1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
26 */
27
28 #include <sys/types.h>
29 #include <sys/t_lock.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/conf.h>
34 #include <sys/cred.h>
35 #include <sys/kmem.h>
36 #include <sys/kmem_impl.h>
37 #include <sys/sysmacros.h>
38 #include <sys/vfs.h>
39 #include <sys/vnode.h>
40 #include <sys/debug.h>
41 #include <sys/errno.h>
42 #include <sys/time.h>
43 #include <sys/file.h>
44 #include <sys/open.h>
45 #include <sys/user.h>
46 #include <sys/termios.h>
47 #include <sys/stream.h>
48 #include <sys/strsubr.h>
49 #include <sys/strsun.h>
50 #include <sys/suntpi.h>
51 #include <sys/ddi.h>
52 #include <sys/esunddi.h>
53 #include <sys/flock.h>
54 #include <sys/modctl.h>
55 #include <sys/vtrace.h>
56 #include <sys/cmn_err.h>
57 #include <sys/pathname.h>
58
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sockio.h>
62 #include <netinet/in.h>
63 #include <sys/un.h>
64 #include <sys/strsun.h>
65
66 #include <sys/tiuser.h>
67 #define _SUN_TPI_VERSION 2
68 #include <sys/tihdr.h>
69 #include <sys/timod.h> /* TI_GETMYNAME, TI_GETPEERNAME */
70
71 #include <c2/audit.h>
72
73 #include <inet/common.h>
74 #include <inet/ip.h>
75 #include <inet/ip6.h>
76 #include <inet/tcp.h>
77 #include <inet/udp_impl.h>
78
79 #include <sys/zone.h>
80
81 #include <fs/sockfs/nl7c.h>
82 #include <fs/sockfs/nl7curi.h>
83
84 #include <fs/sockfs/sockcommon.h>
85 #include <fs/sockfs/socktpi.h>
86 #include <fs/sockfs/socktpi_impl.h>
87
88 /*
89 * Possible failures when memory can't be allocated. The documented behavior:
90 *
91 * 5.5: 4.X: XNET:
92 * accept: ENOMEM/ENOSR/EINTR - (EINTR) ENOMEM/ENOBUFS/ENOSR/
93 * EINTR
94 * (4.X does not document EINTR but returns it)
95 * bind: ENOSR - ENOBUFS/ENOSR
96 * connect: EINTR EINTR ENOBUFS/ENOSR/EINTR
97 * getpeername: ENOMEM/ENOSR ENOBUFS (-) ENOBUFS/ENOSR
98 * getsockname: ENOMEM/ENOSR ENOBUFS (-) ENOBUFS/ENOSR
99 * (4.X getpeername and getsockname do not fail in practice)
100 * getsockopt: ENOMEM/ENOSR - ENOBUFS/ENOSR
101 * listen: - - ENOBUFS
102 * recv: ENOMEM/ENOSR/EINTR EINTR ENOBUFS/ENOMEM/ENOSR/
103 * EINTR
104 * send: ENOMEM/ENOSR/EINTR ENOBUFS/EINTR ENOBUFS/ENOMEM/ENOSR/
105 * EINTR
106 * setsockopt: ENOMEM/ENOSR - ENOBUFS/ENOMEM/ENOSR
107 * shutdown: ENOMEM/ENOSR - ENOBUFS/ENOSR
108 * socket: ENOMEM/ENOSR ENOBUFS ENOBUFS/ENOMEM/ENOSR
109 * socketpair: ENOMEM/ENOSR - ENOBUFS/ENOMEM/ENOSR
110 *
111 * Resolution. When allocation fails:
112 * recv: return EINTR
113 * send: return EINTR
114 * connect, accept: EINTR
115 * bind, listen, shutdown (unbind, unix_close, disconnect): sleep
116 * socket, socketpair: ENOBUFS
117 * getpeername, getsockname: sleep
118 * getsockopt, setsockopt: sleep
119 */
120
121 #ifdef SOCK_TEST
122 /*
123 * Variables that make sockfs do something other than the standard TPI
124 * for the AF_INET transports.
125 *
126 * solisten_tpi_tcp:
127 * TCP can handle a O_T_BIND_REQ with an increased backlog even though
128 * the transport is already bound. This is needed to avoid loosing the
129 * port number should listen() do a T_UNBIND_REQ followed by a
130 * O_T_BIND_REQ.
131 *
132 * soconnect_tpi_udp:
133 * UDP and ICMP can handle a T_CONN_REQ.
134 * This is needed to make the sequence of connect(), getsockname()
135 * return the local IP address used to send packets to the connected to
136 * destination.
137 *
138 * soconnect_tpi_tcp:
139 * TCP can handle a T_CONN_REQ without seeing a O_T_BIND_REQ.
140 * Set this to non-zero to send TPI conformant messages to TCP in this
141 * respect. This is a performance optimization.
142 *
143 * soaccept_tpi_tcp:
144 * TCP can handle a T_CONN_REQ without the acceptor being bound.
145 * This is a performance optimization that has been picked up in XTI.
146 *
147 * soaccept_tpi_multioptions:
148 * When inheriting SOL_SOCKET options from the listener to the accepting
149 * socket send them as a single message for AF_INET{,6}.
150 */
151 int solisten_tpi_tcp = 0;
152 int soconnect_tpi_udp = 0;
153 int soconnect_tpi_tcp = 0;
154 int soaccept_tpi_tcp = 0;
155 int soaccept_tpi_multioptions = 1;
156 #else /* SOCK_TEST */
157 #define soconnect_tpi_tcp 0
158 #define soconnect_tpi_udp 0
159 #define solisten_tpi_tcp 0
160 #define soaccept_tpi_tcp 0
161 #define soaccept_tpi_multioptions 1
162 #endif /* SOCK_TEST */
163
164 #ifdef SOCK_TEST
165 extern int do_useracc;
166 extern clock_t sock_test_timelimit;
167 #endif /* SOCK_TEST */
168
169 /*
170 * Some X/Open added checks might have to be backed out to keep SunOS 4.X
171 * applications working. Turn on this flag to disable these checks.
172 */
173 int xnet_skip_checks = 0;
174 int xnet_check_print = 0;
175 int xnet_truncate_print = 0;
176
177 static void sotpi_destroy(struct sonode *);
178 static struct sonode *sotpi_create(struct sockparams *, int, int, int, int,
179 int, int *, cred_t *cr);
180
181 static boolean_t sotpi_info_create(struct sonode *, int);
182 static void sotpi_info_init(struct sonode *);
183 static void sotpi_info_fini(struct sonode *);
184 static void sotpi_info_destroy(struct sonode *);
185
186 /*
187 * Do direct function call to the transport layer below; this would
188 * also allow the transport to utilize read-side synchronous stream
189 * interface if necessary. This is a /etc/system tunable that must
190 * not be modified on a running system. By default this is enabled
191 * for performance reasons and may be disabled for debugging purposes.
192 */
193 boolean_t socktpi_direct = B_TRUE;
194
195 static struct kmem_cache *socktpi_cache, *socktpi_unix_cache;
196
197 extern void sigintr(k_sigset_t *, int);
198 extern void sigunintr(k_sigset_t *);
199
200 static int sotpi_unbind(struct sonode *, int);
201
202 /* TPI sockfs sonode operations */
203 int sotpi_init(struct sonode *, struct sonode *, struct cred *,
204 int);
205 static int sotpi_accept(struct sonode *, int, struct cred *,
206 struct sonode **);
207 static int sotpi_bind(struct sonode *, struct sockaddr *, socklen_t,
208 int, struct cred *);
209 static int sotpi_listen(struct sonode *, int, struct cred *);
210 static int sotpi_connect(struct sonode *, struct sockaddr *,
211 socklen_t, int, int, struct cred *);
212 extern int sotpi_recvmsg(struct sonode *, struct nmsghdr *,
213 struct uio *, struct cred *);
214 static int sotpi_sendmsg(struct sonode *, struct nmsghdr *,
215 struct uio *, struct cred *);
216 static int sotpi_sendmblk(struct sonode *, struct nmsghdr *, int,
217 struct cred *, mblk_t **);
218 static int sosend_dgramcmsg(struct sonode *, struct sockaddr *, socklen_t,
219 struct uio *, void *, t_uscalar_t, int);
220 static int sodgram_direct(struct sonode *, struct sockaddr *,
221 socklen_t, struct uio *, int);
222 extern int sotpi_getpeername(struct sonode *, struct sockaddr *,
223 socklen_t *, boolean_t, struct cred *);
224 static int sotpi_getsockname(struct sonode *, struct sockaddr *,
225 socklen_t *, struct cred *);
226 static int sotpi_shutdown(struct sonode *, int, struct cred *);
227 extern int sotpi_getsockopt(struct sonode *, int, int, void *,
228 socklen_t *, int, struct cred *);
229 extern int sotpi_setsockopt(struct sonode *, int, int, const void *,
230 socklen_t, struct cred *);
231 static int sotpi_ioctl(struct sonode *, int, intptr_t, int, struct cred *,
232 int32_t *);
233 static int socktpi_plumbioctl(struct vnode *, int, intptr_t, int,
234 struct cred *, int32_t *);
235 static int sotpi_poll(struct sonode *, short, int, short *,
236 struct pollhead **);
237 static int sotpi_close(struct sonode *, int, struct cred *);
238
239 static int i_sotpi_info_constructor(sotpi_info_t *);
240 static void i_sotpi_info_destructor(sotpi_info_t *);
241
242 sonodeops_t sotpi_sonodeops = {
243 sotpi_init, /* sop_init */
244 sotpi_accept, /* sop_accept */
245 sotpi_bind, /* sop_bind */
246 sotpi_listen, /* sop_listen */
247 sotpi_connect, /* sop_connect */
248 sotpi_recvmsg, /* sop_recvmsg */
249 sotpi_sendmsg, /* sop_sendmsg */
250 sotpi_sendmblk, /* sop_sendmblk */
251 sotpi_getpeername, /* sop_getpeername */
252 sotpi_getsockname, /* sop_getsockname */
253 sotpi_shutdown, /* sop_shutdown */
254 sotpi_getsockopt, /* sop_getsockopt */
255 sotpi_setsockopt, /* sop_setsockopt */
256 sotpi_ioctl, /* sop_ioctl */
257 sotpi_poll, /* sop_poll */
258 sotpi_close, /* sop_close */
259 };
260
261 /*
262 * Return a TPI socket vnode.
263 *
264 * Note that sockets assume that the driver will clone (either itself
265 * or by using the clone driver) i.e. a socket() call will always
266 * result in a new vnode being created.
267 */
268
269 /*
270 * Common create code for socket and accept. If tso is set the values
271 * from that node is used instead of issuing a T_INFO_REQ.
272 */
273
274 /* ARGSUSED */
275 static struct sonode *
sotpi_create(struct sockparams * sp,int family,int type,int protocol,int version,int sflags,int * errorp,cred_t * cr)276 sotpi_create(struct sockparams *sp, int family, int type, int protocol,
277 int version, int sflags, int *errorp, cred_t *cr)
278 {
279 struct sonode *so;
280 kmem_cache_t *cp;
281 int sfamily = family;
282
283 ASSERT(sp->sp_sdev_info.sd_vnode != NULL);
284
285 if (family == AF_NCA) {
286 /*
287 * The request is for an NCA socket so for NL7C use the
288 * INET domain instead and mark NL7C_AF_NCA below.
289 */
290 family = AF_INET;
291 /*
292 * NL7C is not supported in the non-global zone,
293 * we enforce this restriction here.
294 */
295 if (getzoneid() != GLOBAL_ZONEID) {
296 *errorp = ENOTSUP;
297 return (NULL);
298 }
299 }
300
301 /*
302 * to be compatible with old tpi socket implementation ignore
303 * sleep flag (sflags) passed in
304 */
305 cp = (family == AF_UNIX) ? socktpi_unix_cache : socktpi_cache;
306 so = kmem_cache_alloc(cp, KM_SLEEP);
307 if (so == NULL) {
308 *errorp = ENOMEM;
309 return (NULL);
310 }
311
312 sonode_init(so, sp, family, type, protocol, &sotpi_sonodeops);
313 sotpi_info_init(so);
314
315 if (sfamily == AF_NCA) {
316 SOTOTPI(so)->sti_nl7c_flags = NL7C_AF_NCA;
317 }
318
319 if (version == SOV_DEFAULT)
320 version = so_default_version;
321
322 so->so_version = (short)version;
323 *errorp = 0;
324
325 return (so);
326 }
327
328 static void
sotpi_destroy(struct sonode * so)329 sotpi_destroy(struct sonode *so)
330 {
331 kmem_cache_t *cp;
332 struct sockparams *origsp;
333
334 /*
335 * If there is a new dealloc function (ie. smod_destroy_func),
336 * then it should check the correctness of the ops.
337 */
338
339 ASSERT(so->so_ops == &sotpi_sonodeops);
340
341 origsp = SOTOTPI(so)->sti_orig_sp;
342
343 sotpi_info_fini(so);
344
345 if (so->so_state & SS_FALLBACK_COMP) {
346 /*
347 * A fallback happend, which means that a sotpi_info_t struct
348 * was allocated (as opposed to being allocated from the TPI
349 * sonode cache. Therefore we explicitly free the struct
350 * here.
351 */
352 sotpi_info_destroy(so);
353 ASSERT(origsp != NULL);
354
355 origsp->sp_smod_info->smod_sock_destroy_func(so);
356 SOCKPARAMS_DEC_REF(origsp);
357 } else {
358 sonode_fini(so);
359 cp = (so->so_family == AF_UNIX) ? socktpi_unix_cache :
360 socktpi_cache;
361 kmem_cache_free(cp, so);
362 }
363 }
364
365 /* ARGSUSED1 */
366 int
sotpi_init(struct sonode * so,struct sonode * tso,struct cred * cr,int flags)367 sotpi_init(struct sonode *so, struct sonode *tso, struct cred *cr, int flags)
368 {
369 major_t maj;
370 dev_t newdev;
371 struct vnode *vp;
372 int error = 0;
373 struct stdata *stp;
374
375 sotpi_info_t *sti = SOTOTPI(so);
376
377 dprint(1, ("sotpi_init()\n"));
378
379 /*
380 * over write the sleep flag passed in but that is ok
381 * as tpi socket does not honor sleep flag.
382 */
383 flags |= FREAD|FWRITE;
384
385 /*
386 * Record in so_flag that it is a clone.
387 */
388 if (getmajor(sti->sti_dev) == clone_major)
389 so->so_flag |= SOCLONE;
390
391 if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM) &&
392 (so->so_family == AF_INET || so->so_family == AF_INET6) &&
393 (so->so_protocol == IPPROTO_TCP || so->so_protocol == IPPROTO_UDP ||
394 so->so_protocol == IPPROTO_IP)) {
395 /* Tell tcp or udp that it's talking to sockets */
396 flags |= SO_SOCKSTR;
397
398 /*
399 * Here we indicate to socktpi_open() our attempt to
400 * make direct calls between sockfs and transport.
401 * The final decision is left to socktpi_open().
402 */
403 sti->sti_direct = 1;
404
405 ASSERT(so->so_type != SOCK_DGRAM || tso == NULL);
406 if (so->so_type == SOCK_STREAM && tso != NULL) {
407 if (SOTOTPI(tso)->sti_direct) {
408 /*
409 * Inherit sti_direct from listener and pass
410 * SO_ACCEPTOR open flag to tcp, indicating
411 * that this is an accept fast-path instance.
412 */
413 flags |= SO_ACCEPTOR;
414 } else {
415 /*
416 * sti_direct is not set on listener, meaning
417 * that the listener has been converted from
418 * a socket to a stream. Ensure that the
419 * acceptor inherits these settings.
420 */
421 sti->sti_direct = 0;
422 flags &= ~SO_SOCKSTR;
423 }
424 }
425 }
426
427 /*
428 * Tell local transport that it is talking to sockets.
429 */
430 if (so->so_family == AF_UNIX) {
431 flags |= SO_SOCKSTR;
432 }
433
434 vp = SOTOV(so);
435 newdev = vp->v_rdev;
436 maj = getmajor(newdev);
437 ASSERT(STREAMSTAB(maj));
438
439 error = stropen(vp, &newdev, flags, cr);
440
441 stp = vp->v_stream;
442 if (error == 0) {
443 if (so->so_flag & SOCLONE)
444 ASSERT(newdev != vp->v_rdev);
445 mutex_enter(&so->so_lock);
446 sti->sti_dev = newdev;
447 vp->v_rdev = newdev;
448 mutex_exit(&so->so_lock);
449
450 if (stp->sd_flag & STRISTTY) {
451 /*
452 * this is a post SVR4 tty driver - a socket can not
453 * be a controlling terminal. Fail the open.
454 */
455 (void) sotpi_close(so, flags, cr);
456 return (ENOTTY); /* XXX */
457 }
458
459 ASSERT(stp->sd_wrq != NULL);
460 sti->sti_provinfo = tpi_findprov(stp->sd_wrq);
461
462 /*
463 * If caller is interested in doing direct function call
464 * interface to/from transport module, probe the module
465 * directly beneath the streamhead to see if it qualifies.
466 *
467 * We turn off the direct interface when qualifications fail.
468 * In the acceptor case, we simply turn off the sti_direct
469 * flag on the socket. We do the fallback after the accept
470 * has completed, before the new socket is returned to the
471 * application.
472 */
473 if (sti->sti_direct) {
474 queue_t *tq = stp->sd_wrq->q_next;
475
476 /*
477 * sti_direct is currently supported and tested
478 * only for tcp/udp; this is the main reason to
479 * have the following assertions.
480 */
481 ASSERT(so->so_family == AF_INET ||
482 so->so_family == AF_INET6);
483 ASSERT(so->so_protocol == IPPROTO_UDP ||
484 so->so_protocol == IPPROTO_TCP ||
485 so->so_protocol == IPPROTO_IP);
486 ASSERT(so->so_type == SOCK_DGRAM ||
487 so->so_type == SOCK_STREAM);
488
489 /*
490 * Abort direct call interface if the module directly
491 * underneath the stream head is not defined with the
492 * _D_DIRECT flag. This could happen in the tcp or
493 * udp case, when some other module is autopushed
494 * above it, or for some reasons the expected module
495 * isn't purely D_MP (which is the main requirement).
496 */
497 if (!socktpi_direct || !(tq->q_flag & _QDIRECT) ||
498 !(_OTHERQ(tq)->q_flag & _QDIRECT)) {
499 int rval;
500
501 /* Continue on without direct calls */
502 sti->sti_direct = 0;
503
504 /*
505 * Cannot issue ioctl on fallback socket since
506 * there is no conn associated with the queue.
507 * The fallback downcall will notify the proto
508 * of the change.
509 */
510 if (!(flags & SO_ACCEPTOR) &&
511 !(flags & SO_FALLBACK)) {
512 if ((error = strioctl(vp,
513 _SIOCSOCKFALLBACK, 0, 0, K_TO_K,
514 cr, &rval)) != 0) {
515 (void) sotpi_close(so, flags,
516 cr);
517 return (error);
518 }
519 }
520 }
521 }
522
523 if (flags & SO_FALLBACK) {
524 /*
525 * The stream created does not have a conn.
526 * do stream set up after conn has been assigned
527 */
528 return (error);
529 }
530 if (error = so_strinit(so, tso)) {
531 (void) sotpi_close(so, flags, cr);
532 return (error);
533 }
534
535 /* Wildcard */
536 if (so->so_protocol != so->so_sockparams->sp_protocol) {
537 int protocol = so->so_protocol;
538 /*
539 * Issue SO_PROTOTYPE setsockopt.
540 */
541 error = sotpi_setsockopt(so, SOL_SOCKET, SO_PROTOTYPE,
542 &protocol, (t_uscalar_t)sizeof (protocol), cr);
543 if (error != 0) {
544 (void) sotpi_close(so, flags, cr);
545 /*
546 * Setsockopt often fails with ENOPROTOOPT but
547 * socket() should fail with
548 * EPROTONOSUPPORT/EPROTOTYPE.
549 */
550 return (EPROTONOSUPPORT);
551 }
552 }
553
554 } else {
555 /*
556 * While the same socket can not be reopened (unlike specfs)
557 * the stream head sets STREOPENFAIL when the autopush fails.
558 */
559 if ((stp != NULL) &&
560 (stp->sd_flag & STREOPENFAIL)) {
561 /*
562 * Open failed part way through.
563 */
564 mutex_enter(&stp->sd_lock);
565 stp->sd_flag &= ~STREOPENFAIL;
566 mutex_exit(&stp->sd_lock);
567 (void) sotpi_close(so, flags, cr);
568 return (error);
569 /*NOTREACHED*/
570 }
571 ASSERT(stp == NULL);
572 }
573 TRACE_4(TR_FAC_SOCKFS, TR_SOCKFS_OPEN,
574 "sockfs open:maj %d vp %p so %p error %d",
575 maj, vp, so, error);
576 return (error);
577 }
578
579 /*
580 * Bind the socket to an unspecified address in sockfs only.
581 * Used for TCP/UDP transports where we know that the O_T_BIND_REQ isn't
582 * required in all cases.
583 */
584 static void
so_automatic_bind(struct sonode * so)585 so_automatic_bind(struct sonode *so)
586 {
587 sotpi_info_t *sti = SOTOTPI(so);
588 ASSERT(so->so_family == AF_INET || so->so_family == AF_INET6);
589
590 ASSERT(MUTEX_HELD(&so->so_lock));
591 ASSERT(!(so->so_state & SS_ISBOUND));
592 ASSERT(sti->sti_unbind_mp);
593
594 ASSERT(sti->sti_laddr_len <= sti->sti_laddr_maxlen);
595 bzero(sti->sti_laddr_sa, sti->sti_laddr_len);
596 sti->sti_laddr_sa->sa_family = so->so_family;
597 so->so_state |= SS_ISBOUND;
598 }
599
600
601 /*
602 * bind the socket.
603 *
604 * If the socket is already bound and none of _SOBIND_SOCKBSD or _SOBIND_XPG4_2
605 * are passed in we allow rebinding. Note that for backwards compatibility
606 * even "svr4" sockets pass in _SOBIND_SOCKBSD/SOV_SOCKBSD to sobind/bind.
607 * Thus the rebinding code is currently not executed.
608 *
609 * The constraints for rebinding are:
610 * - it is a SOCK_DGRAM, or
611 * - it is a SOCK_STREAM/SOCK_SEQPACKET that has not been connected
612 * and no listen() has been done.
613 * This rebinding code was added based on some language in the XNET book
614 * about not returning EINVAL it the protocol allows rebinding. However,
615 * this language is not present in the Posix socket draft. Thus maybe the
616 * rebinding logic should be deleted from the source.
617 *
618 * A null "name" can be used to unbind the socket if:
619 * - it is a SOCK_DGRAM, or
620 * - it is a SOCK_STREAM/SOCK_SEQPACKET that has not been connected
621 * and no listen() has been done.
622 */
623 /* ARGSUSED */
624 static int
sotpi_bindlisten(struct sonode * so,struct sockaddr * name,socklen_t namelen,int backlog,int flags,struct cred * cr)625 sotpi_bindlisten(struct sonode *so, struct sockaddr *name,
626 socklen_t namelen, int backlog, int flags, struct cred *cr)
627 {
628 struct T_bind_req bind_req;
629 struct T_bind_ack *bind_ack;
630 int error = 0;
631 mblk_t *mp;
632 void *addr;
633 t_uscalar_t addrlen;
634 int unbind_on_err = 1;
635 boolean_t clear_acceptconn_on_err = B_FALSE;
636 boolean_t restore_backlog_on_err = B_FALSE;
637 int save_so_backlog;
638 t_scalar_t PRIM_type = O_T_BIND_REQ;
639 boolean_t tcp_udp_xport;
640 void *nl7c = NULL;
641 sotpi_info_t *sti = SOTOTPI(so);
642
643 dprintso(so, 1, ("sotpi_bindlisten(%p, %p, %d, %d, 0x%x) %s\n",
644 (void *)so, (void *)name, namelen, backlog, flags,
645 pr_state(so->so_state, so->so_mode)));
646
647 tcp_udp_xport = so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM;
648
649 if (!(flags & _SOBIND_LOCK_HELD)) {
650 mutex_enter(&so->so_lock);
651 so_lock_single(so); /* Set SOLOCKED */
652 } else {
653 ASSERT(MUTEX_HELD(&so->so_lock));
654 ASSERT(so->so_flag & SOLOCKED);
655 }
656
657 /*
658 * Make sure that there is a preallocated unbind_req message
659 * before binding. This message allocated when the socket is
660 * created but it might be have been consumed.
661 */
662 if (sti->sti_unbind_mp == NULL) {
663 dprintso(so, 1, ("sobind: allocating unbind_req\n"));
664 /* NOTE: holding so_lock while sleeping */
665 sti->sti_unbind_mp =
666 soallocproto(sizeof (struct T_unbind_req), _ALLOC_SLEEP,
667 cr);
668 }
669
670 if (flags & _SOBIND_REBIND) {
671 /*
672 * Called from solisten after doing an sotpi_unbind() or
673 * potentially without the unbind (latter for AF_INET{,6}).
674 */
675 ASSERT(name == NULL && namelen == 0);
676
677 if (so->so_family == AF_UNIX) {
678 ASSERT(sti->sti_ux_bound_vp);
679 addr = &sti->sti_ux_laddr;
680 addrlen = (t_uscalar_t)sizeof (sti->sti_ux_laddr);
681 dprintso(so, 1, ("sobind rebind UNIX: addrlen %d, "
682 "addr 0x%p, vp %p\n",
683 addrlen,
684 (void *)((struct so_ux_addr *)addr)->soua_vp,
685 (void *)sti->sti_ux_bound_vp));
686 } else {
687 addr = sti->sti_laddr_sa;
688 addrlen = (t_uscalar_t)sti->sti_laddr_len;
689 }
690 } else if (flags & _SOBIND_UNSPEC) {
691 ASSERT(name == NULL && namelen == 0);
692
693 /*
694 * The caller checked SS_ISBOUND but not necessarily
695 * under so_lock
696 */
697 if (so->so_state & SS_ISBOUND) {
698 /* No error */
699 goto done;
700 }
701
702 /* Set an initial local address */
703 switch (so->so_family) {
704 case AF_UNIX:
705 /*
706 * Use an address with same size as struct sockaddr
707 * just like BSD.
708 */
709 sti->sti_laddr_len =
710 (socklen_t)sizeof (struct sockaddr);
711 ASSERT(sti->sti_laddr_len <= sti->sti_laddr_maxlen);
712 bzero(sti->sti_laddr_sa, sti->sti_laddr_len);
713 sti->sti_laddr_sa->sa_family = so->so_family;
714
715 /*
716 * Pass down an address with the implicit bind
717 * magic number and the rest all zeros.
718 * The transport will return a unique address.
719 */
720 sti->sti_ux_laddr.soua_vp = NULL;
721 sti->sti_ux_laddr.soua_magic = SOU_MAGIC_IMPLICIT;
722 addr = &sti->sti_ux_laddr;
723 addrlen = (t_uscalar_t)sizeof (sti->sti_ux_laddr);
724 break;
725
726 case AF_INET:
727 case AF_INET6:
728 /*
729 * An unspecified bind in TPI has a NULL address.
730 * Set the address in sockfs to have the sa_family.
731 */
732 sti->sti_laddr_len = (so->so_family == AF_INET) ?
733 (socklen_t)sizeof (sin_t) :
734 (socklen_t)sizeof (sin6_t);
735 ASSERT(sti->sti_laddr_len <= sti->sti_laddr_maxlen);
736 bzero(sti->sti_laddr_sa, sti->sti_laddr_len);
737 sti->sti_laddr_sa->sa_family = so->so_family;
738 addr = NULL;
739 addrlen = 0;
740 break;
741
742 default:
743 /*
744 * An unspecified bind in TPI has a NULL address.
745 * Set the address in sockfs to be zero length.
746 *
747 * Can not assume there is a sa_family for all
748 * protocol families. For example, AF_X25 does not
749 * have a family field.
750 */
751 bzero(sti->sti_laddr_sa, sti->sti_laddr_len);
752 sti->sti_laddr_len = 0; /* XXX correct? */
753 addr = NULL;
754 addrlen = 0;
755 break;
756 }
757
758 } else {
759 if (so->so_state & SS_ISBOUND) {
760 /*
761 * If it is ok to rebind the socket, first unbind
762 * with the transport. A rebind to the NULL address
763 * is interpreted as an unbind.
764 * Note that a bind to NULL in BSD does unbind the
765 * socket but it fails with EINVAL.
766 * Note that regular sockets set SOV_SOCKBSD i.e.
767 * _SOBIND_SOCKBSD gets set here hence no type of
768 * socket does currently allow rebinding.
769 *
770 * If the name is NULL just do an unbind.
771 */
772 if (flags & (_SOBIND_SOCKBSD|_SOBIND_XPG4_2) &&
773 name != NULL) {
774 error = EINVAL;
775 unbind_on_err = 0;
776 eprintsoline(so, error);
777 goto done;
778 }
779 if ((so->so_mode & SM_CONNREQUIRED) &&
780 (so->so_state & SS_CANTREBIND)) {
781 error = EINVAL;
782 unbind_on_err = 0;
783 eprintsoline(so, error);
784 goto done;
785 }
786 error = sotpi_unbind(so, 0);
787 if (error) {
788 eprintsoline(so, error);
789 goto done;
790 }
791 ASSERT(!(so->so_state & SS_ISBOUND));
792 if (name == NULL) {
793 so->so_state &=
794 ~(SS_ISCONNECTED|SS_ISCONNECTING);
795 goto done;
796 }
797 }
798
799 /* X/Open requires this check */
800 if ((so->so_state & SS_CANTSENDMORE) && !xnet_skip_checks) {
801 if (xnet_check_print) {
802 printf("sockfs: X/Open bind state check "
803 "caused EINVAL\n");
804 }
805 error = EINVAL;
806 goto done;
807 }
808
809 switch (so->so_family) {
810 case AF_UNIX:
811 /*
812 * All AF_UNIX addresses are nul terminated
813 * when copied (copyin_name) in so the minimum
814 * length is 3 bytes.
815 */
816 if (name == NULL ||
817 (ssize_t)namelen <= sizeof (short) + 1) {
818 error = EISDIR;
819 eprintsoline(so, error);
820 goto done;
821 }
822 /*
823 * Verify so_family matches the bound family.
824 * BSD does not check this for AF_UNIX resulting
825 * in funny mknods.
826 */
827 if (name->sa_family != so->so_family) {
828 error = EAFNOSUPPORT;
829 goto done;
830 }
831 break;
832 case AF_INET:
833 if (name == NULL) {
834 error = EINVAL;
835 eprintsoline(so, error);
836 goto done;
837 }
838 if ((size_t)namelen != sizeof (sin_t)) {
839 error = name->sa_family != so->so_family ?
840 EAFNOSUPPORT : EINVAL;
841 eprintsoline(so, error);
842 goto done;
843 }
844 if ((flags & _SOBIND_XPG4_2) &&
845 (name->sa_family != so->so_family)) {
846 /*
847 * This check has to be made for X/Open
848 * sockets however application failures have
849 * been observed when it is applied to
850 * all sockets.
851 */
852 error = EAFNOSUPPORT;
853 eprintsoline(so, error);
854 goto done;
855 }
856 /*
857 * Force a zero sa_family to match so_family.
858 *
859 * Some programs like inetd(1M) don't set the
860 * family field. Other programs leave
861 * sin_family set to garbage - SunOS 4.X does
862 * not check the family field on a bind.
863 * We use the family field that
864 * was passed in to the socket() call.
865 */
866 name->sa_family = so->so_family;
867 break;
868
869 case AF_INET6: {
870 #ifdef DEBUG
871 sin6_t *sin6 = (sin6_t *)name;
872 #endif /* DEBUG */
873
874 if (name == NULL) {
875 error = EINVAL;
876 eprintsoline(so, error);
877 goto done;
878 }
879 if ((size_t)namelen != sizeof (sin6_t)) {
880 error = name->sa_family != so->so_family ?
881 EAFNOSUPPORT : EINVAL;
882 eprintsoline(so, error);
883 goto done;
884 }
885 if (name->sa_family != so->so_family) {
886 /*
887 * With IPv6 we require the family to match
888 * unlike in IPv4.
889 */
890 error = EAFNOSUPPORT;
891 eprintsoline(so, error);
892 goto done;
893 }
894 #ifdef DEBUG
895 /*
896 * Verify that apps don't forget to clear
897 * sin6_scope_id etc
898 */
899 if (sin6->sin6_scope_id != 0 &&
900 !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) {
901 zcmn_err(getzoneid(), CE_WARN,
902 "bind with uninitialized sin6_scope_id "
903 "(%d) on socket. Pid = %d\n",
904 (int)sin6->sin6_scope_id,
905 (int)curproc->p_pid);
906 }
907 if (sin6->__sin6_src_id != 0) {
908 zcmn_err(getzoneid(), CE_WARN,
909 "bind with uninitialized __sin6_src_id "
910 "(%d) on socket. Pid = %d\n",
911 (int)sin6->__sin6_src_id,
912 (int)curproc->p_pid);
913 }
914 #endif /* DEBUG */
915 break;
916 }
917 default:
918 /*
919 * Don't do any length or sa_family check to allow
920 * non-sockaddr style addresses.
921 */
922 if (name == NULL) {
923 error = EINVAL;
924 eprintsoline(so, error);
925 goto done;
926 }
927 break;
928 }
929
930 if (namelen > (t_uscalar_t)sti->sti_laddr_maxlen) {
931 error = ENAMETOOLONG;
932 eprintsoline(so, error);
933 goto done;
934 }
935 /*
936 * Save local address.
937 */
938 sti->sti_laddr_len = (socklen_t)namelen;
939 ASSERT(sti->sti_laddr_len <= sti->sti_laddr_maxlen);
940 bcopy(name, sti->sti_laddr_sa, namelen);
941
942 addr = sti->sti_laddr_sa;
943 addrlen = (t_uscalar_t)sti->sti_laddr_len;
944 switch (so->so_family) {
945 case AF_INET6:
946 case AF_INET:
947 break;
948 case AF_UNIX: {
949 struct sockaddr_un *soun =
950 (struct sockaddr_un *)sti->sti_laddr_sa;
951 struct vnode *vp, *rvp;
952 struct vattr vattr;
953
954 ASSERT(sti->sti_ux_bound_vp == NULL);
955 /*
956 * Create vnode for the specified path name.
957 * Keep vnode held with a reference in sti_ux_bound_vp.
958 * Use the vnode pointer as the address used in the
959 * bind with the transport.
960 *
961 * Use the same mode as in BSD. In particular this does
962 * not observe the umask.
963 */
964 /* MAXPATHLEN + soun_family + nul termination */
965 if (sti->sti_laddr_len >
966 (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) {
967 error = ENAMETOOLONG;
968 eprintsoline(so, error);
969 goto done;
970 }
971 vattr.va_type = VSOCK;
972 vattr.va_mode = 0777 & ~PTOU(curproc)->u_cmask;
973 vattr.va_mask = AT_TYPE|AT_MODE;
974 /* NOTE: holding so_lock */
975 error = vn_create(soun->sun_path, UIO_SYSSPACE, &vattr,
976 EXCL, 0, &vp, CRMKNOD, 0, 0);
977 if (error) {
978 if (error == EEXIST)
979 error = EADDRINUSE;
980 eprintsoline(so, error);
981 goto done;
982 }
983 /*
984 * Establish pointer from the underlying filesystem
985 * vnode to the socket node.
986 * sti_ux_bound_vp and v_stream->sd_vnode form the
987 * cross-linkage between the underlying filesystem
988 * node and the socket node.
989 */
990
991 if ((VOP_REALVP(vp, &rvp, NULL) == 0) && (vp != rvp)) {
992 VN_HOLD(rvp);
993 VN_RELE(vp);
994 vp = rvp;
995 }
996
997 ASSERT(SOTOV(so)->v_stream);
998 mutex_enter(&vp->v_lock);
999 vp->v_stream = SOTOV(so)->v_stream;
1000 sti->sti_ux_bound_vp = vp;
1001 mutex_exit(&vp->v_lock);
1002
1003 /*
1004 * Use the vnode pointer value as a unique address
1005 * (together with the magic number to avoid conflicts
1006 * with implicit binds) in the transport provider.
1007 */
1008 sti->sti_ux_laddr.soua_vp =
1009 (void *)sti->sti_ux_bound_vp;
1010 sti->sti_ux_laddr.soua_magic = SOU_MAGIC_EXPLICIT;
1011 addr = &sti->sti_ux_laddr;
1012 addrlen = (t_uscalar_t)sizeof (sti->sti_ux_laddr);
1013 dprintso(so, 1, ("sobind UNIX: addrlen %d, addr %p\n",
1014 addrlen,
1015 (void *)((struct so_ux_addr *)addr)->soua_vp));
1016 break;
1017 }
1018 } /* end switch (so->so_family) */
1019 }
1020
1021 /*
1022 * set SS_ACCEPTCONN before sending down O_T_BIND_REQ since
1023 * the transport can start passing up T_CONN_IND messages
1024 * as soon as it receives the bind req and strsock_proto()
1025 * insists that SS_ACCEPTCONN is set when processing T_CONN_INDs.
1026 */
1027 if (flags & _SOBIND_LISTEN) {
1028 if ((so->so_state & SS_ACCEPTCONN) == 0)
1029 clear_acceptconn_on_err = B_TRUE;
1030 save_so_backlog = so->so_backlog;
1031 restore_backlog_on_err = B_TRUE;
1032 so->so_state |= SS_ACCEPTCONN;
1033 so->so_backlog = backlog;
1034 }
1035
1036 /*
1037 * If NL7C addr(s) have been configured check for addr/port match,
1038 * or if an implicit NL7C socket via AF_NCA mark socket as NL7C.
1039 *
1040 * NL7C supports the TCP transport only so check AF_INET and AF_INET6
1041 * family sockets only. If match mark as such.
1042 */
1043 if (nl7c_enabled && ((addr != NULL &&
1044 (so->so_family == AF_INET || so->so_family == AF_INET6) &&
1045 (nl7c = nl7c_lookup_addr(addr, addrlen))) ||
1046 sti->sti_nl7c_flags == NL7C_AF_NCA)) {
1047 /*
1048 * NL7C is not supported in non-global zones,
1049 * we enforce this restriction here.
1050 */
1051 if (so->so_zoneid == GLOBAL_ZONEID) {
1052 /* An NL7C socket, mark it */
1053 sti->sti_nl7c_flags |= NL7C_ENABLED;
1054 if (nl7c == NULL) {
1055 /*
1056 * Was an AF_NCA bind() so add it to the
1057 * addr list for reporting purposes.
1058 */
1059 nl7c = nl7c_add_addr(addr, addrlen);
1060 }
1061 } else
1062 nl7c = NULL;
1063 }
1064
1065 /*
1066 * We send a T_BIND_REQ for TCP/UDP since we know it supports it,
1067 * for other transports we will send in a O_T_BIND_REQ.
1068 */
1069 if (tcp_udp_xport &&
1070 (so->so_family == AF_INET || so->so_family == AF_INET6))
1071 PRIM_type = T_BIND_REQ;
1072
1073 bind_req.PRIM_type = PRIM_type;
1074 bind_req.ADDR_length = addrlen;
1075 bind_req.ADDR_offset = (t_scalar_t)sizeof (bind_req);
1076 bind_req.CONIND_number = backlog;
1077 /* NOTE: holding so_lock while sleeping */
1078 mp = soallocproto2(&bind_req, sizeof (bind_req),
1079 addr, addrlen, 0, _ALLOC_SLEEP, cr);
1080 sti->sti_laddr_valid = 0;
1081
1082 /* Done using sti_laddr_sa - can drop the lock */
1083 mutex_exit(&so->so_lock);
1084
1085 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0,
1086 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0);
1087 if (error) {
1088 eprintsoline(so, error);
1089 mutex_enter(&so->so_lock);
1090 goto done;
1091 }
1092
1093 mutex_enter(&so->so_lock);
1094 error = sowaitprim(so, PRIM_type, T_BIND_ACK,
1095 (t_uscalar_t)sizeof (*bind_ack), &mp, 0);
1096 if (error) {
1097 eprintsoline(so, error);
1098 goto done;
1099 }
1100 ASSERT(mp);
1101 /*
1102 * Even if some TPI message (e.g. T_DISCON_IND) was received in
1103 * strsock_proto while the lock was dropped above, the bind
1104 * is allowed to complete.
1105 */
1106
1107 /* Mark as bound. This will be undone if we detect errors below. */
1108 if (flags & _SOBIND_NOXLATE) {
1109 ASSERT(so->so_family == AF_UNIX);
1110 sti->sti_faddr_noxlate = 1;
1111 }
1112 ASSERT(!(so->so_state & SS_ISBOUND) || (flags & _SOBIND_REBIND));
1113 so->so_state |= SS_ISBOUND;
1114 ASSERT(sti->sti_unbind_mp);
1115
1116 /* note that we've already set SS_ACCEPTCONN above */
1117
1118 /*
1119 * Recompute addrlen - an unspecied bind sent down an
1120 * address of length zero but we expect the appropriate length
1121 * in return.
1122 */
1123 addrlen = (t_uscalar_t)(so->so_family == AF_UNIX ?
1124 sizeof (sti->sti_ux_laddr) : sti->sti_laddr_len);
1125
1126 bind_ack = (struct T_bind_ack *)mp->b_rptr;
1127 /*
1128 * The alignment restriction is really too strict but
1129 * we want enough alignment to inspect the fields of
1130 * a sockaddr_in.
1131 */
1132 addr = sogetoff(mp, bind_ack->ADDR_offset,
1133 bind_ack->ADDR_length,
1134 __TPI_ALIGN_SIZE);
1135 if (addr == NULL) {
1136 freemsg(mp);
1137 error = EPROTO;
1138 eprintsoline(so, error);
1139 goto done;
1140 }
1141 if (!(flags & _SOBIND_UNSPEC)) {
1142 /*
1143 * Verify that the transport didn't return something we
1144 * did not want e.g. an address other than what we asked for.
1145 *
1146 * NOTE: These checks would go away if/when we switch to
1147 * using the new TPI (in which the transport would fail
1148 * the request instead of assigning a different address).
1149 *
1150 * NOTE2: For protocols that we don't know (i.e. any
1151 * other than AF_INET6, AF_INET and AF_UNIX), we
1152 * cannot know if the transport should be expected to
1153 * return the same address as that requested.
1154 *
1155 * NOTE3: For AF_INET and AF_INET6, TCP/UDP, we send
1156 * down a T_BIND_REQ. We use O_T_BIND_REQ for others.
1157 *
1158 * For example, in the case of netatalk it may be
1159 * inappropriate for the transport to return the
1160 * requested address (as it may have allocated a local
1161 * port number in behaviour similar to that of an
1162 * AF_INET bind request with a port number of zero).
1163 *
1164 * Given the definition of O_T_BIND_REQ, where the
1165 * transport may bind to an address other than the
1166 * requested address, it's not possible to determine
1167 * whether a returned address that differs from the
1168 * requested address is a reason to fail (because the
1169 * requested address was not available) or succeed
1170 * (because the transport allocated an appropriate
1171 * address and/or port).
1172 *
1173 * sockfs currently requires that the transport return
1174 * the requested address in the T_BIND_ACK, unless
1175 * there is code here to allow for any discrepancy.
1176 * Such code exists for AF_INET and AF_INET6.
1177 *
1178 * Netatalk chooses to return the requested address
1179 * rather than the (correct) allocated address. This
1180 * means that netatalk violates the TPI specification
1181 * (and would not function correctly if used from a
1182 * TLI application), but it does mean that it works
1183 * with sockfs.
1184 *
1185 * As noted above, using the newer XTI bind primitive
1186 * (T_BIND_REQ) in preference to O_T_BIND_REQ would
1187 * allow sockfs to be more sure about whether or not
1188 * the bind request had succeeded (as transports are
1189 * not permitted to bind to a different address than
1190 * that requested - they must return failure).
1191 * Unfortunately, support for T_BIND_REQ may not be
1192 * present in all transport implementations (netatalk,
1193 * for example, doesn't have it), making the
1194 * transition difficult.
1195 */
1196 if (bind_ack->ADDR_length != addrlen) {
1197 /* Assumes that the requested address was in use */
1198 freemsg(mp);
1199 error = EADDRINUSE;
1200 eprintsoline(so, error);
1201 goto done;
1202 }
1203
1204 switch (so->so_family) {
1205 case AF_INET6:
1206 case AF_INET: {
1207 sin_t *rname, *aname;
1208
1209 rname = (sin_t *)addr;
1210 aname = (sin_t *)sti->sti_laddr_sa;
1211
1212 /*
1213 * Take advantage of the alignment
1214 * of sin_port and sin6_port which fall
1215 * in the same place in their data structures.
1216 * Just use sin_port for either address family.
1217 *
1218 * This may become a problem if (heaven forbid)
1219 * there's a separate ipv6port_reserved... :-P
1220 *
1221 * Binding to port 0 has the semantics of letting
1222 * the transport bind to any port.
1223 *
1224 * If the transport is TCP or UDP since we had sent
1225 * a T_BIND_REQ we would not get a port other than
1226 * what we asked for.
1227 */
1228 if (tcp_udp_xport) {
1229 /*
1230 * Pick up the new port number if we bound to
1231 * port 0.
1232 */
1233 if (aname->sin_port == 0)
1234 aname->sin_port = rname->sin_port;
1235 sti->sti_laddr_valid = 1;
1236 break;
1237 }
1238 if (aname->sin_port != 0 &&
1239 aname->sin_port != rname->sin_port) {
1240 freemsg(mp);
1241 error = EADDRINUSE;
1242 eprintsoline(so, error);
1243 goto done;
1244 }
1245 /*
1246 * Pick up the new port number if we bound to port 0.
1247 */
1248 aname->sin_port = rname->sin_port;
1249
1250 /*
1251 * Unfortunately, addresses aren't _quite_ the same.
1252 */
1253 if (so->so_family == AF_INET) {
1254 if (aname->sin_addr.s_addr !=
1255 rname->sin_addr.s_addr) {
1256 freemsg(mp);
1257 error = EADDRNOTAVAIL;
1258 eprintsoline(so, error);
1259 goto done;
1260 }
1261 } else {
1262 sin6_t *rname6 = (sin6_t *)rname;
1263 sin6_t *aname6 = (sin6_t *)aname;
1264
1265 if (!IN6_ARE_ADDR_EQUAL(&aname6->sin6_addr,
1266 &rname6->sin6_addr)) {
1267 freemsg(mp);
1268 error = EADDRNOTAVAIL;
1269 eprintsoline(so, error);
1270 goto done;
1271 }
1272 }
1273 break;
1274 }
1275 case AF_UNIX:
1276 if (bcmp(addr, &sti->sti_ux_laddr, addrlen) != 0) {
1277 freemsg(mp);
1278 error = EADDRINUSE;
1279 eprintsoline(so, error);
1280 eprintso(so,
1281 ("addrlen %d, addr 0x%x, vp %p\n",
1282 addrlen, *((int *)addr),
1283 (void *)sti->sti_ux_bound_vp));
1284 goto done;
1285 }
1286 sti->sti_laddr_valid = 1;
1287 break;
1288 default:
1289 /*
1290 * NOTE: This assumes that addresses can be
1291 * byte-compared for equivalence.
1292 */
1293 if (bcmp(addr, sti->sti_laddr_sa, addrlen) != 0) {
1294 freemsg(mp);
1295 error = EADDRINUSE;
1296 eprintsoline(so, error);
1297 goto done;
1298 }
1299 /*
1300 * Don't mark sti_laddr_valid, as we cannot be
1301 * sure that the returned address is the real
1302 * bound address when talking to an unknown
1303 * transport.
1304 */
1305 break;
1306 }
1307 } else {
1308 /*
1309 * Save for returned address for getsockname.
1310 * Needed for unspecific bind unless transport supports
1311 * the TI_GETMYNAME ioctl.
1312 * Do this for AF_INET{,6} even though they do, as
1313 * caching info here is much better performance than
1314 * a TPI/STREAMS trip to the transport for getsockname.
1315 * Any which can't for some reason _must_ _not_ set
1316 * sti_laddr_valid here for the caching version of
1317 * getsockname to not break;
1318 */
1319 switch (so->so_family) {
1320 case AF_UNIX:
1321 /*
1322 * Record the address bound with the transport
1323 * for use by socketpair.
1324 */
1325 bcopy(addr, &sti->sti_ux_laddr, addrlen);
1326 sti->sti_laddr_valid = 1;
1327 break;
1328 case AF_INET:
1329 case AF_INET6:
1330 ASSERT(sti->sti_laddr_len <= sti->sti_laddr_maxlen);
1331 bcopy(addr, sti->sti_laddr_sa, sti->sti_laddr_len);
1332 sti->sti_laddr_valid = 1;
1333 break;
1334 default:
1335 /*
1336 * Don't mark sti_laddr_valid, as we cannot be
1337 * sure that the returned address is the real
1338 * bound address when talking to an unknown
1339 * transport.
1340 */
1341 break;
1342 }
1343 }
1344
1345 if (nl7c != NULL) {
1346 /* Register listen()er sonode pointer with NL7C */
1347 nl7c_listener_addr(nl7c, so);
1348 }
1349
1350 freemsg(mp);
1351
1352 done:
1353 if (error) {
1354 /* reset state & backlog to values held on entry */
1355 if (clear_acceptconn_on_err == B_TRUE)
1356 so->so_state &= ~SS_ACCEPTCONN;
1357 if (restore_backlog_on_err == B_TRUE)
1358 so->so_backlog = save_so_backlog;
1359
1360 if (unbind_on_err && so->so_state & SS_ISBOUND) {
1361 int err;
1362
1363 err = sotpi_unbind(so, 0);
1364 /* LINTED - statement has no consequent: if */
1365 if (err) {
1366 eprintsoline(so, error);
1367 } else {
1368 ASSERT(!(so->so_state & SS_ISBOUND));
1369 }
1370 }
1371 }
1372 if (!(flags & _SOBIND_LOCK_HELD)) {
1373 so_unlock_single(so, SOLOCKED);
1374 mutex_exit(&so->so_lock);
1375 } else {
1376 ASSERT(MUTEX_HELD(&so->so_lock));
1377 ASSERT(so->so_flag & SOLOCKED);
1378 }
1379 return (error);
1380 }
1381
1382 /* bind the socket */
1383 static int
sotpi_bind(struct sonode * so,struct sockaddr * name,socklen_t namelen,int flags,struct cred * cr)1384 sotpi_bind(struct sonode *so, struct sockaddr *name, socklen_t namelen,
1385 int flags, struct cred *cr)
1386 {
1387 if ((flags & _SOBIND_SOCKETPAIR) == 0)
1388 return (sotpi_bindlisten(so, name, namelen, 0, flags, cr));
1389
1390 flags &= ~_SOBIND_SOCKETPAIR;
1391 return (sotpi_bindlisten(so, name, namelen, 1, flags, cr));
1392 }
1393
1394 /*
1395 * Unbind a socket - used when bind() fails, when bind() specifies a NULL
1396 * address, or when listen needs to unbind and bind.
1397 * If the _SOUNBIND_REBIND flag is specified the addresses are retained
1398 * so that a sobind can pick them up.
1399 */
1400 static int
sotpi_unbind(struct sonode * so,int flags)1401 sotpi_unbind(struct sonode *so, int flags)
1402 {
1403 struct T_unbind_req unbind_req;
1404 int error = 0;
1405 mblk_t *mp;
1406 sotpi_info_t *sti = SOTOTPI(so);
1407
1408 dprintso(so, 1, ("sotpi_unbind(%p, 0x%x) %s\n",
1409 (void *)so, flags, pr_state(so->so_state, so->so_mode)));
1410
1411 ASSERT(MUTEX_HELD(&so->so_lock));
1412 ASSERT(so->so_flag & SOLOCKED);
1413
1414 if (!(so->so_state & SS_ISBOUND)) {
1415 error = EINVAL;
1416 eprintsoline(so, error);
1417 goto done;
1418 }
1419
1420 mutex_exit(&so->so_lock);
1421
1422 /*
1423 * Flush the read and write side (except stream head read queue)
1424 * and send down T_UNBIND_REQ.
1425 */
1426 (void) putnextctl1(strvp2wq(SOTOV(so)), M_FLUSH, FLUSHRW);
1427
1428 unbind_req.PRIM_type = T_UNBIND_REQ;
1429 mp = soallocproto1(&unbind_req, sizeof (unbind_req),
1430 0, _ALLOC_SLEEP, CRED());
1431 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0,
1432 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0);
1433 mutex_enter(&so->so_lock);
1434 if (error) {
1435 eprintsoline(so, error);
1436 goto done;
1437 }
1438
1439 error = sowaitokack(so, T_UNBIND_REQ);
1440 if (error) {
1441 eprintsoline(so, error);
1442 goto done;
1443 }
1444
1445 /*
1446 * Even if some TPI message (e.g. T_DISCON_IND) was received in
1447 * strsock_proto while the lock was dropped above, the unbind
1448 * is allowed to complete.
1449 */
1450 if (!(flags & _SOUNBIND_REBIND)) {
1451 /*
1452 * Clear out bound address.
1453 */
1454 vnode_t *vp;
1455
1456 if ((vp = sti->sti_ux_bound_vp) != NULL) {
1457 sti->sti_ux_bound_vp = NULL;
1458 vn_rele_stream(vp);
1459 }
1460 /* Clear out address */
1461 sti->sti_laddr_len = 0;
1462 }
1463 so->so_state &= ~(SS_ISBOUND|SS_ACCEPTCONN);
1464 sti->sti_laddr_valid = 0;
1465
1466 done:
1467
1468 /* If the caller held the lock don't release it here */
1469 ASSERT(MUTEX_HELD(&so->so_lock));
1470 ASSERT(so->so_flag & SOLOCKED);
1471
1472 return (error);
1473 }
1474
1475 /*
1476 * listen on the socket.
1477 * For TPI conforming transports this has to first unbind with the transport
1478 * and then bind again using the new backlog.
1479 */
1480 /* ARGSUSED */
1481 int
sotpi_listen(struct sonode * so,int backlog,struct cred * cr)1482 sotpi_listen(struct sonode *so, int backlog, struct cred *cr)
1483 {
1484 int error = 0;
1485 sotpi_info_t *sti = SOTOTPI(so);
1486
1487 dprintso(so, 1, ("sotpi_listen(%p, %d) %s\n",
1488 (void *)so, backlog, pr_state(so->so_state, so->so_mode)));
1489
1490 if (sti->sti_serv_type == T_CLTS)
1491 return (EOPNOTSUPP);
1492
1493 /*
1494 * If the socket is ready to accept connections already, then
1495 * return without doing anything. This avoids a problem where
1496 * a second listen() call fails if a connection is pending and
1497 * leaves the socket unbound. Only when we are not unbinding
1498 * with the transport can we safely increase the backlog.
1499 */
1500 if (so->so_state & SS_ACCEPTCONN &&
1501 !((so->so_family == AF_INET || so->so_family == AF_INET6) &&
1502 /*CONSTCOND*/
1503 !solisten_tpi_tcp))
1504 return (0);
1505
1506 if (so->so_state & SS_ISCONNECTED)
1507 return (EINVAL);
1508
1509 mutex_enter(&so->so_lock);
1510 so_lock_single(so); /* Set SOLOCKED */
1511
1512 /*
1513 * If the listen doesn't change the backlog we do nothing.
1514 * This avoids an EPROTO error from the transport.
1515 */
1516 if ((so->so_state & SS_ACCEPTCONN) &&
1517 so->so_backlog == backlog)
1518 goto done;
1519
1520 if (!(so->so_state & SS_ISBOUND)) {
1521 /*
1522 * Must have been explicitly bound in the UNIX domain.
1523 */
1524 if (so->so_family == AF_UNIX) {
1525 error = EINVAL;
1526 goto done;
1527 }
1528 error = sotpi_bindlisten(so, NULL, 0, backlog,
1529 _SOBIND_UNSPEC|_SOBIND_LOCK_HELD|_SOBIND_LISTEN, cr);
1530 } else if (backlog > 0) {
1531 /*
1532 * AF_INET{,6} hack to avoid losing the port.
1533 * Assumes that all AF_INET{,6} transports can handle a
1534 * O_T_BIND_REQ with a non-zero CONIND_number when the TPI
1535 * has already bound thus it is possible to avoid the unbind.
1536 */
1537 if (!((so->so_family == AF_INET || so->so_family == AF_INET6) &&
1538 /*CONSTCOND*/
1539 !solisten_tpi_tcp)) {
1540 error = sotpi_unbind(so, _SOUNBIND_REBIND);
1541 if (error)
1542 goto done;
1543 }
1544 error = sotpi_bindlisten(so, NULL, 0, backlog,
1545 _SOBIND_REBIND|_SOBIND_LOCK_HELD|_SOBIND_LISTEN, cr);
1546 } else {
1547 so->so_state |= SS_ACCEPTCONN;
1548 so->so_backlog = backlog;
1549 }
1550 if (error)
1551 goto done;
1552 ASSERT(so->so_state & SS_ACCEPTCONN);
1553 done:
1554 so_unlock_single(so, SOLOCKED);
1555 mutex_exit(&so->so_lock);
1556 return (error);
1557 }
1558
1559 /*
1560 * Disconnect either a specified seqno or all (-1).
1561 * The former is used on listening sockets only.
1562 *
1563 * When seqno == -1 sodisconnect could call sotpi_unbind. However,
1564 * the current use of sodisconnect(seqno == -1) is only for shutdown
1565 * so there is no point (and potentially incorrect) to unbind.
1566 */
1567 static int
sodisconnect(struct sonode * so,t_scalar_t seqno,int flags)1568 sodisconnect(struct sonode *so, t_scalar_t seqno, int flags)
1569 {
1570 struct T_discon_req discon_req;
1571 int error = 0;
1572 mblk_t *mp;
1573
1574 dprintso(so, 1, ("sodisconnect(%p, %d, 0x%x) %s\n",
1575 (void *)so, seqno, flags, pr_state(so->so_state, so->so_mode)));
1576
1577 if (!(flags & _SODISCONNECT_LOCK_HELD)) {
1578 mutex_enter(&so->so_lock);
1579 so_lock_single(so); /* Set SOLOCKED */
1580 } else {
1581 ASSERT(MUTEX_HELD(&so->so_lock));
1582 ASSERT(so->so_flag & SOLOCKED);
1583 }
1584
1585 if (!(so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING|SS_ACCEPTCONN))) {
1586 error = EINVAL;
1587 eprintsoline(so, error);
1588 goto done;
1589 }
1590
1591 mutex_exit(&so->so_lock);
1592 /*
1593 * Flush the write side (unless this is a listener)
1594 * and then send down a T_DISCON_REQ.
1595 * (Don't flush on listener since it could flush {O_}T_CONN_RES
1596 * and other messages.)
1597 */
1598 if (!(so->so_state & SS_ACCEPTCONN))
1599 (void) putnextctl1(strvp2wq(SOTOV(so)), M_FLUSH, FLUSHW);
1600
1601 discon_req.PRIM_type = T_DISCON_REQ;
1602 discon_req.SEQ_number = seqno;
1603 mp = soallocproto1(&discon_req, sizeof (discon_req),
1604 0, _ALLOC_SLEEP, CRED());
1605 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0,
1606 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0);
1607 mutex_enter(&so->so_lock);
1608 if (error) {
1609 eprintsoline(so, error);
1610 goto done;
1611 }
1612
1613 error = sowaitokack(so, T_DISCON_REQ);
1614 if (error) {
1615 eprintsoline(so, error);
1616 goto done;
1617 }
1618 /*
1619 * Even if some TPI message (e.g. T_DISCON_IND) was received in
1620 * strsock_proto while the lock was dropped above, the disconnect
1621 * is allowed to complete. However, it is not possible to
1622 * assert that SS_ISCONNECTED|SS_ISCONNECTING are set.
1623 */
1624 so->so_state &= ~(SS_ISCONNECTED|SS_ISCONNECTING);
1625 SOTOTPI(so)->sti_laddr_valid = 0;
1626 SOTOTPI(so)->sti_faddr_valid = 0;
1627 done:
1628 if (!(flags & _SODISCONNECT_LOCK_HELD)) {
1629 so_unlock_single(so, SOLOCKED);
1630 mutex_exit(&so->so_lock);
1631 } else {
1632 /* If the caller held the lock don't release it here */
1633 ASSERT(MUTEX_HELD(&so->so_lock));
1634 ASSERT(so->so_flag & SOLOCKED);
1635 }
1636 return (error);
1637 }
1638
1639 /* ARGSUSED */
1640 int
sotpi_accept(struct sonode * so,int fflag,struct cred * cr,struct sonode ** nsop)1641 sotpi_accept(struct sonode *so, int fflag, struct cred *cr,
1642 struct sonode **nsop)
1643 {
1644 struct T_conn_ind *conn_ind;
1645 struct T_conn_res *conn_res;
1646 int error = 0;
1647 mblk_t *mp, *ack_mp;
1648 struct sonode *nso;
1649 vnode_t *nvp;
1650 void *src;
1651 t_uscalar_t srclen;
1652 void *opt;
1653 t_uscalar_t optlen;
1654 t_scalar_t PRIM_type;
1655 t_scalar_t SEQ_number;
1656 size_t sinlen;
1657 sotpi_info_t *sti = SOTOTPI(so);
1658 sotpi_info_t *nsti;
1659
1660 dprintso(so, 1, ("sotpi_accept(%p, 0x%x, %p) %s\n",
1661 (void *)so, fflag, (void *)nsop,
1662 pr_state(so->so_state, so->so_mode)));
1663
1664 /*
1665 * Defer single-threading the accepting socket until
1666 * the T_CONN_IND has been received and parsed and the
1667 * new sonode has been opened.
1668 */
1669
1670 /* Check that we are not already connected */
1671 if ((so->so_state & SS_ACCEPTCONN) == 0)
1672 goto conn_bad;
1673 again:
1674 if ((error = sowaitconnind(so, fflag, &mp)) != 0)
1675 goto e_bad;
1676
1677 ASSERT(mp != NULL);
1678 conn_ind = (struct T_conn_ind *)mp->b_rptr;
1679
1680 /*
1681 * Save SEQ_number for error paths.
1682 */
1683 SEQ_number = conn_ind->SEQ_number;
1684
1685 srclen = conn_ind->SRC_length;
1686 src = sogetoff(mp, conn_ind->SRC_offset, srclen, 1);
1687 if (src == NULL) {
1688 error = EPROTO;
1689 freemsg(mp);
1690 eprintsoline(so, error);
1691 goto disconnect_unlocked;
1692 }
1693 optlen = conn_ind->OPT_length;
1694 switch (so->so_family) {
1695 case AF_INET:
1696 case AF_INET6:
1697 if ((optlen == sizeof (intptr_t)) && (sti->sti_direct != 0)) {
1698 bcopy(mp->b_rptr + conn_ind->OPT_offset,
1699 &opt, conn_ind->OPT_length);
1700 } else {
1701 /*
1702 * The transport (in this case TCP) hasn't sent up
1703 * a pointer to an instance for the accept fast-path.
1704 * Disable fast-path completely because the call to
1705 * sotpi_create() below would otherwise create an
1706 * incomplete TCP instance, which would lead to
1707 * problems when sockfs sends a normal T_CONN_RES
1708 * message down the new stream.
1709 */
1710 if (sti->sti_direct) {
1711 int rval;
1712 /*
1713 * For consistency we inform tcp to disable
1714 * direct interface on the listener, though
1715 * we can certainly live without doing this
1716 * because no data will ever travel upstream
1717 * on the listening socket.
1718 */
1719 sti->sti_direct = 0;
1720 (void) strioctl(SOTOV(so), _SIOCSOCKFALLBACK,
1721 0, 0, K_TO_K, cr, &rval);
1722 }
1723 opt = NULL;
1724 optlen = 0;
1725 }
1726 break;
1727 case AF_UNIX:
1728 default:
1729 if (optlen != 0) {
1730 opt = sogetoff(mp, conn_ind->OPT_offset, optlen,
1731 __TPI_ALIGN_SIZE);
1732 if (opt == NULL) {
1733 error = EPROTO;
1734 freemsg(mp);
1735 eprintsoline(so, error);
1736 goto disconnect_unlocked;
1737 }
1738 }
1739 if (so->so_family == AF_UNIX) {
1740 if (!sti->sti_faddr_noxlate) {
1741 src = NULL;
1742 srclen = 0;
1743 }
1744 /* Extract src address from options */
1745 if (optlen != 0)
1746 so_getopt_srcaddr(opt, optlen, &src, &srclen);
1747 }
1748 break;
1749 }
1750
1751 /*
1752 * Create the new socket.
1753 */
1754 nso = socket_newconn(so, NULL, NULL, SOCKET_SLEEP, &error);
1755 if (nso == NULL) {
1756 ASSERT(error != 0);
1757 /*
1758 * Accept can not fail with ENOBUFS. sotpi_create
1759 * sleeps waiting for memory until a signal is caught
1760 * so return EINTR.
1761 */
1762 freemsg(mp);
1763 if (error == ENOBUFS)
1764 error = EINTR;
1765 goto e_disc_unl;
1766 }
1767 nvp = SOTOV(nso);
1768 nsti = SOTOTPI(nso);
1769
1770 #ifdef DEBUG
1771 /*
1772 * SO_DEBUG is used to trigger the dprint* and eprint* macros thus
1773 * it's inherited early to allow debugging of the accept code itself.
1774 */
1775 nso->so_options |= so->so_options & SO_DEBUG;
1776 #endif /* DEBUG */
1777
1778 /*
1779 * Save the SRC address from the T_CONN_IND
1780 * for getpeername to work on AF_UNIX and on transports that do not
1781 * support TI_GETPEERNAME.
1782 *
1783 * NOTE: AF_UNIX NUL termination is ensured by the sender's
1784 * copyin_name().
1785 */
1786 if (srclen > (t_uscalar_t)nsti->sti_faddr_maxlen) {
1787 error = EINVAL;
1788 freemsg(mp);
1789 eprintsoline(so, error);
1790 goto disconnect_vp_unlocked;
1791 }
1792 nsti->sti_faddr_len = (socklen_t)srclen;
1793 ASSERT(sti->sti_faddr_len <= sti->sti_faddr_maxlen);
1794 bcopy(src, nsti->sti_faddr_sa, srclen);
1795 nsti->sti_faddr_valid = 1;
1796
1797 /*
1798 * Record so_peercred and so_cpid from a cred in the T_CONN_IND.
1799 */
1800 if ((DB_REF(mp) > 1) || MBLKSIZE(mp) <
1801 (sizeof (struct T_conn_res) + sizeof (intptr_t))) {
1802 cred_t *cr;
1803 pid_t cpid;
1804
1805 cr = msg_getcred(mp, &cpid);
1806 if (cr != NULL) {
1807 crhold(cr);
1808 nso->so_peercred = cr;
1809 nso->so_cpid = cpid;
1810 }
1811 freemsg(mp);
1812
1813 mp = soallocproto1(NULL, sizeof (struct T_conn_res) +
1814 sizeof (intptr_t), 0, _ALLOC_INTR, cr);
1815 if (mp == NULL) {
1816 /*
1817 * Accept can not fail with ENOBUFS.
1818 * A signal was caught so return EINTR.
1819 */
1820 error = EINTR;
1821 eprintsoline(so, error);
1822 goto disconnect_vp_unlocked;
1823 }
1824 conn_res = (struct T_conn_res *)mp->b_rptr;
1825 } else {
1826 /*
1827 * For efficency reasons we use msg_extractcred; no crhold
1828 * needed since db_credp is cleared (i.e., we move the cred
1829 * from the message to so_peercred.
1830 */
1831 nso->so_peercred = msg_extractcred(mp, &nso->so_cpid);
1832
1833 mp->b_rptr = DB_BASE(mp);
1834 conn_res = (struct T_conn_res *)mp->b_rptr;
1835 mp->b_wptr = mp->b_rptr + sizeof (struct T_conn_res);
1836
1837 mblk_setcred(mp, cr, curproc->p_pid);
1838 }
1839
1840 /*
1841 * New socket must be bound at least in sockfs and, except for AF_INET,
1842 * (or AF_INET6) it also has to be bound in the transport provider.
1843 * We set the local address in the sonode from the T_OK_ACK of the
1844 * T_CONN_RES. For this reason the address we bind to here isn't
1845 * important.
1846 */
1847 if ((nso->so_family == AF_INET || nso->so_family == AF_INET6) &&
1848 /*CONSTCOND*/
1849 nso->so_type == SOCK_STREAM && !soaccept_tpi_tcp) {
1850 /*
1851 * Optimization for AF_INET{,6} transports
1852 * that can handle a T_CONN_RES without being bound.
1853 */
1854 mutex_enter(&nso->so_lock);
1855 so_automatic_bind(nso);
1856 mutex_exit(&nso->so_lock);
1857 } else {
1858 /* Perform NULL bind with the transport provider. */
1859 if ((error = sotpi_bind(nso, NULL, 0, _SOBIND_UNSPEC,
1860 cr)) != 0) {
1861 ASSERT(error != ENOBUFS);
1862 freemsg(mp);
1863 eprintsoline(nso, error);
1864 goto disconnect_vp_unlocked;
1865 }
1866 }
1867
1868 /*
1869 * Inherit SIOCSPGRP, SS_ASYNC before we send the {O_}T_CONN_RES
1870 * so that any data arriving on the new socket will cause the
1871 * appropriate signals to be delivered for the new socket.
1872 *
1873 * No other thread (except strsock_proto and strsock_misc)
1874 * can access the new socket thus we relax the locking.
1875 */
1876 nso->so_pgrp = so->so_pgrp;
1877 nso->so_state |= so->so_state & SS_ASYNC;
1878 nsti->sti_faddr_noxlate = sti->sti_faddr_noxlate;
1879
1880 if (nso->so_pgrp != 0) {
1881 if ((error = so_set_events(nso, nvp, cr)) != 0) {
1882 eprintsoline(nso, error);
1883 error = 0;
1884 nso->so_pgrp = 0;
1885 }
1886 }
1887
1888 /*
1889 * Make note of the socket level options. TCP and IP level options
1890 * are already inherited. We could do all this after accept is
1891 * successful but doing it here simplifies code and no harm done
1892 * for error case.
1893 */
1894 nso->so_options = so->so_options & (SO_DEBUG|SO_REUSEADDR|SO_KEEPALIVE|
1895 SO_DONTROUTE|SO_BROADCAST|SO_USELOOPBACK|
1896 SO_OOBINLINE|SO_DGRAM_ERRIND|SO_LINGER);
1897 nso->so_sndbuf = so->so_sndbuf;
1898 nso->so_rcvbuf = so->so_rcvbuf;
1899 if (nso->so_options & SO_LINGER)
1900 nso->so_linger = so->so_linger;
1901
1902 /*
1903 * Note that the following sti_direct code path should be
1904 * removed once we are confident that the direct sockets
1905 * do not result in any degradation.
1906 */
1907 if (sti->sti_direct) {
1908
1909 ASSERT(opt != NULL);
1910
1911 conn_res->OPT_length = optlen;
1912 conn_res->OPT_offset = MBLKL(mp);
1913 bcopy(&opt, mp->b_wptr, optlen);
1914 mp->b_wptr += optlen;
1915 conn_res->PRIM_type = T_CONN_RES;
1916 conn_res->ACCEPTOR_id = 0;
1917 PRIM_type = T_CONN_RES;
1918
1919 /* Send down the T_CONN_RES on acceptor STREAM */
1920 error = kstrputmsg(SOTOV(nso), mp, NULL,
1921 0, 0, MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0);
1922 if (error) {
1923 mutex_enter(&so->so_lock);
1924 so_lock_single(so);
1925 eprintsoline(so, error);
1926 goto disconnect_vp;
1927 }
1928 mutex_enter(&nso->so_lock);
1929 error = sowaitprim(nso, T_CONN_RES, T_OK_ACK,
1930 (t_uscalar_t)sizeof (struct T_ok_ack), &ack_mp, 0);
1931 if (error) {
1932 mutex_exit(&nso->so_lock);
1933 mutex_enter(&so->so_lock);
1934 so_lock_single(so);
1935 eprintsoline(so, error);
1936 goto disconnect_vp;
1937 }
1938 if (nso->so_family == AF_INET) {
1939 sin_t *sin;
1940
1941 sin = (sin_t *)(ack_mp->b_rptr +
1942 sizeof (struct T_ok_ack));
1943 bcopy(sin, nsti->sti_laddr_sa, sizeof (sin_t));
1944 nsti->sti_laddr_len = sizeof (sin_t);
1945 } else {
1946 sin6_t *sin6;
1947
1948 sin6 = (sin6_t *)(ack_mp->b_rptr +
1949 sizeof (struct T_ok_ack));
1950 bcopy(sin6, nsti->sti_laddr_sa, sizeof (sin6_t));
1951 nsti->sti_laddr_len = sizeof (sin6_t);
1952 }
1953 freemsg(ack_mp);
1954
1955 nso->so_state |= SS_ISCONNECTED;
1956 nso->so_proto_handle = (sock_lower_handle_t)opt;
1957 nsti->sti_laddr_valid = 1;
1958
1959 if (sti->sti_nl7c_flags & NL7C_ENABLED) {
1960 /*
1961 * A NL7C marked listen()er so the new socket
1962 * inherits the listen()er's NL7C state, except
1963 * for NL7C_POLLIN.
1964 *
1965 * Only call NL7C to process the new socket if
1966 * the listen socket allows blocking i/o.
1967 */
1968 nsti->sti_nl7c_flags =
1969 sti->sti_nl7c_flags & (~NL7C_POLLIN);
1970 if (so->so_state & (SS_NONBLOCK|SS_NDELAY)) {
1971 /*
1972 * Nonblocking accept() just make it
1973 * persist to defer processing to the
1974 * read-side syscall (e.g. read).
1975 */
1976 nsti->sti_nl7c_flags |= NL7C_SOPERSIST;
1977 } else if (nl7c_process(nso, B_FALSE)) {
1978 /*
1979 * NL7C has completed processing on the
1980 * socket, close the socket and back to
1981 * the top to await the next T_CONN_IND.
1982 */
1983 mutex_exit(&nso->so_lock);
1984 (void) VOP_CLOSE(nvp, 0, 1, (offset_t)0,
1985 cr, NULL);
1986 VN_RELE(nvp);
1987 goto again;
1988 }
1989 /* Pass the new socket out */
1990 }
1991
1992 mutex_exit(&nso->so_lock);
1993
1994 /*
1995 * It's possible, through the use of autopush for example,
1996 * that the acceptor stream may not support sti_direct
1997 * semantics. If the new socket does not support sti_direct
1998 * we issue a _SIOCSOCKFALLBACK to inform the transport
1999 * as we would in the I_PUSH case.
2000 */
2001 if (nsti->sti_direct == 0) {
2002 int rval;
2003
2004 if ((error = strioctl(SOTOV(nso), _SIOCSOCKFALLBACK,
2005 0, 0, K_TO_K, cr, &rval)) != 0) {
2006 mutex_enter(&so->so_lock);
2007 so_lock_single(so);
2008 eprintsoline(so, error);
2009 goto disconnect_vp;
2010 }
2011 }
2012
2013 /*
2014 * Pass out new socket.
2015 */
2016 if (nsop != NULL)
2017 *nsop = nso;
2018
2019 return (0);
2020 }
2021
2022 /*
2023 * This is the non-performance case for sockets (e.g. AF_UNIX sockets)
2024 * which don't support the FireEngine accept fast-path. It is also
2025 * used when the virtual "sockmod" has been I_POP'd and I_PUSH'd
2026 * again. Neither sockfs nor TCP attempt to find out if some other
2027 * random module has been inserted in between (in which case we
2028 * should follow TLI accept behaviour). We blindly assume the worst
2029 * case and revert back to old behaviour i.e. TCP will not send us
2030 * any option (eager) and the accept should happen on the listener
2031 * queue. Any queued T_conn_ind have already got their options removed
2032 * by so_sock2_stream() when "sockmod" was I_POP'd.
2033 */
2034 /*
2035 * Fill in the {O_}T_CONN_RES before getting SOLOCKED.
2036 */
2037 if ((nso->so_mode & SM_ACCEPTOR_ID) == 0) {
2038 #ifdef _ILP32
2039 queue_t *q;
2040
2041 /*
2042 * Find read queue in driver
2043 * Can safely do this since we "own" nso/nvp.
2044 */
2045 q = strvp2wq(nvp)->q_next;
2046 while (SAMESTR(q))
2047 q = q->q_next;
2048 q = RD(q);
2049 conn_res->ACCEPTOR_id = (t_uscalar_t)q;
2050 #else
2051 conn_res->ACCEPTOR_id = (t_uscalar_t)getminor(nvp->v_rdev);
2052 #endif /* _ILP32 */
2053 conn_res->PRIM_type = O_T_CONN_RES;
2054 PRIM_type = O_T_CONN_RES;
2055 } else {
2056 conn_res->ACCEPTOR_id = nsti->sti_acceptor_id;
2057 conn_res->PRIM_type = T_CONN_RES;
2058 PRIM_type = T_CONN_RES;
2059 }
2060 conn_res->SEQ_number = SEQ_number;
2061 conn_res->OPT_length = 0;
2062 conn_res->OPT_offset = 0;
2063
2064 mutex_enter(&so->so_lock);
2065 so_lock_single(so); /* Set SOLOCKED */
2066 mutex_exit(&so->so_lock);
2067
2068 error = kstrputmsg(SOTOV(so), mp, NULL,
2069 0, 0, MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0);
2070 mutex_enter(&so->so_lock);
2071 if (error) {
2072 eprintsoline(so, error);
2073 goto disconnect_vp;
2074 }
2075 error = sowaitprim(so, PRIM_type, T_OK_ACK,
2076 (t_uscalar_t)sizeof (struct T_ok_ack), &ack_mp, 0);
2077 if (error) {
2078 eprintsoline(so, error);
2079 goto disconnect_vp;
2080 }
2081 mutex_exit(&so->so_lock);
2082 /*
2083 * If there is a sin/sin6 appended onto the T_OK_ACK use
2084 * that to set the local address. If this is not present
2085 * then we zero out the address and don't set the
2086 * sti_laddr_valid bit. For AF_UNIX endpoints we copy over
2087 * the pathname from the listening socket.
2088 * In the case where this is TCP or an AF_UNIX socket the
2089 * client side may have queued data or a T_ORDREL in the
2090 * transport. Having now sent the T_CONN_RES we may receive
2091 * those queued messages at any time. Hold the acceptor
2092 * so_lock until its state and laddr are finalized.
2093 */
2094 mutex_enter(&nso->so_lock);
2095 sinlen = (nso->so_family == AF_INET) ? sizeof (sin_t) : sizeof (sin6_t);
2096 if ((nso->so_family == AF_INET) || (nso->so_family == AF_INET6) &&
2097 MBLKL(ack_mp) == (sizeof (struct T_ok_ack) + sinlen)) {
2098 ack_mp->b_rptr += sizeof (struct T_ok_ack);
2099 bcopy(ack_mp->b_rptr, nsti->sti_laddr_sa, sinlen);
2100 nsti->sti_laddr_len = sinlen;
2101 nsti->sti_laddr_valid = 1;
2102 } else if (nso->so_family == AF_UNIX) {
2103 ASSERT(so->so_family == AF_UNIX);
2104 nsti->sti_laddr_len = sti->sti_laddr_len;
2105 ASSERT(nsti->sti_laddr_len <= nsti->sti_laddr_maxlen);
2106 bcopy(sti->sti_laddr_sa, nsti->sti_laddr_sa,
2107 nsti->sti_laddr_len);
2108 nsti->sti_laddr_valid = 1;
2109 } else {
2110 nsti->sti_laddr_len = sti->sti_laddr_len;
2111 ASSERT(nsti->sti_laddr_len <= nsti->sti_laddr_maxlen);
2112 bzero(nsti->sti_laddr_sa, nsti->sti_addr_size);
2113 nsti->sti_laddr_sa->sa_family = nso->so_family;
2114 }
2115 nso->so_state |= SS_ISCONNECTED;
2116 mutex_exit(&nso->so_lock);
2117
2118 freemsg(ack_mp);
2119
2120 mutex_enter(&so->so_lock);
2121 so_unlock_single(so, SOLOCKED);
2122 mutex_exit(&so->so_lock);
2123
2124 /*
2125 * Pass out new socket.
2126 */
2127 if (nsop != NULL)
2128 *nsop = nso;
2129
2130 return (0);
2131
2132
2133 eproto_disc_unl:
2134 error = EPROTO;
2135 e_disc_unl:
2136 eprintsoline(so, error);
2137 goto disconnect_unlocked;
2138
2139 pr_disc_vp_unl:
2140 eprintsoline(so, error);
2141 disconnect_vp_unlocked:
2142 (void) VOP_CLOSE(nvp, 0, 1, 0, cr, NULL);
2143 VN_RELE(nvp);
2144 disconnect_unlocked:
2145 (void) sodisconnect(so, SEQ_number, 0);
2146 return (error);
2147
2148 pr_disc_vp:
2149 eprintsoline(so, error);
2150 disconnect_vp:
2151 (void) sodisconnect(so, SEQ_number, _SODISCONNECT_LOCK_HELD);
2152 so_unlock_single(so, SOLOCKED);
2153 mutex_exit(&so->so_lock);
2154 (void) VOP_CLOSE(nvp, 0, 1, 0, cr, NULL);
2155 VN_RELE(nvp);
2156 return (error);
2157
2158 conn_bad: /* Note: SunOS 4/BSD unconditionally returns EINVAL here */
2159 error = (so->so_type == SOCK_DGRAM || so->so_type == SOCK_RAW)
2160 ? EOPNOTSUPP : EINVAL;
2161 e_bad:
2162 eprintsoline(so, error);
2163 return (error);
2164 }
2165
2166 /*
2167 * connect a socket.
2168 *
2169 * Allow SOCK_DGRAM sockets to reconnect (by specifying a new address) and to
2170 * unconnect (by specifying a null address).
2171 */
2172 int
sotpi_connect(struct sonode * so,struct sockaddr * name,socklen_t namelen,int fflag,int flags,struct cred * cr)2173 sotpi_connect(struct sonode *so,
2174 struct sockaddr *name,
2175 socklen_t namelen,
2176 int fflag,
2177 int flags,
2178 struct cred *cr)
2179 {
2180 struct T_conn_req conn_req;
2181 int error = 0;
2182 mblk_t *mp;
2183 void *src;
2184 socklen_t srclen;
2185 void *addr;
2186 socklen_t addrlen;
2187 boolean_t need_unlock;
2188 sotpi_info_t *sti = SOTOTPI(so);
2189
2190 dprintso(so, 1, ("sotpi_connect(%p, %p, %d, 0x%x, 0x%x) %s\n",
2191 (void *)so, (void *)name, namelen, fflag, flags,
2192 pr_state(so->so_state, so->so_mode)));
2193
2194 /*
2195 * Preallocate the T_CONN_REQ mblk before grabbing SOLOCKED to
2196 * avoid sleeping for memory with SOLOCKED held.
2197 * We know that the T_CONN_REQ can't be larger than 2 * sti_faddr_maxlen
2198 * + sizeof (struct T_opthdr).
2199 * (the AF_UNIX so_ux_addr_xlate() does not make the address
2200 * exceed sti_faddr_maxlen).
2201 */
2202 mp = soallocproto(sizeof (struct T_conn_req) +
2203 2 * sti->sti_faddr_maxlen + sizeof (struct T_opthdr), _ALLOC_INTR,
2204 cr);
2205 if (mp == NULL) {
2206 /*
2207 * Connect can not fail with ENOBUFS. A signal was
2208 * caught so return EINTR.
2209 */
2210 error = EINTR;
2211 eprintsoline(so, error);
2212 return (error);
2213 }
2214
2215 mutex_enter(&so->so_lock);
2216 /*
2217 * Make sure there is a preallocated T_unbind_req message
2218 * before any binding. This message is allocated when the
2219 * socket is created. Since another thread can consume
2220 * so_unbind_mp by the time we return from so_lock_single(),
2221 * we should check the availability of so_unbind_mp after
2222 * we return from so_lock_single().
2223 */
2224
2225 so_lock_single(so); /* Set SOLOCKED */
2226 need_unlock = B_TRUE;
2227
2228 if (sti->sti_unbind_mp == NULL) {
2229 dprintso(so, 1, ("sotpi_connect: allocating unbind_req\n"));
2230 /* NOTE: holding so_lock while sleeping */
2231 sti->sti_unbind_mp =
2232 soallocproto(sizeof (struct T_unbind_req), _ALLOC_INTR, cr);
2233 if (sti->sti_unbind_mp == NULL) {
2234 error = EINTR;
2235 goto done;
2236 }
2237 }
2238
2239 /*
2240 * Can't have done a listen before connecting.
2241 */
2242 if (so->so_state & SS_ACCEPTCONN) {
2243 error = EOPNOTSUPP;
2244 goto done;
2245 }
2246
2247 /*
2248 * Must be bound with the transport
2249 */
2250 if (!(so->so_state & SS_ISBOUND)) {
2251 if ((so->so_family == AF_INET || so->so_family == AF_INET6) &&
2252 /*CONSTCOND*/
2253 so->so_type == SOCK_STREAM && !soconnect_tpi_tcp) {
2254 /*
2255 * Optimization for AF_INET{,6} transports
2256 * that can handle a T_CONN_REQ without being bound.
2257 */
2258 so_automatic_bind(so);
2259 } else {
2260 error = sotpi_bind(so, NULL, 0,
2261 _SOBIND_UNSPEC|_SOBIND_LOCK_HELD, cr);
2262 if (error)
2263 goto done;
2264 }
2265 ASSERT(so->so_state & SS_ISBOUND);
2266 flags |= _SOCONNECT_DID_BIND;
2267 }
2268
2269 /*
2270 * Handle a connect to a name parameter of type AF_UNSPEC like a
2271 * connect to a null address. This is the portable method to
2272 * unconnect a socket.
2273 */
2274 if ((namelen >= sizeof (sa_family_t)) &&
2275 (name->sa_family == AF_UNSPEC)) {
2276 name = NULL;
2277 namelen = 0;
2278 }
2279
2280 /*
2281 * Check that we are not already connected.
2282 * A connection-oriented socket cannot be reconnected.
2283 * A connected connection-less socket can be
2284 * - connected to a different address by a subsequent connect
2285 * - "unconnected" by a connect to the NULL address
2286 */
2287 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) {
2288 ASSERT(!(flags & _SOCONNECT_DID_BIND));
2289 if (so->so_mode & SM_CONNREQUIRED) {
2290 /* Connection-oriented socket */
2291 error = so->so_state & SS_ISCONNECTED ?
2292 EISCONN : EALREADY;
2293 goto done;
2294 }
2295 /* Connection-less socket */
2296 if (name == NULL) {
2297 /*
2298 * Remove the connected state and clear SO_DGRAM_ERRIND
2299 * since it was set when the socket was connected.
2300 * If this is UDP also send down a T_DISCON_REQ.
2301 */
2302 int val;
2303
2304 if ((so->so_family == AF_INET ||
2305 so->so_family == AF_INET6) &&
2306 (so->so_type == SOCK_DGRAM ||
2307 so->so_type == SOCK_RAW) &&
2308 /*CONSTCOND*/
2309 !soconnect_tpi_udp) {
2310 /* XXX What about implicitly unbinding here? */
2311 error = sodisconnect(so, -1,
2312 _SODISCONNECT_LOCK_HELD);
2313 } else {
2314 so->so_state &=
2315 ~(SS_ISCONNECTED | SS_ISCONNECTING);
2316 sti->sti_faddr_valid = 0;
2317 sti->sti_faddr_len = 0;
2318 }
2319
2320 /* Remove SOLOCKED since setsockopt will grab it */
2321 so_unlock_single(so, SOLOCKED);
2322 mutex_exit(&so->so_lock);
2323
2324 val = 0;
2325 (void) sotpi_setsockopt(so, SOL_SOCKET,
2326 SO_DGRAM_ERRIND, &val, (t_uscalar_t)sizeof (val),
2327 cr);
2328
2329 mutex_enter(&so->so_lock);
2330 so_lock_single(so); /* Set SOLOCKED */
2331 goto done;
2332 }
2333 }
2334 ASSERT(so->so_state & SS_ISBOUND);
2335
2336 if (name == NULL || namelen == 0) {
2337 error = EINVAL;
2338 goto done;
2339 }
2340 /*
2341 * Mark the socket if sti_faddr_sa represents the transport level
2342 * address.
2343 */
2344 if (flags & _SOCONNECT_NOXLATE) {
2345 struct sockaddr_ux *soaddr_ux;
2346
2347 ASSERT(so->so_family == AF_UNIX);
2348 if (namelen != sizeof (struct sockaddr_ux)) {
2349 error = EINVAL;
2350 goto done;
2351 }
2352 soaddr_ux = (struct sockaddr_ux *)name;
2353 name = (struct sockaddr *)&soaddr_ux->sou_addr;
2354 namelen = sizeof (soaddr_ux->sou_addr);
2355 sti->sti_faddr_noxlate = 1;
2356 }
2357
2358 /*
2359 * Length and family checks.
2360 */
2361 error = so_addr_verify(so, name, namelen);
2362 if (error)
2363 goto bad;
2364
2365 /*
2366 * Save foreign address. Needed for AF_UNIX as well as
2367 * transport providers that do not support TI_GETPEERNAME.
2368 * Also used for cached foreign address for TCP and UDP.
2369 */
2370 if (namelen > (t_uscalar_t)sti->sti_faddr_maxlen) {
2371 error = EINVAL;
2372 goto done;
2373 }
2374 sti->sti_faddr_len = (socklen_t)namelen;
2375 ASSERT(sti->sti_faddr_len <= sti->sti_faddr_maxlen);
2376 bcopy(name, sti->sti_faddr_sa, namelen);
2377 sti->sti_faddr_valid = 1;
2378
2379 if (so->so_family == AF_UNIX) {
2380 if (sti->sti_faddr_noxlate) {
2381 /*
2382 * Already have a transport internal address. Do not
2383 * pass any (transport internal) source address.
2384 */
2385 addr = sti->sti_faddr_sa;
2386 addrlen = (t_uscalar_t)sti->sti_faddr_len;
2387 src = NULL;
2388 srclen = 0;
2389 } else {
2390 /*
2391 * Pass the sockaddr_un source address as an option
2392 * and translate the remote address.
2393 * Holding so_lock thus sti_laddr_sa can not change.
2394 */
2395 src = sti->sti_laddr_sa;
2396 srclen = (t_uscalar_t)sti->sti_laddr_len;
2397 dprintso(so, 1,
2398 ("sotpi_connect UNIX: srclen %d, src %p\n",
2399 srclen, src));
2400 error = so_ux_addr_xlate(so,
2401 sti->sti_faddr_sa, (socklen_t)sti->sti_faddr_len,
2402 (flags & _SOCONNECT_XPG4_2),
2403 &addr, &addrlen);
2404 if (error)
2405 goto bad;
2406 }
2407 } else {
2408 addr = sti->sti_faddr_sa;
2409 addrlen = (t_uscalar_t)sti->sti_faddr_len;
2410 src = NULL;
2411 srclen = 0;
2412 }
2413 /*
2414 * When connecting a datagram socket we issue the SO_DGRAM_ERRIND
2415 * option which asks the transport provider to send T_UDERR_IND
2416 * messages. These T_UDERR_IND messages are used to return connected
2417 * style errors (e.g. ECONNRESET) for connected datagram sockets.
2418 *
2419 * In addition, for UDP (and SOCK_RAW AF_INET{,6} sockets)
2420 * we send down a T_CONN_REQ. This is needed to let the
2421 * transport assign a local address that is consistent with
2422 * the remote address. Applications depend on a getsockname()
2423 * after a connect() to retrieve the "source" IP address for
2424 * the connected socket. Invalidate the cached local address
2425 * to force getsockname() to enquire of the transport.
2426 */
2427 if (!(so->so_mode & SM_CONNREQUIRED)) {
2428 /*
2429 * Datagram socket.
2430 */
2431 int32_t val;
2432
2433 so_unlock_single(so, SOLOCKED);
2434 mutex_exit(&so->so_lock);
2435
2436 val = 1;
2437 (void) sotpi_setsockopt(so, SOL_SOCKET, SO_DGRAM_ERRIND,
2438 &val, (t_uscalar_t)sizeof (val), cr);
2439
2440 mutex_enter(&so->so_lock);
2441 so_lock_single(so); /* Set SOLOCKED */
2442 if ((so->so_family != AF_INET && so->so_family != AF_INET6) ||
2443 (so->so_type != SOCK_DGRAM && so->so_type != SOCK_RAW) ||
2444 soconnect_tpi_udp) {
2445 soisconnected(so);
2446 goto done;
2447 }
2448 /*
2449 * Send down T_CONN_REQ etc.
2450 * Clear fflag to avoid returning EWOULDBLOCK.
2451 */
2452 fflag = 0;
2453 ASSERT(so->so_family != AF_UNIX);
2454 sti->sti_laddr_valid = 0;
2455 } else if (sti->sti_laddr_len != 0) {
2456 /*
2457 * If the local address or port was "any" then it may be
2458 * changed by the transport as a result of the
2459 * connect. Invalidate the cached version if we have one.
2460 */
2461 switch (so->so_family) {
2462 case AF_INET:
2463 ASSERT(sti->sti_laddr_len == (socklen_t)sizeof (sin_t));
2464 if (((sin_t *)sti->sti_laddr_sa)->sin_addr.s_addr ==
2465 INADDR_ANY ||
2466 ((sin_t *)sti->sti_laddr_sa)->sin_port == 0)
2467 sti->sti_laddr_valid = 0;
2468 break;
2469
2470 case AF_INET6:
2471 ASSERT(sti->sti_laddr_len ==
2472 (socklen_t)sizeof (sin6_t));
2473 if (IN6_IS_ADDR_UNSPECIFIED(
2474 &((sin6_t *)sti->sti_laddr_sa) ->sin6_addr) ||
2475 IN6_IS_ADDR_V4MAPPED_ANY(
2476 &((sin6_t *)sti->sti_laddr_sa)->sin6_addr) ||
2477 ((sin6_t *)sti->sti_laddr_sa)->sin6_port == 0)
2478 sti->sti_laddr_valid = 0;
2479 break;
2480
2481 default:
2482 break;
2483 }
2484 }
2485
2486 /*
2487 * Check for failure of an earlier call
2488 */
2489 if (so->so_error != 0)
2490 goto so_bad;
2491
2492 /*
2493 * Send down T_CONN_REQ. Message was allocated above.
2494 */
2495 conn_req.PRIM_type = T_CONN_REQ;
2496 conn_req.DEST_length = addrlen;
2497 conn_req.DEST_offset = (t_scalar_t)sizeof (conn_req);
2498 if (srclen == 0) {
2499 conn_req.OPT_length = 0;
2500 conn_req.OPT_offset = 0;
2501 soappendmsg(mp, &conn_req, sizeof (conn_req));
2502 soappendmsg(mp, addr, addrlen);
2503 } else {
2504 /*
2505 * There is a AF_UNIX sockaddr_un to include as a source
2506 * address option.
2507 */
2508 struct T_opthdr toh;
2509
2510 toh.level = SOL_SOCKET;
2511 toh.name = SO_SRCADDR;
2512 toh.len = (t_uscalar_t)(srclen + sizeof (struct T_opthdr));
2513 toh.status = 0;
2514 conn_req.OPT_length =
2515 (t_scalar_t)(sizeof (toh) + _TPI_ALIGN_TOPT(srclen));
2516 conn_req.OPT_offset = (t_scalar_t)(sizeof (conn_req) +
2517 _TPI_ALIGN_TOPT(addrlen));
2518
2519 soappendmsg(mp, &conn_req, sizeof (conn_req));
2520 soappendmsg(mp, addr, addrlen);
2521 mp->b_wptr += _TPI_ALIGN_TOPT(addrlen) - addrlen;
2522 soappendmsg(mp, &toh, sizeof (toh));
2523 soappendmsg(mp, src, srclen);
2524 mp->b_wptr += _TPI_ALIGN_TOPT(srclen) - srclen;
2525 ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
2526 }
2527 /*
2528 * Set SS_ISCONNECTING before sending down the T_CONN_REQ
2529 * in order to have the right state when the T_CONN_CON shows up.
2530 */
2531 soisconnecting(so);
2532 mutex_exit(&so->so_lock);
2533
2534 if (AU_AUDITING())
2535 audit_sock(T_CONN_REQ, strvp2wq(SOTOV(so)), mp, 0);
2536
2537 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0,
2538 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0);
2539 mp = NULL;
2540 mutex_enter(&so->so_lock);
2541 if (error != 0)
2542 goto bad;
2543
2544 if ((error = sowaitokack(so, T_CONN_REQ)) != 0)
2545 goto bad;
2546
2547 /* Allow other threads to access the socket */
2548 so_unlock_single(so, SOLOCKED);
2549 need_unlock = B_FALSE;
2550
2551 /*
2552 * Wait until we get a T_CONN_CON or an error
2553 */
2554 if ((error = sowaitconnected(so, fflag, 0)) != 0) {
2555 so_lock_single(so); /* Set SOLOCKED */
2556 need_unlock = B_TRUE;
2557 }
2558
2559 done:
2560 freemsg(mp);
2561 switch (error) {
2562 case EINPROGRESS:
2563 case EALREADY:
2564 case EISCONN:
2565 case EINTR:
2566 /* Non-fatal errors */
2567 sti->sti_laddr_valid = 0;
2568 /* FALLTHRU */
2569 case 0:
2570 break;
2571 default:
2572 ASSERT(need_unlock);
2573 /*
2574 * Fatal errors: clear SS_ISCONNECTING in case it was set,
2575 * and invalidate local-address cache
2576 */
2577 so->so_state &= ~SS_ISCONNECTING;
2578 sti->sti_laddr_valid = 0;
2579 /* A discon_ind might have already unbound us */
2580 if ((flags & _SOCONNECT_DID_BIND) &&
2581 (so->so_state & SS_ISBOUND)) {
2582 int err;
2583
2584 err = sotpi_unbind(so, 0);
2585 /* LINTED - statement has no conseq */
2586 if (err) {
2587 eprintsoline(so, err);
2588 }
2589 }
2590 break;
2591 }
2592 if (need_unlock)
2593 so_unlock_single(so, SOLOCKED);
2594 mutex_exit(&so->so_lock);
2595 return (error);
2596
2597 so_bad: error = sogeterr(so, B_TRUE);
2598 bad: eprintsoline(so, error);
2599 goto done;
2600 }
2601
2602 /* ARGSUSED */
2603 int
sotpi_shutdown(struct sonode * so,int how,struct cred * cr)2604 sotpi_shutdown(struct sonode *so, int how, struct cred *cr)
2605 {
2606 struct T_ordrel_req ordrel_req;
2607 mblk_t *mp;
2608 uint_t old_state, state_change;
2609 int error = 0;
2610 sotpi_info_t *sti = SOTOTPI(so);
2611
2612 dprintso(so, 1, ("sotpi_shutdown(%p, %d) %s\n",
2613 (void *)so, how, pr_state(so->so_state, so->so_mode)));
2614
2615 mutex_enter(&so->so_lock);
2616 so_lock_single(so); /* Set SOLOCKED */
2617
2618 /*
2619 * SunOS 4.X has no check for datagram sockets.
2620 * 5.X checks that it is connected (ENOTCONN)
2621 * X/Open requires that we check the connected state.
2622 */
2623 if (!(so->so_state & SS_ISCONNECTED)) {
2624 if (!xnet_skip_checks) {
2625 error = ENOTCONN;
2626 if (xnet_check_print) {
2627 printf("sockfs: X/Open shutdown check "
2628 "caused ENOTCONN\n");
2629 }
2630 }
2631 goto done;
2632 }
2633 /*
2634 * Record the current state and then perform any state changes.
2635 * Then use the difference between the old and new states to
2636 * determine which messages need to be sent.
2637 * This prevents e.g. duplicate T_ORDREL_REQ when there are
2638 * duplicate calls to shutdown().
2639 */
2640 old_state = so->so_state;
2641
2642 switch (how) {
2643 case 0:
2644 socantrcvmore(so);
2645 break;
2646 case 1:
2647 socantsendmore(so);
2648 break;
2649 case 2:
2650 socantsendmore(so);
2651 socantrcvmore(so);
2652 break;
2653 default:
2654 error = EINVAL;
2655 goto done;
2656 }
2657
2658 /*
2659 * Assumes that the SS_CANT* flags are never cleared in the above code.
2660 */
2661 state_change = (so->so_state & (SS_CANTRCVMORE|SS_CANTSENDMORE)) -
2662 (old_state & (SS_CANTRCVMORE|SS_CANTSENDMORE));
2663 ASSERT((state_change & ~(SS_CANTRCVMORE|SS_CANTSENDMORE)) == 0);
2664
2665 switch (state_change) {
2666 case 0:
2667 dprintso(so, 1,
2668 ("sotpi_shutdown: nothing to send in state 0x%x\n",
2669 so->so_state));
2670 goto done;
2671
2672 case SS_CANTRCVMORE:
2673 mutex_exit(&so->so_lock);
2674 strseteof(SOTOV(so), 1);
2675 /*
2676 * strseteof takes care of read side wakeups,
2677 * pollwakeups, and signals.
2678 */
2679 /*
2680 * Get the read lock before flushing data to avoid problems
2681 * with the T_EXDATA_IND MSG_PEEK code in sotpi_recvmsg.
2682 */
2683 mutex_enter(&so->so_lock);
2684 (void) so_lock_read(so, 0); /* Set SOREADLOCKED */
2685 mutex_exit(&so->so_lock);
2686
2687 /* Flush read side queue */
2688 strflushrq(SOTOV(so), FLUSHALL);
2689
2690 mutex_enter(&so->so_lock);
2691 so_unlock_read(so); /* Clear SOREADLOCKED */
2692 break;
2693
2694 case SS_CANTSENDMORE:
2695 mutex_exit(&so->so_lock);
2696 strsetwerror(SOTOV(so), 0, 0, sogetwrerr);
2697 mutex_enter(&so->so_lock);
2698 break;
2699
2700 case SS_CANTSENDMORE|SS_CANTRCVMORE:
2701 mutex_exit(&so->so_lock);
2702 strsetwerror(SOTOV(so), 0, 0, sogetwrerr);
2703 strseteof(SOTOV(so), 1);
2704 /*
2705 * strseteof takes care of read side wakeups,
2706 * pollwakeups, and signals.
2707 */
2708 /*
2709 * Get the read lock before flushing data to avoid problems
2710 * with the T_EXDATA_IND MSG_PEEK code in sotpi_recvmsg.
2711 */
2712 mutex_enter(&so->so_lock);
2713 (void) so_lock_read(so, 0); /* Set SOREADLOCKED */
2714 mutex_exit(&so->so_lock);
2715
2716 /* Flush read side queue */
2717 strflushrq(SOTOV(so), FLUSHALL);
2718
2719 mutex_enter(&so->so_lock);
2720 so_unlock_read(so); /* Clear SOREADLOCKED */
2721 break;
2722 }
2723
2724 ASSERT(MUTEX_HELD(&so->so_lock));
2725
2726 /*
2727 * If either SS_CANTSENDMORE or SS_CANTRCVMORE or both of them
2728 * was set due to this call and the new state has both of them set:
2729 * Send the AF_UNIX close indication
2730 * For T_COTS send a discon_ind
2731 *
2732 * If cantsend was set due to this call:
2733 * For T_COTSORD send an ordrel_ind
2734 *
2735 * Note that for T_CLTS there is no message sent here.
2736 */
2737 if ((so->so_state & (SS_CANTRCVMORE|SS_CANTSENDMORE)) ==
2738 (SS_CANTRCVMORE|SS_CANTSENDMORE)) {
2739 /*
2740 * For SunOS 4.X compatibility we tell the other end
2741 * that we are unable to receive at this point.
2742 */
2743 if (so->so_family == AF_UNIX && sti->sti_serv_type != T_CLTS)
2744 so_unix_close(so);
2745
2746 if (sti->sti_serv_type == T_COTS)
2747 error = sodisconnect(so, -1, _SODISCONNECT_LOCK_HELD);
2748 }
2749 if ((state_change & SS_CANTSENDMORE) &&
2750 (sti->sti_serv_type == T_COTS_ORD)) {
2751 /* Send an orderly release */
2752 ordrel_req.PRIM_type = T_ORDREL_REQ;
2753
2754 mutex_exit(&so->so_lock);
2755 mp = soallocproto1(&ordrel_req, sizeof (ordrel_req),
2756 0, _ALLOC_SLEEP, cr);
2757 /*
2758 * Send down the T_ORDREL_REQ even if there is flow control.
2759 * This prevents shutdown from blocking.
2760 * Note that there is no T_OK_ACK for ordrel_req.
2761 */
2762 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0,
2763 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR|MSG_IGNFLOW, 0);
2764 mutex_enter(&so->so_lock);
2765 if (error) {
2766 eprintsoline(so, error);
2767 goto done;
2768 }
2769 }
2770
2771 done:
2772 so_unlock_single(so, SOLOCKED);
2773 mutex_exit(&so->so_lock);
2774 return (error);
2775 }
2776
2777 /*
2778 * For any connected SOCK_STREAM/SOCK_SEQPACKET AF_UNIX socket we send
2779 * a zero-length T_OPTDATA_REQ with the SO_UNIX_CLOSE option to inform the peer
2780 * that we have closed.
2781 * Also, for connected AF_UNIX SOCK_DGRAM sockets we send a zero-length
2782 * T_UNITDATA_REQ containing the same option.
2783 *
2784 * For SOCK_DGRAM half-connections (somebody connected to this end
2785 * but this end is not connect) we don't know where to send any
2786 * SO_UNIX_CLOSE.
2787 *
2788 * We have to ignore stream head errors just in case there has been
2789 * a shutdown(output).
2790 * Ignore any flow control to try to get the message more quickly to the peer.
2791 * While locally ignoring flow control solves the problem when there
2792 * is only the loopback transport on the stream it would not provide
2793 * the correct AF_UNIX socket semantics when one or more modules have
2794 * been pushed.
2795 */
2796 void
so_unix_close(struct sonode * so)2797 so_unix_close(struct sonode *so)
2798 {
2799 int error;
2800 struct T_opthdr toh;
2801 mblk_t *mp;
2802 sotpi_info_t *sti = SOTOTPI(so);
2803
2804 ASSERT(MUTEX_HELD(&so->so_lock));
2805
2806 ASSERT(so->so_family == AF_UNIX);
2807
2808 if ((so->so_state & (SS_ISCONNECTED|SS_ISBOUND)) !=
2809 (SS_ISCONNECTED|SS_ISBOUND))
2810 return;
2811
2812 dprintso(so, 1, ("so_unix_close(%p) %s\n",
2813 (void *)so, pr_state(so->so_state, so->so_mode)));
2814
2815 toh.level = SOL_SOCKET;
2816 toh.name = SO_UNIX_CLOSE;
2817
2818 /* zero length + header */
2819 toh.len = (t_uscalar_t)sizeof (struct T_opthdr);
2820 toh.status = 0;
2821
2822 if (so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) {
2823 struct T_optdata_req tdr;
2824
2825 tdr.PRIM_type = T_OPTDATA_REQ;
2826 tdr.DATA_flag = 0;
2827
2828 tdr.OPT_length = (t_scalar_t)sizeof (toh);
2829 tdr.OPT_offset = (t_scalar_t)sizeof (tdr);
2830
2831 /* NOTE: holding so_lock while sleeping */
2832 mp = soallocproto2(&tdr, sizeof (tdr),
2833 &toh, sizeof (toh), 0, _ALLOC_SLEEP, CRED());
2834 } else {
2835 struct T_unitdata_req tudr;
2836 void *addr;
2837 socklen_t addrlen;
2838 void *src;
2839 socklen_t srclen;
2840 struct T_opthdr toh2;
2841 t_scalar_t size;
2842
2843 /* Connecteded DGRAM socket */
2844
2845 /*
2846 * For AF_UNIX the destination address is translated to
2847 * an internal name and the source address is passed as
2848 * an option.
2849 */
2850 /*
2851 * Length and family checks.
2852 */
2853 error = so_addr_verify(so, sti->sti_faddr_sa,
2854 (t_uscalar_t)sti->sti_faddr_len);
2855 if (error) {
2856 eprintsoline(so, error);
2857 return;
2858 }
2859 if (sti->sti_faddr_noxlate) {
2860 /*
2861 * Already have a transport internal address. Do not
2862 * pass any (transport internal) source address.
2863 */
2864 addr = sti->sti_faddr_sa;
2865 addrlen = (t_uscalar_t)sti->sti_faddr_len;
2866 src = NULL;
2867 srclen = 0;
2868 } else {
2869 /*
2870 * Pass the sockaddr_un source address as an option
2871 * and translate the remote address.
2872 * Holding so_lock thus sti_laddr_sa can not change.
2873 */
2874 src = sti->sti_laddr_sa;
2875 srclen = (socklen_t)sti->sti_laddr_len;
2876 dprintso(so, 1,
2877 ("so_ux_close: srclen %d, src %p\n",
2878 srclen, src));
2879 error = so_ux_addr_xlate(so,
2880 sti->sti_faddr_sa,
2881 (socklen_t)sti->sti_faddr_len, 0,
2882 &addr, &addrlen);
2883 if (error) {
2884 eprintsoline(so, error);
2885 return;
2886 }
2887 }
2888 tudr.PRIM_type = T_UNITDATA_REQ;
2889 tudr.DEST_length = addrlen;
2890 tudr.DEST_offset = (t_scalar_t)sizeof (tudr);
2891 if (srclen == 0) {
2892 tudr.OPT_length = (t_scalar_t)sizeof (toh);
2893 tudr.OPT_offset = (t_scalar_t)(sizeof (tudr) +
2894 _TPI_ALIGN_TOPT(addrlen));
2895
2896 size = tudr.OPT_offset + tudr.OPT_length;
2897 /* NOTE: holding so_lock while sleeping */
2898 mp = soallocproto2(&tudr, sizeof (tudr),
2899 addr, addrlen, size, _ALLOC_SLEEP, CRED());
2900 mp->b_wptr += (_TPI_ALIGN_TOPT(addrlen) - addrlen);
2901 soappendmsg(mp, &toh, sizeof (toh));
2902 } else {
2903 /*
2904 * There is a AF_UNIX sockaddr_un to include as a
2905 * source address option.
2906 */
2907 tudr.OPT_length = (t_scalar_t)(2 * sizeof (toh) +
2908 _TPI_ALIGN_TOPT(srclen));
2909 tudr.OPT_offset = (t_scalar_t)(sizeof (tudr) +
2910 _TPI_ALIGN_TOPT(addrlen));
2911
2912 toh2.level = SOL_SOCKET;
2913 toh2.name = SO_SRCADDR;
2914 toh2.len = (t_uscalar_t)(srclen +
2915 sizeof (struct T_opthdr));
2916 toh2.status = 0;
2917
2918 size = tudr.OPT_offset + tudr.OPT_length;
2919
2920 /* NOTE: holding so_lock while sleeping */
2921 mp = soallocproto2(&tudr, sizeof (tudr),
2922 addr, addrlen, size, _ALLOC_SLEEP, CRED());
2923 mp->b_wptr += _TPI_ALIGN_TOPT(addrlen) - addrlen;
2924 soappendmsg(mp, &toh, sizeof (toh));
2925 soappendmsg(mp, &toh2, sizeof (toh2));
2926 soappendmsg(mp, src, srclen);
2927 mp->b_wptr += _TPI_ALIGN_TOPT(srclen) - srclen;
2928 }
2929 ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
2930 }
2931 mutex_exit(&so->so_lock);
2932 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0,
2933 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR|MSG_IGNFLOW, 0);
2934 mutex_enter(&so->so_lock);
2935 }
2936
2937 /*
2938 * Called by sotpi_recvmsg when reading a non-zero amount of data.
2939 * In addition, the caller typically verifies that there is some
2940 * potential state to clear by checking
2941 * if (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK))
2942 * before calling this routine.
2943 * Note that such a check can be made without holding so_lock since
2944 * sotpi_recvmsg is single-threaded (using SOREADLOCKED) and only sotpi_recvmsg
2945 * decrements sti_oobsigcnt.
2946 *
2947 * When data is read *after* the point that all pending
2948 * oob data has been consumed the oob indication is cleared.
2949 *
2950 * This logic keeps select/poll returning POLLRDBAND and
2951 * SIOCATMARK returning true until we have read past
2952 * the mark.
2953 */
2954 static void
sorecv_update_oobstate(struct sonode * so)2955 sorecv_update_oobstate(struct sonode *so)
2956 {
2957 sotpi_info_t *sti = SOTOTPI(so);
2958
2959 mutex_enter(&so->so_lock);
2960 ASSERT(so_verify_oobstate(so));
2961 dprintso(so, 1,
2962 ("sorecv_update_oobstate: counts %d/%d state %s\n",
2963 sti->sti_oobsigcnt,
2964 sti->sti_oobcnt, pr_state(so->so_state, so->so_mode)));
2965 if (sti->sti_oobsigcnt == 0) {
2966 /* No more pending oob indications */
2967 so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK);
2968 freemsg(so->so_oobmsg);
2969 so->so_oobmsg = NULL;
2970 }
2971 ASSERT(so_verify_oobstate(so));
2972 mutex_exit(&so->so_lock);
2973 }
2974
2975 /*
2976 * Handle recv* calls for an so which has NL7C saved recv mblk_t(s).
2977 */
2978 static int
nl7c_sorecv(struct sonode * so,mblk_t ** rmp,uio_t * uiop,rval_t * rp)2979 nl7c_sorecv(struct sonode *so, mblk_t **rmp, uio_t *uiop, rval_t *rp)
2980 {
2981 sotpi_info_t *sti = SOTOTPI(so);
2982 int error = 0;
2983 mblk_t *tmp = NULL;
2984 mblk_t *pmp = NULL;
2985 mblk_t *nmp = sti->sti_nl7c_rcv_mp;
2986
2987 ASSERT(nmp != NULL);
2988
2989 while (nmp != NULL && uiop->uio_resid > 0) {
2990 ssize_t n;
2991
2992 if (DB_TYPE(nmp) == M_DATA) {
2993 /*
2994 * We have some data, uiomove up to resid bytes.
2995 */
2996 n = MIN(MBLKL(nmp), uiop->uio_resid);
2997 if (n > 0)
2998 error = uiomove(nmp->b_rptr, n, UIO_READ, uiop);
2999 nmp->b_rptr += n;
3000 if (nmp->b_rptr == nmp->b_wptr) {
3001 pmp = nmp;
3002 nmp = nmp->b_cont;
3003 }
3004 if (error)
3005 break;
3006 } else {
3007 /*
3008 * We only handle data, save for caller to handle.
3009 */
3010 if (pmp != NULL) {
3011 pmp->b_cont = nmp->b_cont;
3012 }
3013 nmp->b_cont = NULL;
3014 if (*rmp == NULL) {
3015 *rmp = nmp;
3016 } else {
3017 tmp->b_cont = nmp;
3018 }
3019 nmp = nmp->b_cont;
3020 tmp = nmp;
3021 }
3022 }
3023 if (pmp != NULL) {
3024 /* Free any mblk_t(s) which we have consumed */
3025 pmp->b_cont = NULL;
3026 freemsg(sti->sti_nl7c_rcv_mp);
3027 }
3028 if ((sti->sti_nl7c_rcv_mp = nmp) == NULL) {
3029 /* Last mblk_t so return the saved kstrgetmsg() rval/error */
3030 if (error == 0) {
3031 rval_t *p = (rval_t *)&sti->sti_nl7c_rcv_rval;
3032
3033 error = p->r_v.r_v2;
3034 p->r_v.r_v2 = 0;
3035 }
3036 rp->r_vals = sti->sti_nl7c_rcv_rval;
3037 sti->sti_nl7c_rcv_rval = 0;
3038 } else {
3039 /* More mblk_t(s) to process so no rval to return */
3040 rp->r_vals = 0;
3041 }
3042 return (error);
3043 }
3044 /*
3045 * Receive the next message on the queue.
3046 * If msg_controllen is non-zero when called the caller is interested in
3047 * any received control info (options).
3048 * If msg_namelen is non-zero when called the caller is interested in
3049 * any received source address.
3050 * The routine returns with msg_control and msg_name pointing to
3051 * kmem_alloc'ed memory which the caller has to free.
3052 */
3053 /* ARGSUSED */
3054 int
sotpi_recvmsg(struct sonode * so,struct nmsghdr * msg,struct uio * uiop,struct cred * cr)3055 sotpi_recvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop,
3056 struct cred *cr)
3057 {
3058 union T_primitives *tpr;
3059 mblk_t *mp;
3060 uchar_t pri;
3061 int pflag, opflag;
3062 void *control;
3063 t_uscalar_t controllen;
3064 t_uscalar_t namelen;
3065 int so_state = so->so_state; /* Snapshot */
3066 ssize_t saved_resid;
3067 rval_t rval;
3068 int flags;
3069 clock_t timout;
3070 int error = 0;
3071 sotpi_info_t *sti = SOTOTPI(so);
3072
3073 flags = msg->msg_flags;
3074 msg->msg_flags = 0;
3075
3076 dprintso(so, 1, ("sotpi_recvmsg(%p, %p, 0x%x) state %s err %d\n",
3077 (void *)so, (void *)msg, flags,
3078 pr_state(so->so_state, so->so_mode), so->so_error));
3079
3080 if (so->so_version == SOV_STREAM) {
3081 so_update_attrs(so, SOACC);
3082 /* The imaginary "sockmod" has been popped - act as a stream */
3083 return (strread(SOTOV(so), uiop, cr));
3084 }
3085
3086 /*
3087 * If we are not connected because we have never been connected
3088 * we return ENOTCONN. If we have been connected (but are no longer
3089 * connected) then SS_CANTRCVMORE is set and we let kstrgetmsg return
3090 * the EOF.
3091 *
3092 * An alternative would be to post an ENOTCONN error in stream head
3093 * (read+write) and clear it when we're connected. However, that error
3094 * would cause incorrect poll/select behavior!
3095 */
3096 if ((so_state & (SS_ISCONNECTED|SS_CANTRCVMORE)) == 0 &&
3097 (so->so_mode & SM_CONNREQUIRED)) {
3098 return (ENOTCONN);
3099 }
3100
3101 /*
3102 * Note: SunOS 4.X checks uio_resid == 0 before going to sleep (but
3103 * after checking that the read queue is empty) and returns zero.
3104 * This implementation will sleep (in kstrgetmsg) even if uio_resid
3105 * is zero.
3106 */
3107
3108 if (flags & MSG_OOB) {
3109 /* Check that the transport supports OOB */
3110 if (!(so->so_mode & SM_EXDATA))
3111 return (EOPNOTSUPP);
3112 so_update_attrs(so, SOACC);
3113 return (sorecvoob(so, msg, uiop, flags,
3114 (so->so_options & SO_OOBINLINE)));
3115 }
3116
3117 so_update_attrs(so, SOACC);
3118
3119 /*
3120 * Set msg_controllen and msg_namelen to zero here to make it
3121 * simpler in the cases that no control or name is returned.
3122 */
3123 controllen = msg->msg_controllen;
3124 namelen = msg->msg_namelen;
3125 msg->msg_controllen = 0;
3126 msg->msg_namelen = 0;
3127
3128 dprintso(so, 1, ("sotpi_recvmsg: namelen %d controllen %d\n",
3129 namelen, controllen));
3130
3131 mutex_enter(&so->so_lock);
3132 /*
3133 * If an NL7C enabled socket and not waiting for write data.
3134 */
3135 if ((sti->sti_nl7c_flags & (NL7C_ENABLED | NL7C_WAITWRITE)) ==
3136 NL7C_ENABLED) {
3137 if (sti->sti_nl7c_uri) {
3138 /* Close uri processing for a previous request */
3139 nl7c_close(so);
3140 }
3141 if ((so_state & SS_CANTRCVMORE) &&
3142 sti->sti_nl7c_rcv_mp == NULL) {
3143 /* Nothing to process, EOF */
3144 mutex_exit(&so->so_lock);
3145 return (0);
3146 } else if (sti->sti_nl7c_flags & NL7C_SOPERSIST) {
3147 /* Persistent NL7C socket, try to process request */
3148 boolean_t ret;
3149
3150 ret = nl7c_process(so,
3151 (so->so_state & (SS_NONBLOCK|SS_NDELAY)));
3152 rval.r_vals = sti->sti_nl7c_rcv_rval;
3153 error = rval.r_v.r_v2;
3154 if (error) {
3155 /* Error of some sort, return it */
3156 mutex_exit(&so->so_lock);
3157 return (error);
3158 }
3159 if (sti->sti_nl7c_flags &&
3160 ! (sti->sti_nl7c_flags & NL7C_WAITWRITE)) {
3161 /*
3162 * Still an NL7C socket and no data
3163 * to pass up to the caller.
3164 */
3165 mutex_exit(&so->so_lock);
3166 if (ret) {
3167 /* EOF */
3168 return (0);
3169 } else {
3170 /* Need more data */
3171 return (EAGAIN);
3172 }
3173 }
3174 } else {
3175 /*
3176 * Not persistent so no further NL7C processing.
3177 */
3178 sti->sti_nl7c_flags = 0;
3179 }
3180 }
3181 /*
3182 * Only one reader is allowed at any given time. This is needed
3183 * for T_EXDATA handling and, in the future, MSG_WAITALL.
3184 *
3185 * This is slightly different that BSD behavior in that it fails with
3186 * EWOULDBLOCK when using nonblocking io. In BSD the read queue access
3187 * is single-threaded using sblock(), which is dropped while waiting
3188 * for data to appear. The difference shows up e.g. if one
3189 * file descriptor does not have O_NONBLOCK but a dup'ed file descriptor
3190 * does use nonblocking io and different threads are reading each
3191 * file descriptor. In BSD there would never be an EWOULDBLOCK error
3192 * in this case as long as the read queue doesn't get empty.
3193 * In this implementation the thread using nonblocking io can
3194 * get an EWOULDBLOCK error due to the blocking thread executing
3195 * e.g. in the uiomove in kstrgetmsg.
3196 * This difference is not believed to be significant.
3197 */
3198 /* Set SOREADLOCKED */
3199 error = so_lock_read_intr(so,
3200 uiop->uio_fmode | ((flags & MSG_DONTWAIT) ? FNONBLOCK : 0));
3201 mutex_exit(&so->so_lock);
3202 if (error)
3203 return (error);
3204
3205 /*
3206 * Tell kstrgetmsg to not inspect the stream head errors until all
3207 * queued data has been consumed.
3208 * Use a timeout=-1 to wait forever unless MSG_DONTWAIT is set.
3209 * Also, If uio_fmode indicates nonblocking kstrgetmsg will not block.
3210 *
3211 * MSG_WAITALL only applies to M_DATA and T_DATA_IND messages and
3212 * to T_OPTDATA_IND that do not contain any user-visible control msg.
3213 * Note that MSG_WAITALL set with MSG_PEEK is a noop.
3214 */
3215 pflag = MSG_ANY | MSG_DELAYERROR;
3216 if (flags & MSG_PEEK) {
3217 pflag |= MSG_IPEEK;
3218 flags &= ~MSG_WAITALL;
3219 }
3220 if (so->so_mode & SM_ATOMIC)
3221 pflag |= MSG_DISCARDTAIL;
3222
3223 if (flags & MSG_DONTWAIT)
3224 timout = 0;
3225 else if (so->so_rcvtimeo != 0)
3226 timout = TICK_TO_MSEC(so->so_rcvtimeo);
3227 else
3228 timout = -1;
3229 opflag = pflag;
3230 retry:
3231 saved_resid = uiop->uio_resid;
3232 pri = 0;
3233 mp = NULL;
3234 if (sti->sti_nl7c_rcv_mp != NULL) {
3235 /* Already kstrgetmsg()ed saved mblk(s) from NL7C */
3236 error = nl7c_sorecv(so, &mp, uiop, &rval);
3237 } else {
3238 error = kstrgetmsg(SOTOV(so), &mp, uiop, &pri, &pflag,
3239 timout, &rval);
3240 }
3241 if (error != 0) {
3242 /* kstrgetmsg returns ETIME when timeout expires */
3243 if (error == ETIME)
3244 error = EWOULDBLOCK;
3245 goto out;
3246 }
3247 /*
3248 * For datagrams the MOREDATA flag is used to set MSG_TRUNC.
3249 * For non-datagrams MOREDATA is used to set MSG_EOR.
3250 */
3251 ASSERT(!(rval.r_val1 & MORECTL));
3252 if ((rval.r_val1 & MOREDATA) && (so->so_mode & SM_ATOMIC))
3253 msg->msg_flags |= MSG_TRUNC;
3254
3255 if (mp == NULL) {
3256 dprintso(so, 1, ("sotpi_recvmsg: got M_DATA\n"));
3257 /*
3258 * 4.3BSD and 4.4BSD clears the mark when peeking across it.
3259 * The draft Posix socket spec states that the mark should
3260 * not be cleared when peeking. We follow the latter.
3261 */
3262 if ((so->so_state &
3263 (SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) &&
3264 (uiop->uio_resid != saved_resid) &&
3265 !(flags & MSG_PEEK)) {
3266 sorecv_update_oobstate(so);
3267 }
3268
3269 mutex_enter(&so->so_lock);
3270 /* Set MSG_EOR based on MOREDATA */
3271 if (!(rval.r_val1 & MOREDATA)) {
3272 if (so->so_state & SS_SAVEDEOR) {
3273 msg->msg_flags |= MSG_EOR;
3274 so->so_state &= ~SS_SAVEDEOR;
3275 }
3276 }
3277 /*
3278 * If some data was received (i.e. not EOF) and the
3279 * read/recv* has not been satisfied wait for some more.
3280 */
3281 if ((flags & MSG_WAITALL) && !(msg->msg_flags & MSG_EOR) &&
3282 uiop->uio_resid != saved_resid && uiop->uio_resid > 0) {
3283 mutex_exit(&so->so_lock);
3284 pflag = opflag | MSG_NOMARK;
3285 goto retry;
3286 }
3287 goto out_locked;
3288 }
3289
3290 /* strsock_proto has already verified length and alignment */
3291 tpr = (union T_primitives *)mp->b_rptr;
3292 dprintso(so, 1, ("sotpi_recvmsg: type %d\n", tpr->type));
3293
3294 switch (tpr->type) {
3295 case T_DATA_IND: {
3296 if ((so->so_state &
3297 (SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) &&
3298 (uiop->uio_resid != saved_resid) &&
3299 !(flags & MSG_PEEK)) {
3300 sorecv_update_oobstate(so);
3301 }
3302
3303 /*
3304 * Set msg_flags to MSG_EOR based on
3305 * MORE_flag and MOREDATA.
3306 */
3307 mutex_enter(&so->so_lock);
3308 so->so_state &= ~SS_SAVEDEOR;
3309 if (!(tpr->data_ind.MORE_flag & 1)) {
3310 if (!(rval.r_val1 & MOREDATA))
3311 msg->msg_flags |= MSG_EOR;
3312 else
3313 so->so_state |= SS_SAVEDEOR;
3314 }
3315 freemsg(mp);
3316 /*
3317 * If some data was received (i.e. not EOF) and the
3318 * read/recv* has not been satisfied wait for some more.
3319 */
3320 if ((flags & MSG_WAITALL) && !(msg->msg_flags & MSG_EOR) &&
3321 uiop->uio_resid != saved_resid && uiop->uio_resid > 0) {
3322 mutex_exit(&so->so_lock);
3323 pflag = opflag | MSG_NOMARK;
3324 goto retry;
3325 }
3326 goto out_locked;
3327 }
3328 case T_UNITDATA_IND: {
3329 void *addr;
3330 t_uscalar_t addrlen;
3331 void *abuf;
3332 t_uscalar_t optlen;
3333 void *opt;
3334
3335 if ((so->so_state &
3336 (SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) &&
3337 (uiop->uio_resid != saved_resid) &&
3338 !(flags & MSG_PEEK)) {
3339 sorecv_update_oobstate(so);
3340 }
3341
3342 if (namelen != 0) {
3343 /* Caller wants source address */
3344 addrlen = tpr->unitdata_ind.SRC_length;
3345 addr = sogetoff(mp,
3346 tpr->unitdata_ind.SRC_offset,
3347 addrlen, 1);
3348 if (addr == NULL) {
3349 freemsg(mp);
3350 error = EPROTO;
3351 eprintsoline(so, error);
3352 goto out;
3353 }
3354 if (so->so_family == AF_UNIX) {
3355 /*
3356 * Can not use the transport level address.
3357 * If there is a SO_SRCADDR option carrying
3358 * the socket level address it will be
3359 * extracted below.
3360 */
3361 addr = NULL;
3362 addrlen = 0;
3363 }
3364 }
3365 optlen = tpr->unitdata_ind.OPT_length;
3366 if (optlen != 0) {
3367 t_uscalar_t ncontrollen;
3368
3369 /*
3370 * Extract any source address option.
3371 * Determine how large cmsg buffer is needed.
3372 */
3373 opt = sogetoff(mp,
3374 tpr->unitdata_ind.OPT_offset,
3375 optlen, __TPI_ALIGN_SIZE);
3376
3377 if (opt == NULL) {
3378 freemsg(mp);
3379 error = EPROTO;
3380 eprintsoline(so, error);
3381 goto out;
3382 }
3383 if (so->so_family == AF_UNIX)
3384 so_getopt_srcaddr(opt, optlen, &addr, &addrlen);
3385 ncontrollen = so_cmsglen(mp, opt, optlen,
3386 !(flags & MSG_XPG4_2));
3387 if (controllen != 0)
3388 controllen = ncontrollen;
3389 else if (ncontrollen != 0)
3390 msg->msg_flags |= MSG_CTRUNC;
3391 } else {
3392 controllen = 0;
3393 }
3394
3395 if (namelen != 0) {
3396 /*
3397 * Return address to caller.
3398 * Caller handles truncation if length
3399 * exceeds msg_namelen.
3400 * NOTE: AF_UNIX NUL termination is ensured by
3401 * the sender's copyin_name().
3402 */
3403 abuf = kmem_alloc(addrlen, KM_SLEEP);
3404
3405 bcopy(addr, abuf, addrlen);
3406 msg->msg_name = abuf;
3407 msg->msg_namelen = addrlen;
3408 }
3409
3410 if (controllen != 0) {
3411 /*
3412 * Return control msg to caller.
3413 * Caller handles truncation if length
3414 * exceeds msg_controllen.
3415 */
3416 control = kmem_zalloc(controllen, KM_SLEEP);
3417
3418 error = so_opt2cmsg(mp, opt, optlen,
3419 !(flags & MSG_XPG4_2),
3420 control, controllen);
3421 if (error) {
3422 freemsg(mp);
3423 if (msg->msg_namelen != 0)
3424 kmem_free(msg->msg_name,
3425 msg->msg_namelen);
3426 kmem_free(control, controllen);
3427 eprintsoline(so, error);
3428 goto out;
3429 }
3430 msg->msg_control = control;
3431 msg->msg_controllen = controllen;
3432 }
3433
3434 freemsg(mp);
3435 goto out;
3436 }
3437 case T_OPTDATA_IND: {
3438 struct T_optdata_req *tdr;
3439 void *opt;
3440 t_uscalar_t optlen;
3441
3442 if ((so->so_state &
3443 (SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) &&
3444 (uiop->uio_resid != saved_resid) &&
3445 !(flags & MSG_PEEK)) {
3446 sorecv_update_oobstate(so);
3447 }
3448
3449 tdr = (struct T_optdata_req *)mp->b_rptr;
3450 optlen = tdr->OPT_length;
3451 if (optlen != 0) {
3452 t_uscalar_t ncontrollen;
3453 /*
3454 * Determine how large cmsg buffer is needed.
3455 */
3456 opt = sogetoff(mp,
3457 tpr->optdata_ind.OPT_offset,
3458 optlen, __TPI_ALIGN_SIZE);
3459
3460 if (opt == NULL) {
3461 freemsg(mp);
3462 error = EPROTO;
3463 eprintsoline(so, error);
3464 goto out;
3465 }
3466
3467 ncontrollen = so_cmsglen(mp, opt, optlen,
3468 !(flags & MSG_XPG4_2));
3469 if (controllen != 0)
3470 controllen = ncontrollen;
3471 else if (ncontrollen != 0)
3472 msg->msg_flags |= MSG_CTRUNC;
3473 } else {
3474 controllen = 0;
3475 }
3476
3477 if (controllen != 0) {
3478 /*
3479 * Return control msg to caller.
3480 * Caller handles truncation if length
3481 * exceeds msg_controllen.
3482 */
3483 control = kmem_zalloc(controllen, KM_SLEEP);
3484
3485 error = so_opt2cmsg(mp, opt, optlen,
3486 !(flags & MSG_XPG4_2),
3487 control, controllen);
3488 if (error) {
3489 freemsg(mp);
3490 kmem_free(control, controllen);
3491 eprintsoline(so, error);
3492 goto out;
3493 }
3494 msg->msg_control = control;
3495 msg->msg_controllen = controllen;
3496 }
3497
3498 /*
3499 * Set msg_flags to MSG_EOR based on
3500 * DATA_flag and MOREDATA.
3501 */
3502 mutex_enter(&so->so_lock);
3503 so->so_state &= ~SS_SAVEDEOR;
3504 if (!(tpr->data_ind.MORE_flag & 1)) {
3505 if (!(rval.r_val1 & MOREDATA))
3506 msg->msg_flags |= MSG_EOR;
3507 else
3508 so->so_state |= SS_SAVEDEOR;
3509 }
3510 freemsg(mp);
3511 /*
3512 * If some data was received (i.e. not EOF) and the
3513 * read/recv* has not been satisfied wait for some more.
3514 * Not possible to wait if control info was received.
3515 */
3516 if ((flags & MSG_WAITALL) && !(msg->msg_flags & MSG_EOR) &&
3517 controllen == 0 &&
3518 uiop->uio_resid != saved_resid && uiop->uio_resid > 0) {
3519 mutex_exit(&so->so_lock);
3520 pflag = opflag | MSG_NOMARK;
3521 goto retry;
3522 }
3523 goto out_locked;
3524 }
3525 case T_EXDATA_IND: {
3526 dprintso(so, 1,
3527 ("sotpi_recvmsg: EXDATA_IND counts %d/%d consumed %ld "
3528 "state %s\n",
3529 sti->sti_oobsigcnt, sti->sti_oobcnt,
3530 saved_resid - uiop->uio_resid,
3531 pr_state(so->so_state, so->so_mode)));
3532 /*
3533 * kstrgetmsg handles MSGMARK so there is nothing to
3534 * inspect in the T_EXDATA_IND.
3535 * strsock_proto makes the stream head queue the T_EXDATA_IND
3536 * as a separate message with no M_DATA component. Furthermore,
3537 * the stream head does not consolidate M_DATA messages onto
3538 * an MSGMARK'ed message ensuring that the T_EXDATA_IND
3539 * remains a message by itself. This is needed since MSGMARK
3540 * marks both the whole message as well as the last byte
3541 * of the message.
3542 */
3543 freemsg(mp);
3544 ASSERT(uiop->uio_resid == saved_resid); /* No data */
3545 if (flags & MSG_PEEK) {
3546 /*
3547 * Even though we are peeking we consume the
3548 * T_EXDATA_IND thereby moving the mark information
3549 * to SS_RCVATMARK. Then the oob code below will
3550 * retry the peeking kstrgetmsg.
3551 * Note that the stream head read queue is
3552 * never flushed without holding SOREADLOCKED
3553 * thus the T_EXDATA_IND can not disappear
3554 * underneath us.
3555 */
3556 dprintso(so, 1,
3557 ("sotpi_recvmsg: consume EXDATA_IND "
3558 "counts %d/%d state %s\n",
3559 sti->sti_oobsigcnt,
3560 sti->sti_oobcnt,
3561 pr_state(so->so_state, so->so_mode)));
3562
3563 pflag = MSG_ANY | MSG_DELAYERROR;
3564 if (so->so_mode & SM_ATOMIC)
3565 pflag |= MSG_DISCARDTAIL;
3566
3567 pri = 0;
3568 mp = NULL;
3569
3570 error = kstrgetmsg(SOTOV(so), &mp, uiop,
3571 &pri, &pflag, (clock_t)-1, &rval);
3572 ASSERT(uiop->uio_resid == saved_resid);
3573
3574 if (error) {
3575 #ifdef SOCK_DEBUG
3576 if (error != EWOULDBLOCK && error != EINTR) {
3577 eprintsoline(so, error);
3578 }
3579 #endif /* SOCK_DEBUG */
3580 goto out;
3581 }
3582 ASSERT(mp);
3583 tpr = (union T_primitives *)mp->b_rptr;
3584 ASSERT(tpr->type == T_EXDATA_IND);
3585 freemsg(mp);
3586 } /* end "if (flags & MSG_PEEK)" */
3587
3588 /*
3589 * Decrement the number of queued and pending oob.
3590 *
3591 * SS_RCVATMARK is cleared when we read past a mark.
3592 * SS_HAVEOOBDATA is cleared when we've read past the
3593 * last mark.
3594 * SS_OOBPEND is cleared if we've read past the last
3595 * mark and no (new) SIGURG has been posted.
3596 */
3597 mutex_enter(&so->so_lock);
3598 ASSERT(so_verify_oobstate(so));
3599 ASSERT(sti->sti_oobsigcnt >= sti->sti_oobcnt);
3600 ASSERT(sti->sti_oobsigcnt > 0);
3601 sti->sti_oobsigcnt--;
3602 ASSERT(sti->sti_oobcnt > 0);
3603 sti->sti_oobcnt--;
3604 /*
3605 * Since the T_EXDATA_IND has been removed from the stream
3606 * head, but we have not read data past the mark,
3607 * sockfs needs to track that the socket is still at the mark.
3608 *
3609 * Since no data was received call kstrgetmsg again to wait
3610 * for data.
3611 */
3612 so->so_state |= SS_RCVATMARK;
3613 mutex_exit(&so->so_lock);
3614 dprintso(so, 1,
3615 ("sotpi_recvmsg: retry EXDATA_IND counts %d/%d state %s\n",
3616 sti->sti_oobsigcnt, sti->sti_oobcnt,
3617 pr_state(so->so_state, so->so_mode)));
3618 pflag = opflag;
3619 goto retry;
3620 }
3621 default:
3622 cmn_err(CE_CONT, "sotpi_recvmsg: so %p prim %d mp %p\n",
3623 (void *)so, tpr->type, (void *)mp);
3624 ASSERT(0);
3625 freemsg(mp);
3626 error = EPROTO;
3627 eprintsoline(so, error);
3628 goto out;
3629 }
3630 /* NOTREACHED */
3631 out:
3632 mutex_enter(&so->so_lock);
3633 out_locked:
3634 so_unlock_read(so); /* Clear SOREADLOCKED */
3635 mutex_exit(&so->so_lock);
3636 return (error);
3637 }
3638
3639 /*
3640 * Sending data with options on a datagram socket.
3641 * Assumes caller has verified that SS_ISBOUND etc. are set.
3642 */
3643 static int
sosend_dgramcmsg(struct sonode * so,struct sockaddr * name,socklen_t namelen,struct uio * uiop,void * control,t_uscalar_t controllen,int flags)3644 sosend_dgramcmsg(struct sonode *so, struct sockaddr *name, socklen_t namelen,
3645 struct uio *uiop, void *control, t_uscalar_t controllen, int flags)
3646 {
3647 struct T_unitdata_req tudr;
3648 mblk_t *mp;
3649 int error;
3650 void *addr;
3651 socklen_t addrlen;
3652 void *src;
3653 socklen_t srclen;
3654 ssize_t len;
3655 int size;
3656 struct T_opthdr toh;
3657 struct fdbuf *fdbuf;
3658 t_uscalar_t optlen;
3659 void *fds;
3660 int fdlen;
3661 sotpi_info_t *sti = SOTOTPI(so);
3662
3663 ASSERT(name && namelen);
3664 ASSERT(control && controllen);
3665
3666 len = uiop->uio_resid;
3667 if (len > (ssize_t)sti->sti_tidu_size) {
3668 return (EMSGSIZE);
3669 }
3670
3671 /*
3672 * For AF_UNIX the destination address is translated to an internal
3673 * name and the source address is passed as an option.
3674 * Also, file descriptors are passed as file pointers in an
3675 * option.
3676 */
3677
3678 /*
3679 * Length and family checks.
3680 */
3681 error = so_addr_verify(so, name, namelen);
3682 if (error) {
3683 eprintsoline(so, error);
3684 return (error);
3685 }
3686 if (so->so_family == AF_UNIX) {
3687 if (sti->sti_faddr_noxlate) {
3688 /*
3689 * Already have a transport internal address. Do not
3690 * pass any (transport internal) source address.
3691 */
3692 addr = name;
3693 addrlen = namelen;
3694 src = NULL;
3695 srclen = 0;
3696 } else {
3697 /*
3698 * Pass the sockaddr_un source address as an option
3699 * and translate the remote address.
3700 *
3701 * Note that this code does not prevent sti_laddr_sa
3702 * from changing while it is being used. Thus
3703 * if an unbind+bind occurs concurrently with this
3704 * send the peer might see a partially new and a
3705 * partially old "from" address.
3706 */
3707 src = sti->sti_laddr_sa;
3708 srclen = (t_uscalar_t)sti->sti_laddr_len;
3709 dprintso(so, 1,
3710 ("sosend_dgramcmsg UNIX: srclen %d, src %p\n",
3711 srclen, src));
3712 error = so_ux_addr_xlate(so, name, namelen,
3713 (flags & MSG_XPG4_2),
3714 &addr, &addrlen);
3715 if (error) {
3716 eprintsoline(so, error);
3717 return (error);
3718 }
3719 }
3720 } else {
3721 addr = name;
3722 addrlen = namelen;
3723 src = NULL;
3724 srclen = 0;
3725 }
3726 optlen = so_optlen(control, controllen,
3727 !(flags & MSG_XPG4_2));
3728 tudr.PRIM_type = T_UNITDATA_REQ;
3729 tudr.DEST_length = addrlen;
3730 tudr.DEST_offset = (t_scalar_t)sizeof (tudr);
3731 if (srclen != 0)
3732 tudr.OPT_length = (t_scalar_t)(optlen + sizeof (toh) +
3733 _TPI_ALIGN_TOPT(srclen));
3734 else
3735 tudr.OPT_length = optlen;
3736 tudr.OPT_offset = (t_scalar_t)(sizeof (tudr) +
3737 _TPI_ALIGN_TOPT(addrlen));
3738
3739 size = tudr.OPT_offset + tudr.OPT_length;
3740
3741 /*
3742 * File descriptors only when SM_FDPASSING set.
3743 */
3744 error = so_getfdopt(control, controllen,
3745 !(flags & MSG_XPG4_2), &fds, &fdlen);
3746 if (error)
3747 return (error);
3748 if (fdlen != -1) {
3749 if (!(so->so_mode & SM_FDPASSING))
3750 return (EOPNOTSUPP);
3751
3752 error = fdbuf_create(fds, fdlen, &fdbuf);
3753 if (error)
3754 return (error);
3755 mp = fdbuf_allocmsg(size, fdbuf);
3756 } else {
3757 mp = soallocproto(size, _ALLOC_INTR, CRED());
3758 if (mp == NULL) {
3759 /*
3760 * Caught a signal waiting for memory.
3761 * Let send* return EINTR.
3762 */
3763 return (EINTR);
3764 }
3765 }
3766 soappendmsg(mp, &tudr, sizeof (tudr));
3767 soappendmsg(mp, addr, addrlen);
3768 mp->b_wptr += _TPI_ALIGN_TOPT(addrlen) - addrlen;
3769
3770 if (fdlen != -1) {
3771 ASSERT(fdbuf != NULL);
3772 toh.level = SOL_SOCKET;
3773 toh.name = SO_FILEP;
3774 toh.len = fdbuf->fd_size +
3775 (t_uscalar_t)sizeof (struct T_opthdr);
3776 toh.status = 0;
3777 soappendmsg(mp, &toh, sizeof (toh));
3778 soappendmsg(mp, fdbuf, fdbuf->fd_size);
3779 ASSERT(__TPI_TOPT_ISALIGNED(mp->b_wptr));
3780 }
3781 if (srclen != 0) {
3782 /*
3783 * There is a AF_UNIX sockaddr_un to include as a source
3784 * address option.
3785 */
3786 toh.level = SOL_SOCKET;
3787 toh.name = SO_SRCADDR;
3788 toh.len = (t_uscalar_t)(srclen + sizeof (struct T_opthdr));
3789 toh.status = 0;
3790 soappendmsg(mp, &toh, sizeof (toh));
3791 soappendmsg(mp, src, srclen);
3792 mp->b_wptr += _TPI_ALIGN_TOPT(srclen) - srclen;
3793 ASSERT(__TPI_TOPT_ISALIGNED(mp->b_wptr));
3794 }
3795 ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
3796 so_cmsg2opt(control, controllen, !(flags & MSG_XPG4_2), mp);
3797 /* At most 3 bytes left in the message */
3798 ASSERT(MBLKL(mp) > (ssize_t)(size - __TPI_ALIGN_SIZE));
3799 ASSERT(MBLKL(mp) <= (ssize_t)size);
3800
3801 ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
3802 if (AU_AUDITING())
3803 audit_sock(T_UNITDATA_REQ, strvp2wq(SOTOV(so)), mp, 0);
3804
3805 error = kstrputmsg(SOTOV(so), mp, uiop, len, 0, MSG_BAND, 0);
3806 #ifdef SOCK_DEBUG
3807 if (error) {
3808 eprintsoline(so, error);
3809 }
3810 #endif /* SOCK_DEBUG */
3811 return (error);
3812 }
3813
3814 /*
3815 * Sending data with options on a connected stream socket.
3816 * Assumes caller has verified that SS_ISCONNECTED is set.
3817 */
3818 static int
sosend_svccmsg(struct sonode * so,struct uio * uiop,int more,void * control,t_uscalar_t controllen,int flags)3819 sosend_svccmsg(struct sonode *so, struct uio *uiop, int more, void *control,
3820 t_uscalar_t controllen, int flags)
3821 {
3822 struct T_optdata_req tdr;
3823 mblk_t *mp;
3824 int error;
3825 ssize_t iosize;
3826 int size;
3827 struct fdbuf *fdbuf;
3828 t_uscalar_t optlen;
3829 void *fds;
3830 int fdlen;
3831 struct T_opthdr toh;
3832 sotpi_info_t *sti = SOTOTPI(so);
3833
3834 dprintso(so, 1,
3835 ("sosend_svccmsg: resid %ld bytes\n", uiop->uio_resid));
3836
3837 /*
3838 * Has to be bound and connected. However, since no locks are
3839 * held the state could have changed after sotpi_sendmsg checked it
3840 * thus it is not possible to ASSERT on the state.
3841 */
3842
3843 /* Options on connection-oriented only when SM_OPTDATA set. */
3844 if (!(so->so_mode & SM_OPTDATA))
3845 return (EOPNOTSUPP);
3846
3847 do {
3848 /*
3849 * Set the MORE flag if uio_resid does not fit in this
3850 * message or if the caller passed in "more".
3851 * Error for transports with zero tidu_size.
3852 */
3853 tdr.PRIM_type = T_OPTDATA_REQ;
3854 iosize = sti->sti_tidu_size;
3855 if (iosize <= 0)
3856 return (EMSGSIZE);
3857 if (uiop->uio_resid > iosize) {
3858 tdr.DATA_flag = 1;
3859 } else {
3860 if (more)
3861 tdr.DATA_flag = 1;
3862 else
3863 tdr.DATA_flag = 0;
3864 iosize = uiop->uio_resid;
3865 }
3866 dprintso(so, 1, ("sosend_svccmsg: sending %d, %ld bytes\n",
3867 tdr.DATA_flag, iosize));
3868
3869 optlen = so_optlen(control, controllen, !(flags & MSG_XPG4_2));
3870 tdr.OPT_length = optlen;
3871 tdr.OPT_offset = (t_scalar_t)sizeof (tdr);
3872
3873 size = (int)sizeof (tdr) + optlen;
3874 /*
3875 * File descriptors only when SM_FDPASSING set.
3876 */
3877 error = so_getfdopt(control, controllen,
3878 !(flags & MSG_XPG4_2), &fds, &fdlen);
3879 if (error)
3880 return (error);
3881 if (fdlen != -1) {
3882 if (!(so->so_mode & SM_FDPASSING))
3883 return (EOPNOTSUPP);
3884
3885 error = fdbuf_create(fds, fdlen, &fdbuf);
3886 if (error)
3887 return (error);
3888 mp = fdbuf_allocmsg(size, fdbuf);
3889 } else {
3890 mp = soallocproto(size, _ALLOC_INTR, CRED());
3891 if (mp == NULL) {
3892 /*
3893 * Caught a signal waiting for memory.
3894 * Let send* return EINTR.
3895 */
3896 return (EINTR);
3897 }
3898 }
3899 soappendmsg(mp, &tdr, sizeof (tdr));
3900
3901 if (fdlen != -1) {
3902 ASSERT(fdbuf != NULL);
3903 toh.level = SOL_SOCKET;
3904 toh.name = SO_FILEP;
3905 toh.len = fdbuf->fd_size +
3906 (t_uscalar_t)sizeof (struct T_opthdr);
3907 toh.status = 0;
3908 soappendmsg(mp, &toh, sizeof (toh));
3909 soappendmsg(mp, fdbuf, fdbuf->fd_size);
3910 ASSERT(__TPI_TOPT_ISALIGNED(mp->b_wptr));
3911 }
3912 so_cmsg2opt(control, controllen, !(flags & MSG_XPG4_2), mp);
3913 /* At most 3 bytes left in the message */
3914 ASSERT(MBLKL(mp) > (ssize_t)(size - __TPI_ALIGN_SIZE));
3915 ASSERT(MBLKL(mp) <= (ssize_t)size);
3916
3917 ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
3918
3919 error = kstrputmsg(SOTOV(so), mp, uiop, iosize,
3920 0, MSG_BAND, 0);
3921 if (error) {
3922 eprintsoline(so, error);
3923 return (error);
3924 }
3925 control = NULL;
3926 if (uiop->uio_resid > 0) {
3927 /*
3928 * Recheck for fatal errors. Fail write even though
3929 * some data have been written. This is consistent
3930 * with strwrite semantics and BSD sockets semantics.
3931 */
3932 if (so->so_state & SS_CANTSENDMORE) {
3933 eprintsoline(so, error);
3934 return (EPIPE);
3935 }
3936 if (so->so_error != 0) {
3937 mutex_enter(&so->so_lock);
3938 error = sogeterr(so, B_TRUE);
3939 mutex_exit(&so->so_lock);
3940 if (error != 0) {
3941 eprintsoline(so, error);
3942 return (error);
3943 }
3944 }
3945 }
3946 } while (uiop->uio_resid > 0);
3947 return (0);
3948 }
3949
3950 /*
3951 * Sending data on a datagram socket.
3952 * Assumes caller has verified that SS_ISBOUND etc. are set.
3953 *
3954 * For AF_UNIX the destination address is translated to an internal
3955 * name and the source address is passed as an option.
3956 */
3957 int
sosend_dgram(struct sonode * so,struct sockaddr * name,socklen_t namelen,struct uio * uiop,int flags)3958 sosend_dgram(struct sonode *so, struct sockaddr *name, socklen_t namelen,
3959 struct uio *uiop, int flags)
3960 {
3961 struct T_unitdata_req tudr;
3962 mblk_t *mp;
3963 int error;
3964 void *addr;
3965 socklen_t addrlen;
3966 void *src;
3967 socklen_t srclen;
3968 ssize_t len;
3969 sotpi_info_t *sti = SOTOTPI(so);
3970
3971 ASSERT(name != NULL && namelen != 0);
3972
3973 len = uiop->uio_resid;
3974 if (len > sti->sti_tidu_size) {
3975 error = EMSGSIZE;
3976 goto done;
3977 }
3978
3979 /* Length and family checks */
3980 error = so_addr_verify(so, name, namelen);
3981 if (error != 0)
3982 goto done;
3983
3984 if (sti->sti_direct)
3985 return (sodgram_direct(so, name, namelen, uiop, flags));
3986
3987 if (so->so_family == AF_UNIX) {
3988 if (sti->sti_faddr_noxlate) {
3989 /*
3990 * Already have a transport internal address. Do not
3991 * pass any (transport internal) source address.
3992 */
3993 addr = name;
3994 addrlen = namelen;
3995 src = NULL;
3996 srclen = 0;
3997 } else {
3998 /*
3999 * Pass the sockaddr_un source address as an option
4000 * and translate the remote address.
4001 *
4002 * Note that this code does not prevent sti_laddr_sa
4003 * from changing while it is being used. Thus
4004 * if an unbind+bind occurs concurrently with this
4005 * send the peer might see a partially new and a
4006 * partially old "from" address.
4007 */
4008 src = sti->sti_laddr_sa;
4009 srclen = (socklen_t)sti->sti_laddr_len;
4010 dprintso(so, 1,
4011 ("sosend_dgram UNIX: srclen %d, src %p\n",
4012 srclen, src));
4013 error = so_ux_addr_xlate(so, name, namelen,
4014 (flags & MSG_XPG4_2),
4015 &addr, &addrlen);
4016 if (error) {
4017 eprintsoline(so, error);
4018 goto done;
4019 }
4020 }
4021 } else {
4022 addr = name;
4023 addrlen = namelen;
4024 src = NULL;
4025 srclen = 0;
4026 }
4027 tudr.PRIM_type = T_UNITDATA_REQ;
4028 tudr.DEST_length = addrlen;
4029 tudr.DEST_offset = (t_scalar_t)sizeof (tudr);
4030 if (srclen == 0) {
4031 tudr.OPT_length = 0;
4032 tudr.OPT_offset = 0;
4033
4034 mp = soallocproto2(&tudr, sizeof (tudr),
4035 addr, addrlen, 0, _ALLOC_INTR, CRED());
4036 if (mp == NULL) {
4037 /*
4038 * Caught a signal waiting for memory.
4039 * Let send* return EINTR.
4040 */
4041 error = EINTR;
4042 goto done;
4043 }
4044 } else {
4045 /*
4046 * There is a AF_UNIX sockaddr_un to include as a source
4047 * address option.
4048 */
4049 struct T_opthdr toh;
4050 ssize_t size;
4051
4052 tudr.OPT_length = (t_scalar_t)(sizeof (toh) +
4053 _TPI_ALIGN_TOPT(srclen));
4054 tudr.OPT_offset = (t_scalar_t)(sizeof (tudr) +
4055 _TPI_ALIGN_TOPT(addrlen));
4056
4057 toh.level = SOL_SOCKET;
4058 toh.name = SO_SRCADDR;
4059 toh.len = (t_uscalar_t)(srclen + sizeof (struct T_opthdr));
4060 toh.status = 0;
4061
4062 size = tudr.OPT_offset + tudr.OPT_length;
4063 mp = soallocproto2(&tudr, sizeof (tudr),
4064 addr, addrlen, size, _ALLOC_INTR, CRED());
4065 if (mp == NULL) {
4066 /*
4067 * Caught a signal waiting for memory.
4068 * Let send* return EINTR.
4069 */
4070 error = EINTR;
4071 goto done;
4072 }
4073 mp->b_wptr += _TPI_ALIGN_TOPT(addrlen) - addrlen;
4074 soappendmsg(mp, &toh, sizeof (toh));
4075 soappendmsg(mp, src, srclen);
4076 mp->b_wptr += _TPI_ALIGN_TOPT(srclen) - srclen;
4077 ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
4078 }
4079
4080 if (AU_AUDITING())
4081 audit_sock(T_UNITDATA_REQ, strvp2wq(SOTOV(so)), mp, 0);
4082
4083 error = kstrputmsg(SOTOV(so), mp, uiop, len, 0, MSG_BAND, 0);
4084 done:
4085 #ifdef SOCK_DEBUG
4086 if (error) {
4087 eprintsoline(so, error);
4088 }
4089 #endif /* SOCK_DEBUG */
4090 return (error);
4091 }
4092
4093 /*
4094 * Sending data on a connected stream socket.
4095 * Assumes caller has verified that SS_ISCONNECTED is set.
4096 */
4097 int
sosend_svc(struct sonode * so,struct uio * uiop,t_scalar_t prim,int more,int sflag)4098 sosend_svc(struct sonode *so, struct uio *uiop, t_scalar_t prim, int more,
4099 int sflag)
4100 {
4101 struct T_data_req tdr;
4102 mblk_t *mp;
4103 int error;
4104 ssize_t iosize;
4105 sotpi_info_t *sti = SOTOTPI(so);
4106
4107 dprintso(so, 1,
4108 ("sosend_svc: %p, resid %ld bytes, prim %d, sflag 0x%x\n",
4109 (void *)so, uiop->uio_resid, prim, sflag));
4110
4111 /*
4112 * Has to be bound and connected. However, since no locks are
4113 * held the state could have changed after sotpi_sendmsg checked it
4114 * thus it is not possible to ASSERT on the state.
4115 */
4116
4117 do {
4118 /*
4119 * Set the MORE flag if uio_resid does not fit in this
4120 * message or if the caller passed in "more".
4121 * Error for transports with zero tidu_size.
4122 */
4123 tdr.PRIM_type = prim;
4124 iosize = sti->sti_tidu_size;
4125 if (iosize <= 0)
4126 return (EMSGSIZE);
4127 if (uiop->uio_resid > iosize) {
4128 tdr.MORE_flag = 1;
4129 } else {
4130 if (more)
4131 tdr.MORE_flag = 1;
4132 else
4133 tdr.MORE_flag = 0;
4134 iosize = uiop->uio_resid;
4135 }
4136 dprintso(so, 1, ("sosend_svc: sending 0x%x %d, %ld bytes\n",
4137 prim, tdr.MORE_flag, iosize));
4138 mp = soallocproto1(&tdr, sizeof (tdr), 0, _ALLOC_INTR, CRED());
4139 if (mp == NULL) {
4140 /*
4141 * Caught a signal waiting for memory.
4142 * Let send* return EINTR.
4143 */
4144 return (EINTR);
4145 }
4146
4147 error = kstrputmsg(SOTOV(so), mp, uiop, iosize,
4148 0, sflag | MSG_BAND, 0);
4149 if (error) {
4150 eprintsoline(so, error);
4151 return (error);
4152 }
4153 if (uiop->uio_resid > 0) {
4154 /*
4155 * Recheck for fatal errors. Fail write even though
4156 * some data have been written. This is consistent
4157 * with strwrite semantics and BSD sockets semantics.
4158 */
4159 if (so->so_state & SS_CANTSENDMORE) {
4160 eprintsoline(so, error);
4161 return (EPIPE);
4162 }
4163 if (so->so_error != 0) {
4164 mutex_enter(&so->so_lock);
4165 error = sogeterr(so, B_TRUE);
4166 mutex_exit(&so->so_lock);
4167 if (error != 0) {
4168 eprintsoline(so, error);
4169 return (error);
4170 }
4171 }
4172 }
4173 } while (uiop->uio_resid > 0);
4174 return (0);
4175 }
4176
4177 /*
4178 * Check the state for errors and call the appropriate send function.
4179 *
4180 * If MSG_DONTROUTE is set (and SO_DONTROUTE isn't already set)
4181 * this function issues a setsockopt to toggle SO_DONTROUTE before and
4182 * after sending the message.
4183 */
4184 static int
sotpi_sendmsg(struct sonode * so,struct nmsghdr * msg,struct uio * uiop,struct cred * cr)4185 sotpi_sendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop,
4186 struct cred *cr)
4187 {
4188 int so_state;
4189 int so_mode;
4190 int error;
4191 struct sockaddr *name;
4192 t_uscalar_t namelen;
4193 int dontroute;
4194 int flags;
4195 sotpi_info_t *sti = SOTOTPI(so);
4196
4197 dprintso(so, 1, ("sotpi_sendmsg(%p, %p, 0x%x) state %s, error %d\n",
4198 (void *)so, (void *)msg, msg->msg_flags,
4199 pr_state(so->so_state, so->so_mode), so->so_error));
4200
4201 if (so->so_version == SOV_STREAM) {
4202 /* The imaginary "sockmod" has been popped - act as a stream */
4203 so_update_attrs(so, SOMOD);
4204 return (strwrite(SOTOV(so), uiop, cr));
4205 }
4206
4207 mutex_enter(&so->so_lock);
4208 so_state = so->so_state;
4209
4210 if (so_state & SS_CANTSENDMORE) {
4211 mutex_exit(&so->so_lock);
4212 return (EPIPE);
4213 }
4214
4215 if (so->so_error != 0) {
4216 error = sogeterr(so, B_TRUE);
4217 if (error != 0) {
4218 mutex_exit(&so->so_lock);
4219 return (error);
4220 }
4221 }
4222
4223 name = (struct sockaddr *)msg->msg_name;
4224 namelen = msg->msg_namelen;
4225
4226 so_mode = so->so_mode;
4227
4228 if (name == NULL) {
4229 if (!(so_state & SS_ISCONNECTED)) {
4230 mutex_exit(&so->so_lock);
4231 if (so_mode & SM_CONNREQUIRED)
4232 return (ENOTCONN);
4233 else
4234 return (EDESTADDRREQ);
4235 }
4236 if (so_mode & SM_CONNREQUIRED) {
4237 name = NULL;
4238 namelen = 0;
4239 } else {
4240 /*
4241 * Note that this code does not prevent sti_faddr_sa
4242 * from changing while it is being used. Thus
4243 * if an "unconnect"+connect occurs concurrently with
4244 * this send the datagram might be delivered to a
4245 * garbaled address.
4246 */
4247 ASSERT(sti->sti_faddr_sa);
4248 name = sti->sti_faddr_sa;
4249 namelen = (t_uscalar_t)sti->sti_faddr_len;
4250 }
4251 } else {
4252 if (!(so_state & SS_ISCONNECTED) &&
4253 (so_mode & SM_CONNREQUIRED)) {
4254 /* Required but not connected */
4255 mutex_exit(&so->so_lock);
4256 return (ENOTCONN);
4257 }
4258 /*
4259 * Ignore the address on connection-oriented sockets.
4260 * Just like BSD this code does not generate an error for
4261 * TCP (a CONNREQUIRED socket) when sending to an address
4262 * passed in with sendto/sendmsg. Instead the data is
4263 * delivered on the connection as if no address had been
4264 * supplied.
4265 */
4266 if ((so_state & SS_ISCONNECTED) &&
4267 !(so_mode & SM_CONNREQUIRED)) {
4268 mutex_exit(&so->so_lock);
4269 return (EISCONN);
4270 }
4271 if (!(so_state & SS_ISBOUND)) {
4272 so_lock_single(so); /* Set SOLOCKED */
4273 error = sotpi_bind(so, NULL, 0,
4274 _SOBIND_UNSPEC|_SOBIND_LOCK_HELD, cr);
4275 so_unlock_single(so, SOLOCKED);
4276 if (error) {
4277 mutex_exit(&so->so_lock);
4278 eprintsoline(so, error);
4279 return (error);
4280 }
4281 }
4282 /*
4283 * Handle delayed datagram errors. These are only queued
4284 * when the application sets SO_DGRAM_ERRIND.
4285 * Return the error if we are sending to the address
4286 * that was returned in the last T_UDERROR_IND.
4287 * If sending to some other address discard the delayed
4288 * error indication.
4289 */
4290 if (sti->sti_delayed_error) {
4291 struct T_uderror_ind *tudi;
4292 void *addr;
4293 t_uscalar_t addrlen;
4294 boolean_t match = B_FALSE;
4295
4296 ASSERT(sti->sti_eaddr_mp);
4297 error = sti->sti_delayed_error;
4298 sti->sti_delayed_error = 0;
4299 tudi =
4300 (struct T_uderror_ind *)sti->sti_eaddr_mp->b_rptr;
4301 addrlen = tudi->DEST_length;
4302 addr = sogetoff(sti->sti_eaddr_mp,
4303 tudi->DEST_offset, addrlen, 1);
4304 ASSERT(addr); /* Checked by strsock_proto */
4305 switch (so->so_family) {
4306 case AF_INET: {
4307 /* Compare just IP address and port */
4308 sin_t *sin1 = (sin_t *)name;
4309 sin_t *sin2 = (sin_t *)addr;
4310
4311 if (addrlen == sizeof (sin_t) &&
4312 namelen == addrlen &&
4313 sin1->sin_port == sin2->sin_port &&
4314 sin1->sin_addr.s_addr ==
4315 sin2->sin_addr.s_addr)
4316 match = B_TRUE;
4317 break;
4318 }
4319 case AF_INET6: {
4320 /* Compare just IP address and port. Not flow */
4321 sin6_t *sin1 = (sin6_t *)name;
4322 sin6_t *sin2 = (sin6_t *)addr;
4323
4324 if (addrlen == sizeof (sin6_t) &&
4325 namelen == addrlen &&
4326 sin1->sin6_port == sin2->sin6_port &&
4327 IN6_ARE_ADDR_EQUAL(&sin1->sin6_addr,
4328 &sin2->sin6_addr))
4329 match = B_TRUE;
4330 break;
4331 }
4332 case AF_UNIX:
4333 default:
4334 if (namelen == addrlen &&
4335 bcmp(name, addr, namelen) == 0)
4336 match = B_TRUE;
4337 }
4338 if (match) {
4339 freemsg(sti->sti_eaddr_mp);
4340 sti->sti_eaddr_mp = NULL;
4341 mutex_exit(&so->so_lock);
4342 #ifdef DEBUG
4343 dprintso(so, 0,
4344 ("sockfs delayed error %d for %s\n",
4345 error,
4346 pr_addr(so->so_family, name, namelen)));
4347 #endif /* DEBUG */
4348 return (error);
4349 }
4350 freemsg(sti->sti_eaddr_mp);
4351 sti->sti_eaddr_mp = NULL;
4352 }
4353 }
4354 mutex_exit(&so->so_lock);
4355
4356 flags = msg->msg_flags;
4357 dontroute = 0;
4358 if ((flags & MSG_DONTROUTE) && !(so->so_options & SO_DONTROUTE)) {
4359 uint32_t val;
4360
4361 val = 1;
4362 error = sotpi_setsockopt(so, SOL_SOCKET, SO_DONTROUTE,
4363 &val, (t_uscalar_t)sizeof (val), cr);
4364 if (error)
4365 return (error);
4366 dontroute = 1;
4367 }
4368
4369 if ((flags & MSG_OOB) && !(so_mode & SM_EXDATA)) {
4370 error = EOPNOTSUPP;
4371 goto done;
4372 }
4373 if (msg->msg_controllen != 0) {
4374 if (!(so_mode & SM_CONNREQUIRED)) {
4375 so_update_attrs(so, SOMOD);
4376 error = sosend_dgramcmsg(so, name, namelen, uiop,
4377 msg->msg_control, msg->msg_controllen, flags);
4378 } else {
4379 if (flags & MSG_OOB) {
4380 /* Can't generate T_EXDATA_REQ with options */
4381 error = EOPNOTSUPP;
4382 goto done;
4383 }
4384 so_update_attrs(so, SOMOD);
4385 error = sosend_svccmsg(so, uiop,
4386 !(flags & MSG_EOR),
4387 msg->msg_control, msg->msg_controllen,
4388 flags);
4389 }
4390 goto done;
4391 }
4392
4393 so_update_attrs(so, SOMOD);
4394 if (!(so_mode & SM_CONNREQUIRED)) {
4395 /*
4396 * If there is no SO_DONTROUTE to turn off return immediately
4397 * from send_dgram. This can allow tail-call optimizations.
4398 */
4399 if (!dontroute) {
4400 return (sosend_dgram(so, name, namelen, uiop, flags));
4401 }
4402 error = sosend_dgram(so, name, namelen, uiop, flags);
4403 } else {
4404 t_scalar_t prim;
4405 int sflag;
4406
4407 /* Ignore msg_name in the connected state */
4408 if (flags & MSG_OOB) {
4409 prim = T_EXDATA_REQ;
4410 /*
4411 * Send down T_EXDATA_REQ even if there is flow
4412 * control for data.
4413 */
4414 sflag = MSG_IGNFLOW;
4415 } else {
4416 if (so_mode & SM_BYTESTREAM) {
4417 /* Byte stream transport - use write */
4418 dprintso(so, 1, ("sotpi_sendmsg: write\n"));
4419
4420 /* Send M_DATA messages */
4421 if ((sti->sti_nl7c_flags & NL7C_ENABLED) &&
4422 (error = nl7c_data(so, uiop)) >= 0) {
4423 /* NL7C consumed the data */
4424 return (error);
4425 }
4426 /*
4427 * If there is no SO_DONTROUTE to turn off,
4428 * sti_direct is on, and there is no flow
4429 * control, we can take the fast path.
4430 */
4431 if (!dontroute && sti->sti_direct != 0 &&
4432 canputnext(SOTOV(so)->v_stream->sd_wrq)) {
4433 return (sostream_direct(so, uiop,
4434 NULL, cr));
4435 }
4436 error = strwrite(SOTOV(so), uiop, cr);
4437 goto done;
4438 }
4439 prim = T_DATA_REQ;
4440 sflag = 0;
4441 }
4442 /*
4443 * If there is no SO_DONTROUTE to turn off return immediately
4444 * from sosend_svc. This can allow tail-call optimizations.
4445 */
4446 if (!dontroute)
4447 return (sosend_svc(so, uiop, prim,
4448 !(flags & MSG_EOR), sflag));
4449 error = sosend_svc(so, uiop, prim,
4450 !(flags & MSG_EOR), sflag);
4451 }
4452 ASSERT(dontroute);
4453 done:
4454 if (dontroute) {
4455 uint32_t val;
4456
4457 val = 0;
4458 (void) sotpi_setsockopt(so, SOL_SOCKET, SO_DONTROUTE,
4459 &val, (t_uscalar_t)sizeof (val), cr);
4460 }
4461 return (error);
4462 }
4463
4464 /*
4465 * kstrwritemp() has very similar semantics as that of strwrite().
4466 * The main difference is it obtains mblks from the caller and also
4467 * does not do any copy as done in strwrite() from user buffers to
4468 * kernel buffers.
4469 *
4470 * Currently, this routine is used by sendfile to send data allocated
4471 * within the kernel without any copying. This interface does not use the
4472 * synchronous stream interface as synch. stream interface implies
4473 * copying.
4474 */
4475 int
kstrwritemp(struct vnode * vp,mblk_t * mp,ushort_t fmode)4476 kstrwritemp(struct vnode *vp, mblk_t *mp, ushort_t fmode)
4477 {
4478 struct stdata *stp;
4479 struct queue *wqp;
4480 mblk_t *newmp;
4481 char waitflag;
4482 int tempmode;
4483 int error = 0;
4484 int done = 0;
4485 struct sonode *so;
4486 boolean_t direct;
4487
4488 ASSERT(vp->v_stream);
4489 stp = vp->v_stream;
4490
4491 so = VTOSO(vp);
4492 direct = _SOTOTPI(so)->sti_direct;
4493
4494 /*
4495 * This is the sockfs direct fast path. canputnext() need
4496 * not be accurate so we don't grab the sd_lock here. If
4497 * we get flow-controlled, we grab sd_lock just before the
4498 * do..while loop below to emulate what strwrite() does.
4499 */
4500 wqp = stp->sd_wrq;
4501 if (canputnext(wqp) && direct &&
4502 !(stp->sd_flag & (STWRERR|STRHUP|STPLEX))) {
4503 return (sostream_direct(so, NULL, mp, CRED()));
4504 } else if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
4505 /* Fast check of flags before acquiring the lock */
4506 mutex_enter(&stp->sd_lock);
4507 error = strgeterr(stp, STWRERR|STRHUP|STPLEX, 0);
4508 mutex_exit(&stp->sd_lock);
4509 if (error != 0) {
4510 if (!(stp->sd_flag & STPLEX) &&
4511 (stp->sd_wput_opt & SW_SIGPIPE)) {
4512 error = EPIPE;
4513 }
4514 return (error);
4515 }
4516 }
4517
4518 waitflag = WRITEWAIT;
4519 if (stp->sd_flag & OLDNDELAY)
4520 tempmode = fmode & ~FNDELAY;
4521 else
4522 tempmode = fmode;
4523
4524 mutex_enter(&stp->sd_lock);
4525 do {
4526 if (canputnext(wqp)) {
4527 mutex_exit(&stp->sd_lock);
4528 if (stp->sd_wputdatafunc != NULL) {
4529 newmp = (stp->sd_wputdatafunc)(vp, mp, NULL,
4530 NULL, NULL, NULL);
4531 if (newmp == NULL) {
4532 /* The caller will free mp */
4533 return (ECOMM);
4534 }
4535 mp = newmp;
4536 }
4537 putnext(wqp, mp);
4538 return (0);
4539 }
4540 error = strwaitq(stp, waitflag, (ssize_t)0, tempmode, -1,
4541 &done);
4542 } while (error == 0 && !done);
4543
4544 mutex_exit(&stp->sd_lock);
4545 /*
4546 * EAGAIN tells the application to try again. ENOMEM
4547 * is returned only if the memory allocation size
4548 * exceeds the physical limits of the system. ENOMEM
4549 * can't be true here.
4550 */
4551 if (error == ENOMEM)
4552 error = EAGAIN;
4553 return (error);
4554 }
4555
4556 /* ARGSUSED */
4557 static int
sotpi_sendmblk(struct sonode * so,struct nmsghdr * msg,int fflag,struct cred * cr,mblk_t ** mpp)4558 sotpi_sendmblk(struct sonode *so, struct nmsghdr *msg, int fflag,
4559 struct cred *cr, mblk_t **mpp)
4560 {
4561 int error;
4562
4563 if (so->so_family != AF_INET && so->so_family != AF_INET6)
4564 return (EAFNOSUPPORT);
4565
4566 if (so->so_state & SS_CANTSENDMORE)
4567 return (EPIPE);
4568
4569 if (so->so_type != SOCK_STREAM)
4570 return (EOPNOTSUPP);
4571
4572 if ((so->so_state & SS_ISCONNECTED) == 0)
4573 return (ENOTCONN);
4574
4575 error = kstrwritemp(so->so_vnode, *mpp, fflag);
4576 if (error == 0)
4577 *mpp = NULL;
4578 return (error);
4579 }
4580
4581 /*
4582 * Sending data on a datagram socket.
4583 * Assumes caller has verified that SS_ISBOUND etc. are set.
4584 */
4585 /* ARGSUSED */
4586 static int
sodgram_direct(struct sonode * so,struct sockaddr * name,socklen_t namelen,struct uio * uiop,int flags)4587 sodgram_direct(struct sonode *so, struct sockaddr *name,
4588 socklen_t namelen, struct uio *uiop, int flags)
4589 {
4590 struct T_unitdata_req tudr;
4591 mblk_t *mp = NULL;
4592 int error = 0;
4593 void *addr;
4594 socklen_t addrlen;
4595 ssize_t len;
4596 struct stdata *stp = SOTOV(so)->v_stream;
4597 int so_state;
4598 queue_t *udp_wq;
4599 boolean_t connected;
4600 mblk_t *mpdata = NULL;
4601 sotpi_info_t *sti = SOTOTPI(so);
4602 uint32_t auditing = AU_AUDITING();
4603
4604 ASSERT(name != NULL && namelen != 0);
4605 ASSERT(!(so->so_mode & SM_CONNREQUIRED));
4606 ASSERT(!(so->so_mode & SM_EXDATA));
4607 ASSERT(so->so_family == AF_INET || so->so_family == AF_INET6);
4608 ASSERT(SOTOV(so)->v_type == VSOCK);
4609
4610 /* Caller checked for proper length */
4611 len = uiop->uio_resid;
4612 ASSERT(len <= sti->sti_tidu_size);
4613
4614 /* Length and family checks have been done by caller */
4615 ASSERT(name->sa_family == so->so_family);
4616 ASSERT(so->so_family == AF_INET ||
4617 (namelen == (socklen_t)sizeof (struct sockaddr_in6)));
4618 ASSERT(so->so_family == AF_INET6 ||
4619 (namelen == (socklen_t)sizeof (struct sockaddr_in)));
4620
4621 addr = name;
4622 addrlen = namelen;
4623
4624 if (stp->sd_sidp != NULL &&
4625 (error = straccess(stp, JCWRITE)) != 0)
4626 goto done;
4627
4628 so_state = so->so_state;
4629
4630 connected = so_state & SS_ISCONNECTED;
4631 if (!connected) {
4632 tudr.PRIM_type = T_UNITDATA_REQ;
4633 tudr.DEST_length = addrlen;
4634 tudr.DEST_offset = (t_scalar_t)sizeof (tudr);
4635 tudr.OPT_length = 0;
4636 tudr.OPT_offset = 0;
4637
4638 mp = soallocproto2(&tudr, sizeof (tudr), addr, addrlen, 0,
4639 _ALLOC_INTR, CRED());
4640 if (mp == NULL) {
4641 /*
4642 * Caught a signal waiting for memory.
4643 * Let send* return EINTR.
4644 */
4645 error = EINTR;
4646 goto done;
4647 }
4648 }
4649
4650 /*
4651 * For UDP we don't break up the copyin into smaller pieces
4652 * as in the TCP case. That means if ENOMEM is returned by
4653 * mcopyinuio() then the uio vector has not been modified at
4654 * all and we fallback to either strwrite() or kstrputmsg()
4655 * below. Note also that we never generate priority messages
4656 * from here.
4657 */
4658 udp_wq = stp->sd_wrq->q_next;
4659 if (canput(udp_wq) &&
4660 (mpdata = mcopyinuio(stp, uiop, -1, -1, &error)) != NULL) {
4661 ASSERT(DB_TYPE(mpdata) == M_DATA);
4662 ASSERT(uiop->uio_resid == 0);
4663 if (!connected)
4664 linkb(mp, mpdata);
4665 else
4666 mp = mpdata;
4667 if (auditing)
4668 audit_sock(T_UNITDATA_REQ, strvp2wq(SOTOV(so)), mp, 0);
4669
4670 udp_wput(udp_wq, mp);
4671 return (0);
4672 }
4673
4674 ASSERT(mpdata == NULL);
4675 if (error != 0 && error != ENOMEM) {
4676 freemsg(mp);
4677 return (error);
4678 }
4679
4680 /*
4681 * For connected, let strwrite() handle the blocking case.
4682 * Otherwise we fall thru and use kstrputmsg().
4683 */
4684 if (connected)
4685 return (strwrite(SOTOV(so), uiop, CRED()));
4686
4687 if (auditing)
4688 audit_sock(T_UNITDATA_REQ, strvp2wq(SOTOV(so)), mp, 0);
4689
4690 error = kstrputmsg(SOTOV(so), mp, uiop, len, 0, MSG_BAND, 0);
4691 done:
4692 #ifdef SOCK_DEBUG
4693 if (error != 0) {
4694 eprintsoline(so, error);
4695 }
4696 #endif /* SOCK_DEBUG */
4697 return (error);
4698 }
4699
4700 int
sostream_direct(struct sonode * so,struct uio * uiop,mblk_t * mp,cred_t * cr)4701 sostream_direct(struct sonode *so, struct uio *uiop, mblk_t *mp, cred_t *cr)
4702 {
4703 struct stdata *stp = SOTOV(so)->v_stream;
4704 ssize_t iosize, rmax, maxblk;
4705 queue_t *tcp_wq = stp->sd_wrq->q_next;
4706 mblk_t *newmp;
4707 int error = 0, wflag = 0;
4708
4709 ASSERT(so->so_mode & SM_BYTESTREAM);
4710 ASSERT(SOTOV(so)->v_type == VSOCK);
4711
4712 if (stp->sd_sidp != NULL &&
4713 (error = straccess(stp, JCWRITE)) != 0)
4714 return (error);
4715
4716 if (uiop == NULL) {
4717 /*
4718 * kstrwritemp() should have checked sd_flag and
4719 * flow-control before coming here. If we end up
4720 * here it means that we can simply pass down the
4721 * data to tcp.
4722 */
4723 ASSERT(mp != NULL);
4724 if (stp->sd_wputdatafunc != NULL) {
4725 newmp = (stp->sd_wputdatafunc)(SOTOV(so), mp, NULL,
4726 NULL, NULL, NULL);
4727 if (newmp == NULL) {
4728 /* The caller will free mp */
4729 return (ECOMM);
4730 }
4731 mp = newmp;
4732 }
4733 tcp_wput(tcp_wq, mp);
4734 return (0);
4735 }
4736
4737 /* Fallback to strwrite() to do proper error handling */
4738 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX|STRDELIM|OLDNDELAY))
4739 return (strwrite(SOTOV(so), uiop, cr));
4740
4741 rmax = stp->sd_qn_maxpsz;
4742 ASSERT(rmax >= 0 || rmax == INFPSZ);
4743 if (rmax == 0 || uiop->uio_resid <= 0)
4744 return (0);
4745
4746 if (rmax == INFPSZ)
4747 rmax = uiop->uio_resid;
4748
4749 maxblk = stp->sd_maxblk;
4750
4751 for (;;) {
4752 iosize = MIN(uiop->uio_resid, rmax);
4753
4754 mp = mcopyinuio(stp, uiop, iosize, maxblk, &error);
4755 if (mp == NULL) {
4756 /*
4757 * Fallback to strwrite() for ENOMEM; if this
4758 * is our first time in this routine and the uio
4759 * vector has not been modified, we will end up
4760 * calling strwrite() without any flag set.
4761 */
4762 if (error == ENOMEM)
4763 goto slow_send;
4764 else
4765 return (error);
4766 }
4767 ASSERT(uiop->uio_resid >= 0);
4768 /*
4769 * If mp is non-NULL and ENOMEM is set, it means that
4770 * mcopyinuio() was able to break down some of the user
4771 * data into one or more mblks. Send the partial data
4772 * to tcp and let the rest be handled in strwrite().
4773 */
4774 ASSERT(error == 0 || error == ENOMEM);
4775 if (stp->sd_wputdatafunc != NULL) {
4776 newmp = (stp->sd_wputdatafunc)(SOTOV(so), mp, NULL,
4777 NULL, NULL, NULL);
4778 if (newmp == NULL) {
4779 /* The caller will free mp */
4780 return (ECOMM);
4781 }
4782 mp = newmp;
4783 }
4784 tcp_wput(tcp_wq, mp);
4785
4786 wflag |= NOINTR;
4787
4788 if (uiop->uio_resid == 0) { /* No more data; we're done */
4789 ASSERT(error == 0);
4790 break;
4791 } else if (error == ENOMEM || !canput(tcp_wq) || (stp->sd_flag &
4792 (STWRERR|STRHUP|STPLEX|STRDELIM|OLDNDELAY))) {
4793 slow_send:
4794 /*
4795 * We were able to send down partial data using
4796 * the direct call interface, but are now relying
4797 * on strwrite() to handle the non-fastpath cases.
4798 * If the socket is blocking we will sleep in
4799 * strwaitq() until write is permitted, otherwise,
4800 * we will need to return the amount of bytes
4801 * written so far back to the app. This is the
4802 * reason why we pass NOINTR flag to strwrite()
4803 * for non-blocking socket, because we don't want
4804 * to return EAGAIN when portion of the user data
4805 * has actually been sent down.
4806 */
4807 return (strwrite_common(SOTOV(so), uiop, cr, wflag));
4808 }
4809 }
4810 return (0);
4811 }
4812
4813 /*
4814 * Update sti_faddr by asking the transport (unless AF_UNIX).
4815 */
4816 /* ARGSUSED */
4817 int
sotpi_getpeername(struct sonode * so,struct sockaddr * name,socklen_t * namelen,boolean_t accept,struct cred * cr)4818 sotpi_getpeername(struct sonode *so, struct sockaddr *name, socklen_t *namelen,
4819 boolean_t accept, struct cred *cr)
4820 {
4821 struct strbuf strbuf;
4822 int error = 0, res;
4823 void *addr;
4824 t_uscalar_t addrlen;
4825 k_sigset_t smask;
4826 sotpi_info_t *sti = SOTOTPI(so);
4827
4828 dprintso(so, 1, ("sotpi_getpeername(%p) %s\n",
4829 (void *)so, pr_state(so->so_state, so->so_mode)));
4830
4831 ASSERT(*namelen > 0);
4832 mutex_enter(&so->so_lock);
4833 so_lock_single(so); /* Set SOLOCKED */
4834
4835 if (accept) {
4836 bcopy(sti->sti_faddr_sa, name,
4837 MIN(*namelen, sti->sti_faddr_len));
4838 *namelen = sti->sti_faddr_noxlate ? 0: sti->sti_faddr_len;
4839 goto done;
4840 }
4841
4842 if (!(so->so_state & SS_ISCONNECTED)) {
4843 error = ENOTCONN;
4844 goto done;
4845 }
4846 /* Added this check for X/Open */
4847 if ((so->so_state & SS_CANTSENDMORE) && !xnet_skip_checks) {
4848 error = EINVAL;
4849 if (xnet_check_print) {
4850 printf("sockfs: X/Open getpeername check => EINVAL\n");
4851 }
4852 goto done;
4853 }
4854
4855 if (sti->sti_faddr_valid) {
4856 bcopy(sti->sti_faddr_sa, name,
4857 MIN(*namelen, sti->sti_faddr_len));
4858 *namelen = sti->sti_faddr_noxlate ? 0: sti->sti_faddr_len;
4859 goto done;
4860 }
4861
4862 #ifdef DEBUG
4863 dprintso(so, 1, ("sotpi_getpeername (local): %s\n",
4864 pr_addr(so->so_family, sti->sti_faddr_sa,
4865 (t_uscalar_t)sti->sti_faddr_len)));
4866 #endif /* DEBUG */
4867
4868 if (so->so_family == AF_UNIX) {
4869 /* Transport has different name space - return local info */
4870 if (sti->sti_faddr_noxlate)
4871 *namelen = 0;
4872 error = 0;
4873 goto done;
4874 }
4875
4876 ASSERT(so->so_family != AF_UNIX && sti->sti_faddr_noxlate == 0);
4877
4878 ASSERT(sti->sti_faddr_sa);
4879 /* Allocate local buffer to use with ioctl */
4880 addrlen = (t_uscalar_t)sti->sti_faddr_maxlen;
4881 mutex_exit(&so->so_lock);
4882 addr = kmem_alloc(addrlen, KM_SLEEP);
4883
4884 /*
4885 * Issue TI_GETPEERNAME with signals masked.
4886 * Put the result in sti_faddr_sa so that getpeername works after
4887 * a shutdown(output).
4888 * If the ioctl fails (e.g. due to a ECONNRESET) the error is reposted
4889 * back to the socket.
4890 */
4891 strbuf.buf = addr;
4892 strbuf.maxlen = addrlen;
4893 strbuf.len = 0;
4894
4895 sigintr(&smask, 0);
4896 res = 0;
4897 ASSERT(cr);
4898 error = strioctl(SOTOV(so), TI_GETPEERNAME, (intptr_t)&strbuf,
4899 0, K_TO_K, cr, &res);
4900 sigunintr(&smask);
4901
4902 mutex_enter(&so->so_lock);
4903 /*
4904 * If there is an error record the error in so_error put don't fail
4905 * the getpeername. Instead fallback on the recorded
4906 * sti->sti_faddr_sa.
4907 */
4908 if (error) {
4909 /*
4910 * Various stream head errors can be returned to the ioctl.
4911 * However, it is impossible to determine which ones of
4912 * these are really socket level errors that were incorrectly
4913 * consumed by the ioctl. Thus this code silently ignores the
4914 * error - to code explicitly does not reinstate the error
4915 * using soseterror().
4916 * Experiments have shows that at least this set of
4917 * errors are reported and should not be reinstated on the
4918 * socket:
4919 * EINVAL E.g. if an I_LINK was in effect when
4920 * getpeername was called.
4921 * EPIPE The ioctl error semantics prefer the write
4922 * side error over the read side error.
4923 * ENOTCONN The transport just got disconnected but
4924 * sockfs had not yet seen the T_DISCON_IND
4925 * when issuing the ioctl.
4926 */
4927 error = 0;
4928 } else if (res == 0 && strbuf.len > 0 &&
4929 (so->so_state & SS_ISCONNECTED)) {
4930 ASSERT(strbuf.len <= (int)sti->sti_faddr_maxlen);
4931 sti->sti_faddr_len = (socklen_t)strbuf.len;
4932 bcopy(addr, sti->sti_faddr_sa, sti->sti_faddr_len);
4933 sti->sti_faddr_valid = 1;
4934
4935 bcopy(addr, name, MIN(*namelen, sti->sti_faddr_len));
4936 *namelen = sti->sti_faddr_len;
4937 }
4938 kmem_free(addr, addrlen);
4939 #ifdef DEBUG
4940 dprintso(so, 1, ("sotpi_getpeername (tp): %s\n",
4941 pr_addr(so->so_family, sti->sti_faddr_sa,
4942 (t_uscalar_t)sti->sti_faddr_len)));
4943 #endif /* DEBUG */
4944 done:
4945 so_unlock_single(so, SOLOCKED);
4946 mutex_exit(&so->so_lock);
4947 return (error);
4948 }
4949
4950 /*
4951 * Update sti_laddr by asking the transport (unless AF_UNIX).
4952 */
4953 int
sotpi_getsockname(struct sonode * so,struct sockaddr * name,socklen_t * namelen,struct cred * cr)4954 sotpi_getsockname(struct sonode *so, struct sockaddr *name, socklen_t *namelen,
4955 struct cred *cr)
4956 {
4957 struct strbuf strbuf;
4958 int error = 0, res;
4959 void *addr;
4960 t_uscalar_t addrlen;
4961 k_sigset_t smask;
4962 sotpi_info_t *sti = SOTOTPI(so);
4963
4964 dprintso(so, 1, ("sotpi_getsockname(%p) %s\n",
4965 (void *)so, pr_state(so->so_state, so->so_mode)));
4966
4967 ASSERT(*namelen > 0);
4968 mutex_enter(&so->so_lock);
4969 so_lock_single(so); /* Set SOLOCKED */
4970
4971 #ifdef DEBUG
4972
4973 dprintso(so, 1, ("sotpi_getsockname (local): %s\n",
4974 pr_addr(so->so_family, sti->sti_laddr_sa,
4975 (t_uscalar_t)sti->sti_laddr_len)));
4976 #endif /* DEBUG */
4977 if (sti->sti_laddr_valid) {
4978 bcopy(sti->sti_laddr_sa, name,
4979 MIN(*namelen, sti->sti_laddr_len));
4980 *namelen = sti->sti_laddr_len;
4981 goto done;
4982 }
4983
4984 if (so->so_family == AF_UNIX) {
4985 /*
4986 * Transport has different name space - return local info. If we
4987 * have enough space, let consumers know the family.
4988 */
4989 if (*namelen >= sizeof (sa_family_t)) {
4990 name->sa_family = AF_UNIX;
4991 *namelen = sizeof (sa_family_t);
4992 } else {
4993 *namelen = 0;
4994 }
4995 error = 0;
4996 goto done;
4997 }
4998 if (!(so->so_state & SS_ISBOUND)) {
4999 /* If not bound, then nothing to return. */
5000 error = 0;
5001 goto done;
5002 }
5003
5004 /* Allocate local buffer to use with ioctl */
5005 addrlen = (t_uscalar_t)sti->sti_laddr_maxlen;
5006 mutex_exit(&so->so_lock);
5007 addr = kmem_alloc(addrlen, KM_SLEEP);
5008
5009 /*
5010 * Issue TI_GETMYNAME with signals masked.
5011 * Put the result in sti_laddr_sa so that getsockname works after
5012 * a shutdown(output).
5013 * If the ioctl fails (e.g. due to a ECONNRESET) the error is reposted
5014 * back to the socket.
5015 */
5016 strbuf.buf = addr;
5017 strbuf.maxlen = addrlen;
5018 strbuf.len = 0;
5019
5020 sigintr(&smask, 0);
5021 res = 0;
5022 ASSERT(cr);
5023 error = strioctl(SOTOV(so), TI_GETMYNAME, (intptr_t)&strbuf,
5024 0, K_TO_K, cr, &res);
5025 sigunintr(&smask);
5026
5027 mutex_enter(&so->so_lock);
5028 /*
5029 * If there is an error record the error in so_error put don't fail
5030 * the getsockname. Instead fallback on the recorded
5031 * sti->sti_laddr_sa.
5032 */
5033 if (error) {
5034 /*
5035 * Various stream head errors can be returned to the ioctl.
5036 * However, it is impossible to determine which ones of
5037 * these are really socket level errors that were incorrectly
5038 * consumed by the ioctl. Thus this code silently ignores the
5039 * error - to code explicitly does not reinstate the error
5040 * using soseterror().
5041 * Experiments have shows that at least this set of
5042 * errors are reported and should not be reinstated on the
5043 * socket:
5044 * EINVAL E.g. if an I_LINK was in effect when
5045 * getsockname was called.
5046 * EPIPE The ioctl error semantics prefer the write
5047 * side error over the read side error.
5048 */
5049 error = 0;
5050 } else if (res == 0 && strbuf.len > 0 &&
5051 (so->so_state & SS_ISBOUND)) {
5052 ASSERT(strbuf.len <= (int)sti->sti_laddr_maxlen);
5053 sti->sti_laddr_len = (socklen_t)strbuf.len;
5054 bcopy(addr, sti->sti_laddr_sa, sti->sti_laddr_len);
5055 sti->sti_laddr_valid = 1;
5056
5057 bcopy(addr, name, MIN(sti->sti_laddr_len, *namelen));
5058 *namelen = sti->sti_laddr_len;
5059 }
5060 kmem_free(addr, addrlen);
5061 #ifdef DEBUG
5062 dprintso(so, 1, ("sotpi_getsockname (tp): %s\n",
5063 pr_addr(so->so_family, sti->sti_laddr_sa,
5064 (t_uscalar_t)sti->sti_laddr_len)));
5065 #endif /* DEBUG */
5066 done:
5067 so_unlock_single(so, SOLOCKED);
5068 mutex_exit(&so->so_lock);
5069 return (error);
5070 }
5071
5072 /*
5073 * Get socket options. For SOL_SOCKET options some options are handled
5074 * by the sockfs while others use the value recorded in the sonode as a
5075 * fallback should the T_SVR4_OPTMGMT_REQ fail.
5076 *
5077 * On the return most *optlenp bytes are copied to optval.
5078 */
5079 /* ARGSUSED */
5080 int
sotpi_getsockopt(struct sonode * so,int level,int option_name,void * optval,socklen_t * optlenp,int flags,struct cred * cr)5081 sotpi_getsockopt(struct sonode *so, int level, int option_name,
5082 void *optval, socklen_t *optlenp, int flags, struct cred *cr)
5083 {
5084 struct T_optmgmt_req optmgmt_req;
5085 struct T_optmgmt_ack *optmgmt_ack;
5086 struct opthdr oh;
5087 struct opthdr *opt_res;
5088 mblk_t *mp = NULL;
5089 int error = 0;
5090 void *option = NULL; /* Set if fallback value */
5091 t_uscalar_t maxlen = *optlenp;
5092 t_uscalar_t len;
5093 uint32_t value;
5094 struct timeval tmo_val; /* used for SO_RCVTIMEO, SO_SNDTIMEO */
5095 struct timeval32 tmo_val32;
5096 struct so_snd_bufinfo snd_bufinfo; /* used for zero copy */
5097
5098 dprintso(so, 1, ("sotpi_getsockopt(%p, 0x%x, 0x%x, %p, %p) %s\n",
5099 (void *)so, level, option_name, optval, (void *)optlenp,
5100 pr_state(so->so_state, so->so_mode)));
5101
5102 mutex_enter(&so->so_lock);
5103 so_lock_single(so); /* Set SOLOCKED */
5104
5105 /*
5106 * Check for SOL_SOCKET options.
5107 * Certain SOL_SOCKET options are returned directly whereas
5108 * others only provide a default (fallback) value should
5109 * the T_SVR4_OPTMGMT_REQ fail.
5110 */
5111 if (level == SOL_SOCKET) {
5112 /* Check parameters */
5113 switch (option_name) {
5114 case SO_TYPE:
5115 case SO_ERROR:
5116 case SO_DEBUG:
5117 case SO_ACCEPTCONN:
5118 case SO_REUSEADDR:
5119 case SO_KEEPALIVE:
5120 case SO_DONTROUTE:
5121 case SO_BROADCAST:
5122 case SO_USELOOPBACK:
5123 case SO_OOBINLINE:
5124 case SO_SNDBUF:
5125 case SO_RCVBUF:
5126 #ifdef notyet
5127 case SO_SNDLOWAT:
5128 case SO_RCVLOWAT:
5129 #endif /* notyet */
5130 case SO_DOMAIN:
5131 case SO_DGRAM_ERRIND:
5132 if (maxlen < (t_uscalar_t)sizeof (int32_t)) {
5133 error = EINVAL;
5134 eprintsoline(so, error);
5135 goto done2;
5136 }
5137 break;
5138 case SO_RCVTIMEO:
5139 case SO_SNDTIMEO:
5140 if (get_udatamodel() == DATAMODEL_NONE ||
5141 get_udatamodel() == DATAMODEL_NATIVE) {
5142 if (maxlen < sizeof (struct timeval)) {
5143 error = EINVAL;
5144 eprintsoline(so, error);
5145 goto done2;
5146 }
5147 } else {
5148 if (maxlen < sizeof (struct timeval32)) {
5149 error = EINVAL;
5150 eprintsoline(so, error);
5151 goto done2;
5152 }
5153
5154 }
5155 break;
5156 case SO_LINGER:
5157 if (maxlen < (t_uscalar_t)sizeof (struct linger)) {
5158 error = EINVAL;
5159 eprintsoline(so, error);
5160 goto done2;
5161 }
5162 break;
5163 case SO_SND_BUFINFO:
5164 if (maxlen < (t_uscalar_t)
5165 sizeof (struct so_snd_bufinfo)) {
5166 error = EINVAL;
5167 eprintsoline(so, error);
5168 goto done2;
5169 }
5170 break;
5171 }
5172
5173 len = (t_uscalar_t)sizeof (uint32_t); /* Default */
5174
5175 switch (option_name) {
5176 case SO_TYPE:
5177 value = so->so_type;
5178 option = &value;
5179 goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */
5180
5181 case SO_ERROR:
5182 value = sogeterr(so, B_TRUE);
5183 option = &value;
5184 goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */
5185
5186 case SO_ACCEPTCONN:
5187 if (so->so_state & SS_ACCEPTCONN)
5188 value = SO_ACCEPTCONN;
5189 else
5190 value = 0;
5191 #ifdef DEBUG
5192 if (value) {
5193 dprintso(so, 1,
5194 ("sotpi_getsockopt: 0x%x is set\n",
5195 option_name));
5196 } else {
5197 dprintso(so, 1,
5198 ("sotpi_getsockopt: 0x%x not set\n",
5199 option_name));
5200 }
5201 #endif /* DEBUG */
5202 option = &value;
5203 goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */
5204
5205 case SO_DEBUG:
5206 case SO_REUSEADDR:
5207 case SO_KEEPALIVE:
5208 case SO_DONTROUTE:
5209 case SO_BROADCAST:
5210 case SO_USELOOPBACK:
5211 case SO_OOBINLINE:
5212 case SO_DGRAM_ERRIND:
5213 value = (so->so_options & option_name);
5214 #ifdef DEBUG
5215 if (value) {
5216 dprintso(so, 1,
5217 ("sotpi_getsockopt: 0x%x is set\n",
5218 option_name));
5219 } else {
5220 dprintso(so, 1,
5221 ("sotpi_getsockopt: 0x%x not set\n",
5222 option_name));
5223 }
5224 #endif /* DEBUG */
5225 option = &value;
5226 goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */
5227
5228 /*
5229 * The following options are only returned by sockfs when the
5230 * T_SVR4_OPTMGMT_REQ fails.
5231 */
5232 case SO_LINGER:
5233 option = &so->so_linger;
5234 len = (t_uscalar_t)sizeof (struct linger);
5235 break;
5236 case SO_SNDBUF: {
5237 ssize_t lvalue;
5238
5239 /*
5240 * If the option has not been set then get a default
5241 * value from the read queue. This value is
5242 * returned if the transport fails
5243 * the T_SVR4_OPTMGMT_REQ.
5244 */
5245 lvalue = so->so_sndbuf;
5246 if (lvalue == 0) {
5247 mutex_exit(&so->so_lock);
5248 (void) strqget(strvp2wq(SOTOV(so))->q_next,
5249 QHIWAT, 0, &lvalue);
5250 mutex_enter(&so->so_lock);
5251 dprintso(so, 1,
5252 ("got SO_SNDBUF %ld from q\n", lvalue));
5253 }
5254 value = (int)lvalue;
5255 option = &value;
5256 len = (t_uscalar_t)sizeof (so->so_sndbuf);
5257 break;
5258 }
5259 case SO_RCVBUF: {
5260 ssize_t lvalue;
5261
5262 /*
5263 * If the option has not been set then get a default
5264 * value from the read queue. This value is
5265 * returned if the transport fails
5266 * the T_SVR4_OPTMGMT_REQ.
5267 *
5268 * XXX If SO_RCVBUF has been set and this is an
5269 * XPG 4.2 application then do not ask the transport
5270 * since the transport might adjust the value and not
5271 * return exactly what was set by the application.
5272 * For non-XPG 4.2 application we return the value
5273 * that the transport is actually using.
5274 */
5275 lvalue = so->so_rcvbuf;
5276 if (lvalue == 0) {
5277 mutex_exit(&so->so_lock);
5278 (void) strqget(RD(strvp2wq(SOTOV(so))),
5279 QHIWAT, 0, &lvalue);
5280 mutex_enter(&so->so_lock);
5281 dprintso(so, 1,
5282 ("got SO_RCVBUF %ld from q\n", lvalue));
5283 } else if (flags & _SOGETSOCKOPT_XPG4_2) {
5284 value = (int)lvalue;
5285 option = &value;
5286 goto copyout; /* skip asking transport */
5287 }
5288 value = (int)lvalue;
5289 option = &value;
5290 len = (t_uscalar_t)sizeof (so->so_rcvbuf);
5291 break;
5292 }
5293 case SO_DOMAIN:
5294 value = so->so_family;
5295 option = &value;
5296 goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */
5297
5298 #ifdef notyet
5299 /*
5300 * We do not implement the semantics of these options
5301 * thus we shouldn't implement the options either.
5302 */
5303 case SO_SNDLOWAT:
5304 value = so->so_sndlowat;
5305 option = &value;
5306 break;
5307 case SO_RCVLOWAT:
5308 value = so->so_rcvlowat;
5309 option = &value;
5310 break;
5311 #endif /* notyet */
5312 case SO_SNDTIMEO:
5313 case SO_RCVTIMEO: {
5314 clock_t val;
5315
5316 if (option_name == SO_RCVTIMEO)
5317 val = drv_hztousec(so->so_rcvtimeo);
5318 else
5319 val = drv_hztousec(so->so_sndtimeo);
5320 tmo_val.tv_sec = val / (1000 * 1000);
5321 tmo_val.tv_usec = val % (1000 * 1000);
5322 if (get_udatamodel() == DATAMODEL_NONE ||
5323 get_udatamodel() == DATAMODEL_NATIVE) {
5324 option = &tmo_val;
5325 len = sizeof (struct timeval);
5326 } else {
5327 TIMEVAL_TO_TIMEVAL32(&tmo_val32, &tmo_val);
5328 option = &tmo_val32;
5329 len = sizeof (struct timeval32);
5330 }
5331 break;
5332 }
5333 case SO_SND_BUFINFO: {
5334 snd_bufinfo.sbi_wroff =
5335 (so->so_proto_props).sopp_wroff;
5336 snd_bufinfo.sbi_maxblk =
5337 (so->so_proto_props).sopp_maxblk;
5338 snd_bufinfo.sbi_maxpsz =
5339 (so->so_proto_props).sopp_maxpsz;
5340 snd_bufinfo.sbi_tail =
5341 (so->so_proto_props).sopp_tail;
5342 option = &snd_bufinfo;
5343 len = (t_uscalar_t)sizeof (struct so_snd_bufinfo);
5344 break;
5345 }
5346 }
5347 }
5348
5349 mutex_exit(&so->so_lock);
5350
5351 /* Send request */
5352 optmgmt_req.PRIM_type = T_SVR4_OPTMGMT_REQ;
5353 optmgmt_req.MGMT_flags = T_CHECK;
5354 optmgmt_req.OPT_length = (t_scalar_t)(sizeof (oh) + maxlen);
5355 optmgmt_req.OPT_offset = (t_scalar_t)sizeof (optmgmt_req);
5356
5357 oh.level = level;
5358 oh.name = option_name;
5359 oh.len = maxlen;
5360
5361 mp = soallocproto3(&optmgmt_req, sizeof (optmgmt_req),
5362 &oh, sizeof (oh), NULL, maxlen, 0, _ALLOC_SLEEP, cr);
5363 /* Let option management work in the presence of data flow control */
5364 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0,
5365 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR|MSG_IGNFLOW, 0);
5366 mp = NULL;
5367 mutex_enter(&so->so_lock);
5368 if (error) {
5369 eprintsoline(so, error);
5370 goto done2;
5371 }
5372 error = sowaitprim(so, T_SVR4_OPTMGMT_REQ, T_OPTMGMT_ACK,
5373 (t_uscalar_t)(sizeof (*optmgmt_ack) + sizeof (*opt_res)), &mp, 0);
5374 if (error) {
5375 if (option != NULL) {
5376 /* We have a fallback value */
5377 error = 0;
5378 goto copyout;
5379 }
5380 eprintsoline(so, error);
5381 goto done2;
5382 }
5383 ASSERT(mp);
5384 optmgmt_ack = (struct T_optmgmt_ack *)mp->b_rptr;
5385 opt_res = (struct opthdr *)sogetoff(mp, optmgmt_ack->OPT_offset,
5386 optmgmt_ack->OPT_length, __TPI_ALIGN_SIZE);
5387 if (opt_res == NULL) {
5388 if (option != NULL) {
5389 /* We have a fallback value */
5390 error = 0;
5391 goto copyout;
5392 }
5393 error = EPROTO;
5394 eprintsoline(so, error);
5395 goto done;
5396 }
5397 option = &opt_res[1];
5398
5399 /* check to ensure that the option is within bounds */
5400 if (((uintptr_t)option + opt_res->len < (uintptr_t)option) ||
5401 (uintptr_t)option + opt_res->len > (uintptr_t)mp->b_wptr) {
5402 if (option != NULL) {
5403 /* We have a fallback value */
5404 error = 0;
5405 goto copyout;
5406 }
5407 error = EPROTO;
5408 eprintsoline(so, error);
5409 goto done;
5410 }
5411
5412 len = opt_res->len;
5413
5414 copyout: {
5415 t_uscalar_t size = MIN(len, maxlen);
5416 bcopy(option, optval, size);
5417 bcopy(&size, optlenp, sizeof (size));
5418 }
5419 done:
5420 freemsg(mp);
5421 done2:
5422 so_unlock_single(so, SOLOCKED);
5423 mutex_exit(&so->so_lock);
5424
5425 return (error);
5426 }
5427
5428 /*
5429 * Set socket options. All options are passed down in a T_SVR4_OPTMGMT_REQ.
5430 * SOL_SOCKET options are also recorded in the sonode. A setsockopt for
5431 * SOL_SOCKET options will not fail just because the T_SVR4_OPTMGMT_REQ fails -
5432 * setsockopt has to work even if the transport does not support the option.
5433 */
5434 /* ARGSUSED */
5435 int
sotpi_setsockopt(struct sonode * so,int level,int option_name,const void * optval,t_uscalar_t optlen,struct cred * cr)5436 sotpi_setsockopt(struct sonode *so, int level, int option_name,
5437 const void *optval, t_uscalar_t optlen, struct cred *cr)
5438 {
5439 struct T_optmgmt_req optmgmt_req;
5440 struct opthdr oh;
5441 mblk_t *mp;
5442 int error = 0;
5443 boolean_t handled = B_FALSE;
5444
5445 dprintso(so, 1, ("sotpi_setsockopt(%p, 0x%x, 0x%x, %p, %d) %s\n",
5446 (void *)so, level, option_name, optval, optlen,
5447 pr_state(so->so_state, so->so_mode)));
5448
5449 /* X/Open requires this check */
5450 if ((so->so_state & SS_CANTSENDMORE) && !xnet_skip_checks) {
5451 if (xnet_check_print)
5452 printf("sockfs: X/Open setsockopt check => EINVAL\n");
5453 return (EINVAL);
5454 }
5455
5456 mutex_enter(&so->so_lock);
5457 so_lock_single(so); /* Set SOLOCKED */
5458 mutex_exit(&so->so_lock);
5459
5460 optmgmt_req.PRIM_type = T_SVR4_OPTMGMT_REQ;
5461 optmgmt_req.MGMT_flags = T_NEGOTIATE;
5462 optmgmt_req.OPT_length = (t_scalar_t)sizeof (oh) + optlen;
5463 optmgmt_req.OPT_offset = (t_scalar_t)sizeof (optmgmt_req);
5464
5465 oh.level = level;
5466 oh.name = option_name;
5467 oh.len = optlen;
5468
5469 mp = soallocproto3(&optmgmt_req, sizeof (optmgmt_req),
5470 &oh, sizeof (oh), optval, optlen, 0, _ALLOC_SLEEP, cr);
5471 /* Let option management work in the presence of data flow control */
5472 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0,
5473 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR|MSG_IGNFLOW, 0);
5474 mp = NULL;
5475 mutex_enter(&so->so_lock);
5476 if (error) {
5477 eprintsoline(so, error);
5478 goto done2;
5479 }
5480 error = sowaitprim(so, T_SVR4_OPTMGMT_REQ, T_OPTMGMT_ACK,
5481 (t_uscalar_t)sizeof (struct T_optmgmt_ack), &mp, 0);
5482 if (error) {
5483 eprintsoline(so, error);
5484 goto done;
5485 }
5486 ASSERT(mp);
5487 /* No need to verify T_optmgmt_ack */
5488 freemsg(mp);
5489 done:
5490 /*
5491 * Check for SOL_SOCKET options and record their values.
5492 * If we know about a SOL_SOCKET parameter and the transport
5493 * failed it with TBADOPT or TOUTSTATE (i.e. ENOPROTOOPT or
5494 * EPROTO) we let the setsockopt succeed.
5495 */
5496 if (level == SOL_SOCKET) {
5497 /* Check parameters */
5498 switch (option_name) {
5499 case SO_DEBUG:
5500 case SO_REUSEADDR:
5501 case SO_KEEPALIVE:
5502 case SO_DONTROUTE:
5503 case SO_BROADCAST:
5504 case SO_USELOOPBACK:
5505 case SO_OOBINLINE:
5506 case SO_SNDBUF:
5507 case SO_RCVBUF:
5508 #ifdef notyet
5509 case SO_SNDLOWAT:
5510 case SO_RCVLOWAT:
5511 #endif /* notyet */
5512 case SO_DGRAM_ERRIND:
5513 if (optlen != (t_uscalar_t)sizeof (int32_t)) {
5514 error = EINVAL;
5515 eprintsoline(so, error);
5516 goto done2;
5517 }
5518 ASSERT(optval);
5519 handled = B_TRUE;
5520 break;
5521 case SO_SNDTIMEO:
5522 case SO_RCVTIMEO:
5523 if (get_udatamodel() == DATAMODEL_NONE ||
5524 get_udatamodel() == DATAMODEL_NATIVE) {
5525 if (optlen != sizeof (struct timeval)) {
5526 error = EINVAL;
5527 eprintsoline(so, error);
5528 goto done2;
5529 }
5530 } else {
5531 if (optlen != sizeof (struct timeval32)) {
5532 error = EINVAL;
5533 eprintsoline(so, error);
5534 goto done2;
5535 }
5536 }
5537 ASSERT(optval);
5538 handled = B_TRUE;
5539 break;
5540 case SO_LINGER:
5541 if (optlen != (t_uscalar_t)sizeof (struct linger)) {
5542 error = EINVAL;
5543 eprintsoline(so, error);
5544 goto done2;
5545 }
5546 ASSERT(optval);
5547 handled = B_TRUE;
5548 break;
5549 }
5550
5551 #define intvalue (*(int32_t *)optval)
5552
5553 switch (option_name) {
5554 case SO_TYPE:
5555 case SO_ERROR:
5556 case SO_ACCEPTCONN:
5557 /* Can't be set */
5558 error = ENOPROTOOPT;
5559 goto done2;
5560 case SO_LINGER: {
5561 struct linger *l = (struct linger *)optval;
5562
5563 so->so_linger.l_linger = l->l_linger;
5564 if (l->l_onoff) {
5565 so->so_linger.l_onoff = SO_LINGER;
5566 so->so_options |= SO_LINGER;
5567 } else {
5568 so->so_linger.l_onoff = 0;
5569 so->so_options &= ~SO_LINGER;
5570 }
5571 break;
5572 }
5573
5574 case SO_DEBUG:
5575 #ifdef SOCK_TEST
5576 if (intvalue & 2)
5577 sock_test_timelimit = 10 * hz;
5578 else
5579 sock_test_timelimit = 0;
5580
5581 if (intvalue & 4)
5582 do_useracc = 0;
5583 else
5584 do_useracc = 1;
5585 #endif /* SOCK_TEST */
5586 /* FALLTHRU */
5587 case SO_REUSEADDR:
5588 case SO_KEEPALIVE:
5589 case SO_DONTROUTE:
5590 case SO_BROADCAST:
5591 case SO_USELOOPBACK:
5592 case SO_OOBINLINE:
5593 case SO_DGRAM_ERRIND:
5594 if (intvalue != 0) {
5595 dprintso(so, 1,
5596 ("socket_setsockopt: setting 0x%x\n",
5597 option_name));
5598 so->so_options |= option_name;
5599 } else {
5600 dprintso(so, 1,
5601 ("socket_setsockopt: clearing 0x%x\n",
5602 option_name));
5603 so->so_options &= ~option_name;
5604 }
5605 break;
5606 /*
5607 * The following options are only returned by us when the
5608 * transport layer fails.
5609 * XXX XPG 4.2 applications retrieve SO_RCVBUF from sockfs
5610 * since the transport might adjust the value and not
5611 * return exactly what was set by the application.
5612 */
5613 case SO_SNDBUF:
5614 so->so_sndbuf = intvalue;
5615 break;
5616 case SO_RCVBUF:
5617 so->so_rcvbuf = intvalue;
5618 break;
5619 case SO_RCVPSH:
5620 so->so_rcv_timer_interval = intvalue;
5621 break;
5622 #ifdef notyet
5623 /*
5624 * We do not implement the semantics of these options
5625 * thus we shouldn't implement the options either.
5626 */
5627 case SO_SNDLOWAT:
5628 so->so_sndlowat = intvalue;
5629 break;
5630 case SO_RCVLOWAT:
5631 so->so_rcvlowat = intvalue;
5632 break;
5633 #endif /* notyet */
5634 case SO_SNDTIMEO:
5635 case SO_RCVTIMEO: {
5636 struct timeval tl;
5637 clock_t val;
5638
5639 if (get_udatamodel() == DATAMODEL_NONE ||
5640 get_udatamodel() == DATAMODEL_NATIVE)
5641 bcopy(&tl, (struct timeval *)optval,
5642 sizeof (struct timeval));
5643 else
5644 TIMEVAL32_TO_TIMEVAL(&tl,
5645 (struct timeval32 *)optval);
5646 val = tl.tv_sec * 1000 * 1000 + tl.tv_usec;
5647 if (option_name == SO_RCVTIMEO)
5648 so->so_rcvtimeo = drv_usectohz(val);
5649 else
5650 so->so_sndtimeo = drv_usectohz(val);
5651 break;
5652 }
5653 }
5654 #undef intvalue
5655
5656 if (error) {
5657 if ((error == ENOPROTOOPT || error == EPROTO ||
5658 error == EINVAL) && handled) {
5659 dprintso(so, 1,
5660 ("setsockopt: ignoring error %d for 0x%x\n",
5661 error, option_name));
5662 error = 0;
5663 }
5664 }
5665 }
5666 done2:
5667 so_unlock_single(so, SOLOCKED);
5668 mutex_exit(&so->so_lock);
5669 return (error);
5670 }
5671
5672 /*
5673 * sotpi_close() is called when the last open reference goes away.
5674 */
5675 /* ARGSUSED */
5676 int
sotpi_close(struct sonode * so,int flag,struct cred * cr)5677 sotpi_close(struct sonode *so, int flag, struct cred *cr)
5678 {
5679 struct vnode *vp = SOTOV(so);
5680 dev_t dev;
5681 int error = 0;
5682 sotpi_info_t *sti = SOTOTPI(so);
5683
5684 dprintso(so, 1, ("sotpi_close(%p, %x) %s\n",
5685 (void *)vp, flag, pr_state(so->so_state, so->so_mode)));
5686
5687 dev = sti->sti_dev;
5688
5689 ASSERT(STREAMSTAB(getmajor(dev)));
5690
5691 mutex_enter(&so->so_lock);
5692 so_lock_single(so); /* Set SOLOCKED */
5693
5694 ASSERT(so_verify_oobstate(so));
5695
5696 if (sti->sti_nl7c_flags & NL7C_ENABLED) {
5697 sti->sti_nl7c_flags = 0;
5698 nl7c_close(so);
5699 }
5700
5701 if (vp->v_stream != NULL) {
5702 vnode_t *ux_vp;
5703
5704 if (so->so_family == AF_UNIX) {
5705 /* Could avoid this when CANTSENDMORE for !dgram */
5706 so_unix_close(so);
5707 }
5708
5709 mutex_exit(&so->so_lock);
5710 /*
5711 * Disassemble the linkage from the AF_UNIX underlying file
5712 * system vnode to this socket (by atomically clearing
5713 * v_stream in vn_rele_stream) before strclose clears sd_vnode
5714 * and frees the stream head.
5715 */
5716 if ((ux_vp = sti->sti_ux_bound_vp) != NULL) {
5717 ASSERT(ux_vp->v_stream);
5718 sti->sti_ux_bound_vp = NULL;
5719 vn_rele_stream(ux_vp);
5720 }
5721 error = strclose(vp, flag, cr);
5722 vp->v_stream = NULL;
5723 mutex_enter(&so->so_lock);
5724 }
5725
5726 /*
5727 * Flush the T_DISCON_IND on sti_discon_ind_mp.
5728 */
5729 so_flush_discon_ind(so);
5730
5731 so_unlock_single(so, SOLOCKED);
5732 mutex_exit(&so->so_lock);
5733
5734 /*
5735 * Needed for STREAMs.
5736 * Decrement the device driver's reference count for streams
5737 * opened via the clone dip. The driver was held in clone_open().
5738 * The absence of clone_close() forces this asymmetry.
5739 */
5740 if (so->so_flag & SOCLONE)
5741 ddi_rele_driver(getmajor(dev));
5742
5743 return (error);
5744 }
5745
5746 static int
sotpi_ioctl(struct sonode * so,int cmd,intptr_t arg,int mode,struct cred * cr,int32_t * rvalp)5747 sotpi_ioctl(struct sonode *so, int cmd, intptr_t arg, int mode,
5748 struct cred *cr, int32_t *rvalp)
5749 {
5750 struct vnode *vp = SOTOV(so);
5751 sotpi_info_t *sti = SOTOTPI(so);
5752 int error = 0;
5753
5754 dprintso(so, 0, ("sotpi_ioctl: cmd 0x%x, arg 0x%lx, state %s\n",
5755 cmd, arg, pr_state(so->so_state, so->so_mode)));
5756
5757 switch (cmd) {
5758 case SIOCSQPTR:
5759 /*
5760 * SIOCSQPTR is valid only when helper stream is created
5761 * by the protocol.
5762 */
5763 case _I_INSERT:
5764 case _I_REMOVE:
5765 /*
5766 * Since there's no compelling reason to support these ioctls
5767 * on sockets, and doing so would increase the complexity
5768 * markedly, prevent it.
5769 */
5770 return (EOPNOTSUPP);
5771
5772 case I_FIND:
5773 case I_LIST:
5774 case I_LOOK:
5775 case I_POP:
5776 case I_PUSH:
5777 /*
5778 * To prevent races and inconsistencies between the actual
5779 * state of the stream and the state according to the sonode,
5780 * we serialize all operations which modify or operate on the
5781 * list of modules on the socket's stream.
5782 */
5783 mutex_enter(&sti->sti_plumb_lock);
5784 error = socktpi_plumbioctl(vp, cmd, arg, mode, cr, rvalp);
5785 mutex_exit(&sti->sti_plumb_lock);
5786 return (error);
5787
5788 default:
5789 if (so->so_version != SOV_STREAM)
5790 break;
5791
5792 /*
5793 * The imaginary "sockmod" has been popped; act as a stream.
5794 */
5795 return (strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp));
5796 }
5797
5798 ASSERT(so->so_version != SOV_STREAM);
5799
5800 /*
5801 * Process socket-specific ioctls.
5802 */
5803 switch (cmd) {
5804 case FIONBIO: {
5805 int32_t value;
5806
5807 if (so_copyin((void *)arg, &value, sizeof (int32_t),
5808 (mode & (int)FKIOCTL)))
5809 return (EFAULT);
5810
5811 mutex_enter(&so->so_lock);
5812 if (value) {
5813 so->so_state |= SS_NDELAY;
5814 } else {
5815 so->so_state &= ~SS_NDELAY;
5816 }
5817 mutex_exit(&so->so_lock);
5818 return (0);
5819 }
5820
5821 case FIOASYNC: {
5822 int32_t value;
5823
5824 if (so_copyin((void *)arg, &value, sizeof (int32_t),
5825 (mode & (int)FKIOCTL)))
5826 return (EFAULT);
5827
5828 mutex_enter(&so->so_lock);
5829 /*
5830 * SS_ASYNC flag not already set correctly?
5831 * (!value != !(so->so_state & SS_ASYNC))
5832 * but some engineers find that too hard to read.
5833 */
5834 if (value == 0 && (so->so_state & SS_ASYNC) != 0 ||
5835 value != 0 && (so->so_state & SS_ASYNC) == 0)
5836 error = so_flip_async(so, vp, mode, cr);
5837 mutex_exit(&so->so_lock);
5838 return (error);
5839 }
5840
5841 case SIOCSPGRP:
5842 case FIOSETOWN: {
5843 pid_t pgrp;
5844
5845 if (so_copyin((void *)arg, &pgrp, sizeof (pid_t),
5846 (mode & (int)FKIOCTL)))
5847 return (EFAULT);
5848
5849 mutex_enter(&so->so_lock);
5850 dprintso(so, 1, ("setown: new %d old %d\n", pgrp, so->so_pgrp));
5851 /* Any change? */
5852 if (pgrp != so->so_pgrp)
5853 error = so_set_siggrp(so, vp, pgrp, mode, cr);
5854 mutex_exit(&so->so_lock);
5855 return (error);
5856 }
5857 case SIOCGPGRP:
5858 case FIOGETOWN:
5859 if (so_copyout(&so->so_pgrp, (void *)arg,
5860 sizeof (pid_t), (mode & (int)FKIOCTL)))
5861 return (EFAULT);
5862 return (0);
5863
5864 case SIOCATMARK: {
5865 int retval;
5866 uint_t so_state;
5867
5868 /*
5869 * strwaitmark has a finite timeout after which it
5870 * returns -1 if the mark state is undetermined.
5871 * In order to avoid any race between the mark state
5872 * in sockfs and the mark state in the stream head this
5873 * routine loops until the mark state can be determined
5874 * (or the urgent data indication has been removed by some
5875 * other thread).
5876 */
5877 do {
5878 mutex_enter(&so->so_lock);
5879 so_state = so->so_state;
5880 mutex_exit(&so->so_lock);
5881 if (so_state & SS_RCVATMARK) {
5882 retval = 1;
5883 } else if (!(so_state & SS_OOBPEND)) {
5884 /*
5885 * No SIGURG has been generated -- there is no
5886 * pending or present urgent data. Thus can't
5887 * possibly be at the mark.
5888 */
5889 retval = 0;
5890 } else {
5891 /*
5892 * Have the stream head wait until there is
5893 * either some messages on the read queue, or
5894 * STRATMARK or STRNOTATMARK gets set. The
5895 * STRNOTATMARK flag is used so that the
5896 * transport can send up a MSGNOTMARKNEXT
5897 * M_DATA to indicate that it is not
5898 * at the mark and additional data is not about
5899 * to be send upstream.
5900 *
5901 * If the mark state is undetermined this will
5902 * return -1 and we will loop rechecking the
5903 * socket state.
5904 */
5905 retval = strwaitmark(vp);
5906 }
5907 } while (retval == -1);
5908
5909 if (so_copyout(&retval, (void *)arg, sizeof (int),
5910 (mode & (int)FKIOCTL)))
5911 return (EFAULT);
5912 return (0);
5913 }
5914
5915 case I_FDINSERT:
5916 case I_SENDFD:
5917 case I_RECVFD:
5918 case I_ATMARK:
5919 case _SIOCSOCKFALLBACK:
5920 /*
5921 * These ioctls do not apply to sockets. I_FDINSERT can be
5922 * used to send M_PROTO messages without modifying the socket
5923 * state. I_SENDFD/RECVFD should not be used for socket file
5924 * descriptor passing since they assume a twisted stream.
5925 * SIOCATMARK must be used instead of I_ATMARK.
5926 *
5927 * _SIOCSOCKFALLBACK from an application should never be
5928 * processed. It is only generated by socktpi_open() or
5929 * in response to I_POP or I_PUSH.
5930 */
5931 #ifdef DEBUG
5932 zcmn_err(getzoneid(), CE_WARN,
5933 "Unsupported STREAMS ioctl 0x%x on socket. "
5934 "Pid = %d\n", cmd, curproc->p_pid);
5935 #endif /* DEBUG */
5936 return (EOPNOTSUPP);
5937
5938 case _I_GETPEERCRED:
5939 if ((mode & FKIOCTL) == 0)
5940 return (EINVAL);
5941
5942 mutex_enter(&so->so_lock);
5943 if ((so->so_mode & SM_CONNREQUIRED) == 0) {
5944 error = ENOTSUP;
5945 } else if ((so->so_state & SS_ISCONNECTED) == 0) {
5946 error = ENOTCONN;
5947 } else if (so->so_peercred != NULL) {
5948 k_peercred_t *kp = (k_peercred_t *)arg;
5949 kp->pc_cr = so->so_peercred;
5950 kp->pc_cpid = so->so_cpid;
5951 crhold(so->so_peercred);
5952 } else {
5953 error = EINVAL;
5954 }
5955 mutex_exit(&so->so_lock);
5956 return (error);
5957
5958 default:
5959 /*
5960 * Do the higher-order bits of the ioctl cmd indicate
5961 * that it is an I_* streams ioctl?
5962 */
5963 if ((cmd & 0xffffff00U) == STR &&
5964 so->so_version == SOV_SOCKBSD) {
5965 #ifdef DEBUG
5966 zcmn_err(getzoneid(), CE_WARN,
5967 "Unsupported STREAMS ioctl 0x%x on socket. "
5968 "Pid = %d\n", cmd, curproc->p_pid);
5969 #endif /* DEBUG */
5970 return (EOPNOTSUPP);
5971 }
5972 return (strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp));
5973 }
5974 }
5975
5976 /*
5977 * Handle plumbing-related ioctls.
5978 */
5979 static int
socktpi_plumbioctl(struct vnode * vp,int cmd,intptr_t arg,int mode,struct cred * cr,int32_t * rvalp)5980 socktpi_plumbioctl(struct vnode *vp, int cmd, intptr_t arg, int mode,
5981 struct cred *cr, int32_t *rvalp)
5982 {
5983 static const char sockmod_name[] = "sockmod";
5984 struct sonode *so = VTOSO(vp);
5985 char mname[FMNAMESZ + 1];
5986 int error;
5987 sotpi_info_t *sti = SOTOTPI(so);
5988
5989 ASSERT(MUTEX_HELD(&sti->sti_plumb_lock));
5990
5991 if (so->so_version == SOV_SOCKBSD)
5992 return (EOPNOTSUPP);
5993
5994 if (so->so_version == SOV_STREAM) {
5995 /*
5996 * The imaginary "sockmod" has been popped - act as a stream.
5997 * If this is a push of sockmod then change back to a socket.
5998 */
5999 if (cmd == I_PUSH) {
6000 error = ((mode & FKIOCTL) ? copystr : copyinstr)(
6001 (void *)arg, mname, sizeof (mname), NULL);
6002
6003 if (error == 0 && strcmp(mname, sockmod_name) == 0) {
6004 dprintso(so, 0, ("socktpi_ioctl: going to "
6005 "socket version\n"));
6006 so_stream2sock(so);
6007 return (0);
6008 }
6009 }
6010 return (strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp));
6011 }
6012
6013 switch (cmd) {
6014 case I_PUSH:
6015 if (sti->sti_direct) {
6016 mutex_enter(&so->so_lock);
6017 so_lock_single(so);
6018 mutex_exit(&so->so_lock);
6019
6020 error = strioctl(vp, _SIOCSOCKFALLBACK, 0, 0, K_TO_K,
6021 cr, rvalp);
6022
6023 mutex_enter(&so->so_lock);
6024 if (error == 0)
6025 sti->sti_direct = 0;
6026 so_unlock_single(so, SOLOCKED);
6027 mutex_exit(&so->so_lock);
6028
6029 if (error != 0)
6030 return (error);
6031 }
6032
6033 error = strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp);
6034 if (error == 0)
6035 sti->sti_pushcnt++;
6036 return (error);
6037
6038 case I_POP:
6039 if (sti->sti_pushcnt == 0) {
6040 /* Emulate sockmod being popped */
6041 dprintso(so, 0,
6042 ("socktpi_ioctl: going to STREAMS version\n"));
6043 return (so_sock2stream(so));
6044 }
6045
6046 error = strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp);
6047 if (error == 0)
6048 sti->sti_pushcnt--;
6049 return (error);
6050
6051 case I_LIST: {
6052 struct str_mlist *kmlistp, *umlistp;
6053 struct str_list kstrlist;
6054 ssize_t kstrlistsize;
6055 int i, nmods;
6056
6057 STRUCT_DECL(str_list, ustrlist);
6058 STRUCT_INIT(ustrlist, mode);
6059
6060 if (arg == NULL) {
6061 error = strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp);
6062 if (error == 0)
6063 (*rvalp)++; /* Add one for sockmod */
6064 return (error);
6065 }
6066
6067 error = so_copyin((void *)arg, STRUCT_BUF(ustrlist),
6068 STRUCT_SIZE(ustrlist), mode & FKIOCTL);
6069 if (error != 0)
6070 return (error);
6071
6072 nmods = STRUCT_FGET(ustrlist, sl_nmods);
6073 if (nmods <= 0)
6074 return (EINVAL);
6075 /*
6076 * Ceiling nmods at nstrpush to prevent someone from
6077 * maliciously consuming lots of kernel memory.
6078 */
6079 nmods = MIN(nmods, nstrpush);
6080
6081 kstrlistsize = (nmods + 1) * sizeof (struct str_mlist);
6082 kstrlist.sl_nmods = nmods;
6083 kstrlist.sl_modlist = kmem_zalloc(kstrlistsize, KM_SLEEP);
6084
6085 error = strioctl(vp, cmd, (intptr_t)&kstrlist, mode, K_TO_K,
6086 cr, rvalp);
6087 if (error != 0)
6088 goto done;
6089
6090 /*
6091 * Considering the module list as a 0-based array of sl_nmods
6092 * modules, sockmod should conceptually exist at slot
6093 * sti_pushcnt. Insert sockmod at this location by sliding all
6094 * of the module names after so_pushcnt over by one. We know
6095 * that there will be room to do this since we allocated
6096 * sl_modlist with an additional slot.
6097 */
6098 for (i = kstrlist.sl_nmods; i > sti->sti_pushcnt; i--)
6099 kstrlist.sl_modlist[i] = kstrlist.sl_modlist[i - 1];
6100
6101 (void) strcpy(kstrlist.sl_modlist[i].l_name, sockmod_name);
6102 kstrlist.sl_nmods++;
6103
6104 /*
6105 * Copy all of the entries out to ustrlist.
6106 */
6107 kmlistp = kstrlist.sl_modlist;
6108 umlistp = STRUCT_FGETP(ustrlist, sl_modlist);
6109 for (i = 0; i < nmods && i < kstrlist.sl_nmods; i++) {
6110 error = so_copyout(kmlistp++, umlistp++,
6111 sizeof (struct str_mlist), mode & FKIOCTL);
6112 if (error != 0)
6113 goto done;
6114 }
6115
6116 error = so_copyout(&i, (void *)arg, sizeof (int32_t),
6117 mode & FKIOCTL);
6118 if (error == 0)
6119 *rvalp = 0;
6120 done:
6121 kmem_free(kstrlist.sl_modlist, kstrlistsize);
6122 return (error);
6123 }
6124 case I_LOOK:
6125 if (sti->sti_pushcnt == 0) {
6126 return (so_copyout(sockmod_name, (void *)arg,
6127 sizeof (sockmod_name), mode & FKIOCTL));
6128 }
6129 return (strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp));
6130
6131 case I_FIND:
6132 error = strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp);
6133 if (error && error != EINVAL)
6134 return (error);
6135
6136 /* if not found and string was sockmod return 1 */
6137 if (*rvalp == 0 || error == EINVAL) {
6138 error = ((mode & FKIOCTL) ? copystr : copyinstr)(
6139 (void *)arg, mname, sizeof (mname), NULL);
6140 if (error == ENAMETOOLONG)
6141 error = EINVAL;
6142
6143 if (error == 0 && strcmp(mname, sockmod_name) == 0)
6144 *rvalp = 1;
6145 }
6146 return (error);
6147
6148 default:
6149 panic("socktpi_plumbioctl: unknown ioctl %d", cmd);
6150 break;
6151 }
6152
6153 return (0);
6154 }
6155
6156 /*
6157 * Wrapper around the streams poll routine that implements socket poll
6158 * semantics.
6159 * The sockfs never calls pollwakeup itself - the stream head take care
6160 * of all pollwakeups. Since sockfs never holds so_lock when calling the
6161 * stream head there can never be a deadlock due to holding so_lock across
6162 * pollwakeup and acquiring so_lock in this routine.
6163 *
6164 * However, since the performance of VOP_POLL is critical we avoid
6165 * acquiring so_lock here. This is based on two assumptions:
6166 * - The poll implementation holds locks to serialize the VOP_POLL call
6167 * and a pollwakeup for the same pollhead. This ensures that should
6168 * e.g. so_state change during a socktpi_poll call the pollwakeup
6169 * (which strsock_* and strrput conspire to issue) is issued after
6170 * the state change. Thus the pollwakeup will block until VOP_POLL has
6171 * returned and then wake up poll and have it call VOP_POLL again.
6172 * - The reading of so_state without holding so_lock does not result in
6173 * stale data that is older than the latest state change that has dropped
6174 * so_lock. This is ensured by the mutex_exit issuing the appropriate
6175 * memory barrier to force the data into the coherency domain.
6176 */
6177 static int
sotpi_poll(struct sonode * so,short events,int anyyet,short * reventsp,struct pollhead ** phpp)6178 sotpi_poll(
6179 struct sonode *so,
6180 short events,
6181 int anyyet,
6182 short *reventsp,
6183 struct pollhead **phpp)
6184 {
6185 short origevents = events;
6186 struct vnode *vp = SOTOV(so);
6187 int error;
6188 int so_state = so->so_state; /* snapshot */
6189 sotpi_info_t *sti = SOTOTPI(so);
6190
6191 dprintso(so, 0, ("socktpi_poll(%p): state %s err %d\n",
6192 (void *)vp, pr_state(so_state, so->so_mode), so->so_error));
6193
6194 ASSERT(vp->v_type == VSOCK);
6195 ASSERT(vp->v_stream != NULL);
6196
6197 if (so->so_version == SOV_STREAM) {
6198 /* The imaginary "sockmod" has been popped - act as a stream */
6199 return (strpoll(vp->v_stream, events, anyyet,
6200 reventsp, phpp));
6201 }
6202
6203 if (!(so_state & SS_ISCONNECTED) &&
6204 (so->so_mode & SM_CONNREQUIRED)) {
6205 /* Not connected yet - turn off write side events */
6206 events &= ~(POLLOUT|POLLWRBAND);
6207 }
6208 /*
6209 * Check for errors without calling strpoll if the caller wants them.
6210 * In sockets the errors are represented as input/output events
6211 * and there is no need to ask the stream head for this information.
6212 */
6213 if (so->so_error != 0 &&
6214 ((POLLIN|POLLRDNORM|POLLOUT) & origevents) != 0) {
6215 *reventsp = (POLLIN|POLLRDNORM|POLLOUT) & origevents;
6216 return (0);
6217 }
6218 /*
6219 * Ignore M_PROTO only messages such as the T_EXDATA_IND messages.
6220 * These message with only an M_PROTO/M_PCPROTO part and no M_DATA
6221 * will not trigger a POLLIN event with POLLRDDATA set.
6222 * The handling of urgent data (causing POLLRDBAND) is done by
6223 * inspecting SS_OOBPEND below.
6224 */
6225 events |= POLLRDDATA;
6226
6227 /*
6228 * After shutdown(output) a stream head write error is set.
6229 * However, we should not return output events.
6230 */
6231 events |= POLLNOERR;
6232 error = strpoll(vp->v_stream, events, anyyet,
6233 reventsp, phpp);
6234 if (error)
6235 return (error);
6236
6237 ASSERT(!(*reventsp & POLLERR));
6238
6239 /*
6240 * Notes on T_CONN_IND handling for sockets.
6241 *
6242 * If strpoll() returned without events, SR_POLLIN is guaranteed
6243 * to be set, ensuring any subsequent strrput() runs pollwakeup().
6244 *
6245 * Since the so_lock is not held, soqueueconnind() may have run
6246 * and a T_CONN_IND may be waiting. We now check for any queued
6247 * T_CONN_IND msgs on sti_conn_ind_head and set appropriate events
6248 * to ensure poll returns.
6249 *
6250 * However:
6251 * If the T_CONN_IND hasn't arrived by the time strpoll() returns,
6252 * when strrput() does run for an arriving M_PROTO with T_CONN_IND
6253 * the following actions will occur; taken together they ensure the
6254 * syscall will return.
6255 *
6256 * 1. If a socket, soqueueconnind() will queue the T_CONN_IND but if
6257 * the accept() was run on a non-blocking socket sowaitconnind()
6258 * may have already returned EWOULDBLOCK, so not be waiting to
6259 * process the message. Additionally socktpi_poll() has probably
6260 * proceeded past the sti_conn_ind_head check below.
6261 * 2. strrput() runs pollwakeup()->pollnotify()->cv_signal() to wake
6262 * this thread, however that could occur before poll_common()
6263 * has entered cv_wait.
6264 * 3. pollnotify() sets T_POLLWAKE, while holding the pc_lock.
6265 *
6266 * Before proceeding to cv_wait() in poll_common() for an event,
6267 * poll_common() atomically checks for T_POLLWAKE under the pc_lock,
6268 * and if set, re-calls strpoll() to ensure the late arriving
6269 * T_CONN_IND is recognized, and pollsys() returns.
6270 */
6271
6272 if (sti->sti_conn_ind_head != NULL)
6273 *reventsp |= (POLLIN|POLLRDNORM) & events;
6274
6275 if (so->so_state & SS_OOBPEND)
6276 *reventsp |= POLLRDBAND & events;
6277
6278 if (sti->sti_nl7c_rcv_mp != NULL) {
6279 *reventsp |= (POLLIN|POLLRDNORM) & events;
6280 }
6281 if ((sti->sti_nl7c_flags & NL7C_ENABLED) &&
6282 ((POLLIN|POLLRDNORM) & *reventsp)) {
6283 sti->sti_nl7c_flags |= NL7C_POLLIN;
6284 }
6285
6286 return (0);
6287 }
6288
6289 /*ARGSUSED*/
6290 static int
socktpi_constructor(void * buf,void * cdrarg,int kmflags)6291 socktpi_constructor(void *buf, void *cdrarg, int kmflags)
6292 {
6293 sotpi_sonode_t *st = (sotpi_sonode_t *)buf;
6294 int error = 0;
6295
6296 error = sonode_constructor(buf, cdrarg, kmflags);
6297 if (error != 0)
6298 return (error);
6299
6300 error = i_sotpi_info_constructor(&st->st_info);
6301 if (error != 0)
6302 sonode_destructor(buf, cdrarg);
6303
6304 st->st_sonode.so_priv = &st->st_info;
6305
6306 return (error);
6307 }
6308
6309 /*ARGSUSED1*/
6310 static void
socktpi_destructor(void * buf,void * cdrarg)6311 socktpi_destructor(void *buf, void *cdrarg)
6312 {
6313 sotpi_sonode_t *st = (sotpi_sonode_t *)buf;
6314
6315 ASSERT(st->st_sonode.so_priv == &st->st_info);
6316 st->st_sonode.so_priv = NULL;
6317
6318 i_sotpi_info_destructor(&st->st_info);
6319 sonode_destructor(buf, cdrarg);
6320 }
6321
6322 static int
socktpi_unix_constructor(void * buf,void * cdrarg,int kmflags)6323 socktpi_unix_constructor(void *buf, void *cdrarg, int kmflags)
6324 {
6325 int retval;
6326
6327 if ((retval = socktpi_constructor(buf, cdrarg, kmflags)) == 0) {
6328 struct sonode *so = (struct sonode *)buf;
6329 sotpi_info_t *sti = SOTOTPI(so);
6330
6331 mutex_enter(&socklist.sl_lock);
6332
6333 sti->sti_next_so = socklist.sl_list;
6334 sti->sti_prev_so = NULL;
6335 if (sti->sti_next_so != NULL)
6336 SOTOTPI(sti->sti_next_so)->sti_prev_so = so;
6337 socklist.sl_list = so;
6338
6339 mutex_exit(&socklist.sl_lock);
6340
6341 }
6342 return (retval);
6343 }
6344
6345 static void
socktpi_unix_destructor(void * buf,void * cdrarg)6346 socktpi_unix_destructor(void *buf, void *cdrarg)
6347 {
6348 struct sonode *so = (struct sonode *)buf;
6349 sotpi_info_t *sti = SOTOTPI(so);
6350
6351 mutex_enter(&socklist.sl_lock);
6352
6353 if (sti->sti_next_so != NULL)
6354 SOTOTPI(sti->sti_next_so)->sti_prev_so = sti->sti_prev_so;
6355 if (sti->sti_prev_so != NULL)
6356 SOTOTPI(sti->sti_prev_so)->sti_next_so = sti->sti_next_so;
6357 else
6358 socklist.sl_list = sti->sti_next_so;
6359
6360 mutex_exit(&socklist.sl_lock);
6361
6362 socktpi_destructor(buf, cdrarg);
6363 }
6364
6365 int
socktpi_init(void)6366 socktpi_init(void)
6367 {
6368 /*
6369 * Create sonode caches. We create a special one for AF_UNIX so
6370 * that we can track them for netstat(1m).
6371 */
6372 socktpi_cache = kmem_cache_create("socktpi_cache",
6373 sizeof (struct sotpi_sonode), 0, socktpi_constructor,
6374 socktpi_destructor, NULL, NULL, NULL, 0);
6375
6376 socktpi_unix_cache = kmem_cache_create("socktpi_unix_cache",
6377 sizeof (struct sotpi_sonode), 0, socktpi_unix_constructor,
6378 socktpi_unix_destructor, NULL, NULL, NULL, 0);
6379
6380 return (0);
6381 }
6382
6383 /*
6384 * Given a non-TPI sonode, allocate and prep it to be ready for TPI.
6385 *
6386 * Caller must still update state and mode using sotpi_update_state().
6387 */
6388 int
sotpi_convert_sonode(struct sonode * so,struct sockparams * newsp,boolean_t * direct,queue_t ** qp,struct cred * cr)6389 sotpi_convert_sonode(struct sonode *so, struct sockparams *newsp,
6390 boolean_t *direct, queue_t **qp, struct cred *cr)
6391 {
6392 sotpi_info_t *sti;
6393 struct sockparams *origsp = so->so_sockparams;
6394 sock_lower_handle_t handle = so->so_proto_handle;
6395 struct stdata *stp;
6396 struct vnode *vp;
6397 queue_t *q;
6398 int error = 0;
6399
6400 ASSERT((so->so_state & (SS_FALLBACK_PENDING|SS_FALLBACK_COMP)) ==
6401 SS_FALLBACK_PENDING);
6402 ASSERT(SOCK_IS_NONSTR(so));
6403
6404 *qp = NULL;
6405 *direct = B_FALSE;
6406 so->so_sockparams = newsp;
6407 /*
6408 * Allocate and initalize fields required by TPI.
6409 */
6410 (void) sotpi_info_create(so, KM_SLEEP);
6411 sotpi_info_init(so);
6412
6413 if ((error = sotpi_init(so, NULL, cr, SO_FALLBACK)) != 0) {
6414 sotpi_info_fini(so);
6415 sotpi_info_destroy(so);
6416 return (error);
6417 }
6418 ASSERT(handle == so->so_proto_handle);
6419 sti = SOTOTPI(so);
6420 if (sti->sti_direct != 0)
6421 *direct = B_TRUE;
6422
6423 /*
6424 * Keep the original sp around so we can properly dispose of the
6425 * sonode when the socket is being closed.
6426 */
6427 sti->sti_orig_sp = origsp;
6428
6429 so_basic_strinit(so); /* skips the T_CAPABILITY_REQ */
6430 so_alloc_addr(so, so->so_max_addr_len);
6431
6432 /*
6433 * If the application has done a SIOCSPGRP, make sure the
6434 * STREAM head is aware. This needs to take place before
6435 * the protocol start sending up messages. Otherwise we
6436 * might miss to generate SIGPOLL.
6437 *
6438 * It is possible that the application will receive duplicate
6439 * signals if some were already generated for either data or
6440 * connection indications.
6441 */
6442 if (so->so_pgrp != 0) {
6443 if (so_set_events(so, so->so_vnode, cr) != 0)
6444 so->so_pgrp = 0;
6445 }
6446
6447 /*
6448 * Determine which queue to use.
6449 */
6450 vp = SOTOV(so);
6451 stp = vp->v_stream;
6452 ASSERT(stp != NULL);
6453 q = stp->sd_wrq->q_next;
6454
6455 /*
6456 * Skip any modules that may have been auto pushed when the device
6457 * was opened
6458 */
6459 while (q->q_next != NULL)
6460 q = q->q_next;
6461 *qp = _RD(q);
6462
6463 /* This is now a STREAMS sockets */
6464 so->so_not_str = B_FALSE;
6465
6466 return (error);
6467 }
6468
6469 /*
6470 * Revert a TPI sonode. It is only allowed to revert the sonode during
6471 * the fallback process.
6472 */
6473 void
sotpi_revert_sonode(struct sonode * so,struct cred * cr)6474 sotpi_revert_sonode(struct sonode *so, struct cred *cr)
6475 {
6476 vnode_t *vp = SOTOV(so);
6477
6478 ASSERT((so->so_state & (SS_FALLBACK_PENDING|SS_FALLBACK_COMP)) ==
6479 SS_FALLBACK_PENDING);
6480 ASSERT(!SOCK_IS_NONSTR(so));
6481 ASSERT(vp->v_stream != NULL);
6482
6483 strclean(vp);
6484 (void) strclose(vp, FREAD|FWRITE|SO_FALLBACK, cr);
6485
6486 /*
6487 * Restore the original sockparams. The caller is responsible for
6488 * dropping the ref to the new sp.
6489 */
6490 so->so_sockparams = SOTOTPI(so)->sti_orig_sp;
6491
6492 sotpi_info_fini(so);
6493 sotpi_info_destroy(so);
6494
6495 /* This is no longer a STREAMS sockets */
6496 so->so_not_str = B_TRUE;
6497 }
6498
6499 void
sotpi_update_state(struct sonode * so,struct T_capability_ack * tcap,struct sockaddr * laddr,socklen_t laddrlen,struct sockaddr * faddr,socklen_t faddrlen,short opts)6500 sotpi_update_state(struct sonode *so, struct T_capability_ack *tcap,
6501 struct sockaddr *laddr, socklen_t laddrlen, struct sockaddr *faddr,
6502 socklen_t faddrlen, short opts)
6503 {
6504 sotpi_info_t *sti = SOTOTPI(so);
6505
6506 so_proc_tcapability_ack(so, tcap);
6507
6508 so->so_options |= opts;
6509
6510 /*
6511 * Determine whether the foreign and local address are valid
6512 */
6513 if (laddrlen != 0) {
6514 ASSERT(laddrlen <= sti->sti_laddr_maxlen);
6515 sti->sti_laddr_len = laddrlen;
6516 bcopy(laddr, sti->sti_laddr_sa, laddrlen);
6517 sti->sti_laddr_valid = (so->so_state & SS_ISBOUND);
6518 }
6519
6520 if (faddrlen != 0) {
6521 ASSERT(faddrlen <= sti->sti_faddr_maxlen);
6522 sti->sti_faddr_len = faddrlen;
6523 bcopy(faddr, sti->sti_faddr_sa, faddrlen);
6524 sti->sti_faddr_valid = (so->so_state & SS_ISCONNECTED);
6525 }
6526
6527 }
6528
6529 /*
6530 * Allocate enough space to cache the local and foreign addresses.
6531 */
6532 void
so_alloc_addr(struct sonode * so,t_uscalar_t maxlen)6533 so_alloc_addr(struct sonode *so, t_uscalar_t maxlen)
6534 {
6535 sotpi_info_t *sti = SOTOTPI(so);
6536
6537 ASSERT(sti->sti_laddr_sa == NULL && sti->sti_faddr_sa == NULL);
6538 ASSERT(sti->sti_laddr_len == 0 && sti->sti_faddr_len == 0);
6539 sti->sti_laddr_maxlen = sti->sti_faddr_maxlen =
6540 P2ROUNDUP(maxlen, KMEM_ALIGN);
6541 so->so_max_addr_len = sti->sti_laddr_maxlen;
6542 sti->sti_laddr_sa = kmem_alloc(sti->sti_laddr_maxlen * 2, KM_SLEEP);
6543 sti->sti_faddr_sa = (struct sockaddr *)((caddr_t)sti->sti_laddr_sa
6544 + sti->sti_laddr_maxlen);
6545
6546 if (so->so_family == AF_UNIX) {
6547 /*
6548 * Initialize AF_UNIX related fields.
6549 */
6550 bzero(&sti->sti_ux_laddr, sizeof (sti->sti_ux_laddr));
6551 bzero(&sti->sti_ux_faddr, sizeof (sti->sti_ux_faddr));
6552 }
6553 }
6554
6555
6556 sotpi_info_t *
sotpi_sototpi(struct sonode * so)6557 sotpi_sototpi(struct sonode *so)
6558 {
6559 sotpi_info_t *sti;
6560
6561 ASSERT(so != NULL);
6562
6563 sti = (sotpi_info_t *)so->so_priv;
6564
6565 ASSERT(sti != NULL);
6566 ASSERT(sti->sti_magic == SOTPI_INFO_MAGIC);
6567
6568 return (sti);
6569 }
6570
6571 static int
i_sotpi_info_constructor(sotpi_info_t * sti)6572 i_sotpi_info_constructor(sotpi_info_t *sti)
6573 {
6574 sti->sti_magic = SOTPI_INFO_MAGIC;
6575 sti->sti_ack_mp = NULL;
6576 sti->sti_discon_ind_mp = NULL;
6577 sti->sti_ux_bound_vp = NULL;
6578 sti->sti_unbind_mp = NULL;
6579
6580 sti->sti_conn_ind_head = NULL;
6581 sti->sti_conn_ind_tail = NULL;
6582
6583 sti->sti_laddr_sa = NULL;
6584 sti->sti_faddr_sa = NULL;
6585
6586 sti->sti_nl7c_flags = 0;
6587 sti->sti_nl7c_uri = NULL;
6588 sti->sti_nl7c_rcv_mp = NULL;
6589
6590 mutex_init(&sti->sti_plumb_lock, NULL, MUTEX_DEFAULT, NULL);
6591 cv_init(&sti->sti_ack_cv, NULL, CV_DEFAULT, NULL);
6592
6593 return (0);
6594 }
6595
6596 static void
i_sotpi_info_destructor(sotpi_info_t * sti)6597 i_sotpi_info_destructor(sotpi_info_t *sti)
6598 {
6599 ASSERT(sti->sti_magic == SOTPI_INFO_MAGIC);
6600 ASSERT(sti->sti_ack_mp == NULL);
6601 ASSERT(sti->sti_discon_ind_mp == NULL);
6602 ASSERT(sti->sti_ux_bound_vp == NULL);
6603 ASSERT(sti->sti_unbind_mp == NULL);
6604
6605 ASSERT(sti->sti_conn_ind_head == NULL);
6606 ASSERT(sti->sti_conn_ind_tail == NULL);
6607
6608 ASSERT(sti->sti_laddr_sa == NULL);
6609 ASSERT(sti->sti_faddr_sa == NULL);
6610
6611 ASSERT(sti->sti_nl7c_flags == 0);
6612 ASSERT(sti->sti_nl7c_uri == NULL);
6613 ASSERT(sti->sti_nl7c_rcv_mp == NULL);
6614
6615 mutex_destroy(&sti->sti_plumb_lock);
6616 cv_destroy(&sti->sti_ack_cv);
6617 }
6618
6619 /*
6620 * Creates and attaches TPI information to the given sonode
6621 */
6622 static boolean_t
sotpi_info_create(struct sonode * so,int kmflags)6623 sotpi_info_create(struct sonode *so, int kmflags)
6624 {
6625 sotpi_info_t *sti;
6626
6627 ASSERT(so->so_priv == NULL);
6628
6629 if ((sti = kmem_zalloc(sizeof (*sti), kmflags)) == NULL)
6630 return (B_FALSE);
6631
6632 if (i_sotpi_info_constructor(sti) != 0) {
6633 kmem_free(sti, sizeof (*sti));
6634 return (B_FALSE);
6635 }
6636
6637 so->so_priv = (void *)sti;
6638 return (B_TRUE);
6639 }
6640
6641 /*
6642 * Initializes the TPI information.
6643 */
6644 static void
sotpi_info_init(struct sonode * so)6645 sotpi_info_init(struct sonode *so)
6646 {
6647 struct vnode *vp = SOTOV(so);
6648 sotpi_info_t *sti = SOTOTPI(so);
6649 time_t now;
6650
6651 sti->sti_dev = so->so_sockparams->sp_sdev_info.sd_vnode->v_rdev;
6652 vp->v_rdev = sti->sti_dev;
6653
6654 sti->sti_orig_sp = NULL;
6655
6656 sti->sti_pushcnt = 0;
6657
6658 now = gethrestime_sec();
6659 sti->sti_atime = now;
6660 sti->sti_mtime = now;
6661 sti->sti_ctime = now;
6662
6663 sti->sti_eaddr_mp = NULL;
6664 sti->sti_delayed_error = 0;
6665
6666 sti->sti_provinfo = NULL;
6667
6668 sti->sti_oobcnt = 0;
6669 sti->sti_oobsigcnt = 0;
6670
6671 ASSERT(sti->sti_laddr_sa == NULL && sti->sti_faddr_sa == NULL);
6672
6673 sti->sti_laddr_sa = 0;
6674 sti->sti_faddr_sa = 0;
6675 sti->sti_laddr_maxlen = sti->sti_faddr_maxlen = 0;
6676 sti->sti_laddr_len = sti->sti_faddr_len = 0;
6677
6678 sti->sti_laddr_valid = 0;
6679 sti->sti_faddr_valid = 0;
6680 sti->sti_faddr_noxlate = 0;
6681
6682 sti->sti_direct = 0;
6683
6684 ASSERT(sti->sti_ack_mp == NULL);
6685 ASSERT(sti->sti_ux_bound_vp == NULL);
6686 ASSERT(sti->sti_unbind_mp == NULL);
6687
6688 ASSERT(sti->sti_conn_ind_head == NULL);
6689 ASSERT(sti->sti_conn_ind_tail == NULL);
6690 }
6691
6692 /*
6693 * Given a sonode, grab the TPI info and free any data.
6694 */
6695 static void
sotpi_info_fini(struct sonode * so)6696 sotpi_info_fini(struct sonode *so)
6697 {
6698 sotpi_info_t *sti = SOTOTPI(so);
6699 mblk_t *mp;
6700
6701 ASSERT(sti->sti_discon_ind_mp == NULL);
6702
6703 if ((mp = sti->sti_conn_ind_head) != NULL) {
6704 mblk_t *mp1;
6705
6706 while (mp) {
6707 mp1 = mp->b_next;
6708 mp->b_next = NULL;
6709 freemsg(mp);
6710 mp = mp1;
6711 }
6712 sti->sti_conn_ind_head = sti->sti_conn_ind_tail = NULL;
6713 }
6714
6715 /*
6716 * Protect so->so_[lf]addr_sa so that sockfs_snapshot() can safely
6717 * indirect them. It also uses so_count as a validity test.
6718 */
6719 mutex_enter(&so->so_lock);
6720
6721 if (sti->sti_laddr_sa) {
6722 ASSERT((caddr_t)sti->sti_faddr_sa ==
6723 (caddr_t)sti->sti_laddr_sa + sti->sti_laddr_maxlen);
6724 ASSERT(sti->sti_faddr_maxlen == sti->sti_laddr_maxlen);
6725 sti->sti_laddr_valid = 0;
6726 sti->sti_faddr_valid = 0;
6727 kmem_free(sti->sti_laddr_sa, sti->sti_laddr_maxlen * 2);
6728 sti->sti_laddr_sa = NULL;
6729 sti->sti_laddr_len = sti->sti_laddr_maxlen = 0;
6730 sti->sti_faddr_sa = NULL;
6731 sti->sti_faddr_len = sti->sti_faddr_maxlen = 0;
6732 }
6733
6734 mutex_exit(&so->so_lock);
6735
6736 if ((mp = sti->sti_eaddr_mp) != NULL) {
6737 freemsg(mp);
6738 sti->sti_eaddr_mp = NULL;
6739 sti->sti_delayed_error = 0;
6740 }
6741
6742 if ((mp = sti->sti_ack_mp) != NULL) {
6743 freemsg(mp);
6744 sti->sti_ack_mp = NULL;
6745 }
6746
6747 if ((mp = sti->sti_nl7c_rcv_mp) != NULL) {
6748 sti->sti_nl7c_rcv_mp = NULL;
6749 freemsg(mp);
6750 }
6751 sti->sti_nl7c_rcv_rval = 0;
6752 if (sti->sti_nl7c_uri != NULL) {
6753 nl7c_urifree(so);
6754 /* urifree() cleared nl7c_uri */
6755 }
6756 if (sti->sti_nl7c_flags) {
6757 sti->sti_nl7c_flags = 0;
6758 }
6759
6760 ASSERT(sti->sti_ux_bound_vp == NULL);
6761 if ((mp = sti->sti_unbind_mp) != NULL) {
6762 freemsg(mp);
6763 sti->sti_unbind_mp = NULL;
6764 }
6765 }
6766
6767 /*
6768 * Destroys the TPI information attached to a sonode.
6769 */
6770 static void
sotpi_info_destroy(struct sonode * so)6771 sotpi_info_destroy(struct sonode *so)
6772 {
6773 sotpi_info_t *sti = SOTOTPI(so);
6774
6775 i_sotpi_info_destructor(sti);
6776 kmem_free(sti, sizeof (*sti));
6777
6778 so->so_priv = NULL;
6779 }
6780
6781 /*
6782 * Create the global sotpi socket module entry. It will never be freed.
6783 */
6784 smod_info_t *
sotpi_smod_create(void)6785 sotpi_smod_create(void)
6786 {
6787 smod_info_t *smodp;
6788
6789 smodp = kmem_zalloc(sizeof (*smodp), KM_SLEEP);
6790 smodp->smod_name = kmem_alloc(sizeof (SOTPI_SMOD_NAME), KM_SLEEP);
6791 (void) strcpy(smodp->smod_name, SOTPI_SMOD_NAME);
6792 /*
6793 * Initialize the smod_refcnt to 1 so it will never be freed.
6794 */
6795 smodp->smod_refcnt = 1;
6796 smodp->smod_uc_version = SOCK_UC_VERSION;
6797 smodp->smod_dc_version = SOCK_DC_VERSION;
6798 smodp->smod_sock_create_func = &sotpi_create;
6799 smodp->smod_sock_destroy_func = &sotpi_destroy;
6800 return (smodp);
6801 }
6802