1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 */
31
32 /*
33 * SPA: Storage Pool Allocator
34 *
35 * This file contains all the routines used when modifying on-disk SPA state.
36 * This includes opening, importing, destroying, exporting a pool, and syncing a
37 * pool.
38 */
39
40 #include <sys/zfs_context.h>
41 #include <sys/fm/fs/zfs.h>
42 #include <sys/spa_impl.h>
43 #include <sys/zio.h>
44 #include <sys/zio_checksum.h>
45 #include <sys/dmu.h>
46 #include <sys/dmu_tx.h>
47 #include <sys/zap.h>
48 #include <sys/zil.h>
49 #include <sys/ddt.h>
50 #include <sys/vdev_impl.h>
51 #include <sys/metaslab.h>
52 #include <sys/metaslab_impl.h>
53 #include <sys/uberblock_impl.h>
54 #include <sys/txg.h>
55 #include <sys/avl.h>
56 #include <sys/dmu_traverse.h>
57 #include <sys/dmu_objset.h>
58 #include <sys/unique.h>
59 #include <sys/dsl_pool.h>
60 #include <sys/dsl_dataset.h>
61 #include <sys/dsl_dir.h>
62 #include <sys/dsl_prop.h>
63 #include <sys/dsl_synctask.h>
64 #include <sys/fs/zfs.h>
65 #include <sys/arc.h>
66 #include <sys/callb.h>
67 #include <sys/systeminfo.h>
68 #include <sys/spa_boot.h>
69 #include <sys/zfs_ioctl.h>
70 #include <sys/dsl_scan.h>
71 #include <sys/zfeature.h>
72 #include <sys/dsl_destroy.h>
73
74 #ifdef _KERNEL
75 #include <sys/bootprops.h>
76 #include <sys/callb.h>
77 #include <sys/cpupart.h>
78 #include <sys/pool.h>
79 #include <sys/sysdc.h>
80 #include <sys/zone.h>
81 #endif /* _KERNEL */
82
83 #include "zfs_prop.h"
84 #include "zfs_comutil.h"
85
86 /*
87 * The interval, in seconds, at which failed configuration cache file writes
88 * should be retried.
89 */
90 static int zfs_ccw_retry_interval = 300;
91
92 typedef enum zti_modes {
93 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
94 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
95 ZTI_MODE_NULL, /* don't create a taskq */
96 ZTI_NMODES
97 } zti_modes_t;
98
99 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
100 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
101 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
102
103 #define ZTI_N(n) ZTI_P(n, 1)
104 #define ZTI_ONE ZTI_N(1)
105
106 typedef struct zio_taskq_info {
107 zti_modes_t zti_mode;
108 uint_t zti_value;
109 uint_t zti_count;
110 } zio_taskq_info_t;
111
112 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
113 "issue", "issue_high", "intr", "intr_high"
114 };
115
116 /*
117 * This table defines the taskq settings for each ZFS I/O type. When
118 * initializing a pool, we use this table to create an appropriately sized
119 * taskq. Some operations are low volume and therefore have a small, static
120 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
121 * macros. Other operations process a large amount of data; the ZTI_BATCH
122 * macro causes us to create a taskq oriented for throughput. Some operations
123 * are so high frequency and short-lived that the taskq itself can become a a
124 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
125 * additional degree of parallelism specified by the number of threads per-
126 * taskq and the number of taskqs; when dispatching an event in this case, the
127 * particular taskq is chosen at random.
128 *
129 * The different taskq priorities are to handle the different contexts (issue
130 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
131 * need to be handled with minimum delay.
132 */
133 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
134 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
136 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
137 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
138 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
139 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
140 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
141 };
142
143 static void spa_sync_version(void *arg, dmu_tx_t *tx);
144 static void spa_sync_props(void *arg, dmu_tx_t *tx);
145 static boolean_t spa_has_active_shared_spare(spa_t *spa);
146 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
147 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
148 char **ereport);
149 static void spa_vdev_resilver_done(spa_t *spa);
150
151 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
152 id_t zio_taskq_psrset_bind = PS_NONE;
153 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
154 uint_t zio_taskq_basedc = 80; /* base duty cycle */
155
156 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
157 extern int zfs_sync_pass_deferred_free;
158
159 /*
160 * This (illegal) pool name is used when temporarily importing a spa_t in order
161 * to get the vdev stats associated with the imported devices.
162 */
163 #define TRYIMPORT_NAME "$import"
164
165 /*
166 * ==========================================================================
167 * SPA properties routines
168 * ==========================================================================
169 */
170
171 /*
172 * Add a (source=src, propname=propval) list to an nvlist.
173 */
174 static void
spa_prop_add_list(nvlist_t * nvl,zpool_prop_t prop,char * strval,uint64_t intval,zprop_source_t src)175 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
176 uint64_t intval, zprop_source_t src)
177 {
178 const char *propname = zpool_prop_to_name(prop);
179 nvlist_t *propval;
180
181 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
182 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
183
184 if (strval != NULL)
185 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
186 else
187 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
188
189 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
190 nvlist_free(propval);
191 }
192
193 /*
194 * Get property values from the spa configuration.
195 */
196 static void
spa_prop_get_config(spa_t * spa,nvlist_t ** nvp)197 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
198 {
199 vdev_t *rvd = spa->spa_root_vdev;
200 dsl_pool_t *pool = spa->spa_dsl_pool;
201 uint64_t size, alloc, cap, version;
202 zprop_source_t src = ZPROP_SRC_NONE;
203 spa_config_dirent_t *dp;
204 metaslab_class_t *mc = spa_normal_class(spa);
205
206 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
207
208 if (rvd != NULL) {
209 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
210 size = metaslab_class_get_space(spa_normal_class(spa));
211 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
212 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
213 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
214 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
215 size - alloc, src);
216
217 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
218 metaslab_class_fragmentation(mc), src);
219 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
220 metaslab_class_expandable_space(mc), src);
221 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
222 (spa_mode(spa) == FREAD), src);
223
224 cap = (size == 0) ? 0 : (alloc * 100 / size);
225 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
226
227 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
228 ddt_get_pool_dedup_ratio(spa), src);
229
230 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
231 rvd->vdev_state, src);
232
233 version = spa_version(spa);
234 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
235 src = ZPROP_SRC_DEFAULT;
236 else
237 src = ZPROP_SRC_LOCAL;
238 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
239 }
240
241 if (pool != NULL) {
242 /*
243 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
244 * when opening pools before this version freedir will be NULL.
245 */
246 if (pool->dp_free_dir != NULL) {
247 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
248 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
249 src);
250 } else {
251 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
252 NULL, 0, src);
253 }
254
255 if (pool->dp_leak_dir != NULL) {
256 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
257 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
258 src);
259 } else {
260 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
261 NULL, 0, src);
262 }
263 }
264
265 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
266
267 if (spa->spa_comment != NULL) {
268 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
269 0, ZPROP_SRC_LOCAL);
270 }
271
272 if (spa->spa_root != NULL)
273 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
274 0, ZPROP_SRC_LOCAL);
275
276 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
277 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
278 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
279 } else {
280 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
281 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
282 }
283
284 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
285 if (dp->scd_path == NULL) {
286 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
287 "none", 0, ZPROP_SRC_LOCAL);
288 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
289 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
290 dp->scd_path, 0, ZPROP_SRC_LOCAL);
291 }
292 }
293 }
294
295 /*
296 * Get zpool property values.
297 */
298 int
spa_prop_get(spa_t * spa,nvlist_t ** nvp)299 spa_prop_get(spa_t *spa, nvlist_t **nvp)
300 {
301 objset_t *mos = spa->spa_meta_objset;
302 zap_cursor_t zc;
303 zap_attribute_t za;
304 int err;
305
306 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
307
308 mutex_enter(&spa->spa_props_lock);
309
310 /*
311 * Get properties from the spa config.
312 */
313 spa_prop_get_config(spa, nvp);
314
315 /* If no pool property object, no more prop to get. */
316 if (mos == NULL || spa->spa_pool_props_object == 0) {
317 mutex_exit(&spa->spa_props_lock);
318 return (0);
319 }
320
321 /*
322 * Get properties from the MOS pool property object.
323 */
324 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
325 (err = zap_cursor_retrieve(&zc, &za)) == 0;
326 zap_cursor_advance(&zc)) {
327 uint64_t intval = 0;
328 char *strval = NULL;
329 zprop_source_t src = ZPROP_SRC_DEFAULT;
330 zpool_prop_t prop;
331
332 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
333 continue;
334
335 switch (za.za_integer_length) {
336 case 8:
337 /* integer property */
338 if (za.za_first_integer !=
339 zpool_prop_default_numeric(prop))
340 src = ZPROP_SRC_LOCAL;
341
342 if (prop == ZPOOL_PROP_BOOTFS) {
343 dsl_pool_t *dp;
344 dsl_dataset_t *ds = NULL;
345
346 dp = spa_get_dsl(spa);
347 dsl_pool_config_enter(dp, FTAG);
348 if (err = dsl_dataset_hold_obj(dp,
349 za.za_first_integer, FTAG, &ds)) {
350 dsl_pool_config_exit(dp, FTAG);
351 break;
352 }
353
354 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
355 KM_SLEEP);
356 dsl_dataset_name(ds, strval);
357 dsl_dataset_rele(ds, FTAG);
358 dsl_pool_config_exit(dp, FTAG);
359 } else {
360 strval = NULL;
361 intval = za.za_first_integer;
362 }
363
364 spa_prop_add_list(*nvp, prop, strval, intval, src);
365
366 if (strval != NULL)
367 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
368
369 break;
370
371 case 1:
372 /* string property */
373 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
374 err = zap_lookup(mos, spa->spa_pool_props_object,
375 za.za_name, 1, za.za_num_integers, strval);
376 if (err) {
377 kmem_free(strval, za.za_num_integers);
378 break;
379 }
380 spa_prop_add_list(*nvp, prop, strval, 0, src);
381 kmem_free(strval, za.za_num_integers);
382 break;
383
384 default:
385 break;
386 }
387 }
388 zap_cursor_fini(&zc);
389 mutex_exit(&spa->spa_props_lock);
390 out:
391 if (err && err != ENOENT) {
392 nvlist_free(*nvp);
393 *nvp = NULL;
394 return (err);
395 }
396
397 return (0);
398 }
399
400 /*
401 * Validate the given pool properties nvlist and modify the list
402 * for the property values to be set.
403 */
404 static int
spa_prop_validate(spa_t * spa,nvlist_t * props)405 spa_prop_validate(spa_t *spa, nvlist_t *props)
406 {
407 nvpair_t *elem;
408 int error = 0, reset_bootfs = 0;
409 uint64_t objnum = 0;
410 boolean_t has_feature = B_FALSE;
411
412 elem = NULL;
413 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
414 uint64_t intval;
415 char *strval, *slash, *check, *fname;
416 const char *propname = nvpair_name(elem);
417 zpool_prop_t prop = zpool_name_to_prop(propname);
418
419 switch (prop) {
420 case ZPROP_INVAL:
421 if (!zpool_prop_feature(propname)) {
422 error = SET_ERROR(EINVAL);
423 break;
424 }
425
426 /*
427 * Sanitize the input.
428 */
429 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
430 error = SET_ERROR(EINVAL);
431 break;
432 }
433
434 if (nvpair_value_uint64(elem, &intval) != 0) {
435 error = SET_ERROR(EINVAL);
436 break;
437 }
438
439 if (intval != 0) {
440 error = SET_ERROR(EINVAL);
441 break;
442 }
443
444 fname = strchr(propname, '@') + 1;
445 if (zfeature_lookup_name(fname, NULL) != 0) {
446 error = SET_ERROR(EINVAL);
447 break;
448 }
449
450 has_feature = B_TRUE;
451 break;
452
453 case ZPOOL_PROP_VERSION:
454 error = nvpair_value_uint64(elem, &intval);
455 if (!error &&
456 (intval < spa_version(spa) ||
457 intval > SPA_VERSION_BEFORE_FEATURES ||
458 has_feature))
459 error = SET_ERROR(EINVAL);
460 break;
461
462 case ZPOOL_PROP_DELEGATION:
463 case ZPOOL_PROP_AUTOREPLACE:
464 case ZPOOL_PROP_LISTSNAPS:
465 case ZPOOL_PROP_AUTOEXPAND:
466 error = nvpair_value_uint64(elem, &intval);
467 if (!error && intval > 1)
468 error = SET_ERROR(EINVAL);
469 break;
470
471 case ZPOOL_PROP_BOOTFS:
472 /*
473 * If the pool version is less than SPA_VERSION_BOOTFS,
474 * or the pool is still being created (version == 0),
475 * the bootfs property cannot be set.
476 */
477 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
478 error = SET_ERROR(ENOTSUP);
479 break;
480 }
481
482 /*
483 * Make sure the vdev config is bootable
484 */
485 if (!vdev_is_bootable(spa->spa_root_vdev)) {
486 error = SET_ERROR(ENOTSUP);
487 break;
488 }
489
490 reset_bootfs = 1;
491
492 error = nvpair_value_string(elem, &strval);
493
494 if (!error) {
495 objset_t *os;
496 uint64_t propval;
497
498 if (strval == NULL || strval[0] == '\0') {
499 objnum = zpool_prop_default_numeric(
500 ZPOOL_PROP_BOOTFS);
501 break;
502 }
503
504 if (error = dmu_objset_hold(strval, FTAG, &os))
505 break;
506
507 /*
508 * Must be ZPL, and its property settings
509 * must be supported by GRUB (compression
510 * is not gzip, and large blocks are not used).
511 */
512
513 if (dmu_objset_type(os) != DMU_OST_ZFS) {
514 error = SET_ERROR(ENOTSUP);
515 } else if ((error =
516 dsl_prop_get_int_ds(dmu_objset_ds(os),
517 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
518 &propval)) == 0 &&
519 !BOOTFS_COMPRESS_VALID(propval)) {
520 error = SET_ERROR(ENOTSUP);
521 } else {
522 objnum = dmu_objset_id(os);
523 }
524 dmu_objset_rele(os, FTAG);
525 }
526 break;
527
528 case ZPOOL_PROP_FAILUREMODE:
529 error = nvpair_value_uint64(elem, &intval);
530 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
531 intval > ZIO_FAILURE_MODE_PANIC))
532 error = SET_ERROR(EINVAL);
533
534 /*
535 * This is a special case which only occurs when
536 * the pool has completely failed. This allows
537 * the user to change the in-core failmode property
538 * without syncing it out to disk (I/Os might
539 * currently be blocked). We do this by returning
540 * EIO to the caller (spa_prop_set) to trick it
541 * into thinking we encountered a property validation
542 * error.
543 */
544 if (!error && spa_suspended(spa)) {
545 spa->spa_failmode = intval;
546 error = SET_ERROR(EIO);
547 }
548 break;
549
550 case ZPOOL_PROP_CACHEFILE:
551 if ((error = nvpair_value_string(elem, &strval)) != 0)
552 break;
553
554 if (strval[0] == '\0')
555 break;
556
557 if (strcmp(strval, "none") == 0)
558 break;
559
560 if (strval[0] != '/') {
561 error = SET_ERROR(EINVAL);
562 break;
563 }
564
565 slash = strrchr(strval, '/');
566 ASSERT(slash != NULL);
567
568 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
569 strcmp(slash, "/..") == 0)
570 error = SET_ERROR(EINVAL);
571 break;
572
573 case ZPOOL_PROP_COMMENT:
574 if ((error = nvpair_value_string(elem, &strval)) != 0)
575 break;
576 for (check = strval; *check != '\0'; check++) {
577 /*
578 * The kernel doesn't have an easy isprint()
579 * check. For this kernel check, we merely
580 * check ASCII apart from DEL. Fix this if
581 * there is an easy-to-use kernel isprint().
582 */
583 if (*check >= 0x7f) {
584 error = SET_ERROR(EINVAL);
585 break;
586 }
587 }
588 if (strlen(strval) > ZPROP_MAX_COMMENT)
589 error = E2BIG;
590 break;
591
592 case ZPOOL_PROP_DEDUPDITTO:
593 if (spa_version(spa) < SPA_VERSION_DEDUP)
594 error = SET_ERROR(ENOTSUP);
595 else
596 error = nvpair_value_uint64(elem, &intval);
597 if (error == 0 &&
598 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
599 error = SET_ERROR(EINVAL);
600 break;
601 }
602
603 if (error)
604 break;
605 }
606
607 if (!error && reset_bootfs) {
608 error = nvlist_remove(props,
609 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
610
611 if (!error) {
612 error = nvlist_add_uint64(props,
613 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
614 }
615 }
616
617 return (error);
618 }
619
620 void
spa_configfile_set(spa_t * spa,nvlist_t * nvp,boolean_t need_sync)621 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
622 {
623 char *cachefile;
624 spa_config_dirent_t *dp;
625
626 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
627 &cachefile) != 0)
628 return;
629
630 dp = kmem_alloc(sizeof (spa_config_dirent_t),
631 KM_SLEEP);
632
633 if (cachefile[0] == '\0')
634 dp->scd_path = spa_strdup(spa_config_path);
635 else if (strcmp(cachefile, "none") == 0)
636 dp->scd_path = NULL;
637 else
638 dp->scd_path = spa_strdup(cachefile);
639
640 list_insert_head(&spa->spa_config_list, dp);
641 if (need_sync)
642 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
643 }
644
645 int
spa_prop_set(spa_t * spa,nvlist_t * nvp)646 spa_prop_set(spa_t *spa, nvlist_t *nvp)
647 {
648 int error;
649 nvpair_t *elem = NULL;
650 boolean_t need_sync = B_FALSE;
651
652 if ((error = spa_prop_validate(spa, nvp)) != 0)
653 return (error);
654
655 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
656 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
657
658 if (prop == ZPOOL_PROP_CACHEFILE ||
659 prop == ZPOOL_PROP_ALTROOT ||
660 prop == ZPOOL_PROP_READONLY)
661 continue;
662
663 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
664 uint64_t ver;
665
666 if (prop == ZPOOL_PROP_VERSION) {
667 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
668 } else {
669 ASSERT(zpool_prop_feature(nvpair_name(elem)));
670 ver = SPA_VERSION_FEATURES;
671 need_sync = B_TRUE;
672 }
673
674 /* Save time if the version is already set. */
675 if (ver == spa_version(spa))
676 continue;
677
678 /*
679 * In addition to the pool directory object, we might
680 * create the pool properties object, the features for
681 * read object, the features for write object, or the
682 * feature descriptions object.
683 */
684 error = dsl_sync_task(spa->spa_name, NULL,
685 spa_sync_version, &ver,
686 6, ZFS_SPACE_CHECK_RESERVED);
687 if (error)
688 return (error);
689 continue;
690 }
691
692 need_sync = B_TRUE;
693 break;
694 }
695
696 if (need_sync) {
697 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
698 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
699 }
700
701 return (0);
702 }
703
704 /*
705 * If the bootfs property value is dsobj, clear it.
706 */
707 void
spa_prop_clear_bootfs(spa_t * spa,uint64_t dsobj,dmu_tx_t * tx)708 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
709 {
710 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
711 VERIFY(zap_remove(spa->spa_meta_objset,
712 spa->spa_pool_props_object,
713 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
714 spa->spa_bootfs = 0;
715 }
716 }
717
718 /*ARGSUSED*/
719 static int
spa_change_guid_check(void * arg,dmu_tx_t * tx)720 spa_change_guid_check(void *arg, dmu_tx_t *tx)
721 {
722 uint64_t *newguid = arg;
723 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
724 vdev_t *rvd = spa->spa_root_vdev;
725 uint64_t vdev_state;
726
727 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
728 vdev_state = rvd->vdev_state;
729 spa_config_exit(spa, SCL_STATE, FTAG);
730
731 if (vdev_state != VDEV_STATE_HEALTHY)
732 return (SET_ERROR(ENXIO));
733
734 ASSERT3U(spa_guid(spa), !=, *newguid);
735
736 return (0);
737 }
738
739 static void
spa_change_guid_sync(void * arg,dmu_tx_t * tx)740 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
741 {
742 uint64_t *newguid = arg;
743 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
744 uint64_t oldguid;
745 vdev_t *rvd = spa->spa_root_vdev;
746
747 oldguid = spa_guid(spa);
748
749 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
750 rvd->vdev_guid = *newguid;
751 rvd->vdev_guid_sum += (*newguid - oldguid);
752 vdev_config_dirty(rvd);
753 spa_config_exit(spa, SCL_STATE, FTAG);
754
755 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
756 oldguid, *newguid);
757 }
758
759 /*
760 * Change the GUID for the pool. This is done so that we can later
761 * re-import a pool built from a clone of our own vdevs. We will modify
762 * the root vdev's guid, our own pool guid, and then mark all of our
763 * vdevs dirty. Note that we must make sure that all our vdevs are
764 * online when we do this, or else any vdevs that weren't present
765 * would be orphaned from our pool. We are also going to issue a
766 * sysevent to update any watchers.
767 */
768 int
spa_change_guid(spa_t * spa)769 spa_change_guid(spa_t *spa)
770 {
771 int error;
772 uint64_t guid;
773
774 mutex_enter(&spa->spa_vdev_top_lock);
775 mutex_enter(&spa_namespace_lock);
776 guid = spa_generate_guid(NULL);
777
778 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
779 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
780
781 if (error == 0) {
782 spa_config_sync(spa, B_FALSE, B_TRUE);
783 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
784 }
785
786 mutex_exit(&spa_namespace_lock);
787 mutex_exit(&spa->spa_vdev_top_lock);
788
789 return (error);
790 }
791
792 /*
793 * ==========================================================================
794 * SPA state manipulation (open/create/destroy/import/export)
795 * ==========================================================================
796 */
797
798 static int
spa_error_entry_compare(const void * a,const void * b)799 spa_error_entry_compare(const void *a, const void *b)
800 {
801 spa_error_entry_t *sa = (spa_error_entry_t *)a;
802 spa_error_entry_t *sb = (spa_error_entry_t *)b;
803 int ret;
804
805 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
806 sizeof (zbookmark_phys_t));
807
808 if (ret < 0)
809 return (-1);
810 else if (ret > 0)
811 return (1);
812 else
813 return (0);
814 }
815
816 /*
817 * Utility function which retrieves copies of the current logs and
818 * re-initializes them in the process.
819 */
820 void
spa_get_errlists(spa_t * spa,avl_tree_t * last,avl_tree_t * scrub)821 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
822 {
823 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
824
825 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
826 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
827
828 avl_create(&spa->spa_errlist_scrub,
829 spa_error_entry_compare, sizeof (spa_error_entry_t),
830 offsetof(spa_error_entry_t, se_avl));
831 avl_create(&spa->spa_errlist_last,
832 spa_error_entry_compare, sizeof (spa_error_entry_t),
833 offsetof(spa_error_entry_t, se_avl));
834 }
835
836 static void
spa_taskqs_init(spa_t * spa,zio_type_t t,zio_taskq_type_t q)837 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
838 {
839 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
840 enum zti_modes mode = ztip->zti_mode;
841 uint_t value = ztip->zti_value;
842 uint_t count = ztip->zti_count;
843 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
844 char name[32];
845 uint_t flags = 0;
846 boolean_t batch = B_FALSE;
847
848 if (mode == ZTI_MODE_NULL) {
849 tqs->stqs_count = 0;
850 tqs->stqs_taskq = NULL;
851 return;
852 }
853
854 ASSERT3U(count, >, 0);
855
856 tqs->stqs_count = count;
857 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
858
859 switch (mode) {
860 case ZTI_MODE_FIXED:
861 ASSERT3U(value, >=, 1);
862 value = MAX(value, 1);
863 break;
864
865 case ZTI_MODE_BATCH:
866 batch = B_TRUE;
867 flags |= TASKQ_THREADS_CPU_PCT;
868 value = zio_taskq_batch_pct;
869 break;
870
871 default:
872 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
873 "spa_activate()",
874 zio_type_name[t], zio_taskq_types[q], mode, value);
875 break;
876 }
877
878 for (uint_t i = 0; i < count; i++) {
879 taskq_t *tq;
880
881 if (count > 1) {
882 (void) snprintf(name, sizeof (name), "%s_%s_%u",
883 zio_type_name[t], zio_taskq_types[q], i);
884 } else {
885 (void) snprintf(name, sizeof (name), "%s_%s",
886 zio_type_name[t], zio_taskq_types[q]);
887 }
888
889 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
890 if (batch)
891 flags |= TASKQ_DC_BATCH;
892
893 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
894 spa->spa_proc, zio_taskq_basedc, flags);
895 } else {
896 pri_t pri = maxclsyspri;
897 /*
898 * The write issue taskq can be extremely CPU
899 * intensive. Run it at slightly lower priority
900 * than the other taskqs.
901 */
902 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
903 pri--;
904
905 tq = taskq_create_proc(name, value, pri, 50,
906 INT_MAX, spa->spa_proc, flags);
907 }
908
909 tqs->stqs_taskq[i] = tq;
910 }
911 }
912
913 static void
spa_taskqs_fini(spa_t * spa,zio_type_t t,zio_taskq_type_t q)914 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
915 {
916 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
917
918 if (tqs->stqs_taskq == NULL) {
919 ASSERT0(tqs->stqs_count);
920 return;
921 }
922
923 for (uint_t i = 0; i < tqs->stqs_count; i++) {
924 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
925 taskq_destroy(tqs->stqs_taskq[i]);
926 }
927
928 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
929 tqs->stqs_taskq = NULL;
930 }
931
932 /*
933 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
934 * Note that a type may have multiple discrete taskqs to avoid lock contention
935 * on the taskq itself. In that case we choose which taskq at random by using
936 * the low bits of gethrtime().
937 */
938 void
spa_taskq_dispatch_ent(spa_t * spa,zio_type_t t,zio_taskq_type_t q,task_func_t * func,void * arg,uint_t flags,taskq_ent_t * ent)939 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
940 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
941 {
942 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
943 taskq_t *tq;
944
945 ASSERT3P(tqs->stqs_taskq, !=, NULL);
946 ASSERT3U(tqs->stqs_count, !=, 0);
947
948 if (tqs->stqs_count == 1) {
949 tq = tqs->stqs_taskq[0];
950 } else {
951 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
952 }
953
954 taskq_dispatch_ent(tq, func, arg, flags, ent);
955 }
956
957 static void
spa_create_zio_taskqs(spa_t * spa)958 spa_create_zio_taskqs(spa_t *spa)
959 {
960 for (int t = 0; t < ZIO_TYPES; t++) {
961 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
962 spa_taskqs_init(spa, t, q);
963 }
964 }
965 }
966
967 #ifdef _KERNEL
968 static void
spa_thread(void * arg)969 spa_thread(void *arg)
970 {
971 callb_cpr_t cprinfo;
972
973 spa_t *spa = arg;
974 user_t *pu = PTOU(curproc);
975
976 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
977 spa->spa_name);
978
979 ASSERT(curproc != &p0);
980 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
981 "zpool-%s", spa->spa_name);
982 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
983
984 /* bind this thread to the requested psrset */
985 if (zio_taskq_psrset_bind != PS_NONE) {
986 pool_lock();
987 mutex_enter(&cpu_lock);
988 mutex_enter(&pidlock);
989 mutex_enter(&curproc->p_lock);
990
991 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
992 0, NULL, NULL) == 0) {
993 curthread->t_bind_pset = zio_taskq_psrset_bind;
994 } else {
995 cmn_err(CE_WARN,
996 "Couldn't bind process for zfs pool \"%s\" to "
997 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
998 }
999
1000 mutex_exit(&curproc->p_lock);
1001 mutex_exit(&pidlock);
1002 mutex_exit(&cpu_lock);
1003 pool_unlock();
1004 }
1005
1006 if (zio_taskq_sysdc) {
1007 sysdc_thread_enter(curthread, 100, 0);
1008 }
1009
1010 spa->spa_proc = curproc;
1011 spa->spa_did = curthread->t_did;
1012
1013 spa_create_zio_taskqs(spa);
1014
1015 mutex_enter(&spa->spa_proc_lock);
1016 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1017
1018 spa->spa_proc_state = SPA_PROC_ACTIVE;
1019 cv_broadcast(&spa->spa_proc_cv);
1020
1021 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1022 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1023 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1024 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1025
1026 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1027 spa->spa_proc_state = SPA_PROC_GONE;
1028 spa->spa_proc = &p0;
1029 cv_broadcast(&spa->spa_proc_cv);
1030 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1031
1032 mutex_enter(&curproc->p_lock);
1033 lwp_exit();
1034 }
1035 #endif
1036
1037 /*
1038 * Activate an uninitialized pool.
1039 */
1040 static void
spa_activate(spa_t * spa,int mode)1041 spa_activate(spa_t *spa, int mode)
1042 {
1043 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1044
1045 spa->spa_state = POOL_STATE_ACTIVE;
1046 spa->spa_mode = mode;
1047
1048 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1049 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1050
1051 /* Try to create a covering process */
1052 mutex_enter(&spa->spa_proc_lock);
1053 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1054 ASSERT(spa->spa_proc == &p0);
1055 spa->spa_did = 0;
1056
1057 /* Only create a process if we're going to be around a while. */
1058 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1059 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1060 NULL, 0) == 0) {
1061 spa->spa_proc_state = SPA_PROC_CREATED;
1062 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1063 cv_wait(&spa->spa_proc_cv,
1064 &spa->spa_proc_lock);
1065 }
1066 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1067 ASSERT(spa->spa_proc != &p0);
1068 ASSERT(spa->spa_did != 0);
1069 } else {
1070 #ifdef _KERNEL
1071 cmn_err(CE_WARN,
1072 "Couldn't create process for zfs pool \"%s\"\n",
1073 spa->spa_name);
1074 #endif
1075 }
1076 }
1077 mutex_exit(&spa->spa_proc_lock);
1078
1079 /* If we didn't create a process, we need to create our taskqs. */
1080 if (spa->spa_proc == &p0) {
1081 spa_create_zio_taskqs(spa);
1082 }
1083
1084 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1085 offsetof(vdev_t, vdev_config_dirty_node));
1086 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1087 offsetof(objset_t, os_evicting_node));
1088 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1089 offsetof(vdev_t, vdev_state_dirty_node));
1090
1091 txg_list_create(&spa->spa_vdev_txg_list,
1092 offsetof(struct vdev, vdev_txg_node));
1093
1094 avl_create(&spa->spa_errlist_scrub,
1095 spa_error_entry_compare, sizeof (spa_error_entry_t),
1096 offsetof(spa_error_entry_t, se_avl));
1097 avl_create(&spa->spa_errlist_last,
1098 spa_error_entry_compare, sizeof (spa_error_entry_t),
1099 offsetof(spa_error_entry_t, se_avl));
1100 }
1101
1102 /*
1103 * Opposite of spa_activate().
1104 */
1105 static void
spa_deactivate(spa_t * spa)1106 spa_deactivate(spa_t *spa)
1107 {
1108 ASSERT(spa->spa_sync_on == B_FALSE);
1109 ASSERT(spa->spa_dsl_pool == NULL);
1110 ASSERT(spa->spa_root_vdev == NULL);
1111 ASSERT(spa->spa_async_zio_root == NULL);
1112 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1113
1114 spa_evicting_os_wait(spa);
1115
1116 txg_list_destroy(&spa->spa_vdev_txg_list);
1117
1118 list_destroy(&spa->spa_config_dirty_list);
1119 list_destroy(&spa->spa_evicting_os_list);
1120 list_destroy(&spa->spa_state_dirty_list);
1121
1122 for (int t = 0; t < ZIO_TYPES; t++) {
1123 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1124 spa_taskqs_fini(spa, t, q);
1125 }
1126 }
1127
1128 metaslab_class_destroy(spa->spa_normal_class);
1129 spa->spa_normal_class = NULL;
1130
1131 metaslab_class_destroy(spa->spa_log_class);
1132 spa->spa_log_class = NULL;
1133
1134 /*
1135 * If this was part of an import or the open otherwise failed, we may
1136 * still have errors left in the queues. Empty them just in case.
1137 */
1138 spa_errlog_drain(spa);
1139
1140 avl_destroy(&spa->spa_errlist_scrub);
1141 avl_destroy(&spa->spa_errlist_last);
1142
1143 spa->spa_state = POOL_STATE_UNINITIALIZED;
1144
1145 mutex_enter(&spa->spa_proc_lock);
1146 if (spa->spa_proc_state != SPA_PROC_NONE) {
1147 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1148 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1149 cv_broadcast(&spa->spa_proc_cv);
1150 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1151 ASSERT(spa->spa_proc != &p0);
1152 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1153 }
1154 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1155 spa->spa_proc_state = SPA_PROC_NONE;
1156 }
1157 ASSERT(spa->spa_proc == &p0);
1158 mutex_exit(&spa->spa_proc_lock);
1159
1160 /*
1161 * We want to make sure spa_thread() has actually exited the ZFS
1162 * module, so that the module can't be unloaded out from underneath
1163 * it.
1164 */
1165 if (spa->spa_did != 0) {
1166 thread_join(spa->spa_did);
1167 spa->spa_did = 0;
1168 }
1169 }
1170
1171 /*
1172 * Verify a pool configuration, and construct the vdev tree appropriately. This
1173 * will create all the necessary vdevs in the appropriate layout, with each vdev
1174 * in the CLOSED state. This will prep the pool before open/creation/import.
1175 * All vdev validation is done by the vdev_alloc() routine.
1176 */
1177 static int
spa_config_parse(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int atype)1178 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1179 uint_t id, int atype)
1180 {
1181 nvlist_t **child;
1182 uint_t children;
1183 int error;
1184
1185 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1186 return (error);
1187
1188 if ((*vdp)->vdev_ops->vdev_op_leaf)
1189 return (0);
1190
1191 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1192 &child, &children);
1193
1194 if (error == ENOENT)
1195 return (0);
1196
1197 if (error) {
1198 vdev_free(*vdp);
1199 *vdp = NULL;
1200 return (SET_ERROR(EINVAL));
1201 }
1202
1203 for (int c = 0; c < children; c++) {
1204 vdev_t *vd;
1205 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1206 atype)) != 0) {
1207 vdev_free(*vdp);
1208 *vdp = NULL;
1209 return (error);
1210 }
1211 }
1212
1213 ASSERT(*vdp != NULL);
1214
1215 return (0);
1216 }
1217
1218 /*
1219 * Opposite of spa_load().
1220 */
1221 static void
spa_unload(spa_t * spa)1222 spa_unload(spa_t *spa)
1223 {
1224 int i;
1225
1226 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1227
1228 /*
1229 * Stop async tasks.
1230 */
1231 spa_async_suspend(spa);
1232
1233 /*
1234 * Stop syncing.
1235 */
1236 if (spa->spa_sync_on) {
1237 txg_sync_stop(spa->spa_dsl_pool);
1238 spa->spa_sync_on = B_FALSE;
1239 }
1240
1241 /*
1242 * Wait for any outstanding async I/O to complete.
1243 */
1244 if (spa->spa_async_zio_root != NULL) {
1245 for (int i = 0; i < max_ncpus; i++)
1246 (void) zio_wait(spa->spa_async_zio_root[i]);
1247 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1248 spa->spa_async_zio_root = NULL;
1249 }
1250
1251 bpobj_close(&spa->spa_deferred_bpobj);
1252
1253 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1254
1255 /*
1256 * Close all vdevs.
1257 */
1258 if (spa->spa_root_vdev)
1259 vdev_free(spa->spa_root_vdev);
1260 ASSERT(spa->spa_root_vdev == NULL);
1261
1262 /*
1263 * Close the dsl pool.
1264 */
1265 if (spa->spa_dsl_pool) {
1266 dsl_pool_close(spa->spa_dsl_pool);
1267 spa->spa_dsl_pool = NULL;
1268 spa->spa_meta_objset = NULL;
1269 }
1270
1271 ddt_unload(spa);
1272
1273
1274 /*
1275 * Drop and purge level 2 cache
1276 */
1277 spa_l2cache_drop(spa);
1278
1279 for (i = 0; i < spa->spa_spares.sav_count; i++)
1280 vdev_free(spa->spa_spares.sav_vdevs[i]);
1281 if (spa->spa_spares.sav_vdevs) {
1282 kmem_free(spa->spa_spares.sav_vdevs,
1283 spa->spa_spares.sav_count * sizeof (void *));
1284 spa->spa_spares.sav_vdevs = NULL;
1285 }
1286 if (spa->spa_spares.sav_config) {
1287 nvlist_free(spa->spa_spares.sav_config);
1288 spa->spa_spares.sav_config = NULL;
1289 }
1290 spa->spa_spares.sav_count = 0;
1291
1292 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1293 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1294 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1295 }
1296 if (spa->spa_l2cache.sav_vdevs) {
1297 kmem_free(spa->spa_l2cache.sav_vdevs,
1298 spa->spa_l2cache.sav_count * sizeof (void *));
1299 spa->spa_l2cache.sav_vdevs = NULL;
1300 }
1301 if (spa->spa_l2cache.sav_config) {
1302 nvlist_free(spa->spa_l2cache.sav_config);
1303 spa->spa_l2cache.sav_config = NULL;
1304 }
1305 spa->spa_l2cache.sav_count = 0;
1306
1307 spa->spa_async_suspended = 0;
1308
1309 if (spa->spa_comment != NULL) {
1310 spa_strfree(spa->spa_comment);
1311 spa->spa_comment = NULL;
1312 }
1313
1314 spa_config_exit(spa, SCL_ALL, FTAG);
1315 }
1316
1317 /*
1318 * Load (or re-load) the current list of vdevs describing the active spares for
1319 * this pool. When this is called, we have some form of basic information in
1320 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1321 * then re-generate a more complete list including status information.
1322 */
1323 static void
spa_load_spares(spa_t * spa)1324 spa_load_spares(spa_t *spa)
1325 {
1326 nvlist_t **spares;
1327 uint_t nspares;
1328 int i;
1329 vdev_t *vd, *tvd;
1330
1331 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1332
1333 /*
1334 * First, close and free any existing spare vdevs.
1335 */
1336 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1337 vd = spa->spa_spares.sav_vdevs[i];
1338
1339 /* Undo the call to spa_activate() below */
1340 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1341 B_FALSE)) != NULL && tvd->vdev_isspare)
1342 spa_spare_remove(tvd);
1343 vdev_close(vd);
1344 vdev_free(vd);
1345 }
1346
1347 if (spa->spa_spares.sav_vdevs)
1348 kmem_free(spa->spa_spares.sav_vdevs,
1349 spa->spa_spares.sav_count * sizeof (void *));
1350
1351 if (spa->spa_spares.sav_config == NULL)
1352 nspares = 0;
1353 else
1354 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1355 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1356
1357 spa->spa_spares.sav_count = (int)nspares;
1358 spa->spa_spares.sav_vdevs = NULL;
1359
1360 if (nspares == 0)
1361 return;
1362
1363 /*
1364 * Construct the array of vdevs, opening them to get status in the
1365 * process. For each spare, there is potentially two different vdev_t
1366 * structures associated with it: one in the list of spares (used only
1367 * for basic validation purposes) and one in the active vdev
1368 * configuration (if it's spared in). During this phase we open and
1369 * validate each vdev on the spare list. If the vdev also exists in the
1370 * active configuration, then we also mark this vdev as an active spare.
1371 */
1372 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1373 KM_SLEEP);
1374 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1375 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1376 VDEV_ALLOC_SPARE) == 0);
1377 ASSERT(vd != NULL);
1378
1379 spa->spa_spares.sav_vdevs[i] = vd;
1380
1381 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1382 B_FALSE)) != NULL) {
1383 if (!tvd->vdev_isspare)
1384 spa_spare_add(tvd);
1385
1386 /*
1387 * We only mark the spare active if we were successfully
1388 * able to load the vdev. Otherwise, importing a pool
1389 * with a bad active spare would result in strange
1390 * behavior, because multiple pool would think the spare
1391 * is actively in use.
1392 *
1393 * There is a vulnerability here to an equally bizarre
1394 * circumstance, where a dead active spare is later
1395 * brought back to life (onlined or otherwise). Given
1396 * the rarity of this scenario, and the extra complexity
1397 * it adds, we ignore the possibility.
1398 */
1399 if (!vdev_is_dead(tvd))
1400 spa_spare_activate(tvd);
1401 }
1402
1403 vd->vdev_top = vd;
1404 vd->vdev_aux = &spa->spa_spares;
1405
1406 if (vdev_open(vd) != 0)
1407 continue;
1408
1409 if (vdev_validate_aux(vd) == 0)
1410 spa_spare_add(vd);
1411 }
1412
1413 /*
1414 * Recompute the stashed list of spares, with status information
1415 * this time.
1416 */
1417 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1418 DATA_TYPE_NVLIST_ARRAY) == 0);
1419
1420 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1421 KM_SLEEP);
1422 for (i = 0; i < spa->spa_spares.sav_count; i++)
1423 spares[i] = vdev_config_generate(spa,
1424 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1425 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1426 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1427 for (i = 0; i < spa->spa_spares.sav_count; i++)
1428 nvlist_free(spares[i]);
1429 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1430 }
1431
1432 /*
1433 * Load (or re-load) the current list of vdevs describing the active l2cache for
1434 * this pool. When this is called, we have some form of basic information in
1435 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1436 * then re-generate a more complete list including status information.
1437 * Devices which are already active have their details maintained, and are
1438 * not re-opened.
1439 */
1440 static void
spa_load_l2cache(spa_t * spa)1441 spa_load_l2cache(spa_t *spa)
1442 {
1443 nvlist_t **l2cache;
1444 uint_t nl2cache;
1445 int i, j, oldnvdevs;
1446 uint64_t guid;
1447 vdev_t *vd, **oldvdevs, **newvdevs;
1448 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1449
1450 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1451
1452 if (sav->sav_config != NULL) {
1453 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1454 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1455 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1456 } else {
1457 nl2cache = 0;
1458 newvdevs = NULL;
1459 }
1460
1461 oldvdevs = sav->sav_vdevs;
1462 oldnvdevs = sav->sav_count;
1463 sav->sav_vdevs = NULL;
1464 sav->sav_count = 0;
1465
1466 /*
1467 * Process new nvlist of vdevs.
1468 */
1469 for (i = 0; i < nl2cache; i++) {
1470 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1471 &guid) == 0);
1472
1473 newvdevs[i] = NULL;
1474 for (j = 0; j < oldnvdevs; j++) {
1475 vd = oldvdevs[j];
1476 if (vd != NULL && guid == vd->vdev_guid) {
1477 /*
1478 * Retain previous vdev for add/remove ops.
1479 */
1480 newvdevs[i] = vd;
1481 oldvdevs[j] = NULL;
1482 break;
1483 }
1484 }
1485
1486 if (newvdevs[i] == NULL) {
1487 /*
1488 * Create new vdev
1489 */
1490 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1491 VDEV_ALLOC_L2CACHE) == 0);
1492 ASSERT(vd != NULL);
1493 newvdevs[i] = vd;
1494
1495 /*
1496 * Commit this vdev as an l2cache device,
1497 * even if it fails to open.
1498 */
1499 spa_l2cache_add(vd);
1500
1501 vd->vdev_top = vd;
1502 vd->vdev_aux = sav;
1503
1504 spa_l2cache_activate(vd);
1505
1506 if (vdev_open(vd) != 0)
1507 continue;
1508
1509 (void) vdev_validate_aux(vd);
1510
1511 if (!vdev_is_dead(vd))
1512 l2arc_add_vdev(spa, vd);
1513 }
1514 }
1515
1516 /*
1517 * Purge vdevs that were dropped
1518 */
1519 for (i = 0; i < oldnvdevs; i++) {
1520 uint64_t pool;
1521
1522 vd = oldvdevs[i];
1523 if (vd != NULL) {
1524 ASSERT(vd->vdev_isl2cache);
1525
1526 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1527 pool != 0ULL && l2arc_vdev_present(vd))
1528 l2arc_remove_vdev(vd);
1529 vdev_clear_stats(vd);
1530 vdev_free(vd);
1531 }
1532 }
1533
1534 if (oldvdevs)
1535 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1536
1537 if (sav->sav_config == NULL)
1538 goto out;
1539
1540 sav->sav_vdevs = newvdevs;
1541 sav->sav_count = (int)nl2cache;
1542
1543 /*
1544 * Recompute the stashed list of l2cache devices, with status
1545 * information this time.
1546 */
1547 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1548 DATA_TYPE_NVLIST_ARRAY) == 0);
1549
1550 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1551 for (i = 0; i < sav->sav_count; i++)
1552 l2cache[i] = vdev_config_generate(spa,
1553 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1554 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1555 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1556 out:
1557 for (i = 0; i < sav->sav_count; i++)
1558 nvlist_free(l2cache[i]);
1559 if (sav->sav_count)
1560 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1561 }
1562
1563 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)1564 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1565 {
1566 dmu_buf_t *db;
1567 char *packed = NULL;
1568 size_t nvsize = 0;
1569 int error;
1570 *value = NULL;
1571
1572 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1573 if (error != 0)
1574 return (error);
1575
1576 nvsize = *(uint64_t *)db->db_data;
1577 dmu_buf_rele(db, FTAG);
1578
1579 packed = kmem_alloc(nvsize, KM_SLEEP);
1580 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1581 DMU_READ_PREFETCH);
1582 if (error == 0)
1583 error = nvlist_unpack(packed, nvsize, value, 0);
1584 kmem_free(packed, nvsize);
1585
1586 return (error);
1587 }
1588
1589 /*
1590 * Checks to see if the given vdev could not be opened, in which case we post a
1591 * sysevent to notify the autoreplace code that the device has been removed.
1592 */
1593 static void
spa_check_removed(vdev_t * vd)1594 spa_check_removed(vdev_t *vd)
1595 {
1596 for (int c = 0; c < vd->vdev_children; c++)
1597 spa_check_removed(vd->vdev_child[c]);
1598
1599 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1600 !vd->vdev_ishole) {
1601 zfs_post_autoreplace(vd->vdev_spa, vd);
1602 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1603 }
1604 }
1605
1606 /*
1607 * Validate the current config against the MOS config
1608 */
1609 static boolean_t
spa_config_valid(spa_t * spa,nvlist_t * config)1610 spa_config_valid(spa_t *spa, nvlist_t *config)
1611 {
1612 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1613 nvlist_t *nv;
1614
1615 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1616
1617 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1618 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1619
1620 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1621
1622 /*
1623 * If we're doing a normal import, then build up any additional
1624 * diagnostic information about missing devices in this config.
1625 * We'll pass this up to the user for further processing.
1626 */
1627 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1628 nvlist_t **child, *nv;
1629 uint64_t idx = 0;
1630
1631 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1632 KM_SLEEP);
1633 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1634
1635 for (int c = 0; c < rvd->vdev_children; c++) {
1636 vdev_t *tvd = rvd->vdev_child[c];
1637 vdev_t *mtvd = mrvd->vdev_child[c];
1638
1639 if (tvd->vdev_ops == &vdev_missing_ops &&
1640 mtvd->vdev_ops != &vdev_missing_ops &&
1641 mtvd->vdev_islog)
1642 child[idx++] = vdev_config_generate(spa, mtvd,
1643 B_FALSE, 0);
1644 }
1645
1646 if (idx) {
1647 VERIFY(nvlist_add_nvlist_array(nv,
1648 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1649 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1650 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1651
1652 for (int i = 0; i < idx; i++)
1653 nvlist_free(child[i]);
1654 }
1655 nvlist_free(nv);
1656 kmem_free(child, rvd->vdev_children * sizeof (char **));
1657 }
1658
1659 /*
1660 * Compare the root vdev tree with the information we have
1661 * from the MOS config (mrvd). Check each top-level vdev
1662 * with the corresponding MOS config top-level (mtvd).
1663 */
1664 for (int c = 0; c < rvd->vdev_children; c++) {
1665 vdev_t *tvd = rvd->vdev_child[c];
1666 vdev_t *mtvd = mrvd->vdev_child[c];
1667
1668 /*
1669 * Resolve any "missing" vdevs in the current configuration.
1670 * If we find that the MOS config has more accurate information
1671 * about the top-level vdev then use that vdev instead.
1672 */
1673 if (tvd->vdev_ops == &vdev_missing_ops &&
1674 mtvd->vdev_ops != &vdev_missing_ops) {
1675
1676 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1677 continue;
1678
1679 /*
1680 * Device specific actions.
1681 */
1682 if (mtvd->vdev_islog) {
1683 spa_set_log_state(spa, SPA_LOG_CLEAR);
1684 } else {
1685 /*
1686 * XXX - once we have 'readonly' pool
1687 * support we should be able to handle
1688 * missing data devices by transitioning
1689 * the pool to readonly.
1690 */
1691 continue;
1692 }
1693
1694 /*
1695 * Swap the missing vdev with the data we were
1696 * able to obtain from the MOS config.
1697 */
1698 vdev_remove_child(rvd, tvd);
1699 vdev_remove_child(mrvd, mtvd);
1700
1701 vdev_add_child(rvd, mtvd);
1702 vdev_add_child(mrvd, tvd);
1703
1704 spa_config_exit(spa, SCL_ALL, FTAG);
1705 vdev_load(mtvd);
1706 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1707
1708 vdev_reopen(rvd);
1709 } else if (mtvd->vdev_islog) {
1710 /*
1711 * Load the slog device's state from the MOS config
1712 * since it's possible that the label does not
1713 * contain the most up-to-date information.
1714 */
1715 vdev_load_log_state(tvd, mtvd);
1716 vdev_reopen(tvd);
1717 }
1718 }
1719 vdev_free(mrvd);
1720 spa_config_exit(spa, SCL_ALL, FTAG);
1721
1722 /*
1723 * Ensure we were able to validate the config.
1724 */
1725 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1726 }
1727
1728 /*
1729 * Check for missing log devices
1730 */
1731 static boolean_t
spa_check_logs(spa_t * spa)1732 spa_check_logs(spa_t *spa)
1733 {
1734 boolean_t rv = B_FALSE;
1735 dsl_pool_t *dp = spa_get_dsl(spa);
1736
1737 switch (spa->spa_log_state) {
1738 case SPA_LOG_MISSING:
1739 /* need to recheck in case slog has been restored */
1740 case SPA_LOG_UNKNOWN:
1741 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1742 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1743 if (rv)
1744 spa_set_log_state(spa, SPA_LOG_MISSING);
1745 break;
1746 }
1747 return (rv);
1748 }
1749
1750 static boolean_t
spa_passivate_log(spa_t * spa)1751 spa_passivate_log(spa_t *spa)
1752 {
1753 vdev_t *rvd = spa->spa_root_vdev;
1754 boolean_t slog_found = B_FALSE;
1755
1756 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1757
1758 if (!spa_has_slogs(spa))
1759 return (B_FALSE);
1760
1761 for (int c = 0; c < rvd->vdev_children; c++) {
1762 vdev_t *tvd = rvd->vdev_child[c];
1763 metaslab_group_t *mg = tvd->vdev_mg;
1764
1765 if (tvd->vdev_islog) {
1766 metaslab_group_passivate(mg);
1767 slog_found = B_TRUE;
1768 }
1769 }
1770
1771 return (slog_found);
1772 }
1773
1774 static void
spa_activate_log(spa_t * spa)1775 spa_activate_log(spa_t *spa)
1776 {
1777 vdev_t *rvd = spa->spa_root_vdev;
1778
1779 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1780
1781 for (int c = 0; c < rvd->vdev_children; c++) {
1782 vdev_t *tvd = rvd->vdev_child[c];
1783 metaslab_group_t *mg = tvd->vdev_mg;
1784
1785 if (tvd->vdev_islog)
1786 metaslab_group_activate(mg);
1787 }
1788 }
1789
1790 int
spa_offline_log(spa_t * spa)1791 spa_offline_log(spa_t *spa)
1792 {
1793 int error;
1794
1795 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1796 NULL, DS_FIND_CHILDREN);
1797 if (error == 0) {
1798 /*
1799 * We successfully offlined the log device, sync out the
1800 * current txg so that the "stubby" block can be removed
1801 * by zil_sync().
1802 */
1803 txg_wait_synced(spa->spa_dsl_pool, 0);
1804 }
1805 return (error);
1806 }
1807
1808 static void
spa_aux_check_removed(spa_aux_vdev_t * sav)1809 spa_aux_check_removed(spa_aux_vdev_t *sav)
1810 {
1811 for (int i = 0; i < sav->sav_count; i++)
1812 spa_check_removed(sav->sav_vdevs[i]);
1813 }
1814
1815 void
spa_claim_notify(zio_t * zio)1816 spa_claim_notify(zio_t *zio)
1817 {
1818 spa_t *spa = zio->io_spa;
1819
1820 if (zio->io_error)
1821 return;
1822
1823 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1824 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1825 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1826 mutex_exit(&spa->spa_props_lock);
1827 }
1828
1829 typedef struct spa_load_error {
1830 uint64_t sle_meta_count;
1831 uint64_t sle_data_count;
1832 } spa_load_error_t;
1833
1834 static void
spa_load_verify_done(zio_t * zio)1835 spa_load_verify_done(zio_t *zio)
1836 {
1837 blkptr_t *bp = zio->io_bp;
1838 spa_load_error_t *sle = zio->io_private;
1839 dmu_object_type_t type = BP_GET_TYPE(bp);
1840 int error = zio->io_error;
1841 spa_t *spa = zio->io_spa;
1842
1843 if (error) {
1844 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1845 type != DMU_OT_INTENT_LOG)
1846 atomic_inc_64(&sle->sle_meta_count);
1847 else
1848 atomic_inc_64(&sle->sle_data_count);
1849 }
1850 zio_data_buf_free(zio->io_data, zio->io_size);
1851
1852 mutex_enter(&spa->spa_scrub_lock);
1853 spa->spa_scrub_inflight--;
1854 cv_broadcast(&spa->spa_scrub_io_cv);
1855 mutex_exit(&spa->spa_scrub_lock);
1856 }
1857
1858 /*
1859 * Maximum number of concurrent scrub i/os to create while verifying
1860 * a pool while importing it.
1861 */
1862 int spa_load_verify_maxinflight = 10000;
1863 boolean_t spa_load_verify_metadata = B_TRUE;
1864 boolean_t spa_load_verify_data = B_TRUE;
1865
1866 /*ARGSUSED*/
1867 static int
spa_load_verify_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)1868 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1869 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1870 {
1871 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1872 return (0);
1873 /*
1874 * Note: normally this routine will not be called if
1875 * spa_load_verify_metadata is not set. However, it may be useful
1876 * to manually set the flag after the traversal has begun.
1877 */
1878 if (!spa_load_verify_metadata)
1879 return (0);
1880 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1881 return (0);
1882
1883 zio_t *rio = arg;
1884 size_t size = BP_GET_PSIZE(bp);
1885 void *data = zio_data_buf_alloc(size);
1886
1887 mutex_enter(&spa->spa_scrub_lock);
1888 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1889 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1890 spa->spa_scrub_inflight++;
1891 mutex_exit(&spa->spa_scrub_lock);
1892
1893 zio_nowait(zio_read(rio, spa, bp, data, size,
1894 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1895 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1896 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1897 return (0);
1898 }
1899
1900 static int
spa_load_verify(spa_t * spa)1901 spa_load_verify(spa_t *spa)
1902 {
1903 zio_t *rio;
1904 spa_load_error_t sle = { 0 };
1905 zpool_rewind_policy_t policy;
1906 boolean_t verify_ok = B_FALSE;
1907 int error = 0;
1908
1909 zpool_get_rewind_policy(spa->spa_config, &policy);
1910
1911 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1912 return (0);
1913
1914 rio = zio_root(spa, NULL, &sle,
1915 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1916
1917 if (spa_load_verify_metadata) {
1918 error = traverse_pool(spa, spa->spa_verify_min_txg,
1919 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1920 spa_load_verify_cb, rio);
1921 }
1922
1923 (void) zio_wait(rio);
1924
1925 spa->spa_load_meta_errors = sle.sle_meta_count;
1926 spa->spa_load_data_errors = sle.sle_data_count;
1927
1928 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1929 sle.sle_data_count <= policy.zrp_maxdata) {
1930 int64_t loss = 0;
1931
1932 verify_ok = B_TRUE;
1933 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1934 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1935
1936 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1937 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1938 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1939 VERIFY(nvlist_add_int64(spa->spa_load_info,
1940 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1941 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1942 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1943 } else {
1944 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1945 }
1946
1947 if (error) {
1948 if (error != ENXIO && error != EIO)
1949 error = SET_ERROR(EIO);
1950 return (error);
1951 }
1952
1953 return (verify_ok ? 0 : EIO);
1954 }
1955
1956 /*
1957 * Find a value in the pool props object.
1958 */
1959 static void
spa_prop_find(spa_t * spa,zpool_prop_t prop,uint64_t * val)1960 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1961 {
1962 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1963 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1964 }
1965
1966 /*
1967 * Find a value in the pool directory object.
1968 */
1969 static int
spa_dir_prop(spa_t * spa,const char * name,uint64_t * val)1970 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1971 {
1972 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1973 name, sizeof (uint64_t), 1, val));
1974 }
1975
1976 static int
spa_vdev_err(vdev_t * vdev,vdev_aux_t aux,int err)1977 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1978 {
1979 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1980 return (err);
1981 }
1982
1983 /*
1984 * Fix up config after a partly-completed split. This is done with the
1985 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1986 * pool have that entry in their config, but only the splitting one contains
1987 * a list of all the guids of the vdevs that are being split off.
1988 *
1989 * This function determines what to do with that list: either rejoin
1990 * all the disks to the pool, or complete the splitting process. To attempt
1991 * the rejoin, each disk that is offlined is marked online again, and
1992 * we do a reopen() call. If the vdev label for every disk that was
1993 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1994 * then we call vdev_split() on each disk, and complete the split.
1995 *
1996 * Otherwise we leave the config alone, with all the vdevs in place in
1997 * the original pool.
1998 */
1999 static void
spa_try_repair(spa_t * spa,nvlist_t * config)2000 spa_try_repair(spa_t *spa, nvlist_t *config)
2001 {
2002 uint_t extracted;
2003 uint64_t *glist;
2004 uint_t i, gcount;
2005 nvlist_t *nvl;
2006 vdev_t **vd;
2007 boolean_t attempt_reopen;
2008
2009 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2010 return;
2011
2012 /* check that the config is complete */
2013 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2014 &glist, &gcount) != 0)
2015 return;
2016
2017 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2018
2019 /* attempt to online all the vdevs & validate */
2020 attempt_reopen = B_TRUE;
2021 for (i = 0; i < gcount; i++) {
2022 if (glist[i] == 0) /* vdev is hole */
2023 continue;
2024
2025 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2026 if (vd[i] == NULL) {
2027 /*
2028 * Don't bother attempting to reopen the disks;
2029 * just do the split.
2030 */
2031 attempt_reopen = B_FALSE;
2032 } else {
2033 /* attempt to re-online it */
2034 vd[i]->vdev_offline = B_FALSE;
2035 }
2036 }
2037
2038 if (attempt_reopen) {
2039 vdev_reopen(spa->spa_root_vdev);
2040
2041 /* check each device to see what state it's in */
2042 for (extracted = 0, i = 0; i < gcount; i++) {
2043 if (vd[i] != NULL &&
2044 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2045 break;
2046 ++extracted;
2047 }
2048 }
2049
2050 /*
2051 * If every disk has been moved to the new pool, or if we never
2052 * even attempted to look at them, then we split them off for
2053 * good.
2054 */
2055 if (!attempt_reopen || gcount == extracted) {
2056 for (i = 0; i < gcount; i++)
2057 if (vd[i] != NULL)
2058 vdev_split(vd[i]);
2059 vdev_reopen(spa->spa_root_vdev);
2060 }
2061
2062 kmem_free(vd, gcount * sizeof (vdev_t *));
2063 }
2064
2065 static int
spa_load(spa_t * spa,spa_load_state_t state,spa_import_type_t type,boolean_t mosconfig)2066 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2067 boolean_t mosconfig)
2068 {
2069 nvlist_t *config = spa->spa_config;
2070 char *ereport = FM_EREPORT_ZFS_POOL;
2071 char *comment;
2072 int error;
2073 uint64_t pool_guid;
2074 nvlist_t *nvl;
2075
2076 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2077 return (SET_ERROR(EINVAL));
2078
2079 ASSERT(spa->spa_comment == NULL);
2080 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2081 spa->spa_comment = spa_strdup(comment);
2082
2083 /*
2084 * Versioning wasn't explicitly added to the label until later, so if
2085 * it's not present treat it as the initial version.
2086 */
2087 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2088 &spa->spa_ubsync.ub_version) != 0)
2089 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2090
2091 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2092 &spa->spa_config_txg);
2093
2094 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2095 spa_guid_exists(pool_guid, 0)) {
2096 error = SET_ERROR(EEXIST);
2097 } else {
2098 spa->spa_config_guid = pool_guid;
2099
2100 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2101 &nvl) == 0) {
2102 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2103 KM_SLEEP) == 0);
2104 }
2105
2106 nvlist_free(spa->spa_load_info);
2107 spa->spa_load_info = fnvlist_alloc();
2108
2109 gethrestime(&spa->spa_loaded_ts);
2110 error = spa_load_impl(spa, pool_guid, config, state, type,
2111 mosconfig, &ereport);
2112 }
2113
2114 /*
2115 * Don't count references from objsets that are already closed
2116 * and are making their way through the eviction process.
2117 */
2118 spa_evicting_os_wait(spa);
2119 spa->spa_minref = refcount_count(&spa->spa_refcount);
2120 if (error) {
2121 if (error != EEXIST) {
2122 spa->spa_loaded_ts.tv_sec = 0;
2123 spa->spa_loaded_ts.tv_nsec = 0;
2124 }
2125 if (error != EBADF) {
2126 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2127 }
2128 }
2129 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2130 spa->spa_ena = 0;
2131
2132 return (error);
2133 }
2134
2135 /*
2136 * Load an existing storage pool, using the pool's builtin spa_config as a
2137 * source of configuration information.
2138 */
2139 static int
spa_load_impl(spa_t * spa,uint64_t pool_guid,nvlist_t * config,spa_load_state_t state,spa_import_type_t type,boolean_t mosconfig,char ** ereport)2140 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2141 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2142 char **ereport)
2143 {
2144 int error = 0;
2145 nvlist_t *nvroot = NULL;
2146 nvlist_t *label;
2147 vdev_t *rvd;
2148 uberblock_t *ub = &spa->spa_uberblock;
2149 uint64_t children, config_cache_txg = spa->spa_config_txg;
2150 int orig_mode = spa->spa_mode;
2151 int parse;
2152 uint64_t obj;
2153 boolean_t missing_feat_write = B_FALSE;
2154
2155 /*
2156 * If this is an untrusted config, access the pool in read-only mode.
2157 * This prevents things like resilvering recently removed devices.
2158 */
2159 if (!mosconfig)
2160 spa->spa_mode = FREAD;
2161
2162 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2163
2164 spa->spa_load_state = state;
2165
2166 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2167 return (SET_ERROR(EINVAL));
2168
2169 parse = (type == SPA_IMPORT_EXISTING ?
2170 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2171
2172 /*
2173 * Create "The Godfather" zio to hold all async IOs
2174 */
2175 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2176 KM_SLEEP);
2177 for (int i = 0; i < max_ncpus; i++) {
2178 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2179 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2180 ZIO_FLAG_GODFATHER);
2181 }
2182
2183 /*
2184 * Parse the configuration into a vdev tree. We explicitly set the
2185 * value that will be returned by spa_version() since parsing the
2186 * configuration requires knowing the version number.
2187 */
2188 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2189 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2190 spa_config_exit(spa, SCL_ALL, FTAG);
2191
2192 if (error != 0)
2193 return (error);
2194
2195 ASSERT(spa->spa_root_vdev == rvd);
2196 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2197 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2198
2199 if (type != SPA_IMPORT_ASSEMBLE) {
2200 ASSERT(spa_guid(spa) == pool_guid);
2201 }
2202
2203 /*
2204 * Try to open all vdevs, loading each label in the process.
2205 */
2206 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2207 error = vdev_open(rvd);
2208 spa_config_exit(spa, SCL_ALL, FTAG);
2209 if (error != 0)
2210 return (error);
2211
2212 /*
2213 * We need to validate the vdev labels against the configuration that
2214 * we have in hand, which is dependent on the setting of mosconfig. If
2215 * mosconfig is true then we're validating the vdev labels based on
2216 * that config. Otherwise, we're validating against the cached config
2217 * (zpool.cache) that was read when we loaded the zfs module, and then
2218 * later we will recursively call spa_load() and validate against
2219 * the vdev config.
2220 *
2221 * If we're assembling a new pool that's been split off from an
2222 * existing pool, the labels haven't yet been updated so we skip
2223 * validation for now.
2224 */
2225 if (type != SPA_IMPORT_ASSEMBLE) {
2226 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2227 error = vdev_validate(rvd, mosconfig);
2228 spa_config_exit(spa, SCL_ALL, FTAG);
2229
2230 if (error != 0)
2231 return (error);
2232
2233 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2234 return (SET_ERROR(ENXIO));
2235 }
2236
2237 /*
2238 * Find the best uberblock.
2239 */
2240 vdev_uberblock_load(rvd, ub, &label);
2241
2242 /*
2243 * If we weren't able to find a single valid uberblock, return failure.
2244 */
2245 if (ub->ub_txg == 0) {
2246 nvlist_free(label);
2247 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2248 }
2249
2250 /*
2251 * If the pool has an unsupported version we can't open it.
2252 */
2253 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2254 nvlist_free(label);
2255 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2256 }
2257
2258 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2259 nvlist_t *features;
2260
2261 /*
2262 * If we weren't able to find what's necessary for reading the
2263 * MOS in the label, return failure.
2264 */
2265 if (label == NULL || nvlist_lookup_nvlist(label,
2266 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2267 nvlist_free(label);
2268 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2269 ENXIO));
2270 }
2271
2272 /*
2273 * Update our in-core representation with the definitive values
2274 * from the label.
2275 */
2276 nvlist_free(spa->spa_label_features);
2277 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2278 }
2279
2280 nvlist_free(label);
2281
2282 /*
2283 * Look through entries in the label nvlist's features_for_read. If
2284 * there is a feature listed there which we don't understand then we
2285 * cannot open a pool.
2286 */
2287 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2288 nvlist_t *unsup_feat;
2289
2290 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2291 0);
2292
2293 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2294 NULL); nvp != NULL;
2295 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2296 if (!zfeature_is_supported(nvpair_name(nvp))) {
2297 VERIFY(nvlist_add_string(unsup_feat,
2298 nvpair_name(nvp), "") == 0);
2299 }
2300 }
2301
2302 if (!nvlist_empty(unsup_feat)) {
2303 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2304 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2305 nvlist_free(unsup_feat);
2306 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2307 ENOTSUP));
2308 }
2309
2310 nvlist_free(unsup_feat);
2311 }
2312
2313 /*
2314 * If the vdev guid sum doesn't match the uberblock, we have an
2315 * incomplete configuration. We first check to see if the pool
2316 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2317 * If it is, defer the vdev_guid_sum check till later so we
2318 * can handle missing vdevs.
2319 */
2320 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2321 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2322 rvd->vdev_guid_sum != ub->ub_guid_sum)
2323 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2324
2325 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2326 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2327 spa_try_repair(spa, config);
2328 spa_config_exit(spa, SCL_ALL, FTAG);
2329 nvlist_free(spa->spa_config_splitting);
2330 spa->spa_config_splitting = NULL;
2331 }
2332
2333 /*
2334 * Initialize internal SPA structures.
2335 */
2336 spa->spa_state = POOL_STATE_ACTIVE;
2337 spa->spa_ubsync = spa->spa_uberblock;
2338 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2339 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2340 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2341 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2342 spa->spa_claim_max_txg = spa->spa_first_txg;
2343 spa->spa_prev_software_version = ub->ub_software_version;
2344
2345 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2346 if (error)
2347 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2348 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2349
2350 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2351 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2352
2353 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2354 boolean_t missing_feat_read = B_FALSE;
2355 nvlist_t *unsup_feat, *enabled_feat;
2356
2357 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2358 &spa->spa_feat_for_read_obj) != 0) {
2359 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2360 }
2361
2362 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2363 &spa->spa_feat_for_write_obj) != 0) {
2364 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2365 }
2366
2367 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2368 &spa->spa_feat_desc_obj) != 0) {
2369 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2370 }
2371
2372 enabled_feat = fnvlist_alloc();
2373 unsup_feat = fnvlist_alloc();
2374
2375 if (!spa_features_check(spa, B_FALSE,
2376 unsup_feat, enabled_feat))
2377 missing_feat_read = B_TRUE;
2378
2379 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2380 if (!spa_features_check(spa, B_TRUE,
2381 unsup_feat, enabled_feat)) {
2382 missing_feat_write = B_TRUE;
2383 }
2384 }
2385
2386 fnvlist_add_nvlist(spa->spa_load_info,
2387 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2388
2389 if (!nvlist_empty(unsup_feat)) {
2390 fnvlist_add_nvlist(spa->spa_load_info,
2391 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2392 }
2393
2394 fnvlist_free(enabled_feat);
2395 fnvlist_free(unsup_feat);
2396
2397 if (!missing_feat_read) {
2398 fnvlist_add_boolean(spa->spa_load_info,
2399 ZPOOL_CONFIG_CAN_RDONLY);
2400 }
2401
2402 /*
2403 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2404 * twofold: to determine whether the pool is available for
2405 * import in read-write mode and (if it is not) whether the
2406 * pool is available for import in read-only mode. If the pool
2407 * is available for import in read-write mode, it is displayed
2408 * as available in userland; if it is not available for import
2409 * in read-only mode, it is displayed as unavailable in
2410 * userland. If the pool is available for import in read-only
2411 * mode but not read-write mode, it is displayed as unavailable
2412 * in userland with a special note that the pool is actually
2413 * available for open in read-only mode.
2414 *
2415 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2416 * missing a feature for write, we must first determine whether
2417 * the pool can be opened read-only before returning to
2418 * userland in order to know whether to display the
2419 * abovementioned note.
2420 */
2421 if (missing_feat_read || (missing_feat_write &&
2422 spa_writeable(spa))) {
2423 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2424 ENOTSUP));
2425 }
2426
2427 /*
2428 * Load refcounts for ZFS features from disk into an in-memory
2429 * cache during SPA initialization.
2430 */
2431 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2432 uint64_t refcount;
2433
2434 error = feature_get_refcount_from_disk(spa,
2435 &spa_feature_table[i], &refcount);
2436 if (error == 0) {
2437 spa->spa_feat_refcount_cache[i] = refcount;
2438 } else if (error == ENOTSUP) {
2439 spa->spa_feat_refcount_cache[i] =
2440 SPA_FEATURE_DISABLED;
2441 } else {
2442 return (spa_vdev_err(rvd,
2443 VDEV_AUX_CORRUPT_DATA, EIO));
2444 }
2445 }
2446 }
2447
2448 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2449 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2450 &spa->spa_feat_enabled_txg_obj) != 0)
2451 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2452 }
2453
2454 spa->spa_is_initializing = B_TRUE;
2455 error = dsl_pool_open(spa->spa_dsl_pool);
2456 spa->spa_is_initializing = B_FALSE;
2457 if (error != 0)
2458 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2459
2460 if (!mosconfig) {
2461 uint64_t hostid;
2462 nvlist_t *policy = NULL, *nvconfig;
2463
2464 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2465 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2466
2467 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2468 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2469 char *hostname;
2470 unsigned long myhostid = 0;
2471
2472 VERIFY(nvlist_lookup_string(nvconfig,
2473 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2474
2475 #ifdef _KERNEL
2476 myhostid = zone_get_hostid(NULL);
2477 #else /* _KERNEL */
2478 /*
2479 * We're emulating the system's hostid in userland, so
2480 * we can't use zone_get_hostid().
2481 */
2482 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2483 #endif /* _KERNEL */
2484 if (hostid != 0 && myhostid != 0 &&
2485 hostid != myhostid) {
2486 nvlist_free(nvconfig);
2487 cmn_err(CE_WARN, "pool '%s' could not be "
2488 "loaded as it was last accessed by "
2489 "another system (host: %s hostid: 0x%lx). "
2490 "See: http://illumos.org/msg/ZFS-8000-EY",
2491 spa_name(spa), hostname,
2492 (unsigned long)hostid);
2493 return (SET_ERROR(EBADF));
2494 }
2495 }
2496 if (nvlist_lookup_nvlist(spa->spa_config,
2497 ZPOOL_REWIND_POLICY, &policy) == 0)
2498 VERIFY(nvlist_add_nvlist(nvconfig,
2499 ZPOOL_REWIND_POLICY, policy) == 0);
2500
2501 spa_config_set(spa, nvconfig);
2502 spa_unload(spa);
2503 spa_deactivate(spa);
2504 spa_activate(spa, orig_mode);
2505
2506 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2507 }
2508
2509 /* Grab the secret checksum salt from the MOS. */
2510 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2511 DMU_POOL_CHECKSUM_SALT, 1,
2512 sizeof (spa->spa_cksum_salt.zcs_bytes),
2513 spa->spa_cksum_salt.zcs_bytes);
2514 if (error == ENOENT) {
2515 /* Generate a new salt for subsequent use */
2516 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2517 sizeof (spa->spa_cksum_salt.zcs_bytes));
2518 } else if (error != 0) {
2519 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2520 }
2521
2522 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2523 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2524 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2525 if (error != 0)
2526 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2527
2528 /*
2529 * Load the bit that tells us to use the new accounting function
2530 * (raid-z deflation). If we have an older pool, this will not
2531 * be present.
2532 */
2533 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2534 if (error != 0 && error != ENOENT)
2535 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2536
2537 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2538 &spa->spa_creation_version);
2539 if (error != 0 && error != ENOENT)
2540 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2541
2542 /*
2543 * Load the persistent error log. If we have an older pool, this will
2544 * not be present.
2545 */
2546 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2547 if (error != 0 && error != ENOENT)
2548 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2549
2550 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2551 &spa->spa_errlog_scrub);
2552 if (error != 0 && error != ENOENT)
2553 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2554
2555 /*
2556 * Load the history object. If we have an older pool, this
2557 * will not be present.
2558 */
2559 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2560 if (error != 0 && error != ENOENT)
2561 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2562
2563 /*
2564 * If we're assembling the pool from the split-off vdevs of
2565 * an existing pool, we don't want to attach the spares & cache
2566 * devices.
2567 */
2568
2569 /*
2570 * Load any hot spares for this pool.
2571 */
2572 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2573 if (error != 0 && error != ENOENT)
2574 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2575 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2576 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2577 if (load_nvlist(spa, spa->spa_spares.sav_object,
2578 &spa->spa_spares.sav_config) != 0)
2579 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2580
2581 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2582 spa_load_spares(spa);
2583 spa_config_exit(spa, SCL_ALL, FTAG);
2584 } else if (error == 0) {
2585 spa->spa_spares.sav_sync = B_TRUE;
2586 }
2587
2588 /*
2589 * Load any level 2 ARC devices for this pool.
2590 */
2591 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2592 &spa->spa_l2cache.sav_object);
2593 if (error != 0 && error != ENOENT)
2594 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2595 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2596 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2597 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2598 &spa->spa_l2cache.sav_config) != 0)
2599 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2600
2601 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2602 spa_load_l2cache(spa);
2603 spa_config_exit(spa, SCL_ALL, FTAG);
2604 } else if (error == 0) {
2605 spa->spa_l2cache.sav_sync = B_TRUE;
2606 }
2607
2608 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2609
2610 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2611 if (error && error != ENOENT)
2612 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2613
2614 if (error == 0) {
2615 uint64_t autoreplace;
2616
2617 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2618 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2619 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2620 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2621 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2622 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2623 &spa->spa_dedup_ditto);
2624
2625 spa->spa_autoreplace = (autoreplace != 0);
2626 }
2627
2628 /*
2629 * If the 'autoreplace' property is set, then post a resource notifying
2630 * the ZFS DE that it should not issue any faults for unopenable
2631 * devices. We also iterate over the vdevs, and post a sysevent for any
2632 * unopenable vdevs so that the normal autoreplace handler can take
2633 * over.
2634 */
2635 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2636 spa_check_removed(spa->spa_root_vdev);
2637 /*
2638 * For the import case, this is done in spa_import(), because
2639 * at this point we're using the spare definitions from
2640 * the MOS config, not necessarily from the userland config.
2641 */
2642 if (state != SPA_LOAD_IMPORT) {
2643 spa_aux_check_removed(&spa->spa_spares);
2644 spa_aux_check_removed(&spa->spa_l2cache);
2645 }
2646 }
2647
2648 /*
2649 * Load the vdev state for all toplevel vdevs.
2650 */
2651 vdev_load(rvd);
2652
2653 /*
2654 * Propagate the leaf DTLs we just loaded all the way up the tree.
2655 */
2656 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2657 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2658 spa_config_exit(spa, SCL_ALL, FTAG);
2659
2660 /*
2661 * Load the DDTs (dedup tables).
2662 */
2663 error = ddt_load(spa);
2664 if (error != 0)
2665 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2666
2667 spa_update_dspace(spa);
2668
2669 /*
2670 * Validate the config, using the MOS config to fill in any
2671 * information which might be missing. If we fail to validate
2672 * the config then declare the pool unfit for use. If we're
2673 * assembling a pool from a split, the log is not transferred
2674 * over.
2675 */
2676 if (type != SPA_IMPORT_ASSEMBLE) {
2677 nvlist_t *nvconfig;
2678
2679 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2680 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2681
2682 if (!spa_config_valid(spa, nvconfig)) {
2683 nvlist_free(nvconfig);
2684 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2685 ENXIO));
2686 }
2687 nvlist_free(nvconfig);
2688
2689 /*
2690 * Now that we've validated the config, check the state of the
2691 * root vdev. If it can't be opened, it indicates one or
2692 * more toplevel vdevs are faulted.
2693 */
2694 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2695 return (SET_ERROR(ENXIO));
2696
2697 if (spa_writeable(spa) && spa_check_logs(spa)) {
2698 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2699 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2700 }
2701 }
2702
2703 if (missing_feat_write) {
2704 ASSERT(state == SPA_LOAD_TRYIMPORT);
2705
2706 /*
2707 * At this point, we know that we can open the pool in
2708 * read-only mode but not read-write mode. We now have enough
2709 * information and can return to userland.
2710 */
2711 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2712 }
2713
2714 /*
2715 * We've successfully opened the pool, verify that we're ready
2716 * to start pushing transactions.
2717 */
2718 if (state != SPA_LOAD_TRYIMPORT) {
2719 if (error = spa_load_verify(spa))
2720 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2721 error));
2722 }
2723
2724 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2725 spa->spa_load_max_txg == UINT64_MAX)) {
2726 dmu_tx_t *tx;
2727 int need_update = B_FALSE;
2728 dsl_pool_t *dp = spa_get_dsl(spa);
2729
2730 ASSERT(state != SPA_LOAD_TRYIMPORT);
2731
2732 /*
2733 * Claim log blocks that haven't been committed yet.
2734 * This must all happen in a single txg.
2735 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2736 * invoked from zil_claim_log_block()'s i/o done callback.
2737 * Price of rollback is that we abandon the log.
2738 */
2739 spa->spa_claiming = B_TRUE;
2740
2741 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2742 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2743 zil_claim, tx, DS_FIND_CHILDREN);
2744 dmu_tx_commit(tx);
2745
2746 spa->spa_claiming = B_FALSE;
2747
2748 spa_set_log_state(spa, SPA_LOG_GOOD);
2749 spa->spa_sync_on = B_TRUE;
2750 txg_sync_start(spa->spa_dsl_pool);
2751
2752 /*
2753 * Wait for all claims to sync. We sync up to the highest
2754 * claimed log block birth time so that claimed log blocks
2755 * don't appear to be from the future. spa_claim_max_txg
2756 * will have been set for us by either zil_check_log_chain()
2757 * (invoked from spa_check_logs()) or zil_claim() above.
2758 */
2759 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2760
2761 /*
2762 * If the config cache is stale, or we have uninitialized
2763 * metaslabs (see spa_vdev_add()), then update the config.
2764 *
2765 * If this is a verbatim import, trust the current
2766 * in-core spa_config and update the disk labels.
2767 */
2768 if (config_cache_txg != spa->spa_config_txg ||
2769 state == SPA_LOAD_IMPORT ||
2770 state == SPA_LOAD_RECOVER ||
2771 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2772 need_update = B_TRUE;
2773
2774 for (int c = 0; c < rvd->vdev_children; c++)
2775 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2776 need_update = B_TRUE;
2777
2778 /*
2779 * Update the config cache asychronously in case we're the
2780 * root pool, in which case the config cache isn't writable yet.
2781 */
2782 if (need_update)
2783 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2784
2785 /*
2786 * Check all DTLs to see if anything needs resilvering.
2787 */
2788 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2789 vdev_resilver_needed(rvd, NULL, NULL))
2790 spa_async_request(spa, SPA_ASYNC_RESILVER);
2791
2792 /*
2793 * Log the fact that we booted up (so that we can detect if
2794 * we rebooted in the middle of an operation).
2795 */
2796 spa_history_log_version(spa, "open");
2797
2798 /*
2799 * Delete any inconsistent datasets.
2800 */
2801 (void) dmu_objset_find(spa_name(spa),
2802 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2803
2804 /*
2805 * Clean up any stale temporary dataset userrefs.
2806 */
2807 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2808 }
2809
2810 return (0);
2811 }
2812
2813 static int
spa_load_retry(spa_t * spa,spa_load_state_t state,int mosconfig)2814 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2815 {
2816 int mode = spa->spa_mode;
2817
2818 spa_unload(spa);
2819 spa_deactivate(spa);
2820
2821 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2822
2823 spa_activate(spa, mode);
2824 spa_async_suspend(spa);
2825
2826 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2827 }
2828
2829 /*
2830 * If spa_load() fails this function will try loading prior txg's. If
2831 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2832 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2833 * function will not rewind the pool and will return the same error as
2834 * spa_load().
2835 */
2836 static int
spa_load_best(spa_t * spa,spa_load_state_t state,int mosconfig,uint64_t max_request,int rewind_flags)2837 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2838 uint64_t max_request, int rewind_flags)
2839 {
2840 nvlist_t *loadinfo = NULL;
2841 nvlist_t *config = NULL;
2842 int load_error, rewind_error;
2843 uint64_t safe_rewind_txg;
2844 uint64_t min_txg;
2845
2846 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2847 spa->spa_load_max_txg = spa->spa_load_txg;
2848 spa_set_log_state(spa, SPA_LOG_CLEAR);
2849 } else {
2850 spa->spa_load_max_txg = max_request;
2851 if (max_request != UINT64_MAX)
2852 spa->spa_extreme_rewind = B_TRUE;
2853 }
2854
2855 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2856 mosconfig);
2857 if (load_error == 0)
2858 return (0);
2859
2860 if (spa->spa_root_vdev != NULL)
2861 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2862
2863 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2864 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2865
2866 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2867 nvlist_free(config);
2868 return (load_error);
2869 }
2870
2871 if (state == SPA_LOAD_RECOVER) {
2872 /* Price of rolling back is discarding txgs, including log */
2873 spa_set_log_state(spa, SPA_LOG_CLEAR);
2874 } else {
2875 /*
2876 * If we aren't rolling back save the load info from our first
2877 * import attempt so that we can restore it after attempting
2878 * to rewind.
2879 */
2880 loadinfo = spa->spa_load_info;
2881 spa->spa_load_info = fnvlist_alloc();
2882 }
2883
2884 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2885 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2886 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2887 TXG_INITIAL : safe_rewind_txg;
2888
2889 /*
2890 * Continue as long as we're finding errors, we're still within
2891 * the acceptable rewind range, and we're still finding uberblocks
2892 */
2893 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2894 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2895 if (spa->spa_load_max_txg < safe_rewind_txg)
2896 spa->spa_extreme_rewind = B_TRUE;
2897 rewind_error = spa_load_retry(spa, state, mosconfig);
2898 }
2899
2900 spa->spa_extreme_rewind = B_FALSE;
2901 spa->spa_load_max_txg = UINT64_MAX;
2902
2903 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2904 spa_config_set(spa, config);
2905
2906 if (state == SPA_LOAD_RECOVER) {
2907 ASSERT3P(loadinfo, ==, NULL);
2908 return (rewind_error);
2909 } else {
2910 /* Store the rewind info as part of the initial load info */
2911 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2912 spa->spa_load_info);
2913
2914 /* Restore the initial load info */
2915 fnvlist_free(spa->spa_load_info);
2916 spa->spa_load_info = loadinfo;
2917
2918 return (load_error);
2919 }
2920 }
2921
2922 /*
2923 * Pool Open/Import
2924 *
2925 * The import case is identical to an open except that the configuration is sent
2926 * down from userland, instead of grabbed from the configuration cache. For the
2927 * case of an open, the pool configuration will exist in the
2928 * POOL_STATE_UNINITIALIZED state.
2929 *
2930 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2931 * the same time open the pool, without having to keep around the spa_t in some
2932 * ambiguous state.
2933 */
2934 static int
spa_open_common(const char * pool,spa_t ** spapp,void * tag,nvlist_t * nvpolicy,nvlist_t ** config)2935 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2936 nvlist_t **config)
2937 {
2938 spa_t *spa;
2939 spa_load_state_t state = SPA_LOAD_OPEN;
2940 int error;
2941 int locked = B_FALSE;
2942
2943 *spapp = NULL;
2944
2945 /*
2946 * As disgusting as this is, we need to support recursive calls to this
2947 * function because dsl_dir_open() is called during spa_load(), and ends
2948 * up calling spa_open() again. The real fix is to figure out how to
2949 * avoid dsl_dir_open() calling this in the first place.
2950 */
2951 if (mutex_owner(&spa_namespace_lock) != curthread) {
2952 mutex_enter(&spa_namespace_lock);
2953 locked = B_TRUE;
2954 }
2955
2956 if ((spa = spa_lookup(pool)) == NULL) {
2957 if (locked)
2958 mutex_exit(&spa_namespace_lock);
2959 return (SET_ERROR(ENOENT));
2960 }
2961
2962 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2963 zpool_rewind_policy_t policy;
2964
2965 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2966 &policy);
2967 if (policy.zrp_request & ZPOOL_DO_REWIND)
2968 state = SPA_LOAD_RECOVER;
2969
2970 spa_activate(spa, spa_mode_global);
2971
2972 if (state != SPA_LOAD_RECOVER)
2973 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2974
2975 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2976 policy.zrp_request);
2977
2978 if (error == EBADF) {
2979 /*
2980 * If vdev_validate() returns failure (indicated by
2981 * EBADF), it indicates that one of the vdevs indicates
2982 * that the pool has been exported or destroyed. If
2983 * this is the case, the config cache is out of sync and
2984 * we should remove the pool from the namespace.
2985 */
2986 spa_unload(spa);
2987 spa_deactivate(spa);
2988 spa_config_sync(spa, B_TRUE, B_TRUE);
2989 spa_remove(spa);
2990 if (locked)
2991 mutex_exit(&spa_namespace_lock);
2992 return (SET_ERROR(ENOENT));
2993 }
2994
2995 if (error) {
2996 /*
2997 * We can't open the pool, but we still have useful
2998 * information: the state of each vdev after the
2999 * attempted vdev_open(). Return this to the user.
3000 */
3001 if (config != NULL && spa->spa_config) {
3002 VERIFY(nvlist_dup(spa->spa_config, config,
3003 KM_SLEEP) == 0);
3004 VERIFY(nvlist_add_nvlist(*config,
3005 ZPOOL_CONFIG_LOAD_INFO,
3006 spa->spa_load_info) == 0);
3007 }
3008 spa_unload(spa);
3009 spa_deactivate(spa);
3010 spa->spa_last_open_failed = error;
3011 if (locked)
3012 mutex_exit(&spa_namespace_lock);
3013 *spapp = NULL;
3014 return (error);
3015 }
3016 }
3017
3018 spa_open_ref(spa, tag);
3019
3020 if (config != NULL)
3021 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3022
3023 /*
3024 * If we've recovered the pool, pass back any information we
3025 * gathered while doing the load.
3026 */
3027 if (state == SPA_LOAD_RECOVER) {
3028 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3029 spa->spa_load_info) == 0);
3030 }
3031
3032 if (locked) {
3033 spa->spa_last_open_failed = 0;
3034 spa->spa_last_ubsync_txg = 0;
3035 spa->spa_load_txg = 0;
3036 mutex_exit(&spa_namespace_lock);
3037 }
3038
3039 *spapp = spa;
3040
3041 return (0);
3042 }
3043
3044 int
spa_open_rewind(const char * name,spa_t ** spapp,void * tag,nvlist_t * policy,nvlist_t ** config)3045 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3046 nvlist_t **config)
3047 {
3048 return (spa_open_common(name, spapp, tag, policy, config));
3049 }
3050
3051 int
spa_open(const char * name,spa_t ** spapp,void * tag)3052 spa_open(const char *name, spa_t **spapp, void *tag)
3053 {
3054 return (spa_open_common(name, spapp, tag, NULL, NULL));
3055 }
3056
3057 /*
3058 * Lookup the given spa_t, incrementing the inject count in the process,
3059 * preventing it from being exported or destroyed.
3060 */
3061 spa_t *
spa_inject_addref(char * name)3062 spa_inject_addref(char *name)
3063 {
3064 spa_t *spa;
3065
3066 mutex_enter(&spa_namespace_lock);
3067 if ((spa = spa_lookup(name)) == NULL) {
3068 mutex_exit(&spa_namespace_lock);
3069 return (NULL);
3070 }
3071 spa->spa_inject_ref++;
3072 mutex_exit(&spa_namespace_lock);
3073
3074 return (spa);
3075 }
3076
3077 void
spa_inject_delref(spa_t * spa)3078 spa_inject_delref(spa_t *spa)
3079 {
3080 mutex_enter(&spa_namespace_lock);
3081 spa->spa_inject_ref--;
3082 mutex_exit(&spa_namespace_lock);
3083 }
3084
3085 /*
3086 * Add spares device information to the nvlist.
3087 */
3088 static void
spa_add_spares(spa_t * spa,nvlist_t * config)3089 spa_add_spares(spa_t *spa, nvlist_t *config)
3090 {
3091 nvlist_t **spares;
3092 uint_t i, nspares;
3093 nvlist_t *nvroot;
3094 uint64_t guid;
3095 vdev_stat_t *vs;
3096 uint_t vsc;
3097 uint64_t pool;
3098
3099 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3100
3101 if (spa->spa_spares.sav_count == 0)
3102 return;
3103
3104 VERIFY(nvlist_lookup_nvlist(config,
3105 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3106 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3107 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3108 if (nspares != 0) {
3109 VERIFY(nvlist_add_nvlist_array(nvroot,
3110 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3111 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3112 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3113
3114 /*
3115 * Go through and find any spares which have since been
3116 * repurposed as an active spare. If this is the case, update
3117 * their status appropriately.
3118 */
3119 for (i = 0; i < nspares; i++) {
3120 VERIFY(nvlist_lookup_uint64(spares[i],
3121 ZPOOL_CONFIG_GUID, &guid) == 0);
3122 if (spa_spare_exists(guid, &pool, NULL) &&
3123 pool != 0ULL) {
3124 VERIFY(nvlist_lookup_uint64_array(
3125 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3126 (uint64_t **)&vs, &vsc) == 0);
3127 vs->vs_state = VDEV_STATE_CANT_OPEN;
3128 vs->vs_aux = VDEV_AUX_SPARED;
3129 }
3130 }
3131 }
3132 }
3133
3134 /*
3135 * Add l2cache device information to the nvlist, including vdev stats.
3136 */
3137 static void
spa_add_l2cache(spa_t * spa,nvlist_t * config)3138 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3139 {
3140 nvlist_t **l2cache;
3141 uint_t i, j, nl2cache;
3142 nvlist_t *nvroot;
3143 uint64_t guid;
3144 vdev_t *vd;
3145 vdev_stat_t *vs;
3146 uint_t vsc;
3147
3148 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3149
3150 if (spa->spa_l2cache.sav_count == 0)
3151 return;
3152
3153 VERIFY(nvlist_lookup_nvlist(config,
3154 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3155 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3156 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3157 if (nl2cache != 0) {
3158 VERIFY(nvlist_add_nvlist_array(nvroot,
3159 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3160 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3161 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3162
3163 /*
3164 * Update level 2 cache device stats.
3165 */
3166
3167 for (i = 0; i < nl2cache; i++) {
3168 VERIFY(nvlist_lookup_uint64(l2cache[i],
3169 ZPOOL_CONFIG_GUID, &guid) == 0);
3170
3171 vd = NULL;
3172 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3173 if (guid ==
3174 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3175 vd = spa->spa_l2cache.sav_vdevs[j];
3176 break;
3177 }
3178 }
3179 ASSERT(vd != NULL);
3180
3181 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3182 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3183 == 0);
3184 vdev_get_stats(vd, vs);
3185 }
3186 }
3187 }
3188
3189 static void
spa_add_feature_stats(spa_t * spa,nvlist_t * config)3190 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3191 {
3192 nvlist_t *features;
3193 zap_cursor_t zc;
3194 zap_attribute_t za;
3195
3196 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3197 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3198
3199 if (spa->spa_feat_for_read_obj != 0) {
3200 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3201 spa->spa_feat_for_read_obj);
3202 zap_cursor_retrieve(&zc, &za) == 0;
3203 zap_cursor_advance(&zc)) {
3204 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3205 za.za_num_integers == 1);
3206 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3207 za.za_first_integer));
3208 }
3209 zap_cursor_fini(&zc);
3210 }
3211
3212 if (spa->spa_feat_for_write_obj != 0) {
3213 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3214 spa->spa_feat_for_write_obj);
3215 zap_cursor_retrieve(&zc, &za) == 0;
3216 zap_cursor_advance(&zc)) {
3217 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3218 za.za_num_integers == 1);
3219 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3220 za.za_first_integer));
3221 }
3222 zap_cursor_fini(&zc);
3223 }
3224
3225 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3226 features) == 0);
3227 nvlist_free(features);
3228 }
3229
3230 int
spa_get_stats(const char * name,nvlist_t ** config,char * altroot,size_t buflen)3231 spa_get_stats(const char *name, nvlist_t **config,
3232 char *altroot, size_t buflen)
3233 {
3234 int error;
3235 spa_t *spa;
3236
3237 *config = NULL;
3238 error = spa_open_common(name, &spa, FTAG, NULL, config);
3239
3240 if (spa != NULL) {
3241 /*
3242 * This still leaves a window of inconsistency where the spares
3243 * or l2cache devices could change and the config would be
3244 * self-inconsistent.
3245 */
3246 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3247
3248 if (*config != NULL) {
3249 uint64_t loadtimes[2];
3250
3251 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3252 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3253 VERIFY(nvlist_add_uint64_array(*config,
3254 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3255
3256 VERIFY(nvlist_add_uint64(*config,
3257 ZPOOL_CONFIG_ERRCOUNT,
3258 spa_get_errlog_size(spa)) == 0);
3259
3260 if (spa_suspended(spa))
3261 VERIFY(nvlist_add_uint64(*config,
3262 ZPOOL_CONFIG_SUSPENDED,
3263 spa->spa_failmode) == 0);
3264
3265 spa_add_spares(spa, *config);
3266 spa_add_l2cache(spa, *config);
3267 spa_add_feature_stats(spa, *config);
3268 }
3269 }
3270
3271 /*
3272 * We want to get the alternate root even for faulted pools, so we cheat
3273 * and call spa_lookup() directly.
3274 */
3275 if (altroot) {
3276 if (spa == NULL) {
3277 mutex_enter(&spa_namespace_lock);
3278 spa = spa_lookup(name);
3279 if (spa)
3280 spa_altroot(spa, altroot, buflen);
3281 else
3282 altroot[0] = '\0';
3283 spa = NULL;
3284 mutex_exit(&spa_namespace_lock);
3285 } else {
3286 spa_altroot(spa, altroot, buflen);
3287 }
3288 }
3289
3290 if (spa != NULL) {
3291 spa_config_exit(spa, SCL_CONFIG, FTAG);
3292 spa_close(spa, FTAG);
3293 }
3294
3295 return (error);
3296 }
3297
3298 /*
3299 * Validate that the auxiliary device array is well formed. We must have an
3300 * array of nvlists, each which describes a valid leaf vdev. If this is an
3301 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3302 * specified, as long as they are well-formed.
3303 */
3304 static int
spa_validate_aux_devs(spa_t * spa,nvlist_t * nvroot,uint64_t crtxg,int mode,spa_aux_vdev_t * sav,const char * config,uint64_t version,vdev_labeltype_t label)3305 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3306 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3307 vdev_labeltype_t label)
3308 {
3309 nvlist_t **dev;
3310 uint_t i, ndev;
3311 vdev_t *vd;
3312 int error;
3313
3314 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3315
3316 /*
3317 * It's acceptable to have no devs specified.
3318 */
3319 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3320 return (0);
3321
3322 if (ndev == 0)
3323 return (SET_ERROR(EINVAL));
3324
3325 /*
3326 * Make sure the pool is formatted with a version that supports this
3327 * device type.
3328 */
3329 if (spa_version(spa) < version)
3330 return (SET_ERROR(ENOTSUP));
3331
3332 /*
3333 * Set the pending device list so we correctly handle device in-use
3334 * checking.
3335 */
3336 sav->sav_pending = dev;
3337 sav->sav_npending = ndev;
3338
3339 for (i = 0; i < ndev; i++) {
3340 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3341 mode)) != 0)
3342 goto out;
3343
3344 if (!vd->vdev_ops->vdev_op_leaf) {
3345 vdev_free(vd);
3346 error = SET_ERROR(EINVAL);
3347 goto out;
3348 }
3349
3350 /*
3351 * The L2ARC currently only supports disk devices in
3352 * kernel context. For user-level testing, we allow it.
3353 */
3354 #ifdef _KERNEL
3355 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3356 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3357 error = SET_ERROR(ENOTBLK);
3358 vdev_free(vd);
3359 goto out;
3360 }
3361 #endif
3362 vd->vdev_top = vd;
3363
3364 if ((error = vdev_open(vd)) == 0 &&
3365 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3366 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3367 vd->vdev_guid) == 0);
3368 }
3369
3370 vdev_free(vd);
3371
3372 if (error &&
3373 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3374 goto out;
3375 else
3376 error = 0;
3377 }
3378
3379 out:
3380 sav->sav_pending = NULL;
3381 sav->sav_npending = 0;
3382 return (error);
3383 }
3384
3385 static int
spa_validate_aux(spa_t * spa,nvlist_t * nvroot,uint64_t crtxg,int mode)3386 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3387 {
3388 int error;
3389
3390 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3391
3392 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3393 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3394 VDEV_LABEL_SPARE)) != 0) {
3395 return (error);
3396 }
3397
3398 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3399 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3400 VDEV_LABEL_L2CACHE));
3401 }
3402
3403 static void
spa_set_aux_vdevs(spa_aux_vdev_t * sav,nvlist_t ** devs,int ndevs,const char * config)3404 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3405 const char *config)
3406 {
3407 int i;
3408
3409 if (sav->sav_config != NULL) {
3410 nvlist_t **olddevs;
3411 uint_t oldndevs;
3412 nvlist_t **newdevs;
3413
3414 /*
3415 * Generate new dev list by concatentating with the
3416 * current dev list.
3417 */
3418 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3419 &olddevs, &oldndevs) == 0);
3420
3421 newdevs = kmem_alloc(sizeof (void *) *
3422 (ndevs + oldndevs), KM_SLEEP);
3423 for (i = 0; i < oldndevs; i++)
3424 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3425 KM_SLEEP) == 0);
3426 for (i = 0; i < ndevs; i++)
3427 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3428 KM_SLEEP) == 0);
3429
3430 VERIFY(nvlist_remove(sav->sav_config, config,
3431 DATA_TYPE_NVLIST_ARRAY) == 0);
3432
3433 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3434 config, newdevs, ndevs + oldndevs) == 0);
3435 for (i = 0; i < oldndevs + ndevs; i++)
3436 nvlist_free(newdevs[i]);
3437 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3438 } else {
3439 /*
3440 * Generate a new dev list.
3441 */
3442 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3443 KM_SLEEP) == 0);
3444 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3445 devs, ndevs) == 0);
3446 }
3447 }
3448
3449 /*
3450 * Stop and drop level 2 ARC devices
3451 */
3452 void
spa_l2cache_drop(spa_t * spa)3453 spa_l2cache_drop(spa_t *spa)
3454 {
3455 vdev_t *vd;
3456 int i;
3457 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3458
3459 for (i = 0; i < sav->sav_count; i++) {
3460 uint64_t pool;
3461
3462 vd = sav->sav_vdevs[i];
3463 ASSERT(vd != NULL);
3464
3465 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3466 pool != 0ULL && l2arc_vdev_present(vd))
3467 l2arc_remove_vdev(vd);
3468 }
3469 }
3470
3471 /*
3472 * Pool Creation
3473 */
3474 int
spa_create(const char * pool,nvlist_t * nvroot,nvlist_t * props,nvlist_t * zplprops)3475 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3476 nvlist_t *zplprops)
3477 {
3478 spa_t *spa;
3479 char *altroot = NULL;
3480 vdev_t *rvd;
3481 dsl_pool_t *dp;
3482 dmu_tx_t *tx;
3483 int error = 0;
3484 uint64_t txg = TXG_INITIAL;
3485 nvlist_t **spares, **l2cache;
3486 uint_t nspares, nl2cache;
3487 uint64_t version, obj;
3488 boolean_t has_features;
3489
3490 /*
3491 * If this pool already exists, return failure.
3492 */
3493 mutex_enter(&spa_namespace_lock);
3494 if (spa_lookup(pool) != NULL) {
3495 mutex_exit(&spa_namespace_lock);
3496 return (SET_ERROR(EEXIST));
3497 }
3498
3499 /*
3500 * Allocate a new spa_t structure.
3501 */
3502 (void) nvlist_lookup_string(props,
3503 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3504 spa = spa_add(pool, NULL, altroot);
3505 spa_activate(spa, spa_mode_global);
3506
3507 if (props && (error = spa_prop_validate(spa, props))) {
3508 spa_deactivate(spa);
3509 spa_remove(spa);
3510 mutex_exit(&spa_namespace_lock);
3511 return (error);
3512 }
3513
3514 has_features = B_FALSE;
3515 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3516 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3517 if (zpool_prop_feature(nvpair_name(elem)))
3518 has_features = B_TRUE;
3519 }
3520
3521 if (has_features || nvlist_lookup_uint64(props,
3522 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3523 version = SPA_VERSION;
3524 }
3525 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3526
3527 spa->spa_first_txg = txg;
3528 spa->spa_uberblock.ub_txg = txg - 1;
3529 spa->spa_uberblock.ub_version = version;
3530 spa->spa_ubsync = spa->spa_uberblock;
3531
3532 /*
3533 * Create "The Godfather" zio to hold all async IOs
3534 */
3535 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3536 KM_SLEEP);
3537 for (int i = 0; i < max_ncpus; i++) {
3538 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3539 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3540 ZIO_FLAG_GODFATHER);
3541 }
3542
3543 /*
3544 * Create the root vdev.
3545 */
3546 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3547
3548 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3549
3550 ASSERT(error != 0 || rvd != NULL);
3551 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3552
3553 if (error == 0 && !zfs_allocatable_devs(nvroot))
3554 error = SET_ERROR(EINVAL);
3555
3556 if (error == 0 &&
3557 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3558 (error = spa_validate_aux(spa, nvroot, txg,
3559 VDEV_ALLOC_ADD)) == 0) {
3560 for (int c = 0; c < rvd->vdev_children; c++) {
3561 vdev_metaslab_set_size(rvd->vdev_child[c]);
3562 vdev_expand(rvd->vdev_child[c], txg);
3563 }
3564 }
3565
3566 spa_config_exit(spa, SCL_ALL, FTAG);
3567
3568 if (error != 0) {
3569 spa_unload(spa);
3570 spa_deactivate(spa);
3571 spa_remove(spa);
3572 mutex_exit(&spa_namespace_lock);
3573 return (error);
3574 }
3575
3576 /*
3577 * Get the list of spares, if specified.
3578 */
3579 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3580 &spares, &nspares) == 0) {
3581 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3582 KM_SLEEP) == 0);
3583 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3584 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3585 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3586 spa_load_spares(spa);
3587 spa_config_exit(spa, SCL_ALL, FTAG);
3588 spa->spa_spares.sav_sync = B_TRUE;
3589 }
3590
3591 /*
3592 * Get the list of level 2 cache devices, if specified.
3593 */
3594 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3595 &l2cache, &nl2cache) == 0) {
3596 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3597 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3598 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3599 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3600 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3601 spa_load_l2cache(spa);
3602 spa_config_exit(spa, SCL_ALL, FTAG);
3603 spa->spa_l2cache.sav_sync = B_TRUE;
3604 }
3605
3606 spa->spa_is_initializing = B_TRUE;
3607 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3608 spa->spa_meta_objset = dp->dp_meta_objset;
3609 spa->spa_is_initializing = B_FALSE;
3610
3611 /*
3612 * Create DDTs (dedup tables).
3613 */
3614 ddt_create(spa);
3615
3616 spa_update_dspace(spa);
3617
3618 tx = dmu_tx_create_assigned(dp, txg);
3619
3620 /*
3621 * Create the pool config object.
3622 */
3623 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3624 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3625 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3626
3627 if (zap_add(spa->spa_meta_objset,
3628 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3629 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3630 cmn_err(CE_PANIC, "failed to add pool config");
3631 }
3632
3633 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3634 spa_feature_create_zap_objects(spa, tx);
3635
3636 if (zap_add(spa->spa_meta_objset,
3637 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3638 sizeof (uint64_t), 1, &version, tx) != 0) {
3639 cmn_err(CE_PANIC, "failed to add pool version");
3640 }
3641
3642 /* Newly created pools with the right version are always deflated. */
3643 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3644 spa->spa_deflate = TRUE;
3645 if (zap_add(spa->spa_meta_objset,
3646 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3647 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3648 cmn_err(CE_PANIC, "failed to add deflate");
3649 }
3650 }
3651
3652 /*
3653 * Create the deferred-free bpobj. Turn off compression
3654 * because sync-to-convergence takes longer if the blocksize
3655 * keeps changing.
3656 */
3657 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3658 dmu_object_set_compress(spa->spa_meta_objset, obj,
3659 ZIO_COMPRESS_OFF, tx);
3660 if (zap_add(spa->spa_meta_objset,
3661 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3662 sizeof (uint64_t), 1, &obj, tx) != 0) {
3663 cmn_err(CE_PANIC, "failed to add bpobj");
3664 }
3665 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3666 spa->spa_meta_objset, obj));
3667
3668 /*
3669 * Create the pool's history object.
3670 */
3671 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3672 spa_history_create_obj(spa, tx);
3673
3674 /*
3675 * Generate some random noise for salted checksums to operate on.
3676 */
3677 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3678 sizeof (spa->spa_cksum_salt.zcs_bytes));
3679
3680 /*
3681 * Set pool properties.
3682 */
3683 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3684 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3685 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3686 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3687
3688 if (props != NULL) {
3689 spa_configfile_set(spa, props, B_FALSE);
3690 spa_sync_props(props, tx);
3691 }
3692
3693 dmu_tx_commit(tx);
3694
3695 spa->spa_sync_on = B_TRUE;
3696 txg_sync_start(spa->spa_dsl_pool);
3697
3698 /*
3699 * We explicitly wait for the first transaction to complete so that our
3700 * bean counters are appropriately updated.
3701 */
3702 txg_wait_synced(spa->spa_dsl_pool, txg);
3703
3704 spa_config_sync(spa, B_FALSE, B_TRUE);
3705 spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3706
3707 spa_history_log_version(spa, "create");
3708
3709 /*
3710 * Don't count references from objsets that are already closed
3711 * and are making their way through the eviction process.
3712 */
3713 spa_evicting_os_wait(spa);
3714 spa->spa_minref = refcount_count(&spa->spa_refcount);
3715
3716 mutex_exit(&spa_namespace_lock);
3717
3718 return (0);
3719 }
3720
3721 #ifdef _KERNEL
3722 /*
3723 * Get the root pool information from the root disk, then import the root pool
3724 * during the system boot up time.
3725 */
3726 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3727
3728 static nvlist_t *
spa_generate_rootconf(char * devpath,char * devid,uint64_t * guid)3729 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3730 {
3731 nvlist_t *config;
3732 nvlist_t *nvtop, *nvroot;
3733 uint64_t pgid;
3734
3735 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3736 return (NULL);
3737
3738 /*
3739 * Add this top-level vdev to the child array.
3740 */
3741 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3742 &nvtop) == 0);
3743 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3744 &pgid) == 0);
3745 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3746
3747 /*
3748 * Put this pool's top-level vdevs into a root vdev.
3749 */
3750 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3751 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3752 VDEV_TYPE_ROOT) == 0);
3753 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3754 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3755 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3756 &nvtop, 1) == 0);
3757
3758 /*
3759 * Replace the existing vdev_tree with the new root vdev in
3760 * this pool's configuration (remove the old, add the new).
3761 */
3762 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3763 nvlist_free(nvroot);
3764 return (config);
3765 }
3766
3767 /*
3768 * Walk the vdev tree and see if we can find a device with "better"
3769 * configuration. A configuration is "better" if the label on that
3770 * device has a more recent txg.
3771 */
3772 static void
spa_alt_rootvdev(vdev_t * vd,vdev_t ** avd,uint64_t * txg)3773 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3774 {
3775 for (int c = 0; c < vd->vdev_children; c++)
3776 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3777
3778 if (vd->vdev_ops->vdev_op_leaf) {
3779 nvlist_t *label;
3780 uint64_t label_txg;
3781
3782 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3783 &label) != 0)
3784 return;
3785
3786 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3787 &label_txg) == 0);
3788
3789 /*
3790 * Do we have a better boot device?
3791 */
3792 if (label_txg > *txg) {
3793 *txg = label_txg;
3794 *avd = vd;
3795 }
3796 nvlist_free(label);
3797 }
3798 }
3799
3800 /*
3801 * Import a root pool.
3802 *
3803 * For x86. devpath_list will consist of devid and/or physpath name of
3804 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3805 * The GRUB "findroot" command will return the vdev we should boot.
3806 *
3807 * For Sparc, devpath_list consists the physpath name of the booting device
3808 * no matter the rootpool is a single device pool or a mirrored pool.
3809 * e.g.
3810 * "/pci@1f,0/ide@d/disk@0,0:a"
3811 */
3812 int
spa_import_rootpool(char * devpath,char * devid)3813 spa_import_rootpool(char *devpath, char *devid)
3814 {
3815 spa_t *spa;
3816 vdev_t *rvd, *bvd, *avd = NULL;
3817 nvlist_t *config, *nvtop;
3818 uint64_t guid, txg;
3819 char *pname;
3820 int error;
3821
3822 /*
3823 * Read the label from the boot device and generate a configuration.
3824 */
3825 config = spa_generate_rootconf(devpath, devid, &guid);
3826 #if defined(_OBP) && defined(_KERNEL)
3827 if (config == NULL) {
3828 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3829 /* iscsi boot */
3830 get_iscsi_bootpath_phy(devpath);
3831 config = spa_generate_rootconf(devpath, devid, &guid);
3832 }
3833 }
3834 #endif
3835 if (config == NULL) {
3836 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3837 devpath);
3838 return (SET_ERROR(EIO));
3839 }
3840
3841 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3842 &pname) == 0);
3843 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3844
3845 mutex_enter(&spa_namespace_lock);
3846 if ((spa = spa_lookup(pname)) != NULL) {
3847 /*
3848 * Remove the existing root pool from the namespace so that we
3849 * can replace it with the correct config we just read in.
3850 */
3851 spa_remove(spa);
3852 }
3853
3854 spa = spa_add(pname, config, NULL);
3855 spa->spa_is_root = B_TRUE;
3856 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3857
3858 /*
3859 * Build up a vdev tree based on the boot device's label config.
3860 */
3861 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3862 &nvtop) == 0);
3863 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3864 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3865 VDEV_ALLOC_ROOTPOOL);
3866 spa_config_exit(spa, SCL_ALL, FTAG);
3867 if (error) {
3868 mutex_exit(&spa_namespace_lock);
3869 nvlist_free(config);
3870 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3871 pname);
3872 return (error);
3873 }
3874
3875 /*
3876 * Get the boot vdev.
3877 */
3878 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3879 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3880 (u_longlong_t)guid);
3881 error = SET_ERROR(ENOENT);
3882 goto out;
3883 }
3884
3885 /*
3886 * Determine if there is a better boot device.
3887 */
3888 avd = bvd;
3889 spa_alt_rootvdev(rvd, &avd, &txg);
3890 if (avd != bvd) {
3891 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3892 "try booting from '%s'", avd->vdev_path);
3893 error = SET_ERROR(EINVAL);
3894 goto out;
3895 }
3896
3897 /*
3898 * If the boot device is part of a spare vdev then ensure that
3899 * we're booting off the active spare.
3900 */
3901 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3902 !bvd->vdev_isspare) {
3903 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3904 "try booting from '%s'",
3905 bvd->vdev_parent->
3906 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3907 error = SET_ERROR(EINVAL);
3908 goto out;
3909 }
3910
3911 error = 0;
3912 out:
3913 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3914 vdev_free(rvd);
3915 spa_config_exit(spa, SCL_ALL, FTAG);
3916 mutex_exit(&spa_namespace_lock);
3917
3918 nvlist_free(config);
3919 return (error);
3920 }
3921
3922 #endif
3923
3924 /*
3925 * Import a non-root pool into the system.
3926 */
3927 int
spa_import(const char * pool,nvlist_t * config,nvlist_t * props,uint64_t flags)3928 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3929 {
3930 spa_t *spa;
3931 char *altroot = NULL;
3932 spa_load_state_t state = SPA_LOAD_IMPORT;
3933 zpool_rewind_policy_t policy;
3934 uint64_t mode = spa_mode_global;
3935 uint64_t readonly = B_FALSE;
3936 int error;
3937 nvlist_t *nvroot;
3938 nvlist_t **spares, **l2cache;
3939 uint_t nspares, nl2cache;
3940
3941 /*
3942 * If a pool with this name exists, return failure.
3943 */
3944 mutex_enter(&spa_namespace_lock);
3945 if (spa_lookup(pool) != NULL) {
3946 mutex_exit(&spa_namespace_lock);
3947 return (SET_ERROR(EEXIST));
3948 }
3949
3950 /*
3951 * Create and initialize the spa structure.
3952 */
3953 (void) nvlist_lookup_string(props,
3954 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3955 (void) nvlist_lookup_uint64(props,
3956 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3957 if (readonly)
3958 mode = FREAD;
3959 spa = spa_add(pool, config, altroot);
3960 spa->spa_import_flags = flags;
3961
3962 /*
3963 * Verbatim import - Take a pool and insert it into the namespace
3964 * as if it had been loaded at boot.
3965 */
3966 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3967 if (props != NULL)
3968 spa_configfile_set(spa, props, B_FALSE);
3969
3970 spa_config_sync(spa, B_FALSE, B_TRUE);
3971 spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
3972
3973 mutex_exit(&spa_namespace_lock);
3974 return (0);
3975 }
3976
3977 spa_activate(spa, mode);
3978
3979 /*
3980 * Don't start async tasks until we know everything is healthy.
3981 */
3982 spa_async_suspend(spa);
3983
3984 zpool_get_rewind_policy(config, &policy);
3985 if (policy.zrp_request & ZPOOL_DO_REWIND)
3986 state = SPA_LOAD_RECOVER;
3987
3988 /*
3989 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3990 * because the user-supplied config is actually the one to trust when
3991 * doing an import.
3992 */
3993 if (state != SPA_LOAD_RECOVER)
3994 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3995
3996 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3997 policy.zrp_request);
3998
3999 /*
4000 * Propagate anything learned while loading the pool and pass it
4001 * back to caller (i.e. rewind info, missing devices, etc).
4002 */
4003 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4004 spa->spa_load_info) == 0);
4005
4006 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4007 /*
4008 * Toss any existing sparelist, as it doesn't have any validity
4009 * anymore, and conflicts with spa_has_spare().
4010 */
4011 if (spa->spa_spares.sav_config) {
4012 nvlist_free(spa->spa_spares.sav_config);
4013 spa->spa_spares.sav_config = NULL;
4014 spa_load_spares(spa);
4015 }
4016 if (spa->spa_l2cache.sav_config) {
4017 nvlist_free(spa->spa_l2cache.sav_config);
4018 spa->spa_l2cache.sav_config = NULL;
4019 spa_load_l2cache(spa);
4020 }
4021
4022 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4023 &nvroot) == 0);
4024 if (error == 0)
4025 error = spa_validate_aux(spa, nvroot, -1ULL,
4026 VDEV_ALLOC_SPARE);
4027 if (error == 0)
4028 error = spa_validate_aux(spa, nvroot, -1ULL,
4029 VDEV_ALLOC_L2CACHE);
4030 spa_config_exit(spa, SCL_ALL, FTAG);
4031
4032 if (props != NULL)
4033 spa_configfile_set(spa, props, B_FALSE);
4034
4035 if (error != 0 || (props && spa_writeable(spa) &&
4036 (error = spa_prop_set(spa, props)))) {
4037 spa_unload(spa);
4038 spa_deactivate(spa);
4039 spa_remove(spa);
4040 mutex_exit(&spa_namespace_lock);
4041 return (error);
4042 }
4043
4044 spa_async_resume(spa);
4045
4046 /*
4047 * Override any spares and level 2 cache devices as specified by
4048 * the user, as these may have correct device names/devids, etc.
4049 */
4050 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4051 &spares, &nspares) == 0) {
4052 if (spa->spa_spares.sav_config)
4053 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4054 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4055 else
4056 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4057 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4058 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4059 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4060 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4061 spa_load_spares(spa);
4062 spa_config_exit(spa, SCL_ALL, FTAG);
4063 spa->spa_spares.sav_sync = B_TRUE;
4064 }
4065 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4066 &l2cache, &nl2cache) == 0) {
4067 if (spa->spa_l2cache.sav_config)
4068 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4069 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4070 else
4071 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4072 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4073 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4074 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4075 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4076 spa_load_l2cache(spa);
4077 spa_config_exit(spa, SCL_ALL, FTAG);
4078 spa->spa_l2cache.sav_sync = B_TRUE;
4079 }
4080
4081 /*
4082 * Check for any removed devices.
4083 */
4084 if (spa->spa_autoreplace) {
4085 spa_aux_check_removed(&spa->spa_spares);
4086 spa_aux_check_removed(&spa->spa_l2cache);
4087 }
4088
4089 if (spa_writeable(spa)) {
4090 /*
4091 * Update the config cache to include the newly-imported pool.
4092 */
4093 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4094 }
4095
4096 /*
4097 * It's possible that the pool was expanded while it was exported.
4098 * We kick off an async task to handle this for us.
4099 */
4100 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4101
4102 spa_history_log_version(spa, "import");
4103
4104 spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4105
4106 mutex_exit(&spa_namespace_lock);
4107
4108 return (0);
4109 }
4110
4111 nvlist_t *
spa_tryimport(nvlist_t * tryconfig)4112 spa_tryimport(nvlist_t *tryconfig)
4113 {
4114 nvlist_t *config = NULL;
4115 char *poolname;
4116 spa_t *spa;
4117 uint64_t state;
4118 int error;
4119
4120 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4121 return (NULL);
4122
4123 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4124 return (NULL);
4125
4126 /*
4127 * Create and initialize the spa structure.
4128 */
4129 mutex_enter(&spa_namespace_lock);
4130 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4131 spa_activate(spa, FREAD);
4132
4133 /*
4134 * Pass off the heavy lifting to spa_load().
4135 * Pass TRUE for mosconfig because the user-supplied config
4136 * is actually the one to trust when doing an import.
4137 */
4138 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4139
4140 /*
4141 * If 'tryconfig' was at least parsable, return the current config.
4142 */
4143 if (spa->spa_root_vdev != NULL) {
4144 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4145 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4146 poolname) == 0);
4147 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4148 state) == 0);
4149 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4150 spa->spa_uberblock.ub_timestamp) == 0);
4151 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4152 spa->spa_load_info) == 0);
4153
4154 /*
4155 * If the bootfs property exists on this pool then we
4156 * copy it out so that external consumers can tell which
4157 * pools are bootable.
4158 */
4159 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4160 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4161
4162 /*
4163 * We have to play games with the name since the
4164 * pool was opened as TRYIMPORT_NAME.
4165 */
4166 if (dsl_dsobj_to_dsname(spa_name(spa),
4167 spa->spa_bootfs, tmpname) == 0) {
4168 char *cp;
4169 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4170
4171 cp = strchr(tmpname, '/');
4172 if (cp == NULL) {
4173 (void) strlcpy(dsname, tmpname,
4174 MAXPATHLEN);
4175 } else {
4176 (void) snprintf(dsname, MAXPATHLEN,
4177 "%s/%s", poolname, ++cp);
4178 }
4179 VERIFY(nvlist_add_string(config,
4180 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4181 kmem_free(dsname, MAXPATHLEN);
4182 }
4183 kmem_free(tmpname, MAXPATHLEN);
4184 }
4185
4186 /*
4187 * Add the list of hot spares and level 2 cache devices.
4188 */
4189 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4190 spa_add_spares(spa, config);
4191 spa_add_l2cache(spa, config);
4192 spa_config_exit(spa, SCL_CONFIG, FTAG);
4193 }
4194
4195 spa_unload(spa);
4196 spa_deactivate(spa);
4197 spa_remove(spa);
4198 mutex_exit(&spa_namespace_lock);
4199
4200 return (config);
4201 }
4202
4203 /*
4204 * Pool export/destroy
4205 *
4206 * The act of destroying or exporting a pool is very simple. We make sure there
4207 * is no more pending I/O and any references to the pool are gone. Then, we
4208 * update the pool state and sync all the labels to disk, removing the
4209 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4210 * we don't sync the labels or remove the configuration cache.
4211 */
4212 static int
spa_export_common(char * pool,int new_state,nvlist_t ** oldconfig,boolean_t force,boolean_t hardforce)4213 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4214 boolean_t force, boolean_t hardforce)
4215 {
4216 spa_t *spa;
4217
4218 if (oldconfig)
4219 *oldconfig = NULL;
4220
4221 if (!(spa_mode_global & FWRITE))
4222 return (SET_ERROR(EROFS));
4223
4224 mutex_enter(&spa_namespace_lock);
4225 if ((spa = spa_lookup(pool)) == NULL) {
4226 mutex_exit(&spa_namespace_lock);
4227 return (SET_ERROR(ENOENT));
4228 }
4229
4230 /*
4231 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4232 * reacquire the namespace lock, and see if we can export.
4233 */
4234 spa_open_ref(spa, FTAG);
4235 mutex_exit(&spa_namespace_lock);
4236 spa_async_suspend(spa);
4237 mutex_enter(&spa_namespace_lock);
4238 spa_close(spa, FTAG);
4239
4240 /*
4241 * The pool will be in core if it's openable,
4242 * in which case we can modify its state.
4243 */
4244 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4245 /*
4246 * Objsets may be open only because they're dirty, so we
4247 * have to force it to sync before checking spa_refcnt.
4248 */
4249 txg_wait_synced(spa->spa_dsl_pool, 0);
4250 spa_evicting_os_wait(spa);
4251
4252 /*
4253 * A pool cannot be exported or destroyed if there are active
4254 * references. If we are resetting a pool, allow references by
4255 * fault injection handlers.
4256 */
4257 if (!spa_refcount_zero(spa) ||
4258 (spa->spa_inject_ref != 0 &&
4259 new_state != POOL_STATE_UNINITIALIZED)) {
4260 spa_async_resume(spa);
4261 mutex_exit(&spa_namespace_lock);
4262 return (SET_ERROR(EBUSY));
4263 }
4264
4265 /*
4266 * A pool cannot be exported if it has an active shared spare.
4267 * This is to prevent other pools stealing the active spare
4268 * from an exported pool. At user's own will, such pool can
4269 * be forcedly exported.
4270 */
4271 if (!force && new_state == POOL_STATE_EXPORTED &&
4272 spa_has_active_shared_spare(spa)) {
4273 spa_async_resume(spa);
4274 mutex_exit(&spa_namespace_lock);
4275 return (SET_ERROR(EXDEV));
4276 }
4277
4278 /*
4279 * We want this to be reflected on every label,
4280 * so mark them all dirty. spa_unload() will do the
4281 * final sync that pushes these changes out.
4282 */
4283 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4284 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4285 spa->spa_state = new_state;
4286 spa->spa_final_txg = spa_last_synced_txg(spa) +
4287 TXG_DEFER_SIZE + 1;
4288 vdev_config_dirty(spa->spa_root_vdev);
4289 spa_config_exit(spa, SCL_ALL, FTAG);
4290 }
4291 }
4292
4293 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4294
4295 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4296 spa_unload(spa);
4297 spa_deactivate(spa);
4298 }
4299
4300 if (oldconfig && spa->spa_config)
4301 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4302
4303 if (new_state != POOL_STATE_UNINITIALIZED) {
4304 if (!hardforce)
4305 spa_config_sync(spa, B_TRUE, B_TRUE);
4306 spa_remove(spa);
4307 }
4308 mutex_exit(&spa_namespace_lock);
4309
4310 return (0);
4311 }
4312
4313 /*
4314 * Destroy a storage pool.
4315 */
4316 int
spa_destroy(char * pool)4317 spa_destroy(char *pool)
4318 {
4319 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4320 B_FALSE, B_FALSE));
4321 }
4322
4323 /*
4324 * Export a storage pool.
4325 */
4326 int
spa_export(char * pool,nvlist_t ** oldconfig,boolean_t force,boolean_t hardforce)4327 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4328 boolean_t hardforce)
4329 {
4330 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4331 force, hardforce));
4332 }
4333
4334 /*
4335 * Similar to spa_export(), this unloads the spa_t without actually removing it
4336 * from the namespace in any way.
4337 */
4338 int
spa_reset(char * pool)4339 spa_reset(char *pool)
4340 {
4341 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4342 B_FALSE, B_FALSE));
4343 }
4344
4345 /*
4346 * ==========================================================================
4347 * Device manipulation
4348 * ==========================================================================
4349 */
4350
4351 /*
4352 * Add a device to a storage pool.
4353 */
4354 int
spa_vdev_add(spa_t * spa,nvlist_t * nvroot)4355 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4356 {
4357 uint64_t txg, id;
4358 int error;
4359 vdev_t *rvd = spa->spa_root_vdev;
4360 vdev_t *vd, *tvd;
4361 nvlist_t **spares, **l2cache;
4362 uint_t nspares, nl2cache;
4363
4364 ASSERT(spa_writeable(spa));
4365
4366 txg = spa_vdev_enter(spa);
4367
4368 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4369 VDEV_ALLOC_ADD)) != 0)
4370 return (spa_vdev_exit(spa, NULL, txg, error));
4371
4372 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4373
4374 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4375 &nspares) != 0)
4376 nspares = 0;
4377
4378 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4379 &nl2cache) != 0)
4380 nl2cache = 0;
4381
4382 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4383 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4384
4385 if (vd->vdev_children != 0 &&
4386 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4387 return (spa_vdev_exit(spa, vd, txg, error));
4388
4389 /*
4390 * We must validate the spares and l2cache devices after checking the
4391 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4392 */
4393 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4394 return (spa_vdev_exit(spa, vd, txg, error));
4395
4396 /*
4397 * Transfer each new top-level vdev from vd to rvd.
4398 */
4399 for (int c = 0; c < vd->vdev_children; c++) {
4400
4401 /*
4402 * Set the vdev id to the first hole, if one exists.
4403 */
4404 for (id = 0; id < rvd->vdev_children; id++) {
4405 if (rvd->vdev_child[id]->vdev_ishole) {
4406 vdev_free(rvd->vdev_child[id]);
4407 break;
4408 }
4409 }
4410 tvd = vd->vdev_child[c];
4411 vdev_remove_child(vd, tvd);
4412 tvd->vdev_id = id;
4413 vdev_add_child(rvd, tvd);
4414 vdev_config_dirty(tvd);
4415 }
4416
4417 if (nspares != 0) {
4418 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4419 ZPOOL_CONFIG_SPARES);
4420 spa_load_spares(spa);
4421 spa->spa_spares.sav_sync = B_TRUE;
4422 }
4423
4424 if (nl2cache != 0) {
4425 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4426 ZPOOL_CONFIG_L2CACHE);
4427 spa_load_l2cache(spa);
4428 spa->spa_l2cache.sav_sync = B_TRUE;
4429 }
4430
4431 /*
4432 * We have to be careful when adding new vdevs to an existing pool.
4433 * If other threads start allocating from these vdevs before we
4434 * sync the config cache, and we lose power, then upon reboot we may
4435 * fail to open the pool because there are DVAs that the config cache
4436 * can't translate. Therefore, we first add the vdevs without
4437 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4438 * and then let spa_config_update() initialize the new metaslabs.
4439 *
4440 * spa_load() checks for added-but-not-initialized vdevs, so that
4441 * if we lose power at any point in this sequence, the remaining
4442 * steps will be completed the next time we load the pool.
4443 */
4444 (void) spa_vdev_exit(spa, vd, txg, 0);
4445
4446 mutex_enter(&spa_namespace_lock);
4447 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4448 spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4449 mutex_exit(&spa_namespace_lock);
4450
4451 return (0);
4452 }
4453
4454 /*
4455 * Attach a device to a mirror. The arguments are the path to any device
4456 * in the mirror, and the nvroot for the new device. If the path specifies
4457 * a device that is not mirrored, we automatically insert the mirror vdev.
4458 *
4459 * If 'replacing' is specified, the new device is intended to replace the
4460 * existing device; in this case the two devices are made into their own
4461 * mirror using the 'replacing' vdev, which is functionally identical to
4462 * the mirror vdev (it actually reuses all the same ops) but has a few
4463 * extra rules: you can't attach to it after it's been created, and upon
4464 * completion of resilvering, the first disk (the one being replaced)
4465 * is automatically detached.
4466 */
4467 int
spa_vdev_attach(spa_t * spa,uint64_t guid,nvlist_t * nvroot,int replacing)4468 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4469 {
4470 uint64_t txg, dtl_max_txg;
4471 vdev_t *rvd = spa->spa_root_vdev;
4472 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4473 vdev_ops_t *pvops;
4474 char *oldvdpath, *newvdpath;
4475 int newvd_isspare;
4476 int error;
4477
4478 ASSERT(spa_writeable(spa));
4479
4480 txg = spa_vdev_enter(spa);
4481
4482 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4483
4484 if (oldvd == NULL)
4485 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4486
4487 if (!oldvd->vdev_ops->vdev_op_leaf)
4488 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4489
4490 pvd = oldvd->vdev_parent;
4491
4492 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4493 VDEV_ALLOC_ATTACH)) != 0)
4494 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4495
4496 if (newrootvd->vdev_children != 1)
4497 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4498
4499 newvd = newrootvd->vdev_child[0];
4500
4501 if (!newvd->vdev_ops->vdev_op_leaf)
4502 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4503
4504 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4505 return (spa_vdev_exit(spa, newrootvd, txg, error));
4506
4507 /*
4508 * Spares can't replace logs
4509 */
4510 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4511 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4512
4513 if (!replacing) {
4514 /*
4515 * For attach, the only allowable parent is a mirror or the root
4516 * vdev.
4517 */
4518 if (pvd->vdev_ops != &vdev_mirror_ops &&
4519 pvd->vdev_ops != &vdev_root_ops)
4520 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4521
4522 pvops = &vdev_mirror_ops;
4523 } else {
4524 /*
4525 * Active hot spares can only be replaced by inactive hot
4526 * spares.
4527 */
4528 if (pvd->vdev_ops == &vdev_spare_ops &&
4529 oldvd->vdev_isspare &&
4530 !spa_has_spare(spa, newvd->vdev_guid))
4531 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4532
4533 /*
4534 * If the source is a hot spare, and the parent isn't already a
4535 * spare, then we want to create a new hot spare. Otherwise, we
4536 * want to create a replacing vdev. The user is not allowed to
4537 * attach to a spared vdev child unless the 'isspare' state is
4538 * the same (spare replaces spare, non-spare replaces
4539 * non-spare).
4540 */
4541 if (pvd->vdev_ops == &vdev_replacing_ops &&
4542 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4543 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4544 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4545 newvd->vdev_isspare != oldvd->vdev_isspare) {
4546 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4547 }
4548
4549 if (newvd->vdev_isspare)
4550 pvops = &vdev_spare_ops;
4551 else
4552 pvops = &vdev_replacing_ops;
4553 }
4554
4555 /*
4556 * Make sure the new device is big enough.
4557 */
4558 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4559 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4560
4561 /*
4562 * The new device cannot have a higher alignment requirement
4563 * than the top-level vdev.
4564 */
4565 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4566 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4567
4568 /*
4569 * If this is an in-place replacement, update oldvd's path and devid
4570 * to make it distinguishable from newvd, and unopenable from now on.
4571 */
4572 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4573 spa_strfree(oldvd->vdev_path);
4574 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4575 KM_SLEEP);
4576 (void) sprintf(oldvd->vdev_path, "%s/%s",
4577 newvd->vdev_path, "old");
4578 if (oldvd->vdev_devid != NULL) {
4579 spa_strfree(oldvd->vdev_devid);
4580 oldvd->vdev_devid = NULL;
4581 }
4582 }
4583
4584 /* mark the device being resilvered */
4585 newvd->vdev_resilver_txg = txg;
4586
4587 /*
4588 * If the parent is not a mirror, or if we're replacing, insert the new
4589 * mirror/replacing/spare vdev above oldvd.
4590 */
4591 if (pvd->vdev_ops != pvops)
4592 pvd = vdev_add_parent(oldvd, pvops);
4593
4594 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4595 ASSERT(pvd->vdev_ops == pvops);
4596 ASSERT(oldvd->vdev_parent == pvd);
4597
4598 /*
4599 * Extract the new device from its root and add it to pvd.
4600 */
4601 vdev_remove_child(newrootvd, newvd);
4602 newvd->vdev_id = pvd->vdev_children;
4603 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4604 vdev_add_child(pvd, newvd);
4605
4606 tvd = newvd->vdev_top;
4607 ASSERT(pvd->vdev_top == tvd);
4608 ASSERT(tvd->vdev_parent == rvd);
4609
4610 vdev_config_dirty(tvd);
4611
4612 /*
4613 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4614 * for any dmu_sync-ed blocks. It will propagate upward when
4615 * spa_vdev_exit() calls vdev_dtl_reassess().
4616 */
4617 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4618
4619 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4620 dtl_max_txg - TXG_INITIAL);
4621
4622 if (newvd->vdev_isspare) {
4623 spa_spare_activate(newvd);
4624 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4625 }
4626
4627 oldvdpath = spa_strdup(oldvd->vdev_path);
4628 newvdpath = spa_strdup(newvd->vdev_path);
4629 newvd_isspare = newvd->vdev_isspare;
4630
4631 /*
4632 * Mark newvd's DTL dirty in this txg.
4633 */
4634 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4635
4636 /*
4637 * Schedule the resilver to restart in the future. We do this to
4638 * ensure that dmu_sync-ed blocks have been stitched into the
4639 * respective datasets.
4640 */
4641 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4642
4643 if (spa->spa_bootfs)
4644 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4645
4646 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4647
4648 /*
4649 * Commit the config
4650 */
4651 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4652
4653 spa_history_log_internal(spa, "vdev attach", NULL,
4654 "%s vdev=%s %s vdev=%s",
4655 replacing && newvd_isspare ? "spare in" :
4656 replacing ? "replace" : "attach", newvdpath,
4657 replacing ? "for" : "to", oldvdpath);
4658
4659 spa_strfree(oldvdpath);
4660 spa_strfree(newvdpath);
4661
4662 return (0);
4663 }
4664
4665 /*
4666 * Detach a device from a mirror or replacing vdev.
4667 *
4668 * If 'replace_done' is specified, only detach if the parent
4669 * is a replacing vdev.
4670 */
4671 int
spa_vdev_detach(spa_t * spa,uint64_t guid,uint64_t pguid,int replace_done)4672 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4673 {
4674 uint64_t txg;
4675 int error;
4676 vdev_t *rvd = spa->spa_root_vdev;
4677 vdev_t *vd, *pvd, *cvd, *tvd;
4678 boolean_t unspare = B_FALSE;
4679 uint64_t unspare_guid = 0;
4680 char *vdpath;
4681
4682 ASSERT(spa_writeable(spa));
4683
4684 txg = spa_vdev_enter(spa);
4685
4686 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4687
4688 if (vd == NULL)
4689 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4690
4691 if (!vd->vdev_ops->vdev_op_leaf)
4692 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4693
4694 pvd = vd->vdev_parent;
4695
4696 /*
4697 * If the parent/child relationship is not as expected, don't do it.
4698 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4699 * vdev that's replacing B with C. The user's intent in replacing
4700 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4701 * the replace by detaching C, the expected behavior is to end up
4702 * M(A,B). But suppose that right after deciding to detach C,
4703 * the replacement of B completes. We would have M(A,C), and then
4704 * ask to detach C, which would leave us with just A -- not what
4705 * the user wanted. To prevent this, we make sure that the
4706 * parent/child relationship hasn't changed -- in this example,
4707 * that C's parent is still the replacing vdev R.
4708 */
4709 if (pvd->vdev_guid != pguid && pguid != 0)
4710 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4711
4712 /*
4713 * Only 'replacing' or 'spare' vdevs can be replaced.
4714 */
4715 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4716 pvd->vdev_ops != &vdev_spare_ops)
4717 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4718
4719 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4720 spa_version(spa) >= SPA_VERSION_SPARES);
4721
4722 /*
4723 * Only mirror, replacing, and spare vdevs support detach.
4724 */
4725 if (pvd->vdev_ops != &vdev_replacing_ops &&
4726 pvd->vdev_ops != &vdev_mirror_ops &&
4727 pvd->vdev_ops != &vdev_spare_ops)
4728 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4729
4730 /*
4731 * If this device has the only valid copy of some data,
4732 * we cannot safely detach it.
4733 */
4734 if (vdev_dtl_required(vd))
4735 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4736
4737 ASSERT(pvd->vdev_children >= 2);
4738
4739 /*
4740 * If we are detaching the second disk from a replacing vdev, then
4741 * check to see if we changed the original vdev's path to have "/old"
4742 * at the end in spa_vdev_attach(). If so, undo that change now.
4743 */
4744 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4745 vd->vdev_path != NULL) {
4746 size_t len = strlen(vd->vdev_path);
4747
4748 for (int c = 0; c < pvd->vdev_children; c++) {
4749 cvd = pvd->vdev_child[c];
4750
4751 if (cvd == vd || cvd->vdev_path == NULL)
4752 continue;
4753
4754 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4755 strcmp(cvd->vdev_path + len, "/old") == 0) {
4756 spa_strfree(cvd->vdev_path);
4757 cvd->vdev_path = spa_strdup(vd->vdev_path);
4758 break;
4759 }
4760 }
4761 }
4762
4763 /*
4764 * If we are detaching the original disk from a spare, then it implies
4765 * that the spare should become a real disk, and be removed from the
4766 * active spare list for the pool.
4767 */
4768 if (pvd->vdev_ops == &vdev_spare_ops &&
4769 vd->vdev_id == 0 &&
4770 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4771 unspare = B_TRUE;
4772
4773 /*
4774 * Erase the disk labels so the disk can be used for other things.
4775 * This must be done after all other error cases are handled,
4776 * but before we disembowel vd (so we can still do I/O to it).
4777 * But if we can't do it, don't treat the error as fatal --
4778 * it may be that the unwritability of the disk is the reason
4779 * it's being detached!
4780 */
4781 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4782
4783 /*
4784 * Remove vd from its parent and compact the parent's children.
4785 */
4786 vdev_remove_child(pvd, vd);
4787 vdev_compact_children(pvd);
4788
4789 /*
4790 * Remember one of the remaining children so we can get tvd below.
4791 */
4792 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4793
4794 /*
4795 * If we need to remove the remaining child from the list of hot spares,
4796 * do it now, marking the vdev as no longer a spare in the process.
4797 * We must do this before vdev_remove_parent(), because that can
4798 * change the GUID if it creates a new toplevel GUID. For a similar
4799 * reason, we must remove the spare now, in the same txg as the detach;
4800 * otherwise someone could attach a new sibling, change the GUID, and
4801 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4802 */
4803 if (unspare) {
4804 ASSERT(cvd->vdev_isspare);
4805 spa_spare_remove(cvd);
4806 unspare_guid = cvd->vdev_guid;
4807 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4808 cvd->vdev_unspare = B_TRUE;
4809 }
4810
4811 /*
4812 * If the parent mirror/replacing vdev only has one child,
4813 * the parent is no longer needed. Remove it from the tree.
4814 */
4815 if (pvd->vdev_children == 1) {
4816 if (pvd->vdev_ops == &vdev_spare_ops)
4817 cvd->vdev_unspare = B_FALSE;
4818 vdev_remove_parent(cvd);
4819 }
4820
4821
4822 /*
4823 * We don't set tvd until now because the parent we just removed
4824 * may have been the previous top-level vdev.
4825 */
4826 tvd = cvd->vdev_top;
4827 ASSERT(tvd->vdev_parent == rvd);
4828
4829 /*
4830 * Reevaluate the parent vdev state.
4831 */
4832 vdev_propagate_state(cvd);
4833
4834 /*
4835 * If the 'autoexpand' property is set on the pool then automatically
4836 * try to expand the size of the pool. For example if the device we
4837 * just detached was smaller than the others, it may be possible to
4838 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4839 * first so that we can obtain the updated sizes of the leaf vdevs.
4840 */
4841 if (spa->spa_autoexpand) {
4842 vdev_reopen(tvd);
4843 vdev_expand(tvd, txg);
4844 }
4845
4846 vdev_config_dirty(tvd);
4847
4848 /*
4849 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4850 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4851 * But first make sure we're not on any *other* txg's DTL list, to
4852 * prevent vd from being accessed after it's freed.
4853 */
4854 vdpath = spa_strdup(vd->vdev_path);
4855 for (int t = 0; t < TXG_SIZE; t++)
4856 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4857 vd->vdev_detached = B_TRUE;
4858 vdev_dirty(tvd, VDD_DTL, vd, txg);
4859
4860 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4861
4862 /* hang on to the spa before we release the lock */
4863 spa_open_ref(spa, FTAG);
4864
4865 error = spa_vdev_exit(spa, vd, txg, 0);
4866
4867 spa_history_log_internal(spa, "detach", NULL,
4868 "vdev=%s", vdpath);
4869 spa_strfree(vdpath);
4870
4871 /*
4872 * If this was the removal of the original device in a hot spare vdev,
4873 * then we want to go through and remove the device from the hot spare
4874 * list of every other pool.
4875 */
4876 if (unspare) {
4877 spa_t *altspa = NULL;
4878
4879 mutex_enter(&spa_namespace_lock);
4880 while ((altspa = spa_next(altspa)) != NULL) {
4881 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4882 altspa == spa)
4883 continue;
4884
4885 spa_open_ref(altspa, FTAG);
4886 mutex_exit(&spa_namespace_lock);
4887 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4888 mutex_enter(&spa_namespace_lock);
4889 spa_close(altspa, FTAG);
4890 }
4891 mutex_exit(&spa_namespace_lock);
4892
4893 /* search the rest of the vdevs for spares to remove */
4894 spa_vdev_resilver_done(spa);
4895 }
4896
4897 /* all done with the spa; OK to release */
4898 mutex_enter(&spa_namespace_lock);
4899 spa_close(spa, FTAG);
4900 mutex_exit(&spa_namespace_lock);
4901
4902 return (error);
4903 }
4904
4905 /*
4906 * Split a set of devices from their mirrors, and create a new pool from them.
4907 */
4908 int
spa_vdev_split_mirror(spa_t * spa,char * newname,nvlist_t * config,nvlist_t * props,boolean_t exp)4909 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4910 nvlist_t *props, boolean_t exp)
4911 {
4912 int error = 0;
4913 uint64_t txg, *glist;
4914 spa_t *newspa;
4915 uint_t c, children, lastlog;
4916 nvlist_t **child, *nvl, *tmp;
4917 dmu_tx_t *tx;
4918 char *altroot = NULL;
4919 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4920 boolean_t activate_slog;
4921
4922 ASSERT(spa_writeable(spa));
4923
4924 txg = spa_vdev_enter(spa);
4925
4926 /* clear the log and flush everything up to now */
4927 activate_slog = spa_passivate_log(spa);
4928 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4929 error = spa_offline_log(spa);
4930 txg = spa_vdev_config_enter(spa);
4931
4932 if (activate_slog)
4933 spa_activate_log(spa);
4934
4935 if (error != 0)
4936 return (spa_vdev_exit(spa, NULL, txg, error));
4937
4938 /* check new spa name before going any further */
4939 if (spa_lookup(newname) != NULL)
4940 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4941
4942 /*
4943 * scan through all the children to ensure they're all mirrors
4944 */
4945 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4946 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4947 &children) != 0)
4948 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4949
4950 /* first, check to ensure we've got the right child count */
4951 rvd = spa->spa_root_vdev;
4952 lastlog = 0;
4953 for (c = 0; c < rvd->vdev_children; c++) {
4954 vdev_t *vd = rvd->vdev_child[c];
4955
4956 /* don't count the holes & logs as children */
4957 if (vd->vdev_islog || vd->vdev_ishole) {
4958 if (lastlog == 0)
4959 lastlog = c;
4960 continue;
4961 }
4962
4963 lastlog = 0;
4964 }
4965 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4966 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4967
4968 /* next, ensure no spare or cache devices are part of the split */
4969 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4970 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4971 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4972
4973 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4974 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4975
4976 /* then, loop over each vdev and validate it */
4977 for (c = 0; c < children; c++) {
4978 uint64_t is_hole = 0;
4979
4980 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4981 &is_hole);
4982
4983 if (is_hole != 0) {
4984 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4985 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4986 continue;
4987 } else {
4988 error = SET_ERROR(EINVAL);
4989 break;
4990 }
4991 }
4992
4993 /* which disk is going to be split? */
4994 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4995 &glist[c]) != 0) {
4996 error = SET_ERROR(EINVAL);
4997 break;
4998 }
4999
5000 /* look it up in the spa */
5001 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5002 if (vml[c] == NULL) {
5003 error = SET_ERROR(ENODEV);
5004 break;
5005 }
5006
5007 /* make sure there's nothing stopping the split */
5008 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5009 vml[c]->vdev_islog ||
5010 vml[c]->vdev_ishole ||
5011 vml[c]->vdev_isspare ||
5012 vml[c]->vdev_isl2cache ||
5013 !vdev_writeable(vml[c]) ||
5014 vml[c]->vdev_children != 0 ||
5015 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5016 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5017 error = SET_ERROR(EINVAL);
5018 break;
5019 }
5020
5021 if (vdev_dtl_required(vml[c])) {
5022 error = SET_ERROR(EBUSY);
5023 break;
5024 }
5025
5026 /* we need certain info from the top level */
5027 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5028 vml[c]->vdev_top->vdev_ms_array) == 0);
5029 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5030 vml[c]->vdev_top->vdev_ms_shift) == 0);
5031 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5032 vml[c]->vdev_top->vdev_asize) == 0);
5033 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5034 vml[c]->vdev_top->vdev_ashift) == 0);
5035 }
5036
5037 if (error != 0) {
5038 kmem_free(vml, children * sizeof (vdev_t *));
5039 kmem_free(glist, children * sizeof (uint64_t));
5040 return (spa_vdev_exit(spa, NULL, txg, error));
5041 }
5042
5043 /* stop writers from using the disks */
5044 for (c = 0; c < children; c++) {
5045 if (vml[c] != NULL)
5046 vml[c]->vdev_offline = B_TRUE;
5047 }
5048 vdev_reopen(spa->spa_root_vdev);
5049
5050 /*
5051 * Temporarily record the splitting vdevs in the spa config. This
5052 * will disappear once the config is regenerated.
5053 */
5054 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5055 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5056 glist, children) == 0);
5057 kmem_free(glist, children * sizeof (uint64_t));
5058
5059 mutex_enter(&spa->spa_props_lock);
5060 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5061 nvl) == 0);
5062 mutex_exit(&spa->spa_props_lock);
5063 spa->spa_config_splitting = nvl;
5064 vdev_config_dirty(spa->spa_root_vdev);
5065
5066 /* configure and create the new pool */
5067 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5068 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5069 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5070 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5071 spa_version(spa)) == 0);
5072 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5073 spa->spa_config_txg) == 0);
5074 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5075 spa_generate_guid(NULL)) == 0);
5076 (void) nvlist_lookup_string(props,
5077 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5078
5079 /* add the new pool to the namespace */
5080 newspa = spa_add(newname, config, altroot);
5081 newspa->spa_config_txg = spa->spa_config_txg;
5082 spa_set_log_state(newspa, SPA_LOG_CLEAR);
5083
5084 /* release the spa config lock, retaining the namespace lock */
5085 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5086
5087 if (zio_injection_enabled)
5088 zio_handle_panic_injection(spa, FTAG, 1);
5089
5090 spa_activate(newspa, spa_mode_global);
5091 spa_async_suspend(newspa);
5092
5093 /* create the new pool from the disks of the original pool */
5094 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5095 if (error)
5096 goto out;
5097
5098 /* if that worked, generate a real config for the new pool */
5099 if (newspa->spa_root_vdev != NULL) {
5100 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5101 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5102 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5103 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5104 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5105 B_TRUE));
5106 }
5107
5108 /* set the props */
5109 if (props != NULL) {
5110 spa_configfile_set(newspa, props, B_FALSE);
5111 error = spa_prop_set(newspa, props);
5112 if (error)
5113 goto out;
5114 }
5115
5116 /* flush everything */
5117 txg = spa_vdev_config_enter(newspa);
5118 vdev_config_dirty(newspa->spa_root_vdev);
5119 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5120
5121 if (zio_injection_enabled)
5122 zio_handle_panic_injection(spa, FTAG, 2);
5123
5124 spa_async_resume(newspa);
5125
5126 /* finally, update the original pool's config */
5127 txg = spa_vdev_config_enter(spa);
5128 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5129 error = dmu_tx_assign(tx, TXG_WAIT);
5130 if (error != 0)
5131 dmu_tx_abort(tx);
5132 for (c = 0; c < children; c++) {
5133 if (vml[c] != NULL) {
5134 vdev_split(vml[c]);
5135 if (error == 0)
5136 spa_history_log_internal(spa, "detach", tx,
5137 "vdev=%s", vml[c]->vdev_path);
5138 vdev_free(vml[c]);
5139 }
5140 }
5141 vdev_config_dirty(spa->spa_root_vdev);
5142 spa->spa_config_splitting = NULL;
5143 nvlist_free(nvl);
5144 if (error == 0)
5145 dmu_tx_commit(tx);
5146 (void) spa_vdev_exit(spa, NULL, txg, 0);
5147
5148 if (zio_injection_enabled)
5149 zio_handle_panic_injection(spa, FTAG, 3);
5150
5151 /* split is complete; log a history record */
5152 spa_history_log_internal(newspa, "split", NULL,
5153 "from pool %s", spa_name(spa));
5154
5155 kmem_free(vml, children * sizeof (vdev_t *));
5156
5157 /* if we're not going to mount the filesystems in userland, export */
5158 if (exp)
5159 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5160 B_FALSE, B_FALSE);
5161
5162 return (error);
5163
5164 out:
5165 spa_unload(newspa);
5166 spa_deactivate(newspa);
5167 spa_remove(newspa);
5168
5169 txg = spa_vdev_config_enter(spa);
5170
5171 /* re-online all offlined disks */
5172 for (c = 0; c < children; c++) {
5173 if (vml[c] != NULL)
5174 vml[c]->vdev_offline = B_FALSE;
5175 }
5176 vdev_reopen(spa->spa_root_vdev);
5177
5178 nvlist_free(spa->spa_config_splitting);
5179 spa->spa_config_splitting = NULL;
5180 (void) spa_vdev_exit(spa, NULL, txg, error);
5181
5182 kmem_free(vml, children * sizeof (vdev_t *));
5183 return (error);
5184 }
5185
5186 static nvlist_t *
spa_nvlist_lookup_by_guid(nvlist_t ** nvpp,int count,uint64_t target_guid)5187 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5188 {
5189 for (int i = 0; i < count; i++) {
5190 uint64_t guid;
5191
5192 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5193 &guid) == 0);
5194
5195 if (guid == target_guid)
5196 return (nvpp[i]);
5197 }
5198
5199 return (NULL);
5200 }
5201
5202 static void
spa_vdev_remove_aux(nvlist_t * config,char * name,nvlist_t ** dev,int count,nvlist_t * dev_to_remove)5203 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5204 nvlist_t *dev_to_remove)
5205 {
5206 nvlist_t **newdev = NULL;
5207
5208 if (count > 1)
5209 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5210
5211 for (int i = 0, j = 0; i < count; i++) {
5212 if (dev[i] == dev_to_remove)
5213 continue;
5214 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5215 }
5216
5217 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5218 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5219
5220 for (int i = 0; i < count - 1; i++)
5221 nvlist_free(newdev[i]);
5222
5223 if (count > 1)
5224 kmem_free(newdev, (count - 1) * sizeof (void *));
5225 }
5226
5227 /*
5228 * Evacuate the device.
5229 */
5230 static int
spa_vdev_remove_evacuate(spa_t * spa,vdev_t * vd)5231 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5232 {
5233 uint64_t txg;
5234 int error = 0;
5235
5236 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5237 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5238 ASSERT(vd == vd->vdev_top);
5239
5240 /*
5241 * Evacuate the device. We don't hold the config lock as writer
5242 * since we need to do I/O but we do keep the
5243 * spa_namespace_lock held. Once this completes the device
5244 * should no longer have any blocks allocated on it.
5245 */
5246 if (vd->vdev_islog) {
5247 if (vd->vdev_stat.vs_alloc != 0)
5248 error = spa_offline_log(spa);
5249 } else {
5250 error = SET_ERROR(ENOTSUP);
5251 }
5252
5253 if (error)
5254 return (error);
5255
5256 /*
5257 * The evacuation succeeded. Remove any remaining MOS metadata
5258 * associated with this vdev, and wait for these changes to sync.
5259 */
5260 ASSERT0(vd->vdev_stat.vs_alloc);
5261 txg = spa_vdev_config_enter(spa);
5262 vd->vdev_removing = B_TRUE;
5263 vdev_dirty_leaves(vd, VDD_DTL, txg);
5264 vdev_config_dirty(vd);
5265 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5266
5267 return (0);
5268 }
5269
5270 /*
5271 * Complete the removal by cleaning up the namespace.
5272 */
5273 static void
spa_vdev_remove_from_namespace(spa_t * spa,vdev_t * vd)5274 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5275 {
5276 vdev_t *rvd = spa->spa_root_vdev;
5277 uint64_t id = vd->vdev_id;
5278 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5279
5280 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5281 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5282 ASSERT(vd == vd->vdev_top);
5283
5284 /*
5285 * Only remove any devices which are empty.
5286 */
5287 if (vd->vdev_stat.vs_alloc != 0)
5288 return;
5289
5290 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5291
5292 if (list_link_active(&vd->vdev_state_dirty_node))
5293 vdev_state_clean(vd);
5294 if (list_link_active(&vd->vdev_config_dirty_node))
5295 vdev_config_clean(vd);
5296
5297 vdev_free(vd);
5298
5299 if (last_vdev) {
5300 vdev_compact_children(rvd);
5301 } else {
5302 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5303 vdev_add_child(rvd, vd);
5304 }
5305 vdev_config_dirty(rvd);
5306
5307 /*
5308 * Reassess the health of our root vdev.
5309 */
5310 vdev_reopen(rvd);
5311 }
5312
5313 /*
5314 * Remove a device from the pool -
5315 *
5316 * Removing a device from the vdev namespace requires several steps
5317 * and can take a significant amount of time. As a result we use
5318 * the spa_vdev_config_[enter/exit] functions which allow us to
5319 * grab and release the spa_config_lock while still holding the namespace
5320 * lock. During each step the configuration is synced out.
5321 *
5322 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5323 * devices.
5324 */
5325 int
spa_vdev_remove(spa_t * spa,uint64_t guid,boolean_t unspare)5326 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5327 {
5328 vdev_t *vd;
5329 metaslab_group_t *mg;
5330 nvlist_t **spares, **l2cache, *nv;
5331 uint64_t txg = 0;
5332 uint_t nspares, nl2cache;
5333 int error = 0;
5334 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5335
5336 ASSERT(spa_writeable(spa));
5337
5338 if (!locked)
5339 txg = spa_vdev_enter(spa);
5340
5341 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5342
5343 if (spa->spa_spares.sav_vdevs != NULL &&
5344 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5345 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5346 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5347 /*
5348 * Only remove the hot spare if it's not currently in use
5349 * in this pool.
5350 */
5351 if (vd == NULL || unspare) {
5352 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5353 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5354 spa_load_spares(spa);
5355 spa->spa_spares.sav_sync = B_TRUE;
5356 } else {
5357 error = SET_ERROR(EBUSY);
5358 }
5359 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5360 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5361 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5362 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5363 /*
5364 * Cache devices can always be removed.
5365 */
5366 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5367 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5368 spa_load_l2cache(spa);
5369 spa->spa_l2cache.sav_sync = B_TRUE;
5370 } else if (vd != NULL && vd->vdev_islog) {
5371 ASSERT(!locked);
5372 ASSERT(vd == vd->vdev_top);
5373
5374 mg = vd->vdev_mg;
5375
5376 /*
5377 * Stop allocating from this vdev.
5378 */
5379 metaslab_group_passivate(mg);
5380
5381 /*
5382 * Wait for the youngest allocations and frees to sync,
5383 * and then wait for the deferral of those frees to finish.
5384 */
5385 spa_vdev_config_exit(spa, NULL,
5386 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5387
5388 /*
5389 * Attempt to evacuate the vdev.
5390 */
5391 error = spa_vdev_remove_evacuate(spa, vd);
5392
5393 txg = spa_vdev_config_enter(spa);
5394
5395 /*
5396 * If we couldn't evacuate the vdev, unwind.
5397 */
5398 if (error) {
5399 metaslab_group_activate(mg);
5400 return (spa_vdev_exit(spa, NULL, txg, error));
5401 }
5402
5403 /*
5404 * Clean up the vdev namespace.
5405 */
5406 spa_vdev_remove_from_namespace(spa, vd);
5407
5408 } else if (vd != NULL) {
5409 /*
5410 * Normal vdevs cannot be removed (yet).
5411 */
5412 error = SET_ERROR(ENOTSUP);
5413 } else {
5414 /*
5415 * There is no vdev of any kind with the specified guid.
5416 */
5417 error = SET_ERROR(ENOENT);
5418 }
5419
5420 if (!locked)
5421 return (spa_vdev_exit(spa, NULL, txg, error));
5422
5423 return (error);
5424 }
5425
5426 /*
5427 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5428 * currently spared, so we can detach it.
5429 */
5430 static vdev_t *
spa_vdev_resilver_done_hunt(vdev_t * vd)5431 spa_vdev_resilver_done_hunt(vdev_t *vd)
5432 {
5433 vdev_t *newvd, *oldvd;
5434
5435 for (int c = 0; c < vd->vdev_children; c++) {
5436 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5437 if (oldvd != NULL)
5438 return (oldvd);
5439 }
5440
5441 /*
5442 * Check for a completed replacement. We always consider the first
5443 * vdev in the list to be the oldest vdev, and the last one to be
5444 * the newest (see spa_vdev_attach() for how that works). In
5445 * the case where the newest vdev is faulted, we will not automatically
5446 * remove it after a resilver completes. This is OK as it will require
5447 * user intervention to determine which disk the admin wishes to keep.
5448 */
5449 if (vd->vdev_ops == &vdev_replacing_ops) {
5450 ASSERT(vd->vdev_children > 1);
5451
5452 newvd = vd->vdev_child[vd->vdev_children - 1];
5453 oldvd = vd->vdev_child[0];
5454
5455 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5456 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5457 !vdev_dtl_required(oldvd))
5458 return (oldvd);
5459 }
5460
5461 /*
5462 * Check for a completed resilver with the 'unspare' flag set.
5463 */
5464 if (vd->vdev_ops == &vdev_spare_ops) {
5465 vdev_t *first = vd->vdev_child[0];
5466 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5467
5468 if (last->vdev_unspare) {
5469 oldvd = first;
5470 newvd = last;
5471 } else if (first->vdev_unspare) {
5472 oldvd = last;
5473 newvd = first;
5474 } else {
5475 oldvd = NULL;
5476 }
5477
5478 if (oldvd != NULL &&
5479 vdev_dtl_empty(newvd, DTL_MISSING) &&
5480 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5481 !vdev_dtl_required(oldvd))
5482 return (oldvd);
5483
5484 /*
5485 * If there are more than two spares attached to a disk,
5486 * and those spares are not required, then we want to
5487 * attempt to free them up now so that they can be used
5488 * by other pools. Once we're back down to a single
5489 * disk+spare, we stop removing them.
5490 */
5491 if (vd->vdev_children > 2) {
5492 newvd = vd->vdev_child[1];
5493
5494 if (newvd->vdev_isspare && last->vdev_isspare &&
5495 vdev_dtl_empty(last, DTL_MISSING) &&
5496 vdev_dtl_empty(last, DTL_OUTAGE) &&
5497 !vdev_dtl_required(newvd))
5498 return (newvd);
5499 }
5500 }
5501
5502 return (NULL);
5503 }
5504
5505 static void
spa_vdev_resilver_done(spa_t * spa)5506 spa_vdev_resilver_done(spa_t *spa)
5507 {
5508 vdev_t *vd, *pvd, *ppvd;
5509 uint64_t guid, sguid, pguid, ppguid;
5510
5511 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5512
5513 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5514 pvd = vd->vdev_parent;
5515 ppvd = pvd->vdev_parent;
5516 guid = vd->vdev_guid;
5517 pguid = pvd->vdev_guid;
5518 ppguid = ppvd->vdev_guid;
5519 sguid = 0;
5520 /*
5521 * If we have just finished replacing a hot spared device, then
5522 * we need to detach the parent's first child (the original hot
5523 * spare) as well.
5524 */
5525 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5526 ppvd->vdev_children == 2) {
5527 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5528 sguid = ppvd->vdev_child[1]->vdev_guid;
5529 }
5530 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5531
5532 spa_config_exit(spa, SCL_ALL, FTAG);
5533 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5534 return;
5535 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5536 return;
5537 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5538 }
5539
5540 spa_config_exit(spa, SCL_ALL, FTAG);
5541 }
5542
5543 /*
5544 * Update the stored path or FRU for this vdev.
5545 */
5546 int
spa_vdev_set_common(spa_t * spa,uint64_t guid,const char * value,boolean_t ispath)5547 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5548 boolean_t ispath)
5549 {
5550 vdev_t *vd;
5551 boolean_t sync = B_FALSE;
5552
5553 ASSERT(spa_writeable(spa));
5554
5555 spa_vdev_state_enter(spa, SCL_ALL);
5556
5557 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5558 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5559
5560 if (!vd->vdev_ops->vdev_op_leaf)
5561 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5562
5563 if (ispath) {
5564 if (strcmp(value, vd->vdev_path) != 0) {
5565 spa_strfree(vd->vdev_path);
5566 vd->vdev_path = spa_strdup(value);
5567 sync = B_TRUE;
5568 }
5569 } else {
5570 if (vd->vdev_fru == NULL) {
5571 vd->vdev_fru = spa_strdup(value);
5572 sync = B_TRUE;
5573 } else if (strcmp(value, vd->vdev_fru) != 0) {
5574 spa_strfree(vd->vdev_fru);
5575 vd->vdev_fru = spa_strdup(value);
5576 sync = B_TRUE;
5577 }
5578 }
5579
5580 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5581 }
5582
5583 int
spa_vdev_setpath(spa_t * spa,uint64_t guid,const char * newpath)5584 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5585 {
5586 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5587 }
5588
5589 int
spa_vdev_setfru(spa_t * spa,uint64_t guid,const char * newfru)5590 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5591 {
5592 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5593 }
5594
5595 /*
5596 * ==========================================================================
5597 * SPA Scanning
5598 * ==========================================================================
5599 */
5600
5601 int
spa_scan_stop(spa_t * spa)5602 spa_scan_stop(spa_t *spa)
5603 {
5604 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5605 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5606 return (SET_ERROR(EBUSY));
5607 return (dsl_scan_cancel(spa->spa_dsl_pool));
5608 }
5609
5610 int
spa_scan(spa_t * spa,pool_scan_func_t func)5611 spa_scan(spa_t *spa, pool_scan_func_t func)
5612 {
5613 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5614
5615 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5616 return (SET_ERROR(ENOTSUP));
5617
5618 /*
5619 * If a resilver was requested, but there is no DTL on a
5620 * writeable leaf device, we have nothing to do.
5621 */
5622 if (func == POOL_SCAN_RESILVER &&
5623 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5624 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5625 return (0);
5626 }
5627
5628 return (dsl_scan(spa->spa_dsl_pool, func));
5629 }
5630
5631 /*
5632 * ==========================================================================
5633 * SPA async task processing
5634 * ==========================================================================
5635 */
5636
5637 static void
spa_async_remove(spa_t * spa,vdev_t * vd)5638 spa_async_remove(spa_t *spa, vdev_t *vd)
5639 {
5640 if (vd->vdev_remove_wanted) {
5641 vd->vdev_remove_wanted = B_FALSE;
5642 vd->vdev_delayed_close = B_FALSE;
5643 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5644
5645 /*
5646 * We want to clear the stats, but we don't want to do a full
5647 * vdev_clear() as that will cause us to throw away
5648 * degraded/faulted state as well as attempt to reopen the
5649 * device, all of which is a waste.
5650 */
5651 vd->vdev_stat.vs_read_errors = 0;
5652 vd->vdev_stat.vs_write_errors = 0;
5653 vd->vdev_stat.vs_checksum_errors = 0;
5654
5655 vdev_state_dirty(vd->vdev_top);
5656 }
5657
5658 for (int c = 0; c < vd->vdev_children; c++)
5659 spa_async_remove(spa, vd->vdev_child[c]);
5660 }
5661
5662 static void
spa_async_probe(spa_t * spa,vdev_t * vd)5663 spa_async_probe(spa_t *spa, vdev_t *vd)
5664 {
5665 if (vd->vdev_probe_wanted) {
5666 vd->vdev_probe_wanted = B_FALSE;
5667 vdev_reopen(vd); /* vdev_open() does the actual probe */
5668 }
5669
5670 for (int c = 0; c < vd->vdev_children; c++)
5671 spa_async_probe(spa, vd->vdev_child[c]);
5672 }
5673
5674 static void
spa_async_autoexpand(spa_t * spa,vdev_t * vd)5675 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5676 {
5677 sysevent_id_t eid;
5678 nvlist_t *attr;
5679 char *physpath;
5680
5681 if (!spa->spa_autoexpand)
5682 return;
5683
5684 for (int c = 0; c < vd->vdev_children; c++) {
5685 vdev_t *cvd = vd->vdev_child[c];
5686 spa_async_autoexpand(spa, cvd);
5687 }
5688
5689 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5690 return;
5691
5692 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5693 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5694
5695 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5696 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5697
5698 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5699 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5700
5701 nvlist_free(attr);
5702 kmem_free(physpath, MAXPATHLEN);
5703 }
5704
5705 static void
spa_async_thread(spa_t * spa)5706 spa_async_thread(spa_t *spa)
5707 {
5708 int tasks;
5709
5710 ASSERT(spa->spa_sync_on);
5711
5712 mutex_enter(&spa->spa_async_lock);
5713 tasks = spa->spa_async_tasks;
5714 spa->spa_async_tasks = 0;
5715 mutex_exit(&spa->spa_async_lock);
5716
5717 /*
5718 * See if the config needs to be updated.
5719 */
5720 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5721 uint64_t old_space, new_space;
5722
5723 mutex_enter(&spa_namespace_lock);
5724 old_space = metaslab_class_get_space(spa_normal_class(spa));
5725 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5726 new_space = metaslab_class_get_space(spa_normal_class(spa));
5727 mutex_exit(&spa_namespace_lock);
5728
5729 /*
5730 * If the pool grew as a result of the config update,
5731 * then log an internal history event.
5732 */
5733 if (new_space != old_space) {
5734 spa_history_log_internal(spa, "vdev online", NULL,
5735 "pool '%s' size: %llu(+%llu)",
5736 spa_name(spa), new_space, new_space - old_space);
5737 }
5738 }
5739
5740 /*
5741 * See if any devices need to be marked REMOVED.
5742 */
5743 if (tasks & SPA_ASYNC_REMOVE) {
5744 spa_vdev_state_enter(spa, SCL_NONE);
5745 spa_async_remove(spa, spa->spa_root_vdev);
5746 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5747 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5748 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5749 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5750 (void) spa_vdev_state_exit(spa, NULL, 0);
5751 }
5752
5753 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5754 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5755 spa_async_autoexpand(spa, spa->spa_root_vdev);
5756 spa_config_exit(spa, SCL_CONFIG, FTAG);
5757 }
5758
5759 /*
5760 * See if any devices need to be probed.
5761 */
5762 if (tasks & SPA_ASYNC_PROBE) {
5763 spa_vdev_state_enter(spa, SCL_NONE);
5764 spa_async_probe(spa, spa->spa_root_vdev);
5765 (void) spa_vdev_state_exit(spa, NULL, 0);
5766 }
5767
5768 /*
5769 * If any devices are done replacing, detach them.
5770 */
5771 if (tasks & SPA_ASYNC_RESILVER_DONE)
5772 spa_vdev_resilver_done(spa);
5773
5774 /*
5775 * Kick off a resilver.
5776 */
5777 if (tasks & SPA_ASYNC_RESILVER)
5778 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5779
5780 /*
5781 * Let the world know that we're done.
5782 */
5783 mutex_enter(&spa->spa_async_lock);
5784 spa->spa_async_thread = NULL;
5785 cv_broadcast(&spa->spa_async_cv);
5786 mutex_exit(&spa->spa_async_lock);
5787 thread_exit();
5788 }
5789
5790 void
spa_async_suspend(spa_t * spa)5791 spa_async_suspend(spa_t *spa)
5792 {
5793 mutex_enter(&spa->spa_async_lock);
5794 spa->spa_async_suspended++;
5795 while (spa->spa_async_thread != NULL)
5796 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5797 mutex_exit(&spa->spa_async_lock);
5798 }
5799
5800 void
spa_async_resume(spa_t * spa)5801 spa_async_resume(spa_t *spa)
5802 {
5803 mutex_enter(&spa->spa_async_lock);
5804 ASSERT(spa->spa_async_suspended != 0);
5805 spa->spa_async_suspended--;
5806 mutex_exit(&spa->spa_async_lock);
5807 }
5808
5809 static boolean_t
spa_async_tasks_pending(spa_t * spa)5810 spa_async_tasks_pending(spa_t *spa)
5811 {
5812 uint_t non_config_tasks;
5813 uint_t config_task;
5814 boolean_t config_task_suspended;
5815
5816 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5817 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5818 if (spa->spa_ccw_fail_time == 0) {
5819 config_task_suspended = B_FALSE;
5820 } else {
5821 config_task_suspended =
5822 (gethrtime() - spa->spa_ccw_fail_time) <
5823 (zfs_ccw_retry_interval * NANOSEC);
5824 }
5825
5826 return (non_config_tasks || (config_task && !config_task_suspended));
5827 }
5828
5829 static void
spa_async_dispatch(spa_t * spa)5830 spa_async_dispatch(spa_t *spa)
5831 {
5832 mutex_enter(&spa->spa_async_lock);
5833 if (spa_async_tasks_pending(spa) &&
5834 !spa->spa_async_suspended &&
5835 spa->spa_async_thread == NULL &&
5836 rootdir != NULL)
5837 spa->spa_async_thread = thread_create(NULL, 0,
5838 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5839 mutex_exit(&spa->spa_async_lock);
5840 }
5841
5842 void
spa_async_request(spa_t * spa,int task)5843 spa_async_request(spa_t *spa, int task)
5844 {
5845 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5846 mutex_enter(&spa->spa_async_lock);
5847 spa->spa_async_tasks |= task;
5848 mutex_exit(&spa->spa_async_lock);
5849 }
5850
5851 /*
5852 * ==========================================================================
5853 * SPA syncing routines
5854 * ==========================================================================
5855 */
5856
5857 static int
bpobj_enqueue_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)5858 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5859 {
5860 bpobj_t *bpo = arg;
5861 bpobj_enqueue(bpo, bp, tx);
5862 return (0);
5863 }
5864
5865 static int
spa_free_sync_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)5866 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5867 {
5868 zio_t *zio = arg;
5869
5870 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5871 zio->io_flags));
5872 return (0);
5873 }
5874
5875 /*
5876 * Note: this simple function is not inlined to make it easier to dtrace the
5877 * amount of time spent syncing frees.
5878 */
5879 static void
spa_sync_frees(spa_t * spa,bplist_t * bpl,dmu_tx_t * tx)5880 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5881 {
5882 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5883 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5884 VERIFY(zio_wait(zio) == 0);
5885 }
5886
5887 /*
5888 * Note: this simple function is not inlined to make it easier to dtrace the
5889 * amount of time spent syncing deferred frees.
5890 */
5891 static void
spa_sync_deferred_frees(spa_t * spa,dmu_tx_t * tx)5892 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5893 {
5894 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5895 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5896 spa_free_sync_cb, zio, tx), ==, 0);
5897 VERIFY0(zio_wait(zio));
5898 }
5899
5900
5901 static void
spa_sync_nvlist(spa_t * spa,uint64_t obj,nvlist_t * nv,dmu_tx_t * tx)5902 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5903 {
5904 char *packed = NULL;
5905 size_t bufsize;
5906 size_t nvsize = 0;
5907 dmu_buf_t *db;
5908
5909 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5910
5911 /*
5912 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5913 * information. This avoids the dmu_buf_will_dirty() path and
5914 * saves us a pre-read to get data we don't actually care about.
5915 */
5916 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5917 packed = kmem_alloc(bufsize, KM_SLEEP);
5918
5919 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5920 KM_SLEEP) == 0);
5921 bzero(packed + nvsize, bufsize - nvsize);
5922
5923 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5924
5925 kmem_free(packed, bufsize);
5926
5927 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5928 dmu_buf_will_dirty(db, tx);
5929 *(uint64_t *)db->db_data = nvsize;
5930 dmu_buf_rele(db, FTAG);
5931 }
5932
5933 static void
spa_sync_aux_dev(spa_t * spa,spa_aux_vdev_t * sav,dmu_tx_t * tx,const char * config,const char * entry)5934 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5935 const char *config, const char *entry)
5936 {
5937 nvlist_t *nvroot;
5938 nvlist_t **list;
5939 int i;
5940
5941 if (!sav->sav_sync)
5942 return;
5943
5944 /*
5945 * Update the MOS nvlist describing the list of available devices.
5946 * spa_validate_aux() will have already made sure this nvlist is
5947 * valid and the vdevs are labeled appropriately.
5948 */
5949 if (sav->sav_object == 0) {
5950 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5951 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5952 sizeof (uint64_t), tx);
5953 VERIFY(zap_update(spa->spa_meta_objset,
5954 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5955 &sav->sav_object, tx) == 0);
5956 }
5957
5958 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5959 if (sav->sav_count == 0) {
5960 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5961 } else {
5962 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5963 for (i = 0; i < sav->sav_count; i++)
5964 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5965 B_FALSE, VDEV_CONFIG_L2CACHE);
5966 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5967 sav->sav_count) == 0);
5968 for (i = 0; i < sav->sav_count; i++)
5969 nvlist_free(list[i]);
5970 kmem_free(list, sav->sav_count * sizeof (void *));
5971 }
5972
5973 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5974 nvlist_free(nvroot);
5975
5976 sav->sav_sync = B_FALSE;
5977 }
5978
5979 static void
spa_sync_config_object(spa_t * spa,dmu_tx_t * tx)5980 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5981 {
5982 nvlist_t *config;
5983
5984 if (list_is_empty(&spa->spa_config_dirty_list))
5985 return;
5986
5987 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5988
5989 config = spa_config_generate(spa, spa->spa_root_vdev,
5990 dmu_tx_get_txg(tx), B_FALSE);
5991
5992 /*
5993 * If we're upgrading the spa version then make sure that
5994 * the config object gets updated with the correct version.
5995 */
5996 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5997 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5998 spa->spa_uberblock.ub_version);
5999
6000 spa_config_exit(spa, SCL_STATE, FTAG);
6001
6002 nvlist_free(spa->spa_config_syncing);
6003 spa->spa_config_syncing = config;
6004
6005 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6006 }
6007
6008 static void
spa_sync_version(void * arg,dmu_tx_t * tx)6009 spa_sync_version(void *arg, dmu_tx_t *tx)
6010 {
6011 uint64_t *versionp = arg;
6012 uint64_t version = *versionp;
6013 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6014
6015 /*
6016 * Setting the version is special cased when first creating the pool.
6017 */
6018 ASSERT(tx->tx_txg != TXG_INITIAL);
6019
6020 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6021 ASSERT(version >= spa_version(spa));
6022
6023 spa->spa_uberblock.ub_version = version;
6024 vdev_config_dirty(spa->spa_root_vdev);
6025 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6026 }
6027
6028 /*
6029 * Set zpool properties.
6030 */
6031 static void
spa_sync_props(void * arg,dmu_tx_t * tx)6032 spa_sync_props(void *arg, dmu_tx_t *tx)
6033 {
6034 nvlist_t *nvp = arg;
6035 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6036 objset_t *mos = spa->spa_meta_objset;
6037 nvpair_t *elem = NULL;
6038
6039 mutex_enter(&spa->spa_props_lock);
6040
6041 while ((elem = nvlist_next_nvpair(nvp, elem))) {
6042 uint64_t intval;
6043 char *strval, *fname;
6044 zpool_prop_t prop;
6045 const char *propname;
6046 zprop_type_t proptype;
6047 spa_feature_t fid;
6048
6049 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6050 case ZPROP_INVAL:
6051 /*
6052 * We checked this earlier in spa_prop_validate().
6053 */
6054 ASSERT(zpool_prop_feature(nvpair_name(elem)));
6055
6056 fname = strchr(nvpair_name(elem), '@') + 1;
6057 VERIFY0(zfeature_lookup_name(fname, &fid));
6058
6059 spa_feature_enable(spa, fid, tx);
6060 spa_history_log_internal(spa, "set", tx,
6061 "%s=enabled", nvpair_name(elem));
6062 break;
6063
6064 case ZPOOL_PROP_VERSION:
6065 intval = fnvpair_value_uint64(elem);
6066 /*
6067 * The version is synced seperatly before other
6068 * properties and should be correct by now.
6069 */
6070 ASSERT3U(spa_version(spa), >=, intval);
6071 break;
6072
6073 case ZPOOL_PROP_ALTROOT:
6074 /*
6075 * 'altroot' is a non-persistent property. It should
6076 * have been set temporarily at creation or import time.
6077 */
6078 ASSERT(spa->spa_root != NULL);
6079 break;
6080
6081 case ZPOOL_PROP_READONLY:
6082 case ZPOOL_PROP_CACHEFILE:
6083 /*
6084 * 'readonly' and 'cachefile' are also non-persisitent
6085 * properties.
6086 */
6087 break;
6088 case ZPOOL_PROP_COMMENT:
6089 strval = fnvpair_value_string(elem);
6090 if (spa->spa_comment != NULL)
6091 spa_strfree(spa->spa_comment);
6092 spa->spa_comment = spa_strdup(strval);
6093 /*
6094 * We need to dirty the configuration on all the vdevs
6095 * so that their labels get updated. It's unnecessary
6096 * to do this for pool creation since the vdev's
6097 * configuratoin has already been dirtied.
6098 */
6099 if (tx->tx_txg != TXG_INITIAL)
6100 vdev_config_dirty(spa->spa_root_vdev);
6101 spa_history_log_internal(spa, "set", tx,
6102 "%s=%s", nvpair_name(elem), strval);
6103 break;
6104 default:
6105 /*
6106 * Set pool property values in the poolprops mos object.
6107 */
6108 if (spa->spa_pool_props_object == 0) {
6109 spa->spa_pool_props_object =
6110 zap_create_link(mos, DMU_OT_POOL_PROPS,
6111 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6112 tx);
6113 }
6114
6115 /* normalize the property name */
6116 propname = zpool_prop_to_name(prop);
6117 proptype = zpool_prop_get_type(prop);
6118
6119 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6120 ASSERT(proptype == PROP_TYPE_STRING);
6121 strval = fnvpair_value_string(elem);
6122 VERIFY0(zap_update(mos,
6123 spa->spa_pool_props_object, propname,
6124 1, strlen(strval) + 1, strval, tx));
6125 spa_history_log_internal(spa, "set", tx,
6126 "%s=%s", nvpair_name(elem), strval);
6127 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6128 intval = fnvpair_value_uint64(elem);
6129
6130 if (proptype == PROP_TYPE_INDEX) {
6131 const char *unused;
6132 VERIFY0(zpool_prop_index_to_string(
6133 prop, intval, &unused));
6134 }
6135 VERIFY0(zap_update(mos,
6136 spa->spa_pool_props_object, propname,
6137 8, 1, &intval, tx));
6138 spa_history_log_internal(spa, "set", tx,
6139 "%s=%lld", nvpair_name(elem), intval);
6140 } else {
6141 ASSERT(0); /* not allowed */
6142 }
6143
6144 switch (prop) {
6145 case ZPOOL_PROP_DELEGATION:
6146 spa->spa_delegation = intval;
6147 break;
6148 case ZPOOL_PROP_BOOTFS:
6149 spa->spa_bootfs = intval;
6150 break;
6151 case ZPOOL_PROP_FAILUREMODE:
6152 spa->spa_failmode = intval;
6153 break;
6154 case ZPOOL_PROP_AUTOEXPAND:
6155 spa->spa_autoexpand = intval;
6156 if (tx->tx_txg != TXG_INITIAL)
6157 spa_async_request(spa,
6158 SPA_ASYNC_AUTOEXPAND);
6159 break;
6160 case ZPOOL_PROP_DEDUPDITTO:
6161 spa->spa_dedup_ditto = intval;
6162 break;
6163 default:
6164 break;
6165 }
6166 }
6167
6168 }
6169
6170 mutex_exit(&spa->spa_props_lock);
6171 }
6172
6173 /*
6174 * Perform one-time upgrade on-disk changes. spa_version() does not
6175 * reflect the new version this txg, so there must be no changes this
6176 * txg to anything that the upgrade code depends on after it executes.
6177 * Therefore this must be called after dsl_pool_sync() does the sync
6178 * tasks.
6179 */
6180 static void
spa_sync_upgrades(spa_t * spa,dmu_tx_t * tx)6181 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6182 {
6183 dsl_pool_t *dp = spa->spa_dsl_pool;
6184
6185 ASSERT(spa->spa_sync_pass == 1);
6186
6187 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6188
6189 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6190 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6191 dsl_pool_create_origin(dp, tx);
6192
6193 /* Keeping the origin open increases spa_minref */
6194 spa->spa_minref += 3;
6195 }
6196
6197 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6198 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6199 dsl_pool_upgrade_clones(dp, tx);
6200 }
6201
6202 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6203 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6204 dsl_pool_upgrade_dir_clones(dp, tx);
6205
6206 /* Keeping the freedir open increases spa_minref */
6207 spa->spa_minref += 3;
6208 }
6209
6210 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6211 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6212 spa_feature_create_zap_objects(spa, tx);
6213 }
6214
6215 /*
6216 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6217 * when possibility to use lz4 compression for metadata was added
6218 * Old pools that have this feature enabled must be upgraded to have
6219 * this feature active
6220 */
6221 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6222 boolean_t lz4_en = spa_feature_is_enabled(spa,
6223 SPA_FEATURE_LZ4_COMPRESS);
6224 boolean_t lz4_ac = spa_feature_is_active(spa,
6225 SPA_FEATURE_LZ4_COMPRESS);
6226
6227 if (lz4_en && !lz4_ac)
6228 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6229 }
6230
6231 /*
6232 * If we haven't written the salt, do so now. Note that the
6233 * feature may not be activated yet, but that's fine since
6234 * the presence of this ZAP entry is backwards compatible.
6235 */
6236 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6237 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6238 VERIFY0(zap_add(spa->spa_meta_objset,
6239 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6240 sizeof (spa->spa_cksum_salt.zcs_bytes),
6241 spa->spa_cksum_salt.zcs_bytes, tx));
6242 }
6243
6244 rrw_exit(&dp->dp_config_rwlock, FTAG);
6245 }
6246
6247 /*
6248 * Sync the specified transaction group. New blocks may be dirtied as
6249 * part of the process, so we iterate until it converges.
6250 */
6251 void
spa_sync(spa_t * spa,uint64_t txg)6252 spa_sync(spa_t *spa, uint64_t txg)
6253 {
6254 dsl_pool_t *dp = spa->spa_dsl_pool;
6255 objset_t *mos = spa->spa_meta_objset;
6256 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6257 vdev_t *rvd = spa->spa_root_vdev;
6258 vdev_t *vd;
6259 dmu_tx_t *tx;
6260 int error;
6261
6262 VERIFY(spa_writeable(spa));
6263
6264 /*
6265 * Lock out configuration changes.
6266 */
6267 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6268
6269 spa->spa_syncing_txg = txg;
6270 spa->spa_sync_pass = 0;
6271
6272 /*
6273 * If there are any pending vdev state changes, convert them
6274 * into config changes that go out with this transaction group.
6275 */
6276 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6277 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6278 /*
6279 * We need the write lock here because, for aux vdevs,
6280 * calling vdev_config_dirty() modifies sav_config.
6281 * This is ugly and will become unnecessary when we
6282 * eliminate the aux vdev wart by integrating all vdevs
6283 * into the root vdev tree.
6284 */
6285 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6286 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6287 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6288 vdev_state_clean(vd);
6289 vdev_config_dirty(vd);
6290 }
6291 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6292 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6293 }
6294 spa_config_exit(spa, SCL_STATE, FTAG);
6295
6296 tx = dmu_tx_create_assigned(dp, txg);
6297
6298 spa->spa_sync_starttime = gethrtime();
6299 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6300 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6301
6302 /*
6303 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6304 * set spa_deflate if we have no raid-z vdevs.
6305 */
6306 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6307 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6308 int i;
6309
6310 for (i = 0; i < rvd->vdev_children; i++) {
6311 vd = rvd->vdev_child[i];
6312 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6313 break;
6314 }
6315 if (i == rvd->vdev_children) {
6316 spa->spa_deflate = TRUE;
6317 VERIFY(0 == zap_add(spa->spa_meta_objset,
6318 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6319 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6320 }
6321 }
6322
6323 /*
6324 * Iterate to convergence.
6325 */
6326 do {
6327 int pass = ++spa->spa_sync_pass;
6328
6329 spa_sync_config_object(spa, tx);
6330 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6331 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6332 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6333 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6334 spa_errlog_sync(spa, txg);
6335 dsl_pool_sync(dp, txg);
6336
6337 if (pass < zfs_sync_pass_deferred_free) {
6338 spa_sync_frees(spa, free_bpl, tx);
6339 } else {
6340 /*
6341 * We can not defer frees in pass 1, because
6342 * we sync the deferred frees later in pass 1.
6343 */
6344 ASSERT3U(pass, >, 1);
6345 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6346 &spa->spa_deferred_bpobj, tx);
6347 }
6348
6349 ddt_sync(spa, txg);
6350 dsl_scan_sync(dp, tx);
6351
6352 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6353 vdev_sync(vd, txg);
6354
6355 if (pass == 1) {
6356 spa_sync_upgrades(spa, tx);
6357 ASSERT3U(txg, >=,
6358 spa->spa_uberblock.ub_rootbp.blk_birth);
6359 /*
6360 * Note: We need to check if the MOS is dirty
6361 * because we could have marked the MOS dirty
6362 * without updating the uberblock (e.g. if we
6363 * have sync tasks but no dirty user data). We
6364 * need to check the uberblock's rootbp because
6365 * it is updated if we have synced out dirty
6366 * data (though in this case the MOS will most
6367 * likely also be dirty due to second order
6368 * effects, we don't want to rely on that here).
6369 */
6370 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6371 !dmu_objset_is_dirty(mos, txg)) {
6372 /*
6373 * Nothing changed on the first pass,
6374 * therefore this TXG is a no-op. Avoid
6375 * syncing deferred frees, so that we
6376 * can keep this TXG as a no-op.
6377 */
6378 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6379 txg));
6380 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6381 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6382 break;
6383 }
6384 spa_sync_deferred_frees(spa, tx);
6385 }
6386
6387 } while (dmu_objset_is_dirty(mos, txg));
6388
6389 /*
6390 * Rewrite the vdev configuration (which includes the uberblock)
6391 * to commit the transaction group.
6392 *
6393 * If there are no dirty vdevs, we sync the uberblock to a few
6394 * random top-level vdevs that are known to be visible in the
6395 * config cache (see spa_vdev_add() for a complete description).
6396 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6397 */
6398 for (;;) {
6399 /*
6400 * We hold SCL_STATE to prevent vdev open/close/etc.
6401 * while we're attempting to write the vdev labels.
6402 */
6403 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6404
6405 if (list_is_empty(&spa->spa_config_dirty_list)) {
6406 vdev_t *svd[SPA_DVAS_PER_BP];
6407 int svdcount = 0;
6408 int children = rvd->vdev_children;
6409 int c0 = spa_get_random(children);
6410
6411 for (int c = 0; c < children; c++) {
6412 vd = rvd->vdev_child[(c0 + c) % children];
6413 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6414 continue;
6415 svd[svdcount++] = vd;
6416 if (svdcount == SPA_DVAS_PER_BP)
6417 break;
6418 }
6419 error = vdev_config_sync(svd, svdcount, txg);
6420 } else {
6421 error = vdev_config_sync(rvd->vdev_child,
6422 rvd->vdev_children, txg);
6423 }
6424
6425 if (error == 0)
6426 spa->spa_last_synced_guid = rvd->vdev_guid;
6427
6428 spa_config_exit(spa, SCL_STATE, FTAG);
6429
6430 if (error == 0)
6431 break;
6432 zio_suspend(spa, NULL);
6433 zio_resume_wait(spa);
6434 }
6435 dmu_tx_commit(tx);
6436
6437 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6438
6439 /*
6440 * Clear the dirty config list.
6441 */
6442 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6443 vdev_config_clean(vd);
6444
6445 /*
6446 * Now that the new config has synced transactionally,
6447 * let it become visible to the config cache.
6448 */
6449 if (spa->spa_config_syncing != NULL) {
6450 spa_config_set(spa, spa->spa_config_syncing);
6451 spa->spa_config_txg = txg;
6452 spa->spa_config_syncing = NULL;
6453 }
6454
6455 spa->spa_ubsync = spa->spa_uberblock;
6456
6457 dsl_pool_sync_done(dp, txg);
6458
6459 /*
6460 * Update usable space statistics.
6461 */
6462 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6463 vdev_sync_done(vd, txg);
6464
6465 spa_update_dspace(spa);
6466
6467 /*
6468 * It had better be the case that we didn't dirty anything
6469 * since vdev_config_sync().
6470 */
6471 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6472 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6473 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6474
6475 spa->spa_sync_pass = 0;
6476
6477 spa_config_exit(spa, SCL_CONFIG, FTAG);
6478
6479 spa_handle_ignored_writes(spa);
6480
6481 /*
6482 * If any async tasks have been requested, kick them off.
6483 */
6484 spa_async_dispatch(spa);
6485 }
6486
6487 /*
6488 * Sync all pools. We don't want to hold the namespace lock across these
6489 * operations, so we take a reference on the spa_t and drop the lock during the
6490 * sync.
6491 */
6492 void
spa_sync_allpools(void)6493 spa_sync_allpools(void)
6494 {
6495 spa_t *spa = NULL;
6496 mutex_enter(&spa_namespace_lock);
6497 while ((spa = spa_next(spa)) != NULL) {
6498 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6499 !spa_writeable(spa) || spa_suspended(spa))
6500 continue;
6501 spa_open_ref(spa, FTAG);
6502 mutex_exit(&spa_namespace_lock);
6503 txg_wait_synced(spa_get_dsl(spa), 0);
6504 mutex_enter(&spa_namespace_lock);
6505 spa_close(spa, FTAG);
6506 }
6507 mutex_exit(&spa_namespace_lock);
6508 }
6509
6510 /*
6511 * ==========================================================================
6512 * Miscellaneous routines
6513 * ==========================================================================
6514 */
6515
6516 /*
6517 * Remove all pools in the system.
6518 */
6519 void
spa_evict_all(void)6520 spa_evict_all(void)
6521 {
6522 spa_t *spa;
6523
6524 /*
6525 * Remove all cached state. All pools should be closed now,
6526 * so every spa in the AVL tree should be unreferenced.
6527 */
6528 mutex_enter(&spa_namespace_lock);
6529 while ((spa = spa_next(NULL)) != NULL) {
6530 /*
6531 * Stop async tasks. The async thread may need to detach
6532 * a device that's been replaced, which requires grabbing
6533 * spa_namespace_lock, so we must drop it here.
6534 */
6535 spa_open_ref(spa, FTAG);
6536 mutex_exit(&spa_namespace_lock);
6537 spa_async_suspend(spa);
6538 mutex_enter(&spa_namespace_lock);
6539 spa_close(spa, FTAG);
6540
6541 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6542 spa_unload(spa);
6543 spa_deactivate(spa);
6544 }
6545 spa_remove(spa);
6546 }
6547 mutex_exit(&spa_namespace_lock);
6548 }
6549
6550 vdev_t *
spa_lookup_by_guid(spa_t * spa,uint64_t guid,boolean_t aux)6551 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6552 {
6553 vdev_t *vd;
6554 int i;
6555
6556 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6557 return (vd);
6558
6559 if (aux) {
6560 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6561 vd = spa->spa_l2cache.sav_vdevs[i];
6562 if (vd->vdev_guid == guid)
6563 return (vd);
6564 }
6565
6566 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6567 vd = spa->spa_spares.sav_vdevs[i];
6568 if (vd->vdev_guid == guid)
6569 return (vd);
6570 }
6571 }
6572
6573 return (NULL);
6574 }
6575
6576 void
spa_upgrade(spa_t * spa,uint64_t version)6577 spa_upgrade(spa_t *spa, uint64_t version)
6578 {
6579 ASSERT(spa_writeable(spa));
6580
6581 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6582
6583 /*
6584 * This should only be called for a non-faulted pool, and since a
6585 * future version would result in an unopenable pool, this shouldn't be
6586 * possible.
6587 */
6588 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6589 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6590
6591 spa->spa_uberblock.ub_version = version;
6592 vdev_config_dirty(spa->spa_root_vdev);
6593
6594 spa_config_exit(spa, SCL_ALL, FTAG);
6595
6596 txg_wait_synced(spa_get_dsl(spa), 0);
6597 }
6598
6599 boolean_t
spa_has_spare(spa_t * spa,uint64_t guid)6600 spa_has_spare(spa_t *spa, uint64_t guid)
6601 {
6602 int i;
6603 uint64_t spareguid;
6604 spa_aux_vdev_t *sav = &spa->spa_spares;
6605
6606 for (i = 0; i < sav->sav_count; i++)
6607 if (sav->sav_vdevs[i]->vdev_guid == guid)
6608 return (B_TRUE);
6609
6610 for (i = 0; i < sav->sav_npending; i++) {
6611 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6612 &spareguid) == 0 && spareguid == guid)
6613 return (B_TRUE);
6614 }
6615
6616 return (B_FALSE);
6617 }
6618
6619 /*
6620 * Check if a pool has an active shared spare device.
6621 * Note: reference count of an active spare is 2, as a spare and as a replace
6622 */
6623 static boolean_t
spa_has_active_shared_spare(spa_t * spa)6624 spa_has_active_shared_spare(spa_t *spa)
6625 {
6626 int i, refcnt;
6627 uint64_t pool;
6628 spa_aux_vdev_t *sav = &spa->spa_spares;
6629
6630 for (i = 0; i < sav->sav_count; i++) {
6631 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6632 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6633 refcnt > 2)
6634 return (B_TRUE);
6635 }
6636
6637 return (B_FALSE);
6638 }
6639
6640 /*
6641 * Post a sysevent corresponding to the given event. The 'name' must be one of
6642 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6643 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6644 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6645 * or zdb as real changes.
6646 */
6647 void
spa_event_notify(spa_t * spa,vdev_t * vd,const char * name)6648 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6649 {
6650 #ifdef _KERNEL
6651 sysevent_t *ev;
6652 sysevent_attr_list_t *attr = NULL;
6653 sysevent_value_t value;
6654 sysevent_id_t eid;
6655
6656 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6657 SE_SLEEP);
6658
6659 value.value_type = SE_DATA_TYPE_STRING;
6660 value.value.sv_string = spa_name(spa);
6661 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6662 goto done;
6663
6664 value.value_type = SE_DATA_TYPE_UINT64;
6665 value.value.sv_uint64 = spa_guid(spa);
6666 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6667 goto done;
6668
6669 if (vd) {
6670 value.value_type = SE_DATA_TYPE_UINT64;
6671 value.value.sv_uint64 = vd->vdev_guid;
6672 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6673 SE_SLEEP) != 0)
6674 goto done;
6675
6676 if (vd->vdev_path) {
6677 value.value_type = SE_DATA_TYPE_STRING;
6678 value.value.sv_string = vd->vdev_path;
6679 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6680 &value, SE_SLEEP) != 0)
6681 goto done;
6682 }
6683 }
6684
6685 if (sysevent_attach_attributes(ev, attr) != 0)
6686 goto done;
6687 attr = NULL;
6688
6689 (void) log_sysevent(ev, SE_SLEEP, &eid);
6690
6691 done:
6692 if (attr)
6693 sysevent_free_attr(attr);
6694 sysevent_free(ev);
6695 #endif
6696 }
6697