 	spa_import_progress_set_notes(spa, "Starting import");
5683 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5684 	    spa->spa_load_max_txg == UINT64_MAX)) {
5685 		uint64_t config_cache_txg = spa->spa_config_txg;
5686 
5687 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5688 
5689 		/*
5690 		 * Before we do any zio_write's, complete the raidz expansion
5691 		 * scratch space copying, if necessary.
5692 		 */
5693 		if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID)
5694 			vdev_raidz_reflow_copy_scratch(spa);
5695 
5696 		/*
5697 		 * In case of a checkpoint rewind, log the original txg
5698 		 * of the checkpointed uberblock.
5699 		 */
5700 		if (checkpoint_rewind) {
5701 			spa_history_log_internal(spa, "checkpoint rewind",
5702 			    NULL, "rewound state to txg=%llu",
5703 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5704 		}
5705 
5706 		spa_import_progress_set_notes(spa, "Claiming ZIL blocks");
5707 		/*
5708 		 * Traverse the ZIL and claim all blocks.
5709 		 */
5710 		spa_ld_claim_log_blocks(spa);
5711 
5712 		/*
5713 		 * Kick-off the syncing thread.
5714 		 */
5715 		spa->spa_sync_on = B_TRUE;
5716 		txg_sync_start(spa->spa_dsl_pool);
5717 		mmp_thread_start(spa);
5718 
5719 		/*
5720 		 * Wait for all claims to sync.  We sync up to the highest
5721 		 * claimed log block birth time so that claimed log blocks
5722 		 * don't appear to be from the future.  spa_claim_max_txg
5723 		 * will have been set for us by ZIL traversal operations
5724 		 * performed above.
5725 		 */
5726 		spa_import_progress_set_notes(spa, "Syncing ZIL claims");
5727 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5728 
5729 		/*
5730 		 * Check if we need to request an update of the config. On the
5731 		 * next sync, we would update the config stored in vdev labels
5732 		 * and the cachefile (by default /etc/zfs/zpool.cache).
5733 		 */
5734 		spa_import_progress_set_notes(spa, "Updating configs");
5735 		spa_ld_check_for_config_update(spa, config_cache_txg,
5736 		    update_config_cache);
5737 
5738 		/*
5739 		 * Check if a rebuild was in progress and if so resume it.
5740 		 * Then check all DTLs to see if anything needs resilvering.
5741 		 * The resilver will be deferred if a rebuild was started.
5742 		 */
5743 		spa_import_progress_set_notes(spa, "Starting resilvers");
5744 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
5745 			vdev_rebuild_restart(spa);
5746 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5747 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5748 			spa_async_request(spa, SPA_ASYNC_RESILVER);
5749 		}
5750 
5751 		/*
5752 		 * Log the fact that we booted up (so that we can detect if
5753 		 * we rebooted in the middle of an operation).
5754 		 */
5755 		spa_history_log_version(spa, "open", NULL);
5756 
5757 		spa_import_progress_set_notes(spa,
5758 		    "Restarting device removals");
5759 		spa_restart_removal(spa);
5760 		spa_spawn_aux_threads(spa);
5761 
5762 		/*
5763 		 * Delete any inconsistent datasets.
5764 		 *
5765 		 * Note:
5766 		 * Since we may be issuing deletes for clones here,
5767 		 * we make sure to do so after we've spawned all the
5768 		 * auxiliary threads above (from which the livelist
5769 		 * deletion zthr is part of).
5770 		 */
5771 		spa_import_progress_set_notes(spa,
5772 		    "Cleaning up inconsistent objsets");
5773 		(void) dmu_objset_find(spa_name(spa),
5774 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5775 
5776 		/*
5777 		 * Clean up any stale temporary dataset userrefs.
5778 		 */
5779 		spa_import_progress_set_notes(spa,
5780 		    "Cleaning up temporary userrefs");
5781 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5782 
5783 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5784 		spa_import_progress_set_notes(spa, "Restarting initialize");
5785 		vdev_initialize_restart(spa->spa_root_vdev);
5786 		spa_import_progress_set_notes(spa, "Restarting TRIM");
5787 		vdev_trim_restart(spa->spa_root_vdev);
5788 		vdev_autotrim_restart(spa);
5789 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5790 		spa_import_progress_set_notes(spa, "Finished importing");
5791 	}
5792 	zio_handle_import_delay(spa, gethrtime() - load_start);
5793 
5794 	spa_import_progress_remove(spa_guid(spa));
5795 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5796 
5797 	spa_load_note(spa, "LOADED");
5798 fail:
5799 	mutex_enter(&spa_namespace_lock);
5800 	spa->spa_load_thread = NULL;
5801 	cv_broadcast(&spa_namespace_cv);
5802 
5803 	return (error);
5804 
5805 }
5806 
5807 static int
5808 spa_load_retry(spa_t *spa, spa_load_state_t state)
5809 {
5810 	spa_mode_t mode = spa->spa_mode;
5811 
5812 	spa_unload(spa);
5813 	spa_deactivate(spa);
5814 
5815 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5816 
5817 	spa_activate(spa, mode);
5818 	spa_async_suspend(spa);
5819 
5820 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5821 	    (u_longlong_t)spa->spa_load_max_txg);
5822 
5823 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5824 }
5825 
5826 /*
5827  * If spa_load() fails this function will try loading prior txg's. If
5828  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5829  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5830  * function will not rewind the pool and will return the same error as
5831  * spa_load().
5832  */
5833 static int
5834 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5835     int rewind_flags)
5836 {
5837 	nvlist_t *loadinfo = NULL;
5838 	nvlist_t *config = NULL;
5839 	int load_error, rewind_error;
5840 	uint64_t safe_rewind_txg;
5841 	uint64_t min_txg;
5842 
5843 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5844 		spa->spa_load_max_txg = spa->spa_load_txg;
5845 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5846 	} else {
5847 		spa->spa_load_max_txg = max_request;
5848 		if (max_request != UINT64_MAX)
5849 			spa->spa_extreme_rewind = B_TRUE;
5850 	}
5851 
5852 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5853 	if (load_error == 0)
5854 		return (0);
5855 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5856 		/*
5857 		 * When attempting checkpoint-rewind on a pool with no
5858 		 * checkpoint, we should not attempt to load uberblocks
5859 		 * from previous txgs when spa_load fails.
5860 		 */
5861 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5862 		spa_import_progress_remove(spa_guid(spa));
5863 		return (load_error);
5864 	}
5865 
5866 	if (spa->spa_root_vdev != NULL)
5867 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5868 
5869 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5870 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5871 
5872 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
5873 		nvlist_free(config);
5874 		spa_import_progress_remove(spa_guid(spa));
5875 		return (load_error);
5876 	}
5877 
5878 	if (state == SPA_LOAD_RECOVER) {
5879 		/* Price of rolling back is discarding txgs, including log */
5880 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5881 	} else {
5882 		/*
5883 		 * If we aren't rolling back save the load info from our first
5884 		 * import attempt so that we can restore it after attempting
5885 		 * to rewind.
5886 		 */
5887 		loadinfo = spa->spa_load_info;
5888 		spa->spa_load_info = fnvlist_alloc();
5889 	}
5890 
5891 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5892 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5893 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5894 	    TXG_INITIAL : safe_rewind_txg;
5895 
5896 	/*
5897 	 * Continue as long as we're finding errors, we're still within
5898 	 * the acceptable rewind range, and we're still finding uberblocks
5899 	 */
5900 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5901 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5902 		if (spa->spa_load_max_txg < safe_rewind_txg)
5903 			spa->spa_extreme_rewind = B_TRUE;
5904 		rewind_error = spa_load_retry(spa, state);
5905 	}
5906 
5907 	spa->spa_extreme_rewind = B_FALSE;
5908 	spa->spa_load_max_txg = UINT64_MAX;
5909 
5910 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5911 		spa_config_set(spa, config);
5912 	else
5913 		nvlist_free(config);
5914 
5915 	if (state == SPA_LOAD_RECOVER) {
5916 		ASSERT0P(loadinfo);
5917 		spa_import_progress_remove(spa_guid(spa));
5918 		return (rewind_error);
5919 	} else {
5920 		/* Store the rewind info as part of the initial load info */
5921 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5922 		    spa->spa_load_info);
5923 
5924 		/* Restore the initial load info */
5925 		fnvlist_free(spa->spa_load_info);
5926 		spa->spa_load_info = loadinfo;
5927 
5928 		spa_import_progress_remove(spa_guid(spa));
5929 		return (load_error);
5930 	}
5931 }
5932 
5933 /*
5934  * Pool Open/Import
5935  *
5936  * The import case is identical to an open except that the configuration is sent
5937  * down from userland, instead of grabbed from the configuration cache.  For the
5938  * case of an open, the pool configuration will exist in the
5939  * POOL_STATE_UNINITIALIZED state.
5940  *
5941  * The stats information (gen/count/ustats) is used to gather vdev statistics at
5942  * the same time open the pool, without having to keep around the spa_t in some
5943  * ambiguous state.
5944  */
5945 static int
5946 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5947     nvlist_t *nvpolicy, nvlist_t **config)
5948 {
5949 	spa_t *spa;
5950 	spa_load_state_t state = SPA_LOAD_OPEN;
5951 	int error;
5952 	int locked = B_FALSE;
5953 	int firstopen = B_FALSE;
5954 
5955 	*spapp = NULL;
5956 
5957 	/*
5958 	 * As disgusting as this is, we need to support recursive calls to this
5959 	 * function because dsl_dir_open() is called during spa_load(), and ends
5960 	 * up calling spa_open() again.  The real fix is to figure out how to
5961 	 * avoid dsl_dir_open() calling this in the first place.
5962 	 */
5963 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5964 		mutex_enter(&spa_namespace_lock);
5965 		locked = B_TRUE;
5966 	}
5967 
5968 	if ((spa = spa_lookup(pool)) == NULL) {
5969 		if (locked)
5970 			mutex_exit(&spa_namespace_lock);
5971 		return (SET_ERROR(ENOENT));
5972 	}
5973 
5974 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5975 		zpool_load_policy_t policy;
5976 
5977 		firstopen = B_TRUE;
5978 
5979 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5980 		    &policy);
5981 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5982 			state = SPA_LOAD_RECOVER;
5983 
5984 		spa_activate(spa, spa_mode_global);
5985 
5986 		if (state != SPA_LOAD_RECOVER)
5987 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5988 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5989 
5990 		zfs_dbgmsg("spa_open_common: opening %s", pool);
5991 		error = spa_load_best(spa, state, policy.zlp_txg,
5992 		    policy.zlp_rewind);
5993 
5994 		if (error == EBADF) {
5995 			/*
5996 			 * If vdev_validate() returns failure (indicated by
5997 			 * EBADF), it indicates that one of the vdevs indicates
5998 			 * that the pool has been exported or destroyed.  If
5999 			 * this is the case, the config cache is out of sync and
6000 			 * we should remove the pool from the namespace.
6001 			 */
6002 			spa_unload(spa);
6003 			spa_deactivate(spa);
6004 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
6005 			spa_remove(spa);
6006 			if (locked)
6007 				mutex_exit(&spa_namespace_lock);
6008 			return (SET_ERROR(ENOENT));
6009 		}
6010 
6011 		if (error) {
6012 			/*
6013 			 * We can't open the pool, but we still have useful
6014 			 * information: the state of each vdev after the
6015 			 * attempted vdev_open().  Return this to the user.
6016 			 */
6017 			if (config != NULL && spa->spa_config) {
6018 				*config = fnvlist_dup(spa->spa_config);
6019 				fnvlist_add_nvlist(*config,
6020 				    ZPOOL_CONFIG_LOAD_INFO,
6021 				    spa->spa_load_info);
6022 			}
6023 			spa_unload(spa);
6024 			spa_deactivate(spa);
6025 			spa->spa_last_open_failed = error;
6026 			if (locked)
6027 				mutex_exit(&spa_namespace_lock);
6028 			*spapp = NULL;
6029 			return (error);
6030 		}
6031 	}
6032 
6033 	spa_open_ref(spa, tag);
6034 
6035 	if (config != NULL)
6036 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6037 
6038 	/*
6039 	 * If we've recovered the pool, pass back any information we
6040 	 * gathered while doing the load.
6041 	 */
6042 	if (state == SPA_LOAD_RECOVER && config != NULL) {
6043 		fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
6044 		    spa->spa_load_info);
6045 	}
6046 
6047 	if (locked) {
6048 		spa->spa_last_open_failed = 0;
6049 		spa->spa_last_ubsync_txg = 0;
6050 		spa->spa_load_txg = 0;
6051 		mutex_exit(&spa_namespace_lock);
6052 	}
6053 
6054 	if (firstopen)
6055 		zvol_create_minors(spa_name(spa));
6056 
6057 	*spapp = spa;
6058 
6059 	return (0);
6060 }
6061 
6062 int
6063 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
6064     nvlist_t *policy, nvlist_t **config)
6065 {
6066 	return (spa_open_common(name, spapp, tag, policy, config));
6067 }
6068 
6069 int
6070 spa_open(const char *name, spa_t **spapp, const void *tag)
6071 {
6072 	return (spa_open_common(name, spapp, tag, NULL, NULL));
6073 }
6074 
6075 /*
6076  * Lookup the given spa_t, incrementing the inject count in the process,
6077  * preventing it from being exported or destroyed.
6078  */
6079 spa_t *
6080 spa_inject_addref(char *name)
6081 {
6082 	spa_t *spa;
6083 
6084 	mutex_enter(&spa_namespace_lock);
6085 	if ((spa = spa_lookup(name)) == NULL) {
6086 		mutex_exit(&spa_namespace_lock);
6087 		return (NULL);
6088 	}
6089 	spa->spa_inject_ref++;
6090 	mutex_exit(&spa_namespace_lock);
6091 
6092 	return (spa);
6093 }
6094 
6095 void
6096 spa_inject_delref(spa_t *spa)
6097 {
6098 	mutex_enter(&spa_namespace_lock);
6099 	spa->spa_inject_ref--;
6100 	mutex_exit(&spa_namespace_lock);
6101 }
6102 
6103 /*
6104  * Add spares device information to the nvlist.
6105  */
6106 static void
6107 spa_add_spares(spa_t *spa, nvlist_t *config)
6108 {
6109 	nvlist_t **spares;
6110 	uint_t i, nspares;
6111 	nvlist_t *nvroot;
6112 	uint64_t guid;
6113 	vdev_stat_t *vs;
6114 	uint_t vsc;
6115 	uint64_t pool;
6116 
6117 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6118 
6119 	if (spa->spa_spares.sav_count == 0)
6120 		return;
6121 
6122 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6123 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
6124 	    ZPOOL_CONFIG_SPARES, &spares, &nspares));
6125 	if (nspares != 0) {
6126 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6127 		    (const nvlist_t * const *)spares, nspares);
6128 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6129 		    &spares, &nspares));
6130 
6131 		/*
6132 		 * Go through and find any spares which have since been
6133 		 * repurposed as an active spare.  If this is the case, update
6134 		 * their status appropriately.
6135 		 */
6136 		for (i = 0; i < nspares; i++) {
6137 			guid = fnvlist_lookup_uint64(spares[i],
6138 			    ZPOOL_CONFIG_GUID);
6139 			VERIFY0(nvlist_lookup_uint64_array(spares[i],
6140 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
6141 			if (spa_spare_exists(guid, &pool, NULL) &&
6142 			    pool != 0ULL) {
6143 				vs->vs_state = VDEV_STATE_CANT_OPEN;
6144 				vs->vs_aux = VDEV_AUX_SPARED;
6145 			} else {
6146 				vs->vs_state =
6147 				    spa->spa_spares.sav_vdevs[i]->vdev_state;
6148 			}
6149 		}
6150 	}
6151 }
6152 
6153 /*
6154  * Add l2cache device information to the nvlist, including vdev stats.
6155  */
6156 static void
6157 spa_add_l2cache(spa_t *spa, nvlist_t *config)
6158 {
6159 	nvlist_t **l2cache;
6160 	uint_t i, j, nl2cache;
6161 	nvlist_t *nvroot;
6162 	uint64_t guid;
6163 	vdev_t *vd;
6164 	vdev_stat_t *vs;
6165 	uint_t vsc;
6166 
6167 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6168 
6169 	if (spa->spa_l2cache.sav_count == 0)
6170 		return;
6171 
6172 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6173 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
6174 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
6175 	if (nl2cache != 0) {
6176 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6177 		    (const nvlist_t * const *)l2cache, nl2cache);
6178 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6179 		    &l2cache, &nl2cache));
6180 
6181 		/*
6182 		 * Update level 2 cache device stats.
6183 		 */
6184 
6185 		for (i = 0; i < nl2cache; i++) {
6186 			guid = fnvlist_lookup_uint64(l2cache[i],
6187 			    ZPOOL_CONFIG_GUID);
6188 
6189 			vd = NULL;
6190 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
6191 				if (guid ==
6192 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
6193 					vd = spa->spa_l2cache.sav_vdevs[j];
6194 					break;
6195 				}
6196 			}
6197 			ASSERT(vd != NULL);
6198 
6199 			VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
6200 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
6201 			vdev_get_stats(vd, vs);
6202 			vdev_config_generate_stats(vd, l2cache[i]);
6203 
6204 		}
6205 	}
6206 }
6207 
6208 static void
6209 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
6210 {
6211 	zap_cursor_t zc;
6212 	zap_attribute_t *za = zap_attribute_alloc();
6213 
6214 	if (spa->spa_feat_for_read_obj != 0) {
6215 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6216 		    spa->spa_feat_for_read_obj);
6217 		    zap_cursor_retrieve(&zc, za) == 0;
6218 		    zap_cursor_advance(&zc)) {
6219 			ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6220 			    za->za_num_integers == 1);
6221 			VERIFY0(nvlist_add_uint64(features, za->za_name,
6222 			    za->za_first_integer));
6223 		}
6224 		zap_cursor_fini(&zc);
6225 	}
6226 
6227 	if (spa->spa_feat_for_write_obj != 0) {
6228 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6229 		    spa->spa_feat_for_write_obj);
6230 		    zap_cursor_retrieve(&zc, za) == 0;
6231 		    zap_cursor_advance(&zc)) {
6232 			ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6233 			    za->za_num_integers == 1);
6234 			VERIFY0(nvlist_add_uint64(features, za->za_name,
6235 			    za->za_first_integer));
6236 		}
6237 		zap_cursor_fini(&zc);
6238 	}
6239 	zap_attribute_free(za);
6240 }
6241 
6242 static void
6243 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
6244 {
6245 	int i;
6246 
6247 	for (i = 0; i < SPA_FEATURES; i++) {
6248 		zfeature_info_t feature = spa_feature_table[i];
6249 		uint64_t refcount;
6250 
6251 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
6252 			continue;
6253 
6254 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
6255 	}
6256 }
6257 
6258 /*
6259  * Store a list of pool features and their reference counts in the
6260  * config.
6261  *
6262  * The first time this is called on a spa, allocate a new nvlist, fetch
6263  * the pool features and reference counts from disk, then save the list
6264  * in the spa. In subsequent calls on the same spa use the saved nvlist
6265  * and refresh its values from the cached reference counts.  This
6266  * ensures we don't block here on I/O on a suspended pool so 'zpool
6267  * clear' can resume the pool.
6268  */
6269 static void
6270 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
6271 {
6272 	nvlist_t *features;
6273 
6274 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6275 
6276 	mutex_enter(&spa->spa_feat_stats_lock);
6277 	features = spa->spa_feat_stats;
6278 
6279 	if (features != NULL) {
6280 		spa_feature_stats_from_cache(spa, features);
6281 	} else {
6282 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
6283 		spa->spa_feat_stats = features;
6284 		spa_feature_stats_from_disk(spa, features);
6285 	}
6286 
6287 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
6288 	    features));
6289 
6290 	mutex_exit(&spa->spa_feat_stats_lock);
6291 }
6292 
6293 int
6294 spa_get_stats(const char *name, nvlist_t **config,
6295     char *altroot, size_t buflen)
6296 {
6297 	int error;
6298 	spa_t *spa;
6299 
6300 	*config = NULL;
6301 	error = spa_open_common(name, &spa, FTAG, NULL, config);
6302 
6303 	if (spa != NULL) {
6304 		/*
6305 		 * This still leaves a window of inconsistency where the spares
6306 		 * or l2cache devices could change and the config would be
6307 		 * self-inconsistent.
6308 		 */
6309 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6310 
6311 		if (*config != NULL) {
6312 			uint64_t loadtimes[2];
6313 
6314 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
6315 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
6316 			fnvlist_add_uint64_array(*config,
6317 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
6318 
6319 			fnvlist_add_uint64(*config,
6320 			    ZPOOL_CONFIG_ERRCOUNT,
6321 			    spa_approx_errlog_size(spa));
6322 
6323 			if (spa_suspended(spa)) {
6324 				fnvlist_add_uint64(*config,
6325 				    ZPOOL_CONFIG_SUSPENDED,
6326 				    spa->spa_failmode);
6327 				fnvlist_add_uint64(*config,
6328 				    ZPOOL_CONFIG_SUSPENDED_REASON,
6329 				    spa->spa_suspended);
6330 			}
6331 
6332 			spa_add_spares(spa, *config);
6333 			spa_add_l2cache(spa, *config);
6334 			spa_add_feature_stats(spa, *config);
6335 		}
6336 	}
6337 
6338 	/*
6339 	 * We want to get the alternate root even for faulted pools, so we cheat
6340 	 * and call spa_lookup() directly.
6341 	 */
6342 	if (altroot) {
6343 		if (spa == NULL) {
6344 			mutex_enter(&spa_namespace_lock);
6345 			spa = spa_lookup(name);
6346 			if (spa)
6347 				spa_altroot(spa, altroot, buflen);
6348 			else
6349 				altroot[0] = '\0';
6350 			spa = NULL;
6351 			mutex_exit(&spa_namespace_lock);
6352 		} else {
6353 			spa_altroot(spa, altroot, buflen);
6354 		}
6355 	}
6356 
6357 	if (spa != NULL) {
6358 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6359 		spa_close(spa, FTAG);
6360 	}
6361 
6362 	return (error);
6363 }
6364 
6365 /*
6366  * Validate that the auxiliary device array is well formed.  We must have an
6367  * array of nvlists, each which describes a valid leaf vdev.  If this is an
6368  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
6369  * specified, as long as they are well-formed.
6370  */
6371 static int
6372 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
6373     spa_aux_vdev_t *sav, const char *config, uint64_t version,
6374     vdev_labeltype_t label)
6375 {
6376 	nvlist_t **dev;
6377 	uint_t i, ndev;
6378 	vdev_t *vd;
6379 	int error;
6380 
6381 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6382 
6383 	/*
6384 	 * It's acceptable to have no devs specified.
6385 	 */
6386 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
6387 		return (0);
6388 
6389 	if (ndev == 0)
6390 		return (SET_ERROR(EINVAL));
6391 
6392 	/*
6393 	 * Make sure the pool is formatted with a version that supports this
6394 	 * device type.
6395 	 */
6396 	if (spa_version(spa) < version)
6397 		return (SET_ERROR(ENOTSUP));
6398 
6399 	/*
6400 	 * Set the pending device list so we correctly handle device in-use
6401 	 * checking.
6402 	 */
6403 	sav->sav_pending = dev;
6404 	sav->sav_npending = ndev;
6405 
6406 	for (i = 0; i < ndev; i++) {
6407 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
6408 		    mode)) != 0)
6409 			goto out;
6410 
6411 		if (!vd->vdev_ops->vdev_op_leaf) {
6412 			vdev_free(vd);
6413 			error = SET_ERROR(EINVAL);
6414 			goto out;
6415 		}
6416 
6417 		vd->vdev_top = vd;
6418 
6419 		if ((error = vdev_open(vd)) == 0 &&
6420 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
6421 			fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
6422 			    vd->vdev_guid);
6423 		}
6424 
6425 		vdev_free(vd);
6426 
6427 		if (error &&
6428 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
6429 			goto out;
6430 		else
6431 			error = 0;
6432 	}
6433 
6434 out:
6435 	sav->sav_pending = NULL;
6436 	sav->sav_npending = 0;
6437 	return (error);
6438 }
6439 
6440 static int
6441 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
6442 {
6443 	int error;
6444 
6445 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6446 
6447 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6448 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
6449 	    VDEV_LABEL_SPARE)) != 0) {
6450 		return (error);
6451 	}
6452 
6453 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6454 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
6455 	    VDEV_LABEL_L2CACHE));
6456 }
6457 
6458 static void
6459 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
6460     const char *config)
6461 {
6462 	int i;
6463 
6464 	if (sav->sav_config != NULL) {
6465 		nvlist_t **olddevs;
6466 		uint_t oldndevs;
6467 		nvlist_t **newdevs;
6468 
6469 		/*
6470 		 * Generate new dev list by concatenating with the
6471 		 * current dev list.
6472 		 */
6473 		VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
6474 		    &olddevs, &oldndevs));
6475 
6476 		newdevs = kmem_alloc(sizeof (void *) *
6477 		    (ndevs + oldndevs), KM_SLEEP);
6478 		for (i = 0; i < oldndevs; i++)
6479 			newdevs[i] = fnvlist_dup(olddevs[i]);
6480 		for (i = 0; i < ndevs; i++)
6481 			newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
6482 
6483 		fnvlist_remove(sav->sav_config, config);
6484 
6485 		fnvlist_add_nvlist_array(sav->sav_config, config,
6486 		    (const nvlist_t * const *)newdevs, ndevs + oldndevs);
6487 		for (i = 0; i < oldndevs + ndevs; i++)
6488 			nvlist_free(newdevs[i]);
6489 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
6490 	} else {
6491 		/*
6492 		 * Generate a new dev list.
6493 		 */
6494 		sav->sav_config = fnvlist_alloc();
6495 		fnvlist_add_nvlist_array(sav->sav_config, config,
6496 		    (const nvlist_t * const *)devs, ndevs);
6497 	}
6498 }
6499 
6500 /*
6501  * Stop and drop level 2 ARC devices
6502  */
6503 void
6504 spa_l2cache_drop(spa_t *spa)
6505 {
6506 	vdev_t *vd;
6507 	int i;
6508 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
6509 
6510 	for (i = 0; i < sav->sav_count; i++) {
6511 		uint64_t pool;
6512 
6513 		vd = sav->sav_vdevs[i];
6514 		ASSERT(vd != NULL);
6515 
6516 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
6517 		    pool != 0ULL && l2arc_vdev_present(vd))
6518 			l2arc_remove_vdev(vd);
6519 	}
6520 }
6521 
6522 /*
6523  * Verify encryption parameters for spa creation. If we are encrypting, we must
6524  * have the encryption feature flag enabled.
6525  */
6526 static int
6527 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
6528     boolean_t has_encryption)
6529 {
6530 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
6531 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
6532 	    !has_encryption)
6533 		return (SET_ERROR(ENOTSUP));
6534 
6535 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
6536 }
6537 
6538 /*
6539  * Pool Creation
6540  */
6541 int
6542 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
6543     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
6544 {
6545 	spa_t *spa;
6546 	const char *altroot = NULL;
6547 	vdev_t *rvd;
6548 	dsl_pool_t *dp;
6549 	dmu_tx_t *tx;
6550 	int error = 0;
6551 	uint64_t txg = TXG_INITIAL;
6552 	nvlist_t **spares, **l2cache;
6553 	uint_t nspares, nl2cache;
6554 	uint64_t version, obj, ndraid = 0;
6555 	boolean_t has_features;
6556 	boolean_t has_encryption;
6557 	boolean_t has_allocclass;
6558 	spa_feature_t feat;
6559 	const char *feat_name;
6560 	const char *poolname;
6561 	nvlist_t *nvl;
6562 
6563 	if (props == NULL ||
6564 	    nvlist_lookup_string(props,
6565 	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
6566 		poolname = (char *)pool;
6567 
6568 	/*
6569 	 * If this pool already exists, return failure.
6570 	 */
6571 	mutex_enter(&spa_namespace_lock);
6572 	if (spa_lookup(poolname) != NULL) {
6573 		mutex_exit(&spa_namespace_lock);
6574 		return (SET_ERROR(EEXIST));
6575 	}
6576 
6577 	/*
6578 	 * Allocate a new spa_t structure.
6579 	 */
6580 	nvl = fnvlist_alloc();
6581 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
6582 	(void) nvlist_lookup_string(props,
6583 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6584 	spa = spa_add(poolname, nvl, altroot);
6585 	fnvlist_free(nvl);
6586 	spa_activate(spa, spa_mode_global);
6587 
6588 	if (props && (error = spa_prop_validate(spa, props))) {
6589 		spa_deactivate(spa);
6590 		spa_remove(spa);
6591 		mutex_exit(&spa_namespace_lock);
6592 		return (error);
6593 	}
6594 
6595 	/*
6596 	 * Temporary pool names should never be written to disk.
6597 	 */
6598 	if (poolname != pool)
6599 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
6600 
6601 	has_features = B_FALSE;
6602 	has_encryption = B_FALSE;
6603 	has_allocclass = B_FALSE;
6604 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
6605 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
6606 		if (zpool_prop_feature(nvpair_name(elem))) {
6607 			has_features = B_TRUE;
6608 
6609 			feat_name = strchr(nvpair_name(elem), '@') + 1;
6610 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
6611 			if (feat == SPA_FEATURE_ENCRYPTION)
6612 				has_encryption = B_TRUE;
6613 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
6614 				has_allocclass = B_TRUE;
6615 		}
6616 	}
6617 
6618 	/* verify encryption params, if they were provided */
6619 	if (dcp != NULL) {
6620 		error = spa_create_check_encryption_params(dcp, has_encryption);
6621 		if (error != 0) {
6622 			spa_deactivate(spa);
6623 			spa_remove(spa);
6624 			mutex_exit(&spa_namespace_lock);
6625 			return (error);
6626 		}
6627 	}
6628 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
6629 		spa_deactivate(spa);
6630 		spa_remove(spa);
6631 		mutex_exit(&spa_namespace_lock);
6632 		return (ENOTSUP);
6633 	}
6634 
6635 	if (has_features || nvlist_lookup_uint64(props,
6636 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
6637 		version = SPA_VERSION;
6638 	}
6639 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6640 
6641 	spa->spa_first_txg = txg;
6642 	spa->spa_uberblock.ub_txg = txg - 1;
6643 	spa->spa_uberblock.ub_version = version;
6644 	spa->spa_ubsync = spa->spa_uberblock;
6645 	spa->spa_load_state = SPA_LOAD_CREATE;
6646 	spa->spa_removing_phys.sr_state = DSS_NONE;
6647 	spa->spa_removing_phys.sr_removing_vdev = -1;
6648 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
6649 	spa->spa_indirect_vdevs_loaded = B_TRUE;
6650 
6651 	/*
6652 	 * Create "The Godfather" zio to hold all async IOs
6653 	 */
6654 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
6655 	    KM_SLEEP);
6656 	for (int i = 0; i < max_ncpus; i++) {
6657 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
6658 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6659 		    ZIO_FLAG_GODFATHER);
6660 	}
6661 
6662 	/*
6663 	 * Create the root vdev.
6664 	 */
6665 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6666 
6667 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6668 
6669 	ASSERT(error != 0 || rvd != NULL);
6670 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6671 
6672 	if (error == 0 && !zfs_allocatable_devs(nvroot))
6673 		error = SET_ERROR(EINVAL);
6674 
6675 	if (error == 0 &&
6676 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6677 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6678 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6679 		/*
6680 		 * instantiate the metaslab groups (this will dirty the vdevs)
6681 		 * we can no longer error exit past this point
6682 		 */
6683 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6684 			vdev_t *vd = rvd->vdev_child[c];
6685 
6686 			vdev_metaslab_set_size(vd);
6687 			vdev_expand(vd, txg);
6688 		}
6689 	}
6690 
6691 	spa_config_exit(spa, SCL_ALL, FTAG);
6692 
6693 	if (error != 0) {
6694 		spa_unload(spa);
6695 		spa_deactivate(spa);
6696 		spa_remove(spa);
6697 		mutex_exit(&spa_namespace_lock);
6698 		return (error);
6699 	}
6700 
6701 	/*
6702 	 * Get the list of spares, if specified.
6703 	 */
6704 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6705 	    &spares, &nspares) == 0) {
6706 		spa->spa_spares.sav_config = fnvlist_alloc();
6707 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6708 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6709 		    nspares);
6710 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6711 		spa_load_spares(spa);
6712 		spa_config_exit(spa, SCL_ALL, FTAG);
6713 		spa->spa_spares.sav_sync = B_TRUE;
6714 	}
6715 
6716 	/*
6717 	 * Get the list of level 2 cache devices, if specified.
6718 	 */
6719 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6720 	    &l2cache, &nl2cache) == 0) {
6721 		VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6722 		    NV_UNIQUE_NAME, KM_SLEEP));
6723 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6724 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6725 		    nl2cache);
6726 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6727 		spa_load_l2cache(spa);
6728 		spa_config_exit(spa, SCL_ALL, FTAG);
6729 		spa->spa_l2cache.sav_sync = B_TRUE;
6730 	}
6731 
6732 	spa->spa_is_initializing = B_TRUE;
6733 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6734 	spa->spa_is_initializing = B_FALSE;
6735 
6736 	/*
6737 	 * Create DDTs (dedup tables).
6738 	 */
6739 	ddt_create(spa);
6740 	/*
6741 	 * Create BRT table and BRT table object.
6742 	 */
6743 	brt_create(spa);
6744 
6745 	spa_update_dspace(spa);
6746 
6747 	tx = dmu_tx_create_assigned(dp, txg);
6748 
6749 	/*
6750 	 * Create the pool's history object.
6751 	 */
6752 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6753 		spa_history_create_obj(spa, tx);
6754 
6755 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6756 	spa_history_log_version(spa, "create", tx);
6757 
6758 	/*
6759 	 * Create the pool config object.
6760 	 */
6761 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6762 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6763 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6764 
6765 	if (zap_add(spa->spa_meta_objset,
6766 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6767 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6768 		cmn_err(CE_PANIC, "failed to add pool config");
6769 	}
6770 
6771 	if (zap_add(spa->spa_meta_objset,
6772 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6773 	    sizeof (uint64_t), 1, &version, tx) != 0) {
6774 		cmn_err(CE_PANIC, "failed to add pool version");
6775 	}
6776 
6777 	/* Newly created pools with the right version are always deflated. */
6778 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6779 		spa->spa_deflate = TRUE;
6780 		if (zap_add(spa->spa_meta_objset,
6781 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6782 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6783 			cmn_err(CE_PANIC, "failed to add deflate");
6784 		}
6785 	}
6786 
6787 	/*
6788 	 * Create the deferred-free bpobj.  Turn off compression
6789 	 * because sync-to-convergence takes longer if the blocksize
6790 	 * keeps changing.
6791 	 */
6792 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6793 	dmu_object_set_compress(spa->spa_meta_objset, obj,
6794 	    ZIO_COMPRESS_OFF, tx);
6795 	if (zap_add(spa->spa_meta_objset,
6796 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6797 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
6798 		cmn_err(CE_PANIC, "failed to add bpobj");
6799 	}
6800 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6801 	    spa->spa_meta_objset, obj));
6802 
6803 	/*
6804 	 * Generate some random noise for salted checksums to operate on.
6805 	 */
6806 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6807 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
6808 
6809 	/*
6810 	 * Set pool properties.
6811 	 */
6812 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6813 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6814 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6815 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6816 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6817 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6818 	spa->spa_dedup_table_quota =
6819 	    zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_TABLE_QUOTA);
6820 
6821 	if (props != NULL) {
6822 		spa_configfile_set(spa, props, B_FALSE);
6823 		spa_sync_props(props, tx);
6824 	}
6825 
6826 	for (int i = 0; i < ndraid; i++)
6827 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6828 
6829 	dmu_tx_commit(tx);
6830 
6831 	spa->spa_sync_on = B_TRUE;
6832 	txg_sync_start(dp);
6833 	mmp_thread_start(spa);
6834 	txg_wait_synced(dp, txg);
6835 
6836 	spa_spawn_aux_threads(spa);
6837 
6838 	spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6839 
6840 	/*
6841 	 * Don't count references from objsets that are already closed
6842 	 * and are making their way through the eviction process.
6843 	 */
6844 	spa_evicting_os_wait(spa);
6845 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6846 	spa->spa_load_state = SPA_LOAD_NONE;
6847 
6848 	spa_import_os(spa);
6849 
6850 	mutex_exit(&spa_namespace_lock);
6851 
6852 	return (0);
6853 }
6854 
6855 /*
6856  * Import a non-root pool into the system.
6857  */
6858 int
6859 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6860 {
6861 	spa_t *spa;
6862 	const char *altroot = NULL;
6863 	spa_load_state_t state = SPA_LOAD_IMPORT;
6864 	zpool_load_policy_t policy;
6865 	spa_mode_t mode = spa_mode_global;
6866 	uint64_t readonly = B_FALSE;
6867 	int error;
6868 	nvlist_t *nvroot;
6869 	nvlist_t **spares, **l2cache;
6870 	uint_t nspares, nl2cache;
6871 
6872 	/*
6873 	 * If a pool with this name exists, return failure.
6874 	 */
6875 	mutex_enter(&spa_namespace_lock);
6876 	if (spa_lookup(pool) != NULL) {
6877 		mutex_exit(&spa_namespace_lock);
6878 		return (SET_ERROR(EEXIST));
6879 	}
6880 
6881 	/*
6882 	 * Create and initialize the spa structure.
6883 	 */
6884 	(void) nvlist_lookup_string(props,
6885 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6886 	(void) nvlist_lookup_uint64(props,
6887 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6888 	if (readonly)
6889 		mode = SPA_MODE_READ;
6890 	spa = spa_add(pool, config, altroot);
6891 	spa->spa_import_flags = flags;
6892 
6893 	/*
6894 	 * Verbatim import - Take a pool and insert it into the namespace
6895 	 * as if it had been loaded at boot.
6896 	 */
6897 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6898 		if (props != NULL)
6899 			spa_configfile_set(spa, props, B_FALSE);
6900 
6901 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6902 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6903 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6904 		mutex_exit(&spa_namespace_lock);
6905 		return (0);
6906 	}
6907 
6908 	spa_activate(spa, mode);
6909 
6910 	/*
6911 	 * Don't start async tasks until we know everything is healthy.
6912 	 */
6913 	spa_async_suspend(spa);
6914 
6915 	zpool_get_load_policy(config, &policy);
6916 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6917 		state = SPA_LOAD_RECOVER;
6918 
6919 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6920 
6921 	if (state != SPA_LOAD_RECOVER) {
6922 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6923 		zfs_dbgmsg("spa_import: importing %s", pool);
6924 	} else {
6925 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6926 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6927 	}
6928 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6929 
6930 	/*
6931 	 * Propagate anything learned while loading the pool and pass it
6932 	 * back to caller (i.e. rewind info, missing devices, etc).
6933 	 */
6934 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6935 
6936 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6937 	/*
6938 	 * Toss any existing sparelist, as it doesn't have any validity
6939 	 * anymore, and conflicts with spa_has_spare().
6940 	 */
6941 	if (spa->spa_spares.sav_config) {
6942 		nvlist_free(spa->spa_spares.sav_config);
6943 		spa->spa_spares.sav_config = NULL;
6944 		spa_load_spares(spa);
6945 	}
6946 	if (spa->spa_l2cache.sav_config) {
6947 		nvlist_free(spa->spa_l2cache.sav_config);
6948 		spa->spa_l2cache.sav_config = NULL;
6949 		spa_load_l2cache(spa);
6950 	}
6951 
6952 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6953 	spa_config_exit(spa, SCL_ALL, FTAG);
6954 
6955 	if (props != NULL)
6956 		spa_configfile_set(spa, props, B_FALSE);
6957 
6958 	if (error != 0 || (props && spa_writeable(spa) &&
6959 	    (error = spa_prop_set(spa, props)))) {
6960 		spa_unload(spa);
6961 		spa_deactivate(spa);
6962 		spa_remove(spa);
6963 		mutex_exit(&spa_namespace_lock);
6964 		return (error);
6965 	}
6966 
6967 	spa_async_resume(spa);
6968 
6969 	/*
6970 	 * Override any spares and level 2 cache devices as specified by
6971 	 * the user, as these may have correct device names/devids, etc.
6972 	 */
6973 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6974 	    &spares, &nspares) == 0) {
6975 		if (spa->spa_spares.sav_config)
6976 			fnvlist_remove(spa->spa_spares.sav_config,
6977 			    ZPOOL_CONFIG_SPARES);
6978 		else
6979 			spa->spa_spares.sav_config = fnvlist_alloc();
6980 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6981 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6982 		    nspares);
6983 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6984 		spa_load_spares(spa);
6985 		spa_config_exit(spa, SCL_ALL, FTAG);
6986 		spa->spa_spares.sav_sync = B_TRUE;
6987 		spa->spa_spares.sav_label_sync = B_TRUE;
6988 	}
6989 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6990 	    &l2cache, &nl2cache) == 0) {
6991 		if (spa->spa_l2cache.sav_config)
6992 			fnvlist_remove(spa->spa_l2cache.sav_config,
6993 			    ZPOOL_CONFIG_L2CACHE);
6994 		else
6995 			spa->spa_l2cache.sav_config = fnvlist_alloc();
6996 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6997 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6998 		    nl2cache);
6999 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7000 		spa_load_l2cache(spa);
7001 		spa_config_exit(spa, SCL_ALL, FTAG);
7002 		spa->spa_l2cache.sav_sync = B_TRUE;
7003 		spa->spa_l2cache.sav_label_sync = B_TRUE;
7004 	}
7005 
7006 	/*
7007 	 * Check for any removed devices.
7008 	 */
7009 	if (spa->spa_autoreplace) {
7010 		spa_aux_check_removed(&spa->spa_spares);
7011 		spa_aux_check_removed(&spa->spa_l2cache);
7012 	}
7013 
7014 	if (spa_writeable(spa)) {
7015 		/*
7016 		 * Update the config cache to include the newly-imported pool.
7017 		 */
7018 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7019 	}
7020 
7021 	/*
7022 	 * It's possible that the pool was expanded while it was exported.
7023 	 * We kick off an async task to handle this for us.
7024 	 */
7025 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
7026 
7027 	spa_history_log_version(spa, "import", NULL);
7028 
7029 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
7030 
7031 	mutex_exit(&spa_namespace_lock);
7032 
7033 	zvol_create_minors(pool);
7034 
7035 	spa_import_os(spa);
7036 
7037 	return (0);
7038 }
7039 
7040 nvlist_t *
7041 spa_tryimport(nvlist_t *tryconfig)
7042 {
7043 	nvlist_t *config = NULL;
7044 	const char *poolname, *cachefile;
7045 	spa_t *spa;
7046 	uint64_t state;
7047 	int error;
7048 	zpool_load_policy_t policy;
7049 
7050 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
7051 		return (NULL);
7052 
7053 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
7054 		return (NULL);
7055 
7056 	/*
7057 	 * Create and initialize the spa structure.
7058 	 */
7059 	char *name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
7060 	(void) snprintf(name, MAXPATHLEN, "%s-%llx-%s",
7061 	    TRYIMPORT_NAME, (u_longlong_t)(uintptr_t)curthread, poolname);
7062 
7063 	mutex_enter(&spa_namespace_lock);
7064 	spa = spa_add(name, tryconfig, NULL);
7065 	spa_activate(spa, SPA_MODE_READ);
7066 	kmem_free(name, MAXPATHLEN);
7067 
7068 	/*
7069 	 * Rewind pool if a max txg was provided.
7070 	 */
7071 	zpool_get_load_policy(spa->spa_config, &policy);
7072 	if (policy.zlp_txg != UINT64_MAX) {
7073 		spa->spa_load_max_txg = policy.zlp_txg;
7074 		spa->spa_extreme_rewind = B_TRUE;
7075 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
7076 		    poolname, (longlong_t)policy.zlp_txg);
7077 	} else {
7078 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
7079 	}
7080 
7081 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
7082 	    == 0) {
7083 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
7084 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
7085 	} else {
7086 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
7087 	}
7088 
7089 	/*
7090 	 * spa_import() relies on a pool config fetched by spa_try_import()
7091 	 * for spare/cache devices. Import flags are not passed to
7092 	 * spa_tryimport(), which makes it return early due to a missing log
7093 	 * device and missing retrieving the cache device and spare eventually.
7094 	 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
7095 	 * the correct configuration regardless of the missing log device.
7096 	 */
7097 	spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
7098 
7099 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
7100 
7101 	/*
7102 	 * If 'tryconfig' was at least parsable, return the current config.
7103 	 */
7104 	if (spa->spa_root_vdev != NULL) {
7105 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
7106 		fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
7107 		fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
7108 		fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
7109 		    spa->spa_uberblock.ub_timestamp);
7110 		fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
7111 		    spa->spa_load_info);
7112 		fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
7113 		    spa->spa_errata);
7114 
7115 		/*
7116 		 * If the bootfs property exists on this pool then we
7117 		 * copy it out so that external consumers can tell which
7118 		 * pools are bootable.
7119 		 */
7120 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
7121 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
7122 
7123 			/*
7124 			 * We have to play games with the name since the
7125 			 * pool was opened as TRYIMPORT_NAME.
7126 			 */
7127 			if (dsl_dsobj_to_dsname(spa_name(spa),
7128 			    spa->spa_bootfs, tmpname) == 0) {
7129 				char *cp;
7130 				char *dsname;
7131 
7132 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
7133 
7134 				cp = strchr(tmpname, '/');
7135 				if (cp == NULL) {
7136 					(void) strlcpy(dsname, tmpname,
7137 					    MAXPATHLEN);
7138 				} else {
7139 					(void) snprintf(dsname, MAXPATHLEN,
7140 					    "%s/%s", poolname, ++cp);
7141 				}
7142 				fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
7143 				    dsname);
7144 				kmem_free(dsname, MAXPATHLEN);
7145 			}
7146 			kmem_free(tmpname, MAXPATHLEN);
7147 		}
7148 
7149 		/*
7150 		 * Add the list of hot spares and level 2 cache devices.
7151 		 */
7152 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7153 		spa_add_spares(spa, config);
7154 		spa_add_l2cache(spa, config);
7155 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7156 	}
7157 
7158 	spa_unload(spa);
7159 	spa_deactivate(spa);
7160 	spa_remove(spa);
7161 	mutex_exit(&spa_namespace_lock);
7162 
7163 	return (config);
7164 }
7165 
7166 /*
7167  * Pool export/destroy
7168  *
7169  * The act of destroying or exporting a pool is very simple.  We make sure there
7170  * is no more pending I/O and any references to the pool are gone.  Then, we
7171  * update the pool state and sync all the labels to disk, removing the
7172  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
7173  * we don't sync the labels or remove the configuration cache.
7174  */
7175 static int
7176 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
7177     boolean_t force, boolean_t hardforce)
7178 {
7179 	int error = 0;
7180 	spa_t *spa;
7181 	hrtime_t export_start = gethrtime();
7182 
7183 	if (oldconfig)
7184 		*oldconfig = NULL;
7185 
7186 	if (!(spa_mode_global & SPA_MODE_WRITE))
7187 		return (SET_ERROR(EROFS));
7188 
7189 	mutex_enter(&spa_namespace_lock);
7190 	if ((spa = spa_lookup(pool)) == NULL) {
7191 		mutex_exit(&spa_namespace_lock);
7192 		return (SET_ERROR(ENOENT));
7193 	}
7194 
7195 	if (spa->spa_is_exporting) {
7196 		/* the pool is being exported by another thread */
7197 		mutex_exit(&spa_namespace_lock);
7198 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
7199 	}
7200 	spa->spa_is_exporting = B_TRUE;
7201 
7202 	/*
7203 	 * Put a hold on the pool, drop the namespace lock, stop async tasks
7204 	 * and see if we can export.
7205 	 */
7206 	spa_open_ref(spa, FTAG);
7207 	mutex_exit(&spa_namespace_lock);
7208 	spa_async_suspend(spa);
7209 	if (spa->spa_zvol_taskq) {
7210 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
7211 		taskq_wait(spa->spa_zvol_taskq);
7212 	}
7213 	mutex_enter(&spa_namespace_lock);
7214 	spa->spa_export_thread = curthread;
7215 	spa_close(spa, FTAG);
7216 
7217 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
7218 		mutex_exit(&spa_namespace_lock);
7219 		goto export_spa;
7220 	}
7221 
7222 	/*
7223 	 * The pool will be in core if it's openable, in which case we can
7224 	 * modify its state.  Objsets may be open only because they're dirty,
7225 	 * so we have to force it to sync before checking spa_refcnt.
7226 	 */
7227 	if (spa->spa_sync_on) {
7228 		txg_wait_synced(spa->spa_dsl_pool, 0);
7229 		spa_evicting_os_wait(spa);
7230 	}
7231 
7232 	/*
7233 	 * A pool cannot be exported or destroyed if there are active
7234 	 * references.  If we are resetting a pool, allow references by
7235 	 * fault injection handlers.
7236 	 */
7237 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
7238 		error = SET_ERROR(EBUSY);
7239 		goto fail;
7240 	}
7241 
7242 	mutex_exit(&spa_namespace_lock);
7243 	/*
7244 	 * At this point we no longer hold the spa_namespace_lock and
7245 	 * there were no references on the spa. Future spa_lookups will
7246 	 * notice the spa->spa_export_thread and wait until we signal
7247 	 * that we are finshed.
7248 	 */
7249 
7250 	if (spa->spa_sync_on) {
7251 		vdev_t *rvd = spa->spa_root_vdev;
7252 		/*
7253 		 * A pool cannot be exported if it has an active shared spare.
7254 		 * This is to prevent other pools stealing the active spare
7255 		 * from an exported pool. At user's own will, such pool can
7256 		 * be forcedly exported.
7257 		 */
7258 		if (!force && new_state == POOL_STATE_EXPORTED &&
7259 		    spa_has_active_shared_spare(spa)) {
7260 			error = SET_ERROR(EXDEV);
7261 			mutex_enter(&spa_namespace_lock);
7262 			goto fail;
7263 		}
7264 
7265 		/*
7266 		 * We're about to export or destroy this pool. Make sure
7267 		 * we stop all initialization and trim activity here before
7268 		 * we set the spa_final_txg. This will ensure that all
7269 		 * dirty data resulting from the initialization is
7270 		 * committed to disk before we unload the pool.
7271 		 */
7272 		vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
7273 		vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
7274 		vdev_autotrim_stop_all(spa);
7275 		vdev_rebuild_stop_all(spa);
7276 		l2arc_spa_rebuild_stop(spa);
7277 
7278 		/*
7279 		 * We want this to be reflected on every label,
7280 		 * so mark them all dirty.  spa_unload() will do the
7281 		 * final sync that pushes these changes out.
7282 		 */
7283 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7284 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7285 			spa->spa_state = new_state;
7286 			vdev_config_dirty(rvd);
7287 			spa_config_exit(spa, SCL_ALL, FTAG);
7288 		}
7289 
7290 		if (spa_should_sync_time_logger_on_unload(spa))
7291 			spa_unload_sync_time_logger(spa);
7292 
7293 		/*
7294 		 * If the log space map feature is enabled and the pool is
7295 		 * getting exported (but not destroyed), we want to spend some
7296 		 * time flushing as many metaslabs as we can in an attempt to
7297 		 * destroy log space maps and save import time. This has to be
7298 		 * done before we set the spa_final_txg, otherwise
7299 		 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
7300 		 * spa_should_flush_logs_on_unload() should be called after
7301 		 * spa_state has been set to the new_state.
7302 		 */
7303 		if (spa_should_flush_logs_on_unload(spa))
7304 			spa_unload_log_sm_flush_all(spa);
7305 
7306 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7307 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7308 			spa->spa_final_txg = spa_last_synced_txg(spa) +
7309 			    TXG_DEFER_SIZE + 1;
7310 			spa_config_exit(spa, SCL_ALL, FTAG);
7311 		}
7312 	}
7313 
7314 export_spa:
7315 	spa_export_os(spa);
7316 
7317 	if (new_state == POOL_STATE_DESTROYED)
7318 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
7319 	else if (new_state == POOL_STATE_EXPORTED)
7320 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
7321 
7322 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7323 		spa_unload(spa);
7324 		spa_deactivate(spa);
7325 	}
7326 
7327 	if (oldconfig && spa->spa_config)
7328 		*oldconfig = fnvlist_dup(spa->spa_config);
7329 
7330 	if (new_state == POOL_STATE_EXPORTED)
7331 		zio_handle_export_delay(spa, gethrtime() - export_start);
7332 
7333 	/*
7334 	 * Take the namespace lock for the actual spa_t removal
7335 	 */
7336 	mutex_enter(&spa_namespace_lock);
7337 	if (new_state != POOL_STATE_UNINITIALIZED) {
7338 		if (!hardforce)
7339 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
7340 		spa_remove(spa);
7341 	} else {
7342 		/*
7343 		 * If spa_remove() is not called for this spa_t and
7344 		 * there is any possibility that it can be reused,
7345 		 * we make sure to reset the exporting flag.
7346 		 */
7347 		spa->spa_is_exporting = B_FALSE;
7348 		spa->spa_export_thread = NULL;
7349 	}
7350 
7351 	/*
7352 	 * Wake up any waiters in spa_lookup()
7353 	 */
7354 	cv_broadcast(&spa_namespace_cv);
7355 	mutex_exit(&spa_namespace_lock);
7356 	return (0);
7357 
7358 fail:
7359 	spa->spa_is_exporting = B_FALSE;
7360 	spa->spa_export_thread = NULL;
7361 
7362 	spa_async_resume(spa);
7363 	/*
7364 	 * Wake up any waiters in spa_lookup()
7365 	 */
7366 	cv_broadcast(&spa_namespace_cv);
7367 	mutex_exit(&spa_namespace_lock);
7368 	return (error);
7369 }
7370 
7371 /*
7372  * Destroy a storage pool.
7373  */
7374 int
7375 spa_destroy(const char *pool)
7376 {
7377 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
7378 	    B_FALSE, B_FALSE));
7379 }
7380 
7381 /*
7382  * Export a storage pool.
7383  */
7384 int
7385 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
7386     boolean_t hardforce)
7387 {
7388 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
7389 	    force, hardforce));
7390 }
7391 
7392 /*
7393  * Similar to spa_export(), this unloads the spa_t without actually removing it
7394  * from the namespace in any way.
7395  */
7396 int
7397 spa_reset(const char *pool)
7398 {
7399 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
7400 	    B_FALSE, B_FALSE));
7401 }
7402 
7403 /*
7404  * ==========================================================================
7405  * Device manipulation
7406  * ==========================================================================
7407  */
7408 
7409 /*
7410  * This is called as a synctask to increment the draid feature flag
7411  */
7412 static void
7413 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
7414 {
7415 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7416 	int draid = (int)(uintptr_t)arg;
7417 
7418 	for (int c = 0; c < draid; c++)
7419 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
7420 }
7421 
7422 /*
7423  * Add a device to a storage pool.
7424  */
7425 int
7426 spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift)
7427 {
7428 	uint64_t txg, ndraid = 0;
7429 	int error;
7430 	vdev_t *rvd = spa->spa_root_vdev;
7431 	vdev_t *vd, *tvd;
7432 	nvlist_t **spares, **l2cache;
7433 	uint_t nspares, nl2cache;
7434 
7435 	ASSERT(spa_writeable(spa));
7436 
7437 	txg = spa_vdev_enter(spa);
7438 
7439 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
7440 	    VDEV_ALLOC_ADD)) != 0)
7441 		return (spa_vdev_exit(spa, NULL, txg, error));
7442 
7443 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
7444 
7445 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
7446 	    &nspares) != 0)
7447 		nspares = 0;
7448 
7449 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
7450 	    &nl2cache) != 0)
7451 		nl2cache = 0;
7452 
7453 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
7454 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
7455 
7456 	if (vd->vdev_children != 0 &&
7457 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
7458 		return (spa_vdev_exit(spa, vd, txg, error));
7459 	}
7460 
7461 	/*
7462 	 * The virtual dRAID spares must be added after vdev tree is created
7463 	 * and the vdev guids are generated.  The guid of their associated
7464 	 * dRAID is stored in the config and used when opening the spare.
7465 	 */
7466 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
7467 	    rvd->vdev_children)) == 0) {
7468 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
7469 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
7470 			nspares = 0;
7471 	} else {
7472 		return (spa_vdev_exit(spa, vd, txg, error));
7473 	}
7474 
7475 	/*
7476 	 * We must validate the spares and l2cache devices after checking the
7477 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
7478 	 */
7479 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
7480 		return (spa_vdev_exit(spa, vd, txg, error));
7481 
7482 	/*
7483 	 * If we are in the middle of a device removal, we can only add
7484 	 * devices which match the existing devices in the pool.
7485 	 * If we are in the middle of a removal, or have some indirect
7486 	 * vdevs, we can not add raidz or dRAID top levels.
7487 	 */
7488 	if (spa->spa_vdev_removal != NULL ||
7489 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7490 		for (int c = 0; c < vd->vdev_children; c++) {
7491 			tvd = vd->vdev_child[c];
7492 			if (spa->spa_vdev_removal != NULL &&
7493 			    tvd->vdev_ashift != spa->spa_max_ashift) {
7494 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
7495 			}
7496 			/* Fail if top level vdev is raidz or a dRAID */
7497 			if (vdev_get_nparity(tvd) != 0)
7498 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
7499 
7500 			/*
7501 			 * Need the top level mirror to be
7502 			 * a mirror of leaf vdevs only
7503 			 */
7504 			if (tvd->vdev_ops == &vdev_mirror_ops) {
7505 				for (uint64_t cid = 0;
7506 				    cid < tvd->vdev_children; cid++) {
7507 					vdev_t *cvd = tvd->vdev_child[cid];
7508 					if (!cvd->vdev_ops->vdev_op_leaf) {
7509 						return (spa_vdev_exit(spa, vd,
7510 						    txg, EINVAL));
7511 					}
7512 				}
7513 			}
7514 		}
7515 	}
7516 
7517 	if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) {
7518 		for (int c = 0; c < vd->vdev_children; c++) {
7519 			tvd = vd->vdev_child[c];
7520 			if (tvd->vdev_ashift != spa->spa_max_ashift) {
7521 				return (spa_vdev_exit(spa, vd, txg,
7522 				    ZFS_ERR_ASHIFT_MISMATCH));
7523 			}
7524 		}
7525 	}
7526 
7527 	for (int c = 0; c < vd->vdev_children; c++) {
7528 		tvd = vd->vdev_child[c];
7529 		vdev_remove_child(vd, tvd);
7530 		tvd->vdev_id = rvd->vdev_children;
7531 		vdev_add_child(rvd, tvd);
7532 		vdev_config_dirty(tvd);
7533 	}
7534 
7535 	if (nspares != 0) {
7536 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
7537 		    ZPOOL_CONFIG_SPARES);
7538 		spa_load_spares(spa);
7539 		spa->spa_spares.sav_sync = B_TRUE;
7540 	}
7541 
7542 	if (nl2cache != 0) {
7543 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
7544 		    ZPOOL_CONFIG_L2CACHE);
7545 		spa_load_l2cache(spa);
7546 		spa->spa_l2cache.sav_sync = B_TRUE;
7547 	}
7548 
7549 	/*
7550 	 * We can't increment a feature while holding spa_vdev so we
7551 	 * have to do it in a synctask.
7552 	 */
7553 	if (ndraid != 0) {
7554 		dmu_tx_t *tx;
7555 
7556 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
7557 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
7558 		    (void *)(uintptr_t)ndraid, tx);
7559 		dmu_tx_commit(tx);
7560 	}
7561 
7562 	/*
7563 	 * We have to be careful when adding new vdevs to an existing pool.
7564 	 * If other threads start allocating from these vdevs before we
7565 	 * sync the config cache, and we lose power, then upon reboot we may
7566 	 * fail to open the pool because there are DVAs that the config cache
7567 	 * can't translate.  Therefore, we first add the vdevs without
7568 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
7569 	 * and then let spa_config_update() initialize the new metaslabs.
7570 	 *
7571 	 * spa_load() checks for added-but-not-initialized vdevs, so that
7572 	 * if we lose power at any point in this sequence, the remaining
7573 	 * steps will be completed the next time we load the pool.
7574 	 */
7575 	(void) spa_vdev_exit(spa, vd, txg, 0);
7576 
7577 	mutex_enter(&spa_namespace_lock);
7578 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7579 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
7580 	mutex_exit(&spa_namespace_lock);
7581 
7582 	return (0);
7583 }
7584 
7585 /*
7586  * Given a vdev to be replaced and its parent, check for a possible
7587  * "double spare" condition if a vdev is to be replaced by a spare.  When this
7588  * happens, you can get two spares assigned to one failed vdev.
7589  *
7590  * To trigger a double spare condition:
7591  *
7592  * 1. disk1 fails
7593  * 2. 1st spare is kicked in for disk1 and it resilvers
7594  * 3. Someone replaces disk1 with a new blank disk
7595  * 4. New blank disk starts resilvering
7596  * 5. While resilvering, new blank disk has IO errors and faults
7597  * 6. 2nd spare is kicked in for new blank disk
7598  * 7. At this point two spares are kicked in for the original disk1.
7599  *
7600  * It looks like this:
7601  *
7602  * NAME                                            STATE     READ WRITE CKSUM
7603  * tank2                                           DEGRADED     0     0     0
7604  *   draid2:6d:10c:2s-0                            DEGRADED     0     0     0
7605  *     scsi-0QEMU_QEMU_HARDDISK_d1                 ONLINE       0     0     0
7606  *     scsi-0QEMU_QEMU_HARDDISK_d2                 ONLINE       0     0     0
7607  *     scsi-0QEMU_QEMU_HARDDISK_d3                 ONLINE       0     0     0
7608  *     scsi-0QEMU_QEMU_HARDDISK_d4                 ONLINE       0     0     0
7609  *     scsi-0QEMU_QEMU_HARDDISK_d5                 ONLINE       0     0     0
7610  *     scsi-0QEMU_QEMU_HARDDISK_d6                 ONLINE       0     0     0
7611  *     scsi-0QEMU_QEMU_HARDDISK_d7                 ONLINE       0     0     0
7612  *     scsi-0QEMU_QEMU_HARDDISK_d8                 ONLINE       0     0     0
7613  *     scsi-0QEMU_QEMU_HARDDISK_d9                 ONLINE       0     0     0
7614  *     spare-9                                     DEGRADED     0     0     0
7615  *       replacing-0                               DEGRADED     0    93     0
7616  *         scsi-0QEMU_QEMU_HARDDISK_d10-part1/old  UNAVAIL      0     0     0
7617  *         spare-1                                 DEGRADED     0     0     0
7618  *           scsi-0QEMU_QEMU_HARDDISK_d10          REMOVED      0     0     0
7619  *           draid2-0-0                            ONLINE       0     0     0
7620  *       draid2-0-1                                ONLINE       0     0     0
7621  * spares
7622  *   draid2-0-0                                    INUSE     currently in use
7623  *   draid2-0-1                                    INUSE     currently in use
7624  *
7625  * ARGS:
7626  *
7627  * newvd:  New spare disk
7628  * pvd:    Parent vdev_t the spare should attach to
7629  *
7630  * This function returns B_TRUE if adding the new vdev would create a double
7631  * spare condition, B_FALSE otherwise.
7632  */
7633 static boolean_t
7634 spa_vdev_new_spare_would_cause_double_spares(vdev_t *newvd, vdev_t *pvd)
7635 {
7636 	vdev_t *ppvd;
7637 
7638 	ppvd = pvd->vdev_parent;
7639 	if (ppvd == NULL)
7640 		return (B_FALSE);
7641 
7642 	/*
7643 	 * To determine if this configuration would cause a double spare, we
7644 	 * look at the vdev_op of the parent vdev, and of the parent's parent
7645 	 * vdev.  We also look at vdev_isspare on the new disk.  A double spare
7646 	 * condition looks like this:
7647 	 *
7648 	 * 1. parent of parent's op is a spare or draid spare
7649 	 * 2. parent's op is replacing
7650 	 * 3. new disk is a spare
7651 	 */
7652 	if ((ppvd->vdev_ops == &vdev_spare_ops) ||
7653 	    (ppvd->vdev_ops == &vdev_draid_spare_ops))
7654 		if (pvd->vdev_ops == &vdev_replacing_ops)
7655 			if (newvd->vdev_isspare)
7656 				return (B_TRUE);
7657 
7658 	return (B_FALSE);
7659 }
7660 
7661 /*
7662  * Attach a device to a vdev specified by its guid.  The vdev type can be
7663  * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a
7664  * single device). When the vdev is a single device, a mirror vdev will be
7665  * automatically inserted.
7666  *
7667  * If 'replacing' is specified, the new device is intended to replace the
7668  * existing device; in this case the two devices are made into their own
7669  * mirror using the 'replacing' vdev, which is functionally identical to
7670  * the mirror vdev (it actually reuses all the same ops) but has a few
7671  * extra rules: you can't attach to it after it's been created, and upon
7672  * completion of resilvering, the first disk (the one being replaced)
7673  * is automatically detached.
7674  *
7675  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
7676  * should be performed instead of traditional healing reconstruction.  From
7677  * an administrators perspective these are both resilver operations.
7678  */
7679 int
7680 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
7681     int rebuild)
7682 {
7683 	uint64_t txg, dtl_max_txg;
7684 	vdev_t *rvd = spa->spa_root_vdev;
7685 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
7686 	vdev_ops_t *pvops;
7687 	char *oldvdpath, *newvdpath;
7688 	int newvd_isspare = B_FALSE;
7689 	int error;
7690 
7691 	ASSERT(spa_writeable(spa));
7692 
7693 	txg = spa_vdev_enter(spa);
7694 
7695 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
7696 
7697 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7698 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7699 		error = (spa_has_checkpoint(spa)) ?
7700 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7701 		return (spa_vdev_exit(spa, NULL, txg, error));
7702 	}
7703 
7704 	if (rebuild) {
7705 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
7706 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7707 
7708 		if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
7709 		    dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
7710 			return (spa_vdev_exit(spa, NULL, txg,
7711 			    ZFS_ERR_RESILVER_IN_PROGRESS));
7712 		}
7713 	} else {
7714 		if (vdev_rebuild_active(rvd))
7715 			return (spa_vdev_exit(spa, NULL, txg,
7716 			    ZFS_ERR_REBUILD_IN_PROGRESS));
7717 	}
7718 
7719 	if (spa->spa_vdev_removal != NULL) {
7720 		return (spa_vdev_exit(spa, NULL, txg,
7721 		    ZFS_ERR_DEVRM_IN_PROGRESS));
7722 	}
7723 
7724 	if (oldvd == NULL)
7725 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7726 
7727 	boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops;
7728 
7729 	if (raidz) {
7730 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION))
7731 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7732 
7733 		/*
7734 		 * Can't expand a raidz while prior expand is in progress.
7735 		 */
7736 		if (spa->spa_raidz_expand != NULL) {
7737 			return (spa_vdev_exit(spa, NULL, txg,
7738 			    ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS));
7739 		}
7740 	} else if (!oldvd->vdev_ops->vdev_op_leaf) {
7741 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7742 	}
7743 
7744 	if (raidz)
7745 		pvd = oldvd;
7746 	else
7747 		pvd = oldvd->vdev_parent;
7748 
7749 	if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
7750 	    VDEV_ALLOC_ATTACH) != 0)
7751 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7752 
7753 	if (newrootvd->vdev_children != 1)
7754 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7755 
7756 	newvd = newrootvd->vdev_child[0];
7757 
7758 	if (!newvd->vdev_ops->vdev_op_leaf)
7759 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7760 
7761 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
7762 		return (spa_vdev_exit(spa, newrootvd, txg, error));
7763 
7764 	/*
7765 	 * log, dedup and special vdevs should not be replaced by spares.
7766 	 */
7767 	if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
7768 	    oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
7769 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7770 	}
7771 
7772 	/*
7773 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
7774 	 */
7775 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
7776 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
7777 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7778 	}
7779 
7780 	if (rebuild) {
7781 		/*
7782 		 * For rebuilds, the top vdev must support reconstruction
7783 		 * using only space maps.  This means the only allowable
7784 		 * vdevs types are the root vdev, a mirror, or dRAID.
7785 		 */
7786 		tvd = pvd;
7787 		if (pvd->vdev_top != NULL)
7788 			tvd = pvd->vdev_top;
7789 
7790 		if (tvd->vdev_ops != &vdev_mirror_ops &&
7791 		    tvd->vdev_ops != &vdev_root_ops &&
7792 		    tvd->vdev_ops != &vdev_draid_ops) {
7793 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7794 		}
7795 	}
7796 
7797 	if (!replacing) {
7798 		/*
7799 		 * For attach, the only allowable parent is a mirror or
7800 		 * the root vdev. A raidz vdev can be attached to, but
7801 		 * you cannot attach to a raidz child.
7802 		 */
7803 		if (pvd->vdev_ops != &vdev_mirror_ops &&
7804 		    pvd->vdev_ops != &vdev_root_ops &&
7805 		    !raidz)
7806 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7807 
7808 		pvops = &vdev_mirror_ops;
7809 	} else {
7810 		/*
7811 		 * Active hot spares can only be replaced by inactive hot
7812 		 * spares.
7813 		 */
7814 		if (pvd->vdev_ops == &vdev_spare_ops &&
7815 		    oldvd->vdev_isspare &&
7816 		    !spa_has_spare(spa, newvd->vdev_guid))
7817 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7818 
7819 		/*
7820 		 * If the source is a hot spare, and the parent isn't already a
7821 		 * spare, then we want to create a new hot spare.  Otherwise, we
7822 		 * want to create a replacing vdev.  The user is not allowed to
7823 		 * attach to a spared vdev child unless the 'isspare' state is
7824 		 * the same (spare replaces spare, non-spare replaces
7825 		 * non-spare).
7826 		 */
7827 		if (pvd->vdev_ops == &vdev_replacing_ops &&
7828 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7829 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7830 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
7831 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
7832 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7833 		}
7834 
7835 		if (spa_vdev_new_spare_would_cause_double_spares(newvd, pvd)) {
7836 			vdev_dbgmsg(newvd,
7837 			    "disk would create double spares, ignore.");
7838 			return (spa_vdev_exit(spa, newrootvd, txg, EEXIST));
7839 		}
7840 
7841 		if (newvd->vdev_isspare)
7842 			pvops = &vdev_spare_ops;
7843 		else
7844 			pvops = &vdev_replacing_ops;
7845 	}
7846 
7847 	/*
7848 	 * Make sure the new device is big enough.
7849 	 */
7850 	vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd;
7851 	if (newvd->vdev_asize < vdev_get_min_asize(min_vdev))
7852 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7853 
7854 	/*
7855 	 * The new device cannot have a higher alignment requirement
7856 	 * than the top-level vdev.
7857 	 */
7858 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) {
7859 		return (spa_vdev_exit(spa, newrootvd, txg,
7860 		    ZFS_ERR_ASHIFT_MISMATCH));
7861 	}
7862 
7863 	/*
7864 	 * RAIDZ-expansion-specific checks.
7865 	 */
7866 	if (raidz) {
7867 		if (vdev_raidz_attach_check(newvd) != 0)
7868 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7869 
7870 		/*
7871 		 * Fail early if a child is not healthy or being replaced
7872 		 */
7873 		for (int i = 0; i < oldvd->vdev_children; i++) {
7874 			if (vdev_is_dead(oldvd->vdev_child[i]) ||
7875 			    !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) {
7876 				return (spa_vdev_exit(spa, newrootvd, txg,
7877 				    ENXIO));
7878 			}
7879 			/* Also fail if reserved boot area is in-use */
7880 			if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i])
7881 			    != 0) {
7882 				return (spa_vdev_exit(spa, newrootvd, txg,
7883 				    EADDRINUSE));
7884 			}
7885 		}
7886 	}
7887 
7888 	if (raidz) {
7889 		/*
7890 		 * Note: oldvdpath is freed by spa_strfree(),  but
7891 		 * kmem_asprintf() is freed by kmem_strfree(), so we have to
7892 		 * move it to a spa_strdup-ed string.
7893 		 */
7894 		char *tmp = kmem_asprintf("raidz%u-%u",
7895 		    (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id);
7896 		oldvdpath = spa_strdup(tmp);
7897 		kmem_strfree(tmp);
7898 	} else {
7899 		oldvdpath = spa_strdup(oldvd->vdev_path);
7900 	}
7901 	newvdpath = spa_strdup(newvd->vdev_path);
7902 
7903 	/*
7904 	 * If this is an in-place replacement, update oldvd's path and devid
7905 	 * to make it distinguishable from newvd, and unopenable from now on.
7906 	 */
7907 	if (strcmp(oldvdpath, newvdpath) == 0) {
7908 		spa_strfree(oldvd->vdev_path);
7909 		oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5,
7910 		    KM_SLEEP);
7911 		(void) sprintf(oldvd->vdev_path, "%s/old",
7912 		    newvdpath);
7913 		if (oldvd->vdev_devid != NULL) {
7914 			spa_strfree(oldvd->vdev_devid);
7915 			oldvd->vdev_devid = NULL;
7916 		}
7917 		spa_strfree(oldvdpath);
7918 		oldvdpath = spa_strdup(oldvd->vdev_path);
7919 	}
7920 
7921 	/*
7922 	 * If the parent is not a mirror, or if we're replacing, insert the new
7923 	 * mirror/replacing/spare vdev above oldvd.
7924 	 */
7925 	if (!raidz && pvd->vdev_ops != pvops) {
7926 		pvd = vdev_add_parent(oldvd, pvops);
7927 		ASSERT(pvd->vdev_ops == pvops);
7928 		ASSERT(oldvd->vdev_parent == pvd);
7929 	}
7930 
7931 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
7932 
7933 	/*
7934 	 * Extract the new device from its root and add it to pvd.
7935 	 */
7936 	vdev_remove_child(newrootvd, newvd);
7937 	newvd->vdev_id = pvd->vdev_children;
7938 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
7939 	vdev_add_child(pvd, newvd);
7940 
7941 	/*
7942 	 * Reevaluate the parent vdev state.
7943 	 */
7944 	vdev_propagate_state(pvd);
7945 
7946 	tvd = newvd->vdev_top;
7947 	ASSERT(pvd->vdev_top == tvd);
7948 	ASSERT(tvd->vdev_parent == rvd);
7949 
7950 	vdev_config_dirty(tvd);
7951 
7952 	/*
7953 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7954 	 * for any dmu_sync-ed blocks.  It will propagate upward when
7955 	 * spa_vdev_exit() calls vdev_dtl_reassess().
7956 	 */
7957 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7958 
7959 	if (raidz) {
7960 		/*
7961 		 * Wait for the youngest allocations and frees to sync,
7962 		 * and then wait for the deferral of those frees to finish.
7963 		 */
7964 		spa_vdev_config_exit(spa, NULL,
7965 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
7966 
7967 		vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE);
7968 		vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE);
7969 		vdev_autotrim_stop_wait(tvd);
7970 
7971 		dtl_max_txg = spa_vdev_config_enter(spa);
7972 
7973 		tvd->vdev_rz_expanding = B_TRUE;
7974 
7975 		vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg);
7976 		vdev_config_dirty(tvd);
7977 
7978 		dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
7979 		    dtl_max_txg);
7980 		dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync,
7981 		    newvd, tx);
7982 		dmu_tx_commit(tx);
7983 	} else {
7984 		vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
7985 		    dtl_max_txg - TXG_INITIAL);
7986 
7987 		if (newvd->vdev_isspare) {
7988 			spa_spare_activate(newvd);
7989 			spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7990 		}
7991 
7992 		newvd_isspare = newvd->vdev_isspare;
7993 
7994 		/*
7995 		 * Mark newvd's DTL dirty in this txg.
7996 		 */
7997 		vdev_dirty(tvd, VDD_DTL, newvd, txg);
7998 
7999 		/*
8000 		 * Schedule the resilver or rebuild to restart in the future.
8001 		 * We do this to ensure that dmu_sync-ed blocks have been
8002 		 * stitched into the respective datasets.
8003 		 */
8004 		if (rebuild) {
8005 			newvd->vdev_rebuild_txg = txg;
8006 
8007 			vdev_rebuild(tvd);
8008 		} else {
8009 			newvd->vdev_resilver_txg = txg;
8010 
8011 			if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
8012 			    spa_feature_is_enabled(spa,
8013 			    SPA_FEATURE_RESILVER_DEFER)) {
8014 				vdev_defer_resilver(newvd);
8015 			} else {
8016 				dsl_scan_restart_resilver(spa->spa_dsl_pool,
8017 				    dtl_max_txg);
8018 			}
8019 		}
8020 	}
8021 
8022 	if (spa->spa_bootfs)
8023 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
8024 
8025 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
8026 
8027 	/*
8028 	 * Commit the config
8029 	 */
8030 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
8031 
8032 	spa_history_log_internal(spa, "vdev attach", NULL,
8033 	    "%s vdev=%s %s vdev=%s",
8034 	    replacing && newvd_isspare ? "spare in" :
8035 	    replacing ? "replace" : "attach", newvdpath,
8036 	    replacing ? "for" : "to", oldvdpath);
8037 
8038 	spa_strfree(oldvdpath);
8039 	spa_strfree(newvdpath);
8040 
8041 	return (0);
8042 }
8043 
8044 /*
8045  * Detach a device from a mirror or replacing vdev.
8046  *
8047  * If 'replace_done' is specified, only detach if the parent
8048  * is a replacing or a spare vdev.
8049  */
8050 int
8051 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
8052 {
8053 	uint64_t txg;
8054 	int error;
8055 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
8056 	vdev_t *vd, *pvd, *cvd, *tvd;
8057 	boolean_t unspare = B_FALSE;
8058 	uint64_t unspare_guid = 0;
8059 	char *vdpath;
8060 
8061 	ASSERT(spa_writeable(spa));
8062 
8063 	txg = spa_vdev_detach_enter(spa, guid);
8064 
8065 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8066 
8067 	/*
8068 	 * Besides being called directly from the userland through the
8069 	 * ioctl interface, spa_vdev_detach() can be potentially called
8070 	 * at the end of spa_vdev_resilver_done().
8071 	 *
8072 	 * In the regular case, when we have a checkpoint this shouldn't
8073 	 * happen as we never empty the DTLs of a vdev during the scrub
8074 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
8075 	 * should never get here when we have a checkpoint.
8076 	 *
8077 	 * That said, even in a case when we checkpoint the pool exactly
8078 	 * as spa_vdev_resilver_done() calls this function everything
8079 	 * should be fine as the resilver will return right away.
8080 	 */
8081 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8082 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8083 		error = (spa_has_checkpoint(spa)) ?
8084 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8085 		return (spa_vdev_exit(spa, NULL, txg, error));
8086 	}
8087 
8088 	if (vd == NULL)
8089 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
8090 
8091 	if (!vd->vdev_ops->vdev_op_leaf)
8092 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
8093 
8094 	pvd = vd->vdev_parent;
8095 
8096 	/*
8097 	 * If the parent/child relationship is not as expected, don't do it.
8098 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
8099 	 * vdev that's replacing B with C.  The user's intent in replacing
8100 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
8101 	 * the replace by detaching C, the expected behavior is to end up
8102 	 * M(A,B).  But suppose that right after deciding to detach C,
8103 	 * the replacement of B completes.  We would have M(A,C), and then
8104 	 * ask to detach C, which would leave us with just A -- not what
8105 	 * the user wanted.  To prevent this, we make sure that the
8106 	 * parent/child relationship hasn't changed -- in this example,
8107 	 * that C's parent is still the replacing vdev R.
8108 	 */
8109 	if (pvd->vdev_guid != pguid && pguid != 0)
8110 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
8111 
8112 	/*
8113 	 * Only 'replacing' or 'spare' vdevs can be replaced.
8114 	 */
8115 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
8116 	    pvd->vdev_ops != &vdev_spare_ops)
8117 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
8118 
8119 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
8120 	    spa_version(spa) >= SPA_VERSION_SPARES);
8121 
8122 	/*
8123 	 * Only mirror, replacing, and spare vdevs support detach.
8124 	 */
8125 	if (pvd->vdev_ops != &vdev_replacing_ops &&
8126 	    pvd->vdev_ops != &vdev_mirror_ops &&
8127 	    pvd->vdev_ops != &vdev_spare_ops)
8128 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
8129 
8130 	/*
8131 	 * If this device has the only valid copy of some data,
8132 	 * we cannot safely detach it.
8133 	 */
8134 	if (vdev_dtl_required(vd))
8135 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
8136 
8137 	ASSERT(pvd->vdev_children >= 2);
8138 
8139 	/*
8140 	 * If we are detaching the second disk from a replacing vdev, then
8141 	 * check to see if we changed the original vdev's path to have "/old"
8142 	 * at the end in spa_vdev_attach().  If so, undo that change now.
8143 	 */
8144 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
8145 	    vd->vdev_path != NULL) {
8146 		size_t len = strlen(vd->vdev_path);
8147 
8148 		for (int c = 0; c < pvd->vdev_children; c++) {
8149 			cvd = pvd->vdev_child[c];
8150 
8151 			if (cvd == vd || cvd->vdev_path == NULL)
8152 				continue;
8153 
8154 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
8155 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
8156 				spa_strfree(cvd->vdev_path);
8157 				cvd->vdev_path = spa_strdup(vd->vdev_path);
8158 				break;
8159 			}
8160 		}
8161 	}
8162 
8163 	/*
8164 	 * If we are detaching the original disk from a normal spare, then it
8165 	 * implies that the spare should become a real disk, and be removed
8166 	 * from the active spare list for the pool.  dRAID spares on the
8167 	 * other hand are coupled to the pool and thus should never be removed
8168 	 * from the spares list.
8169 	 */
8170 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
8171 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
8172 
8173 		if (last_cvd->vdev_isspare &&
8174 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
8175 			unspare = B_TRUE;
8176 		}
8177 	}
8178 
8179 	/*
8180 	 * Erase the disk labels so the disk can be used for other things.
8181 	 * This must be done after all other error cases are handled,
8182 	 * but before we disembowel vd (so we can still do I/O to it).
8183 	 * But if we can't do it, don't treat the error as fatal --
8184 	 * it may be that the unwritability of the disk is the reason
8185 	 * it's being detached!
8186 	 */
8187 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
8188 
8189 	/*
8190 	 * Remove vd from its parent and compact the parent's children.
8191 	 */
8192 	vdev_remove_child(pvd, vd);
8193 	vdev_compact_children(pvd);
8194 
8195 	/*
8196 	 * Remember one of the remaining children so we can get tvd below.
8197 	 */
8198 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
8199 
8200 	/*
8201 	 * If we need to remove the remaining child from the list of hot spares,
8202 	 * do it now, marking the vdev as no longer a spare in the process.
8203 	 * We must do this before vdev_remove_parent(), because that can
8204 	 * change the GUID if it creates a new toplevel GUID.  For a similar
8205 	 * reason, we must remove the spare now, in the same txg as the detach;
8206 	 * otherwise someone could attach a new sibling, change the GUID, and
8207 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
8208 	 */
8209 	if (unspare) {
8210 		ASSERT(cvd->vdev_isspare);
8211 		spa_spare_remove(cvd);
8212 		unspare_guid = cvd->vdev_guid;
8213 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
8214 		cvd->vdev_unspare = B_TRUE;
8215 	}
8216 
8217 	/*
8218 	 * If the parent mirror/replacing vdev only has one child,
8219 	 * the parent is no longer needed.  Remove it from the tree.
8220 	 */
8221 	if (pvd->vdev_children == 1) {
8222 		if (pvd->vdev_ops == &vdev_spare_ops)
8223 			cvd->vdev_unspare = B_FALSE;
8224 		vdev_remove_parent(cvd);
8225 	}
8226 
8227 	/*
8228 	 * We don't set tvd until now because the parent we just removed
8229 	 * may have been the previous top-level vdev.
8230 	 */
8231 	tvd = cvd->vdev_top;
8232 	ASSERT(tvd->vdev_parent == rvd);
8233 
8234 	/*
8235 	 * Reevaluate the parent vdev state.
8236 	 */
8237 	vdev_propagate_state(cvd);
8238 
8239 	/*
8240 	 * If the 'autoexpand' property is set on the pool then automatically
8241 	 * try to expand the size of the pool. For example if the device we
8242 	 * just detached was smaller than the others, it may be possible to
8243 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
8244 	 * first so that we can obtain the updated sizes of the leaf vdevs.
8245 	 */
8246 	if (spa->spa_autoexpand) {
8247 		vdev_reopen(tvd);
8248 		vdev_expand(tvd, txg);
8249 	}
8250 
8251 	vdev_config_dirty(tvd);
8252 
8253 	/*
8254 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
8255 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
8256 	 * But first make sure we're not on any *other* txg's DTL list, to
8257 	 * prevent vd from being accessed after it's freed.
8258 	 */
8259 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
8260 	for (int t = 0; t < TXG_SIZE; t++)
8261 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
8262 	vd->vdev_detached = B_TRUE;
8263 	vdev_dirty(tvd, VDD_DTL, vd, txg);
8264 
8265 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
8266 	spa_notify_waiters(spa);
8267 
8268 	/* hang on to the spa before we release the lock */
8269 	spa_open_ref(spa, FTAG);
8270 
8271 	error = spa_vdev_exit(spa, vd, txg, 0);
8272 
8273 	spa_history_log_internal(spa, "detach", NULL,
8274 	    "vdev=%s", vdpath);
8275 	spa_strfree(vdpath);
8276 
8277 	/*
8278 	 * If this was the removal of the original device in a hot spare vdev,
8279 	 * then we want to go through and remove the device from the hot spare
8280 	 * list of every other pool.
8281 	 */
8282 	if (unspare) {
8283 		spa_t *altspa = NULL;
8284 
8285 		mutex_enter(&spa_namespace_lock);
8286 		while ((altspa = spa_next(altspa)) != NULL) {
8287 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
8288 			    altspa == spa)
8289 				continue;
8290 
8291 			spa_open_ref(altspa, FTAG);
8292 			mutex_exit(&spa_namespace_lock);
8293 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
8294 			mutex_enter(&spa_namespace_lock);
8295 			spa_close(altspa, FTAG);
8296 		}
8297 		mutex_exit(&spa_namespace_lock);
8298 
8299 		/* search the rest of the vdevs for spares to remove */
8300 		spa_vdev_resilver_done(spa);
8301 	}
8302 
8303 	/* all done with the spa; OK to release */
8304 	mutex_enter(&spa_namespace_lock);
8305 	spa_close(spa, FTAG);
8306 	mutex_exit(&spa_namespace_lock);
8307 
8308 	return (error);
8309 }
8310 
8311 static int
8312 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8313     list_t *vd_list)
8314 {
8315 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8316 
8317 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8318 
8319 	/* Look up vdev and ensure it's a leaf. */
8320 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8321 	if (vd == NULL || vd->vdev_detached) {
8322 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8323 		return (SET_ERROR(ENODEV));
8324 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8325 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8326 		return (SET_ERROR(EINVAL));
8327 	} else if (!vdev_writeable(vd)) {
8328 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8329 		return (SET_ERROR(EROFS));
8330 	}
8331 	mutex_enter(&vd->vdev_initialize_lock);
8332 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8333 
8334 	/*
8335 	 * When we activate an initialize action we check to see
8336 	 * if the vdev_initialize_thread is NULL. We do this instead
8337 	 * of using the vdev_initialize_state since there might be
8338 	 * a previous initialization process which has completed but
8339 	 * the thread is not exited.
8340 	 */
8341 	if (cmd_type == POOL_INITIALIZE_START &&
8342 	    (vd->vdev_initialize_thread != NULL ||
8343 	    vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) {
8344 		mutex_exit(&vd->vdev_initialize_lock);
8345 		return (SET_ERROR(EBUSY));
8346 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
8347 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
8348 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
8349 		mutex_exit(&vd->vdev_initialize_lock);
8350 		return (SET_ERROR(ESRCH));
8351 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
8352 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
8353 		mutex_exit(&vd->vdev_initialize_lock);
8354 		return (SET_ERROR(ESRCH));
8355 	} else if (cmd_type == POOL_INITIALIZE_UNINIT &&
8356 	    vd->vdev_initialize_thread != NULL) {
8357 		mutex_exit(&vd->vdev_initialize_lock);
8358 		return (SET_ERROR(EBUSY));
8359 	}
8360 
8361 	switch (cmd_type) {
8362 	case POOL_INITIALIZE_START:
8363 		vdev_initialize(vd);
8364 		break;
8365 	case POOL_INITIALIZE_CANCEL:
8366 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
8367 		break;
8368 	case POOL_INITIALIZE_SUSPEND:
8369 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
8370 		break;
8371 	case POOL_INITIALIZE_UNINIT:
8372 		vdev_uninitialize(vd);
8373 		break;
8374 	default:
8375 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8376 	}
8377 	mutex_exit(&vd->vdev_initialize_lock);
8378 
8379 	return (0);
8380 }
8381 
8382 int
8383 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
8384     nvlist_t *vdev_errlist)
8385 {
8386 	int total_errors = 0;
8387 	list_t vd_list;
8388 
8389 	list_create(&vd_list, sizeof (vdev_t),
8390 	    offsetof(vdev_t, vdev_initialize_node));
8391 
8392 	/*
8393 	 * We hold the namespace lock through the whole function
8394 	 * to prevent any changes to the pool while we're starting or
8395 	 * stopping initialization. The config and state locks are held so that
8396 	 * we can properly assess the vdev state before we commit to
8397 	 * the initializing operation.
8398 	 */
8399 	mutex_enter(&spa_namespace_lock);
8400 
8401 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8402 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8403 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
8404 
8405 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
8406 		    &vd_list);
8407 		if (error != 0) {
8408 			char guid_as_str[MAXNAMELEN];
8409 
8410 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
8411 			    "%llu", (unsigned long long)vdev_guid);
8412 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8413 			total_errors++;
8414 		}
8415 	}
8416 
8417 	/* Wait for all initialize threads to stop. */
8418 	vdev_initialize_stop_wait(spa, &vd_list);
8419 
8420 	/* Sync out the initializing state */
8421 	txg_wait_synced(spa->spa_dsl_pool, 0);
8422 	mutex_exit(&spa_namespace_lock);
8423 
8424 	list_destroy(&vd_list);
8425 
8426 	return (total_errors);
8427 }
8428 
8429 static int
8430 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8431     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
8432 {
8433 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8434 
8435 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8436 
8437 	/* Look up vdev and ensure it's a leaf. */
8438 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8439 	if (vd == NULL || vd->vdev_detached) {
8440 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8441 		return (SET_ERROR(ENODEV));
8442 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8443 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8444 		return (SET_ERROR(EINVAL));
8445 	} else if (!vdev_writeable(vd)) {
8446 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8447 		return (SET_ERROR(EROFS));
8448 	} else if (!vd->vdev_has_trim) {
8449 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8450 		return (SET_ERROR(EOPNOTSUPP));
8451 	} else if (secure && !vd->vdev_has_securetrim) {
8452 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8453 		return (SET_ERROR(EOPNOTSUPP));
8454 	}
8455 	mutex_enter(&vd->vdev_trim_lock);
8456 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8457 
8458 	/*
8459 	 * When we activate a TRIM action we check to see if the
8460 	 * vdev_trim_thread is NULL. We do this instead of using the
8461 	 * vdev_trim_state since there might be a previous TRIM process
8462 	 * which has completed but the thread is not exited.
8463 	 */
8464 	if (cmd_type == POOL_TRIM_START &&
8465 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing ||
8466 	    vd->vdev_top->vdev_rz_expanding)) {
8467 		mutex_exit(&vd->vdev_trim_lock);
8468 		return (SET_ERROR(EBUSY));
8469 	} else if (cmd_type == POOL_TRIM_CANCEL &&
8470 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
8471 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
8472 		mutex_exit(&vd->vdev_trim_lock);
8473 		return (SET_ERROR(ESRCH));
8474 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
8475 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
8476 		mutex_exit(&vd->vdev_trim_lock);
8477 		return (SET_ERROR(ESRCH));
8478 	}
8479 
8480 	switch (cmd_type) {
8481 	case POOL_TRIM_START:
8482 		vdev_trim(vd, rate, partial, secure);
8483 		break;
8484 	case POOL_TRIM_CANCEL:
8485 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
8486 		break;
8487 	case POOL_TRIM_SUSPEND:
8488 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
8489 		break;
8490 	default:
8491 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8492 	}
8493 	mutex_exit(&vd->vdev_trim_lock);
8494 
8495 	return (0);
8496 }
8497 
8498 /*
8499  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
8500  * TRIM threads for each child vdev.  These threads pass over all of the free
8501  * space in the vdev's metaslabs and issues TRIM commands for that space.
8502  */
8503 int
8504 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
8505     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
8506 {
8507 	int total_errors = 0;
8508 	list_t vd_list;
8509 
8510 	list_create(&vd_list, sizeof (vdev_t),
8511 	    offsetof(vdev_t, vdev_trim_node));
8512 
8513 	/*
8514 	 * We hold the namespace lock through the whole function
8515 	 * to prevent any changes to the pool while we're starting or
8516 	 * stopping TRIM. The config and state locks are held so that
8517 	 * we can properly assess the vdev state before we commit to
8518 	 * the TRIM operation.
8519 	 */
8520 	mutex_enter(&spa_namespace_lock);
8521 
8522 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8523 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8524 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
8525 
8526 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
8527 		    rate, partial, secure, &vd_list);
8528 		if (error != 0) {
8529 			char guid_as_str[MAXNAMELEN];
8530 
8531 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
8532 			    "%llu", (unsigned long long)vdev_guid);
8533 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8534 			total_errors++;
8535 		}
8536 	}
8537 
8538 	/* Wait for all TRIM threads to stop. */
8539 	vdev_trim_stop_wait(spa, &vd_list);
8540 
8541 	/* Sync out the TRIM state */
8542 	txg_wait_synced(spa->spa_dsl_pool, 0);
8543 	mutex_exit(&spa_namespace_lock);
8544 
8545 	list_destroy(&vd_list);
8546 
8547 	return (total_errors);
8548 }
8549 
8550 /*
8551  * Split a set of devices from their mirrors, and create a new pool from them.
8552  */
8553 int
8554 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
8555     nvlist_t *props, boolean_t exp)
8556 {
8557 	int error = 0;
8558 	uint64_t txg, *glist;
8559 	spa_t *newspa;
8560 	uint_t c, children, lastlog;
8561 	nvlist_t **child, *nvl, *tmp;
8562 	dmu_tx_t *tx;
8563 	const char *altroot = NULL;
8564 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
8565 	boolean_t activate_slog;
8566 
8567 	ASSERT(spa_writeable(spa));
8568 
8569 	txg = spa_vdev_enter(spa);
8570 
8571 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8572 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8573 		error = (spa_has_checkpoint(spa)) ?
8574 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8575 		return (spa_vdev_exit(spa, NULL, txg, error));
8576 	}
8577 
8578 	/* clear the log and flush everything up to now */
8579 	activate_slog = spa_passivate_log(spa);
8580 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8581 	error = spa_reset_logs(spa);
8582 	txg = spa_vdev_config_enter(spa);
8583 
8584 	if (activate_slog)
8585 		spa_activate_log(spa);
8586 
8587 	if (error != 0)
8588 		return (spa_vdev_exit(spa, NULL, txg, error));
8589 
8590 	/* check new spa name before going any further */
8591 	if (spa_lookup(newname) != NULL)
8592 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
8593 
8594 	/*
8595 	 * scan through all the children to ensure they're all mirrors
8596 	 */
8597 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
8598 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
8599 	    &children) != 0)
8600 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8601 
8602 	/* first, check to ensure we've got the right child count */
8603 	rvd = spa->spa_root_vdev;
8604 	lastlog = 0;
8605 	for (c = 0; c < rvd->vdev_children; c++) {
8606 		vdev_t *vd = rvd->vdev_child[c];
8607 
8608 		/* don't count the holes & logs as children */
8609 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
8610 		    !vdev_is_concrete(vd))) {
8611 			if (lastlog == 0)
8612 				lastlog = c;
8613 			continue;
8614 		}
8615 
8616 		lastlog = 0;
8617 	}
8618 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
8619 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8620 
8621 	/* next, ensure no spare or cache devices are part of the split */
8622 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
8623 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
8624 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8625 
8626 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
8627 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
8628 
8629 	/* then, loop over each vdev and validate it */
8630 	for (c = 0; c < children; c++) {
8631 		uint64_t is_hole = 0;
8632 
8633 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
8634 		    &is_hole);
8635 
8636 		if (is_hole != 0) {
8637 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
8638 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
8639 				continue;
8640 			} else {
8641 				error = SET_ERROR(EINVAL);
8642 				break;
8643 			}
8644 		}
8645 
8646 		/* deal with indirect vdevs */
8647 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
8648 		    &vdev_indirect_ops)
8649 			continue;
8650 
8651 		/* which disk is going to be split? */
8652 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
8653 		    &glist[c]) != 0) {
8654 			error = SET_ERROR(EINVAL);
8655 			break;
8656 		}
8657 
8658 		/* look it up in the spa */
8659 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
8660 		if (vml[c] == NULL) {
8661 			error = SET_ERROR(ENODEV);
8662 			break;
8663 		}
8664 
8665 		/* make sure there's nothing stopping the split */
8666 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
8667 		    vml[c]->vdev_islog ||
8668 		    !vdev_is_concrete(vml[c]) ||
8669 		    vml[c]->vdev_isspare ||
8670 		    vml[c]->vdev_isl2cache ||
8671 		    !vdev_writeable(vml[c]) ||
8672 		    vml[c]->vdev_children != 0 ||
8673 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
8674 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
8675 			error = SET_ERROR(EINVAL);
8676 			break;
8677 		}
8678 
8679 		if (vdev_dtl_required(vml[c]) ||
8680 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
8681 			error = SET_ERROR(EBUSY);
8682 			break;
8683 		}
8684 
8685 		/* we need certain info from the top level */
8686 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
8687 		    vml[c]->vdev_top->vdev_ms_array);
8688 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
8689 		    vml[c]->vdev_top->vdev_ms_shift);
8690 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
8691 		    vml[c]->vdev_top->vdev_asize);
8692 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
8693 		    vml[c]->vdev_top->vdev_ashift);
8694 
8695 		/* transfer per-vdev ZAPs */
8696 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
8697 		VERIFY0(nvlist_add_uint64(child[c],
8698 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
8699 
8700 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
8701 		VERIFY0(nvlist_add_uint64(child[c],
8702 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
8703 		    vml[c]->vdev_parent->vdev_top_zap));
8704 	}
8705 
8706 	if (error != 0) {
8707 		kmem_free(vml, children * sizeof (vdev_t *));
8708 		kmem_free(glist, children * sizeof (uint64_t));
8709 		return (spa_vdev_exit(spa, NULL, txg, error));
8710 	}
8711 
8712 	/* stop writers from using the disks */
8713 	for (c = 0; c < children; c++) {
8714 		if (vml[c] != NULL)
8715 			vml[c]->vdev_offline = B_TRUE;
8716 	}
8717 	vdev_reopen(spa->spa_root_vdev);
8718 
8719 	/*
8720 	 * Temporarily record the splitting vdevs in the spa config.  This
8721 	 * will disappear once the config is regenerated.
8722 	 */
8723 	nvl = fnvlist_alloc();
8724 	fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
8725 	kmem_free(glist, children * sizeof (uint64_t));
8726 
8727 	mutex_enter(&spa->spa_props_lock);
8728 	fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
8729 	mutex_exit(&spa->spa_props_lock);
8730 	spa->spa_config_splitting = nvl;
8731 	vdev_config_dirty(spa->spa_root_vdev);
8732 
8733 	/* configure and create the new pool */
8734 	fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
8735 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
8736 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
8737 	fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
8738 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
8739 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
8740 	    spa_generate_guid(NULL));
8741 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
8742 	(void) nvlist_lookup_string(props,
8743 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
8744 
8745 	/* add the new pool to the namespace */
8746 	newspa = spa_add(newname, config, altroot);
8747 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
8748 	newspa->spa_config_txg = spa->spa_config_txg;
8749 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
8750 
8751 	/* release the spa config lock, retaining the namespace lock */
8752 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8753 
8754 	if (zio_injection_enabled)
8755 		zio_handle_panic_injection(spa, FTAG, 1);
8756 
8757 	spa_activate(newspa, spa_mode_global);
8758 	spa_async_suspend(newspa);
8759 
8760 	/*
8761 	 * Temporarily stop the initializing and TRIM activity.  We set the
8762 	 * state to ACTIVE so that we know to resume initializing or TRIM
8763 	 * once the split has completed.
8764 	 */
8765 	list_t vd_initialize_list;
8766 	list_create(&vd_initialize_list, sizeof (vdev_t),
8767 	    offsetof(vdev_t, vdev_initialize_node));
8768 
8769 	list_t vd_trim_list;
8770 	list_create(&vd_trim_list, sizeof (vdev_t),
8771 	    offsetof(vdev_t, vdev_trim_node));
8772 
8773 	for (c = 0; c < children; c++) {
8774 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8775 			mutex_enter(&vml[c]->vdev_initialize_lock);
8776 			vdev_initialize_stop(vml[c],
8777 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
8778 			mutex_exit(&vml[c]->vdev_initialize_lock);
8779 
8780 			mutex_enter(&vml[c]->vdev_trim_lock);
8781 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
8782 			mutex_exit(&vml[c]->vdev_trim_lock);
8783 		}
8784 	}
8785 
8786 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
8787 	vdev_trim_stop_wait(spa, &vd_trim_list);
8788 
8789 	list_destroy(&vd_initialize_list);
8790 	list_destroy(&vd_trim_list);
8791 
8792 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
8793 	newspa->spa_is_splitting = B_TRUE;
8794 
8795 	/* create the new pool from the disks of the original pool */
8796 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
8797 	if (error)
8798 		goto out;
8799 
8800 	/* if that worked, generate a real config for the new pool */
8801 	if (newspa->spa_root_vdev != NULL) {
8802 		newspa->spa_config_splitting = fnvlist_alloc();
8803 		fnvlist_add_uint64(newspa->spa_config_splitting,
8804 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
8805 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
8806 		    B_TRUE));
8807 	}
8808 
8809 	/* set the props */
8810 	if (props != NULL) {
8811 		spa_configfile_set(newspa, props, B_FALSE);
8812 		error = spa_prop_set(newspa, props);
8813 		if (error)
8814 			goto out;
8815 	}
8816 
8817 	/* flush everything */
8818 	txg = spa_vdev_config_enter(newspa);
8819 	vdev_config_dirty(newspa->spa_root_vdev);
8820 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
8821 
8822 	if (zio_injection_enabled)
8823 		zio_handle_panic_injection(spa, FTAG, 2);
8824 
8825 	spa_async_resume(newspa);
8826 
8827 	/* finally, update the original pool's config */
8828 	txg = spa_vdev_config_enter(spa);
8829 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
8830 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
8831 	if (error != 0)
8832 		dmu_tx_abort(tx);
8833 	for (c = 0; c < children; c++) {
8834 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8835 			vdev_t *tvd = vml[c]->vdev_top;
8836 
8837 			/*
8838 			 * Need to be sure the detachable VDEV is not
8839 			 * on any *other* txg's DTL list to prevent it
8840 			 * from being accessed after it's freed.
8841 			 */
8842 			for (int t = 0; t < TXG_SIZE; t++) {
8843 				(void) txg_list_remove_this(
8844 				    &tvd->vdev_dtl_list, vml[c], t);
8845 			}
8846 
8847 			vdev_split(vml[c]);
8848 			if (error == 0)
8849 				spa_history_log_internal(spa, "detach", tx,
8850 				    "vdev=%s", vml[c]->vdev_path);
8851 
8852 			vdev_free(vml[c]);
8853 		}
8854 	}
8855 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
8856 	vdev_config_dirty(spa->spa_root_vdev);
8857 	spa->spa_config_splitting = NULL;
8858 	nvlist_free(nvl);
8859 	if (error == 0)
8860 		dmu_tx_commit(tx);
8861 	(void) spa_vdev_exit(spa, NULL, txg, 0);
8862 
8863 	if (zio_injection_enabled)
8864 		zio_handle_panic_injection(spa, FTAG, 3);
8865 
8866 	/* split is complete; log a history record */
8867 	spa_history_log_internal(newspa, "split", NULL,
8868 	    "from pool %s", spa_name(spa));
8869 
8870 	newspa->spa_is_splitting = B_FALSE;
8871 	kmem_free(vml, children * sizeof (vdev_t *));
8872 
8873 	/* if we're not going to mount the filesystems in userland, export */
8874 	if (exp)
8875 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
8876 		    B_FALSE, B_FALSE);
8877 
8878 	return (error);
8879 
8880 out:
8881 	spa_unload(newspa);
8882 	spa_deactivate(newspa);
8883 	spa_remove(newspa);
8884 
8885 	txg = spa_vdev_config_enter(spa);
8886 
8887 	/* re-online all offlined disks */
8888 	for (c = 0; c < children; c++) {
8889 		if (vml[c] != NULL)
8890 			vml[c]->vdev_offline = B_FALSE;
8891 	}
8892 
8893 	/* restart initializing or trimming disks as necessary */
8894 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
8895 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
8896 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
8897 
8898 	vdev_reopen(spa->spa_root_vdev);
8899 
8900 	nvlist_free(spa->spa_config_splitting);
8901 	spa->spa_config_splitting = NULL;
8902 	(void) spa_vdev_exit(spa, NULL, txg, error);
8903 
8904 	kmem_free(vml, children * sizeof (vdev_t *));
8905 	return (error);
8906 }
8907 
8908 /*
8909  * Find any device that's done replacing, or a vdev marked 'unspare' that's
8910  * currently spared, so we can detach it.
8911  */
8912 static vdev_t *
8913 spa_vdev_resilver_done_hunt(vdev_t *vd)
8914 {
8915 	vdev_t *newvd, *oldvd;
8916 
8917 	for (int c = 0; c < vd->vdev_children; c++) {
8918 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8919 		if (oldvd != NULL)
8920 			return (oldvd);
8921 	}
8922 
8923 	/*
8924 	 * Check for a completed replacement.  We always consider the first
8925 	 * vdev in the list to be the oldest vdev, and the last one to be
8926 	 * the newest (see spa_vdev_attach() for how that works).  In
8927 	 * the case where the newest vdev is faulted, we will not automatically
8928 	 * remove it after a resilver completes.  This is OK as it will require
8929 	 * user intervention to determine which disk the admin wishes to keep.
8930 	 */
8931 	if (vd->vdev_ops == &vdev_replacing_ops) {
8932 		ASSERT(vd->vdev_children > 1);
8933 
8934 		newvd = vd->vdev_child[vd->vdev_children - 1];
8935 		oldvd = vd->vdev_child[0];
8936 
8937 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8938 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8939 		    !vdev_dtl_required(oldvd))
8940 			return (oldvd);
8941 	}
8942 
8943 	/*
8944 	 * Check for a completed resilver with the 'unspare' flag set.
8945 	 * Also potentially update faulted state.
8946 	 */
8947 	if (vd->vdev_ops == &vdev_spare_ops) {
8948 		vdev_t *first = vd->vdev_child[0];
8949 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8950 
8951 		if (last->vdev_unspare) {
8952 			oldvd = first;
8953 			newvd = last;
8954 		} else if (first->vdev_unspare) {
8955 			oldvd = last;
8956 			newvd = first;
8957 		} else {
8958 			oldvd = NULL;
8959 		}
8960 
8961 		if (oldvd != NULL &&
8962 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
8963 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8964 		    !vdev_dtl_required(oldvd))
8965 			return (oldvd);
8966 
8967 		vdev_propagate_state(vd);
8968 
8969 		/*
8970 		 * If there are more than two spares attached to a disk,
8971 		 * and those spares are not required, then we want to
8972 		 * attempt to free them up now so that they can be used
8973 		 * by other pools.  Once we're back down to a single
8974 		 * disk+spare, we stop removing them.
8975 		 */
8976 		if (vd->vdev_children > 2) {
8977 			newvd = vd->vdev_child[1];
8978 
8979 			if (newvd->vdev_isspare && last->vdev_isspare &&
8980 			    vdev_dtl_empty(last, DTL_MISSING) &&
8981 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
8982 			    !vdev_dtl_required(newvd))
8983 				return (newvd);
8984 		}
8985 	}
8986 
8987 	return (NULL);
8988 }
8989 
8990 static void
8991 spa_vdev_resilver_done(spa_t *spa)
8992 {
8993 	vdev_t *vd, *pvd, *ppvd;
8994 	uint64_t guid, sguid, pguid, ppguid;
8995 
8996 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8997 
8998 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8999 		pvd = vd->vdev_parent;
9000 		ppvd = pvd->vdev_parent;
9001 		guid = vd->vdev_guid;
9002 		pguid = pvd->vdev_guid;
9003 		ppguid = ppvd->vdev_guid;
9004 		sguid = 0;
9005 		/*
9006 		 * If we have just finished replacing a hot spared device, then
9007 		 * we need to detach the parent's first child (the original hot
9008 		 * spare) as well.
9009 		 */
9010 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
9011 		    ppvd->vdev_children == 2) {
9012 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
9013 			sguid = ppvd->vdev_child[1]->vdev_guid;
9014 		}
9015 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
9016 
9017 		spa_config_exit(spa, SCL_ALL, FTAG);
9018 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
9019 			return;
9020 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
9021 			return;
9022 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9023 	}
9024 
9025 	spa_config_exit(spa, SCL_ALL, FTAG);
9026 
9027 	/*
9028 	 * If a detach was not performed above replace waiters will not have
9029 	 * been notified.  In which case we must do so now.
9030 	 */
9031 	spa_notify_waiters(spa);
9032 }
9033 
9034 /*
9035  * Update the stored path or FRU for this vdev.
9036  */
9037 static int
9038 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
9039     boolean_t ispath)
9040 {
9041 	vdev_t *vd;
9042 	boolean_t sync = B_FALSE;
9043 
9044 	ASSERT(spa_writeable(spa));
9045 
9046 	spa_vdev_state_enter(spa, SCL_ALL);
9047 
9048 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
9049 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
9050 
9051 	if (!vd->vdev_ops->vdev_op_leaf)
9052 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
9053 
9054 	if (ispath) {
9055 		if (strcmp(value, vd->vdev_path) != 0) {
9056 			spa_strfree(vd->vdev_path);
9057 			vd->vdev_path = spa_strdup(value);
9058 			sync = B_TRUE;
9059 		}
9060 	} else {
9061 		if (vd->vdev_fru == NULL) {
9062 			vd->vdev_fru = spa_strdup(value);
9063 			sync = B_TRUE;
9064 		} else if (strcmp(value, vd->vdev_fru) != 0) {
9065 			spa_strfree(vd->vdev_fru);
9066 			vd->vdev_fru = spa_strdup(value);
9067 			sync = B_TRUE;
9068 		}
9069 	}
9070 
9071 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
9072 }
9073 
9074 int
9075 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
9076 {
9077 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
9078 }
9079 
9080 int
9081 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
9082 {
9083 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
9084 }
9085 
9086 /*
9087  * ==========================================================================
9088  * SPA Scanning
9089  * ==========================================================================
9090  */
9091 int
9092 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
9093 {
9094 	ASSERT0(spa_config_held(spa, SCL_ALL, RW_WRITER));
9095 
9096 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
9097 		return (SET_ERROR(EBUSY));
9098 
9099 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
9100 }
9101 
9102 int
9103 spa_scan_stop(spa_t *spa)
9104 {
9105 	ASSERT0(spa_config_held(spa, SCL_ALL, RW_WRITER));
9106 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
9107 		return (SET_ERROR(EBUSY));
9108 
9109 	return (dsl_scan_cancel(spa->spa_dsl_pool));
9110 }
9111 
9112 int
9113 spa_scan(spa_t *spa, pool_scan_func_t func)
9114 {
9115 	return (spa_scan_range(spa, func, 0, 0));
9116 }
9117 
9118 int
9119 spa_scan_range(spa_t *spa, pool_scan_func_t func, uint64_t txgstart,
9120     uint64_t txgend)
9121 {
9122 	ASSERT0(spa_config_held(spa, SCL_ALL, RW_WRITER));
9123 
9124 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
9125 		return (SET_ERROR(ENOTSUP));
9126 
9127 	if (func == POOL_SCAN_RESILVER &&
9128 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
9129 		return (SET_ERROR(ENOTSUP));
9130 
9131 	if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0))
9132 		return (SET_ERROR(ENOTSUP));
9133 
9134 	/*
9135 	 * If a resilver was requested, but there is no DTL on a
9136 	 * writeable leaf device, we have nothing to do.
9137 	 */
9138 	if (func == POOL_SCAN_RESILVER &&
9139 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
9140 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
9141 		return (0);
9142 	}
9143 
9144 	if (func == POOL_SCAN_ERRORSCRUB &&
9145 	    !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
9146 		return (SET_ERROR(ENOTSUP));
9147 
9148 	return (dsl_scan(spa->spa_dsl_pool, func, txgstart, txgend));
9149 }
9150 
9151 /*
9152  * ==========================================================================
9153  * SPA async task processing
9154  * ==========================================================================
9155  */
9156 
9157 static void
9158 spa_async_remove(spa_t *spa, vdev_t *vd, boolean_t by_kernel)
9159 {
9160 	if (vd->vdev_remove_wanted) {
9161 		vd->vdev_remove_wanted = B_FALSE;
9162 		vd->vdev_delayed_close = B_FALSE;
9163 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
9164 
9165 		/*
9166 		 * We want to clear the stats, but we don't want to do a full
9167 		 * vdev_clear() as that will cause us to throw away
9168 		 * degraded/faulted state as well as attempt to reopen the
9169 		 * device, all of which is a waste.
9170 		 */
9171 		vd->vdev_stat.vs_read_errors = 0;
9172 		vd->vdev_stat.vs_write_errors = 0;
9173 		vd->vdev_stat.vs_checksum_errors = 0;
9174 
9175 		vdev_state_dirty(vd->vdev_top);
9176 
9177 		/* Tell userspace that the vdev is gone. */
9178 		zfs_post_remove(spa, vd, by_kernel);
9179 	}
9180 
9181 	for (int c = 0; c < vd->vdev_children; c++)
9182 		spa_async_remove(spa, vd->vdev_child[c], by_kernel);
9183 }
9184 
9185 static void
9186 spa_async_fault_vdev(vdev_t *vd, boolean_t *suspend)
9187 {
9188 	if (vd->vdev_fault_wanted) {
9189 		vdev_state_t newstate = VDEV_STATE_FAULTED;
9190 		vd->vdev_fault_wanted = B_FALSE;
9191 
9192 		/*
9193 		 * If this device has the only valid copy of the data, then
9194 		 * back off and simply mark the vdev as degraded instead.
9195 		 */
9196 		if (!vd->vdev_top->vdev_islog && vd->vdev_aux == NULL &&
9197 		    vdev_dtl_required(vd)) {
9198 			newstate = VDEV_STATE_DEGRADED;
9199 			/* A required disk is missing so suspend the pool */
9200 			*suspend = B_TRUE;
9201 		}
9202 		vdev_set_state(vd, B_TRUE, newstate, VDEV_AUX_ERR_EXCEEDED);
9203 	}
9204 	for (int c = 0; c < vd->vdev_children; c++)
9205 		spa_async_fault_vdev(vd->vdev_child[c], suspend);
9206 }
9207 
9208 static void
9209 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
9210 {
9211 	if (!spa->spa_autoexpand)
9212 		return;
9213 
9214 	for (int c = 0; c < vd->vdev_children; c++) {
9215 		vdev_t *cvd = vd->vdev_child[c];
9216 		spa_async_autoexpand(spa, cvd);
9217 	}
9218 
9219 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
9220 		return;
9221 
9222 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
9223 }
9224 
9225 static __attribute__((noreturn)) void
9226 spa_async_thread(void *arg)
9227 {
9228 	spa_t *spa = (spa_t *)arg;
9229 	dsl_pool_t *dp = spa->spa_dsl_pool;
9230 	int tasks;
9231 
9232 	ASSERT(spa->spa_sync_on);
9233 
9234 	mutex_enter(&spa->spa_async_lock);
9235 	tasks = spa->spa_async_tasks;
9236 	spa->spa_async_tasks = 0;
9237 	mutex_exit(&spa->spa_async_lock);
9238 
9239 	/*
9240 	 * See if the config needs to be updated.
9241 	 */
9242 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
9243 		uint64_t old_space, new_space;
9244 
9245 		mutex_enter(&spa_namespace_lock);
9246 		old_space = metaslab_class_get_space(spa_normal_class(spa));
9247 		old_space += metaslab_class_get_space(spa_special_class(spa));
9248 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
9249 		old_space += metaslab_class_get_space(
9250 		    spa_embedded_log_class(spa));
9251 		old_space += metaslab_class_get_space(
9252 		    spa_special_embedded_log_class(spa));
9253 
9254 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
9255 
9256 		new_space = metaslab_class_get_space(spa_normal_class(spa));
9257 		new_space += metaslab_class_get_space(spa_special_class(spa));
9258 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
9259 		new_space += metaslab_class_get_space(
9260 		    spa_embedded_log_class(spa));
9261 		new_space += metaslab_class_get_space(
9262 		    spa_special_embedded_log_class(spa));
9263 		mutex_exit(&spa_namespace_lock);
9264 
9265 		/*
9266 		 * If the pool grew as a result of the config update,
9267 		 * then log an internal history event.
9268 		 */
9269 		if (new_space != old_space) {
9270 			spa_history_log_internal(spa, "vdev online", NULL,
9271 			    "pool '%s' size: %llu(+%llu)",
9272 			    spa_name(spa), (u_longlong_t)new_space,
9273 			    (u_longlong_t)(new_space - old_space));
9274 		}
9275 	}
9276 
9277 	/*
9278 	 * See if any devices need to be marked REMOVED.
9279 	 */
9280 	if (tasks & (SPA_ASYNC_REMOVE | SPA_ASYNC_REMOVE_BY_USER)) {
9281 		boolean_t by_kernel = B_TRUE;
9282 		if (tasks & SPA_ASYNC_REMOVE_BY_USER)
9283 			by_kernel = B_FALSE;
9284 		spa_vdev_state_enter(spa, SCL_NONE);
9285 		spa_async_remove(spa, spa->spa_root_vdev, by_kernel);
9286 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
9287 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i],
9288 			    by_kernel);
9289 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
9290 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i],
9291 			    by_kernel);
9292 		(void) spa_vdev_state_exit(spa, NULL, 0);
9293 	}
9294 
9295 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
9296 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9297 		spa_async_autoexpand(spa, spa->spa_root_vdev);
9298 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9299 	}
9300 
9301 	/*
9302 	 * See if any devices need to be marked faulted.
9303 	 */
9304 	if (tasks & SPA_ASYNC_FAULT_VDEV) {
9305 		spa_vdev_state_enter(spa, SCL_NONE);
9306 		boolean_t suspend = B_FALSE;
9307 		spa_async_fault_vdev(spa->spa_root_vdev, &suspend);
9308 		(void) spa_vdev_state_exit(spa, NULL, 0);
9309 		if (suspend)
9310 			zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9311 	}
9312 
9313 	/*
9314 	 * If any devices are done replacing, detach them.
9315 	 */
9316 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
9317 	    tasks & SPA_ASYNC_REBUILD_DONE ||
9318 	    tasks & SPA_ASYNC_DETACH_SPARE) {
9319 		spa_vdev_resilver_done(spa);
9320 	}
9321 
9322 	/*
9323 	 * Kick off a resilver.
9324 	 */
9325 	if (tasks & SPA_ASYNC_RESILVER &&
9326 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
9327 	    (!dsl_scan_resilvering(dp) ||
9328 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
9329 		dsl_scan_restart_resilver(dp, 0);
9330 
9331 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
9332 		mutex_enter(&spa_namespace_lock);
9333 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9334 		vdev_initialize_restart(spa->spa_root_vdev);
9335 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9336 		mutex_exit(&spa_namespace_lock);
9337 	}
9338 
9339 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
9340 		mutex_enter(&spa_namespace_lock);
9341 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9342 		vdev_trim_restart(spa->spa_root_vdev);
9343 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9344 		mutex_exit(&spa_namespace_lock);
9345 	}
9346 
9347 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
9348 		mutex_enter(&spa_namespace_lock);
9349 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9350 		vdev_autotrim_restart(spa);
9351 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9352 		mutex_exit(&spa_namespace_lock);
9353 	}
9354 
9355 	/*
9356 	 * Kick off L2 cache whole device TRIM.
9357 	 */
9358 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
9359 		mutex_enter(&spa_namespace_lock);
9360 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9361 		vdev_trim_l2arc(spa);
9362 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9363 		mutex_exit(&spa_namespace_lock);
9364 	}
9365 
9366 	/*
9367 	 * Kick off L2 cache rebuilding.
9368 	 */
9369 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
9370 		mutex_enter(&spa_namespace_lock);
9371 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
9372 		l2arc_spa_rebuild_start(spa);
9373 		spa_config_exit(spa, SCL_L2ARC, FTAG);
9374 		mutex_exit(&spa_namespace_lock);
9375 	}
9376 
9377 	/*
9378 	 * Let the world know that we're done.
9379 	 */
9380 	mutex_enter(&spa->spa_async_lock);
9381 	spa->spa_async_thread = NULL;
9382 	cv_broadcast(&spa->spa_async_cv);
9383 	mutex_exit(&spa->spa_async_lock);
9384 	thread_exit();
9385 }
9386 
9387 void
9388 spa_async_suspend(spa_t *spa)
9389 {
9390 	mutex_enter(&spa->spa_async_lock);
9391 	spa->spa_async_suspended++;
9392 	while (spa->spa_async_thread != NULL)
9393 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
9394 	mutex_exit(&spa->spa_async_lock);
9395 
9396 	spa_vdev_remove_suspend(spa);
9397 
9398 	zthr_t *condense_thread = spa->spa_condense_zthr;
9399 	if (condense_thread != NULL)
9400 		zthr_cancel(condense_thread);
9401 
9402 	zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9403 	if (raidz_expand_thread != NULL)
9404 		zthr_cancel(raidz_expand_thread);
9405 
9406 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9407 	if (discard_thread != NULL)
9408 		zthr_cancel(discard_thread);
9409 
9410 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9411 	if (ll_delete_thread != NULL)
9412 		zthr_cancel(ll_delete_thread);
9413 
9414 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9415 	if (ll_condense_thread != NULL)
9416 		zthr_cancel(ll_condense_thread);
9417 }
9418 
9419 void
9420 spa_async_resume(spa_t *spa)
9421 {
9422 	mutex_enter(&spa->spa_async_lock);
9423 	ASSERT(spa->spa_async_suspended != 0);
9424 	spa->spa_async_suspended--;
9425 	mutex_exit(&spa->spa_async_lock);
9426 	spa_restart_removal(spa);
9427 
9428 	zthr_t *condense_thread = spa->spa_condense_zthr;
9429 	if (condense_thread != NULL)
9430 		zthr_resume(condense_thread);
9431 
9432 	zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9433 	if (raidz_expand_thread != NULL)
9434 		zthr_resume(raidz_expand_thread);
9435 
9436 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9437 	if (discard_thread != NULL)
9438 		zthr_resume(discard_thread);
9439 
9440 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9441 	if (ll_delete_thread != NULL)
9442 		zthr_resume(ll_delete_thread);
9443 
9444 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9445 	if (ll_condense_thread != NULL)
9446 		zthr_resume(ll_condense_thread);
9447 }
9448 
9449 static boolean_t
9450 spa_async_tasks_pending(spa_t *spa)
9451 {
9452 	uint_t non_config_tasks;
9453 	uint_t config_task;
9454 	boolean_t config_task_suspended;
9455 
9456 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
9457 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
9458 	if (spa->spa_ccw_fail_time == 0) {
9459 		config_task_suspended = B_FALSE;
9460 	} else {
9461 		config_task_suspended =
9462 		    (gethrtime() - spa->spa_ccw_fail_time) <
9463 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
9464 	}
9465 
9466 	return (non_config_tasks || (config_task && !config_task_suspended));
9467 }
9468 
9469 static void
9470 spa_async_dispatch(spa_t *spa)
9471 {
9472 	mutex_enter(&spa->spa_async_lock);
9473 	if (spa_async_tasks_pending(spa) &&
9474 	    !spa->spa_async_suspended &&
9475 	    spa->spa_async_thread == NULL)
9476 		spa->spa_async_thread = thread_create(NULL, 0,
9477 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
9478 	mutex_exit(&spa->spa_async_lock);
9479 }
9480 
9481 void
9482 spa_async_request(spa_t *spa, int task)
9483 {
9484 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
9485 	mutex_enter(&spa->spa_async_lock);
9486 	spa->spa_async_tasks |= task;
9487 	mutex_exit(&spa->spa_async_lock);
9488 }
9489 
9490 int
9491 spa_async_tasks(spa_t *spa)
9492 {
9493 	return (spa->spa_async_tasks);
9494 }
9495 
9496 /*
9497  * ==========================================================================
9498  * SPA syncing routines
9499  * ==========================================================================
9500  */
9501 
9502 
9503 static int
9504 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9505     dmu_tx_t *tx)
9506 {
9507 	bpobj_t *bpo = arg;
9508 	bpobj_enqueue(bpo, bp, bp_freed, tx);
9509 	return (0);
9510 }
9511 
9512 int
9513 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9514 {
9515 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
9516 }
9517 
9518 int
9519 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9520 {
9521 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
9522 }
9523 
9524 static int
9525 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9526 {
9527 	zio_t *pio = arg;
9528 
9529 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
9530 	    pio->io_flags));
9531 	return (0);
9532 }
9533 
9534 static int
9535 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9536     dmu_tx_t *tx)
9537 {
9538 	ASSERT(!bp_freed);
9539 	return (spa_free_sync_cb(arg, bp, tx));
9540 }
9541 
9542 /*
9543  * Note: this simple function is not inlined to make it easier to dtrace the
9544  * amount of time spent syncing frees.
9545  */
9546 static void
9547 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
9548 {
9549 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
9550 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
9551 	VERIFY0(zio_wait(zio));
9552 }
9553 
9554 /*
9555  * Note: this simple function is not inlined to make it easier to dtrace the
9556  * amount of time spent syncing deferred frees.
9557  */
9558 static void
9559 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
9560 {
9561 	if (spa_sync_pass(spa) != 1)
9562 		return;
9563 
9564 	/*
9565 	 * Note:
9566 	 * If the log space map feature is active, we stop deferring
9567 	 * frees to the next TXG and therefore running this function
9568 	 * would be considered a no-op as spa_deferred_bpobj should
9569 	 * not have any entries.
9570 	 *
9571 	 * That said we run this function anyway (instead of returning
9572 	 * immediately) for the edge-case scenario where we just
9573 	 * activated the log space map feature in this TXG but we have
9574 	 * deferred frees from the previous TXG.
9575 	 */
9576 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
9577 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
9578 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
9579 	VERIFY0(zio_wait(zio));
9580 }
9581 
9582 static void
9583 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
9584 {
9585 	char *packed = NULL;
9586 	size_t bufsize;
9587 	size_t nvsize = 0;
9588 	dmu_buf_t *db;
9589 
9590 	VERIFY0(nvlist_size(nv, &nvsize, NV_ENCODE_XDR));
9591 
9592 	/*
9593 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
9594 	 * information.  This avoids the dmu_buf_will_dirty() path and
9595 	 * saves us a pre-read to get data we don't actually care about.
9596 	 */
9597 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
9598 	packed = vmem_alloc(bufsize, KM_SLEEP);
9599 
9600 	VERIFY0(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
9601 	    KM_SLEEP));
9602 	memset(packed + nvsize, 0, bufsize - nvsize);
9603 
9604 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
9605 
9606 	vmem_free(packed, bufsize);
9607 
9608 	VERIFY0(dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
9609 	dmu_buf_will_dirty(db, tx);
9610 	*(uint64_t *)db->db_data = nvsize;
9611 	dmu_buf_rele(db, FTAG);
9612 }
9613 
9614 static void
9615 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
9616     const char *config, const char *entry)
9617 {
9618 	nvlist_t *nvroot;
9619 	nvlist_t **list;
9620 	int i;
9621 
9622 	if (!sav->sav_sync)
9623 		return;
9624 
9625 	/*
9626 	 * Update the MOS nvlist describing the list of available devices.
9627 	 * spa_validate_aux() will have already made sure this nvlist is
9628 	 * valid and the vdevs are labeled appropriately.
9629 	 */
9630 	if (sav->sav_object == 0) {
9631 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
9632 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
9633 		    sizeof (uint64_t), tx);
9634 		VERIFY(zap_update(spa->spa_meta_objset,
9635 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
9636 		    &sav->sav_object, tx) == 0);
9637 	}
9638 
9639 	nvroot = fnvlist_alloc();
9640 	if (sav->sav_count == 0) {
9641 		fnvlist_add_nvlist_array(nvroot, config,
9642 		    (const nvlist_t * const *)NULL, 0);
9643 	} else {
9644 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
9645 		for (i = 0; i < sav->sav_count; i++)
9646 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
9647 			    B_FALSE, VDEV_CONFIG_L2CACHE);
9648 		fnvlist_add_nvlist_array(nvroot, config,
9649 		    (const nvlist_t * const *)list, sav->sav_count);
9650 		for (i = 0; i < sav->sav_count; i++)
9651 			nvlist_free(list[i]);
9652 		kmem_free(list, sav->sav_count * sizeof (void *));
9653 	}
9654 
9655 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
9656 	nvlist_free(nvroot);
9657 
9658 	sav->sav_sync = B_FALSE;
9659 }
9660 
9661 /*
9662  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
9663  * The all-vdev ZAP must be empty.
9664  */
9665 static void
9666 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
9667 {
9668 	spa_t *spa = vd->vdev_spa;
9669 
9670 	if (vd->vdev_root_zap != 0 &&
9671 	    spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
9672 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9673 		    vd->vdev_root_zap, tx));
9674 	}
9675 	if (vd->vdev_top_zap != 0) {
9676 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9677 		    vd->vdev_top_zap, tx));
9678 	}
9679 	if (vd->vdev_leaf_zap != 0) {
9680 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9681 		    vd->vdev_leaf_zap, tx));
9682 	}
9683 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
9684 		spa_avz_build(vd->vdev_child[i], avz, tx);
9685 	}
9686 }
9687 
9688 static void
9689 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
9690 {
9691 	nvlist_t *config;
9692 
9693 	/*
9694 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
9695 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
9696 	 * Similarly, if the pool is being assembled (e.g. after a split), we
9697 	 * need to rebuild the AVZ although the config may not be dirty.
9698 	 */
9699 	if (list_is_empty(&spa->spa_config_dirty_list) &&
9700 	    spa->spa_avz_action == AVZ_ACTION_NONE)
9701 		return;
9702 
9703 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9704 
9705 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
9706 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
9707 	    spa->spa_all_vdev_zaps != 0);
9708 
9709 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
9710 		/* Make and build the new AVZ */
9711 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
9712 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
9713 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
9714 
9715 		/* Diff old AVZ with new one */
9716 		zap_cursor_t zc;
9717 		zap_attribute_t *za = zap_attribute_alloc();
9718 
9719 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
9720 		    spa->spa_all_vdev_zaps);
9721 		    zap_cursor_retrieve(&zc, za) == 0;
9722 		    zap_cursor_advance(&zc)) {
9723 			uint64_t vdzap = za->za_first_integer;
9724 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
9725 			    vdzap) == ENOENT) {
9726 				/*
9727 				 * ZAP is listed in old AVZ but not in new one;
9728 				 * destroy it
9729 				 */
9730 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
9731 				    tx));
9732 			}
9733 		}
9734 
9735 		zap_cursor_fini(&zc);
9736 		zap_attribute_free(za);
9737 
9738 		/* Destroy the old AVZ */
9739 		VERIFY0(zap_destroy(spa->spa_meta_objset,
9740 		    spa->spa_all_vdev_zaps, tx));
9741 
9742 		/* Replace the old AVZ in the dir obj with the new one */
9743 		VERIFY0(zap_update(spa->spa_meta_objset,
9744 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
9745 		    sizeof (new_avz), 1, &new_avz, tx));
9746 
9747 		spa->spa_all_vdev_zaps = new_avz;
9748 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
9749 		zap_cursor_t zc;
9750 		zap_attribute_t *za = zap_attribute_alloc();
9751 
9752 		/* Walk through the AVZ and destroy all listed ZAPs */
9753 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
9754 		    spa->spa_all_vdev_zaps);
9755 		    zap_cursor_retrieve(&zc, za) == 0;
9756 		    zap_cursor_advance(&zc)) {
9757 			uint64_t zap = za->za_first_integer;
9758 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
9759 		}
9760 
9761 		zap_cursor_fini(&zc);
9762 		zap_attribute_free(za);
9763 
9764 		/* Destroy and unlink the AVZ itself */
9765 		VERIFY0(zap_destroy(spa->spa_meta_objset,
9766 		    spa->spa_all_vdev_zaps, tx));
9767 		VERIFY0(zap_remove(spa->spa_meta_objset,
9768 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
9769 		spa->spa_all_vdev_zaps = 0;
9770 	}
9771 
9772 	if (spa->spa_all_vdev_zaps == 0) {
9773 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
9774 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
9775 		    DMU_POOL_VDEV_ZAP_MAP, tx);
9776 	}
9777 	spa->spa_avz_action = AVZ_ACTION_NONE;
9778 
9779 	/* Create ZAPs for vdevs that don't have them. */
9780 	vdev_construct_zaps(spa->spa_root_vdev, tx);
9781 
9782 	config = spa_config_generate(spa, spa->spa_root_vdev,
9783 	    dmu_tx_get_txg(tx), B_FALSE);
9784 
9785 	/*
9786 	 * If we're upgrading the spa version then make sure that
9787 	 * the config object gets updated with the correct version.
9788 	 */
9789 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
9790 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
9791 		    spa->spa_uberblock.ub_version);
9792 
9793 	spa_config_exit(spa, SCL_STATE, FTAG);
9794 
9795 	nvlist_free(spa->spa_config_syncing);
9796 	spa->spa_config_syncing = config;
9797 
9798 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
9799 }
9800 
9801 static void
9802 spa_sync_version(void *arg, dmu_tx_t *tx)
9803 {
9804 	uint64_t *versionp = arg;
9805 	uint64_t version = *versionp;
9806 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9807 
9808 	/*
9809 	 * Setting the version is special cased when first creating the pool.
9810 	 */
9811 	ASSERT(tx->tx_txg != TXG_INITIAL);
9812 
9813 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
9814 	ASSERT(version >= spa_version(spa));
9815 
9816 	spa->spa_uberblock.ub_version = version;
9817 	vdev_config_dirty(spa->spa_root_vdev);
9818 	spa_history_log_internal(spa, "set", tx, "version=%lld",
9819 	    (longlong_t)version);
9820 }
9821 
9822 /*
9823  * Set zpool properties.
9824  */
9825 static void
9826 spa_sync_props(void *arg, dmu_tx_t *tx)
9827 {
9828 	nvlist_t *nvp = arg;
9829 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9830 	objset_t *mos = spa->spa_meta_objset;
9831 	nvpair_t *elem = NULL;
9832 
9833 	mutex_enter(&spa->spa_props_lock);
9834 
9835 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
9836 		uint64_t intval;
9837 		const char *strval, *fname;
9838 		zpool_prop_t prop;
9839 		const char *propname;
9840 		const char *elemname = nvpair_name(elem);
9841 		zprop_type_t proptype;
9842 		spa_feature_t fid;
9843 
9844 		switch (prop = zpool_name_to_prop(elemname)) {
9845 		case ZPOOL_PROP_VERSION:
9846 			intval = fnvpair_value_uint64(elem);
9847 			/*
9848 			 * The version is synced separately before other
9849 			 * properties and should be correct by now.
9850 			 */
9851 			ASSERT3U(spa_version(spa), >=, intval);
9852 			break;
9853 
9854 		case ZPOOL_PROP_ALTROOT:
9855 			/*
9856 			 * 'altroot' is a non-persistent property. It should
9857 			 * have been set temporarily at creation or import time.
9858 			 */
9859 			ASSERT(spa->spa_root != NULL);
9860 			break;
9861 
9862 		case ZPOOL_PROP_READONLY:
9863 		case ZPOOL_PROP_CACHEFILE:
9864 			/*
9865 			 * 'readonly' and 'cachefile' are also non-persistent
9866 			 * properties.
9867 			 */
9868 			break;
9869 		case ZPOOL_PROP_COMMENT:
9870 			strval = fnvpair_value_string(elem);
9871 			if (spa->spa_comment != NULL)
9872 				spa_strfree(spa->spa_comment);
9873 			spa->spa_comment = spa_strdup(strval);
9874 			/*
9875 			 * We need to dirty the configuration on all the vdevs
9876 			 * so that their labels get updated.  We also need to
9877 			 * update the cache file to keep it in sync with the
9878 			 * MOS version. It's unnecessary to do this for pool
9879 			 * creation since the vdev's configuration has already
9880 			 * been dirtied.
9881 			 */
9882 			if (tx->tx_txg != TXG_INITIAL) {
9883 				vdev_config_dirty(spa->spa_root_vdev);
9884 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9885 			}
9886 			spa_history_log_internal(spa, "set", tx,
9887 			    "%s=%s", elemname, strval);
9888 			break;
9889 		case ZPOOL_PROP_COMPATIBILITY:
9890 			strval = fnvpair_value_string(elem);
9891 			if (spa->spa_compatibility != NULL)
9892 				spa_strfree(spa->spa_compatibility);
9893 			spa->spa_compatibility = spa_strdup(strval);
9894 			/*
9895 			 * Dirty the configuration on vdevs as above.
9896 			 */
9897 			if (tx->tx_txg != TXG_INITIAL) {
9898 				vdev_config_dirty(spa->spa_root_vdev);
9899 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9900 			}
9901 
9902 			spa_history_log_internal(spa, "set", tx,
9903 			    "%s=%s", nvpair_name(elem), strval);
9904 			break;
9905 
9906 		case ZPOOL_PROP_INVAL:
9907 			if (zpool_prop_feature(elemname)) {
9908 				fname = strchr(elemname, '@') + 1;
9909 				VERIFY0(zfeature_lookup_name(fname, &fid));
9910 
9911 				spa_feature_enable(spa, fid, tx);
9912 				spa_history_log_internal(spa, "set", tx,
9913 				    "%s=enabled", elemname);
9914 				break;
9915 			} else if (!zfs_prop_user(elemname)) {
9916 				ASSERT(zpool_prop_feature(elemname));
9917 				break;
9918 			}
9919 			zfs_fallthrough;
9920 		default:
9921 			/*
9922 			 * Set pool property values in the poolprops mos object.
9923 			 */
9924 			if (spa->spa_pool_props_object == 0) {
9925 				spa->spa_pool_props_object =
9926 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
9927 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
9928 				    tx);
9929 			}
9930 
9931 			/* normalize the property name */
9932 			if (prop == ZPOOL_PROP_INVAL) {
9933 				propname = elemname;
9934 				proptype = PROP_TYPE_STRING;
9935 			} else {
9936 				propname = zpool_prop_to_name(prop);
9937 				proptype = zpool_prop_get_type(prop);
9938 			}
9939 
9940 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
9941 				ASSERT(proptype == PROP_TYPE_STRING);
9942 				strval = fnvpair_value_string(elem);
9943 				if (strlen(strval) == 0) {
9944 					/* remove the property if value == "" */
9945 					(void) zap_remove(mos,
9946 					    spa->spa_pool_props_object,
9947 					    propname, tx);
9948 				} else {
9949 					VERIFY0(zap_update(mos,
9950 					    spa->spa_pool_props_object,
9951 					    propname, 1, strlen(strval) + 1,
9952 					    strval, tx));
9953 				}
9954 				spa_history_log_internal(spa, "set", tx,
9955 				    "%s=%s", elemname, strval);
9956 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
9957 				intval = fnvpair_value_uint64(elem);
9958 
9959 				if (proptype == PROP_TYPE_INDEX) {
9960 					const char *unused;
9961 					VERIFY0(zpool_prop_index_to_string(
9962 					    prop, intval, &unused));
9963 				}
9964 				VERIFY0(zap_update(mos,
9965 				    spa->spa_pool_props_object, propname,
9966 				    8, 1, &intval, tx));
9967 				spa_history_log_internal(spa, "set", tx,
9968 				    "%s=%lld", elemname,
9969 				    (longlong_t)intval);
9970 
9971 				switch (prop) {
9972 				case ZPOOL_PROP_DELEGATION:
9973 					spa->spa_delegation = intval;
9974 					break;
9975 				case ZPOOL_PROP_BOOTFS:
9976 					spa->spa_bootfs = intval;
9977 					break;
9978 				case ZPOOL_PROP_FAILUREMODE:
9979 					spa->spa_failmode = intval;
9980 					break;
9981 				case ZPOOL_PROP_AUTOTRIM:
9982 					spa->spa_autotrim = intval;
9983 					spa_async_request(spa,
9984 					    SPA_ASYNC_AUTOTRIM_RESTART);
9985 					break;
9986 				case ZPOOL_PROP_AUTOEXPAND:
9987 					spa->spa_autoexpand = intval;
9988 					if (tx->tx_txg != TXG_INITIAL)
9989 						spa_async_request(spa,
9990 						    SPA_ASYNC_AUTOEXPAND);
9991 					break;
9992 				case ZPOOL_PROP_MULTIHOST:
9993 					spa->spa_multihost = intval;
9994 					break;
9995 				case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
9996 					spa->spa_dedup_table_quota = intval;
9997 					break;
9998 				default:
9999 					break;
10000 				}
10001 			} else {
10002 				ASSERT(0); /* not allowed */
10003 			}
10004 		}
10005 
10006 	}
10007 
10008 	mutex_exit(&spa->spa_props_lock);
10009 }
10010 
10011 /*
10012  * Perform one-time upgrade on-disk changes.  spa_version() does not
10013  * reflect the new version this txg, so there must be no changes this
10014  * txg to anything that the upgrade code depends on after it executes.
10015  * Therefore this must be called after dsl_pool_sync() does the sync
10016  * tasks.
10017  */
10018 static void
10019 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
10020 {
10021 	if (spa_sync_pass(spa) != 1)
10022 		return;
10023 
10024 	dsl_pool_t *dp = spa->spa_dsl_pool;
10025 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
10026 
10027 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
10028 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
10029 		dsl_pool_create_origin(dp, tx);
10030 
10031 		/* Keeping the origin open increases spa_minref */
10032 		spa->spa_minref += 3;
10033 	}
10034 
10035 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
10036 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
10037 		dsl_pool_upgrade_clones(dp, tx);
10038 	}
10039 
10040 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
10041 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
10042 		dsl_pool_upgrade_dir_clones(dp, tx);
10043 
10044 		/* Keeping the freedir open increases spa_minref */
10045 		spa->spa_minref += 3;
10046 	}
10047 
10048 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
10049 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
10050 		spa_feature_create_zap_objects(spa, tx);
10051 	}
10052 
10053 	/*
10054 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
10055 	 * when possibility to use lz4 compression for metadata was added
10056 	 * Old pools that have this feature enabled must be upgraded to have
10057 	 * this feature active
10058 	 */
10059 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
10060 		boolean_t lz4_en = spa_feature_is_enabled(spa,
10061 		    SPA_FEATURE_LZ4_COMPRESS);
10062 		boolean_t lz4_ac = spa_feature_is_active(spa,
10063 		    SPA_FEATURE_LZ4_COMPRESS);
10064 
10065 		if (lz4_en && !lz4_ac)
10066 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
10067 	}
10068 
10069 	/*
10070 	 * If we haven't written the salt, do so now.  Note that the
10071 	 * feature may not be activated yet, but that's fine since
10072 	 * the presence of this ZAP entry is backwards compatible.
10073 	 */
10074 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
10075 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
10076 		VERIFY0(zap_add(spa->spa_meta_objset,
10077 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
10078 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
10079 		    spa->spa_cksum_salt.zcs_bytes, tx));
10080 	}
10081 
10082 	rrw_exit(&dp->dp_config_rwlock, FTAG);
10083 }
10084 
10085 static void
10086 vdev_indirect_state_sync_verify(vdev_t *vd)
10087 {
10088 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
10089 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
10090 
10091 	if (vd->vdev_ops == &vdev_indirect_ops) {
10092 		ASSERT(vim != NULL);
10093 		ASSERT(vib != NULL);
10094 	}
10095 
10096 	uint64_t obsolete_sm_object = 0;
10097 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
10098 	if (obsolete_sm_object != 0) {
10099 		ASSERT(vd->vdev_obsolete_sm != NULL);
10100 		ASSERT(vd->vdev_removing ||
10101 		    vd->vdev_ops == &vdev_indirect_ops);
10102 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
10103 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
10104 		ASSERT3U(obsolete_sm_object, ==,
10105 		    space_map_object(vd->vdev_obsolete_sm));
10106 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
10107 		    space_map_allocated(vd->vdev_obsolete_sm));
10108 	}
10109 	ASSERT(vd->vdev_obsolete_segments != NULL);
10110 
10111 	/*
10112 	 * Since frees / remaps to an indirect vdev can only
10113 	 * happen in syncing context, the obsolete segments
10114 	 * tree must be empty when we start syncing.
10115 	 */
10116 	ASSERT0(zfs_range_tree_space(vd->vdev_obsolete_segments));
10117 }
10118 
10119 /*
10120  * Set the top-level vdev's max queue depth. Evaluate each top-level's
10121  * async write queue depth in case it changed. The max queue depth will
10122  * not change in the middle of syncing out this txg.
10123  */
10124 static void
10125 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
10126 {
10127 	ASSERT(spa_writeable(spa));
10128 
10129 	metaslab_class_balance(spa_normal_class(spa), B_TRUE);
10130 	metaslab_class_balance(spa_special_class(spa), B_TRUE);
10131 	metaslab_class_balance(spa_dedup_class(spa), B_TRUE);
10132 }
10133 
10134 static void
10135 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
10136 {
10137 	ASSERT(spa_writeable(spa));
10138 
10139 	vdev_t *rvd = spa->spa_root_vdev;
10140 	for (int c = 0; c < rvd->vdev_children; c++) {
10141 		vdev_t *vd = rvd->vdev_child[c];
10142 		vdev_indirect_state_sync_verify(vd);
10143 
10144 		if (vdev_indirect_should_condense(vd)) {
10145 			spa_condense_indirect_start_sync(vd, tx);
10146 			break;
10147 		}
10148 	}
10149 }
10150 
10151 static void
10152 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
10153 {
10154 	objset_t *mos = spa->spa_meta_objset;
10155 	dsl_pool_t *dp = spa->spa_dsl_pool;
10156 	uint64_t txg = tx->tx_txg;
10157 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
10158 
10159 	do {
10160 		int pass = ++spa->spa_sync_pass;
10161 
10162 		spa_sync_config_object(spa, tx);
10163 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
10164 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
10165 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
10166 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
10167 		spa_errlog_sync(spa, txg);
10168 		dsl_pool_sync(dp, txg);
10169 
10170 		if (pass < zfs_sync_pass_deferred_free ||
10171 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
10172 			/*
10173 			 * If the log space map feature is active we don't
10174 			 * care about deferred frees and the deferred bpobj
10175 			 * as the log space map should effectively have the
10176 			 * same results (i.e. appending only to one object).
10177 			 */
10178 			spa_sync_frees(spa, free_bpl, tx);
10179 		} else {
10180 			/*
10181 			 * We can not defer frees in pass 1, because
10182 			 * we sync the deferred frees later in pass 1.
10183 			 */
10184 			ASSERT3U(pass, >, 1);
10185 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
10186 			    &spa->spa_deferred_bpobj, tx);
10187 		}
10188 
10189 		brt_sync(spa, txg);
10190 		ddt_sync(spa, txg);
10191 		dsl_scan_sync(dp, tx);
10192 		dsl_errorscrub_sync(dp, tx);
10193 		svr_sync(spa, tx);
10194 		spa_sync_upgrades(spa, tx);
10195 
10196 		spa_flush_metaslabs(spa, tx);
10197 
10198 		vdev_t *vd = NULL;
10199 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
10200 		    != NULL)
10201 			vdev_sync(vd, txg);
10202 
10203 		if (pass == 1) {
10204 			/*
10205 			 * dsl_pool_sync() -> dp_sync_tasks may have dirtied
10206 			 * the config. If that happens, this txg should not
10207 			 * be a no-op. So we must sync the config to the MOS
10208 			 * before checking for no-op.
10209 			 *
10210 			 * Note that when the config is dirty, it will
10211 			 * be written to the MOS (i.e. the MOS will be
10212 			 * dirtied) every time we call spa_sync_config_object()
10213 			 * in this txg.  Therefore we can't call this after
10214 			 * dsl_pool_sync() every pass, because it would
10215 			 * prevent us from converging, since we'd dirty
10216 			 * the MOS every pass.
10217 			 *
10218 			 * Sync tasks can only be processed in pass 1, so
10219 			 * there's no need to do this in later passes.
10220 			 */
10221 			spa_sync_config_object(spa, tx);
10222 		}
10223 
10224 		/*
10225 		 * Note: We need to check if the MOS is dirty because we could
10226 		 * have marked the MOS dirty without updating the uberblock
10227 		 * (e.g. if we have sync tasks but no dirty user data). We need
10228 		 * to check the uberblock's rootbp because it is updated if we
10229 		 * have synced out dirty data (though in this case the MOS will
10230 		 * most likely also be dirty due to second order effects, we
10231 		 * don't want to rely on that here).
10232 		 */
10233 		if (pass == 1 &&
10234 		    BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp) < txg &&
10235 		    !dmu_objset_is_dirty(mos, txg)) {
10236 			/*
10237 			 * Nothing changed on the first pass, therefore this
10238 			 * TXG is a no-op. Avoid syncing deferred frees, so
10239 			 * that we can keep this TXG as a no-op.
10240 			 */
10241 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10242 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10243 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
10244 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
10245 			break;
10246 		}
10247 
10248 		spa_sync_deferred_frees(spa, tx);
10249 	} while (dmu_objset_is_dirty(mos, txg));
10250 }
10251 
10252 /*
10253  * Rewrite the vdev configuration (which includes the uberblock) to
10254  * commit the transaction group.
10255  *
10256  * If there are no dirty vdevs, we sync the uberblock to a few random
10257  * top-level vdevs that are known to be visible in the config cache
10258  * (see spa_vdev_add() for a complete description). If there *are* dirty
10259  * vdevs, sync the uberblock to all vdevs.
10260  */
10261 static void
10262 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
10263 {
10264 	vdev_t *rvd = spa->spa_root_vdev;
10265 	uint64_t txg = tx->tx_txg;
10266 
10267 	for (;;) {
10268 		int error = 0;
10269 
10270 		/*
10271 		 * We hold SCL_STATE to prevent vdev open/close/etc.
10272 		 * while we're attempting to write the vdev labels.
10273 		 */
10274 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10275 
10276 		if (list_is_empty(&spa->spa_config_dirty_list)) {
10277 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
10278 			int svdcount = 0;
10279 			int children = rvd->vdev_children;
10280 			int c0 = random_in_range(children);
10281 
10282 			for (int c = 0; c < children; c++) {
10283 				vdev_t *vd =
10284 				    rvd->vdev_child[(c0 + c) % children];
10285 
10286 				/* Stop when revisiting the first vdev */
10287 				if (c > 0 && svd[0] == vd)
10288 					break;
10289 
10290 				if (vd->vdev_ms_array == 0 ||
10291 				    vd->vdev_islog ||
10292 				    !vdev_is_concrete(vd))
10293 					continue;
10294 
10295 				svd[svdcount++] = vd;
10296 				if (svdcount == SPA_SYNC_MIN_VDEVS)
10297 					break;
10298 			}
10299 			error = vdev_config_sync(svd, svdcount, txg);
10300 		} else {
10301 			error = vdev_config_sync(rvd->vdev_child,
10302 			    rvd->vdev_children, txg);
10303 		}
10304 
10305 		if (error == 0)
10306 			spa->spa_last_synced_guid = rvd->vdev_guid;
10307 
10308 		spa_config_exit(spa, SCL_STATE, FTAG);
10309 
10310 		if (error == 0)
10311 			break;
10312 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
10313 		zio_resume_wait(spa);
10314 	}
10315 }
10316 
10317 /*
10318  * Sync the specified transaction group.  New blocks may be dirtied as
10319  * part of the process, so we iterate until it converges.
10320  */
10321 void
10322 spa_sync(spa_t *spa, uint64_t txg)
10323 {
10324 	vdev_t *vd = NULL;
10325 
10326 	VERIFY(spa_writeable(spa));
10327 
10328 	/*
10329 	 * Wait for i/os issued in open context that need to complete
10330 	 * before this txg syncs.
10331 	 */
10332 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
10333 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
10334 	    ZIO_FLAG_CANFAIL);
10335 
10336 	/*
10337 	 * Now that there can be no more cloning in this transaction group,
10338 	 * but we are still before issuing frees, we can process pending BRT
10339 	 * updates.
10340 	 */
10341 	brt_pending_apply(spa, txg);
10342 
10343 	spa_sync_time_logger(spa, txg);
10344 
10345 	/*
10346 	 * Lock out configuration changes.
10347 	 */
10348 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
10349 
10350 	spa->spa_syncing_txg = txg;
10351 	spa->spa_sync_pass = 0;
10352 
10353 	/*
10354 	 * If there are any pending vdev state changes, convert them
10355 	 * into config changes that go out with this transaction group.
10356 	 */
10357 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10358 	while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10359 		/* Avoid holding the write lock unless actually necessary */
10360 		if (vd->vdev_aux == NULL) {
10361 			vdev_state_clean(vd);
10362 			vdev_config_dirty(vd);
10363 			continue;
10364 		}
10365 		/*
10366 		 * We need the write lock here because, for aux vdevs,
10367 		 * calling vdev_config_dirty() modifies sav_config.
10368 		 * This is ugly and will become unnecessary when we
10369 		 * eliminate the aux vdev wart by integrating all vdevs
10370 		 * into the root vdev tree.
10371 		 */
10372 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10373 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
10374 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10375 			vdev_state_clean(vd);
10376 			vdev_config_dirty(vd);
10377 		}
10378 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10379 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10380 	}
10381 	spa_config_exit(spa, SCL_STATE, FTAG);
10382 
10383 	dsl_pool_t *dp = spa->spa_dsl_pool;
10384 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
10385 
10386 	spa->spa_sync_starttime = gethrtime();
10387 
10388 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10389 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
10390 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
10391 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
10392 
10393 	/*
10394 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
10395 	 * set spa_deflate if we have no raid-z vdevs.
10396 	 */
10397 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
10398 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
10399 		vdev_t *rvd = spa->spa_root_vdev;
10400 
10401 		int i;
10402 		for (i = 0; i < rvd->vdev_children; i++) {
10403 			vd = rvd->vdev_child[i];
10404 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
10405 				break;
10406 		}
10407 		if (i == rvd->vdev_children) {
10408 			spa->spa_deflate = TRUE;
10409 			VERIFY0(zap_add(spa->spa_meta_objset,
10410 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
10411 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
10412 		}
10413 	}
10414 
10415 	spa_sync_adjust_vdev_max_queue_depth(spa);
10416 
10417 	spa_sync_condense_indirect(spa, tx);
10418 
10419 	spa_sync_iterate_to_convergence(spa, tx);
10420 
10421 #ifdef ZFS_DEBUG
10422 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
10423 	/*
10424 	 * Make sure that the number of ZAPs for all the vdevs matches
10425 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
10426 	 * called if the config is dirty; otherwise there may be
10427 	 * outstanding AVZ operations that weren't completed in
10428 	 * spa_sync_config_object.
10429 	 */
10430 		uint64_t all_vdev_zap_entry_count;
10431 		ASSERT0(zap_count(spa->spa_meta_objset,
10432 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
10433 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
10434 		    all_vdev_zap_entry_count);
10435 	}
10436 #endif
10437 
10438 	if (spa->spa_vdev_removal != NULL) {
10439 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
10440 	}
10441 
10442 	spa_sync_rewrite_vdev_config(spa, tx);
10443 	dmu_tx_commit(tx);
10444 
10445 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10446 	spa->spa_deadman_tqid = 0;
10447 
10448 	/*
10449 	 * Clear the dirty config list.
10450 	 */
10451 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
10452 		vdev_config_clean(vd);
10453 
10454 	/*
10455 	 * Now that the new config has synced transactionally,
10456 	 * let it become visible to the config cache.
10457 	 */
10458 	if (spa->spa_config_syncing != NULL) {
10459 		spa_config_set(spa, spa->spa_config_syncing);
10460 		spa->spa_config_txg = txg;
10461 		spa->spa_config_syncing = NULL;
10462 	}
10463 
10464 	dsl_pool_sync_done(dp, txg);
10465 
10466 	/*
10467 	 * Update usable space statistics.
10468 	 */
10469 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
10470 	    != NULL)
10471 		vdev_sync_done(vd, txg);
10472 
10473 	metaslab_class_evict_old(spa->spa_normal_class, txg);
10474 	metaslab_class_evict_old(spa->spa_log_class, txg);
10475 	/* Embedded log classes have only one metaslab per vdev. */
10476 	metaslab_class_evict_old(spa->spa_special_class, txg);
10477 	metaslab_class_evict_old(spa->spa_dedup_class, txg);
10478 
10479 	spa_sync_close_syncing_log_sm(spa);
10480 
10481 	spa_update_dspace(spa);
10482 
10483 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
10484 		vdev_autotrim_kick(spa);
10485 
10486 	/*
10487 	 * It had better be the case that we didn't dirty anything
10488 	 * since vdev_config_sync().
10489 	 */
10490 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10491 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10492 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
10493 
10494 	while (zfs_pause_spa_sync)
10495 		delay(1);
10496 
10497 	spa->spa_sync_pass = 0;
10498 
10499 	/*
10500 	 * Update the last synced uberblock here. We want to do this at
10501 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
10502 	 * will be guaranteed that all the processing associated with
10503 	 * that txg has been completed.
10504 	 */
10505 	spa->spa_ubsync = spa->spa_uberblock;
10506 	spa_config_exit(spa, SCL_CONFIG, FTAG);
10507 
10508 	spa_handle_ignored_writes(spa);
10509 
10510 	/*
10511 	 * If any async tasks have been requested, kick them off.
10512 	 */
10513 	spa_async_dispatch(spa);
10514 }
10515 
10516 /*
10517  * Sync all pools.  We don't want to hold the namespace lock across these
10518  * operations, so we take a reference on the spa_t and drop the lock during the
10519  * sync.
10520  */
10521 void
10522 spa_sync_allpools(void)
10523 {
10524 	spa_t *spa = NULL;
10525 	mutex_enter(&spa_namespace_lock);
10526 	while ((spa = spa_next(spa)) != NULL) {
10527 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
10528 		    !spa_writeable(spa) || spa_suspended(spa))
10529 			continue;
10530 		spa_open_ref(spa, FTAG);
10531 		mutex_exit(&spa_namespace_lock);
10532 		txg_wait_synced(spa_get_dsl(spa), 0);
10533 		mutex_enter(&spa_namespace_lock);
10534 		spa_close(spa, FTAG);
10535 	}
10536 	mutex_exit(&spa_namespace_lock);
10537 }
10538 
10539 taskq_t *
10540 spa_sync_tq_create(spa_t *spa, const char *name)
10541 {
10542 	kthread_t **kthreads;
10543 
10544 	ASSERT0P(spa->spa_sync_tq);
10545 	ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus);
10546 
10547 	/*
10548 	 * - do not allow more allocators than cpus.
10549 	 * - there may be more cpus than allocators.
10550 	 * - do not allow more sync taskq threads than allocators or cpus.
10551 	 */
10552 	int nthreads = spa->spa_alloc_count;
10553 	spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) *
10554 	    nthreads, KM_SLEEP);
10555 
10556 	spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri,
10557 	    nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads);
10558 	VERIFY(spa->spa_sync_tq != NULL);
10559 	VERIFY(kthreads != NULL);
10560 
10561 	spa_syncthread_info_t *ti = spa->spa_syncthreads;
10562 	for (int i = 0; i < nthreads; i++, ti++) {
10563 		ti->sti_thread = kthreads[i];
10564 		ti->sti_allocator = i;
10565 	}
10566 
10567 	kmem_free(kthreads, sizeof (*kthreads) * nthreads);
10568 	return (spa->spa_sync_tq);
10569 }
10570 
10571 void
10572 spa_sync_tq_destroy(spa_t *spa)
10573 {
10574 	ASSERT(spa->spa_sync_tq != NULL);
10575 
10576 	taskq_wait(spa->spa_sync_tq);
10577 	taskq_destroy(spa->spa_sync_tq);
10578 	kmem_free(spa->spa_syncthreads,
10579 	    sizeof (spa_syncthread_info_t) * spa->spa_alloc_count);
10580 	spa->spa_sync_tq = NULL;
10581 }
10582 
10583 uint_t
10584 spa_acq_allocator(spa_t *spa)
10585 {
10586 	int i;
10587 
10588 	if (spa->spa_alloc_count == 1)
10589 		return (0);
10590 
10591 	mutex_enter(&spa->spa_allocs_use->sau_lock);
10592 	uint_t r = spa->spa_allocs_use->sau_rotor;
10593 	do {
10594 		if (++r == spa->spa_alloc_count)
10595 			r = 0;
10596 	} while (spa->spa_allocs_use->sau_inuse[r]);
10597 	spa->spa_allocs_use->sau_inuse[r] = B_TRUE;
10598 	spa->spa_allocs_use->sau_rotor = r;
10599 	mutex_exit(&spa->spa_allocs_use->sau_lock);
10600 
10601 	spa_syncthread_info_t *ti = spa->spa_syncthreads;
10602 	for (i = 0; i < spa->spa_alloc_count; i++, ti++) {
10603 		if (ti->sti_thread == curthread) {
10604 			ti->sti_allocator = r;
10605 			break;
10606 		}
10607 	}
10608 	ASSERT3S(i, <, spa->spa_alloc_count);
10609 	return (r);
10610 }
10611 
10612 void
10613 spa_rel_allocator(spa_t *spa, uint_t allocator)
10614 {
10615 	if (spa->spa_alloc_count > 1)
10616 		spa->spa_allocs_use->sau_inuse[allocator] = B_FALSE;
10617 }
10618 
10619 void
10620 spa_select_allocator(zio_t *zio)
10621 {
10622 	zbookmark_phys_t *bm = &zio->io_bookmark;
10623 	spa_t *spa = zio->io_spa;
10624 
10625 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
10626 
10627 	/*
10628 	 * A gang block (for example) may have inherited its parent's
10629 	 * allocator, in which case there is nothing further to do here.
10630 	 */
10631 	if (ZIO_HAS_ALLOCATOR(zio))
10632 		return;
10633 
10634 	ASSERT(spa != NULL);
10635 	ASSERT(bm != NULL);
10636 
10637 	/*
10638 	 * First try to use an allocator assigned to the syncthread, and set
10639 	 * the corresponding write issue taskq for the allocator.
10640 	 * Note, we must have an open pool to do this.
10641 	 */
10642 	if (spa->spa_sync_tq != NULL) {
10643 		spa_syncthread_info_t *ti = spa->spa_syncthreads;
10644 		for (int i = 0; i < spa->spa_alloc_count; i++, ti++) {
10645 			if (ti->sti_thread == curthread) {
10646 				zio->io_allocator = ti->sti_allocator;
10647 				return;
10648 			}
10649 		}
10650 	}
10651 
10652 	/*
10653 	 * We want to try to use as many allocators as possible to help improve
10654 	 * performance, but we also want logically adjacent IOs to be physically
10655 	 * adjacent to improve sequential read performance. We chunk each object
10656 	 * into 2^20 block regions, and then hash based on the objset, object,
10657 	 * level, and region to accomplish both of these goals.
10658 	 */
10659 	uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level,
10660 	    bm->zb_blkid >> 20);
10661 
10662 	zio->io_allocator = (uint_t)hv % spa->spa_alloc_count;
10663 }
10664 
10665 /*
10666  * ==========================================================================
10667  * Miscellaneous routines
10668  * ==========================================================================
10669  */
10670 
10671 /*
10672  * Remove all pools in the system.
10673  */
10674 void
10675 spa_evict_all(void)
10676 {
10677 	spa_t *spa;
10678 
10679 	/*
10680 	 * Remove all cached state.  All pools should be closed now,
10681 	 * so every spa in the AVL tree should be unreferenced.
10682 	 */
10683 	mutex_enter(&spa_namespace_lock);
10684 	while ((spa = spa_next(NULL)) != NULL) {
10685 		/*
10686 		 * Stop async tasks.  The async thread may need to detach
10687 		 * a device that's been replaced, which requires grabbing
10688 		 * spa_namespace_lock, so we must drop it here.
10689 		 */
10690 		spa_open_ref(spa, FTAG);
10691 		mutex_exit(&spa_namespace_lock);
10692 		spa_async_suspend(spa);
10693 		mutex_enter(&spa_namespace_lock);
10694 		spa_close(spa, FTAG);
10695 
10696 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
10697 			spa_unload(spa);
10698 			spa_deactivate(spa);
10699 		}
10700 		spa_remove(spa);
10701 	}
10702 	mutex_exit(&spa_namespace_lock);
10703 }
10704 
10705 vdev_t *
10706 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
10707 {
10708 	vdev_t *vd;
10709 	int i;
10710 
10711 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
10712 		return (vd);
10713 
10714 	if (aux) {
10715 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
10716 			vd = spa->spa_l2cache.sav_vdevs[i];
10717 			if (vd->vdev_guid == guid)
10718 				return (vd);
10719 		}
10720 
10721 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
10722 			vd = spa->spa_spares.sav_vdevs[i];
10723 			if (vd->vdev_guid == guid)
10724 				return (vd);
10725 		}
10726 	}
10727 
10728 	return (NULL);
10729 }
10730 
10731 void
10732 spa_upgrade(spa_t *spa, uint64_t version)
10733 {
10734 	ASSERT(spa_writeable(spa));
10735 
10736 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
10737 
10738 	/*
10739 	 * This should only be called for a non-faulted pool, and since a
10740 	 * future version would result in an unopenable pool, this shouldn't be
10741 	 * possible.
10742 	 */
10743 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
10744 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
10745 
10746 	spa->spa_uberblock.ub_version = version;
10747 	vdev_config_dirty(spa->spa_root_vdev);
10748 
10749 	spa_config_exit(spa, SCL_ALL, FTAG);
10750 
10751 	txg_wait_synced(spa_get_dsl(spa), 0);
10752 }
10753 
10754 static boolean_t
10755 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
10756 {
10757 	(void) spa;
10758 	int i;
10759 	uint64_t vdev_guid;
10760 
10761 	for (i = 0; i < sav->sav_count; i++)
10762 		if (sav->sav_vdevs[i]->vdev_guid == guid)
10763 			return (B_TRUE);
10764 
10765 	for (i = 0; i < sav->sav_npending; i++) {
10766 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
10767 		    &vdev_guid) == 0 && vdev_guid == guid)
10768 			return (B_TRUE);
10769 	}
10770 
10771 	return (B_FALSE);
10772 }
10773 
10774 boolean_t
10775 spa_has_l2cache(spa_t *spa, uint64_t guid)
10776 {
10777 	return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
10778 }
10779 
10780 boolean_t
10781 spa_has_spare(spa_t *spa, uint64_t guid)
10782 {
10783 	return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
10784 }
10785 
10786 /*
10787  * Check if a pool has an active shared spare device.
10788  * Note: reference count of an active spare is 2, as a spare and as a replace
10789  */
10790 static boolean_t
10791 spa_has_active_shared_spare(spa_t *spa)
10792 {
10793 	int i, refcnt;
10794 	uint64_t pool;
10795 	spa_aux_vdev_t *sav = &spa->spa_spares;
10796 
10797 	for (i = 0; i < sav->sav_count; i++) {
10798 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
10799 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
10800 		    refcnt > 2)
10801 			return (B_TRUE);
10802 	}
10803 
10804 	return (B_FALSE);
10805 }
10806 
10807 uint64_t
10808 spa_total_metaslabs(spa_t *spa)
10809 {
10810 	vdev_t *rvd = spa->spa_root_vdev;
10811 
10812 	uint64_t m = 0;
10813 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
10814 		vdev_t *vd = rvd->vdev_child[c];
10815 		if (!vdev_is_concrete(vd))
10816 			continue;
10817 		m += vd->vdev_ms_count;
10818 	}
10819 	return (m);
10820 }
10821 
10822 /*
10823  * Notify any waiting threads that some activity has switched from being in-
10824  * progress to not-in-progress so that the thread can wake up and determine
10825  * whether it is finished waiting.
10826  */
10827 void
10828 spa_notify_waiters(spa_t *spa)
10829 {
10830 	/*
10831 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
10832 	 * happening between the waiting thread's check and cv_wait.
10833 	 */
10834 	mutex_enter(&spa->spa_activities_lock);
10835 	cv_broadcast(&spa->spa_activities_cv);
10836 	mutex_exit(&spa->spa_activities_lock);
10837 }
10838 
10839 /*
10840  * Notify any waiting threads that the pool is exporting, and then block until
10841  * they are finished using the spa_t.
10842  */
10843 void
10844 spa_wake_waiters(spa_t *spa)
10845 {
10846 	mutex_enter(&spa->spa_activities_lock);
10847 	spa->spa_waiters_cancel = B_TRUE;
10848 	cv_broadcast(&spa->spa_activities_cv);
10849 	while (spa->spa_waiters != 0)
10850 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
10851 	spa->spa_waiters_cancel = B_FALSE;
10852 	mutex_exit(&spa->spa_activities_lock);
10853 }
10854 
10855 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
10856 static boolean_t
10857 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
10858 {
10859 	spa_t *spa = vd->vdev_spa;
10860 
10861 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
10862 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10863 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
10864 	    activity == ZPOOL_WAIT_TRIM);
10865 
10866 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
10867 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
10868 
10869 	mutex_exit(&spa->spa_activities_lock);
10870 	mutex_enter(lock);
10871 	mutex_enter(&spa->spa_activities_lock);
10872 
10873 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
10874 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
10875 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
10876 	mutex_exit(lock);
10877 
10878 	if (in_progress)
10879 		return (B_TRUE);
10880 
10881 	for (int i = 0; i < vd->vdev_children; i++) {
10882 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
10883 		    activity))
10884 			return (B_TRUE);
10885 	}
10886 
10887 	return (B_FALSE);
10888 }
10889 
10890 /*
10891  * If use_guid is true, this checks whether the vdev specified by guid is
10892  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
10893  * is being initialized/trimmed. The caller must hold the config lock and
10894  * spa_activities_lock.
10895  */
10896 static int
10897 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
10898     zpool_wait_activity_t activity, boolean_t *in_progress)
10899 {
10900 	mutex_exit(&spa->spa_activities_lock);
10901 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10902 	mutex_enter(&spa->spa_activities_lock);
10903 
10904 	vdev_t *vd;
10905 	if (use_guid) {
10906 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
10907 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
10908 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10909 			return (EINVAL);
10910 		}
10911 	} else {
10912 		vd = spa->spa_root_vdev;
10913 	}
10914 
10915 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
10916 
10917 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10918 	return (0);
10919 }
10920 
10921 /*
10922  * Locking for waiting threads
10923  * ---------------------------
10924  *
10925  * Waiting threads need a way to check whether a given activity is in progress,
10926  * and then, if it is, wait for it to complete. Each activity will have some
10927  * in-memory representation of the relevant on-disk state which can be used to
10928  * determine whether or not the activity is in progress. The in-memory state and
10929  * the locking used to protect it will be different for each activity, and may
10930  * not be suitable for use with a cvar (e.g., some state is protected by the
10931  * config lock). To allow waiting threads to wait without any races, another
10932  * lock, spa_activities_lock, is used.
10933  *
10934  * When the state is checked, both the activity-specific lock (if there is one)
10935  * and spa_activities_lock are held. In some cases, the activity-specific lock
10936  * is acquired explicitly (e.g. the config lock). In others, the locking is
10937  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
10938  * thread releases the activity-specific lock and, if the activity is in
10939  * progress, then cv_waits using spa_activities_lock.
10940  *
10941  * The waiting thread is woken when another thread, one completing some
10942  * activity, updates the state of the activity and then calls
10943  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
10944  * needs to hold its activity-specific lock when updating the state, and this
10945  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
10946  *
10947  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
10948  * and because it is held when the waiting thread checks the state of the
10949  * activity, it can never be the case that the completing thread both updates
10950  * the activity state and cv_broadcasts in between the waiting thread's check
10951  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
10952  *
10953  * In order to prevent deadlock, when the waiting thread does its check, in some
10954  * cases it will temporarily drop spa_activities_lock in order to acquire the
10955  * activity-specific lock. The order in which spa_activities_lock and the
10956  * activity specific lock are acquired in the waiting thread is determined by
10957  * the order in which they are acquired in the completing thread; if the
10958  * completing thread calls spa_notify_waiters with the activity-specific lock
10959  * held, then the waiting thread must also acquire the activity-specific lock
10960  * first.
10961  */
10962 
10963 static int
10964 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
10965     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
10966 {
10967 	int error = 0;
10968 
10969 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10970 
10971 	switch (activity) {
10972 	case ZPOOL_WAIT_CKPT_DISCARD:
10973 		*in_progress =
10974 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
10975 		    zap_contains(spa_meta_objset(spa),
10976 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
10977 		    ENOENT);
10978 		break;
10979 	case ZPOOL_WAIT_FREE:
10980 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
10981 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
10982 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
10983 		    spa_livelist_delete_check(spa));
10984 		break;
10985 	case ZPOOL_WAIT_INITIALIZE:
10986 	case ZPOOL_WAIT_TRIM:
10987 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
10988 		    activity, in_progress);
10989 		break;
10990 	case ZPOOL_WAIT_REPLACE:
10991 		mutex_exit(&spa->spa_activities_lock);
10992 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10993 		mutex_enter(&spa->spa_activities_lock);
10994 
10995 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
10996 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10997 		break;
10998 	case ZPOOL_WAIT_REMOVE:
10999 		*in_progress = (spa->spa_removing_phys.sr_state ==
11000 		    DSS_SCANNING);
11001 		break;
11002 	case ZPOOL_WAIT_RESILVER:
11003 		*in_progress = vdev_rebuild_active(spa->spa_root_vdev);
11004 		if (*in_progress)
11005 			break;
11006 		zfs_fallthrough;
11007 	case ZPOOL_WAIT_SCRUB:
11008 	{
11009 		boolean_t scanning, paused, is_scrub;
11010 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
11011 
11012 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
11013 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
11014 		paused = dsl_scan_is_paused_scrub(scn);
11015 		*in_progress = (scanning && !paused &&
11016 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
11017 		break;
11018 	}
11019 	case ZPOOL_WAIT_RAIDZ_EXPAND:
11020 	{
11021 		vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
11022 		*in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING);
11023 		break;
11024 	}
11025 	default:
11026 		panic("unrecognized value for activity %d", activity);
11027 	}
11028 
11029 	return (error);
11030 }
11031 
11032 static int
11033 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
11034     boolean_t use_tag, uint64_t tag, boolean_t *waited)
11035 {
11036 	/*
11037 	 * The tag is used to distinguish between instances of an activity.
11038 	 * 'initialize' and 'trim' are the only activities that we use this for.
11039 	 * The other activities can only have a single instance in progress in a
11040 	 * pool at one time, making the tag unnecessary.
11041 	 *
11042 	 * There can be multiple devices being replaced at once, but since they
11043 	 * all finish once resilvering finishes, we don't bother keeping track
11044 	 * of them individually, we just wait for them all to finish.
11045 	 */
11046 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
11047 	    activity != ZPOOL_WAIT_TRIM)
11048 		return (EINVAL);
11049 
11050 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
11051 		return (EINVAL);
11052 
11053 	spa_t *spa;
11054 	int error = spa_open(pool, &spa, FTAG);
11055 	if (error != 0)
11056 		return (error);
11057 
11058 	/*
11059 	 * Increment the spa's waiter count so that we can call spa_close and
11060 	 * still ensure that the spa_t doesn't get freed before this thread is
11061 	 * finished with it when the pool is exported. We want to call spa_close
11062 	 * before we start waiting because otherwise the additional ref would
11063 	 * prevent the pool from being exported or destroyed throughout the
11064 	 * potentially long wait.
11065 	 */
11066 	mutex_enter(&spa->spa_activities_lock);
11067 	spa->spa_waiters++;
11068 	spa_close(spa, FTAG);
11069 
11070 	*waited = B_FALSE;
11071 	for (;;) {
11072 		boolean_t in_progress;
11073 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
11074 		    &in_progress);
11075 
11076 		if (error || !in_progress || spa->spa_waiters_cancel)
11077 			break;
11078 
11079 		*waited = B_TRUE;
11080 
11081 		if (cv_wait_sig(&spa->spa_activities_cv,
11082 		    &spa->spa_activities_lock) == 0) {
11083 			error = EINTR;
11084 			break;
11085 		}
11086 	}
11087 
11088 	spa->spa_waiters--;
11089 	cv_signal(&spa->spa_waiters_cv);
11090 	mutex_exit(&spa->spa_activities_lock);
11091 
11092 	return (error);
11093 }
11094 
11095 /*
11096  * Wait for a particular instance of the specified activity to complete, where
11097  * the instance is identified by 'tag'
11098  */
11099 int
11100 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
11101     boolean_t *waited)
11102 {
11103 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
11104 }
11105 
11106 /*
11107  * Wait for all instances of the specified activity complete
11108  */
11109 int
11110 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
11111 {
11112 
11113 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
11114 }
11115 
11116 sysevent_t *
11117 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
11118 {
11119 	sysevent_t *ev = NULL;
11120 #ifdef _KERNEL
11121 	nvlist_t *resource;
11122 
11123 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
11124 	if (resource) {
11125 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
11126 		ev->resource = resource;
11127 	}
11128 #else
11129 	(void) spa, (void) vd, (void) hist_nvl, (void) name;
11130 #endif
11131 	return (ev);
11132 }
11133 
11134 void
11135 spa_event_post(sysevent_t *ev)
11136 {
11137 #ifdef _KERNEL
11138 	if (ev) {
11139 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
11140 		kmem_free(ev, sizeof (*ev));
11141 	}
11142 #else
11143 	(void) ev;
11144 #endif
11145 }
11146 
11147 /*
11148  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
11149  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
11150  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
11151  * in the userland libzpool, as we don't want consumers to misinterpret ztest
11152  * or zdb as real changes.
11153  */
11154 void
11155 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
11156 {
11157 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
11158 }
11159 
11160 /* state manipulation functions */
11161 EXPORT_SYMBOL(spa_open);
11162 EXPORT_SYMBOL(spa_open_rewind);
11163 EXPORT_SYMBOL(spa_get_stats);
11164 EXPORT_SYMBOL(spa_create);
11165 EXPORT_SYMBOL(spa_import);
11166 EXPORT_SYMBOL(spa_tryimport);
11167 EXPORT_SYMBOL(spa_destroy);
11168 EXPORT_SYMBOL(spa_export);
11169 EXPORT_SYMBOL(spa_reset);
11170 EXPORT_SYMBOL(spa_async_request);
11171 EXPORT_SYMBOL(spa_async_suspend);
11172 EXPORT_SYMBOL(spa_async_resume);
11173 EXPORT_SYMBOL(spa_inject_addref);
11174 EXPORT_SYMBOL(spa_inject_delref);
11175 EXPORT_SYMBOL(spa_scan_stat_init);
11176 EXPORT_SYMBOL(spa_scan_get_stats);
11177 
11178 /* device manipulation */
11179 EXPORT_SYMBOL(spa_vdev_add);
11180 EXPORT_SYMBOL(spa_vdev_attach);
11181 EXPORT_SYMBOL(spa_vdev_detach);
11182 EXPORT_SYMBOL(spa_vdev_setpath);
11183 EXPORT_SYMBOL(spa_vdev_setfru);
11184 EXPORT_SYMBOL(spa_vdev_split_mirror);
11185 
11186 /* spare statech is global across all pools) */
11187 EXPORT_SYMBOL(spa_spare_add);
11188 EXPORT_SYMBOL(spa_spare_remove);
11189 EXPORT_SYMBOL(spa_spare_exists);
11190 EXPORT_SYMBOL(spa_spare_activate);
11191 
11192 /* L2ARC statech is global across all pools) */
11193 EXPORT_SYMBOL(spa_l2cache_add);
11194 EXPORT_SYMBOL(spa_l2cache_remove);
11195 EXPORT_SYMBOL(spa_l2cache_exists);
11196 EXPORT_SYMBOL(spa_l2cache_activate);
11197 EXPORT_SYMBOL(spa_l2cache_drop);
11198 
11199 /* scanning */
11200 EXPORT_SYMBOL(spa_scan);
11201 EXPORT_SYMBOL(spa_scan_range);
11202 EXPORT_SYMBOL(spa_scan_stop);
11203 
11204 /* spa syncing */
11205 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
11206 EXPORT_SYMBOL(spa_sync_allpools);
11207 
11208 /* properties */
11209 EXPORT_SYMBOL(spa_prop_set);
11210 EXPORT_SYMBOL(spa_prop_get);
11211 EXPORT_SYMBOL(spa_prop_clear_bootfs);
11212 
11213 /* asynchronous event notification */
11214 EXPORT_SYMBOL(spa_event_notify);
11215 
11216 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
11217 	"Percentage of CPUs to run a metaslab preload taskq");
11218 
11219 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
11220 	"log2 fraction of arc that can be used by inflight I/Os when "
11221 	"verifying pool during import");
11222 
11223 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
11224 	"Set to traverse metadata on pool import");
11225 
11226 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
11227 	"Set to traverse data on pool import");
11228 
11229 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
11230 	"Print vdev tree to zfs_dbgmsg during pool import");
11231 
11232 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RW,
11233 	"Percentage of CPUs to run an IO worker thread");
11234 
11235 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RW,
11236 	"Number of threads per IO worker taskqueue");
11237 
11238 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
11239 	"Allow importing pool with up to this number of missing top-level "
11240 	"vdevs (in read-only mode)");
11241 
11242 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
11243 	ZMOD_RW, "Set the livelist condense zthr to pause");
11244 
11245 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
11246 	ZMOD_RW, "Set the livelist condense synctask to pause");
11247 
11248 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
11249 	INT, ZMOD_RW,
11250 	"Whether livelist condensing was canceled in the synctask");
11251 
11252 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
11253 	INT, ZMOD_RW,
11254 	"Whether livelist condensing was canceled in the zthr function");
11255 
11256 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
11257 	ZMOD_RW,
11258 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
11259 	"was being condensed");
11260 
11261 ZFS_MODULE_PARAM(zfs_spa, spa_, note_txg_time, UINT, ZMOD_RW,
11262 	"How frequently TXG timestamps are stored internally (in seconds)");
11263 
11264 ZFS_MODULE_PARAM(zfs_spa, spa_, flush_txg_time, UINT, ZMOD_RW,
11265 	"How frequently the TXG timestamps database should be flushed "
11266 	"to disk (in seconds)");
11267 
11268 #ifdef _KERNEL
11269 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read,
11270 	spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RW,
11271 	"Configure IO queues for read IO");
11272 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write,
11273 	spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RW,
11274 	"Configure IO queues for write IO");
11275 #endif
11276 
11277 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_write_tpq, UINT, ZMOD_RW,
11278 	"Number of CPUs per write issue taskq");
11279