1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California.
6 * Copyright (c) 2004 The FreeBSD Foundation
7 * Copyright (c) 2004-2008 Robert N. M. Watson
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 /*
36 * Comments on the socket life cycle:
37 *
38 * soalloc() sets of socket layer state for a socket, called only by
39 * socreate() and sonewconn(). Socket layer private.
40 *
41 * sodealloc() tears down socket layer state for a socket, called only by
42 * sofree() and sonewconn(). Socket layer private.
43 *
44 * pr_attach() associates protocol layer state with an allocated socket;
45 * called only once, may fail, aborting socket allocation. This is called
46 * from socreate() and sonewconn(). Socket layer private.
47 *
48 * pr_detach() disassociates protocol layer state from an attached socket,
49 * and will be called exactly once for sockets in which pr_attach() has
50 * been successfully called. If pr_attach() returned an error,
51 * pr_detach() will not be called. Socket layer private.
52 *
53 * pr_abort() and pr_close() notify the protocol layer that the last
54 * consumer of a socket is starting to tear down the socket, and that the
55 * protocol should terminate the connection. Historically, pr_abort() also
56 * detached protocol state from the socket state, but this is no longer the
57 * case.
58 *
59 * socreate() creates a socket and attaches protocol state. This is a public
60 * interface that may be used by socket layer consumers to create new
61 * sockets.
62 *
63 * sonewconn() creates a socket and attaches protocol state. This is a
64 * public interface that may be used by protocols to create new sockets when
65 * a new connection is received and will be available for accept() on a
66 * listen socket.
67 *
68 * soclose() destroys a socket after possibly waiting for it to disconnect.
69 * This is a public interface that socket consumers should use to close and
70 * release a socket when done with it.
71 *
72 * soabort() destroys a socket without waiting for it to disconnect (used
73 * only for incoming connections that are already partially or fully
74 * connected). This is used internally by the socket layer when clearing
75 * listen socket queues (due to overflow or close on the listen socket), but
76 * is also a public interface protocols may use to abort connections in
77 * their incomplete listen queues should they no longer be required. Sockets
78 * placed in completed connection listen queues should not be aborted for
79 * reasons described in the comment above the soclose() implementation. This
80 * is not a general purpose close routine, and except in the specific
81 * circumstances described here, should not be used.
82 *
83 * sofree() will free a socket and its protocol state if all references on
84 * the socket have been released, and is the public interface to attempt to
85 * free a socket when a reference is removed. This is a socket layer private
86 * interface.
87 *
88 * NOTE: In addition to socreate() and soclose(), which provide a single
89 * socket reference to the consumer to be managed as required, there are two
90 * calls to explicitly manage socket references, soref(), and sorele().
91 * Currently, these are generally required only when transitioning a socket
92 * from a listen queue to a file descriptor, in order to prevent garbage
93 * collection of the socket at an untimely moment. For a number of reasons,
94 * these interfaces are not preferred, and should be avoided.
95 *
96 * NOTE: With regard to VNETs the general rule is that callers do not set
97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98 * sofree(), sorele(), sonewconn() and sorflush(), which are usually called
99 * from a pre-set VNET context. sopoll_generic() currently does not need a
100 * VNET context to be set.
101 */
102
103 #include <sys/cdefs.h>
104 #include "opt_inet.h"
105 #include "opt_inet6.h"
106 #include "opt_kern_tls.h"
107 #include "opt_ktrace.h"
108 #include "opt_sctp.h"
109
110 #include <sys/param.h>
111 #include <sys/systm.h>
112 #include <sys/capsicum.h>
113 #include <sys/fcntl.h>
114 #include <sys/limits.h>
115 #include <sys/lock.h>
116 #include <sys/mac.h>
117 #include <sys/malloc.h>
118 #include <sys/mbuf.h>
119 #include <sys/mutex.h>
120 #include <sys/domain.h>
121 #include <sys/file.h> /* for struct knote */
122 #include <sys/hhook.h>
123 #include <sys/kernel.h>
124 #include <sys/khelp.h>
125 #include <sys/kthread.h>
126 #include <sys/ktls.h>
127 #include <sys/event.h>
128 #include <sys/eventhandler.h>
129 #include <sys/poll.h>
130 #include <sys/proc.h>
131 #include <sys/protosw.h>
132 #include <sys/sbuf.h>
133 #include <sys/socket.h>
134 #include <sys/socketvar.h>
135 #include <sys/resourcevar.h>
136 #include <net/route.h>
137 #include <sys/sched.h>
138 #include <sys/signalvar.h>
139 #include <sys/smp.h>
140 #include <sys/stat.h>
141 #include <sys/sx.h>
142 #include <sys/sysctl.h>
143 #include <sys/taskqueue.h>
144 #include <sys/uio.h>
145 #include <sys/un.h>
146 #include <sys/unpcb.h>
147 #include <sys/jail.h>
148 #include <sys/syslog.h>
149 #include <netinet/in.h>
150 #include <netinet/in_pcb.h>
151 #include <netinet/tcp.h>
152
153 #include <net/vnet.h>
154
155 #include <security/mac/mac_framework.h>
156 #include <security/mac/mac_internal.h>
157
158 #include <vm/uma.h>
159
160 #ifdef COMPAT_FREEBSD32
161 #include <sys/mount.h>
162 #include <sys/sysent.h>
163 #include <compat/freebsd32/freebsd32.h>
164 #endif
165
166 static int soreceive_generic_locked(struct socket *so,
167 struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
168 struct mbuf **controlp, int *flagsp);
169 static int soreceive_rcvoob(struct socket *so, struct uio *uio,
170 int flags);
171 static int soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
172 struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
173 struct mbuf **controlp, int flags);
174 static int sosend_generic_locked(struct socket *so, struct sockaddr *addr,
175 struct uio *uio, struct mbuf *top, struct mbuf *control,
176 int flags, struct thread *td);
177 static void so_rdknl_lock(void *);
178 static void so_rdknl_unlock(void *);
179 static void so_rdknl_assert_lock(void *, int);
180 static void so_wrknl_lock(void *);
181 static void so_wrknl_unlock(void *);
182 static void so_wrknl_assert_lock(void *, int);
183
184 static void filt_sordetach(struct knote *kn);
185 static int filt_soread(struct knote *kn, long hint);
186 static void filt_sowdetach(struct knote *kn);
187 static int filt_sowrite(struct knote *kn, long hint);
188 static int filt_soempty(struct knote *kn, long hint);
189
190 static const struct filterops soread_filtops = {
191 .f_isfd = 1,
192 .f_detach = filt_sordetach,
193 .f_event = filt_soread,
194 };
195 static const struct filterops sowrite_filtops = {
196 .f_isfd = 1,
197 .f_detach = filt_sowdetach,
198 .f_event = filt_sowrite,
199 };
200 static const struct filterops soempty_filtops = {
201 .f_isfd = 1,
202 .f_detach = filt_sowdetach,
203 .f_event = filt_soempty,
204 };
205
206 so_gen_t so_gencnt; /* generation count for sockets */
207
208 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
209 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
210
211 #define VNET_SO_ASSERT(so) \
212 VNET_ASSERT(curvnet != NULL, \
213 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
214
215 #ifdef SOCKET_HHOOK
216 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
217 #define V_socket_hhh VNET(socket_hhh)
218 static inline int hhook_run_socket(struct socket *, void *, int32_t);
219 #endif
220
221 #ifdef COMPAT_FREEBSD32
222 #ifdef __amd64__
223 /* off_t has 4-byte alignment on i386 but not on other 32-bit platforms. */
224 #define __splice32_packed __packed
225 #else
226 #define __splice32_packed
227 #endif
228 struct splice32 {
229 int32_t sp_fd;
230 int64_t sp_max;
231 struct timeval32 sp_idle;
232 } __splice32_packed;
233 #undef __splice32_packed
234 #endif
235
236 /*
237 * Limit on the number of connections in the listen queue waiting
238 * for accept(2).
239 * NB: The original sysctl somaxconn is still available but hidden
240 * to prevent confusion about the actual purpose of this number.
241 */
242 VNET_DEFINE_STATIC(u_int, somaxconn) = SOMAXCONN;
243 #define V_somaxconn VNET(somaxconn)
244
245 static int
sysctl_somaxconn(SYSCTL_HANDLER_ARGS)246 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
247 {
248 int error;
249 u_int val;
250
251 val = V_somaxconn;
252 error = sysctl_handle_int(oidp, &val, 0, req);
253 if (error || !req->newptr )
254 return (error);
255
256 /*
257 * The purpose of the UINT_MAX / 3 limit, is so that the formula
258 * 3 * sol_qlimit / 2
259 * below, will not overflow.
260 */
261
262 if (val < 1 || val > UINT_MAX / 3)
263 return (EINVAL);
264
265 V_somaxconn = val;
266 return (0);
267 }
268 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
269 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
270 sysctl_somaxconn, "IU",
271 "Maximum listen socket pending connection accept queue size");
272 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
273 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0,
274 sizeof(u_int), sysctl_somaxconn, "IU",
275 "Maximum listen socket pending connection accept queue size (compat)");
276
277 static u_int numopensockets;
278 static int
sysctl_numopensockets(SYSCTL_HANDLER_ARGS)279 sysctl_numopensockets(SYSCTL_HANDLER_ARGS)
280 {
281 u_int val;
282
283 #ifdef VIMAGE
284 if(!IS_DEFAULT_VNET(curvnet))
285 val = curvnet->vnet_sockcnt;
286 else
287 #endif
288 val = numopensockets;
289 return (sysctl_handle_int(oidp, &val, 0, req));
290 }
291 SYSCTL_PROC(_kern_ipc, OID_AUTO, numopensockets,
292 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
293 sysctl_numopensockets, "IU", "Number of open sockets");
294
295 /*
296 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
297 * so_gencnt field.
298 */
299 static struct mtx so_global_mtx;
300 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
301
302 /*
303 * General IPC sysctl name space, used by sockets and a variety of other IPC
304 * types.
305 */
306 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
307 "IPC");
308
309 /*
310 * Initialize the socket subsystem and set up the socket
311 * memory allocator.
312 */
313 static uma_zone_t socket_zone;
314 int maxsockets;
315
316 static void
socket_zone_change(void * tag)317 socket_zone_change(void *tag)
318 {
319
320 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
321 }
322
323 static int splice_init_state;
324 static struct sx splice_init_lock;
325 SX_SYSINIT(splice_init_lock, &splice_init_lock, "splice_init");
326
327 static SYSCTL_NODE(_kern_ipc, OID_AUTO, splice, CTLFLAG_RW, 0,
328 "Settings relating to the SO_SPLICE socket option");
329
330 static bool splice_receive_stream = true;
331 SYSCTL_BOOL(_kern_ipc_splice, OID_AUTO, receive_stream, CTLFLAG_RWTUN,
332 &splice_receive_stream, 0,
333 "Use soreceive_stream() for stream splices");
334
335 static uma_zone_t splice_zone;
336 static struct proc *splice_proc;
337 struct splice_wq {
338 struct mtx mtx;
339 STAILQ_HEAD(, so_splice) head;
340 bool running;
341 } __aligned(CACHE_LINE_SIZE);
342 static struct splice_wq *splice_wq;
343 static uint32_t splice_index = 0;
344
345 static void so_splice_timeout(void *arg, int pending);
346 static void so_splice_xfer(struct so_splice *s);
347 static int so_unsplice(struct socket *so, bool timeout);
348
349 static void
splice_work_thread(void * ctx)350 splice_work_thread(void *ctx)
351 {
352 struct splice_wq *wq = ctx;
353 struct so_splice *s, *s_temp;
354 STAILQ_HEAD(, so_splice) local_head;
355 int cpu;
356
357 cpu = wq - splice_wq;
358 if (bootverbose)
359 printf("starting so_splice worker thread for CPU %d\n", cpu);
360
361 for (;;) {
362 mtx_lock(&wq->mtx);
363 while (STAILQ_EMPTY(&wq->head)) {
364 wq->running = false;
365 mtx_sleep(wq, &wq->mtx, 0, "-", 0);
366 wq->running = true;
367 }
368 STAILQ_INIT(&local_head);
369 STAILQ_CONCAT(&local_head, &wq->head);
370 STAILQ_INIT(&wq->head);
371 mtx_unlock(&wq->mtx);
372 STAILQ_FOREACH_SAFE(s, &local_head, next, s_temp) {
373 mtx_lock(&s->mtx);
374 CURVNET_SET(s->src->so_vnet);
375 so_splice_xfer(s);
376 CURVNET_RESTORE();
377 }
378 }
379 }
380
381 static void
so_splice_dispatch_async(struct so_splice * sp)382 so_splice_dispatch_async(struct so_splice *sp)
383 {
384 struct splice_wq *wq;
385 bool running;
386
387 wq = &splice_wq[sp->wq_index];
388 mtx_lock(&wq->mtx);
389 STAILQ_INSERT_TAIL(&wq->head, sp, next);
390 running = wq->running;
391 mtx_unlock(&wq->mtx);
392 if (!running)
393 wakeup(wq);
394 }
395
396 void
so_splice_dispatch(struct so_splice * sp)397 so_splice_dispatch(struct so_splice *sp)
398 {
399 mtx_assert(&sp->mtx, MA_OWNED);
400
401 if (sp->state != SPLICE_IDLE) {
402 mtx_unlock(&sp->mtx);
403 } else {
404 sp->state = SPLICE_QUEUED;
405 mtx_unlock(&sp->mtx);
406 so_splice_dispatch_async(sp);
407 }
408 }
409
410 static int
splice_zinit(void * mem,int size __unused,int flags __unused)411 splice_zinit(void *mem, int size __unused, int flags __unused)
412 {
413 struct so_splice *s;
414
415 s = (struct so_splice *)mem;
416 mtx_init(&s->mtx, "so_splice", NULL, MTX_DEF);
417 return (0);
418 }
419
420 static void
splice_zfini(void * mem,int size)421 splice_zfini(void *mem, int size)
422 {
423 struct so_splice *s;
424
425 s = (struct so_splice *)mem;
426 mtx_destroy(&s->mtx);
427 }
428
429 static int
splice_init(void)430 splice_init(void)
431 {
432 struct thread *td;
433 int error, i, state;
434
435 state = atomic_load_acq_int(&splice_init_state);
436 if (__predict_true(state > 0))
437 return (0);
438 if (state < 0)
439 return (ENXIO);
440 sx_xlock(&splice_init_lock);
441 if (splice_init_state != 0) {
442 sx_xunlock(&splice_init_lock);
443 return (0);
444 }
445
446 splice_zone = uma_zcreate("splice", sizeof(struct so_splice), NULL,
447 NULL, splice_zinit, splice_zfini, UMA_ALIGN_CACHE, 0);
448
449 splice_wq = mallocarray(mp_maxid + 1, sizeof(*splice_wq), M_TEMP,
450 M_WAITOK | M_ZERO);
451
452 /*
453 * Initialize the workqueues to run the splice work. We create a
454 * work queue for each CPU.
455 */
456 CPU_FOREACH(i) {
457 STAILQ_INIT(&splice_wq[i].head);
458 mtx_init(&splice_wq[i].mtx, "splice work queue", NULL, MTX_DEF);
459 }
460
461 /* Start kthreads for each workqueue. */
462 error = 0;
463 CPU_FOREACH(i) {
464 error = kproc_kthread_add(splice_work_thread, &splice_wq[i],
465 &splice_proc, &td, 0, 0, "so_splice", "thr_%d", i);
466 if (error) {
467 printf("Can't add so_splice thread %d error %d\n",
468 i, error);
469 break;
470 }
471
472 /*
473 * It's possible to create loops with SO_SPLICE; ensure that
474 * worker threads aren't able to starve the system too easily.
475 */
476 thread_lock(td);
477 sched_prio(td, PUSER);
478 thread_unlock(td);
479 }
480
481 splice_init_state = error != 0 ? -1 : 1;
482 sx_xunlock(&splice_init_lock);
483
484 return (error);
485 }
486
487 /*
488 * Lock a pair of socket's I/O locks for splicing. Avoid blocking while holding
489 * one lock in order to avoid potential deadlocks in case there is some other
490 * code path which acquires more than one I/O lock at a time.
491 */
492 static void
splice_lock_pair(struct socket * so_src,struct socket * so_dst)493 splice_lock_pair(struct socket *so_src, struct socket *so_dst)
494 {
495 int error;
496
497 for (;;) {
498 error = SOCK_IO_SEND_LOCK(so_dst, SBL_WAIT | SBL_NOINTR);
499 KASSERT(error == 0,
500 ("%s: failed to lock send I/O lock: %d", __func__, error));
501 error = SOCK_IO_RECV_LOCK(so_src, 0);
502 KASSERT(error == 0 || error == EWOULDBLOCK,
503 ("%s: failed to lock recv I/O lock: %d", __func__, error));
504 if (error == 0)
505 break;
506 SOCK_IO_SEND_UNLOCK(so_dst);
507
508 error = SOCK_IO_RECV_LOCK(so_src, SBL_WAIT | SBL_NOINTR);
509 KASSERT(error == 0,
510 ("%s: failed to lock recv I/O lock: %d", __func__, error));
511 error = SOCK_IO_SEND_LOCK(so_dst, 0);
512 KASSERT(error == 0 || error == EWOULDBLOCK,
513 ("%s: failed to lock send I/O lock: %d", __func__, error));
514 if (error == 0)
515 break;
516 SOCK_IO_RECV_UNLOCK(so_src);
517 }
518 }
519
520 static void
splice_unlock_pair(struct socket * so_src,struct socket * so_dst)521 splice_unlock_pair(struct socket *so_src, struct socket *so_dst)
522 {
523 SOCK_IO_RECV_UNLOCK(so_src);
524 SOCK_IO_SEND_UNLOCK(so_dst);
525 }
526
527 /*
528 * Move data from the source to the sink. Assumes that both of the relevant
529 * socket I/O locks are held.
530 */
531 static int
so_splice_xfer_data(struct socket * so_src,struct socket * so_dst,off_t max,ssize_t * lenp)532 so_splice_xfer_data(struct socket *so_src, struct socket *so_dst, off_t max,
533 ssize_t *lenp)
534 {
535 struct uio uio;
536 struct mbuf *m;
537 struct sockbuf *sb_src, *sb_dst;
538 ssize_t len;
539 long space;
540 int error, flags;
541
542 SOCK_IO_RECV_ASSERT_LOCKED(so_src);
543 SOCK_IO_SEND_ASSERT_LOCKED(so_dst);
544
545 error = 0;
546 m = NULL;
547 memset(&uio, 0, sizeof(uio));
548
549 sb_src = &so_src->so_rcv;
550 sb_dst = &so_dst->so_snd;
551
552 space = sbspace(sb_dst);
553 if (space < 0)
554 space = 0;
555 len = MIN(max, MIN(space, sbavail(sb_src)));
556 if (len == 0) {
557 SOCK_RECVBUF_LOCK(so_src);
558 if ((sb_src->sb_state & SBS_CANTRCVMORE) != 0)
559 error = EPIPE;
560 SOCK_RECVBUF_UNLOCK(so_src);
561 } else {
562 flags = MSG_DONTWAIT;
563 uio.uio_resid = len;
564 if (splice_receive_stream && sb_src->sb_tls_info == NULL) {
565 error = soreceive_stream_locked(so_src, sb_src, NULL,
566 &uio, &m, NULL, flags);
567 } else {
568 error = soreceive_generic_locked(so_src, NULL,
569 &uio, &m, NULL, &flags);
570 }
571 if (error != 0 && m != NULL) {
572 m_freem(m);
573 m = NULL;
574 }
575 }
576 if (m != NULL) {
577 len -= uio.uio_resid;
578 error = sosend_generic_locked(so_dst, NULL, NULL, m, NULL,
579 MSG_DONTWAIT, curthread);
580 } else if (error == 0) {
581 len = 0;
582 SOCK_SENDBUF_LOCK(so_dst);
583 if ((sb_dst->sb_state & SBS_CANTSENDMORE) != 0)
584 error = EPIPE;
585 SOCK_SENDBUF_UNLOCK(so_dst);
586 }
587 if (error == 0)
588 *lenp = len;
589 return (error);
590 }
591
592 /*
593 * Transfer data from the source to the sink.
594 */
595 static void
so_splice_xfer(struct so_splice * sp)596 so_splice_xfer(struct so_splice *sp)
597 {
598 struct socket *so_src, *so_dst;
599 off_t max;
600 ssize_t len;
601 int error;
602
603 mtx_assert(&sp->mtx, MA_OWNED);
604 KASSERT(sp->state == SPLICE_QUEUED || sp->state == SPLICE_CLOSING,
605 ("so_splice_xfer: invalid state %d", sp->state));
606 KASSERT(sp->max != 0, ("so_splice_xfer: max == 0"));
607
608 if (sp->state == SPLICE_CLOSING) {
609 /* Userspace asked us to close the splice. */
610 goto closing;
611 }
612
613 sp->state = SPLICE_RUNNING;
614 so_src = sp->src;
615 so_dst = sp->dst;
616 max = sp->max > 0 ? sp->max - so_src->so_splice_sent : OFF_MAX;
617 if (max < 0)
618 max = 0;
619
620 /*
621 * Lock the sockets in order to block userspace from doing anything
622 * sneaky. If an error occurs or one of the sockets can no longer
623 * transfer data, we will automatically unsplice.
624 */
625 mtx_unlock(&sp->mtx);
626 splice_lock_pair(so_src, so_dst);
627
628 error = so_splice_xfer_data(so_src, so_dst, max, &len);
629
630 mtx_lock(&sp->mtx);
631
632 /*
633 * Update our stats while still holding the socket locks. This
634 * synchronizes with getsockopt(SO_SPLICE), see the comment there.
635 */
636 if (error == 0) {
637 KASSERT(len >= 0, ("%s: len %zd < 0", __func__, len));
638 so_src->so_splice_sent += len;
639 }
640 splice_unlock_pair(so_src, so_dst);
641
642 switch (sp->state) {
643 case SPLICE_CLOSING:
644 closing:
645 sp->state = SPLICE_CLOSED;
646 wakeup(sp);
647 mtx_unlock(&sp->mtx);
648 break;
649 case SPLICE_RUNNING:
650 if (error != 0 ||
651 (sp->max > 0 && so_src->so_splice_sent >= sp->max)) {
652 sp->state = SPLICE_EXCEPTION;
653 soref(so_src);
654 mtx_unlock(&sp->mtx);
655 (void)so_unsplice(so_src, false);
656 sorele(so_src);
657 } else {
658 /*
659 * Locklessly check for additional bytes in the source's
660 * receive buffer and queue more work if possible. We
661 * may end up queuing needless work, but that's ok, and
662 * if we race with a thread inserting more data into the
663 * buffer and observe sbavail() == 0, the splice mutex
664 * ensures that splice_push() will queue more work for
665 * us.
666 */
667 if (sbavail(&so_src->so_rcv) > 0 &&
668 sbspace(&so_dst->so_snd) > 0) {
669 sp->state = SPLICE_QUEUED;
670 mtx_unlock(&sp->mtx);
671 so_splice_dispatch_async(sp);
672 } else {
673 sp->state = SPLICE_IDLE;
674 mtx_unlock(&sp->mtx);
675 }
676 }
677 break;
678 default:
679 __assert_unreachable();
680 }
681 }
682
683 static void
socket_init(void * tag)684 socket_init(void *tag)
685 {
686
687 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
688 NULL, NULL, UMA_ALIGN_PTR, 0);
689 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
690 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
691 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
692 EVENTHANDLER_PRI_FIRST);
693 }
694 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
695
696 #ifdef SOCKET_HHOOK
697 static void
socket_hhook_register(int subtype)698 socket_hhook_register(int subtype)
699 {
700
701 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
702 &V_socket_hhh[subtype],
703 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
704 printf("%s: WARNING: unable to register hook\n", __func__);
705 }
706
707 static void
socket_hhook_deregister(int subtype)708 socket_hhook_deregister(int subtype)
709 {
710
711 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
712 printf("%s: WARNING: unable to deregister hook\n", __func__);
713 }
714
715 static void
socket_vnet_init(const void * unused __unused)716 socket_vnet_init(const void *unused __unused)
717 {
718 int i;
719
720 /* We expect a contiguous range */
721 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
722 socket_hhook_register(i);
723 }
724 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
725 socket_vnet_init, NULL);
726
727 static void
socket_vnet_uninit(const void * unused __unused)728 socket_vnet_uninit(const void *unused __unused)
729 {
730 int i;
731
732 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
733 socket_hhook_deregister(i);
734 }
735 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
736 socket_vnet_uninit, NULL);
737 #endif /* SOCKET_HHOOK */
738
739 /*
740 * Initialise maxsockets. This SYSINIT must be run after
741 * tunable_mbinit().
742 */
743 static void
init_maxsockets(void * ignored)744 init_maxsockets(void *ignored)
745 {
746
747 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
748 maxsockets = imax(maxsockets, maxfiles);
749 }
750 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
751
752 /*
753 * Sysctl to get and set the maximum global sockets limit. Notify protocols
754 * of the change so that they can update their dependent limits as required.
755 */
756 static int
sysctl_maxsockets(SYSCTL_HANDLER_ARGS)757 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
758 {
759 int error, newmaxsockets;
760
761 newmaxsockets = maxsockets;
762 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
763 if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
764 if (newmaxsockets > maxsockets &&
765 newmaxsockets <= maxfiles) {
766 maxsockets = newmaxsockets;
767 EVENTHANDLER_INVOKE(maxsockets_change);
768 } else
769 error = EINVAL;
770 }
771 return (error);
772 }
773 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
774 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
775 &maxsockets, 0, sysctl_maxsockets, "IU",
776 "Maximum number of sockets available");
777
778 /*
779 * Socket operation routines. These routines are called by the routines in
780 * sys_socket.c or from a system process, and implement the semantics of
781 * socket operations by switching out to the protocol specific routines.
782 */
783
784 /*
785 * Get a socket structure from our zone, and initialize it. Note that it
786 * would probably be better to allocate socket and PCB at the same time, but
787 * I'm not convinced that all the protocols can be easily modified to do
788 * this.
789 *
790 * soalloc() returns a socket with a ref count of 0.
791 */
792 static struct socket *
soalloc(struct vnet * vnet)793 soalloc(struct vnet *vnet)
794 {
795 struct socket *so;
796
797 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
798 if (so == NULL)
799 return (NULL);
800 #ifdef MAC
801 if (mac_socket_init(so, M_NOWAIT) != 0) {
802 uma_zfree(socket_zone, so);
803 return (NULL);
804 }
805 #endif
806 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
807 uma_zfree(socket_zone, so);
808 return (NULL);
809 }
810
811 /*
812 * The socket locking protocol allows to lock 2 sockets at a time,
813 * however, the first one must be a listening socket. WITNESS lacks
814 * a feature to change class of an existing lock, so we use DUPOK.
815 */
816 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
817 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
818 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
819 so->so_rcv.sb_sel = &so->so_rdsel;
820 so->so_snd.sb_sel = &so->so_wrsel;
821 sx_init(&so->so_snd_sx, "so_snd_sx");
822 sx_init(&so->so_rcv_sx, "so_rcv_sx");
823 TAILQ_INIT(&so->so_snd.sb_aiojobq);
824 TAILQ_INIT(&so->so_rcv.sb_aiojobq);
825 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
826 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
827 #ifdef VIMAGE
828 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
829 __func__, __LINE__, so));
830 so->so_vnet = vnet;
831 #endif
832 #ifdef SOCKET_HHOOK
833 /* We shouldn't need the so_global_mtx */
834 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
835 /* Do we need more comprehensive error returns? */
836 uma_zfree(socket_zone, so);
837 return (NULL);
838 }
839 #endif
840 mtx_lock(&so_global_mtx);
841 so->so_gencnt = ++so_gencnt;
842 ++numopensockets;
843 #ifdef VIMAGE
844 vnet->vnet_sockcnt++;
845 #endif
846 mtx_unlock(&so_global_mtx);
847
848 return (so);
849 }
850
851 /*
852 * Free the storage associated with a socket at the socket layer, tear down
853 * locks, labels, etc. All protocol state is assumed already to have been
854 * torn down (and possibly never set up) by the caller.
855 */
856 void
sodealloc(struct socket * so)857 sodealloc(struct socket *so)
858 {
859
860 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
861 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
862
863 mtx_lock(&so_global_mtx);
864 so->so_gencnt = ++so_gencnt;
865 --numopensockets; /* Could be below, but faster here. */
866 #ifdef VIMAGE
867 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
868 __func__, __LINE__, so));
869 so->so_vnet->vnet_sockcnt--;
870 #endif
871 mtx_unlock(&so_global_mtx);
872 #ifdef MAC
873 mac_socket_destroy(so);
874 #endif
875 #ifdef SOCKET_HHOOK
876 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
877 #endif
878
879 khelp_destroy_osd(&so->osd);
880 if (SOLISTENING(so)) {
881 if (so->sol_accept_filter != NULL)
882 accept_filt_setopt(so, NULL);
883 } else {
884 if (so->so_rcv.sb_hiwat)
885 (void)chgsbsize(so->so_cred->cr_uidinfo,
886 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
887 if (so->so_snd.sb_hiwat)
888 (void)chgsbsize(so->so_cred->cr_uidinfo,
889 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
890 sx_destroy(&so->so_snd_sx);
891 sx_destroy(&so->so_rcv_sx);
892 mtx_destroy(&so->so_snd_mtx);
893 mtx_destroy(&so->so_rcv_mtx);
894 }
895 crfree(so->so_cred);
896 mtx_destroy(&so->so_lock);
897 uma_zfree(socket_zone, so);
898 }
899
900 /*
901 * socreate returns a socket with a ref count of 1 and a file descriptor
902 * reference. The socket should be closed with soclose().
903 */
904 int
socreate(int dom,struct socket ** aso,int type,int proto,struct ucred * cred,struct thread * td)905 socreate(int dom, struct socket **aso, int type, int proto,
906 struct ucred *cred, struct thread *td)
907 {
908 struct protosw *prp;
909 struct socket *so;
910 int error;
911
912 /*
913 * XXX: divert(4) historically abused PF_INET. Keep this compatibility
914 * shim until all applications have been updated.
915 */
916 if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
917 proto == IPPROTO_DIVERT)) {
918 dom = PF_DIVERT;
919 printf("%s uses obsolete way to create divert(4) socket\n",
920 td->td_proc->p_comm);
921 }
922
923 prp = pffindproto(dom, type, proto);
924 if (prp == NULL) {
925 /* No support for domain. */
926 if (pffinddomain(dom) == NULL)
927 return (EAFNOSUPPORT);
928 /* No support for socket type. */
929 if (proto == 0 && type != 0)
930 return (EPROTOTYPE);
931 return (EPROTONOSUPPORT);
932 }
933
934 MPASS(prp->pr_attach);
935
936 if ((prp->pr_flags & PR_CAPATTACH) == 0) {
937 if (CAP_TRACING(td))
938 ktrcapfail(CAPFAIL_PROTO, &proto);
939 if (IN_CAPABILITY_MODE(td))
940 return (ECAPMODE);
941 }
942
943 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
944 return (EPROTONOSUPPORT);
945
946 so = soalloc(CRED_TO_VNET(cred));
947 if (so == NULL)
948 return (ENOBUFS);
949
950 so->so_type = type;
951 so->so_cred = crhold(cred);
952 if ((prp->pr_domain->dom_family == PF_INET) ||
953 (prp->pr_domain->dom_family == PF_INET6) ||
954 (prp->pr_domain->dom_family == PF_ROUTE))
955 so->so_fibnum = td->td_proc->p_fibnum;
956 else
957 so->so_fibnum = 0;
958 so->so_proto = prp;
959 #ifdef MAC
960 mac_socket_create(cred, so);
961 #endif
962 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
963 so_rdknl_assert_lock);
964 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
965 so_wrknl_assert_lock);
966 if ((prp->pr_flags & PR_SOCKBUF) == 0) {
967 so->so_snd.sb_mtx = &so->so_snd_mtx;
968 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
969 }
970 /*
971 * Auto-sizing of socket buffers is managed by the protocols and
972 * the appropriate flags must be set in the pr_attach() method.
973 */
974 CURVNET_SET(so->so_vnet);
975 error = prp->pr_attach(so, proto, td);
976 CURVNET_RESTORE();
977 if (error) {
978 sodealloc(so);
979 return (error);
980 }
981 soref(so);
982 *aso = so;
983 return (0);
984 }
985
986 #ifdef REGRESSION
987 static int regression_sonewconn_earlytest = 1;
988 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
989 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
990 #endif
991
992 static int sooverprio = LOG_DEBUG;
993 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW,
994 &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable");
995
996 static struct timeval overinterval = { 60, 0 };
997 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
998 &overinterval,
999 "Delay in seconds between warnings for listen socket overflows");
1000
1001 /*
1002 * When an attempt at a new connection is noted on a socket which supports
1003 * accept(2), the protocol has two options:
1004 * 1) Call legacy sonewconn() function, which would call protocol attach
1005 * method, same as used for socket(2).
1006 * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
1007 * and then call solisten_enqueue().
1008 *
1009 * Note: the ref count on the socket is 0 on return.
1010 */
1011 struct socket *
solisten_clone(struct socket * head)1012 solisten_clone(struct socket *head)
1013 {
1014 struct sbuf descrsb;
1015 struct socket *so;
1016 int len, overcount;
1017 u_int qlen;
1018 const char localprefix[] = "local:";
1019 char descrbuf[SUNPATHLEN + sizeof(localprefix)];
1020 #if defined(INET6)
1021 char addrbuf[INET6_ADDRSTRLEN];
1022 #elif defined(INET)
1023 char addrbuf[INET_ADDRSTRLEN];
1024 #endif
1025 bool dolog, over;
1026
1027 SOLISTEN_LOCK(head);
1028 over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
1029 #ifdef REGRESSION
1030 if (regression_sonewconn_earlytest && over) {
1031 #else
1032 if (over) {
1033 #endif
1034 head->sol_overcount++;
1035 dolog = (sooverprio >= 0) &&
1036 !!ratecheck(&head->sol_lastover, &overinterval);
1037
1038 /*
1039 * If we're going to log, copy the overflow count and queue
1040 * length from the listen socket before dropping the lock.
1041 * Also, reset the overflow count.
1042 */
1043 if (dolog) {
1044 overcount = head->sol_overcount;
1045 head->sol_overcount = 0;
1046 qlen = head->sol_qlen;
1047 }
1048 SOLISTEN_UNLOCK(head);
1049
1050 if (dolog) {
1051 /*
1052 * Try to print something descriptive about the
1053 * socket for the error message.
1054 */
1055 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
1056 SBUF_FIXEDLEN);
1057 switch (head->so_proto->pr_domain->dom_family) {
1058 #if defined(INET) || defined(INET6)
1059 #ifdef INET
1060 case AF_INET:
1061 #endif
1062 #ifdef INET6
1063 case AF_INET6:
1064 if (head->so_proto->pr_domain->dom_family ==
1065 AF_INET6 ||
1066 (sotoinpcb(head)->inp_inc.inc_flags &
1067 INC_ISIPV6)) {
1068 ip6_sprintf(addrbuf,
1069 &sotoinpcb(head)->inp_inc.inc6_laddr);
1070 sbuf_printf(&descrsb, "[%s]", addrbuf);
1071 } else
1072 #endif
1073 {
1074 #ifdef INET
1075 inet_ntoa_r(
1076 sotoinpcb(head)->inp_inc.inc_laddr,
1077 addrbuf);
1078 sbuf_cat(&descrsb, addrbuf);
1079 #endif
1080 }
1081 sbuf_printf(&descrsb, ":%hu (proto %u)",
1082 ntohs(sotoinpcb(head)->inp_inc.inc_lport),
1083 head->so_proto->pr_protocol);
1084 break;
1085 #endif /* INET || INET6 */
1086 case AF_UNIX:
1087 sbuf_cat(&descrsb, localprefix);
1088 if (sotounpcb(head)->unp_addr != NULL)
1089 len =
1090 sotounpcb(head)->unp_addr->sun_len -
1091 offsetof(struct sockaddr_un,
1092 sun_path);
1093 else
1094 len = 0;
1095 if (len > 0)
1096 sbuf_bcat(&descrsb,
1097 sotounpcb(head)->unp_addr->sun_path,
1098 len);
1099 else
1100 sbuf_cat(&descrsb, "(unknown)");
1101 break;
1102 }
1103
1104 /*
1105 * If we can't print something more specific, at least
1106 * print the domain name.
1107 */
1108 if (sbuf_finish(&descrsb) != 0 ||
1109 sbuf_len(&descrsb) <= 0) {
1110 sbuf_clear(&descrsb);
1111 sbuf_cat(&descrsb,
1112 head->so_proto->pr_domain->dom_name ?:
1113 "unknown");
1114 sbuf_finish(&descrsb);
1115 }
1116 KASSERT(sbuf_len(&descrsb) > 0,
1117 ("%s: sbuf creation failed", __func__));
1118 /*
1119 * Preserve the historic listen queue overflow log
1120 * message, that starts with "sonewconn:". It has
1121 * been known to sysadmins for years and also test
1122 * sys/kern/sonewconn_overflow checks for it.
1123 */
1124 if (head->so_cred == 0) {
1125 log(LOG_PRI(sooverprio),
1126 "sonewconn: pcb %p (%s): "
1127 "Listen queue overflow: %i already in "
1128 "queue awaiting acceptance (%d "
1129 "occurrences)\n", head->so_pcb,
1130 sbuf_data(&descrsb),
1131 qlen, overcount);
1132 } else {
1133 log(LOG_PRI(sooverprio),
1134 "sonewconn: pcb %p (%s): "
1135 "Listen queue overflow: "
1136 "%i already in queue awaiting acceptance "
1137 "(%d occurrences), euid %d, rgid %d, jail %s\n",
1138 head->so_pcb, sbuf_data(&descrsb), qlen,
1139 overcount, head->so_cred->cr_uid,
1140 head->so_cred->cr_rgid,
1141 head->so_cred->cr_prison ?
1142 head->so_cred->cr_prison->pr_name :
1143 "not_jailed");
1144 }
1145 sbuf_delete(&descrsb);
1146
1147 overcount = 0;
1148 }
1149
1150 return (NULL);
1151 }
1152 SOLISTEN_UNLOCK(head);
1153 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
1154 __func__, head));
1155 so = soalloc(head->so_vnet);
1156 if (so == NULL) {
1157 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1158 "limit reached or out of memory\n",
1159 __func__, head->so_pcb);
1160 return (NULL);
1161 }
1162 so->so_listen = head;
1163 so->so_type = head->so_type;
1164 /*
1165 * POSIX is ambiguous on what options an accept(2)ed socket should
1166 * inherit from the listener. Words "create a new socket" may be
1167 * interpreted as not inheriting anything. Best programming practice
1168 * for application developers is to not rely on such inheritance.
1169 * FreeBSD had historically inherited all so_options excluding
1170 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options,
1171 * including those completely irrelevant to a new born socket. For
1172 * compatibility with older versions we will inherit a list of
1173 * meaningful options.
1174 * The crucial bit to inherit is SO_ACCEPTFILTER. We need it present
1175 * in the child socket for soisconnected() promoting socket from the
1176 * incomplete queue to complete. It will be cleared before the child
1177 * gets available to accept(2).
1178 */
1179 so->so_options = head->so_options & (SO_ACCEPTFILTER | SO_KEEPALIVE |
1180 SO_DONTROUTE | SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE);
1181 so->so_linger = head->so_linger;
1182 so->so_state = head->so_state;
1183 so->so_fibnum = head->so_fibnum;
1184 so->so_proto = head->so_proto;
1185 so->so_cred = crhold(head->so_cred);
1186 #ifdef SOCKET_HHOOK
1187 if (V_socket_hhh[HHOOK_SOCKET_NEWCONN]->hhh_nhooks > 0) {
1188 if (hhook_run_socket(so, head, HHOOK_SOCKET_NEWCONN)) {
1189 sodealloc(so);
1190 log(LOG_DEBUG, "%s: hhook run failed\n", __func__);
1191 return (NULL);
1192 }
1193 }
1194 #endif
1195 #ifdef MAC
1196 mac_socket_newconn(head, so);
1197 #endif
1198 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1199 so_rdknl_assert_lock);
1200 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1201 so_wrknl_assert_lock);
1202 VNET_SO_ASSERT(head);
1203 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
1204 sodealloc(so);
1205 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1206 __func__, head->so_pcb);
1207 return (NULL);
1208 }
1209 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
1210 so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
1211 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
1212 so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
1213 so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
1214 so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE;
1215 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1216 so->so_snd.sb_mtx = &so->so_snd_mtx;
1217 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1218 }
1219
1220 return (so);
1221 }
1222
1223 /* Connstatus may be 0 or SS_ISCONNECTED. */
1224 struct socket *
1225 sonewconn(struct socket *head, int connstatus)
1226 {
1227 struct socket *so;
1228
1229 if ((so = solisten_clone(head)) == NULL)
1230 return (NULL);
1231
1232 if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
1233 sodealloc(so);
1234 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1235 __func__, head->so_pcb);
1236 return (NULL);
1237 }
1238
1239 (void)solisten_enqueue(so, connstatus);
1240
1241 return (so);
1242 }
1243
1244 /*
1245 * Enqueue socket cloned by solisten_clone() to the listen queue of the
1246 * listener it has been cloned from.
1247 *
1248 * Return 'true' if socket landed on complete queue, otherwise 'false'.
1249 */
1250 bool
1251 solisten_enqueue(struct socket *so, int connstatus)
1252 {
1253 struct socket *head = so->so_listen;
1254
1255 MPASS(refcount_load(&so->so_count) == 0);
1256 refcount_init(&so->so_count, 1);
1257
1258 SOLISTEN_LOCK(head);
1259 if (head->sol_accept_filter != NULL)
1260 connstatus = 0;
1261 so->so_state |= connstatus;
1262 soref(head); /* A socket on (in)complete queue refs head. */
1263 if (connstatus) {
1264 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
1265 so->so_qstate = SQ_COMP;
1266 head->sol_qlen++;
1267 solisten_wakeup(head); /* unlocks */
1268 return (true);
1269 } else {
1270 /*
1271 * Keep removing sockets from the head until there's room for
1272 * us to insert on the tail. In pre-locking revisions, this
1273 * was a simple if(), but as we could be racing with other
1274 * threads and soabort() requires dropping locks, we must
1275 * loop waiting for the condition to be true.
1276 */
1277 while (head->sol_incqlen > head->sol_qlimit) {
1278 struct socket *sp;
1279
1280 sp = TAILQ_FIRST(&head->sol_incomp);
1281 TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
1282 head->sol_incqlen--;
1283 SOCK_LOCK(sp);
1284 sp->so_qstate = SQ_NONE;
1285 sp->so_listen = NULL;
1286 SOCK_UNLOCK(sp);
1287 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */
1288 soabort(sp);
1289 SOLISTEN_LOCK(head);
1290 }
1291 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
1292 so->so_qstate = SQ_INCOMP;
1293 head->sol_incqlen++;
1294 SOLISTEN_UNLOCK(head);
1295 return (false);
1296 }
1297 }
1298
1299 #if defined(SCTP) || defined(SCTP_SUPPORT)
1300 /*
1301 * Socket part of sctp_peeloff(). Detach a new socket from an
1302 * association. The new socket is returned with a reference.
1303 *
1304 * XXXGL: reduce copy-paste with solisten_clone().
1305 */
1306 struct socket *
1307 sopeeloff(struct socket *head)
1308 {
1309 struct socket *so;
1310
1311 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
1312 __func__, __LINE__, head));
1313 so = soalloc(head->so_vnet);
1314 if (so == NULL) {
1315 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1316 "limit reached or out of memory\n",
1317 __func__, head->so_pcb);
1318 return (NULL);
1319 }
1320 so->so_type = head->so_type;
1321 so->so_options = head->so_options;
1322 so->so_linger = head->so_linger;
1323 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
1324 so->so_fibnum = head->so_fibnum;
1325 so->so_proto = head->so_proto;
1326 so->so_cred = crhold(head->so_cred);
1327 #ifdef MAC
1328 mac_socket_newconn(head, so);
1329 #endif
1330 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1331 so_rdknl_assert_lock);
1332 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1333 so_wrknl_assert_lock);
1334 VNET_SO_ASSERT(head);
1335 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
1336 sodealloc(so);
1337 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1338 __func__, head->so_pcb);
1339 return (NULL);
1340 }
1341 if (so->so_proto->pr_attach(so, 0, NULL)) {
1342 sodealloc(so);
1343 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1344 __func__, head->so_pcb);
1345 return (NULL);
1346 }
1347 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
1348 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
1349 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
1350 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
1351 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
1352 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
1353 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1354 so->so_snd.sb_mtx = &so->so_snd_mtx;
1355 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1356 }
1357
1358 soref(so);
1359
1360 return (so);
1361 }
1362 #endif /* SCTP */
1363
1364 int
1365 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
1366 {
1367 int error;
1368
1369 CURVNET_SET(so->so_vnet);
1370 error = so->so_proto->pr_bind(so, nam, td);
1371 CURVNET_RESTORE();
1372 return (error);
1373 }
1374
1375 int
1376 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1377 {
1378 int error;
1379
1380 CURVNET_SET(so->so_vnet);
1381 error = so->so_proto->pr_bindat(fd, so, nam, td);
1382 CURVNET_RESTORE();
1383 return (error);
1384 }
1385
1386 /*
1387 * solisten() transitions a socket from a non-listening state to a listening
1388 * state, but can also be used to update the listen queue depth on an
1389 * existing listen socket. The protocol will call back into the sockets
1390 * layer using solisten_proto_check() and solisten_proto() to check and set
1391 * socket-layer listen state. Call backs are used so that the protocol can
1392 * acquire both protocol and socket layer locks in whatever order is required
1393 * by the protocol.
1394 *
1395 * Protocol implementors are advised to hold the socket lock across the
1396 * socket-layer test and set to avoid races at the socket layer.
1397 */
1398 int
1399 solisten(struct socket *so, int backlog, struct thread *td)
1400 {
1401 int error;
1402
1403 CURVNET_SET(so->so_vnet);
1404 error = so->so_proto->pr_listen(so, backlog, td);
1405 CURVNET_RESTORE();
1406 return (error);
1407 }
1408
1409 /*
1410 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in
1411 * order to interlock with socket I/O.
1412 */
1413 int
1414 solisten_proto_check(struct socket *so)
1415 {
1416 SOCK_LOCK_ASSERT(so);
1417
1418 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1419 SS_ISDISCONNECTING)) != 0)
1420 return (EINVAL);
1421
1422 /*
1423 * Sleeping is not permitted here, so simply fail if userspace is
1424 * attempting to transmit or receive on the socket. This kind of
1425 * transient failure is not ideal, but it should occur only if userspace
1426 * is misusing the socket interfaces.
1427 */
1428 if (!sx_try_xlock(&so->so_snd_sx))
1429 return (EAGAIN);
1430 if (!sx_try_xlock(&so->so_rcv_sx)) {
1431 sx_xunlock(&so->so_snd_sx);
1432 return (EAGAIN);
1433 }
1434 mtx_lock(&so->so_snd_mtx);
1435 mtx_lock(&so->so_rcv_mtx);
1436
1437 /* Interlock with soo_aio_queue() and KTLS. */
1438 if (!SOLISTENING(so)) {
1439 bool ktls;
1440
1441 #ifdef KERN_TLS
1442 ktls = so->so_snd.sb_tls_info != NULL ||
1443 so->so_rcv.sb_tls_info != NULL;
1444 #else
1445 ktls = false;
1446 #endif
1447 if (ktls ||
1448 (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
1449 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) {
1450 solisten_proto_abort(so);
1451 return (EINVAL);
1452 }
1453 }
1454
1455 return (0);
1456 }
1457
1458 /*
1459 * Undo the setup done by solisten_proto_check().
1460 */
1461 void
1462 solisten_proto_abort(struct socket *so)
1463 {
1464 mtx_unlock(&so->so_snd_mtx);
1465 mtx_unlock(&so->so_rcv_mtx);
1466 sx_xunlock(&so->so_snd_sx);
1467 sx_xunlock(&so->so_rcv_sx);
1468 }
1469
1470 void
1471 solisten_proto(struct socket *so, int backlog)
1472 {
1473 int sbrcv_lowat, sbsnd_lowat;
1474 u_int sbrcv_hiwat, sbsnd_hiwat;
1475 short sbrcv_flags, sbsnd_flags;
1476 sbintime_t sbrcv_timeo, sbsnd_timeo;
1477
1478 SOCK_LOCK_ASSERT(so);
1479 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1480 SS_ISDISCONNECTING)) == 0,
1481 ("%s: bad socket state %p", __func__, so));
1482
1483 if (SOLISTENING(so))
1484 goto listening;
1485
1486 /*
1487 * Change this socket to listening state.
1488 */
1489 sbrcv_lowat = so->so_rcv.sb_lowat;
1490 sbsnd_lowat = so->so_snd.sb_lowat;
1491 sbrcv_hiwat = so->so_rcv.sb_hiwat;
1492 sbsnd_hiwat = so->so_snd.sb_hiwat;
1493 sbrcv_flags = so->so_rcv.sb_flags;
1494 sbsnd_flags = so->so_snd.sb_flags;
1495 sbrcv_timeo = so->so_rcv.sb_timeo;
1496 sbsnd_timeo = so->so_snd.sb_timeo;
1497
1498 #ifdef MAC
1499 mac_socketpeer_label_free(so->so_peerlabel);
1500 #endif
1501
1502 if (!(so->so_proto->pr_flags & PR_SOCKBUF)) {
1503 sbdestroy(so, SO_SND);
1504 sbdestroy(so, SO_RCV);
1505 }
1506
1507 #ifdef INVARIANTS
1508 bzero(&so->so_rcv,
1509 sizeof(struct socket) - offsetof(struct socket, so_rcv));
1510 #endif
1511
1512 so->sol_sbrcv_lowat = sbrcv_lowat;
1513 so->sol_sbsnd_lowat = sbsnd_lowat;
1514 so->sol_sbrcv_hiwat = sbrcv_hiwat;
1515 so->sol_sbsnd_hiwat = sbsnd_hiwat;
1516 so->sol_sbrcv_flags = sbrcv_flags;
1517 so->sol_sbsnd_flags = sbsnd_flags;
1518 so->sol_sbrcv_timeo = sbrcv_timeo;
1519 so->sol_sbsnd_timeo = sbsnd_timeo;
1520
1521 so->sol_qlen = so->sol_incqlen = 0;
1522 TAILQ_INIT(&so->sol_incomp);
1523 TAILQ_INIT(&so->sol_comp);
1524
1525 so->sol_accept_filter = NULL;
1526 so->sol_accept_filter_arg = NULL;
1527 so->sol_accept_filter_str = NULL;
1528
1529 so->sol_upcall = NULL;
1530 so->sol_upcallarg = NULL;
1531
1532 so->so_options |= SO_ACCEPTCONN;
1533
1534 listening:
1535 if (backlog < 0 || backlog > V_somaxconn)
1536 backlog = V_somaxconn;
1537 so->sol_qlimit = backlog;
1538
1539 mtx_unlock(&so->so_snd_mtx);
1540 mtx_unlock(&so->so_rcv_mtx);
1541 sx_xunlock(&so->so_snd_sx);
1542 sx_xunlock(&so->so_rcv_sx);
1543 }
1544
1545 /*
1546 * Wakeup listeners/subsystems once we have a complete connection.
1547 * Enters with lock, returns unlocked.
1548 */
1549 void
1550 solisten_wakeup(struct socket *sol)
1551 {
1552
1553 if (sol->sol_upcall != NULL)
1554 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1555 else {
1556 selwakeuppri(&sol->so_rdsel, PSOCK);
1557 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1558 }
1559 SOLISTEN_UNLOCK(sol);
1560 wakeup_one(&sol->sol_comp);
1561 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1562 pgsigio(&sol->so_sigio, SIGIO, 0);
1563 }
1564
1565 /*
1566 * Return single connection off a listening socket queue. Main consumer of
1567 * the function is kern_accept4(). Some modules, that do their own accept
1568 * management also use the function. The socket reference held by the
1569 * listen queue is handed to the caller.
1570 *
1571 * Listening socket must be locked on entry and is returned unlocked on
1572 * return.
1573 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1574 */
1575 int
1576 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1577 {
1578 struct socket *so;
1579 int error;
1580
1581 SOLISTEN_LOCK_ASSERT(head);
1582
1583 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1584 head->so_error == 0) {
1585 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1586 "accept", 0);
1587 if (error != 0) {
1588 SOLISTEN_UNLOCK(head);
1589 return (error);
1590 }
1591 }
1592 if (head->so_error) {
1593 error = head->so_error;
1594 head->so_error = 0;
1595 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1596 error = EWOULDBLOCK;
1597 else
1598 error = 0;
1599 if (error) {
1600 SOLISTEN_UNLOCK(head);
1601 return (error);
1602 }
1603 so = TAILQ_FIRST(&head->sol_comp);
1604 SOCK_LOCK(so);
1605 KASSERT(so->so_qstate == SQ_COMP,
1606 ("%s: so %p not SQ_COMP", __func__, so));
1607 head->sol_qlen--;
1608 so->so_qstate = SQ_NONE;
1609 so->so_listen = NULL;
1610 TAILQ_REMOVE(&head->sol_comp, so, so_list);
1611 if (flags & ACCEPT4_INHERIT)
1612 so->so_state |= (head->so_state & SS_NBIO);
1613 else
1614 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1615 SOCK_UNLOCK(so);
1616 sorele_locked(head);
1617
1618 *ret = so;
1619 return (0);
1620 }
1621
1622 static struct so_splice *
1623 so_splice_alloc(off_t max)
1624 {
1625 struct so_splice *sp;
1626
1627 sp = uma_zalloc(splice_zone, M_WAITOK);
1628 sp->src = NULL;
1629 sp->dst = NULL;
1630 sp->max = max > 0 ? max : -1;
1631 do {
1632 sp->wq_index = atomic_fetchadd_32(&splice_index, 1) %
1633 (mp_maxid + 1);
1634 } while (CPU_ABSENT(sp->wq_index));
1635 sp->state = SPLICE_INIT;
1636 TIMEOUT_TASK_INIT(taskqueue_thread, &sp->timeout, 0, so_splice_timeout,
1637 sp);
1638 return (sp);
1639 }
1640
1641 static void
1642 so_splice_free(struct so_splice *sp)
1643 {
1644 KASSERT(sp->state == SPLICE_CLOSED,
1645 ("so_splice_free: sp %p not closed", sp));
1646 uma_zfree(splice_zone, sp);
1647 }
1648
1649 static void
1650 so_splice_timeout(void *arg, int pending __unused)
1651 {
1652 struct so_splice *sp;
1653
1654 sp = arg;
1655 (void)so_unsplice(sp->src, true);
1656 }
1657
1658 /*
1659 * Splice the output from so to the input of so2.
1660 */
1661 static int
1662 so_splice(struct socket *so, struct socket *so2, struct splice *splice)
1663 {
1664 struct so_splice *sp;
1665 int error;
1666
1667 if (splice->sp_max < 0)
1668 return (EINVAL);
1669 /* Handle only TCP for now; TODO: other streaming protos */
1670 if (so->so_proto->pr_protocol != IPPROTO_TCP ||
1671 so2->so_proto->pr_protocol != IPPROTO_TCP)
1672 return (EPROTONOSUPPORT);
1673 if (so->so_vnet != so2->so_vnet)
1674 return (EINVAL);
1675
1676 /* so_splice_xfer() assumes that we're using these implementations. */
1677 KASSERT(so->so_proto->pr_sosend == sosend_generic,
1678 ("so_splice: sosend not sosend_generic"));
1679 KASSERT(so2->so_proto->pr_soreceive == soreceive_generic ||
1680 so2->so_proto->pr_soreceive == soreceive_stream,
1681 ("so_splice: soreceive not soreceive_generic/stream"));
1682
1683 sp = so_splice_alloc(splice->sp_max);
1684 so->so_splice_sent = 0;
1685 sp->src = so;
1686 sp->dst = so2;
1687
1688 error = 0;
1689 SOCK_LOCK(so);
1690 if (SOLISTENING(so))
1691 error = EINVAL;
1692 else if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1693 error = ENOTCONN;
1694 else if (so->so_splice != NULL)
1695 error = EBUSY;
1696 if (error != 0) {
1697 SOCK_UNLOCK(so);
1698 uma_zfree(splice_zone, sp);
1699 return (error);
1700 }
1701 SOCK_RECVBUF_LOCK(so);
1702 if (so->so_rcv.sb_tls_info != NULL) {
1703 SOCK_RECVBUF_UNLOCK(so);
1704 SOCK_UNLOCK(so);
1705 uma_zfree(splice_zone, sp);
1706 return (EINVAL);
1707 }
1708 so->so_rcv.sb_flags |= SB_SPLICED;
1709 so->so_splice = sp;
1710 soref(so);
1711 SOCK_RECVBUF_UNLOCK(so);
1712 SOCK_UNLOCK(so);
1713
1714 error = 0;
1715 SOCK_LOCK(so2);
1716 if (SOLISTENING(so2))
1717 error = EINVAL;
1718 else if ((so2->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1719 error = ENOTCONN;
1720 else if (so2->so_splice_back != NULL)
1721 error = EBUSY;
1722 if (error != 0) {
1723 SOCK_UNLOCK(so2);
1724 so_unsplice(so, false);
1725 return (error);
1726 }
1727 SOCK_SENDBUF_LOCK(so2);
1728 if (so->so_snd.sb_tls_info != NULL) {
1729 SOCK_SENDBUF_UNLOCK(so2);
1730 SOCK_UNLOCK(so2);
1731 so_unsplice(so, false);
1732 return (EINVAL);
1733 }
1734 so2->so_snd.sb_flags |= SB_SPLICED;
1735 so2->so_splice_back = sp;
1736 soref(so2);
1737 mtx_lock(&sp->mtx);
1738 SOCK_SENDBUF_UNLOCK(so2);
1739 SOCK_UNLOCK(so2);
1740
1741 if (splice->sp_idle.tv_sec != 0 || splice->sp_idle.tv_usec != 0) {
1742 taskqueue_enqueue_timeout_sbt(taskqueue_thread, &sp->timeout,
1743 tvtosbt(splice->sp_idle), 0, C_PREL(4));
1744 }
1745
1746 /*
1747 * Transfer any data already present in the socket buffer.
1748 */
1749 KASSERT(sp->state == SPLICE_INIT,
1750 ("so_splice: splice %p state %d", sp, sp->state));
1751 sp->state = SPLICE_QUEUED;
1752 so_splice_xfer(sp);
1753 return (0);
1754 }
1755
1756 static int
1757 so_unsplice(struct socket *so, bool timeout)
1758 {
1759 struct socket *so2;
1760 struct so_splice *sp;
1761 bool drain, so2rele;
1762
1763 /*
1764 * First unset SB_SPLICED and hide the splice structure so that
1765 * wakeup routines will stop enqueuing work. This also ensures that
1766 * a only a single thread will proceed with the unsplice.
1767 */
1768 SOCK_LOCK(so);
1769 if (SOLISTENING(so)) {
1770 SOCK_UNLOCK(so);
1771 return (EINVAL);
1772 }
1773 SOCK_RECVBUF_LOCK(so);
1774 if ((so->so_rcv.sb_flags & SB_SPLICED) == 0) {
1775 SOCK_RECVBUF_UNLOCK(so);
1776 SOCK_UNLOCK(so);
1777 return (ENOTCONN);
1778 }
1779 sp = so->so_splice;
1780 mtx_lock(&sp->mtx);
1781 if (sp->state == SPLICE_INIT) {
1782 /*
1783 * A splice is in the middle of being set up.
1784 */
1785 mtx_unlock(&sp->mtx);
1786 SOCK_RECVBUF_UNLOCK(so);
1787 SOCK_UNLOCK(so);
1788 return (ENOTCONN);
1789 }
1790 mtx_unlock(&sp->mtx);
1791 so->so_rcv.sb_flags &= ~SB_SPLICED;
1792 so->so_splice = NULL;
1793 SOCK_RECVBUF_UNLOCK(so);
1794 SOCK_UNLOCK(so);
1795
1796 so2 = sp->dst;
1797 SOCK_LOCK(so2);
1798 KASSERT(!SOLISTENING(so2), ("%s: so2 is listening", __func__));
1799 SOCK_SENDBUF_LOCK(so2);
1800 KASSERT(sp->state == SPLICE_INIT ||
1801 (so2->so_snd.sb_flags & SB_SPLICED) != 0,
1802 ("%s: so2 is not spliced", __func__));
1803 KASSERT(sp->state == SPLICE_INIT ||
1804 so2->so_splice_back == sp,
1805 ("%s: so_splice_back != sp", __func__));
1806 so2->so_snd.sb_flags &= ~SB_SPLICED;
1807 so2rele = so2->so_splice_back != NULL;
1808 so2->so_splice_back = NULL;
1809 SOCK_SENDBUF_UNLOCK(so2);
1810 SOCK_UNLOCK(so2);
1811
1812 /*
1813 * No new work is being enqueued. The worker thread might be
1814 * splicing data right now, in which case we want to wait for it to
1815 * finish before proceeding.
1816 */
1817 mtx_lock(&sp->mtx);
1818 switch (sp->state) {
1819 case SPLICE_QUEUED:
1820 case SPLICE_RUNNING:
1821 sp->state = SPLICE_CLOSING;
1822 while (sp->state == SPLICE_CLOSING)
1823 msleep(sp, &sp->mtx, PSOCK, "unsplice", 0);
1824 break;
1825 case SPLICE_INIT:
1826 case SPLICE_IDLE:
1827 case SPLICE_EXCEPTION:
1828 sp->state = SPLICE_CLOSED;
1829 break;
1830 default:
1831 __assert_unreachable();
1832 }
1833 if (!timeout) {
1834 drain = taskqueue_cancel_timeout(taskqueue_thread, &sp->timeout,
1835 NULL) != 0;
1836 } else {
1837 drain = false;
1838 }
1839 mtx_unlock(&sp->mtx);
1840 if (drain)
1841 taskqueue_drain_timeout(taskqueue_thread, &sp->timeout);
1842
1843 /*
1844 * Now we hold the sole reference to the splice structure.
1845 * Clean up: signal userspace and release socket references.
1846 */
1847 sorwakeup(so);
1848 CURVNET_SET(so->so_vnet);
1849 sorele(so);
1850 sowwakeup(so2);
1851 if (so2rele)
1852 sorele(so2);
1853 CURVNET_RESTORE();
1854 so_splice_free(sp);
1855 return (0);
1856 }
1857
1858 /*
1859 * Free socket upon release of the very last reference.
1860 */
1861 static void
1862 sofree(struct socket *so)
1863 {
1864 struct protosw *pr = so->so_proto;
1865
1866 SOCK_LOCK_ASSERT(so);
1867 KASSERT(refcount_load(&so->so_count) == 0,
1868 ("%s: so %p has references", __func__, so));
1869 KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1870 ("%s: so %p is on listen queue", __func__, so));
1871 KASSERT(SOLISTENING(so) || (so->so_rcv.sb_flags & SB_SPLICED) == 0,
1872 ("%s: so %p rcvbuf is spliced", __func__, so));
1873 KASSERT(SOLISTENING(so) || (so->so_snd.sb_flags & SB_SPLICED) == 0,
1874 ("%s: so %p sndbuf is spliced", __func__, so));
1875 KASSERT(so->so_splice == NULL && so->so_splice_back == NULL,
1876 ("%s: so %p has spliced data", __func__, so));
1877
1878 SOCK_UNLOCK(so);
1879
1880 if (so->so_dtor != NULL)
1881 so->so_dtor(so);
1882
1883 VNET_SO_ASSERT(so);
1884 if (pr->pr_detach != NULL)
1885 pr->pr_detach(so);
1886
1887 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1888 /*
1889 * From this point on, we assume that no other references to
1890 * this socket exist anywhere else in the stack. Therefore,
1891 * no locks need to be acquired or held.
1892 */
1893 #ifdef INVARIANTS
1894 SOCK_SENDBUF_LOCK(so);
1895 SOCK_RECVBUF_LOCK(so);
1896 #endif
1897 sbdestroy(so, SO_SND);
1898 sbdestroy(so, SO_RCV);
1899 #ifdef INVARIANTS
1900 SOCK_SENDBUF_UNLOCK(so);
1901 SOCK_RECVBUF_UNLOCK(so);
1902 #endif
1903 }
1904 seldrain(&so->so_rdsel);
1905 seldrain(&so->so_wrsel);
1906 knlist_destroy(&so->so_rdsel.si_note);
1907 knlist_destroy(&so->so_wrsel.si_note);
1908 sodealloc(so);
1909 }
1910
1911 /*
1912 * Release a reference on a socket while holding the socket lock.
1913 * Unlocks the socket lock before returning.
1914 */
1915 void
1916 sorele_locked(struct socket *so)
1917 {
1918 SOCK_LOCK_ASSERT(so);
1919 if (refcount_release(&so->so_count))
1920 sofree(so);
1921 else
1922 SOCK_UNLOCK(so);
1923 }
1924
1925 /*
1926 * Close a socket on last file table reference removal. Initiate disconnect
1927 * if connected. Free socket when disconnect complete.
1928 *
1929 * This function will sorele() the socket. Note that soclose() may be called
1930 * prior to the ref count reaching zero. The actual socket structure will
1931 * not be freed until the ref count reaches zero.
1932 */
1933 int
1934 soclose(struct socket *so)
1935 {
1936 struct accept_queue lqueue;
1937 int error = 0;
1938 bool listening, last __diagused;
1939
1940 CURVNET_SET(so->so_vnet);
1941 funsetown(&so->so_sigio);
1942 if (so->so_state & SS_ISCONNECTED) {
1943 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1944 error = sodisconnect(so);
1945 if (error) {
1946 if (error == ENOTCONN)
1947 error = 0;
1948 goto drop;
1949 }
1950 }
1951
1952 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1953 if ((so->so_state & SS_ISDISCONNECTING) &&
1954 (so->so_state & SS_NBIO))
1955 goto drop;
1956 while (so->so_state & SS_ISCONNECTED) {
1957 error = tsleep(&so->so_timeo,
1958 PSOCK | PCATCH, "soclos",
1959 so->so_linger * hz);
1960 if (error)
1961 break;
1962 }
1963 }
1964 }
1965
1966 drop:
1967 if (so->so_proto->pr_close != NULL)
1968 so->so_proto->pr_close(so);
1969
1970 SOCK_LOCK(so);
1971 if ((listening = SOLISTENING(so))) {
1972 struct socket *sp;
1973
1974 TAILQ_INIT(&lqueue);
1975 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1976 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1977
1978 so->sol_qlen = so->sol_incqlen = 0;
1979
1980 TAILQ_FOREACH(sp, &lqueue, so_list) {
1981 SOCK_LOCK(sp);
1982 sp->so_qstate = SQ_NONE;
1983 sp->so_listen = NULL;
1984 SOCK_UNLOCK(sp);
1985 last = refcount_release(&so->so_count);
1986 KASSERT(!last, ("%s: released last reference for %p",
1987 __func__, so));
1988 }
1989 }
1990 sorele_locked(so);
1991 if (listening) {
1992 struct socket *sp, *tsp;
1993
1994 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
1995 soabort(sp);
1996 }
1997 CURVNET_RESTORE();
1998 return (error);
1999 }
2000
2001 /*
2002 * soabort() is used to abruptly tear down a connection, such as when a
2003 * resource limit is reached (listen queue depth exceeded), or if a listen
2004 * socket is closed while there are sockets waiting to be accepted.
2005 *
2006 * This interface is tricky, because it is called on an unreferenced socket,
2007 * and must be called only by a thread that has actually removed the socket
2008 * from the listen queue it was on. Likely this thread holds the last
2009 * reference on the socket and soabort() will proceed with sofree(). But
2010 * it might be not the last, as the sockets on the listen queues are seen
2011 * from the protocol side.
2012 *
2013 * This interface will call into the protocol code, so must not be called
2014 * with any socket locks held. Protocols do call it while holding their own
2015 * recursible protocol mutexes, but this is something that should be subject
2016 * to review in the future.
2017 *
2018 * Usually socket should have a single reference left, but this is not a
2019 * requirement. In the past, when we have had named references for file
2020 * descriptor and protocol, we asserted that none of them are being held.
2021 */
2022 void
2023 soabort(struct socket *so)
2024 {
2025
2026 VNET_SO_ASSERT(so);
2027
2028 if (so->so_proto->pr_abort != NULL)
2029 so->so_proto->pr_abort(so);
2030 SOCK_LOCK(so);
2031 sorele_locked(so);
2032 }
2033
2034 int
2035 soaccept(struct socket *so, struct sockaddr *sa)
2036 {
2037 #ifdef INVARIANTS
2038 u_char len = sa->sa_len;
2039 #endif
2040 int error;
2041
2042 CURVNET_SET(so->so_vnet);
2043 error = so->so_proto->pr_accept(so, sa);
2044 KASSERT(sa->sa_len <= len,
2045 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2046 CURVNET_RESTORE();
2047 return (error);
2048 }
2049
2050 int
2051 sopeeraddr(struct socket *so, struct sockaddr *sa)
2052 {
2053 #ifdef INVARIANTS
2054 u_char len = sa->sa_len;
2055 #endif
2056 int error;
2057
2058 CURVNET_ASSERT_SET();
2059
2060 error = so->so_proto->pr_peeraddr(so, sa);
2061 KASSERT(sa->sa_len <= len,
2062 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2063
2064 return (error);
2065 }
2066
2067 int
2068 sosockaddr(struct socket *so, struct sockaddr *sa)
2069 {
2070 #ifdef INVARIANTS
2071 u_char len = sa->sa_len;
2072 #endif
2073 int error;
2074
2075 CURVNET_SET(so->so_vnet);
2076 error = so->so_proto->pr_sockaddr(so, sa);
2077 KASSERT(sa->sa_len <= len,
2078 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2079 CURVNET_RESTORE();
2080
2081 return (error);
2082 }
2083
2084 int
2085 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
2086 {
2087
2088 return (soconnectat(AT_FDCWD, so, nam, td));
2089 }
2090
2091 int
2092 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
2093 {
2094 int error;
2095
2096 CURVNET_SET(so->so_vnet);
2097
2098 /*
2099 * If protocol is connection-based, can only connect once.
2100 * Otherwise, if connected, try to disconnect first. This allows
2101 * user to disconnect by connecting to, e.g., a null address.
2102 *
2103 * Note, this check is racy and may need to be re-evaluated at the
2104 * protocol layer.
2105 */
2106 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
2107 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
2108 (error = sodisconnect(so)))) {
2109 error = EISCONN;
2110 } else {
2111 /*
2112 * Prevent accumulated error from previous connection from
2113 * biting us.
2114 */
2115 so->so_error = 0;
2116 if (fd == AT_FDCWD) {
2117 error = so->so_proto->pr_connect(so, nam, td);
2118 } else {
2119 error = so->so_proto->pr_connectat(fd, so, nam, td);
2120 }
2121 }
2122 CURVNET_RESTORE();
2123
2124 return (error);
2125 }
2126
2127 int
2128 soconnect2(struct socket *so1, struct socket *so2)
2129 {
2130 int error;
2131
2132 CURVNET_SET(so1->so_vnet);
2133 error = so1->so_proto->pr_connect2(so1, so2);
2134 CURVNET_RESTORE();
2135 return (error);
2136 }
2137
2138 int
2139 sodisconnect(struct socket *so)
2140 {
2141 int error;
2142
2143 if ((so->so_state & SS_ISCONNECTED) == 0)
2144 return (ENOTCONN);
2145 if (so->so_state & SS_ISDISCONNECTING)
2146 return (EALREADY);
2147 VNET_SO_ASSERT(so);
2148 error = so->so_proto->pr_disconnect(so);
2149 return (error);
2150 }
2151
2152 int
2153 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
2154 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2155 {
2156 long space;
2157 ssize_t resid;
2158 int clen = 0, error, dontroute;
2159
2160 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
2161 KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
2162 ("sosend_dgram: !PR_ATOMIC"));
2163
2164 if (uio != NULL)
2165 resid = uio->uio_resid;
2166 else
2167 resid = top->m_pkthdr.len;
2168 /*
2169 * In theory resid should be unsigned. However, space must be
2170 * signed, as it might be less than 0 if we over-committed, and we
2171 * must use a signed comparison of space and resid. On the other
2172 * hand, a negative resid causes us to loop sending 0-length
2173 * segments to the protocol.
2174 */
2175 if (resid < 0) {
2176 error = EINVAL;
2177 goto out;
2178 }
2179
2180 dontroute =
2181 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
2182 if (td != NULL)
2183 td->td_ru.ru_msgsnd++;
2184 if (control != NULL)
2185 clen = control->m_len;
2186
2187 SOCKBUF_LOCK(&so->so_snd);
2188 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2189 SOCKBUF_UNLOCK(&so->so_snd);
2190 error = EPIPE;
2191 goto out;
2192 }
2193 if (so->so_error) {
2194 error = so->so_error;
2195 so->so_error = 0;
2196 SOCKBUF_UNLOCK(&so->so_snd);
2197 goto out;
2198 }
2199 if ((so->so_state & SS_ISCONNECTED) == 0) {
2200 /*
2201 * `sendto' and `sendmsg' is allowed on a connection-based
2202 * socket if it supports implied connect. Return ENOTCONN if
2203 * not connected and no address is supplied.
2204 */
2205 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2206 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2207 if (!(resid == 0 && clen != 0)) {
2208 SOCKBUF_UNLOCK(&so->so_snd);
2209 error = ENOTCONN;
2210 goto out;
2211 }
2212 } else if (addr == NULL) {
2213 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2214 error = ENOTCONN;
2215 else
2216 error = EDESTADDRREQ;
2217 SOCKBUF_UNLOCK(&so->so_snd);
2218 goto out;
2219 }
2220 }
2221
2222 /*
2223 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a
2224 * problem and need fixing.
2225 */
2226 space = sbspace(&so->so_snd);
2227 if (flags & MSG_OOB)
2228 space += 1024;
2229 space -= clen;
2230 SOCKBUF_UNLOCK(&so->so_snd);
2231 if (resid > space) {
2232 error = EMSGSIZE;
2233 goto out;
2234 }
2235 if (uio == NULL) {
2236 resid = 0;
2237 if (flags & MSG_EOR)
2238 top->m_flags |= M_EOR;
2239 } else {
2240 /*
2241 * Copy the data from userland into a mbuf chain.
2242 * If no data is to be copied in, a single empty mbuf
2243 * is returned.
2244 */
2245 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
2246 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
2247 if (top == NULL) {
2248 error = EFAULT; /* only possible error */
2249 goto out;
2250 }
2251 space -= resid - uio->uio_resid;
2252 resid = uio->uio_resid;
2253 }
2254 KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
2255 /*
2256 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
2257 * than with.
2258 */
2259 if (dontroute) {
2260 SOCK_LOCK(so);
2261 so->so_options |= SO_DONTROUTE;
2262 SOCK_UNLOCK(so);
2263 }
2264 /*
2265 * XXX all the SBS_CANTSENDMORE checks previously done could be out
2266 * of date. We could have received a reset packet in an interrupt or
2267 * maybe we slept while doing page faults in uiomove() etc. We could
2268 * probably recheck again inside the locking protection here, but
2269 * there are probably other places that this also happens. We must
2270 * rethink this.
2271 */
2272 VNET_SO_ASSERT(so);
2273 error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
2274 /*
2275 * If the user set MSG_EOF, the protocol understands this flag and
2276 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
2277 */
2278 ((flags & MSG_EOF) &&
2279 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2280 (resid <= 0)) ?
2281 PRUS_EOF :
2282 /* If there is more to send set PRUS_MORETOCOME */
2283 (flags & MSG_MORETOCOME) ||
2284 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
2285 top, addr, control, td);
2286 if (dontroute) {
2287 SOCK_LOCK(so);
2288 so->so_options &= ~SO_DONTROUTE;
2289 SOCK_UNLOCK(so);
2290 }
2291 clen = 0;
2292 control = NULL;
2293 top = NULL;
2294 out:
2295 if (top != NULL)
2296 m_freem(top);
2297 if (control != NULL)
2298 m_freem(control);
2299 return (error);
2300 }
2301
2302 /*
2303 * Send on a socket. If send must go all at once and message is larger than
2304 * send buffering, then hard error. Lock against other senders. If must go
2305 * all at once and not enough room now, then inform user that this would
2306 * block and do nothing. Otherwise, if nonblocking, send as much as
2307 * possible. The data to be sent is described by "uio" if nonzero, otherwise
2308 * by the mbuf chain "top" (which must be null if uio is not). Data provided
2309 * in mbuf chain must be small enough to send all at once.
2310 *
2311 * Returns nonzero on error, timeout or signal; callers must check for short
2312 * counts if EINTR/ERESTART are returned. Data and control buffers are freed
2313 * on return.
2314 */
2315 static int
2316 sosend_generic_locked(struct socket *so, struct sockaddr *addr, struct uio *uio,
2317 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2318 {
2319 long space;
2320 ssize_t resid;
2321 int clen = 0, error, dontroute;
2322 int atomic = sosendallatonce(so) || top;
2323 int pr_send_flag;
2324 #ifdef KERN_TLS
2325 struct ktls_session *tls;
2326 int tls_enq_cnt, tls_send_flag;
2327 uint8_t tls_rtype;
2328
2329 tls = NULL;
2330 tls_rtype = TLS_RLTYPE_APP;
2331 #endif
2332
2333 SOCK_IO_SEND_ASSERT_LOCKED(so);
2334
2335 if (uio != NULL)
2336 resid = uio->uio_resid;
2337 else if ((top->m_flags & M_PKTHDR) != 0)
2338 resid = top->m_pkthdr.len;
2339 else
2340 resid = m_length(top, NULL);
2341 /*
2342 * In theory resid should be unsigned. However, space must be
2343 * signed, as it might be less than 0 if we over-committed, and we
2344 * must use a signed comparison of space and resid. On the other
2345 * hand, a negative resid causes us to loop sending 0-length
2346 * segments to the protocol.
2347 *
2348 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
2349 * type sockets since that's an error.
2350 */
2351 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
2352 error = EINVAL;
2353 goto out;
2354 }
2355
2356 dontroute =
2357 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
2358 (so->so_proto->pr_flags & PR_ATOMIC);
2359 if (td != NULL)
2360 td->td_ru.ru_msgsnd++;
2361 if (control != NULL)
2362 clen = control->m_len;
2363
2364 #ifdef KERN_TLS
2365 tls_send_flag = 0;
2366 tls = ktls_hold(so->so_snd.sb_tls_info);
2367 if (tls != NULL) {
2368 if (tls->mode == TCP_TLS_MODE_SW)
2369 tls_send_flag = PRUS_NOTREADY;
2370
2371 if (control != NULL) {
2372 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2373
2374 if (clen >= sizeof(*cm) &&
2375 cm->cmsg_type == TLS_SET_RECORD_TYPE) {
2376 tls_rtype = *((uint8_t *)CMSG_DATA(cm));
2377 clen = 0;
2378 m_freem(control);
2379 control = NULL;
2380 atomic = 1;
2381 }
2382 }
2383
2384 if (resid == 0 && !ktls_permit_empty_frames(tls)) {
2385 error = EINVAL;
2386 goto out;
2387 }
2388 }
2389 #endif
2390
2391 restart:
2392 do {
2393 SOCKBUF_LOCK(&so->so_snd);
2394 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2395 SOCKBUF_UNLOCK(&so->so_snd);
2396 error = EPIPE;
2397 goto out;
2398 }
2399 if (so->so_error) {
2400 error = so->so_error;
2401 so->so_error = 0;
2402 SOCKBUF_UNLOCK(&so->so_snd);
2403 goto out;
2404 }
2405 if ((so->so_state & SS_ISCONNECTED) == 0) {
2406 /*
2407 * `sendto' and `sendmsg' is allowed on a connection-
2408 * based socket if it supports implied connect.
2409 * Return ENOTCONN if not connected and no address is
2410 * supplied.
2411 */
2412 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2413 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2414 if (!(resid == 0 && clen != 0)) {
2415 SOCKBUF_UNLOCK(&so->so_snd);
2416 error = ENOTCONN;
2417 goto out;
2418 }
2419 } else if (addr == NULL) {
2420 SOCKBUF_UNLOCK(&so->so_snd);
2421 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2422 error = ENOTCONN;
2423 else
2424 error = EDESTADDRREQ;
2425 goto out;
2426 }
2427 }
2428 space = sbspace(&so->so_snd);
2429 if (flags & MSG_OOB)
2430 space += 1024;
2431 if ((atomic && resid > so->so_snd.sb_hiwat) ||
2432 clen > so->so_snd.sb_hiwat) {
2433 SOCKBUF_UNLOCK(&so->so_snd);
2434 error = EMSGSIZE;
2435 goto out;
2436 }
2437 if (space < resid + clen &&
2438 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
2439 if ((so->so_state & SS_NBIO) ||
2440 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
2441 SOCKBUF_UNLOCK(&so->so_snd);
2442 error = EWOULDBLOCK;
2443 goto out;
2444 }
2445 error = sbwait(so, SO_SND);
2446 SOCKBUF_UNLOCK(&so->so_snd);
2447 if (error)
2448 goto out;
2449 goto restart;
2450 }
2451 SOCKBUF_UNLOCK(&so->so_snd);
2452 space -= clen;
2453 do {
2454 if (uio == NULL) {
2455 resid = 0;
2456 if (flags & MSG_EOR)
2457 top->m_flags |= M_EOR;
2458 #ifdef KERN_TLS
2459 if (tls != NULL) {
2460 ktls_frame(top, tls, &tls_enq_cnt,
2461 tls_rtype);
2462 tls_rtype = TLS_RLTYPE_APP;
2463 }
2464 #endif
2465 } else {
2466 /*
2467 * Copy the data from userland into a mbuf
2468 * chain. If resid is 0, which can happen
2469 * only if we have control to send, then
2470 * a single empty mbuf is returned. This
2471 * is a workaround to prevent protocol send
2472 * methods to panic.
2473 */
2474 #ifdef KERN_TLS
2475 if (tls != NULL) {
2476 top = m_uiotombuf(uio, M_WAITOK, space,
2477 tls->params.max_frame_len,
2478 M_EXTPG |
2479 ((flags & MSG_EOR) ? M_EOR : 0));
2480 if (top != NULL) {
2481 ktls_frame(top, tls,
2482 &tls_enq_cnt, tls_rtype);
2483 }
2484 tls_rtype = TLS_RLTYPE_APP;
2485 } else
2486 #endif
2487 top = m_uiotombuf(uio, M_WAITOK, space,
2488 (atomic ? max_hdr : 0),
2489 (atomic ? M_PKTHDR : 0) |
2490 ((flags & MSG_EOR) ? M_EOR : 0));
2491 if (top == NULL) {
2492 error = EFAULT; /* only possible error */
2493 goto out;
2494 }
2495 space -= resid - uio->uio_resid;
2496 resid = uio->uio_resid;
2497 }
2498 if (dontroute) {
2499 SOCK_LOCK(so);
2500 so->so_options |= SO_DONTROUTE;
2501 SOCK_UNLOCK(so);
2502 }
2503 /*
2504 * XXX all the SBS_CANTSENDMORE checks previously
2505 * done could be out of date. We could have received
2506 * a reset packet in an interrupt or maybe we slept
2507 * while doing page faults in uiomove() etc. We
2508 * could probably recheck again inside the locking
2509 * protection here, but there are probably other
2510 * places that this also happens. We must rethink
2511 * this.
2512 */
2513 VNET_SO_ASSERT(so);
2514
2515 pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
2516 /*
2517 * If the user set MSG_EOF, the protocol understands
2518 * this flag and nothing left to send then use
2519 * PRU_SEND_EOF instead of PRU_SEND.
2520 */
2521 ((flags & MSG_EOF) &&
2522 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2523 (resid <= 0)) ?
2524 PRUS_EOF :
2525 /* If there is more to send set PRUS_MORETOCOME. */
2526 (flags & MSG_MORETOCOME) ||
2527 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
2528
2529 #ifdef KERN_TLS
2530 pr_send_flag |= tls_send_flag;
2531 #endif
2532
2533 error = so->so_proto->pr_send(so, pr_send_flag, top,
2534 addr, control, td);
2535
2536 if (dontroute) {
2537 SOCK_LOCK(so);
2538 so->so_options &= ~SO_DONTROUTE;
2539 SOCK_UNLOCK(so);
2540 }
2541
2542 #ifdef KERN_TLS
2543 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
2544 if (error != 0) {
2545 m_freem(top);
2546 top = NULL;
2547 } else {
2548 soref(so);
2549 ktls_enqueue(top, so, tls_enq_cnt);
2550 }
2551 }
2552 #endif
2553 clen = 0;
2554 control = NULL;
2555 top = NULL;
2556 if (error)
2557 goto out;
2558 } while (resid && space > 0);
2559 } while (resid);
2560
2561 out:
2562 #ifdef KERN_TLS
2563 if (tls != NULL)
2564 ktls_free(tls);
2565 #endif
2566 if (top != NULL)
2567 m_freem(top);
2568 if (control != NULL)
2569 m_freem(control);
2570 return (error);
2571 }
2572
2573 int
2574 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
2575 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2576 {
2577 int error;
2578
2579 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
2580 if (error)
2581 return (error);
2582 error = sosend_generic_locked(so, addr, uio, top, control, flags, td);
2583 SOCK_IO_SEND_UNLOCK(so);
2584 return (error);
2585 }
2586
2587 /*
2588 * Send to a socket from a kernel thread.
2589 *
2590 * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
2591 * Exception is nfs/bootp_subr.c. It is arguable that the VNET context needs
2592 * to be set at all. This function should just boil down to a static inline
2593 * calling the protocol method.
2594 */
2595 int
2596 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2597 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2598 {
2599 int error;
2600
2601 CURVNET_SET(so->so_vnet);
2602 error = so->so_proto->pr_sosend(so, addr, uio,
2603 top, control, flags, td);
2604 CURVNET_RESTORE();
2605 return (error);
2606 }
2607
2608 /*
2609 * send(2), write(2) or aio_write(2) on a socket.
2610 */
2611 int
2612 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2613 struct mbuf *control, int flags, struct proc *userproc)
2614 {
2615 struct thread *td;
2616 ssize_t len;
2617 int error;
2618
2619 td = uio->uio_td;
2620 len = uio->uio_resid;
2621 CURVNET_SET(so->so_vnet);
2622 error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
2623 td);
2624 CURVNET_RESTORE();
2625 if (error != 0) {
2626 /*
2627 * Clear transient errors for stream protocols if they made
2628 * some progress. Make exclusion for aio(4) that would
2629 * schedule a new write in case of EWOULDBLOCK and clear
2630 * error itself. See soaio_process_job().
2631 */
2632 if (uio->uio_resid != len &&
2633 (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
2634 userproc == NULL &&
2635 (error == ERESTART || error == EINTR ||
2636 error == EWOULDBLOCK))
2637 error = 0;
2638 /* Generation of SIGPIPE can be controlled per socket. */
2639 if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
2640 (flags & MSG_NOSIGNAL) == 0) {
2641 if (userproc != NULL) {
2642 /* aio(4) job */
2643 PROC_LOCK(userproc);
2644 kern_psignal(userproc, SIGPIPE);
2645 PROC_UNLOCK(userproc);
2646 } else {
2647 PROC_LOCK(td->td_proc);
2648 tdsignal(td, SIGPIPE);
2649 PROC_UNLOCK(td->td_proc);
2650 }
2651 }
2652 }
2653 return (error);
2654 }
2655
2656 /*
2657 * The part of soreceive() that implements reading non-inline out-of-band
2658 * data from a socket. For more complete comments, see soreceive(), from
2659 * which this code originated.
2660 *
2661 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
2662 * unable to return an mbuf chain to the caller.
2663 */
2664 static int
2665 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
2666 {
2667 struct protosw *pr = so->so_proto;
2668 struct mbuf *m;
2669 int error;
2670
2671 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
2672 VNET_SO_ASSERT(so);
2673
2674 m = m_get(M_WAITOK, MT_DATA);
2675 error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
2676 if (error)
2677 goto bad;
2678 do {
2679 error = uiomove(mtod(m, void *),
2680 (int) min(uio->uio_resid, m->m_len), uio);
2681 m = m_free(m);
2682 } while (uio->uio_resid && error == 0 && m);
2683 bad:
2684 if (m != NULL)
2685 m_freem(m);
2686 return (error);
2687 }
2688
2689 /*
2690 * Following replacement or removal of the first mbuf on the first mbuf chain
2691 * of a socket buffer, push necessary state changes back into the socket
2692 * buffer so that other consumers see the values consistently. 'nextrecord'
2693 * is the callers locally stored value of the original value of
2694 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
2695 * NOTE: 'nextrecord' may be NULL.
2696 */
2697 static __inline void
2698 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
2699 {
2700
2701 SOCKBUF_LOCK_ASSERT(sb);
2702 /*
2703 * First, update for the new value of nextrecord. If necessary, make
2704 * it the first record.
2705 */
2706 if (sb->sb_mb != NULL)
2707 sb->sb_mb->m_nextpkt = nextrecord;
2708 else
2709 sb->sb_mb = nextrecord;
2710
2711 /*
2712 * Now update any dependent socket buffer fields to reflect the new
2713 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the
2714 * addition of a second clause that takes care of the case where
2715 * sb_mb has been updated, but remains the last record.
2716 */
2717 if (sb->sb_mb == NULL) {
2718 sb->sb_mbtail = NULL;
2719 sb->sb_lastrecord = NULL;
2720 } else if (sb->sb_mb->m_nextpkt == NULL)
2721 sb->sb_lastrecord = sb->sb_mb;
2722 }
2723
2724 /*
2725 * Implement receive operations on a socket. We depend on the way that
2726 * records are added to the sockbuf by sbappend. In particular, each record
2727 * (mbufs linked through m_next) must begin with an address if the protocol
2728 * so specifies, followed by an optional mbuf or mbufs containing ancillary
2729 * data, and then zero or more mbufs of data. In order to allow parallelism
2730 * between network receive and copying to user space, as well as avoid
2731 * sleeping with a mutex held, we release the socket buffer mutex during the
2732 * user space copy. Although the sockbuf is locked, new data may still be
2733 * appended, and thus we must maintain consistency of the sockbuf during that
2734 * time.
2735 *
2736 * The caller may receive the data as a single mbuf chain by supplying an
2737 * mbuf **mp0 for use in returning the chain. The uio is then used only for
2738 * the count in uio_resid.
2739 */
2740 static int
2741 soreceive_generic_locked(struct socket *so, struct sockaddr **psa,
2742 struct uio *uio, struct mbuf **mp, struct mbuf **controlp, int *flagsp)
2743 {
2744 struct mbuf *m;
2745 int flags, error, offset;
2746 ssize_t len;
2747 struct protosw *pr = so->so_proto;
2748 struct mbuf *nextrecord;
2749 int moff, type = 0;
2750 ssize_t orig_resid = uio->uio_resid;
2751 bool report_real_len = false;
2752
2753 SOCK_IO_RECV_ASSERT_LOCKED(so);
2754
2755 error = 0;
2756 if (flagsp != NULL) {
2757 report_real_len = *flagsp & MSG_TRUNC;
2758 *flagsp &= ~MSG_TRUNC;
2759 flags = *flagsp &~ MSG_EOR;
2760 } else
2761 flags = 0;
2762
2763 restart:
2764 SOCKBUF_LOCK(&so->so_rcv);
2765 m = so->so_rcv.sb_mb;
2766 /*
2767 * If we have less data than requested, block awaiting more (subject
2768 * to any timeout) if:
2769 * 1. the current count is less than the low water mark, or
2770 * 2. MSG_DONTWAIT is not set
2771 */
2772 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
2773 sbavail(&so->so_rcv) < uio->uio_resid) &&
2774 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
2775 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
2776 KASSERT(m != NULL || !sbavail(&so->so_rcv),
2777 ("receive: m == %p sbavail == %u",
2778 m, sbavail(&so->so_rcv)));
2779 if (so->so_error || so->so_rerror) {
2780 if (m != NULL)
2781 goto dontblock;
2782 if (so->so_error)
2783 error = so->so_error;
2784 else
2785 error = so->so_rerror;
2786 if ((flags & MSG_PEEK) == 0) {
2787 if (so->so_error)
2788 so->so_error = 0;
2789 else
2790 so->so_rerror = 0;
2791 }
2792 SOCKBUF_UNLOCK(&so->so_rcv);
2793 goto release;
2794 }
2795 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2796 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2797 if (m != NULL)
2798 goto dontblock;
2799 #ifdef KERN_TLS
2800 else if (so->so_rcv.sb_tlsdcc == 0 &&
2801 so->so_rcv.sb_tlscc == 0) {
2802 #else
2803 else {
2804 #endif
2805 SOCKBUF_UNLOCK(&so->so_rcv);
2806 goto release;
2807 }
2808 }
2809 for (; m != NULL; m = m->m_next)
2810 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
2811 m = so->so_rcv.sb_mb;
2812 goto dontblock;
2813 }
2814 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2815 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2816 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2817 SOCKBUF_UNLOCK(&so->so_rcv);
2818 error = ENOTCONN;
2819 goto release;
2820 }
2821 if (uio->uio_resid == 0 && !report_real_len) {
2822 SOCKBUF_UNLOCK(&so->so_rcv);
2823 goto release;
2824 }
2825 if ((so->so_state & SS_NBIO) ||
2826 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2827 SOCKBUF_UNLOCK(&so->so_rcv);
2828 error = EWOULDBLOCK;
2829 goto release;
2830 }
2831 SBLASTRECORDCHK(&so->so_rcv);
2832 SBLASTMBUFCHK(&so->so_rcv);
2833 error = sbwait(so, SO_RCV);
2834 SOCKBUF_UNLOCK(&so->so_rcv);
2835 if (error)
2836 goto release;
2837 goto restart;
2838 }
2839 dontblock:
2840 /*
2841 * From this point onward, we maintain 'nextrecord' as a cache of the
2842 * pointer to the next record in the socket buffer. We must keep the
2843 * various socket buffer pointers and local stack versions of the
2844 * pointers in sync, pushing out modifications before dropping the
2845 * socket buffer mutex, and re-reading them when picking it up.
2846 *
2847 * Otherwise, we will race with the network stack appending new data
2848 * or records onto the socket buffer by using inconsistent/stale
2849 * versions of the field, possibly resulting in socket buffer
2850 * corruption.
2851 *
2852 * By holding the high-level sblock(), we prevent simultaneous
2853 * readers from pulling off the front of the socket buffer.
2854 */
2855 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2856 if (uio->uio_td)
2857 uio->uio_td->td_ru.ru_msgrcv++;
2858 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2859 SBLASTRECORDCHK(&so->so_rcv);
2860 SBLASTMBUFCHK(&so->so_rcv);
2861 nextrecord = m->m_nextpkt;
2862 if (pr->pr_flags & PR_ADDR) {
2863 KASSERT(m->m_type == MT_SONAME,
2864 ("m->m_type == %d", m->m_type));
2865 orig_resid = 0;
2866 if (psa != NULL)
2867 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
2868 M_NOWAIT);
2869 if (flags & MSG_PEEK) {
2870 m = m->m_next;
2871 } else {
2872 sbfree(&so->so_rcv, m);
2873 so->so_rcv.sb_mb = m_free(m);
2874 m = so->so_rcv.sb_mb;
2875 sockbuf_pushsync(&so->so_rcv, nextrecord);
2876 }
2877 }
2878
2879 /*
2880 * Process one or more MT_CONTROL mbufs present before any data mbufs
2881 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
2882 * just copy the data; if !MSG_PEEK, we call into the protocol to
2883 * perform externalization (or freeing if controlp == NULL).
2884 */
2885 if (m != NULL && m->m_type == MT_CONTROL) {
2886 struct mbuf *cm = NULL, *cmn;
2887 struct mbuf **cme = &cm;
2888 #ifdef KERN_TLS
2889 struct cmsghdr *cmsg;
2890 struct tls_get_record tgr;
2891
2892 /*
2893 * For MSG_TLSAPPDATA, check for an alert record.
2894 * If found, return ENXIO without removing
2895 * it from the receive queue. This allows a subsequent
2896 * call without MSG_TLSAPPDATA to receive it.
2897 * Note that, for TLS, there should only be a single
2898 * control mbuf with the TLS_GET_RECORD message in it.
2899 */
2900 if (flags & MSG_TLSAPPDATA) {
2901 cmsg = mtod(m, struct cmsghdr *);
2902 if (cmsg->cmsg_type == TLS_GET_RECORD &&
2903 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2904 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2905 if (__predict_false(tgr.tls_type ==
2906 TLS_RLTYPE_ALERT)) {
2907 SOCKBUF_UNLOCK(&so->so_rcv);
2908 error = ENXIO;
2909 goto release;
2910 }
2911 }
2912 }
2913 #endif
2914
2915 do {
2916 if (flags & MSG_PEEK) {
2917 if (controlp != NULL) {
2918 *controlp = m_copym(m, 0, m->m_len,
2919 M_NOWAIT);
2920 controlp = &(*controlp)->m_next;
2921 }
2922 m = m->m_next;
2923 } else {
2924 sbfree(&so->so_rcv, m);
2925 so->so_rcv.sb_mb = m->m_next;
2926 m->m_next = NULL;
2927 *cme = m;
2928 cme = &(*cme)->m_next;
2929 m = so->so_rcv.sb_mb;
2930 }
2931 } while (m != NULL && m->m_type == MT_CONTROL);
2932 if ((flags & MSG_PEEK) == 0)
2933 sockbuf_pushsync(&so->so_rcv, nextrecord);
2934 while (cm != NULL) {
2935 cmn = cm->m_next;
2936 cm->m_next = NULL;
2937 if (controlp != NULL)
2938 *controlp = cm;
2939 else
2940 m_freem(cm);
2941 if (controlp != NULL) {
2942 while (*controlp != NULL)
2943 controlp = &(*controlp)->m_next;
2944 }
2945 cm = cmn;
2946 }
2947 if (m != NULL)
2948 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2949 else
2950 nextrecord = so->so_rcv.sb_mb;
2951 orig_resid = 0;
2952 }
2953 if (m != NULL) {
2954 if ((flags & MSG_PEEK) == 0) {
2955 KASSERT(m->m_nextpkt == nextrecord,
2956 ("soreceive: post-control, nextrecord !sync"));
2957 if (nextrecord == NULL) {
2958 KASSERT(so->so_rcv.sb_mb == m,
2959 ("soreceive: post-control, sb_mb!=m"));
2960 KASSERT(so->so_rcv.sb_lastrecord == m,
2961 ("soreceive: post-control, lastrecord!=m"));
2962 }
2963 }
2964 type = m->m_type;
2965 if (type == MT_OOBDATA)
2966 flags |= MSG_OOB;
2967 } else {
2968 if ((flags & MSG_PEEK) == 0) {
2969 KASSERT(so->so_rcv.sb_mb == nextrecord,
2970 ("soreceive: sb_mb != nextrecord"));
2971 if (so->so_rcv.sb_mb == NULL) {
2972 KASSERT(so->so_rcv.sb_lastrecord == NULL,
2973 ("soreceive: sb_lastercord != NULL"));
2974 }
2975 }
2976 }
2977 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2978 SBLASTRECORDCHK(&so->so_rcv);
2979 SBLASTMBUFCHK(&so->so_rcv);
2980
2981 /*
2982 * Now continue to read any data mbufs off of the head of the socket
2983 * buffer until the read request is satisfied. Note that 'type' is
2984 * used to store the type of any mbuf reads that have happened so far
2985 * such that soreceive() can stop reading if the type changes, which
2986 * causes soreceive() to return only one of regular data and inline
2987 * out-of-band data in a single socket receive operation.
2988 */
2989 moff = 0;
2990 offset = 0;
2991 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2992 && error == 0) {
2993 /*
2994 * If the type of mbuf has changed since the last mbuf
2995 * examined ('type'), end the receive operation.
2996 */
2997 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2998 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2999 if (type != m->m_type)
3000 break;
3001 } else if (type == MT_OOBDATA)
3002 break;
3003 else
3004 KASSERT(m->m_type == MT_DATA,
3005 ("m->m_type == %d", m->m_type));
3006 so->so_rcv.sb_state &= ~SBS_RCVATMARK;
3007 len = uio->uio_resid;
3008 if (so->so_oobmark && len > so->so_oobmark - offset)
3009 len = so->so_oobmark - offset;
3010 if (len > m->m_len - moff)
3011 len = m->m_len - moff;
3012 /*
3013 * If mp is set, just pass back the mbufs. Otherwise copy
3014 * them out via the uio, then free. Sockbuf must be
3015 * consistent here (points to current mbuf, it points to next
3016 * record) when we drop priority; we must note any additions
3017 * to the sockbuf when we block interrupts again.
3018 */
3019 if (mp == NULL) {
3020 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3021 SBLASTRECORDCHK(&so->so_rcv);
3022 SBLASTMBUFCHK(&so->so_rcv);
3023 SOCKBUF_UNLOCK(&so->so_rcv);
3024 if ((m->m_flags & M_EXTPG) != 0)
3025 error = m_unmapped_uiomove(m, moff, uio,
3026 (int)len);
3027 else
3028 error = uiomove(mtod(m, char *) + moff,
3029 (int)len, uio);
3030 SOCKBUF_LOCK(&so->so_rcv);
3031 if (error) {
3032 /*
3033 * The MT_SONAME mbuf has already been removed
3034 * from the record, so it is necessary to
3035 * remove the data mbufs, if any, to preserve
3036 * the invariant in the case of PR_ADDR that
3037 * requires MT_SONAME mbufs at the head of
3038 * each record.
3039 */
3040 if (pr->pr_flags & PR_ATOMIC &&
3041 ((flags & MSG_PEEK) == 0))
3042 (void)sbdroprecord_locked(&so->so_rcv);
3043 SOCKBUF_UNLOCK(&so->so_rcv);
3044 goto release;
3045 }
3046 } else
3047 uio->uio_resid -= len;
3048 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3049 if (len == m->m_len - moff) {
3050 if (m->m_flags & M_EOR)
3051 flags |= MSG_EOR;
3052 if (flags & MSG_PEEK) {
3053 m = m->m_next;
3054 moff = 0;
3055 } else {
3056 nextrecord = m->m_nextpkt;
3057 sbfree(&so->so_rcv, m);
3058 if (mp != NULL) {
3059 m->m_nextpkt = NULL;
3060 *mp = m;
3061 mp = &m->m_next;
3062 so->so_rcv.sb_mb = m = m->m_next;
3063 *mp = NULL;
3064 } else {
3065 so->so_rcv.sb_mb = m_free(m);
3066 m = so->so_rcv.sb_mb;
3067 }
3068 sockbuf_pushsync(&so->so_rcv, nextrecord);
3069 SBLASTRECORDCHK(&so->so_rcv);
3070 SBLASTMBUFCHK(&so->so_rcv);
3071 }
3072 } else {
3073 if (flags & MSG_PEEK)
3074 moff += len;
3075 else {
3076 if (mp != NULL) {
3077 if (flags & MSG_DONTWAIT) {
3078 *mp = m_copym(m, 0, len,
3079 M_NOWAIT);
3080 if (*mp == NULL) {
3081 /*
3082 * m_copym() couldn't
3083 * allocate an mbuf.
3084 * Adjust uio_resid back
3085 * (it was adjusted
3086 * down by len bytes,
3087 * which we didn't end
3088 * up "copying" over).
3089 */
3090 uio->uio_resid += len;
3091 break;
3092 }
3093 } else {
3094 SOCKBUF_UNLOCK(&so->so_rcv);
3095 *mp = m_copym(m, 0, len,
3096 M_WAITOK);
3097 SOCKBUF_LOCK(&so->so_rcv);
3098 }
3099 }
3100 sbcut_locked(&so->so_rcv, len);
3101 }
3102 }
3103 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3104 if (so->so_oobmark) {
3105 if ((flags & MSG_PEEK) == 0) {
3106 so->so_oobmark -= len;
3107 if (so->so_oobmark == 0) {
3108 so->so_rcv.sb_state |= SBS_RCVATMARK;
3109 break;
3110 }
3111 } else {
3112 offset += len;
3113 if (offset == so->so_oobmark)
3114 break;
3115 }
3116 }
3117 if (flags & MSG_EOR)
3118 break;
3119 /*
3120 * If the MSG_WAITALL flag is set (for non-atomic socket), we
3121 * must not quit until "uio->uio_resid == 0" or an error
3122 * termination. If a signal/timeout occurs, return with a
3123 * short count but without error. Keep sockbuf locked
3124 * against other readers.
3125 */
3126 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
3127 !sosendallatonce(so) && nextrecord == NULL) {
3128 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3129 if (so->so_error || so->so_rerror ||
3130 so->so_rcv.sb_state & SBS_CANTRCVMORE)
3131 break;
3132 /*
3133 * Notify the protocol that some data has been
3134 * drained before blocking.
3135 */
3136 if (pr->pr_flags & PR_WANTRCVD) {
3137 SOCKBUF_UNLOCK(&so->so_rcv);
3138 VNET_SO_ASSERT(so);
3139 pr->pr_rcvd(so, flags);
3140 SOCKBUF_LOCK(&so->so_rcv);
3141 if (__predict_false(so->so_rcv.sb_mb == NULL &&
3142 (so->so_error || so->so_rerror ||
3143 so->so_rcv.sb_state & SBS_CANTRCVMORE)))
3144 break;
3145 }
3146 SBLASTRECORDCHK(&so->so_rcv);
3147 SBLASTMBUFCHK(&so->so_rcv);
3148 /*
3149 * We could receive some data while was notifying
3150 * the protocol. Skip blocking in this case.
3151 */
3152 if (so->so_rcv.sb_mb == NULL) {
3153 error = sbwait(so, SO_RCV);
3154 if (error) {
3155 SOCKBUF_UNLOCK(&so->so_rcv);
3156 goto release;
3157 }
3158 }
3159 m = so->so_rcv.sb_mb;
3160 if (m != NULL)
3161 nextrecord = m->m_nextpkt;
3162 }
3163 }
3164
3165 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3166 if (m != NULL && pr->pr_flags & PR_ATOMIC) {
3167 if (report_real_len)
3168 uio->uio_resid -= m_length(m, NULL) - moff;
3169 flags |= MSG_TRUNC;
3170 if ((flags & MSG_PEEK) == 0)
3171 (void) sbdroprecord_locked(&so->so_rcv);
3172 }
3173 if ((flags & MSG_PEEK) == 0) {
3174 if (m == NULL) {
3175 /*
3176 * First part is an inline SB_EMPTY_FIXUP(). Second
3177 * part makes sure sb_lastrecord is up-to-date if
3178 * there is still data in the socket buffer.
3179 */
3180 so->so_rcv.sb_mb = nextrecord;
3181 if (so->so_rcv.sb_mb == NULL) {
3182 so->so_rcv.sb_mbtail = NULL;
3183 so->so_rcv.sb_lastrecord = NULL;
3184 } else if (nextrecord->m_nextpkt == NULL)
3185 so->so_rcv.sb_lastrecord = nextrecord;
3186 }
3187 SBLASTRECORDCHK(&so->so_rcv);
3188 SBLASTMBUFCHK(&so->so_rcv);
3189 /*
3190 * If soreceive() is being done from the socket callback,
3191 * then don't need to generate ACK to peer to update window,
3192 * since ACK will be generated on return to TCP.
3193 */
3194 if (!(flags & MSG_SOCALLBCK) &&
3195 (pr->pr_flags & PR_WANTRCVD)) {
3196 SOCKBUF_UNLOCK(&so->so_rcv);
3197 VNET_SO_ASSERT(so);
3198 pr->pr_rcvd(so, flags);
3199 SOCKBUF_LOCK(&so->so_rcv);
3200 }
3201 }
3202 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3203 if (orig_resid == uio->uio_resid && orig_resid &&
3204 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
3205 SOCKBUF_UNLOCK(&so->so_rcv);
3206 goto restart;
3207 }
3208 SOCKBUF_UNLOCK(&so->so_rcv);
3209
3210 if (flagsp != NULL)
3211 *flagsp |= flags;
3212 release:
3213 return (error);
3214 }
3215
3216 int
3217 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
3218 struct mbuf **mp, struct mbuf **controlp, int *flagsp)
3219 {
3220 int error, flags;
3221
3222 if (psa != NULL)
3223 *psa = NULL;
3224 if (controlp != NULL)
3225 *controlp = NULL;
3226 if (flagsp != NULL) {
3227 flags = *flagsp;
3228 if ((flags & MSG_OOB) != 0)
3229 return (soreceive_rcvoob(so, uio, flags));
3230 } else {
3231 flags = 0;
3232 }
3233 if (mp != NULL)
3234 *mp = NULL;
3235
3236 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3237 if (error)
3238 return (error);
3239 error = soreceive_generic_locked(so, psa, uio, mp, controlp, flagsp);
3240 SOCK_IO_RECV_UNLOCK(so);
3241 return (error);
3242 }
3243
3244 /*
3245 * Optimized version of soreceive() for stream (TCP) sockets.
3246 */
3247 static int
3248 soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
3249 struct sockaddr **psa, struct uio *uio, struct mbuf **mp0,
3250 struct mbuf **controlp, int flags)
3251 {
3252 int len = 0, error = 0, oresid;
3253 struct mbuf *m, *n = NULL;
3254
3255 SOCK_IO_RECV_ASSERT_LOCKED(so);
3256
3257 /* Easy one, no space to copyout anything. */
3258 if (uio->uio_resid == 0)
3259 return (EINVAL);
3260 oresid = uio->uio_resid;
3261
3262 SOCKBUF_LOCK(sb);
3263 /* We will never ever get anything unless we are or were connected. */
3264 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
3265 error = ENOTCONN;
3266 goto out;
3267 }
3268
3269 restart:
3270 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3271
3272 /* Abort if socket has reported problems. */
3273 if (so->so_error) {
3274 if (sbavail(sb) > 0)
3275 goto deliver;
3276 if (oresid > uio->uio_resid)
3277 goto out;
3278 error = so->so_error;
3279 if (!(flags & MSG_PEEK))
3280 so->so_error = 0;
3281 goto out;
3282 }
3283
3284 /* Door is closed. Deliver what is left, if any. */
3285 if (sb->sb_state & SBS_CANTRCVMORE) {
3286 if (sbavail(sb) > 0)
3287 goto deliver;
3288 else
3289 goto out;
3290 }
3291
3292 /* Socket buffer is empty and we shall not block. */
3293 if (sbavail(sb) == 0 &&
3294 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
3295 error = EAGAIN;
3296 goto out;
3297 }
3298
3299 /* Socket buffer got some data that we shall deliver now. */
3300 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
3301 ((so->so_state & SS_NBIO) ||
3302 (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
3303 sbavail(sb) >= sb->sb_lowat ||
3304 sbavail(sb) >= uio->uio_resid ||
3305 sbavail(sb) >= sb->sb_hiwat) ) {
3306 goto deliver;
3307 }
3308
3309 /* On MSG_WAITALL we must wait until all data or error arrives. */
3310 if ((flags & MSG_WAITALL) &&
3311 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
3312 goto deliver;
3313
3314 /*
3315 * Wait and block until (more) data comes in.
3316 * NB: Drops the sockbuf lock during wait.
3317 */
3318 error = sbwait(so, SO_RCV);
3319 if (error)
3320 goto out;
3321 goto restart;
3322
3323 deliver:
3324 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3325 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
3326 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
3327
3328 /* Statistics. */
3329 if (uio->uio_td)
3330 uio->uio_td->td_ru.ru_msgrcv++;
3331
3332 /* Fill uio until full or current end of socket buffer is reached. */
3333 len = min(uio->uio_resid, sbavail(sb));
3334 if (mp0 != NULL) {
3335 /* Dequeue as many mbufs as possible. */
3336 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
3337 if (*mp0 == NULL)
3338 *mp0 = sb->sb_mb;
3339 else
3340 m_cat(*mp0, sb->sb_mb);
3341 for (m = sb->sb_mb;
3342 m != NULL && m->m_len <= len;
3343 m = m->m_next) {
3344 KASSERT(!(m->m_flags & M_NOTAVAIL),
3345 ("%s: m %p not available", __func__, m));
3346 len -= m->m_len;
3347 uio->uio_resid -= m->m_len;
3348 sbfree(sb, m);
3349 n = m;
3350 }
3351 n->m_next = NULL;
3352 sb->sb_mb = m;
3353 sb->sb_lastrecord = sb->sb_mb;
3354 if (sb->sb_mb == NULL)
3355 SB_EMPTY_FIXUP(sb);
3356 }
3357 /* Copy the remainder. */
3358 if (len > 0) {
3359 KASSERT(sb->sb_mb != NULL,
3360 ("%s: len > 0 && sb->sb_mb empty", __func__));
3361
3362 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
3363 if (m == NULL)
3364 len = 0; /* Don't flush data from sockbuf. */
3365 else
3366 uio->uio_resid -= len;
3367 if (*mp0 != NULL)
3368 m_cat(*mp0, m);
3369 else
3370 *mp0 = m;
3371 if (*mp0 == NULL) {
3372 error = ENOBUFS;
3373 goto out;
3374 }
3375 }
3376 } else {
3377 /* NB: Must unlock socket buffer as uiomove may sleep. */
3378 SOCKBUF_UNLOCK(sb);
3379 error = m_mbuftouio(uio, sb->sb_mb, len);
3380 SOCKBUF_LOCK(sb);
3381 if (error)
3382 goto out;
3383 }
3384 SBLASTRECORDCHK(sb);
3385 SBLASTMBUFCHK(sb);
3386
3387 /*
3388 * Remove the delivered data from the socket buffer unless we
3389 * were only peeking.
3390 */
3391 if (!(flags & MSG_PEEK)) {
3392 if (len > 0)
3393 sbdrop_locked(sb, len);
3394
3395 /* Notify protocol that we drained some data. */
3396 if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
3397 (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
3398 !(flags & MSG_SOCALLBCK))) {
3399 SOCKBUF_UNLOCK(sb);
3400 VNET_SO_ASSERT(so);
3401 so->so_proto->pr_rcvd(so, flags);
3402 SOCKBUF_LOCK(sb);
3403 }
3404 }
3405
3406 /*
3407 * For MSG_WAITALL we may have to loop again and wait for
3408 * more data to come in.
3409 */
3410 if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
3411 goto restart;
3412 out:
3413 SBLASTRECORDCHK(sb);
3414 SBLASTMBUFCHK(sb);
3415 SOCKBUF_UNLOCK(sb);
3416 return (error);
3417 }
3418
3419 int
3420 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
3421 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3422 {
3423 struct sockbuf *sb;
3424 int error, flags;
3425
3426 sb = &so->so_rcv;
3427
3428 /* We only do stream sockets. */
3429 if (so->so_type != SOCK_STREAM)
3430 return (EINVAL);
3431 if (psa != NULL)
3432 *psa = NULL;
3433 if (flagsp != NULL)
3434 flags = *flagsp & ~MSG_EOR;
3435 else
3436 flags = 0;
3437 if (controlp != NULL)
3438 *controlp = NULL;
3439 if (flags & MSG_OOB)
3440 return (soreceive_rcvoob(so, uio, flags));
3441 if (mp0 != NULL)
3442 *mp0 = NULL;
3443
3444 #ifdef KERN_TLS
3445 /*
3446 * KTLS store TLS records as records with a control message to
3447 * describe the framing.
3448 *
3449 * We check once here before acquiring locks to optimize the
3450 * common case.
3451 */
3452 if (sb->sb_tls_info != NULL)
3453 return (soreceive_generic(so, psa, uio, mp0, controlp,
3454 flagsp));
3455 #endif
3456
3457 /*
3458 * Prevent other threads from reading from the socket. This lock may be
3459 * dropped in order to sleep waiting for data to arrive.
3460 */
3461 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3462 if (error)
3463 return (error);
3464 #ifdef KERN_TLS
3465 if (__predict_false(sb->sb_tls_info != NULL)) {
3466 SOCK_IO_RECV_UNLOCK(so);
3467 return (soreceive_generic(so, psa, uio, mp0, controlp,
3468 flagsp));
3469 }
3470 #endif
3471 error = soreceive_stream_locked(so, sb, psa, uio, mp0, controlp, flags);
3472 SOCK_IO_RECV_UNLOCK(so);
3473 return (error);
3474 }
3475
3476 /*
3477 * Optimized version of soreceive() for simple datagram cases from userspace.
3478 * Unlike in the stream case, we're able to drop a datagram if copyout()
3479 * fails, and because we handle datagrams atomically, we don't need to use a
3480 * sleep lock to prevent I/O interlacing.
3481 */
3482 int
3483 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
3484 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3485 {
3486 struct mbuf *m, *m2;
3487 int flags, error;
3488 ssize_t len;
3489 struct protosw *pr = so->so_proto;
3490 struct mbuf *nextrecord;
3491
3492 if (psa != NULL)
3493 *psa = NULL;
3494 if (controlp != NULL)
3495 *controlp = NULL;
3496 if (flagsp != NULL)
3497 flags = *flagsp &~ MSG_EOR;
3498 else
3499 flags = 0;
3500
3501 /*
3502 * For any complicated cases, fall back to the full
3503 * soreceive_generic().
3504 */
3505 if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
3506 return (soreceive_generic(so, psa, uio, mp0, controlp,
3507 flagsp));
3508
3509 /*
3510 * Enforce restrictions on use.
3511 */
3512 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
3513 ("soreceive_dgram: wantrcvd"));
3514 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
3515 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
3516 ("soreceive_dgram: SBS_RCVATMARK"));
3517 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
3518 ("soreceive_dgram: P_CONNREQUIRED"));
3519
3520 /*
3521 * Loop blocking while waiting for a datagram.
3522 */
3523 SOCKBUF_LOCK(&so->so_rcv);
3524 while ((m = so->so_rcv.sb_mb) == NULL) {
3525 KASSERT(sbavail(&so->so_rcv) == 0,
3526 ("soreceive_dgram: sb_mb NULL but sbavail %u",
3527 sbavail(&so->so_rcv)));
3528 if (so->so_error) {
3529 error = so->so_error;
3530 so->so_error = 0;
3531 SOCKBUF_UNLOCK(&so->so_rcv);
3532 return (error);
3533 }
3534 if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
3535 uio->uio_resid == 0) {
3536 SOCKBUF_UNLOCK(&so->so_rcv);
3537 return (0);
3538 }
3539 if ((so->so_state & SS_NBIO) ||
3540 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
3541 SOCKBUF_UNLOCK(&so->so_rcv);
3542 return (EWOULDBLOCK);
3543 }
3544 SBLASTRECORDCHK(&so->so_rcv);
3545 SBLASTMBUFCHK(&so->so_rcv);
3546 error = sbwait(so, SO_RCV);
3547 if (error) {
3548 SOCKBUF_UNLOCK(&so->so_rcv);
3549 return (error);
3550 }
3551 }
3552 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3553
3554 if (uio->uio_td)
3555 uio->uio_td->td_ru.ru_msgrcv++;
3556 SBLASTRECORDCHK(&so->so_rcv);
3557 SBLASTMBUFCHK(&so->so_rcv);
3558 nextrecord = m->m_nextpkt;
3559 if (nextrecord == NULL) {
3560 KASSERT(so->so_rcv.sb_lastrecord == m,
3561 ("soreceive_dgram: lastrecord != m"));
3562 }
3563
3564 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
3565 ("soreceive_dgram: m_nextpkt != nextrecord"));
3566
3567 /*
3568 * Pull 'm' and its chain off the front of the packet queue.
3569 */
3570 so->so_rcv.sb_mb = NULL;
3571 sockbuf_pushsync(&so->so_rcv, nextrecord);
3572
3573 /*
3574 * Walk 'm's chain and free that many bytes from the socket buffer.
3575 */
3576 for (m2 = m; m2 != NULL; m2 = m2->m_next)
3577 sbfree(&so->so_rcv, m2);
3578
3579 /*
3580 * Do a few last checks before we let go of the lock.
3581 */
3582 SBLASTRECORDCHK(&so->so_rcv);
3583 SBLASTMBUFCHK(&so->so_rcv);
3584 SOCKBUF_UNLOCK(&so->so_rcv);
3585
3586 if (pr->pr_flags & PR_ADDR) {
3587 KASSERT(m->m_type == MT_SONAME,
3588 ("m->m_type == %d", m->m_type));
3589 if (psa != NULL)
3590 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
3591 M_WAITOK);
3592 m = m_free(m);
3593 }
3594 KASSERT(m, ("%s: no data or control after soname", __func__));
3595
3596 /*
3597 * Packet to copyout() is now in 'm' and it is disconnected from the
3598 * queue.
3599 *
3600 * Process one or more MT_CONTROL mbufs present before any data mbufs
3601 * in the first mbuf chain on the socket buffer. We call into the
3602 * protocol to perform externalization (or freeing if controlp ==
3603 * NULL). In some cases there can be only MT_CONTROL mbufs without
3604 * MT_DATA mbufs.
3605 */
3606 if (m->m_type == MT_CONTROL) {
3607 struct mbuf *cm = NULL, *cmn;
3608 struct mbuf **cme = &cm;
3609
3610 do {
3611 m2 = m->m_next;
3612 m->m_next = NULL;
3613 *cme = m;
3614 cme = &(*cme)->m_next;
3615 m = m2;
3616 } while (m != NULL && m->m_type == MT_CONTROL);
3617 while (cm != NULL) {
3618 cmn = cm->m_next;
3619 cm->m_next = NULL;
3620 if (controlp != NULL)
3621 *controlp = cm;
3622 else
3623 m_freem(cm);
3624 if (controlp != NULL) {
3625 while (*controlp != NULL)
3626 controlp = &(*controlp)->m_next;
3627 }
3628 cm = cmn;
3629 }
3630 }
3631 KASSERT(m == NULL || m->m_type == MT_DATA,
3632 ("soreceive_dgram: !data"));
3633 while (m != NULL && uio->uio_resid > 0) {
3634 len = uio->uio_resid;
3635 if (len > m->m_len)
3636 len = m->m_len;
3637 error = uiomove(mtod(m, char *), (int)len, uio);
3638 if (error) {
3639 m_freem(m);
3640 return (error);
3641 }
3642 if (len == m->m_len)
3643 m = m_free(m);
3644 else {
3645 m->m_data += len;
3646 m->m_len -= len;
3647 }
3648 }
3649 if (m != NULL) {
3650 flags |= MSG_TRUNC;
3651 m_freem(m);
3652 }
3653 if (flagsp != NULL)
3654 *flagsp |= flags;
3655 return (0);
3656 }
3657
3658 int
3659 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
3660 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3661 {
3662 int error;
3663
3664 CURVNET_SET(so->so_vnet);
3665 error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
3666 CURVNET_RESTORE();
3667 return (error);
3668 }
3669
3670 int
3671 soshutdown(struct socket *so, enum shutdown_how how)
3672 {
3673 int error;
3674
3675 CURVNET_SET(so->so_vnet);
3676 error = so->so_proto->pr_shutdown(so, how);
3677 CURVNET_RESTORE();
3678
3679 return (error);
3680 }
3681
3682 /*
3683 * Used by several pr_shutdown implementations that use generic socket buffers.
3684 */
3685 void
3686 sorflush(struct socket *so)
3687 {
3688 int error;
3689
3690 VNET_SO_ASSERT(so);
3691
3692 /*
3693 * Dislodge threads currently blocked in receive and wait to acquire
3694 * a lock against other simultaneous readers before clearing the
3695 * socket buffer. Don't let our acquire be interrupted by a signal
3696 * despite any existing socket disposition on interruptable waiting.
3697 *
3698 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive
3699 * methods that read the top of the socket buffer without acquisition
3700 * of the socket buffer mutex, assuming that top of the buffer
3701 * exclusively belongs to the read(2) syscall. This is handy when
3702 * performing MSG_PEEK.
3703 */
3704 socantrcvmore(so);
3705
3706 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
3707 if (error != 0) {
3708 KASSERT(SOLISTENING(so),
3709 ("%s: soiolock(%p) failed", __func__, so));
3710 return;
3711 }
3712
3713 sbrelease(so, SO_RCV);
3714 SOCK_IO_RECV_UNLOCK(so);
3715
3716 }
3717
3718 int
3719 sosetfib(struct socket *so, int fibnum)
3720 {
3721 if (fibnum < 0 || fibnum >= rt_numfibs)
3722 return (EINVAL);
3723
3724 SOCK_LOCK(so);
3725 so->so_fibnum = fibnum;
3726 SOCK_UNLOCK(so);
3727
3728 return (0);
3729 }
3730
3731 #ifdef SOCKET_HHOOK
3732 /*
3733 * Wrapper for Socket established helper hook.
3734 * Parameters: socket, context of the hook point, hook id.
3735 */
3736 static inline int
3737 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
3738 {
3739 struct socket_hhook_data hhook_data = {
3740 .so = so,
3741 .hctx = hctx,
3742 .m = NULL,
3743 .status = 0
3744 };
3745
3746 CURVNET_SET(so->so_vnet);
3747 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
3748 CURVNET_RESTORE();
3749
3750 /* Ugly but needed, since hhooks return void for now */
3751 return (hhook_data.status);
3752 }
3753 #endif
3754
3755 /*
3756 * Perhaps this routine, and sooptcopyout(), below, ought to come in an
3757 * additional variant to handle the case where the option value needs to be
3758 * some kind of integer, but not a specific size. In addition to their use
3759 * here, these functions are also called by the protocol-level pr_ctloutput()
3760 * routines.
3761 */
3762 int
3763 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
3764 {
3765 size_t valsize;
3766
3767 /*
3768 * If the user gives us more than we wanted, we ignore it, but if we
3769 * don't get the minimum length the caller wants, we return EINVAL.
3770 * On success, sopt->sopt_valsize is set to however much we actually
3771 * retrieved.
3772 */
3773 if ((valsize = sopt->sopt_valsize) < minlen)
3774 return EINVAL;
3775 if (valsize > len)
3776 sopt->sopt_valsize = valsize = len;
3777
3778 if (sopt->sopt_td != NULL)
3779 return (copyin(sopt->sopt_val, buf, valsize));
3780
3781 bcopy(sopt->sopt_val, buf, valsize);
3782 return (0);
3783 }
3784
3785 /*
3786 * Kernel version of setsockopt(2).
3787 *
3788 * XXX: optlen is size_t, not socklen_t
3789 */
3790 int
3791 so_setsockopt(struct socket *so, int level, int optname, void *optval,
3792 size_t optlen)
3793 {
3794 struct sockopt sopt;
3795
3796 sopt.sopt_level = level;
3797 sopt.sopt_name = optname;
3798 sopt.sopt_dir = SOPT_SET;
3799 sopt.sopt_val = optval;
3800 sopt.sopt_valsize = optlen;
3801 sopt.sopt_td = NULL;
3802 return (sosetopt(so, &sopt));
3803 }
3804
3805 int
3806 sosetopt(struct socket *so, struct sockopt *sopt)
3807 {
3808 int error, optval;
3809 struct linger l;
3810 struct timeval tv;
3811 sbintime_t val, *valp;
3812 uint32_t val32;
3813 #ifdef MAC
3814 struct mac extmac;
3815 #endif
3816
3817 CURVNET_SET(so->so_vnet);
3818 error = 0;
3819 if (sopt->sopt_level != SOL_SOCKET) {
3820 error = so->so_proto->pr_ctloutput(so, sopt);
3821 } else {
3822 switch (sopt->sopt_name) {
3823 case SO_ACCEPTFILTER:
3824 error = accept_filt_setopt(so, sopt);
3825 if (error)
3826 goto bad;
3827 break;
3828
3829 case SO_LINGER:
3830 error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3831 if (error)
3832 goto bad;
3833 if (l.l_linger < 0 ||
3834 l.l_linger > USHRT_MAX ||
3835 l.l_linger > (INT_MAX / hz)) {
3836 error = EDOM;
3837 goto bad;
3838 }
3839 SOCK_LOCK(so);
3840 so->so_linger = l.l_linger;
3841 if (l.l_onoff)
3842 so->so_options |= SO_LINGER;
3843 else
3844 so->so_options &= ~SO_LINGER;
3845 SOCK_UNLOCK(so);
3846 break;
3847
3848 case SO_DEBUG:
3849 case SO_KEEPALIVE:
3850 case SO_DONTROUTE:
3851 case SO_USELOOPBACK:
3852 case SO_BROADCAST:
3853 case SO_REUSEADDR:
3854 case SO_REUSEPORT:
3855 case SO_REUSEPORT_LB:
3856 case SO_OOBINLINE:
3857 case SO_TIMESTAMP:
3858 case SO_BINTIME:
3859 case SO_NOSIGPIPE:
3860 case SO_NO_DDP:
3861 case SO_NO_OFFLOAD:
3862 case SO_RERROR:
3863 error = sooptcopyin(sopt, &optval, sizeof optval,
3864 sizeof optval);
3865 if (error)
3866 goto bad;
3867 SOCK_LOCK(so);
3868 if (optval)
3869 so->so_options |= sopt->sopt_name;
3870 else
3871 so->so_options &= ~sopt->sopt_name;
3872 SOCK_UNLOCK(so);
3873 break;
3874
3875 case SO_SETFIB:
3876 error = so->so_proto->pr_ctloutput(so, sopt);
3877 break;
3878
3879 case SO_USER_COOKIE:
3880 error = sooptcopyin(sopt, &val32, sizeof val32,
3881 sizeof val32);
3882 if (error)
3883 goto bad;
3884 so->so_user_cookie = val32;
3885 break;
3886
3887 case SO_SNDBUF:
3888 case SO_RCVBUF:
3889 case SO_SNDLOWAT:
3890 case SO_RCVLOWAT:
3891 error = so->so_proto->pr_setsbopt(so, sopt);
3892 if (error)
3893 goto bad;
3894 break;
3895
3896 case SO_SNDTIMEO:
3897 case SO_RCVTIMEO:
3898 #ifdef COMPAT_FREEBSD32
3899 if (SV_CURPROC_FLAG(SV_ILP32)) {
3900 struct timeval32 tv32;
3901
3902 error = sooptcopyin(sopt, &tv32, sizeof tv32,
3903 sizeof tv32);
3904 CP(tv32, tv, tv_sec);
3905 CP(tv32, tv, tv_usec);
3906 } else
3907 #endif
3908 error = sooptcopyin(sopt, &tv, sizeof tv,
3909 sizeof tv);
3910 if (error)
3911 goto bad;
3912 if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3913 tv.tv_usec >= 1000000) {
3914 error = EDOM;
3915 goto bad;
3916 }
3917 if (tv.tv_sec > INT32_MAX)
3918 val = SBT_MAX;
3919 else
3920 val = tvtosbt(tv);
3921 SOCK_LOCK(so);
3922 valp = sopt->sopt_name == SO_SNDTIMEO ?
3923 (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3924 &so->so_snd.sb_timeo) :
3925 (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3926 &so->so_rcv.sb_timeo);
3927 *valp = val;
3928 SOCK_UNLOCK(so);
3929 break;
3930
3931 case SO_LABEL:
3932 #ifdef MAC
3933 error = sooptcopyin(sopt, &extmac, sizeof extmac,
3934 sizeof extmac);
3935 if (error)
3936 goto bad;
3937 error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3938 so, &extmac);
3939 #else
3940 error = EOPNOTSUPP;
3941 #endif
3942 break;
3943
3944 case SO_TS_CLOCK:
3945 error = sooptcopyin(sopt, &optval, sizeof optval,
3946 sizeof optval);
3947 if (error)
3948 goto bad;
3949 if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3950 error = EINVAL;
3951 goto bad;
3952 }
3953 so->so_ts_clock = optval;
3954 break;
3955
3956 case SO_MAX_PACING_RATE:
3957 error = sooptcopyin(sopt, &val32, sizeof(val32),
3958 sizeof(val32));
3959 if (error)
3960 goto bad;
3961 so->so_max_pacing_rate = val32;
3962 break;
3963
3964 case SO_SPLICE: {
3965 struct splice splice;
3966
3967 #ifdef COMPAT_FREEBSD32
3968 if (SV_CURPROC_FLAG(SV_ILP32)) {
3969 struct splice32 splice32;
3970
3971 error = sooptcopyin(sopt, &splice32,
3972 sizeof(splice32), sizeof(splice32));
3973 if (error == 0) {
3974 splice.sp_fd = splice32.sp_fd;
3975 splice.sp_max = splice32.sp_max;
3976 CP(splice32.sp_idle, splice.sp_idle,
3977 tv_sec);
3978 CP(splice32.sp_idle, splice.sp_idle,
3979 tv_usec);
3980 }
3981 } else
3982 #endif
3983 {
3984 error = sooptcopyin(sopt, &splice,
3985 sizeof(splice), sizeof(splice));
3986 }
3987 if (error)
3988 goto bad;
3989 #ifdef KTRACE
3990 if (KTRPOINT(curthread, KTR_STRUCT))
3991 ktrsplice(&splice);
3992 #endif
3993
3994 error = splice_init();
3995 if (error != 0)
3996 goto bad;
3997
3998 if (splice.sp_fd >= 0) {
3999 struct file *fp;
4000 struct socket *so2;
4001
4002 if (!cap_rights_contains(sopt->sopt_rights,
4003 &cap_recv_rights)) {
4004 error = ENOTCAPABLE;
4005 goto bad;
4006 }
4007 error = getsock(sopt->sopt_td, splice.sp_fd,
4008 &cap_send_rights, &fp);
4009 if (error != 0)
4010 goto bad;
4011 so2 = fp->f_data;
4012
4013 error = so_splice(so, so2, &splice);
4014 fdrop(fp, sopt->sopt_td);
4015 } else {
4016 error = so_unsplice(so, false);
4017 }
4018 break;
4019 }
4020 default:
4021 #ifdef SOCKET_HHOOK
4022 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4023 error = hhook_run_socket(so, sopt,
4024 HHOOK_SOCKET_OPT);
4025 else
4026 #endif
4027 error = ENOPROTOOPT;
4028 break;
4029 }
4030 if (error == 0)
4031 (void)so->so_proto->pr_ctloutput(so, sopt);
4032 }
4033 bad:
4034 CURVNET_RESTORE();
4035 return (error);
4036 }
4037
4038 /*
4039 * Helper routine for getsockopt.
4040 */
4041 int
4042 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
4043 {
4044 int error;
4045 size_t valsize;
4046
4047 error = 0;
4048
4049 /*
4050 * Documented get behavior is that we always return a value, possibly
4051 * truncated to fit in the user's buffer. Traditional behavior is
4052 * that we always tell the user precisely how much we copied, rather
4053 * than something useful like the total amount we had available for
4054 * her. Note that this interface is not idempotent; the entire
4055 * answer must be generated ahead of time.
4056 */
4057 valsize = min(len, sopt->sopt_valsize);
4058 sopt->sopt_valsize = valsize;
4059 if (sopt->sopt_val != NULL) {
4060 if (sopt->sopt_td != NULL)
4061 error = copyout(buf, sopt->sopt_val, valsize);
4062 else
4063 bcopy(buf, sopt->sopt_val, valsize);
4064 }
4065 return (error);
4066 }
4067
4068 int
4069 sogetopt(struct socket *so, struct sockopt *sopt)
4070 {
4071 int error, optval;
4072 struct linger l;
4073 struct timeval tv;
4074 #ifdef MAC
4075 struct mac extmac;
4076 #endif
4077
4078 CURVNET_SET(so->so_vnet);
4079 error = 0;
4080 if (sopt->sopt_level != SOL_SOCKET) {
4081 error = so->so_proto->pr_ctloutput(so, sopt);
4082 CURVNET_RESTORE();
4083 return (error);
4084 } else {
4085 switch (sopt->sopt_name) {
4086 case SO_ACCEPTFILTER:
4087 error = accept_filt_getopt(so, sopt);
4088 break;
4089
4090 case SO_LINGER:
4091 SOCK_LOCK(so);
4092 l.l_onoff = so->so_options & SO_LINGER;
4093 l.l_linger = so->so_linger;
4094 SOCK_UNLOCK(so);
4095 error = sooptcopyout(sopt, &l, sizeof l);
4096 break;
4097
4098 case SO_USELOOPBACK:
4099 case SO_DONTROUTE:
4100 case SO_DEBUG:
4101 case SO_KEEPALIVE:
4102 case SO_REUSEADDR:
4103 case SO_REUSEPORT:
4104 case SO_REUSEPORT_LB:
4105 case SO_BROADCAST:
4106 case SO_OOBINLINE:
4107 case SO_ACCEPTCONN:
4108 case SO_TIMESTAMP:
4109 case SO_BINTIME:
4110 case SO_NOSIGPIPE:
4111 case SO_NO_DDP:
4112 case SO_NO_OFFLOAD:
4113 case SO_RERROR:
4114 optval = so->so_options & sopt->sopt_name;
4115 integer:
4116 error = sooptcopyout(sopt, &optval, sizeof optval);
4117 break;
4118
4119 case SO_FIB:
4120 SOCK_LOCK(so);
4121 optval = so->so_fibnum;
4122 SOCK_UNLOCK(so);
4123 goto integer;
4124
4125 case SO_DOMAIN:
4126 optval = so->so_proto->pr_domain->dom_family;
4127 goto integer;
4128
4129 case SO_TYPE:
4130 optval = so->so_type;
4131 goto integer;
4132
4133 case SO_PROTOCOL:
4134 optval = so->so_proto->pr_protocol;
4135 goto integer;
4136
4137 case SO_ERROR:
4138 SOCK_LOCK(so);
4139 if (so->so_error) {
4140 optval = so->so_error;
4141 so->so_error = 0;
4142 } else {
4143 optval = so->so_rerror;
4144 so->so_rerror = 0;
4145 }
4146 SOCK_UNLOCK(so);
4147 goto integer;
4148
4149 case SO_SNDBUF:
4150 SOCK_LOCK(so);
4151 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
4152 so->so_snd.sb_hiwat;
4153 SOCK_UNLOCK(so);
4154 goto integer;
4155
4156 case SO_RCVBUF:
4157 SOCK_LOCK(so);
4158 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
4159 so->so_rcv.sb_hiwat;
4160 SOCK_UNLOCK(so);
4161 goto integer;
4162
4163 case SO_SNDLOWAT:
4164 SOCK_LOCK(so);
4165 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
4166 so->so_snd.sb_lowat;
4167 SOCK_UNLOCK(so);
4168 goto integer;
4169
4170 case SO_RCVLOWAT:
4171 SOCK_LOCK(so);
4172 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
4173 so->so_rcv.sb_lowat;
4174 SOCK_UNLOCK(so);
4175 goto integer;
4176
4177 case SO_SNDTIMEO:
4178 case SO_RCVTIMEO:
4179 SOCK_LOCK(so);
4180 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
4181 (SOLISTENING(so) ? so->sol_sbsnd_timeo :
4182 so->so_snd.sb_timeo) :
4183 (SOLISTENING(so) ? so->sol_sbrcv_timeo :
4184 so->so_rcv.sb_timeo));
4185 SOCK_UNLOCK(so);
4186 #ifdef COMPAT_FREEBSD32
4187 if (SV_CURPROC_FLAG(SV_ILP32)) {
4188 struct timeval32 tv32;
4189
4190 CP(tv, tv32, tv_sec);
4191 CP(tv, tv32, tv_usec);
4192 error = sooptcopyout(sopt, &tv32, sizeof tv32);
4193 } else
4194 #endif
4195 error = sooptcopyout(sopt, &tv, sizeof tv);
4196 break;
4197
4198 case SO_LABEL:
4199 #ifdef MAC
4200 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4201 sizeof(extmac));
4202 if (error)
4203 goto bad;
4204 error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
4205 so, &extmac);
4206 if (error)
4207 goto bad;
4208 /* Don't copy out extmac, it is unchanged. */
4209 #else
4210 error = EOPNOTSUPP;
4211 #endif
4212 break;
4213
4214 case SO_PEERLABEL:
4215 #ifdef MAC
4216 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4217 sizeof(extmac));
4218 if (error)
4219 goto bad;
4220 error = mac_getsockopt_peerlabel(
4221 sopt->sopt_td->td_ucred, so, &extmac);
4222 if (error)
4223 goto bad;
4224 /* Don't copy out extmac, it is unchanged. */
4225 #else
4226 error = EOPNOTSUPP;
4227 #endif
4228 break;
4229
4230 case SO_LISTENQLIMIT:
4231 SOCK_LOCK(so);
4232 optval = SOLISTENING(so) ? so->sol_qlimit : 0;
4233 SOCK_UNLOCK(so);
4234 goto integer;
4235
4236 case SO_LISTENQLEN:
4237 SOCK_LOCK(so);
4238 optval = SOLISTENING(so) ? so->sol_qlen : 0;
4239 SOCK_UNLOCK(so);
4240 goto integer;
4241
4242 case SO_LISTENINCQLEN:
4243 SOCK_LOCK(so);
4244 optval = SOLISTENING(so) ? so->sol_incqlen : 0;
4245 SOCK_UNLOCK(so);
4246 goto integer;
4247
4248 case SO_TS_CLOCK:
4249 optval = so->so_ts_clock;
4250 goto integer;
4251
4252 case SO_MAX_PACING_RATE:
4253 optval = so->so_max_pacing_rate;
4254 goto integer;
4255
4256 case SO_SPLICE: {
4257 off_t n;
4258
4259 /*
4260 * Acquire the I/O lock to serialize with
4261 * so_splice_xfer(). This is not required for
4262 * correctness, but makes testing simpler: once a byte
4263 * has been transmitted to the sink and observed (e.g.,
4264 * by reading from the socket to which the sink is
4265 * connected), a subsequent getsockopt(SO_SPLICE) will
4266 * return an up-to-date value.
4267 */
4268 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT);
4269 if (error != 0)
4270 goto bad;
4271 SOCK_LOCK(so);
4272 if (SOLISTENING(so)) {
4273 n = 0;
4274 } else {
4275 n = so->so_splice_sent;
4276 }
4277 SOCK_UNLOCK(so);
4278 SOCK_IO_RECV_UNLOCK(so);
4279 error = sooptcopyout(sopt, &n, sizeof(n));
4280 break;
4281 }
4282
4283 default:
4284 #ifdef SOCKET_HHOOK
4285 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4286 error = hhook_run_socket(so, sopt,
4287 HHOOK_SOCKET_OPT);
4288 else
4289 #endif
4290 error = ENOPROTOOPT;
4291 break;
4292 }
4293 }
4294 bad:
4295 CURVNET_RESTORE();
4296 return (error);
4297 }
4298
4299 int
4300 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
4301 {
4302 struct mbuf *m, *m_prev;
4303 int sopt_size = sopt->sopt_valsize;
4304
4305 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4306 if (m == NULL)
4307 return ENOBUFS;
4308 if (sopt_size > MLEN) {
4309 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
4310 if ((m->m_flags & M_EXT) == 0) {
4311 m_free(m);
4312 return ENOBUFS;
4313 }
4314 m->m_len = min(MCLBYTES, sopt_size);
4315 } else {
4316 m->m_len = min(MLEN, sopt_size);
4317 }
4318 sopt_size -= m->m_len;
4319 *mp = m;
4320 m_prev = m;
4321
4322 while (sopt_size) {
4323 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4324 if (m == NULL) {
4325 m_freem(*mp);
4326 return ENOBUFS;
4327 }
4328 if (sopt_size > MLEN) {
4329 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
4330 M_NOWAIT);
4331 if ((m->m_flags & M_EXT) == 0) {
4332 m_freem(m);
4333 m_freem(*mp);
4334 return ENOBUFS;
4335 }
4336 m->m_len = min(MCLBYTES, sopt_size);
4337 } else {
4338 m->m_len = min(MLEN, sopt_size);
4339 }
4340 sopt_size -= m->m_len;
4341 m_prev->m_next = m;
4342 m_prev = m;
4343 }
4344 return (0);
4345 }
4346
4347 int
4348 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
4349 {
4350 struct mbuf *m0 = m;
4351
4352 if (sopt->sopt_val == NULL)
4353 return (0);
4354 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4355 if (sopt->sopt_td != NULL) {
4356 int error;
4357
4358 error = copyin(sopt->sopt_val, mtod(m, char *),
4359 m->m_len);
4360 if (error != 0) {
4361 m_freem(m0);
4362 return(error);
4363 }
4364 } else
4365 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
4366 sopt->sopt_valsize -= m->m_len;
4367 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4368 m = m->m_next;
4369 }
4370 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
4371 panic("ip6_sooptmcopyin");
4372 return (0);
4373 }
4374
4375 int
4376 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
4377 {
4378 struct mbuf *m0 = m;
4379 size_t valsize = 0;
4380
4381 if (sopt->sopt_val == NULL)
4382 return (0);
4383 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4384 if (sopt->sopt_td != NULL) {
4385 int error;
4386
4387 error = copyout(mtod(m, char *), sopt->sopt_val,
4388 m->m_len);
4389 if (error != 0) {
4390 m_freem(m0);
4391 return(error);
4392 }
4393 } else
4394 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
4395 sopt->sopt_valsize -= m->m_len;
4396 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4397 valsize += m->m_len;
4398 m = m->m_next;
4399 }
4400 if (m != NULL) {
4401 /* enough soopt buffer should be given from user-land */
4402 m_freem(m0);
4403 return(EINVAL);
4404 }
4405 sopt->sopt_valsize = valsize;
4406 return (0);
4407 }
4408
4409 /*
4410 * sohasoutofband(): protocol notifies socket layer of the arrival of new
4411 * out-of-band data, which will then notify socket consumers.
4412 */
4413 void
4414 sohasoutofband(struct socket *so)
4415 {
4416
4417 if (so->so_sigio != NULL)
4418 pgsigio(&so->so_sigio, SIGURG, 0);
4419 selwakeuppri(&so->so_rdsel, PSOCK);
4420 }
4421
4422 int
4423 sopoll_generic(struct socket *so, int events, struct thread *td)
4424 {
4425 int revents;
4426
4427 SOCK_LOCK(so);
4428 if (SOLISTENING(so)) {
4429 if (!(events & (POLLIN | POLLRDNORM)))
4430 revents = 0;
4431 else if (!TAILQ_EMPTY(&so->sol_comp))
4432 revents = events & (POLLIN | POLLRDNORM);
4433 else if ((events & POLLINIGNEOF) == 0 && so->so_error)
4434 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
4435 else {
4436 selrecord(td, &so->so_rdsel);
4437 revents = 0;
4438 }
4439 } else {
4440 revents = 0;
4441 SOCK_SENDBUF_LOCK(so);
4442 SOCK_RECVBUF_LOCK(so);
4443 if (events & (POLLIN | POLLRDNORM))
4444 if (soreadabledata(so) && !isspliced(so))
4445 revents |= events & (POLLIN | POLLRDNORM);
4446 if (events & (POLLOUT | POLLWRNORM))
4447 if (sowriteable(so) && !issplicedback(so))
4448 revents |= events & (POLLOUT | POLLWRNORM);
4449 if (events & (POLLPRI | POLLRDBAND))
4450 if (so->so_oobmark ||
4451 (so->so_rcv.sb_state & SBS_RCVATMARK))
4452 revents |= events & (POLLPRI | POLLRDBAND);
4453 if ((events & POLLINIGNEOF) == 0) {
4454 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4455 revents |= events & (POLLIN | POLLRDNORM);
4456 if (so->so_snd.sb_state & SBS_CANTSENDMORE)
4457 revents |= POLLHUP;
4458 }
4459 }
4460 if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
4461 revents |= events & POLLRDHUP;
4462 if (revents == 0) {
4463 if (events &
4464 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
4465 selrecord(td, &so->so_rdsel);
4466 so->so_rcv.sb_flags |= SB_SEL;
4467 }
4468 if (events & (POLLOUT | POLLWRNORM)) {
4469 selrecord(td, &so->so_wrsel);
4470 so->so_snd.sb_flags |= SB_SEL;
4471 }
4472 }
4473 SOCK_RECVBUF_UNLOCK(so);
4474 SOCK_SENDBUF_UNLOCK(so);
4475 }
4476 SOCK_UNLOCK(so);
4477 return (revents);
4478 }
4479
4480 int
4481 sokqfilter_generic(struct socket *so, struct knote *kn)
4482 {
4483 struct sockbuf *sb;
4484 sb_which which;
4485 struct knlist *knl;
4486
4487 switch (kn->kn_filter) {
4488 case EVFILT_READ:
4489 kn->kn_fop = &soread_filtops;
4490 knl = &so->so_rdsel.si_note;
4491 sb = &so->so_rcv;
4492 which = SO_RCV;
4493 break;
4494 case EVFILT_WRITE:
4495 kn->kn_fop = &sowrite_filtops;
4496 knl = &so->so_wrsel.si_note;
4497 sb = &so->so_snd;
4498 which = SO_SND;
4499 break;
4500 case EVFILT_EMPTY:
4501 kn->kn_fop = &soempty_filtops;
4502 knl = &so->so_wrsel.si_note;
4503 sb = &so->so_snd;
4504 which = SO_SND;
4505 break;
4506 default:
4507 return (EINVAL);
4508 }
4509
4510 SOCK_LOCK(so);
4511 if (SOLISTENING(so)) {
4512 knlist_add(knl, kn, 1);
4513 } else {
4514 SOCK_BUF_LOCK(so, which);
4515 knlist_add(knl, kn, 1);
4516 sb->sb_flags |= SB_KNOTE;
4517 SOCK_BUF_UNLOCK(so, which);
4518 }
4519 SOCK_UNLOCK(so);
4520 return (0);
4521 }
4522
4523 static void
4524 filt_sordetach(struct knote *kn)
4525 {
4526 struct socket *so = kn->kn_fp->f_data;
4527
4528 so_rdknl_lock(so);
4529 knlist_remove(&so->so_rdsel.si_note, kn, 1);
4530 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
4531 so->so_rcv.sb_flags &= ~SB_KNOTE;
4532 so_rdknl_unlock(so);
4533 }
4534
4535 /*ARGSUSED*/
4536 static int
4537 filt_soread(struct knote *kn, long hint)
4538 {
4539 struct socket *so;
4540
4541 so = kn->kn_fp->f_data;
4542
4543 if (SOLISTENING(so)) {
4544 SOCK_LOCK_ASSERT(so);
4545 kn->kn_data = so->sol_qlen;
4546 if (so->so_error) {
4547 kn->kn_flags |= EV_EOF;
4548 kn->kn_fflags = so->so_error;
4549 return (1);
4550 }
4551 return (!TAILQ_EMPTY(&so->sol_comp));
4552 }
4553
4554 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
4555 return (0);
4556
4557 SOCK_RECVBUF_LOCK_ASSERT(so);
4558
4559 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
4560 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4561 kn->kn_flags |= EV_EOF;
4562 kn->kn_fflags = so->so_error;
4563 return (1);
4564 } else if (so->so_error || so->so_rerror)
4565 return (1);
4566
4567 if (kn->kn_sfflags & NOTE_LOWAT) {
4568 if (kn->kn_data >= kn->kn_sdata)
4569 return (1);
4570 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
4571 return (1);
4572
4573 #ifdef SOCKET_HHOOK
4574 /* This hook returning non-zero indicates an event, not error */
4575 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
4576 #else
4577 return (0);
4578 #endif
4579 }
4580
4581 static void
4582 filt_sowdetach(struct knote *kn)
4583 {
4584 struct socket *so = kn->kn_fp->f_data;
4585
4586 so_wrknl_lock(so);
4587 knlist_remove(&so->so_wrsel.si_note, kn, 1);
4588 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
4589 so->so_snd.sb_flags &= ~SB_KNOTE;
4590 so_wrknl_unlock(so);
4591 }
4592
4593 /*ARGSUSED*/
4594 static int
4595 filt_sowrite(struct knote *kn, long hint)
4596 {
4597 struct socket *so;
4598
4599 so = kn->kn_fp->f_data;
4600
4601 if (SOLISTENING(so))
4602 return (0);
4603
4604 SOCK_SENDBUF_LOCK_ASSERT(so);
4605 kn->kn_data = sbspace(&so->so_snd);
4606
4607 #ifdef SOCKET_HHOOK
4608 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
4609 #endif
4610
4611 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
4612 kn->kn_flags |= EV_EOF;
4613 kn->kn_fflags = so->so_error;
4614 return (1);
4615 } else if (so->so_error) /* temporary udp error */
4616 return (1);
4617 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
4618 (so->so_proto->pr_flags & PR_CONNREQUIRED))
4619 return (0);
4620 else if (kn->kn_sfflags & NOTE_LOWAT)
4621 return (kn->kn_data >= kn->kn_sdata);
4622 else
4623 return (kn->kn_data >= so->so_snd.sb_lowat);
4624 }
4625
4626 static int
4627 filt_soempty(struct knote *kn, long hint)
4628 {
4629 struct socket *so;
4630
4631 so = kn->kn_fp->f_data;
4632
4633 if (SOLISTENING(so))
4634 return (1);
4635
4636 SOCK_SENDBUF_LOCK_ASSERT(so);
4637 kn->kn_data = sbused(&so->so_snd);
4638
4639 if (kn->kn_data == 0)
4640 return (1);
4641 else
4642 return (0);
4643 }
4644
4645 int
4646 socheckuid(struct socket *so, uid_t uid)
4647 {
4648
4649 if (so == NULL)
4650 return (EPERM);
4651 if (so->so_cred->cr_uid != uid)
4652 return (EPERM);
4653 return (0);
4654 }
4655
4656 /*
4657 * These functions are used by protocols to notify the socket layer (and its
4658 * consumers) of state changes in the sockets driven by protocol-side events.
4659 */
4660
4661 /*
4662 * Procedures to manipulate state flags of socket and do appropriate wakeups.
4663 *
4664 * Normal sequence from the active (originating) side is that
4665 * soisconnecting() is called during processing of connect() call, resulting
4666 * in an eventual call to soisconnected() if/when the connection is
4667 * established. When the connection is torn down soisdisconnecting() is
4668 * called during processing of disconnect() call, and soisdisconnected() is
4669 * called when the connection to the peer is totally severed. The semantics
4670 * of these routines are such that connectionless protocols can call
4671 * soisconnected() and soisdisconnected() only, bypassing the in-progress
4672 * calls when setting up a ``connection'' takes no time.
4673 *
4674 * From the passive side, a socket is created with two queues of sockets:
4675 * so_incomp for connections in progress and so_comp for connections already
4676 * made and awaiting user acceptance. As a protocol is preparing incoming
4677 * connections, it creates a socket structure queued on so_incomp by calling
4678 * sonewconn(). When the connection is established, soisconnected() is
4679 * called, and transfers the socket structure to so_comp, making it available
4680 * to accept().
4681 *
4682 * If a socket is closed with sockets on either so_incomp or so_comp, these
4683 * sockets are dropped.
4684 *
4685 * If higher-level protocols are implemented in the kernel, the wakeups done
4686 * here will sometimes cause software-interrupt process scheduling.
4687 */
4688 void
4689 soisconnecting(struct socket *so)
4690 {
4691
4692 SOCK_LOCK(so);
4693 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
4694 so->so_state |= SS_ISCONNECTING;
4695 SOCK_UNLOCK(so);
4696 }
4697
4698 void
4699 soisconnected(struct socket *so)
4700 {
4701 bool last __diagused;
4702
4703 SOCK_LOCK(so);
4704 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING);
4705 so->so_state |= SS_ISCONNECTED;
4706
4707 if (so->so_qstate == SQ_INCOMP) {
4708 struct socket *head = so->so_listen;
4709 int ret;
4710
4711 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
4712 /*
4713 * Promoting a socket from incomplete queue to complete, we
4714 * need to go through reverse order of locking. We first do
4715 * trylock, and if that doesn't succeed, we go the hard way
4716 * leaving a reference and rechecking consistency after proper
4717 * locking.
4718 */
4719 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
4720 soref(head);
4721 SOCK_UNLOCK(so);
4722 SOLISTEN_LOCK(head);
4723 SOCK_LOCK(so);
4724 if (__predict_false(head != so->so_listen)) {
4725 /*
4726 * The socket went off the listen queue,
4727 * should be lost race to close(2) of sol.
4728 * The socket is about to soabort().
4729 */
4730 SOCK_UNLOCK(so);
4731 sorele_locked(head);
4732 return;
4733 }
4734 last = refcount_release(&head->so_count);
4735 KASSERT(!last, ("%s: released last reference for %p",
4736 __func__, head));
4737 }
4738 again:
4739 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
4740 TAILQ_REMOVE(&head->sol_incomp, so, so_list);
4741 head->sol_incqlen--;
4742 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
4743 head->sol_qlen++;
4744 so->so_qstate = SQ_COMP;
4745 SOCK_UNLOCK(so);
4746 solisten_wakeup(head); /* unlocks */
4747 } else {
4748 SOCK_RECVBUF_LOCK(so);
4749 soupcall_set(so, SO_RCV,
4750 head->sol_accept_filter->accf_callback,
4751 head->sol_accept_filter_arg);
4752 so->so_options &= ~SO_ACCEPTFILTER;
4753 ret = head->sol_accept_filter->accf_callback(so,
4754 head->sol_accept_filter_arg, M_NOWAIT);
4755 if (ret == SU_ISCONNECTED) {
4756 soupcall_clear(so, SO_RCV);
4757 SOCK_RECVBUF_UNLOCK(so);
4758 goto again;
4759 }
4760 SOCK_RECVBUF_UNLOCK(so);
4761 SOCK_UNLOCK(so);
4762 SOLISTEN_UNLOCK(head);
4763 }
4764 return;
4765 }
4766 SOCK_UNLOCK(so);
4767 wakeup(&so->so_timeo);
4768 sorwakeup(so);
4769 sowwakeup(so);
4770 }
4771
4772 void
4773 soisdisconnecting(struct socket *so)
4774 {
4775
4776 SOCK_LOCK(so);
4777 so->so_state &= ~SS_ISCONNECTING;
4778 so->so_state |= SS_ISDISCONNECTING;
4779
4780 if (!SOLISTENING(so)) {
4781 SOCK_RECVBUF_LOCK(so);
4782 socantrcvmore_locked(so);
4783 SOCK_SENDBUF_LOCK(so);
4784 socantsendmore_locked(so);
4785 }
4786 SOCK_UNLOCK(so);
4787 wakeup(&so->so_timeo);
4788 }
4789
4790 void
4791 soisdisconnected(struct socket *so)
4792 {
4793
4794 SOCK_LOCK(so);
4795
4796 /*
4797 * There is at least one reader of so_state that does not
4798 * acquire socket lock, namely soreceive_generic(). Ensure
4799 * that it never sees all flags that track connection status
4800 * cleared, by ordering the update with a barrier semantic of
4801 * our release thread fence.
4802 */
4803 so->so_state |= SS_ISDISCONNECTED;
4804 atomic_thread_fence_rel();
4805 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4806
4807 if (!SOLISTENING(so)) {
4808 SOCK_UNLOCK(so);
4809 SOCK_RECVBUF_LOCK(so);
4810 socantrcvmore_locked(so);
4811 SOCK_SENDBUF_LOCK(so);
4812 sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4813 socantsendmore_locked(so);
4814 } else
4815 SOCK_UNLOCK(so);
4816 wakeup(&so->so_timeo);
4817 }
4818
4819 int
4820 soiolock(struct socket *so, struct sx *sx, int flags)
4821 {
4822 int error;
4823
4824 KASSERT((flags & SBL_VALID) == flags,
4825 ("soiolock: invalid flags %#x", flags));
4826
4827 if ((flags & SBL_WAIT) != 0) {
4828 if ((flags & SBL_NOINTR) != 0) {
4829 sx_xlock(sx);
4830 } else {
4831 error = sx_xlock_sig(sx);
4832 if (error != 0)
4833 return (error);
4834 }
4835 } else if (!sx_try_xlock(sx)) {
4836 return (EWOULDBLOCK);
4837 }
4838
4839 if (__predict_false(SOLISTENING(so))) {
4840 sx_xunlock(sx);
4841 return (ENOTCONN);
4842 }
4843 return (0);
4844 }
4845
4846 void
4847 soiounlock(struct sx *sx)
4848 {
4849 sx_xunlock(sx);
4850 }
4851
4852 /*
4853 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4854 */
4855 struct sockaddr *
4856 sodupsockaddr(const struct sockaddr *sa, int mflags)
4857 {
4858 struct sockaddr *sa2;
4859
4860 sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4861 if (sa2)
4862 bcopy(sa, sa2, sa->sa_len);
4863 return sa2;
4864 }
4865
4866 /*
4867 * Register per-socket destructor.
4868 */
4869 void
4870 sodtor_set(struct socket *so, so_dtor_t *func)
4871 {
4872
4873 SOCK_LOCK_ASSERT(so);
4874 so->so_dtor = func;
4875 }
4876
4877 /*
4878 * Register per-socket buffer upcalls.
4879 */
4880 void
4881 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4882 {
4883 struct sockbuf *sb;
4884
4885 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4886
4887 switch (which) {
4888 case SO_RCV:
4889 sb = &so->so_rcv;
4890 break;
4891 case SO_SND:
4892 sb = &so->so_snd;
4893 break;
4894 }
4895 SOCK_BUF_LOCK_ASSERT(so, which);
4896 sb->sb_upcall = func;
4897 sb->sb_upcallarg = arg;
4898 sb->sb_flags |= SB_UPCALL;
4899 }
4900
4901 void
4902 soupcall_clear(struct socket *so, sb_which which)
4903 {
4904 struct sockbuf *sb;
4905
4906 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4907
4908 switch (which) {
4909 case SO_RCV:
4910 sb = &so->so_rcv;
4911 break;
4912 case SO_SND:
4913 sb = &so->so_snd;
4914 break;
4915 }
4916 SOCK_BUF_LOCK_ASSERT(so, which);
4917 KASSERT(sb->sb_upcall != NULL,
4918 ("%s: so %p no upcall to clear", __func__, so));
4919 sb->sb_upcall = NULL;
4920 sb->sb_upcallarg = NULL;
4921 sb->sb_flags &= ~SB_UPCALL;
4922 }
4923
4924 void
4925 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4926 {
4927
4928 SOLISTEN_LOCK_ASSERT(so);
4929 so->sol_upcall = func;
4930 so->sol_upcallarg = arg;
4931 }
4932
4933 static void
4934 so_rdknl_lock(void *arg)
4935 {
4936 struct socket *so = arg;
4937
4938 retry:
4939 if (SOLISTENING(so)) {
4940 SOLISTEN_LOCK(so);
4941 } else {
4942 SOCK_RECVBUF_LOCK(so);
4943 if (__predict_false(SOLISTENING(so))) {
4944 SOCK_RECVBUF_UNLOCK(so);
4945 goto retry;
4946 }
4947 }
4948 }
4949
4950 static void
4951 so_rdknl_unlock(void *arg)
4952 {
4953 struct socket *so = arg;
4954
4955 if (SOLISTENING(so))
4956 SOLISTEN_UNLOCK(so);
4957 else
4958 SOCK_RECVBUF_UNLOCK(so);
4959 }
4960
4961 static void
4962 so_rdknl_assert_lock(void *arg, int what)
4963 {
4964 struct socket *so = arg;
4965
4966 if (what == LA_LOCKED) {
4967 if (SOLISTENING(so))
4968 SOLISTEN_LOCK_ASSERT(so);
4969 else
4970 SOCK_RECVBUF_LOCK_ASSERT(so);
4971 } else {
4972 if (SOLISTENING(so))
4973 SOLISTEN_UNLOCK_ASSERT(so);
4974 else
4975 SOCK_RECVBUF_UNLOCK_ASSERT(so);
4976 }
4977 }
4978
4979 static void
4980 so_wrknl_lock(void *arg)
4981 {
4982 struct socket *so = arg;
4983
4984 retry:
4985 if (SOLISTENING(so)) {
4986 SOLISTEN_LOCK(so);
4987 } else {
4988 SOCK_SENDBUF_LOCK(so);
4989 if (__predict_false(SOLISTENING(so))) {
4990 SOCK_SENDBUF_UNLOCK(so);
4991 goto retry;
4992 }
4993 }
4994 }
4995
4996 static void
4997 so_wrknl_unlock(void *arg)
4998 {
4999 struct socket *so = arg;
5000
5001 if (SOLISTENING(so))
5002 SOLISTEN_UNLOCK(so);
5003 else
5004 SOCK_SENDBUF_UNLOCK(so);
5005 }
5006
5007 static void
5008 so_wrknl_assert_lock(void *arg, int what)
5009 {
5010 struct socket *so = arg;
5011
5012 if (what == LA_LOCKED) {
5013 if (SOLISTENING(so))
5014 SOLISTEN_LOCK_ASSERT(so);
5015 else
5016 SOCK_SENDBUF_LOCK_ASSERT(so);
5017 } else {
5018 if (SOLISTENING(so))
5019 SOLISTEN_UNLOCK_ASSERT(so);
5020 else
5021 SOCK_SENDBUF_UNLOCK_ASSERT(so);
5022 }
5023 }
5024
5025 /*
5026 * Create an external-format (``xsocket'') structure using the information in
5027 * the kernel-format socket structure pointed to by so. This is done to
5028 * reduce the spew of irrelevant information over this interface, to isolate
5029 * user code from changes in the kernel structure, and potentially to provide
5030 * information-hiding if we decide that some of this information should be
5031 * hidden from users.
5032 */
5033 void
5034 sotoxsocket(struct socket *so, struct xsocket *xso)
5035 {
5036
5037 bzero(xso, sizeof(*xso));
5038 xso->xso_len = sizeof *xso;
5039 xso->xso_so = (uintptr_t)so;
5040 xso->so_type = so->so_type;
5041 xso->so_options = so->so_options;
5042 xso->so_linger = so->so_linger;
5043 xso->so_state = so->so_state;
5044 xso->so_pcb = (uintptr_t)so->so_pcb;
5045 xso->xso_protocol = so->so_proto->pr_protocol;
5046 xso->xso_family = so->so_proto->pr_domain->dom_family;
5047 xso->so_timeo = so->so_timeo;
5048 xso->so_error = so->so_error;
5049 xso->so_uid = so->so_cred->cr_uid;
5050 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
5051 SOCK_LOCK(so);
5052 xso->so_fibnum = so->so_fibnum;
5053 if (SOLISTENING(so)) {
5054 xso->so_qlen = so->sol_qlen;
5055 xso->so_incqlen = so->sol_incqlen;
5056 xso->so_qlimit = so->sol_qlimit;
5057 xso->so_oobmark = 0;
5058 } else {
5059 xso->so_state |= so->so_qstate;
5060 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
5061 xso->so_oobmark = so->so_oobmark;
5062 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
5063 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
5064 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
5065 xso->so_splice_so = (uintptr_t)so->so_splice->dst;
5066 }
5067 SOCK_UNLOCK(so);
5068 }
5069
5070 int
5071 so_options_get(const struct socket *so)
5072 {
5073
5074 return (so->so_options);
5075 }
5076
5077 void
5078 so_options_set(struct socket *so, int val)
5079 {
5080
5081 so->so_options = val;
5082 }
5083
5084 int
5085 so_error_get(const struct socket *so)
5086 {
5087
5088 return (so->so_error);
5089 }
5090
5091 void
5092 so_error_set(struct socket *so, int val)
5093 {
5094
5095 so->so_error = val;
5096 }
5097