1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * DWARF to tdata conversion
28 *
29 * For the most part, conversion is straightforward, proceeding in two passes.
30 * On the first pass, we iterate through every die, creating new type nodes as
31 * necessary. Referenced tdesc_t's are created in an uninitialized state, thus
32 * allowing type reference pointers to be filled in. If the tdesc_t
33 * corresponding to a given die can be completely filled out (sizes and offsets
34 * calculated, and so forth) without using any referenced types, the tdesc_t is
35 * marked as resolved. Consider an array type. If the type corresponding to
36 * the array contents has not yet been processed, we will create a blank tdesc
37 * for the contents type (only the type ID will be filled in, relying upon the
38 * later portion of the first pass to encounter and complete the referenced
39 * type). We will then attempt to determine the size of the array. If the
40 * array has a byte size attribute, we will have completely characterized the
41 * array type, and will be able to mark it as resolved. The lack of a byte
42 * size attribute, on the other hand, will prevent us from fully resolving the
43 * type, as the size will only be calculable with reference to the contents
44 * type, which has not, as yet, been encountered. The array type will thus be
45 * left without the resolved flag, and the first pass will continue.
46 *
47 * When we begin the second pass, we will have created tdesc_t nodes for every
48 * type in the section. We will traverse the tree, from the iidescs down,
49 * processing each unresolved node. As the referenced nodes will have been
50 * populated, the array type used in our example above will be able to use the
51 * size of the referenced types (if available) to determine its own type. The
52 * traversal will be repeated until all types have been resolved or we have
53 * failed to make progress. When all tdescs have been resolved, the conversion
54 * is complete.
55 *
56 * There are, as always, a few special cases that are handled during the first
57 * and second passes:
58 *
59 * 1. Empty enums - GCC will occasionally emit an enum without any members.
60 * Later on in the file, it will emit the same enum type, though this time
61 * with the full complement of members. All references to the memberless
62 * enum need to be redirected to the full definition. During the first
63 * pass, each enum is entered in dm_enumhash, along with a pointer to its
64 * corresponding tdesc_t. If, during the second pass, we encounter a
65 * memberless enum, we use the hash to locate the full definition. All
66 * tdescs referencing the empty enum are then redirected.
67 *
68 * 2. Forward declarations - If the compiler sees a forward declaration for
69 * a structure, followed by the definition of that structure, it will emit
70 * DWARF data for both the forward declaration and the definition. We need
71 * to resolve the forward declarations when possible, by redirecting
72 * forward-referencing tdescs to the actual struct/union definitions. This
73 * redirection is done completely within the first pass. We begin by
74 * recording all forward declarations in dw_fwdhash. When we define a
75 * structure, we check to see if there have been any corresponding forward
76 * declarations. If so, we redirect the tdescs which referenced the forward
77 * declarations to the structure or union definition.
78 *
79 * XXX see if a post traverser will allow the elimination of repeated pass 2
80 * traversals.
81 */
82
83 #include <stdio.h>
84 #include <stdlib.h>
85 #include <string.h>
86 #include <strings.h>
87 #include <errno.h>
88 #include <libelf.h>
89 #include <libdwarf.h>
90 #include <libgen.h>
91 #include <dwarf.h>
92
93 #include "ctf_headers.h"
94 #include "ctftools.h"
95 #include "memory.h"
96 #include "list.h"
97 #include "traverse.h"
98
99 /*
100 * We need to define a couple of our own intrinsics, to smooth out some of the
101 * differences between the GCC and DevPro DWARF emitters. See the referenced
102 * routines and the special cases in the file comment for more details.
103 *
104 * Type IDs are 32 bits wide. We're going to use the top of that field to
105 * indicate types that we've created ourselves.
106 */
107 #define TID_FILEMAX 0x3fffffff /* highest tid from file */
108 #define TID_VOID 0x40000001 /* see die_void() */
109 #define TID_LONG 0x40000002 /* see die_array() */
110
111 #define TID_MFGTID_BASE 0x40000003 /* first mfg'd tid */
112
113 /*
114 * To reduce the staggering amount of error-handling code that would otherwise
115 * be required, the attribute-retrieval routines handle most of their own
116 * errors. If the following flag is supplied as the value of the `req'
117 * argument, they will also handle the absence of a requested attribute by
118 * terminating the program.
119 */
120 #define DW_ATTR_REQ 1
121
122 #define TDESC_HASH_BUCKETS 511
123
124 typedef struct dwarf {
125 Dwarf_Debug dw_dw; /* for libdwarf */
126 Dwarf_Error dw_err; /* for libdwarf */
127 Dwarf_Off dw_maxoff; /* highest legal offset in this cu */
128 tdata_t *dw_td; /* root of the tdesc/iidesc tree */
129 hash_t *dw_tidhash; /* hash of tdescs by t_id */
130 hash_t *dw_fwdhash; /* hash of fwd decls by name */
131 hash_t *dw_enumhash; /* hash of memberless enums by name */
132 tdesc_t *dw_void; /* manufactured void type */
133 tdesc_t *dw_long; /* manufactured long type for arrays */
134 size_t dw_ptrsz; /* size of a pointer in this file */
135 tid_t dw_mfgtid_last; /* last mfg'd type ID used */
136 uint_t dw_nunres; /* count of unresolved types */
137 char *dw_cuname; /* name of compilation unit */
138 } dwarf_t;
139
140 static void die_create_one(dwarf_t *, Dwarf_Die);
141 static void die_create(dwarf_t *, Dwarf_Die);
142
143 static tid_t
mfgtid_next(dwarf_t * dw)144 mfgtid_next(dwarf_t *dw)
145 {
146 return (++dw->dw_mfgtid_last);
147 }
148
149 static void
tdesc_add(dwarf_t * dw,tdesc_t * tdp)150 tdesc_add(dwarf_t *dw, tdesc_t *tdp)
151 {
152 hash_add(dw->dw_tidhash, tdp);
153 }
154
155 static tdesc_t *
tdesc_lookup(dwarf_t * dw,int tid)156 tdesc_lookup(dwarf_t *dw, int tid)
157 {
158 tdesc_t tmpl;
159 void *tdp;
160
161 tmpl.t_id = tid;
162
163 if (hash_find(dw->dw_tidhash, &tmpl, &tdp))
164 return (tdp);
165 else
166 return (NULL);
167 }
168
169 /*
170 * Resolve a tdesc down to a node which should have a size. Returns the size,
171 * zero if the size hasn't yet been determined.
172 */
173 static size_t
tdesc_size(tdesc_t * tdp)174 tdesc_size(tdesc_t *tdp)
175 {
176 for (;;) {
177 switch (tdp->t_type) {
178 case INTRINSIC:
179 case POINTER:
180 case ARRAY:
181 case FUNCTION:
182 case STRUCT:
183 case UNION:
184 case ENUM:
185 return (tdp->t_size);
186
187 case FORWARD:
188 return (0);
189
190 case TYPEDEF:
191 case VOLATILE:
192 case CONST:
193 case RESTRICT:
194 tdp = tdp->t_tdesc;
195 continue;
196
197 case 0: /* not yet defined */
198 return (0);
199
200 default:
201 terminate("tdp %u: tdesc_size on unknown type %d\n",
202 tdp->t_id, tdp->t_type);
203 }
204 }
205 }
206
207 static size_t
tdesc_bitsize(tdesc_t * tdp)208 tdesc_bitsize(tdesc_t *tdp)
209 {
210 for (;;) {
211 switch (tdp->t_type) {
212 case INTRINSIC:
213 return (tdp->t_intr->intr_nbits);
214
215 case ARRAY:
216 case FUNCTION:
217 case STRUCT:
218 case UNION:
219 case ENUM:
220 case POINTER:
221 return (tdp->t_size * NBBY);
222
223 case FORWARD:
224 return (0);
225
226 case TYPEDEF:
227 case VOLATILE:
228 case RESTRICT:
229 case CONST:
230 tdp = tdp->t_tdesc;
231 continue;
232
233 case 0: /* not yet defined */
234 return (0);
235
236 default:
237 terminate("tdp %u: tdesc_bitsize on unknown type %d\n",
238 tdp->t_id, tdp->t_type);
239 }
240 }
241 }
242
243 static tdesc_t *
tdesc_basetype(tdesc_t * tdp)244 tdesc_basetype(tdesc_t *tdp)
245 {
246 for (;;) {
247 switch (tdp->t_type) {
248 case TYPEDEF:
249 case VOLATILE:
250 case RESTRICT:
251 case CONST:
252 tdp = tdp->t_tdesc;
253 break;
254 case 0: /* not yet defined */
255 return (NULL);
256 default:
257 return (tdp);
258 }
259 }
260 }
261
262 static Dwarf_Off
die_off(dwarf_t * dw,Dwarf_Die die)263 die_off(dwarf_t *dw, Dwarf_Die die)
264 {
265 Dwarf_Off off;
266
267 if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK)
268 return (off);
269
270 terminate("failed to get offset for die: %s\n",
271 dwarf_errmsg(dw->dw_err));
272 /*NOTREACHED*/
273 return (0);
274 }
275
276 static Dwarf_Die
die_sibling(dwarf_t * dw,Dwarf_Die die)277 die_sibling(dwarf_t *dw, Dwarf_Die die)
278 {
279 Dwarf_Die sib;
280 int rc;
281
282 if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) ==
283 DW_DLV_OK)
284 return (sib);
285 else if (rc == DW_DLV_NO_ENTRY)
286 return (NULL);
287
288 terminate("die %llu: failed to find type sibling: %s\n",
289 die_off(dw, die), dwarf_errmsg(dw->dw_err));
290 /*NOTREACHED*/
291 return (NULL);
292 }
293
294 static Dwarf_Die
die_child(dwarf_t * dw,Dwarf_Die die)295 die_child(dwarf_t *dw, Dwarf_Die die)
296 {
297 Dwarf_Die child;
298 int rc;
299
300 if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK)
301 return (child);
302 else if (rc == DW_DLV_NO_ENTRY)
303 return (NULL);
304
305 terminate("die %llu: failed to find type child: %s\n",
306 die_off(dw, die), dwarf_errmsg(dw->dw_err));
307 /*NOTREACHED*/
308 return (NULL);
309 }
310
311 static Dwarf_Half
die_tag(dwarf_t * dw,Dwarf_Die die)312 die_tag(dwarf_t *dw, Dwarf_Die die)
313 {
314 Dwarf_Half tag;
315
316 if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK)
317 return (tag);
318
319 terminate("die %llu: failed to get tag for type: %s\n",
320 die_off(dw, die), dwarf_errmsg(dw->dw_err));
321 /*NOTREACHED*/
322 return (0);
323 }
324
325 static Dwarf_Attribute
die_attr(dwarf_t * dw,Dwarf_Die die,Dwarf_Half name,int req)326 die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req)
327 {
328 Dwarf_Attribute attr;
329 int rc;
330
331 if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) {
332 return (attr);
333 } else if (rc == DW_DLV_NO_ENTRY) {
334 if (req) {
335 terminate("die %llu: no attr 0x%x\n", die_off(dw, die),
336 name);
337 } else {
338 return (NULL);
339 }
340 }
341
342 terminate("die %llu: failed to get attribute for type: %s\n",
343 die_off(dw, die), dwarf_errmsg(dw->dw_err));
344 /*NOTREACHED*/
345 return (NULL);
346 }
347
348 static int
die_signed(dwarf_t * dw,Dwarf_Die die,Dwarf_Half name,Dwarf_Signed * valp,int req)349 die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp,
350 int req)
351 {
352 *valp = 0;
353 if (dwarf_attrval_signed(die, name, valp, &dw->dw_err) != DW_DLV_OK) {
354 if (req)
355 terminate("die %llu: failed to get signed: %s\n",
356 die_off(dw, die), dwarf_errmsg(dw->dw_err));
357 return (0);
358 }
359
360 return (1);
361 }
362
363 static int
die_unsigned(dwarf_t * dw,Dwarf_Die die,Dwarf_Half name,Dwarf_Unsigned * valp,int req)364 die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp,
365 int req)
366 {
367 *valp = 0;
368 if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != DW_DLV_OK) {
369 if (req)
370 terminate("die %llu: failed to get unsigned: %s\n",
371 die_off(dw, die), dwarf_errmsg(dw->dw_err));
372 return (0);
373 }
374
375 return (1);
376 }
377
378 static int
die_bool(dwarf_t * dw,Dwarf_Die die,Dwarf_Half name,Dwarf_Bool * valp,int req)379 die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req)
380 {
381 *valp = 0;
382
383 if (dwarf_attrval_flag(die, name, valp, &dw->dw_err) != DW_DLV_OK) {
384 if (req)
385 terminate("die %llu: failed to get flag: %s\n",
386 die_off(dw, die), dwarf_errmsg(dw->dw_err));
387 return (0);
388 }
389
390 return (1);
391 }
392
393 static int
die_string(dwarf_t * dw,Dwarf_Die die,Dwarf_Half name,char ** strp,int req)394 die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req)
395 {
396 const char *str = NULL;
397
398 if (dwarf_attrval_string(die, name, &str, &dw->dw_err) != DW_DLV_OK ||
399 str == NULL) {
400 if (req)
401 terminate("die %llu: failed to get string: %s\n",
402 die_off(dw, die), dwarf_errmsg(dw->dw_err));
403 else
404 *strp = NULL;
405 return (0);
406 } else
407 *strp = xstrdup(str);
408
409 return (1);
410 }
411
412 static Dwarf_Off
die_attr_ref(dwarf_t * dw,Dwarf_Die die,Dwarf_Half name)413 die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
414 {
415 Dwarf_Off off;
416
417 if (dwarf_attrval_unsigned(die, name, &off, &dw->dw_err) != DW_DLV_OK) {
418 terminate("die %llu: failed to get ref: %s\n",
419 die_off(dw, die), dwarf_errmsg(dw->dw_err));
420 }
421
422 return (off);
423 }
424
425 static char *
die_name(dwarf_t * dw,Dwarf_Die die)426 die_name(dwarf_t *dw, Dwarf_Die die)
427 {
428 char *str = NULL;
429
430 (void) die_string(dw, die, DW_AT_name, &str, 0);
431 if (str == NULL)
432 str = xstrdup("");
433
434 return (str);
435 }
436
437 static int
die_isdecl(dwarf_t * dw,Dwarf_Die die)438 die_isdecl(dwarf_t *dw, Dwarf_Die die)
439 {
440 Dwarf_Bool val;
441
442 return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val);
443 }
444
445 static int
die_isglobal(dwarf_t * dw,Dwarf_Die die)446 die_isglobal(dwarf_t *dw, Dwarf_Die die)
447 {
448 Dwarf_Signed vis;
449 Dwarf_Bool ext;
450
451 /*
452 * Some compilers (gcc) use DW_AT_external to indicate function
453 * visibility. Others (Sun) use DW_AT_visibility.
454 */
455 if (die_signed(dw, die, DW_AT_visibility, &vis, 0))
456 return (vis == DW_VIS_exported);
457 else
458 return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext);
459 }
460
461 static tdesc_t *
die_add(dwarf_t * dw,Dwarf_Off off)462 die_add(dwarf_t *dw, Dwarf_Off off)
463 {
464 tdesc_t *tdp = xcalloc(sizeof (tdesc_t));
465
466 tdp->t_id = off;
467
468 tdesc_add(dw, tdp);
469
470 return (tdp);
471 }
472
473 static tdesc_t *
die_lookup_pass1(dwarf_t * dw,Dwarf_Die die,Dwarf_Half name)474 die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
475 {
476 Dwarf_Off ref = die_attr_ref(dw, die, name);
477 tdesc_t *tdp;
478
479 if ((tdp = tdesc_lookup(dw, ref)) != NULL)
480 return (tdp);
481
482 return (die_add(dw, ref));
483 }
484
485 static int
die_mem_offset(dwarf_t * dw,Dwarf_Die die,Dwarf_Half name,Dwarf_Unsigned * valp,int req __unused)486 die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name,
487 Dwarf_Unsigned *valp, int req __unused)
488 {
489 Dwarf_Locdesc *loc = NULL;
490 Dwarf_Signed locnum = 0;
491 Dwarf_Attribute at;
492 Dwarf_Half form;
493
494 if (name != DW_AT_data_member_location)
495 terminate("die %llu: can only process attribute "
496 "DW_AT_data_member_location\n", die_off(dw, die));
497
498 if ((at = die_attr(dw, die, name, 0)) == NULL)
499 return (0);
500
501 if (dwarf_whatform(at, &form, &dw->dw_err) != DW_DLV_OK)
502 return (0);
503
504 switch (form) {
505 case DW_FORM_sec_offset:
506 case DW_FORM_block:
507 case DW_FORM_block1:
508 case DW_FORM_block2:
509 case DW_FORM_block4:
510 /*
511 * GCC in base and Clang (3.3 or below) generates
512 * DW_AT_data_member_location attribute with DW_FORM_block*
513 * form. The attribute contains one DW_OP_plus_uconst
514 * operator. The member offset stores in the operand.
515 */
516 if (dwarf_loclist(at, &loc, &locnum, &dw->dw_err) != DW_DLV_OK)
517 return (0);
518 if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
519 terminate("die %llu: cannot parse member offset with "
520 "operator other than DW_OP_plus_uconst\n",
521 die_off(dw, die));
522 }
523 *valp = loc->ld_s->lr_number;
524 if (loc != NULL) {
525 dwarf_dealloc(dw->dw_dw, loc->ld_s, DW_DLA_LOC_BLOCK);
526 dwarf_dealloc(dw->dw_dw, loc, DW_DLA_LOCDESC);
527 }
528 break;
529
530 case DW_FORM_data1:
531 case DW_FORM_data2:
532 case DW_FORM_data4:
533 case DW_FORM_data8:
534 case DW_FORM_udata:
535 /*
536 * Clang 3.4 generates DW_AT_data_member_location attribute
537 * with DW_FORM_data* form (constant class). The attribute
538 * stores a contant value which is the member offset.
539 *
540 * However, note that DW_FORM_data[48] in DWARF version 2 or 3
541 * could be used as a section offset (offset into .debug_loc in
542 * this case). Here we assume the attribute always stores a
543 * constant because we know Clang 3.4 does this and GCC in
544 * base won't emit DW_FORM_data[48] for this attribute. This
545 * code will remain correct if future vesrions of Clang and
546 * GCC conform to DWARF4 standard and only use the form
547 * DW_FORM_sec_offset for section offset.
548 */
549 if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) !=
550 DW_DLV_OK)
551 return (0);
552 break;
553
554 default:
555 terminate("die %llu: cannot parse member offset with form "
556 "%u\n", die_off(dw, die), form);
557 }
558
559 return (1);
560 }
561
562 static tdesc_t *
tdesc_intr_common(dwarf_t * dw,int tid,const char * name,size_t sz)563 tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz)
564 {
565 tdesc_t *tdp;
566 intr_t *intr;
567
568 intr = xcalloc(sizeof (intr_t));
569 intr->intr_type = INTR_INT;
570 intr->intr_signed = 1;
571 intr->intr_nbits = sz * NBBY;
572
573 tdp = xcalloc(sizeof (tdesc_t));
574 tdp->t_name = xstrdup(name);
575 tdp->t_size = sz;
576 tdp->t_id = tid;
577 tdp->t_type = INTRINSIC;
578 tdp->t_intr = intr;
579 tdp->t_flags = TDESC_F_RESOLVED;
580
581 tdesc_add(dw, tdp);
582
583 return (tdp);
584 }
585
586 /*
587 * Manufacture a void type. Used for gcc-emitted stabs, where the lack of a
588 * type reference implies a reference to a void type. A void *, for example
589 * will be represented by a pointer die without a DW_AT_type. CTF requires
590 * that pointer nodes point to something, so we'll create a void for use as
591 * the target. Note that the DWARF data may already create a void type. Ours
592 * would then be a duplicate, but it'll be removed in the self-uniquification
593 * merge performed at the completion of DWARF->tdesc conversion.
594 */
595 static tdesc_t *
tdesc_intr_void(dwarf_t * dw)596 tdesc_intr_void(dwarf_t *dw)
597 {
598 if (dw->dw_void == NULL)
599 dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0);
600
601 return (dw->dw_void);
602 }
603
604 static tdesc_t *
tdesc_intr_long(dwarf_t * dw)605 tdesc_intr_long(dwarf_t *dw)
606 {
607 if (dw->dw_long == NULL) {
608 dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long",
609 dw->dw_ptrsz);
610 }
611
612 return (dw->dw_long);
613 }
614
615 /*
616 * Used for creating bitfield types. We create a copy of an existing intrinsic,
617 * adjusting the size of the copy to match what the caller requested. The
618 * caller can then use the copy as the type for a bitfield structure member.
619 */
620 static tdesc_t *
tdesc_intr_clone(dwarf_t * dw,tdesc_t * old,size_t bitsz,const char * suffix)621 tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz, const char *suffix)
622 {
623 tdesc_t *new = xcalloc(sizeof (tdesc_t));
624
625 if (!(old->t_flags & TDESC_F_RESOLVED)) {
626 terminate("tdp %u: attempt to make a bit field from an "
627 "unresolved type\n", old->t_id);
628 }
629
630 xasprintf(&new->t_name, "%s %s", old->t_name, suffix);
631 new->t_size = old->t_size;
632 new->t_id = mfgtid_next(dw);
633 new->t_type = INTRINSIC;
634 new->t_flags = TDESC_F_RESOLVED;
635
636 new->t_intr = xcalloc(sizeof (intr_t));
637 bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
638 new->t_intr->intr_nbits = bitsz;
639
640 tdesc_add(dw, new);
641
642 return (new);
643 }
644
645 static void
tdesc_array_create(dwarf_t * dw,Dwarf_Die dim,tdesc_t * arrtdp,tdesc_t * dimtdp)646 tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp,
647 tdesc_t *dimtdp)
648 {
649 Dwarf_Unsigned uval;
650 Dwarf_Signed sval;
651 tdesc_t *ctdp = NULL;
652 Dwarf_Die dim2;
653 ardef_t *ar;
654
655 if ((dim2 = die_sibling(dw, dim)) == NULL) {
656 ctdp = arrtdp;
657 } else if (die_tag(dw, dim2) == DW_TAG_subrange_type) {
658 ctdp = xcalloc(sizeof (tdesc_t));
659 ctdp->t_id = mfgtid_next(dw);
660 debug(3, "die %llu: creating new type %u for sub-dimension\n",
661 die_off(dw, dim2), ctdp->t_id);
662 tdesc_array_create(dw, dim2, arrtdp, ctdp);
663 } else {
664 terminate("die %llu: unexpected non-subrange node in array\n",
665 die_off(dw, dim2));
666 }
667
668 dimtdp->t_type = ARRAY;
669 dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t));
670
671 /*
672 * Array bounds can be signed or unsigned, but there are several kinds
673 * of signless forms (data1, data2, etc) that take their sign from the
674 * routine that is trying to interpret them. That is, data1 can be
675 * either signed or unsigned, depending on whether you use the signed or
676 * unsigned accessor function. GCC will use the signless forms to store
677 * unsigned values which have their high bit set, so we need to try to
678 * read them first as unsigned to get positive values. We could also
679 * try signed first, falling back to unsigned if we got a negative
680 * value.
681 */
682 if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0))
683 ar->ad_nelems = uval + 1;
684 else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0))
685 ar->ad_nelems = sval + 1;
686 else if (die_unsigned(dw, dim, DW_AT_count, &uval, 0))
687 ar->ad_nelems = uval;
688 else if (die_signed(dw, dim, DW_AT_count, &sval, 0))
689 ar->ad_nelems = sval;
690 else
691 ar->ad_nelems = 0;
692
693 /*
694 * Different compilers use different index types. Force the type to be
695 * a common, known value (long).
696 */
697 ar->ad_idxtype = tdesc_intr_long(dw);
698 ar->ad_contents = ctdp;
699
700 if (ar->ad_contents->t_size != 0) {
701 dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems;
702 dimtdp->t_flags |= TDESC_F_RESOLVED;
703 }
704 }
705
706 /*
707 * Create a tdesc from an array node. Some arrays will come with byte size
708 * attributes, and thus can be resolved immediately. Others don't, and will
709 * need to wait until the second pass for resolution.
710 */
711 static void
die_array_create(dwarf_t * dw,Dwarf_Die arr,Dwarf_Off off,tdesc_t * tdp)712 die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp)
713 {
714 tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type);
715 Dwarf_Unsigned uval;
716 Dwarf_Die dim;
717
718 debug(3, "die %llu <%llx>: creating array\n", off, off);
719
720 if ((dim = die_child(dw, arr)) == NULL ||
721 die_tag(dw, dim) != DW_TAG_subrange_type)
722 terminate("die %llu: failed to retrieve array bounds\n", off);
723
724 tdesc_array_create(dw, dim, arrtdp, tdp);
725
726 if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) {
727 tdesc_t *dimtdp;
728 int flags;
729
730 tdp->t_size = uval;
731
732 /*
733 * Ensure that sub-dimensions have sizes too before marking
734 * as resolved.
735 */
736 flags = TDESC_F_RESOLVED;
737 for (dimtdp = tdp->t_ardef->ad_contents;
738 dimtdp->t_type == ARRAY;
739 dimtdp = dimtdp->t_ardef->ad_contents) {
740 if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) {
741 flags = 0;
742 break;
743 }
744 }
745
746 tdp->t_flags |= flags;
747 }
748
749 debug(3, "die %llu <%llx>: array nelems %u size %u\n", off, off,
750 tdp->t_ardef->ad_nelems, tdp->t_size);
751 }
752
753 /*ARGSUSED1*/
754 static int
die_array_resolve(tdesc_t * tdp,tdesc_t ** tdpp __unused,void * private)755 die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
756 {
757 dwarf_t *dw = private;
758 size_t sz;
759
760 if (tdp->t_flags & TDESC_F_RESOLVED)
761 return (1);
762
763 debug(3, "trying to resolve array %d (cont %d)\n", tdp->t_id,
764 tdp->t_ardef->ad_contents->t_id);
765
766 if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0 &&
767 (tdp->t_ardef->ad_contents->t_flags & TDESC_F_RESOLVED) == 0) {
768 debug(3, "unable to resolve array %s (%d) contents %d\n",
769 tdesc_name(tdp), tdp->t_id,
770 tdp->t_ardef->ad_contents->t_id);
771
772 dw->dw_nunres++;
773 return (1);
774 }
775
776 tdp->t_size = sz * tdp->t_ardef->ad_nelems;
777 tdp->t_flags |= TDESC_F_RESOLVED;
778
779 debug(3, "resolved array %d: %u bytes\n", tdp->t_id, tdp->t_size);
780
781 return (1);
782 }
783
784 /*ARGSUSED1*/
785 static int
die_array_failed(tdesc_t * tdp,tdesc_t ** tdpp __unused,void * private __unused)786 die_array_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
787 {
788 tdesc_t *cont = tdp->t_ardef->ad_contents;
789
790 if (tdp->t_flags & TDESC_F_RESOLVED)
791 return (1);
792
793 fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n",
794 tdp->t_id, tdesc_name(cont), cont->t_id);
795
796 return (1);
797 }
798
799 /*
800 * Most enums (those with members) will be resolved during this first pass.
801 * Others - those without members (see the file comment) - won't be, and will
802 * need to wait until the second pass when they can be matched with their full
803 * definitions.
804 */
805 static void
die_enum_create(dwarf_t * dw,Dwarf_Die die,Dwarf_Off off,tdesc_t * tdp)806 die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
807 {
808 Dwarf_Die mem;
809 Dwarf_Unsigned uval;
810 Dwarf_Signed sval;
811
812 if (die_isdecl(dw, die)) {
813 tdp->t_type = FORWARD;
814 return;
815 }
816
817 debug(3, "die %llu: creating enum\n", off);
818
819 tdp->t_type = ENUM;
820
821 (void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ);
822 tdp->t_size = uval;
823
824 if ((mem = die_child(dw, die)) != NULL) {
825 elist_t **elastp = &tdp->t_emem;
826
827 do {
828 elist_t *el;
829
830 if (die_tag(dw, mem) != DW_TAG_enumerator) {
831 /* Nested type declaration */
832 die_create_one(dw, mem);
833 continue;
834 }
835
836 el = xcalloc(sizeof (elist_t));
837 el->el_name = die_name(dw, mem);
838
839 if (die_signed(dw, mem, DW_AT_const_value, &sval, 0)) {
840 el->el_number = sval;
841 } else if (die_unsigned(dw, mem, DW_AT_const_value,
842 &uval, 0)) {
843 el->el_number = uval;
844 } else {
845 terminate("die %llu: enum %llu: member without "
846 "value\n", off, die_off(dw, mem));
847 }
848
849 debug(3, "die %llu: enum %llu: created %s = %d\n", off,
850 die_off(dw, mem), el->el_name, el->el_number);
851
852 *elastp = el;
853 elastp = &el->el_next;
854
855 } while ((mem = die_sibling(dw, mem)) != NULL);
856
857 hash_add(dw->dw_enumhash, tdp);
858
859 tdp->t_flags |= TDESC_F_RESOLVED;
860
861 if (tdp->t_name != NULL) {
862 iidesc_t *ii = xcalloc(sizeof (iidesc_t));
863 ii->ii_type = II_SOU;
864 ii->ii_name = xstrdup(tdp->t_name);
865 ii->ii_dtype = tdp;
866
867 iidesc_add(dw->dw_td->td_iihash, ii);
868 }
869 }
870 }
871
872 static int
die_enum_match(void * arg1,void * arg2)873 die_enum_match(void *arg1, void *arg2)
874 {
875 tdesc_t *tdp = arg1, **fullp = arg2;
876
877 if (tdp->t_emem != NULL) {
878 *fullp = tdp;
879 return (-1); /* stop the iteration */
880 }
881
882 return (0);
883 }
884
885 /*ARGSUSED1*/
886 static int
die_enum_resolve(tdesc_t * tdp,tdesc_t ** tdpp __unused,void * private)887 die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
888 {
889 dwarf_t *dw = private;
890 tdesc_t *full = NULL;
891
892 if (tdp->t_flags & TDESC_F_RESOLVED)
893 return (1);
894
895 (void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full);
896
897 /*
898 * The answer to this one won't change from iteration to iteration,
899 * so don't even try.
900 */
901 if (full == NULL) {
902 terminate("tdp %u: enum %s has no members\n", tdp->t_id,
903 tdesc_name(tdp));
904 }
905
906 debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id,
907 tdesc_name(tdp), full->t_id);
908
909 tdp->t_flags |= TDESC_F_RESOLVED;
910
911 return (1);
912 }
913
914 static int
die_fwd_map(void * arg1,void * arg2)915 die_fwd_map(void *arg1, void *arg2)
916 {
917 tdesc_t *fwd = arg1, *sou = arg2;
918
919 debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id,
920 tdesc_name(fwd), sou->t_id);
921 fwd->t_tdesc = sou;
922
923 return (0);
924 }
925
926 /*
927 * Structures and unions will never be resolved during the first pass, as we
928 * won't be able to fully determine the member sizes. The second pass, which
929 * have access to sizing information, will be able to complete the resolution.
930 */
931 static void
die_sou_create(dwarf_t * dw,Dwarf_Die str,Dwarf_Off off,tdesc_t * tdp,int type,const char * typename)932 die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp,
933 int type, const char *typename)
934 {
935 Dwarf_Unsigned sz, bitsz, bitoff;
936 #if BYTE_ORDER == _LITTLE_ENDIAN
937 Dwarf_Unsigned bysz;
938 #endif
939 Dwarf_Die mem;
940 mlist_t *ml, **mlastp;
941 iidesc_t *ii;
942
943 tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type);
944
945 debug(3, "die %llu: creating %s %s\n", off,
946 (tdp->t_type == FORWARD ? "forward decl" : typename),
947 tdesc_name(tdp));
948
949 if (tdp->t_type == FORWARD) {
950 hash_add(dw->dw_fwdhash, tdp);
951 return;
952 }
953
954 (void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp);
955
956 (void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ);
957 tdp->t_size = sz;
958
959 /*
960 * GCC allows empty SOUs as an extension.
961 */
962 if ((mem = die_child(dw, str)) == NULL) {
963 goto out;
964 }
965
966 mlastp = &tdp->t_members;
967
968 do {
969 Dwarf_Off memoff = die_off(dw, mem);
970 Dwarf_Half tag = die_tag(dw, mem);
971 Dwarf_Unsigned mloff;
972
973 if (tag != DW_TAG_member) {
974 /* Nested type declaration */
975 die_create_one(dw, mem);
976 continue;
977 }
978
979 debug(3, "die %llu: mem %llu: creating member\n", off, memoff);
980
981 ml = xcalloc(sizeof (mlist_t));
982
983 /*
984 * This could be a GCC anon struct/union member, so we'll allow
985 * an empty name, even though nothing can really handle them
986 * properly. Note that some versions of GCC miss out debug
987 * info for anon structs, though recent versions are fixed (gcc
988 * bug 11816).
989 */
990 if ((ml->ml_name = die_name(dw, mem)) == NULL)
991 ml->ml_name = NULL;
992
993 ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type);
994
995 if (die_mem_offset(dw, mem, DW_AT_data_member_location,
996 &mloff, 0)) {
997 debug(3, "die %llu: got mloff %llx\n", off,
998 (u_longlong_t)mloff);
999 ml->ml_offset = mloff * 8;
1000 }
1001
1002 if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0))
1003 ml->ml_size = bitsz;
1004 else
1005 ml->ml_size = tdesc_bitsize(ml->ml_type);
1006
1007 if (die_unsigned(dw, mem, DW_AT_data_bit_offset, &bitoff, 0)) {
1008 ml->ml_offset += bitoff;
1009 } else if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) {
1010 #if BYTE_ORDER == _BIG_ENDIAN
1011 ml->ml_offset += bitoff;
1012 #else
1013 /*
1014 * Note that Clang 3.4 will sometimes generate
1015 * member DIE before generating the DIE for the
1016 * member's type. The code can not handle this
1017 * properly so that tdesc_bitsize(ml->ml_type) will
1018 * return 0 because ml->ml_type is unknown. As a
1019 * result, a wrong member offset will be calculated.
1020 * To workaround this, we can instead try to
1021 * retrieve the value of DW_AT_byte_size attribute
1022 * which stores the byte size of the space occupied
1023 * by the type. If this attribute exists, its value
1024 * should equal to tdesc_bitsize(ml->ml_type)/NBBY.
1025 */
1026 if (die_unsigned(dw, mem, DW_AT_byte_size, &bysz, 0) &&
1027 bysz > 0)
1028 ml->ml_offset += bysz * NBBY - bitoff -
1029 ml->ml_size;
1030 else
1031 ml->ml_offset += tdesc_bitsize(ml->ml_type) -
1032 bitoff - ml->ml_size;
1033 #endif
1034 }
1035
1036 debug(3, "die %llu: mem %llu: created \"%s\" (off %u sz %u)\n",
1037 off, memoff, ml->ml_name, ml->ml_offset, ml->ml_size);
1038
1039 *mlastp = ml;
1040 mlastp = &ml->ml_next;
1041 } while ((mem = die_sibling(dw, mem)) != NULL);
1042
1043 /*
1044 * GCC will attempt to eliminate unused types, thus decreasing the
1045 * size of the emitted dwarf. That is, if you declare a foo_t in your
1046 * header, include said header in your source file, and neglect to
1047 * actually use (directly or indirectly) the foo_t in the source file,
1048 * the foo_t won't make it into the emitted DWARF. So, at least, goes
1049 * the theory.
1050 *
1051 * Occasionally, it'll emit the DW_TAG_structure_type for the foo_t,
1052 * and then neglect to emit the members. Strangely, the loner struct
1053 * tag will always be followed by a proper nested declaration of
1054 * something else. This is clearly a bug, but we're not going to have
1055 * time to get it fixed before this goo goes back, so we'll have to work
1056 * around it. If we see a no-membered struct with a nested declaration
1057 * (i.e. die_child of the struct tag won't be null), we'll ignore it.
1058 * Being paranoid, we won't simply remove it from the hash. Instead,
1059 * we'll decline to create an iidesc for it, thus ensuring that this
1060 * type won't make it into the output file. To be safe, we'll also
1061 * change the name.
1062 */
1063 if (tdp->t_members == NULL) {
1064 const char *old = tdesc_name(tdp);
1065 size_t newsz = 7 + strlen(old) + 1;
1066 char *new = xmalloc(newsz);
1067 (void) snprintf(new, newsz, "orphan %s", old);
1068
1069 debug(3, "die %llu: worked around %s %s\n", off, typename, old);
1070
1071 if (tdp->t_name != NULL)
1072 free(tdp->t_name);
1073 tdp->t_name = new;
1074 return;
1075 }
1076
1077 out:
1078 if (tdp->t_name != NULL) {
1079 ii = xcalloc(sizeof (iidesc_t));
1080 ii->ii_type = II_SOU;
1081 ii->ii_name = xstrdup(tdp->t_name);
1082 ii->ii_dtype = tdp;
1083
1084 iidesc_add(dw->dw_td->td_iihash, ii);
1085 }
1086 }
1087
1088 static void
die_struct_create(dwarf_t * dw,Dwarf_Die die,Dwarf_Off off,tdesc_t * tdp)1089 die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1090 {
1091 die_sou_create(dw, die, off, tdp, STRUCT, "struct");
1092 }
1093
1094 static void
die_union_create(dwarf_t * dw,Dwarf_Die die,Dwarf_Off off,tdesc_t * tdp)1095 die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1096 {
1097 die_sou_create(dw, die, off, tdp, UNION, "union");
1098 }
1099
1100 /*ARGSUSED1*/
1101 static int
die_sou_resolve(tdesc_t * tdp,tdesc_t ** tdpp __unused,void * private)1102 die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
1103 {
1104 dwarf_t *dw = private;
1105 mlist_t *ml;
1106 tdesc_t *mt;
1107
1108 if (tdp->t_flags & TDESC_F_RESOLVED)
1109 return (1);
1110
1111 debug(3, "resolving sou %s\n", tdesc_name(tdp));
1112
1113 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1114 if (ml->ml_size == 0) {
1115 mt = tdesc_basetype(ml->ml_type);
1116
1117 if ((ml->ml_size = tdesc_bitsize(mt)) != 0)
1118 continue;
1119
1120 /*
1121 * For empty members, or GCC/C99 flexible array
1122 * members, a size of 0 is correct. Structs and unions
1123 * consisting of flexible array members will also have
1124 * size 0.
1125 */
1126 if (mt->t_members == NULL)
1127 continue;
1128 if (mt->t_type == ARRAY) {
1129 if (mt->t_ardef->ad_nelems == 0)
1130 continue;
1131 mt = tdesc_basetype(mt->t_ardef->ad_contents);
1132 if ((mt->t_flags & TDESC_F_RESOLVED) != 0 &&
1133 (mt->t_type == STRUCT ||
1134 mt->t_type == UNION) &&
1135 mt->t_members == NULL)
1136 continue;
1137 }
1138 if ((mt->t_flags & TDESC_F_RESOLVED) != 0 &&
1139 (mt->t_type == STRUCT || mt->t_type == UNION))
1140 continue;
1141
1142 dw->dw_nunres++;
1143 return (1);
1144 }
1145
1146 if ((mt = tdesc_basetype(ml->ml_type)) == NULL) {
1147 dw->dw_nunres++;
1148 return (1);
1149 }
1150
1151 if (ml->ml_size != 0 && mt->t_type == INTRINSIC &&
1152 mt->t_intr->intr_nbits != ml->ml_size) {
1153 /*
1154 * This member is a bitfield, and needs to reference
1155 * an intrinsic type with the same width. If the
1156 * currently-referenced type isn't of the same width,
1157 * we'll copy it, adjusting the width of the copy to
1158 * the size we'd like.
1159 */
1160 debug(3, "tdp %u: creating bitfield for %d bits\n",
1161 tdp->t_id, ml->ml_size);
1162
1163 ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size,
1164 "bitfield");
1165 }
1166 }
1167
1168 tdp->t_flags |= TDESC_F_RESOLVED;
1169
1170 return (1);
1171 }
1172
1173 /*ARGSUSED1*/
1174 static int
die_sou_failed(tdesc_t * tdp,tdesc_t ** tdpp __unused,void * private __unused)1175 die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
1176 {
1177 const char *typename = (tdp->t_type == STRUCT ? "struct" : "union");
1178 mlist_t *ml;
1179
1180 if (tdp->t_flags & TDESC_F_RESOLVED)
1181 return (1);
1182
1183 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1184 if (ml->ml_size == 0) {
1185 fprintf(stderr, "%s %d <%x>: failed to size member \"%s\" "
1186 "of type %s (%d <%x>)\n", typename, tdp->t_id,
1187 tdp->t_id,
1188 ml->ml_name, tdesc_name(ml->ml_type),
1189 ml->ml_type->t_id, ml->ml_type->t_id);
1190 }
1191 }
1192
1193 return (1);
1194 }
1195
1196 static void
die_funcptr_create(dwarf_t * dw,Dwarf_Die die,Dwarf_Off off,tdesc_t * tdp)1197 die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1198 {
1199 Dwarf_Attribute attr;
1200 Dwarf_Half tag;
1201 Dwarf_Die arg;
1202 fndef_t *fn;
1203 int i;
1204
1205 debug(3, "die %llu <%llx>: creating function pointer\n", off, off);
1206
1207 /*
1208 * We'll begin by processing any type definition nodes that may be
1209 * lurking underneath this one.
1210 */
1211 for (arg = die_child(dw, die); arg != NULL;
1212 arg = die_sibling(dw, arg)) {
1213 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1214 tag != DW_TAG_unspecified_parameters) {
1215 /* Nested type declaration */
1216 die_create_one(dw, arg);
1217 }
1218 }
1219
1220 if (die_isdecl(dw, die)) {
1221 /*
1222 * This is a prototype. We don't add prototypes to the
1223 * tree, so we're going to drop the tdesc. Unfortunately,
1224 * it has already been added to the tree. Nobody will reference
1225 * it, though, and it will be leaked.
1226 */
1227 return;
1228 }
1229
1230 fn = xcalloc(sizeof (fndef_t));
1231
1232 tdp->t_type = FUNCTION;
1233
1234 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1235 fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type);
1236 } else {
1237 fn->fn_ret = tdesc_intr_void(dw);
1238 }
1239
1240 /*
1241 * Count the arguments to the function, then read them in.
1242 */
1243 for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL;
1244 arg = die_sibling(dw, arg)) {
1245 if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter)
1246 fn->fn_nargs++;
1247 else if (tag == DW_TAG_unspecified_parameters &&
1248 fn->fn_nargs > 0)
1249 fn->fn_vargs = 1;
1250 }
1251
1252 if (fn->fn_nargs != 0) {
1253 debug(3, "die %llu: adding %d argument%s\n", off, fn->fn_nargs,
1254 (fn->fn_nargs > 1 ? "s" : ""));
1255
1256 fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs);
1257 for (i = 0, arg = die_child(dw, die);
1258 arg != NULL && i < (int) fn->fn_nargs;
1259 arg = die_sibling(dw, arg)) {
1260 if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1261 continue;
1262
1263 fn->fn_args[i++] = die_lookup_pass1(dw, arg,
1264 DW_AT_type);
1265 }
1266 }
1267
1268 tdp->t_fndef = fn;
1269 tdp->t_flags |= TDESC_F_RESOLVED;
1270 }
1271
1272 /*
1273 * GCC and DevPro use different names for the base types. While the terms are
1274 * the same, they are arranged in a different order. Some terms, such as int,
1275 * are implied in one, and explicitly named in the other. Given a base type
1276 * as input, this routine will return a common name, along with an intr_t
1277 * that reflects said name.
1278 */
1279 static intr_t *
die_base_name_parse(const char * name,char ** newp)1280 die_base_name_parse(const char *name, char **newp)
1281 {
1282 char buf[256];
1283 char const *base;
1284 char *c;
1285 int nlong = 0, nshort = 0, nchar = 0, nint = 0;
1286 int sign = 1;
1287 char fmt = '\0';
1288 intr_t *intr;
1289
1290 if (strlen(name) > sizeof (buf) - 1)
1291 terminate("base type name \"%s\" is too long\n", name);
1292
1293 strncpy(buf, name, sizeof (buf));
1294
1295 for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) {
1296 if (strcmp(c, "signed") == 0)
1297 sign = 1;
1298 else if (strcmp(c, "unsigned") == 0)
1299 sign = 0;
1300 else if (strcmp(c, "long") == 0)
1301 nlong++;
1302 else if (strcmp(c, "char") == 0) {
1303 nchar++;
1304 fmt = 'c';
1305 } else if (strcmp(c, "short") == 0)
1306 nshort++;
1307 else if (strcmp(c, "int") == 0)
1308 nint++;
1309 else {
1310 /*
1311 * If we don't recognize any of the tokens, we'll tell
1312 * the caller to fall back to the dwarf-provided
1313 * encoding information.
1314 */
1315 return (NULL);
1316 }
1317 }
1318
1319 if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
1320 return (NULL);
1321
1322 if (nchar > 0) {
1323 if (nlong > 0 || nshort > 0 || nint > 0)
1324 return (NULL);
1325
1326 base = "char";
1327
1328 } else if (nshort > 0) {
1329 if (nlong > 0)
1330 return (NULL);
1331
1332 base = "short";
1333
1334 } else if (nlong > 0) {
1335 base = "long";
1336
1337 } else {
1338 base = "int";
1339 }
1340
1341 intr = xcalloc(sizeof (intr_t));
1342 intr->intr_type = INTR_INT;
1343 intr->intr_signed = sign;
1344 intr->intr_iformat = fmt;
1345
1346 snprintf(buf, sizeof (buf), "%s%s%s",
1347 (sign ? "" : "unsigned "),
1348 (nlong > 1 ? "long " : ""),
1349 base);
1350
1351 *newp = xstrdup(buf);
1352 return (intr);
1353 }
1354
1355 typedef struct fp_size_map {
1356 size_t fsm_typesz[2]; /* size of {32,64} type */
1357 uint_t fsm_enc[3]; /* CTF_FP_* for {bare,cplx,imagry} type */
1358 } fp_size_map_t;
1359
1360 static const fp_size_map_t fp_encodings[] = {
1361 { { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
1362 { { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
1363 { { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1364 { { 0, 0 }, { 0, 0, 0 } }
1365 };
1366
1367 static uint_t
die_base_type2enc(dwarf_t * dw,Dwarf_Off off,Dwarf_Unsigned enc,size_t sz)1368 die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Unsigned enc, size_t sz)
1369 {
1370 const fp_size_map_t *map = fp_encodings;
1371 uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t);
1372 uint_t mult = 1, col = 0;
1373
1374 if (enc == DW_ATE_complex_float) {
1375 mult = 2;
1376 col = 1;
1377 } else if (enc == DW_ATE_imaginary_float
1378 #ifdef illumos
1379 || enc == DW_ATE_SUN_imaginary_float
1380 #endif
1381 )
1382 col = 2;
1383
1384 while (map->fsm_typesz[szidx] != 0) {
1385 if (map->fsm_typesz[szidx] * mult == sz)
1386 return (map->fsm_enc[col]);
1387 map++;
1388 }
1389
1390 terminate("die %llu: unrecognized real type size %u\n", off, sz);
1391 /*NOTREACHED*/
1392 return (0);
1393 }
1394
1395 static intr_t *
die_base_from_dwarf(dwarf_t * dw,Dwarf_Die base,Dwarf_Off off,size_t sz)1396 die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz)
1397 {
1398 intr_t *intr = xcalloc(sizeof (intr_t));
1399 Dwarf_Unsigned enc;
1400
1401 (void) die_unsigned(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ);
1402
1403 switch (enc) {
1404 case DW_ATE_unsigned:
1405 case DW_ATE_address:
1406 intr->intr_type = INTR_INT;
1407 break;
1408 case DW_ATE_unsigned_char:
1409 intr->intr_type = INTR_INT;
1410 intr->intr_iformat = 'c';
1411 break;
1412 case DW_ATE_signed:
1413 intr->intr_type = INTR_INT;
1414 intr->intr_signed = 1;
1415 break;
1416 case DW_ATE_signed_char:
1417 intr->intr_type = INTR_INT;
1418 intr->intr_signed = 1;
1419 intr->intr_iformat = 'c';
1420 break;
1421 case DW_ATE_boolean:
1422 intr->intr_type = INTR_INT;
1423 intr->intr_signed = 1;
1424 intr->intr_iformat = 'b';
1425 break;
1426 case DW_ATE_float:
1427 case DW_ATE_complex_float:
1428 case DW_ATE_imaginary_float:
1429 #ifdef illumos
1430 case DW_ATE_SUN_imaginary_float:
1431 case DW_ATE_SUN_interval_float:
1432 #endif
1433 intr->intr_type = INTR_REAL;
1434 intr->intr_signed = 1;
1435 intr->intr_fformat = die_base_type2enc(dw, off, enc, sz);
1436 break;
1437 default:
1438 terminate("die %llu: unknown base type encoding 0x%llx\n",
1439 off, enc);
1440 }
1441
1442 return (intr);
1443 }
1444
1445 static void
die_base_create(dwarf_t * dw,Dwarf_Die base,Dwarf_Off off,tdesc_t * tdp)1446 die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp)
1447 {
1448 Dwarf_Unsigned sz;
1449 intr_t *intr;
1450 char *new;
1451
1452 debug(3, "die %llu: creating base type\n", off);
1453
1454 /*
1455 * The compilers have their own clever (internally inconsistent) ideas
1456 * as to what base types should look like. Some times gcc will, for
1457 * example, use DW_ATE_signed_char for char. Other times, however, it
1458 * will use DW_ATE_signed. Needless to say, this causes some problems
1459 * down the road, particularly with merging. We do, however, use the
1460 * DWARF idea of type sizes, as this allows us to avoid caring about
1461 * the data model.
1462 */
1463 (void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ);
1464
1465 if (tdp->t_name == NULL)
1466 terminate("die %llu: base type without name\n", off);
1467
1468 /* XXX make a name parser for float too */
1469 if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) {
1470 /* Found it. We'll use the parsed version */
1471 debug(3, "die %llu: name \"%s\" remapped to \"%s\"\n", off,
1472 tdesc_name(tdp), new);
1473
1474 free(tdp->t_name);
1475 tdp->t_name = new;
1476 } else {
1477 /*
1478 * We didn't recognize the type, so we'll create an intr_t
1479 * based on the DWARF data.
1480 */
1481 debug(3, "die %llu: using dwarf data for base \"%s\"\n", off,
1482 tdesc_name(tdp));
1483
1484 intr = die_base_from_dwarf(dw, base, off, sz);
1485 }
1486
1487 intr->intr_nbits = sz * 8;
1488
1489 tdp->t_type = INTRINSIC;
1490 tdp->t_intr = intr;
1491 tdp->t_size = sz;
1492
1493 tdp->t_flags |= TDESC_F_RESOLVED;
1494 }
1495
1496 static void
die_through_create(dwarf_t * dw,Dwarf_Die die,Dwarf_Off off,tdesc_t * tdp,int type,const char * typename)1497 die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp,
1498 int type, const char *typename)
1499 {
1500 Dwarf_Attribute attr;
1501
1502 debug(3, "die %llu <%llx>: creating %s type %d\n", off, off, typename, type);
1503
1504 tdp->t_type = type;
1505
1506 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1507 tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type);
1508 } else {
1509 tdp->t_tdesc = tdesc_intr_void(dw);
1510 }
1511
1512 if (type == POINTER)
1513 tdp->t_size = dw->dw_ptrsz;
1514
1515 tdp->t_flags |= TDESC_F_RESOLVED;
1516
1517 if (type == TYPEDEF) {
1518 iidesc_t *ii = xcalloc(sizeof (iidesc_t));
1519 ii->ii_type = II_TYPE;
1520 ii->ii_name = xstrdup(tdp->t_name);
1521 ii->ii_dtype = tdp;
1522
1523 iidesc_add(dw->dw_td->td_iihash, ii);
1524 }
1525 }
1526
1527 static void
die_typedef_create(dwarf_t * dw,Dwarf_Die die,Dwarf_Off off,tdesc_t * tdp)1528 die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1529 {
1530 die_through_create(dw, die, off, tdp, TYPEDEF, "typedef");
1531 }
1532
1533 static void
die_const_create(dwarf_t * dw,Dwarf_Die die,Dwarf_Off off,tdesc_t * tdp)1534 die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1535 {
1536 die_through_create(dw, die, off, tdp, CONST, "const");
1537 }
1538
1539 static void
die_pointer_create(dwarf_t * dw,Dwarf_Die die,Dwarf_Off off,tdesc_t * tdp)1540 die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1541 {
1542 die_through_create(dw, die, off, tdp, POINTER, "pointer");
1543 }
1544
1545 static void
die_restrict_create(dwarf_t * dw,Dwarf_Die die,Dwarf_Off off,tdesc_t * tdp)1546 die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1547 {
1548 die_through_create(dw, die, off, tdp, RESTRICT, "restrict");
1549 }
1550
1551 static void
die_volatile_create(dwarf_t * dw,Dwarf_Die die,Dwarf_Off off,tdesc_t * tdp)1552 die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1553 {
1554 die_through_create(dw, die, off, tdp, VOLATILE, "volatile");
1555 }
1556
1557 /*ARGSUSED3*/
1558 static void
die_function_create(dwarf_t * dw,Dwarf_Die die,Dwarf_Off off,tdesc_t * tdp __unused)1559 die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1560 {
1561 Dwarf_Die arg;
1562 Dwarf_Half tag;
1563 iidesc_t *ii;
1564 char *name;
1565
1566 debug(3, "die %llu <%llx>: creating function definition\n", off, off);
1567
1568 /*
1569 * We'll begin by processing any type definition nodes that may be
1570 * lurking underneath this one.
1571 */
1572 for (arg = die_child(dw, die); arg != NULL;
1573 arg = die_sibling(dw, arg)) {
1574 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1575 tag != DW_TAG_variable) {
1576 /* Nested type declaration */
1577 die_create_one(dw, arg);
1578 }
1579 }
1580
1581 if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) {
1582 /*
1583 * We process neither prototypes nor subprograms without
1584 * names.
1585 */
1586 return;
1587 }
1588
1589 ii = xcalloc(sizeof (iidesc_t));
1590 ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN;
1591 ii->ii_name = name;
1592 if (ii->ii_type == II_SFUN)
1593 ii->ii_owner = xstrdup(dw->dw_cuname);
1594
1595 debug(3, "die %llu: function %s is %s\n", off, ii->ii_name,
1596 (ii->ii_type == II_GFUN ? "global" : "static"));
1597
1598 if (die_attr(dw, die, DW_AT_type, 0) != NULL)
1599 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1600 else
1601 ii->ii_dtype = tdesc_intr_void(dw);
1602
1603 for (arg = die_child(dw, die); arg != NULL;
1604 arg = die_sibling(dw, arg)) {
1605 char *name1;
1606
1607 debug(3, "die %llu: looking at sub member at %llu\n",
1608 off, die_off(dw, die));
1609
1610 if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1611 continue;
1612
1613 if ((name1 = die_name(dw, arg)) == NULL) {
1614 terminate("die %llu: func arg %d has no name\n",
1615 off, ii->ii_nargs + 1);
1616 }
1617
1618 if (strcmp(name1, "...") == 0) {
1619 free(name1);
1620 ii->ii_vargs = 1;
1621 continue;
1622 }
1623 free(name1);
1624
1625 ii->ii_nargs++;
1626 }
1627
1628 if (ii->ii_nargs > 0) {
1629 int i;
1630
1631 debug(3, "die %llu: function has %d argument%s\n", off,
1632 ii->ii_nargs, (ii->ii_nargs == 1 ? "" : "s"));
1633
1634 ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs);
1635
1636 for (arg = die_child(dw, die), i = 0;
1637 arg != NULL && i < ii->ii_nargs;
1638 arg = die_sibling(dw, arg)) {
1639 if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1640 continue;
1641
1642 ii->ii_args[i++] = die_lookup_pass1(dw, arg,
1643 DW_AT_type);
1644 }
1645 }
1646
1647 iidesc_add(dw->dw_td->td_iihash, ii);
1648 }
1649
1650 /*ARGSUSED3*/
1651 static void
die_variable_create(dwarf_t * dw,Dwarf_Die die,Dwarf_Off off,tdesc_t * tdp __unused)1652 die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1653 {
1654 iidesc_t *ii;
1655 char *name;
1656
1657 debug(3, "die %llu: creating object definition\n", off);
1658
1659 if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL)
1660 return; /* skip prototypes and nameless objects */
1661
1662 ii = xcalloc(sizeof (iidesc_t));
1663 ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR;
1664 ii->ii_name = name;
1665 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1666 if (ii->ii_type == II_SVAR)
1667 ii->ii_owner = xstrdup(dw->dw_cuname);
1668
1669 iidesc_add(dw->dw_td->td_iihash, ii);
1670 }
1671
1672 /*ARGSUSED2*/
1673 static int
die_fwd_resolve(tdesc_t * fwd,tdesc_t ** fwdp,void * private __unused)1674 die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private __unused)
1675 {
1676 if (fwd->t_flags & TDESC_F_RESOLVED)
1677 return (1);
1678
1679 if (fwd->t_tdesc != NULL) {
1680 debug(3, "tdp %u: unforwarded %s\n", fwd->t_id,
1681 tdesc_name(fwd));
1682 *fwdp = fwd->t_tdesc;
1683 }
1684
1685 fwd->t_flags |= TDESC_F_RESOLVED;
1686
1687 return (1);
1688 }
1689
1690 /*ARGSUSED*/
1691 static void
die_lexblk_descend(dwarf_t * dw,Dwarf_Die die,Dwarf_Off off __unused,tdesc_t * tdp __unused)1692 die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off __unused, tdesc_t *tdp __unused)
1693 {
1694 Dwarf_Die child = die_child(dw, die);
1695
1696 if (child != NULL)
1697 die_create(dw, child);
1698 }
1699
1700 /*
1701 * Used to map the die to a routine which can parse it, using the tag to do the
1702 * mapping. While the processing of most tags entails the creation of a tdesc,
1703 * there are a few which don't - primarily those which result in the creation of
1704 * iidescs which refer to existing tdescs.
1705 */
1706
1707 #define DW_F_NOTDP 0x1 /* Don't create a tdesc for the creator */
1708
1709 typedef struct die_creator {
1710 Dwarf_Half dc_tag;
1711 uint16_t dc_flags;
1712 void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *);
1713 } die_creator_t;
1714
1715 static const die_creator_t die_creators[] = {
1716 { DW_TAG_array_type, 0, die_array_create },
1717 { DW_TAG_enumeration_type, 0, die_enum_create },
1718 { DW_TAG_lexical_block, DW_F_NOTDP, die_lexblk_descend },
1719 { DW_TAG_pointer_type, 0, die_pointer_create },
1720 { DW_TAG_structure_type, 0, die_struct_create },
1721 { DW_TAG_subroutine_type, 0, die_funcptr_create },
1722 { DW_TAG_typedef, 0, die_typedef_create },
1723 { DW_TAG_union_type, 0, die_union_create },
1724 { DW_TAG_base_type, 0, die_base_create },
1725 { DW_TAG_const_type, 0, die_const_create },
1726 { DW_TAG_subprogram, DW_F_NOTDP, die_function_create },
1727 { DW_TAG_variable, DW_F_NOTDP, die_variable_create },
1728 { DW_TAG_volatile_type, 0, die_volatile_create },
1729 { DW_TAG_restrict_type, 0, die_restrict_create },
1730 { 0, 0, NULL }
1731 };
1732
1733 static const die_creator_t *
die_tag2ctor(Dwarf_Half tag)1734 die_tag2ctor(Dwarf_Half tag)
1735 {
1736 const die_creator_t *dc;
1737
1738 for (dc = die_creators; dc->dc_create != NULL; dc++) {
1739 if (dc->dc_tag == tag)
1740 return (dc);
1741 }
1742
1743 return (NULL);
1744 }
1745
1746 static void
die_create_one(dwarf_t * dw,Dwarf_Die die)1747 die_create_one(dwarf_t *dw, Dwarf_Die die)
1748 {
1749 Dwarf_Off off = die_off(dw, die);
1750 const die_creator_t *dc;
1751 Dwarf_Half tag;
1752 tdesc_t *tdp;
1753
1754 debug(3, "die %llu <%llx>: create_one\n", off, off);
1755
1756 if (off > dw->dw_maxoff) {
1757 terminate("illegal die offset %llu (max %llu)\n", off,
1758 dw->dw_maxoff);
1759 }
1760
1761 tag = die_tag(dw, die);
1762
1763 if ((dc = die_tag2ctor(tag)) == NULL) {
1764 debug(2, "die %llu: ignoring tag type %x\n", off, tag);
1765 return;
1766 }
1767
1768 if ((tdp = tdesc_lookup(dw, off)) == NULL &&
1769 !(dc->dc_flags & DW_F_NOTDP)) {
1770 tdp = xcalloc(sizeof (tdesc_t));
1771 tdp->t_id = off;
1772 tdesc_add(dw, tdp);
1773 }
1774
1775 if (tdp != NULL)
1776 tdp->t_name = die_name(dw, die);
1777
1778 dc->dc_create(dw, die, off, tdp);
1779 }
1780
1781 static void
die_create(dwarf_t * dw,Dwarf_Die die)1782 die_create(dwarf_t *dw, Dwarf_Die die)
1783 {
1784 do {
1785 die_create_one(dw, die);
1786 } while ((die = die_sibling(dw, die)) != NULL);
1787 }
1788
1789 static tdtrav_cb_f die_resolvers[] = {
1790 NULL,
1791 NULL, /* intrinsic */
1792 NULL, /* pointer */
1793 die_array_resolve, /* array */
1794 NULL, /* function */
1795 die_sou_resolve, /* struct */
1796 die_sou_resolve, /* union */
1797 die_enum_resolve, /* enum */
1798 die_fwd_resolve, /* forward */
1799 NULL, /* typedef */
1800 NULL, /* typedef unres */
1801 NULL, /* volatile */
1802 NULL, /* const */
1803 NULL, /* restrict */
1804 };
1805
1806 static tdtrav_cb_f die_fail_reporters[] = {
1807 NULL,
1808 NULL, /* intrinsic */
1809 NULL, /* pointer */
1810 die_array_failed, /* array */
1811 NULL, /* function */
1812 die_sou_failed, /* struct */
1813 die_sou_failed, /* union */
1814 NULL, /* enum */
1815 NULL, /* forward */
1816 NULL, /* typedef */
1817 NULL, /* typedef unres */
1818 NULL, /* volatile */
1819 NULL, /* const */
1820 NULL, /* restrict */
1821 };
1822
1823 static void
die_resolve(dwarf_t * dw)1824 die_resolve(dwarf_t *dw)
1825 {
1826 int last = -1;
1827 int pass = 0;
1828
1829 do {
1830 pass++;
1831 dw->dw_nunres = 0;
1832
1833 (void) iitraverse_hash(dw->dw_td->td_iihash,
1834 &dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw);
1835
1836 debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres);
1837
1838 if ((int) dw->dw_nunres == last) {
1839 fprintf(stderr, "%s: failed to resolve the following "
1840 "types:\n", progname);
1841
1842 (void) iitraverse_hash(dw->dw_td->td_iihash,
1843 &dw->dw_td->td_curvgen, NULL, NULL,
1844 die_fail_reporters, dw);
1845
1846 terminate("failed to resolve types\n");
1847 }
1848
1849 last = dw->dw_nunres;
1850
1851 } while (dw->dw_nunres != 0);
1852 }
1853
1854 /*
1855 * Any object containing a function or object symbol at any scope should also
1856 * contain DWARF data.
1857 */
1858 static boolean_t
should_have_dwarf(Elf * elf)1859 should_have_dwarf(Elf *elf)
1860 {
1861 Elf_Scn *scn = NULL;
1862 Elf_Data *data = NULL;
1863 GElf_Shdr shdr;
1864 GElf_Sym sym;
1865 uint32_t symdx = 0;
1866 size_t nsyms = 0;
1867 boolean_t found = B_FALSE;
1868
1869 while ((scn = elf_nextscn(elf, scn)) != NULL) {
1870 gelf_getshdr(scn, &shdr);
1871
1872 if (shdr.sh_type == SHT_SYMTAB) {
1873 found = B_TRUE;
1874 break;
1875 }
1876 }
1877
1878 if (!found)
1879 terminate("cannot convert stripped objects\n");
1880
1881 data = elf_getdata(scn, NULL);
1882 nsyms = shdr.sh_size / shdr.sh_entsize;
1883
1884 for (symdx = 0; symdx < nsyms; symdx++) {
1885 gelf_getsym(data, symdx, &sym);
1886
1887 if ((GELF_ST_TYPE(sym.st_info) == STT_FUNC) ||
1888 (GELF_ST_TYPE(sym.st_info) == STT_TLS) ||
1889 (GELF_ST_TYPE(sym.st_info) == STT_OBJECT)) {
1890 char *name;
1891
1892 name = elf_strptr(elf, shdr.sh_link, sym.st_name);
1893
1894 /* Studio emits these local symbols regardless */
1895 if ((strcmp(name, "Bbss.bss") != 0) &&
1896 (strcmp(name, "Ttbss.bss") != 0) &&
1897 (strcmp(name, "Ddata.data") != 0) &&
1898 (strcmp(name, "Ttdata.data") != 0) &&
1899 (strcmp(name, "Drodata.rodata") != 0))
1900 return (B_TRUE);
1901 }
1902 }
1903
1904 return (B_FALSE);
1905 }
1906
1907 /*ARGSUSED*/
1908 int
dw_read(tdata_t * td,Elf * elf,char * filename __unused)1909 dw_read(tdata_t *td, Elf *elf, char *filename __unused)
1910 {
1911 Dwarf_Unsigned abboff, hdrlen, lang, nxthdr;
1912 Dwarf_Half vers, addrsz, offsz;
1913 Dwarf_Die cu = 0;
1914 Dwarf_Die child = 0;
1915 dwarf_t dw;
1916 char *prod = NULL;
1917 int rc;
1918
1919 bzero(&dw, sizeof (dwarf_t));
1920 dw.dw_td = td;
1921 dw.dw_ptrsz = elf_ptrsz(elf);
1922 dw.dw_mfgtid_last = TID_MFGTID_BASE;
1923 dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp);
1924 dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1925 tdesc_namecmp);
1926 dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1927 tdesc_namecmp);
1928
1929 if ((rc = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw.dw_dw,
1930 &dw.dw_err)) == DW_DLV_NO_ENTRY) {
1931 if (should_have_dwarf(elf)) {
1932 errno = ENOENT;
1933 return (-1);
1934 } else {
1935 return (0);
1936 }
1937 } else if (rc != DW_DLV_OK) {
1938 if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) {
1939 /*
1940 * There's no type data in the DWARF section, but
1941 * libdwarf is too clever to handle that properly.
1942 */
1943 return (0);
1944 }
1945
1946 terminate("failed to initialize DWARF: %s\n",
1947 dwarf_errmsg(dw.dw_err));
1948 }
1949
1950 if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff,
1951 &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_OK) {
1952 if (dw.dw_err.err_error == DW_DLE_NO_ENTRY)
1953 exit(0);
1954 else
1955 terminate("rc = %d %s\n", rc, dwarf_errmsg(dw.dw_err));
1956 }
1957 if ((cu = die_sibling(&dw, NULL)) == NULL ||
1958 (((child = die_child(&dw, cu)) == NULL) &&
1959 should_have_dwarf(elf))) {
1960 terminate("file does not contain dwarf type data "
1961 "(try compiling with -g)\n");
1962 } else if (child == NULL) {
1963 return (0);
1964 }
1965
1966 dw.dw_maxoff = nxthdr - 1;
1967
1968 if (dw.dw_maxoff > TID_FILEMAX)
1969 terminate("file contains too many types\n");
1970
1971 debug(1, "DWARF version: %d\n", vers);
1972 if (vers < 2 || vers > 4) {
1973 terminate("file contains incompatible version %d DWARF code "
1974 "(version 2, 3 or 4 required)\n", vers);
1975 }
1976
1977 if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) {
1978 debug(1, "DWARF emitter: %s\n", prod);
1979 free(prod);
1980 }
1981
1982 if (dwarf_attrval_unsigned(cu, DW_AT_language, &lang, &dw.dw_err) == 0)
1983 switch (lang) {
1984 case DW_LANG_C:
1985 case DW_LANG_C89:
1986 case DW_LANG_C99:
1987 case DW_LANG_C11:
1988 case DW_LANG_C_plus_plus:
1989 case DW_LANG_C_plus_plus_03:
1990 case DW_LANG_C_plus_plus_11:
1991 case DW_LANG_C_plus_plus_14:
1992 case DW_LANG_Mips_Assembler:
1993 break;
1994 default:
1995 terminate("file contains DWARF for unsupported "
1996 "language %#x", lang);
1997 }
1998 else
1999 warning("die %llu: failed to get language attribute: %s\n",
2000 die_off(&dw, cu), dwarf_errmsg(dw.dw_err));
2001
2002 if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) {
2003 char *base = xstrdup(basename(dw.dw_cuname));
2004 free(dw.dw_cuname);
2005 dw.dw_cuname = base;
2006
2007 debug(1, "CU name: %s\n", dw.dw_cuname);
2008 }
2009
2010 if ((child = die_child(&dw, cu)) != NULL)
2011 die_create(&dw, child);
2012
2013 if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff,
2014 &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY)
2015 terminate("multiple compilation units not supported\n");
2016
2017 (void) dwarf_finish(dw.dw_dw, &dw.dw_err);
2018
2019 die_resolve(&dw);
2020
2021 cvt_fixups(td, dw.dw_ptrsz);
2022
2023 /* leak the dwarf_t */
2024
2025 return (0);
2026 }
2027