1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 /* Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved. */
27 /*
28 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
29 */
30
31 #include <sys/types.h>
32 #include <sys/t_lock.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/buf.h>
36 #include <sys/conf.h>
37 #include <sys/cred.h>
38 #include <sys/kmem.h>
39 #include <sys/sysmacros.h>
40 #include <sys/vfs.h>
41 #include <sys/vnode.h>
42 #include <sys/debug.h>
43 #include <sys/errno.h>
44 #include <sys/time.h>
45 #include <sys/file.h>
46 #include <sys/user.h>
47 #include <sys/stream.h>
48 #include <sys/strsubr.h>
49 #include <sys/strsun.h>
50 #include <sys/sunddi.h>
51 #include <sys/esunddi.h>
52 #include <sys/flock.h>
53 #include <sys/modctl.h>
54 #include <sys/cmn_err.h>
55 #include <sys/vmsystm.h>
56 #include <sys/policy.h>
57
58 #include <sys/socket.h>
59 #include <sys/socketvar.h>
60
61 #include <sys/isa_defs.h>
62 #include <sys/inttypes.h>
63 #include <sys/systm.h>
64 #include <sys/cpuvar.h>
65 #include <sys/filio.h>
66 #include <sys/sendfile.h>
67 #include <sys/ddi.h>
68 #include <vm/seg.h>
69 #include <vm/seg_map.h>
70 #include <vm/seg_kpm.h>
71
72 #include <fs/sockfs/nl7c.h>
73 #include <fs/sockfs/sockcommon.h>
74 #include <fs/sockfs/sockfilter_impl.h>
75 #include <fs/sockfs/socktpi.h>
76
77 #ifdef SOCK_TEST
78 int do_useracc = 1; /* Controlled by setting SO_DEBUG to 4 */
79 #else
80 #define do_useracc 1
81 #endif /* SOCK_TEST */
82
83 extern int xnet_truncate_print;
84
85 extern void nl7c_init(void);
86 extern int sockfs_defer_nl7c_init;
87
88 /*
89 * Note: DEF_IOV_MAX is defined and used as it is in "fs/vncalls.c"
90 * as there isn't a formal definition of IOV_MAX ???
91 */
92 #define MSG_MAXIOVLEN 16
93
94 /*
95 * Kernel component of socket creation.
96 *
97 * The socket library determines which version number to use.
98 * First the library calls this with a NULL devpath. If this fails
99 * to find a transport (using solookup) the library will look in /etc/netconfig
100 * for the appropriate transport. If one is found it will pass in the
101 * devpath for the kernel to use.
102 */
103 int
so_socket(int family,int type_w_flags,int protocol,char * devpath,int version)104 so_socket(int family, int type_w_flags, int protocol, char *devpath,
105 int version)
106 {
107 struct sonode *so;
108 vnode_t *vp;
109 struct file *fp;
110 int fd;
111 int error;
112 int type;
113
114 type = type_w_flags & SOCK_TYPE_MASK;
115 type_w_flags &= ~SOCK_TYPE_MASK;
116 if (type_w_flags & ~(SOCK_CLOEXEC|SOCK_NDELAY|SOCK_NONBLOCK))
117 return (set_errno(EINVAL));
118
119 if (devpath != NULL) {
120 char *buf;
121 size_t kdevpathlen = 0;
122
123 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
124 if ((error = copyinstr(devpath, buf,
125 MAXPATHLEN, &kdevpathlen)) != 0) {
126 kmem_free(buf, MAXPATHLEN);
127 return (set_errno(error));
128 }
129 so = socket_create(family, type, protocol, buf, NULL,
130 SOCKET_SLEEP, version, CRED(), &error);
131 kmem_free(buf, MAXPATHLEN);
132 } else {
133 so = socket_create(family, type, protocol, NULL, NULL,
134 SOCKET_SLEEP, version, CRED(), &error);
135 }
136 if (so == NULL)
137 return (set_errno(error));
138
139 /* Allocate a file descriptor for the socket */
140 vp = SOTOV(so);
141 if (error = falloc(vp, FWRITE|FREAD, &fp, &fd)) {
142 (void) socket_close(so, 0, CRED());
143 socket_destroy(so);
144 return (set_errno(error));
145 }
146
147 /*
148 * Now fill in the entries that falloc reserved
149 */
150 if (type_w_flags & SOCK_NDELAY) {
151 so->so_state |= SS_NDELAY;
152 fp->f_flag |= FNDELAY;
153 }
154 if (type_w_flags & SOCK_NONBLOCK) {
155 so->so_state |= SS_NONBLOCK;
156 fp->f_flag |= FNONBLOCK;
157 }
158 mutex_exit(&fp->f_tlock);
159 setf(fd, fp);
160 if ((type_w_flags & SOCK_CLOEXEC) != 0) {
161 f_setfd(fd, FD_CLOEXEC);
162 }
163
164 return (fd);
165 }
166
167 /*
168 * Map from a file descriptor to a socket node.
169 * Returns with the file descriptor held i.e. the caller has to
170 * use releasef when done with the file descriptor.
171 */
172 struct sonode *
getsonode(int sock,int * errorp,file_t ** fpp)173 getsonode(int sock, int *errorp, file_t **fpp)
174 {
175 file_t *fp;
176 vnode_t *vp;
177 struct sonode *so;
178
179 if ((fp = getf(sock)) == NULL) {
180 *errorp = EBADF;
181 eprintline(*errorp);
182 return (NULL);
183 }
184 vp = fp->f_vnode;
185 /* Check if it is a socket */
186 if (vp->v_type != VSOCK) {
187 releasef(sock);
188 *errorp = ENOTSOCK;
189 eprintline(*errorp);
190 return (NULL);
191 }
192 /*
193 * Use the stream head to find the real socket vnode.
194 * This is needed when namefs sits above sockfs.
195 */
196 if (vp->v_stream) {
197 ASSERT(vp->v_stream->sd_vnode);
198 vp = vp->v_stream->sd_vnode;
199
200 so = VTOSO(vp);
201 if (so->so_version == SOV_STREAM) {
202 releasef(sock);
203 *errorp = ENOTSOCK;
204 eprintsoline(so, *errorp);
205 return (NULL);
206 }
207 } else {
208 so = VTOSO(vp);
209 }
210 if (fpp)
211 *fpp = fp;
212 return (so);
213 }
214
215 /*
216 * Allocate and copyin a sockaddr.
217 * Ensures NULL termination for AF_UNIX addresses by extending them
218 * with one NULL byte if need be. Verifies that the length is not
219 * excessive to prevent an application from consuming all of kernel
220 * memory. Returns NULL when an error occurred.
221 */
222 static struct sockaddr *
copyin_name(struct sonode * so,struct sockaddr * name,socklen_t * namelenp,int * errorp)223 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp,
224 int *errorp)
225 {
226 char *faddr;
227 size_t namelen = (size_t)*namelenp;
228
229 ASSERT(namelen != 0);
230 if (namelen > SO_MAXARGSIZE) {
231 *errorp = EINVAL;
232 eprintsoline(so, *errorp);
233 return (NULL);
234 }
235
236 faddr = (char *)kmem_alloc(namelen, KM_SLEEP);
237 if (copyin(name, faddr, namelen)) {
238 kmem_free(faddr, namelen);
239 *errorp = EFAULT;
240 eprintsoline(so, *errorp);
241 return (NULL);
242 }
243
244 /*
245 * Add space for NULL termination if needed.
246 * Do a quick check if the last byte is NUL.
247 */
248 if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') {
249 /* Check if there is any NULL termination */
250 size_t i;
251 int foundnull = 0;
252
253 for (i = sizeof (name->sa_family); i < namelen; i++) {
254 if (faddr[i] == '\0') {
255 foundnull = 1;
256 break;
257 }
258 }
259 if (!foundnull) {
260 /* Add extra byte for NUL padding */
261 char *nfaddr;
262
263 nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP);
264 bcopy(faddr, nfaddr, namelen);
265 kmem_free(faddr, namelen);
266
267 /* NUL terminate */
268 nfaddr[namelen] = '\0';
269 namelen++;
270 ASSERT((socklen_t)namelen == namelen);
271 *namelenp = (socklen_t)namelen;
272 faddr = nfaddr;
273 }
274 }
275 return ((struct sockaddr *)faddr);
276 }
277
278 /*
279 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
280 */
281 static int
copyout_arg(void * uaddr,socklen_t ulen,void * ulenp,void * kaddr,socklen_t klen)282 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp, void *kaddr,
283 socklen_t klen)
284 {
285 if (uaddr != NULL) {
286 if (ulen > klen)
287 ulen = klen;
288
289 if (ulen != 0) {
290 if (copyout(kaddr, uaddr, ulen))
291 return (EFAULT);
292 }
293 } else
294 ulen = 0;
295
296 if (ulenp != NULL) {
297 if (copyout(&ulen, ulenp, sizeof (ulen)))
298 return (EFAULT);
299 }
300 return (0);
301 }
302
303 /*
304 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
305 * If klen is greater than ulen it still uses the non-truncated
306 * klen to update ulenp.
307 */
308 static int
copyout_name(void * uaddr,socklen_t ulen,void * ulenp,void * kaddr,socklen_t klen)309 copyout_name(void *uaddr, socklen_t ulen, void *ulenp, void *kaddr,
310 socklen_t klen)
311 {
312 if (uaddr != NULL) {
313 if (ulen >= klen)
314 ulen = klen;
315 else if (ulen != 0 && xnet_truncate_print) {
316 printf("sockfs: truncating copyout of address using "
317 "XNET semantics for pid = %d. Lengths %d, %d\n",
318 curproc->p_pid, klen, ulen);
319 }
320
321 if (ulen != 0) {
322 if (copyout(kaddr, uaddr, ulen))
323 return (EFAULT);
324 } else
325 klen = 0;
326 } else
327 klen = 0;
328
329 if (ulenp != NULL) {
330 if (copyout(&klen, ulenp, sizeof (klen)))
331 return (EFAULT);
332 }
333 return (0);
334 }
335
336 /*
337 * The socketpair() code in libsocket creates two sockets (using
338 * the /etc/netconfig fallback if needed) before calling this routine
339 * to connect the two sockets together.
340 *
341 * For a SOCK_STREAM socketpair a listener is needed - in that case this
342 * routine will create a new file descriptor as part of accepting the
343 * connection. The library socketpair() will check if svs[2] has changed
344 * in which case it will close the changed fd.
345 *
346 * Note that this code could use the TPI feature of accepting the connection
347 * on the listening endpoint. However, that would require significant changes
348 * to soaccept.
349 */
350 int
so_socketpair(int sv[2])351 so_socketpair(int sv[2])
352 {
353 int svs[2];
354 struct sonode *so1, *so2;
355 int error;
356 int orig_flags;
357 struct sockaddr_ux *name;
358 size_t namelen;
359 sotpi_info_t *sti1;
360 sotpi_info_t *sti2;
361
362 dprint(1, ("so_socketpair(%p)\n", (void *)sv));
363
364 error = useracc(sv, sizeof (svs), B_WRITE);
365 if (error && do_useracc)
366 return (set_errno(EFAULT));
367
368 if (copyin(sv, svs, sizeof (svs)))
369 return (set_errno(EFAULT));
370
371 if ((so1 = getsonode(svs[0], &error, NULL)) == NULL)
372 return (set_errno(error));
373
374 if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) {
375 releasef(svs[0]);
376 return (set_errno(error));
377 }
378
379 if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) {
380 error = EOPNOTSUPP;
381 goto done;
382 }
383
384 sti1 = SOTOTPI(so1);
385 sti2 = SOTOTPI(so2);
386
387 /*
388 * The code below makes assumptions about the "sockfs" implementation.
389 * So make sure that the correct implementation is really used.
390 */
391 ASSERT(so1->so_ops == &sotpi_sonodeops);
392 ASSERT(so2->so_ops == &sotpi_sonodeops);
393
394 if (so1->so_type == SOCK_DGRAM) {
395 /*
396 * Bind both sockets and connect them with each other.
397 * Need to allocate name/namelen for soconnect.
398 */
399 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC, CRED());
400 if (error) {
401 eprintsoline(so1, error);
402 goto done;
403 }
404 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
405 if (error) {
406 eprintsoline(so2, error);
407 goto done;
408 }
409 namelen = sizeof (struct sockaddr_ux);
410 name = kmem_alloc(namelen, KM_SLEEP);
411 name->sou_family = AF_UNIX;
412 name->sou_addr = sti2->sti_ux_laddr;
413 error = socket_connect(so1,
414 (struct sockaddr *)name,
415 (socklen_t)namelen,
416 0, _SOCONNECT_NOXLATE, CRED());
417 if (error) {
418 kmem_free(name, namelen);
419 eprintsoline(so1, error);
420 goto done;
421 }
422 name->sou_addr = sti1->sti_ux_laddr;
423 error = socket_connect(so2,
424 (struct sockaddr *)name,
425 (socklen_t)namelen,
426 0, _SOCONNECT_NOXLATE, CRED());
427 kmem_free(name, namelen);
428 if (error) {
429 eprintsoline(so2, error);
430 goto done;
431 }
432 releasef(svs[0]);
433 releasef(svs[1]);
434 } else {
435 /*
436 * Bind both sockets, with so1 being a listener.
437 * Connect so2 to so1 - nonblocking to avoid waiting for
438 * soaccept to complete.
439 * Accept a connection on so1. Pass out the new fd as sv[0].
440 * The library will detect the changed fd and close
441 * the original one.
442 */
443 struct sonode *nso;
444 struct vnode *nvp;
445 struct file *nfp;
446 int nfd;
447
448 /*
449 * We could simply call socket_listen() here (which would do the
450 * binding automatically) if the code didn't rely on passing
451 * _SOBIND_NOXLATE to the TPI implementation of socket_bind().
452 */
453 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC|
454 _SOBIND_NOXLATE|_SOBIND_LISTEN|_SOBIND_SOCKETPAIR,
455 CRED());
456 if (error) {
457 eprintsoline(so1, error);
458 goto done;
459 }
460 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
461 if (error) {
462 eprintsoline(so2, error);
463 goto done;
464 }
465
466 namelen = sizeof (struct sockaddr_ux);
467 name = kmem_alloc(namelen, KM_SLEEP);
468 name->sou_family = AF_UNIX;
469 name->sou_addr = sti1->sti_ux_laddr;
470 error = socket_connect(so2,
471 (struct sockaddr *)name,
472 (socklen_t)namelen,
473 FNONBLOCK, _SOCONNECT_NOXLATE, CRED());
474 kmem_free(name, namelen);
475 if (error) {
476 if (error != EINPROGRESS) {
477 eprintsoline(so2, error); goto done;
478 }
479 }
480
481 error = socket_accept(so1, 0, CRED(), &nso);
482 if (error) {
483 eprintsoline(so1, error);
484 goto done;
485 }
486
487 /* wait for so2 being SS_CONNECTED ignoring signals */
488 mutex_enter(&so2->so_lock);
489 error = sowaitconnected(so2, 0, 1);
490 mutex_exit(&so2->so_lock);
491 if (error != 0) {
492 (void) socket_close(nso, 0, CRED());
493 socket_destroy(nso);
494 eprintsoline(so2, error);
495 goto done;
496 }
497
498 nvp = SOTOV(nso);
499 if (error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd)) {
500 (void) socket_close(nso, 0, CRED());
501 socket_destroy(nso);
502 eprintsoline(nso, error);
503 goto done;
504 }
505 /*
506 * copy over FNONBLOCK and FNDELAY flags should they exist
507 */
508 if (so1->so_state & SS_NONBLOCK)
509 nfp->f_flag |= FNONBLOCK;
510 if (so1->so_state & SS_NDELAY)
511 nfp->f_flag |= FNDELAY;
512
513 /*
514 * fill in the entries that falloc reserved
515 */
516 mutex_exit(&nfp->f_tlock);
517 setf(nfd, nfp);
518
519 /*
520 * get the original flags before we release
521 */
522 VERIFY(f_getfd_error(svs[0], &orig_flags) == 0);
523
524 releasef(svs[0]);
525 releasef(svs[1]);
526
527 /*
528 * If FD_CLOEXEC was set on the filedescriptor we're
529 * swapping out, we should set it on the new one too.
530 */
531 if (orig_flags & FD_CLOEXEC) {
532 f_setfd(nfd, FD_CLOEXEC);
533 }
534
535 /*
536 * The socketpair library routine will close the original
537 * svs[0] when this code passes out a different file
538 * descriptor.
539 */
540 svs[0] = nfd;
541
542 if (copyout(svs, sv, sizeof (svs))) {
543 (void) closeandsetf(nfd, NULL);
544 eprintline(EFAULT);
545 return (set_errno(EFAULT));
546 }
547 }
548 return (0);
549
550 done:
551 releasef(svs[0]);
552 releasef(svs[1]);
553 return (set_errno(error));
554 }
555
556 int
bind(int sock,struct sockaddr * name,socklen_t namelen,int version)557 bind(int sock, struct sockaddr *name, socklen_t namelen, int version)
558 {
559 struct sonode *so;
560 int error;
561
562 dprint(1, ("bind(%d, %p, %d)\n",
563 sock, (void *)name, namelen));
564
565 if ((so = getsonode(sock, &error, NULL)) == NULL)
566 return (set_errno(error));
567
568 /* Allocate and copyin name */
569 /*
570 * X/Open test does not expect EFAULT with NULL name and non-zero
571 * namelen.
572 */
573 if (name != NULL && namelen != 0) {
574 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
575 name = copyin_name(so, name, &namelen, &error);
576 if (name == NULL) {
577 releasef(sock);
578 return (set_errno(error));
579 }
580 } else {
581 name = NULL;
582 namelen = 0;
583 }
584
585 switch (version) {
586 default:
587 error = socket_bind(so, name, namelen, 0, CRED());
588 break;
589 case SOV_XPG4_2:
590 error = socket_bind(so, name, namelen, _SOBIND_XPG4_2, CRED());
591 break;
592 case SOV_SOCKBSD:
593 error = socket_bind(so, name, namelen, _SOBIND_SOCKBSD, CRED());
594 break;
595 }
596 done:
597 releasef(sock);
598 if (name != NULL)
599 kmem_free(name, (size_t)namelen);
600
601 if (error)
602 return (set_errno(error));
603 return (0);
604 }
605
606 /* ARGSUSED2 */
607 int
listen(int sock,int backlog,int version)608 listen(int sock, int backlog, int version)
609 {
610 struct sonode *so;
611 int error;
612
613 dprint(1, ("listen(%d, %d)\n",
614 sock, backlog));
615
616 if ((so = getsonode(sock, &error, NULL)) == NULL)
617 return (set_errno(error));
618
619 error = socket_listen(so, backlog, CRED());
620
621 releasef(sock);
622 if (error)
623 return (set_errno(error));
624 return (0);
625 }
626
627 /*ARGSUSED3*/
628 int
accept(int sock,struct sockaddr * name,socklen_t * namelenp,int version,int flags)629 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version,
630 int flags)
631 {
632 struct sonode *so;
633 file_t *fp;
634 int error;
635 socklen_t namelen;
636 struct sonode *nso;
637 struct vnode *nvp;
638 struct file *nfp;
639 int nfd;
640 int ssflags;
641 struct sockaddr *addrp;
642 socklen_t addrlen;
643
644 dprint(1, ("accept(%d, %p, %p)\n",
645 sock, (void *)name, (void *)namelenp));
646
647 if (flags & ~(SOCK_CLOEXEC|SOCK_NONBLOCK|SOCK_NDELAY)) {
648 return (set_errno(EINVAL));
649 }
650
651 /* Translate SOCK_ flags to their SS_ variant */
652 ssflags = 0;
653 if (flags & SOCK_NONBLOCK)
654 ssflags |= SS_NONBLOCK;
655 if (flags & SOCK_NDELAY)
656 ssflags |= SS_NDELAY;
657
658 if ((so = getsonode(sock, &error, &fp)) == NULL)
659 return (set_errno(error));
660
661 if (name != NULL) {
662 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
663 if (copyin(namelenp, &namelen, sizeof (namelen))) {
664 releasef(sock);
665 return (set_errno(EFAULT));
666 }
667 if (namelen != 0) {
668 error = useracc(name, (size_t)namelen, B_WRITE);
669 if (error && do_useracc) {
670 releasef(sock);
671 return (set_errno(EFAULT));
672 }
673 } else
674 name = NULL;
675 } else {
676 namelen = 0;
677 }
678
679 /*
680 * Allocate the user fd before socket_accept() in order to
681 * catch EMFILE errors before calling socket_accept().
682 */
683 if ((nfd = ufalloc(0)) == -1) {
684 eprintsoline(so, EMFILE);
685 releasef(sock);
686 return (set_errno(EMFILE));
687 }
688 error = socket_accept(so, fp->f_flag, CRED(), &nso);
689 if (error) {
690 setf(nfd, NULL);
691 releasef(sock);
692 return (set_errno(error));
693 }
694
695 nvp = SOTOV(nso);
696
697 ASSERT(MUTEX_NOT_HELD(&nso->so_lock));
698 if (namelen != 0) {
699 addrlen = so->so_max_addr_len;
700 addrp = (struct sockaddr *)kmem_alloc(addrlen, KM_SLEEP);
701
702 if ((error = socket_getpeername(nso, (struct sockaddr *)addrp,
703 &addrlen, B_TRUE, CRED())) == 0) {
704 error = copyout_name(name, namelen, namelenp,
705 addrp, addrlen);
706 } else {
707 ASSERT(error == EINVAL || error == ENOTCONN);
708 error = ECONNABORTED;
709 }
710 kmem_free(addrp, so->so_max_addr_len);
711 }
712
713 if (error) {
714 setf(nfd, NULL);
715 (void) socket_close(nso, 0, CRED());
716 socket_destroy(nso);
717 releasef(sock);
718 return (set_errno(error));
719 }
720 if (error = falloc(NULL, FWRITE|FREAD, &nfp, NULL)) {
721 setf(nfd, NULL);
722 (void) socket_close(nso, 0, CRED());
723 socket_destroy(nso);
724 eprintsoline(so, error);
725 releasef(sock);
726 return (set_errno(error));
727 }
728 /*
729 * fill in the entries that falloc reserved
730 */
731 nfp->f_vnode = nvp;
732 mutex_exit(&nfp->f_tlock);
733 setf(nfd, nfp);
734
735 /*
736 * Act on SOCK_CLOEXEC from flags
737 */
738 if (flags & SOCK_CLOEXEC) {
739 f_setfd(nfd, FD_CLOEXEC);
740 }
741
742 /*
743 * Copy FNDELAY and FNONBLOCK from listener to acceptor
744 * and from ssflags
745 */
746 if ((ssflags | so->so_state) & (SS_NDELAY|SS_NONBLOCK)) {
747 uint_t oflag = nfp->f_flag;
748 int arg = 0;
749
750 if ((ssflags | so->so_state) & SS_NONBLOCK)
751 arg |= FNONBLOCK;
752 else if ((ssflags | so->so_state) & SS_NDELAY)
753 arg |= FNDELAY;
754
755 /*
756 * This code is a simplification of the F_SETFL code in fcntl()
757 * Ignore any errors from VOP_SETFL.
758 */
759 if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred, NULL))
760 != 0) {
761 eprintsoline(so, error);
762 error = 0;
763 } else {
764 mutex_enter(&nfp->f_tlock);
765 nfp->f_flag &= ~FMASK | (FREAD|FWRITE);
766 nfp->f_flag |= arg;
767 mutex_exit(&nfp->f_tlock);
768 }
769 }
770 releasef(sock);
771 return (nfd);
772 }
773
774 int
connect(int sock,struct sockaddr * name,socklen_t namelen,int version)775 connect(int sock, struct sockaddr *name, socklen_t namelen, int version)
776 {
777 struct sonode *so;
778 file_t *fp;
779 int error;
780
781 dprint(1, ("connect(%d, %p, %d)\n",
782 sock, (void *)name, namelen));
783
784 if ((so = getsonode(sock, &error, &fp)) == NULL)
785 return (set_errno(error));
786
787 /* Allocate and copyin name */
788 if (namelen != 0) {
789 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
790 name = copyin_name(so, name, &namelen, &error);
791 if (name == NULL) {
792 releasef(sock);
793 return (set_errno(error));
794 }
795 } else
796 name = NULL;
797
798 error = socket_connect(so, name, namelen, fp->f_flag,
799 (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2, CRED());
800 releasef(sock);
801 if (name)
802 kmem_free(name, (size_t)namelen);
803 if (error)
804 return (set_errno(error));
805 return (0);
806 }
807
808 /*ARGSUSED2*/
809 int
shutdown(int sock,int how,int version)810 shutdown(int sock, int how, int version)
811 {
812 struct sonode *so;
813 int error;
814
815 dprint(1, ("shutdown(%d, %d)\n",
816 sock, how));
817
818 if ((so = getsonode(sock, &error, NULL)) == NULL)
819 return (set_errno(error));
820
821 error = socket_shutdown(so, how, CRED());
822
823 releasef(sock);
824 if (error)
825 return (set_errno(error));
826 return (0);
827 }
828
829 /*
830 * Common receive routine.
831 */
832 static ssize_t
recvit(int sock,struct nmsghdr * msg,struct uio * uiop,int flags,socklen_t * namelenp,socklen_t * controllenp,int * flagsp)833 recvit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags,
834 socklen_t *namelenp, socklen_t *controllenp, int *flagsp)
835 {
836 struct sonode *so;
837 file_t *fp;
838 void *name;
839 socklen_t namelen;
840 void *control;
841 socklen_t controllen;
842 ssize_t len;
843 int error;
844
845 if ((so = getsonode(sock, &error, &fp)) == NULL)
846 return (set_errno(error));
847
848 len = uiop->uio_resid;
849 uiop->uio_fmode = fp->f_flag;
850 uiop->uio_extflg = UIO_COPY_CACHED;
851
852 name = msg->msg_name;
853 namelen = msg->msg_namelen;
854 control = msg->msg_control;
855 controllen = msg->msg_controllen;
856
857 msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL |
858 MSG_DONTWAIT | MSG_XPG4_2);
859
860 error = socket_recvmsg(so, msg, uiop, CRED());
861 if (error) {
862 releasef(sock);
863 return (set_errno(error));
864 }
865 lwp_stat_update(LWP_STAT_MSGRCV, 1);
866 releasef(sock);
867
868 error = copyout_name(name, namelen, namelenp,
869 msg->msg_name, msg->msg_namelen);
870 if (error)
871 goto err;
872
873 if (flagsp != NULL) {
874 /*
875 * Clear internal flag.
876 */
877 msg->msg_flags &= ~MSG_XPG4_2;
878
879 /*
880 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only
881 * when controllen is zero and there is control data to
882 * copy out.
883 */
884 if (controllen != 0 &&
885 (msg->msg_controllen > controllen || control == NULL)) {
886 dprint(1, ("recvit: CTRUNC %d %d %p\n",
887 msg->msg_controllen, controllen, control));
888
889 msg->msg_flags |= MSG_CTRUNC;
890 }
891 if (copyout(&msg->msg_flags, flagsp,
892 sizeof (msg->msg_flags))) {
893 error = EFAULT;
894 goto err;
895 }
896 }
897 /*
898 * Note: This MUST be done last. There can be no "goto err" after this
899 * point since it could make so_closefds run twice on some part
900 * of the file descriptor array.
901 */
902 if (controllen != 0) {
903 if (!(flags & MSG_XPG4_2)) {
904 /*
905 * Good old msg_accrights can only return a multiple
906 * of 4 bytes.
907 */
908 controllen &= ~((int)sizeof (uint32_t) - 1);
909 }
910 error = copyout_arg(control, controllen, controllenp,
911 msg->msg_control, msg->msg_controllen);
912 if (error)
913 goto err;
914
915 if (msg->msg_controllen > controllen || control == NULL) {
916 if (control == NULL)
917 controllen = 0;
918 so_closefds(msg->msg_control, msg->msg_controllen,
919 !(flags & MSG_XPG4_2), controllen);
920 }
921 }
922 if (msg->msg_namelen != 0)
923 kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
924 if (msg->msg_controllen != 0)
925 kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
926 return (len - uiop->uio_resid);
927
928 err:
929 /*
930 * If we fail and the control part contains file descriptors
931 * we have to close the fd's.
932 */
933 if (msg->msg_controllen != 0)
934 so_closefds(msg->msg_control, msg->msg_controllen,
935 !(flags & MSG_XPG4_2), 0);
936 if (msg->msg_namelen != 0)
937 kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
938 if (msg->msg_controllen != 0)
939 kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
940 return (set_errno(error));
941 }
942
943 /*
944 * Native system call
945 */
946 ssize_t
recv(int sock,void * buffer,size_t len,int flags)947 recv(int sock, void *buffer, size_t len, int flags)
948 {
949 struct nmsghdr lmsg;
950 struct uio auio;
951 struct iovec aiov[1];
952
953 dprint(1, ("recv(%d, %p, %ld, %d)\n",
954 sock, buffer, len, flags));
955
956 if ((ssize_t)len < 0) {
957 return (set_errno(EINVAL));
958 }
959
960 aiov[0].iov_base = buffer;
961 aiov[0].iov_len = len;
962 auio.uio_loffset = 0;
963 auio.uio_iov = aiov;
964 auio.uio_iovcnt = 1;
965 auio.uio_resid = len;
966 auio.uio_segflg = UIO_USERSPACE;
967 auio.uio_limit = 0;
968
969 lmsg.msg_namelen = 0;
970 lmsg.msg_controllen = 0;
971 lmsg.msg_flags = 0;
972 return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL));
973 }
974
975 ssize_t
recvfrom(int sock,void * buffer,size_t len,int flags,struct sockaddr * name,socklen_t * namelenp)976 recvfrom(int sock, void *buffer, size_t len, int flags, struct sockaddr *name,
977 socklen_t *namelenp)
978 {
979 struct nmsghdr lmsg;
980 struct uio auio;
981 struct iovec aiov[1];
982
983 dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n",
984 sock, buffer, len, flags, (void *)name, (void *)namelenp));
985
986 if ((ssize_t)len < 0) {
987 return (set_errno(EINVAL));
988 }
989
990 aiov[0].iov_base = buffer;
991 aiov[0].iov_len = len;
992 auio.uio_loffset = 0;
993 auio.uio_iov = aiov;
994 auio.uio_iovcnt = 1;
995 auio.uio_resid = len;
996 auio.uio_segflg = UIO_USERSPACE;
997 auio.uio_limit = 0;
998
999 lmsg.msg_name = (char *)name;
1000 if (namelenp != NULL) {
1001 if (copyin(namelenp, &lmsg.msg_namelen,
1002 sizeof (lmsg.msg_namelen)))
1003 return (set_errno(EFAULT));
1004 } else {
1005 lmsg.msg_namelen = 0;
1006 }
1007 lmsg.msg_controllen = 0;
1008 lmsg.msg_flags = 0;
1009
1010 return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL));
1011 }
1012
1013 /*
1014 * Uses the MSG_XPG4_2 flag to determine if the caller is using
1015 * struct omsghdr or struct nmsghdr.
1016 */
1017 ssize_t
recvmsg(int sock,struct nmsghdr * msg,int flags)1018 recvmsg(int sock, struct nmsghdr *msg, int flags)
1019 {
1020 STRUCT_DECL(nmsghdr, u_lmsg);
1021 STRUCT_HANDLE(nmsghdr, umsgptr);
1022 struct nmsghdr lmsg;
1023 struct uio auio;
1024 struct iovec aiov[MSG_MAXIOVLEN];
1025 int iovcnt;
1026 ssize_t len;
1027 int i;
1028 int *flagsp;
1029 model_t model;
1030
1031 dprint(1, ("recvmsg(%d, %p, %d)\n",
1032 sock, (void *)msg, flags));
1033
1034 model = get_udatamodel();
1035 STRUCT_INIT(u_lmsg, model);
1036 STRUCT_SET_HANDLE(umsgptr, model, msg);
1037
1038 if (flags & MSG_XPG4_2) {
1039 if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg)))
1040 return (set_errno(EFAULT));
1041 flagsp = STRUCT_FADDR(umsgptr, msg_flags);
1042 } else {
1043 /*
1044 * Assumes that nmsghdr and omsghdr are identically shaped
1045 * except for the added msg_flags field.
1046 */
1047 if (copyin(msg, STRUCT_BUF(u_lmsg),
1048 SIZEOF_STRUCT(omsghdr, model)))
1049 return (set_errno(EFAULT));
1050 STRUCT_FSET(u_lmsg, msg_flags, 0);
1051 flagsp = NULL;
1052 }
1053
1054 /*
1055 * Code below us will kmem_alloc memory and hang it
1056 * off msg_control and msg_name fields. This forces
1057 * us to copy the structure to its native form.
1058 */
1059 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1060 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1061 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1062 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1063 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1064 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1065 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1066
1067 iovcnt = lmsg.msg_iovlen;
1068
1069 if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1070 return (set_errno(EMSGSIZE));
1071 }
1072
1073 #ifdef _SYSCALL32_IMPL
1074 /*
1075 * 32-bit callers need to have their iovec expanded, while ensuring
1076 * that they can't move more than 2Gbytes of data in a single call.
1077 */
1078 if (model == DATAMODEL_ILP32) {
1079 struct iovec32 aiov32[MSG_MAXIOVLEN];
1080 ssize32_t count32;
1081
1082 if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1083 iovcnt * sizeof (struct iovec32)))
1084 return (set_errno(EFAULT));
1085
1086 count32 = 0;
1087 for (i = 0; i < iovcnt; i++) {
1088 ssize32_t iovlen32;
1089
1090 iovlen32 = aiov32[i].iov_len;
1091 count32 += iovlen32;
1092 if (iovlen32 < 0 || count32 < 0)
1093 return (set_errno(EINVAL));
1094 aiov[i].iov_len = iovlen32;
1095 aiov[i].iov_base =
1096 (caddr_t)(uintptr_t)aiov32[i].iov_base;
1097 }
1098 } else
1099 #endif /* _SYSCALL32_IMPL */
1100 if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) {
1101 return (set_errno(EFAULT));
1102 }
1103 len = 0;
1104 for (i = 0; i < iovcnt; i++) {
1105 ssize_t iovlen = aiov[i].iov_len;
1106 len += iovlen;
1107 if (iovlen < 0 || len < 0) {
1108 return (set_errno(EINVAL));
1109 }
1110 }
1111 auio.uio_loffset = 0;
1112 auio.uio_iov = aiov;
1113 auio.uio_iovcnt = iovcnt;
1114 auio.uio_resid = len;
1115 auio.uio_segflg = UIO_USERSPACE;
1116 auio.uio_limit = 0;
1117
1118 if (lmsg.msg_control != NULL &&
1119 (do_useracc == 0 ||
1120 useracc(lmsg.msg_control, lmsg.msg_controllen,
1121 B_WRITE) != 0)) {
1122 return (set_errno(EFAULT));
1123 }
1124
1125 return (recvit(sock, &lmsg, &auio, flags,
1126 STRUCT_FADDR(umsgptr, msg_namelen),
1127 STRUCT_FADDR(umsgptr, msg_controllen), flagsp));
1128 }
1129
1130 /*
1131 * Common send function.
1132 */
1133 static ssize_t
sendit(int sock,struct nmsghdr * msg,struct uio * uiop,int flags)1134 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags)
1135 {
1136 struct sonode *so;
1137 file_t *fp;
1138 void *name;
1139 socklen_t namelen;
1140 void *control;
1141 socklen_t controllen;
1142 ssize_t len;
1143 int error;
1144
1145 if ((so = getsonode(sock, &error, &fp)) == NULL)
1146 return (set_errno(error));
1147
1148 uiop->uio_fmode = fp->f_flag;
1149
1150 if (so->so_family == AF_UNIX)
1151 uiop->uio_extflg = UIO_COPY_CACHED;
1152 else
1153 uiop->uio_extflg = UIO_COPY_DEFAULT;
1154
1155 /* Allocate and copyin name and control */
1156 name = msg->msg_name;
1157 namelen = msg->msg_namelen;
1158 if (name != NULL && namelen != 0) {
1159 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1160 name = copyin_name(so,
1161 (struct sockaddr *)name,
1162 &namelen, &error);
1163 if (name == NULL)
1164 goto done3;
1165 /* copyin_name null terminates addresses for AF_UNIX */
1166 msg->msg_namelen = namelen;
1167 msg->msg_name = name;
1168 } else {
1169 msg->msg_name = name = NULL;
1170 msg->msg_namelen = namelen = 0;
1171 }
1172
1173 control = msg->msg_control;
1174 controllen = msg->msg_controllen;
1175 if ((control != NULL) && (controllen != 0)) {
1176 /*
1177 * Verify that the length is not excessive to prevent
1178 * an application from consuming all of kernel memory.
1179 */
1180 if (controllen > SO_MAXARGSIZE) {
1181 error = EINVAL;
1182 goto done2;
1183 }
1184 control = kmem_alloc(controllen, KM_SLEEP);
1185
1186 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1187 if (copyin(msg->msg_control, control, controllen)) {
1188 error = EFAULT;
1189 goto done1;
1190 }
1191 msg->msg_control = control;
1192 } else {
1193 msg->msg_control = control = NULL;
1194 msg->msg_controllen = controllen = 0;
1195 }
1196
1197 len = uiop->uio_resid;
1198 msg->msg_flags = flags;
1199
1200 error = socket_sendmsg(so, msg, uiop, CRED());
1201 done1:
1202 if (control != NULL)
1203 kmem_free(control, controllen);
1204 done2:
1205 if (name != NULL)
1206 kmem_free(name, namelen);
1207 done3:
1208 if (error != 0) {
1209 releasef(sock);
1210 return (set_errno(error));
1211 }
1212 lwp_stat_update(LWP_STAT_MSGSND, 1);
1213 releasef(sock);
1214 return (len - uiop->uio_resid);
1215 }
1216
1217 /*
1218 * Native system call
1219 */
1220 ssize_t
send(int sock,void * buffer,size_t len,int flags)1221 send(int sock, void *buffer, size_t len, int flags)
1222 {
1223 struct nmsghdr lmsg;
1224 struct uio auio;
1225 struct iovec aiov[1];
1226
1227 dprint(1, ("send(%d, %p, %ld, %d)\n",
1228 sock, buffer, len, flags));
1229
1230 if ((ssize_t)len < 0) {
1231 return (set_errno(EINVAL));
1232 }
1233
1234 aiov[0].iov_base = buffer;
1235 aiov[0].iov_len = len;
1236 auio.uio_loffset = 0;
1237 auio.uio_iov = aiov;
1238 auio.uio_iovcnt = 1;
1239 auio.uio_resid = len;
1240 auio.uio_segflg = UIO_USERSPACE;
1241 auio.uio_limit = 0;
1242
1243 lmsg.msg_name = NULL;
1244 lmsg.msg_control = NULL;
1245 if (!(flags & MSG_XPG4_2)) {
1246 /*
1247 * In order to be compatible with the libsocket/sockmod
1248 * implementation we set EOR for all send* calls.
1249 */
1250 flags |= MSG_EOR;
1251 }
1252 return (sendit(sock, &lmsg, &auio, flags));
1253 }
1254
1255 /*
1256 * Uses the MSG_XPG4_2 flag to determine if the caller is using
1257 * struct omsghdr or struct nmsghdr.
1258 */
1259 ssize_t
sendmsg(int sock,struct nmsghdr * msg,int flags)1260 sendmsg(int sock, struct nmsghdr *msg, int flags)
1261 {
1262 struct nmsghdr lmsg;
1263 STRUCT_DECL(nmsghdr, u_lmsg);
1264 struct uio auio;
1265 struct iovec aiov[MSG_MAXIOVLEN];
1266 int iovcnt;
1267 ssize_t len;
1268 int i;
1269 model_t model;
1270
1271 dprint(1, ("sendmsg(%d, %p, %d)\n", sock, (void *)msg, flags));
1272
1273 model = get_udatamodel();
1274 STRUCT_INIT(u_lmsg, model);
1275
1276 if (flags & MSG_XPG4_2) {
1277 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1278 STRUCT_SIZE(u_lmsg)))
1279 return (set_errno(EFAULT));
1280 } else {
1281 /*
1282 * Assumes that nmsghdr and omsghdr are identically shaped
1283 * except for the added msg_flags field.
1284 */
1285 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1286 SIZEOF_STRUCT(omsghdr, model)))
1287 return (set_errno(EFAULT));
1288 /*
1289 * In order to be compatible with the libsocket/sockmod
1290 * implementation we set EOR for all send* calls.
1291 */
1292 flags |= MSG_EOR;
1293 }
1294
1295 /*
1296 * Code below us will kmem_alloc memory and hang it
1297 * off msg_control and msg_name fields. This forces
1298 * us to copy the structure to its native form.
1299 */
1300 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1301 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1302 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1303 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1304 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1305 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1306 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1307
1308 iovcnt = lmsg.msg_iovlen;
1309
1310 if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1311 /*
1312 * Unless this is XPG 4.2 we allow iovcnt == 0 to
1313 * be compatible with SunOS 4.X and 4.4BSD.
1314 */
1315 if (iovcnt != 0 || (flags & MSG_XPG4_2))
1316 return (set_errno(EMSGSIZE));
1317 }
1318
1319 #ifdef _SYSCALL32_IMPL
1320 /*
1321 * 32-bit callers need to have their iovec expanded, while ensuring
1322 * that they can't move more than 2Gbytes of data in a single call.
1323 */
1324 if (model == DATAMODEL_ILP32) {
1325 struct iovec32 aiov32[MSG_MAXIOVLEN];
1326 ssize32_t count32;
1327
1328 if (iovcnt != 0 &&
1329 copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1330 iovcnt * sizeof (struct iovec32)))
1331 return (set_errno(EFAULT));
1332
1333 count32 = 0;
1334 for (i = 0; i < iovcnt; i++) {
1335 ssize32_t iovlen32;
1336
1337 iovlen32 = aiov32[i].iov_len;
1338 count32 += iovlen32;
1339 if (iovlen32 < 0 || count32 < 0)
1340 return (set_errno(EINVAL));
1341 aiov[i].iov_len = iovlen32;
1342 aiov[i].iov_base =
1343 (caddr_t)(uintptr_t)aiov32[i].iov_base;
1344 }
1345 } else
1346 #endif /* _SYSCALL32_IMPL */
1347 if (iovcnt != 0 &&
1348 copyin(lmsg.msg_iov, aiov,
1349 (unsigned)iovcnt * sizeof (struct iovec))) {
1350 return (set_errno(EFAULT));
1351 }
1352 len = 0;
1353 for (i = 0; i < iovcnt; i++) {
1354 ssize_t iovlen = aiov[i].iov_len;
1355 len += iovlen;
1356 if (iovlen < 0 || len < 0) {
1357 return (set_errno(EINVAL));
1358 }
1359 }
1360 auio.uio_loffset = 0;
1361 auio.uio_iov = aiov;
1362 auio.uio_iovcnt = iovcnt;
1363 auio.uio_resid = len;
1364 auio.uio_segflg = UIO_USERSPACE;
1365 auio.uio_limit = 0;
1366
1367 return (sendit(sock, &lmsg, &auio, flags));
1368 }
1369
1370 ssize_t
sendto(int sock,void * buffer,size_t len,int flags,struct sockaddr * name,socklen_t namelen)1371 sendto(int sock, void *buffer, size_t len, int flags,
1372 struct sockaddr *name, socklen_t namelen)
1373 {
1374 struct nmsghdr lmsg;
1375 struct uio auio;
1376 struct iovec aiov[1];
1377
1378 dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n",
1379 sock, buffer, len, flags, (void *)name, namelen));
1380
1381 if ((ssize_t)len < 0) {
1382 return (set_errno(EINVAL));
1383 }
1384
1385 aiov[0].iov_base = buffer;
1386 aiov[0].iov_len = len;
1387 auio.uio_loffset = 0;
1388 auio.uio_iov = aiov;
1389 auio.uio_iovcnt = 1;
1390 auio.uio_resid = len;
1391 auio.uio_segflg = UIO_USERSPACE;
1392 auio.uio_limit = 0;
1393
1394 lmsg.msg_name = (char *)name;
1395 lmsg.msg_namelen = namelen;
1396 lmsg.msg_control = NULL;
1397 if (!(flags & MSG_XPG4_2)) {
1398 /*
1399 * In order to be compatible with the libsocket/sockmod
1400 * implementation we set EOR for all send* calls.
1401 */
1402 flags |= MSG_EOR;
1403 }
1404 return (sendit(sock, &lmsg, &auio, flags));
1405 }
1406
1407 /*ARGSUSED3*/
1408 int
getpeername(int sock,struct sockaddr * name,socklen_t * namelenp,int version)1409 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
1410 {
1411 struct sonode *so;
1412 int error;
1413 socklen_t namelen;
1414 socklen_t sock_addrlen;
1415 struct sockaddr *sock_addrp;
1416
1417 dprint(1, ("getpeername(%d, %p, %p)\n",
1418 sock, (void *)name, (void *)namelenp));
1419
1420 if ((so = getsonode(sock, &error, NULL)) == NULL)
1421 goto bad;
1422
1423 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1424 if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1425 (name == NULL && namelen != 0)) {
1426 error = EFAULT;
1427 goto rel_out;
1428 }
1429 sock_addrlen = so->so_max_addr_len;
1430 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1431
1432 if ((error = socket_getpeername(so, sock_addrp, &sock_addrlen,
1433 B_FALSE, CRED())) == 0) {
1434 ASSERT(sock_addrlen <= so->so_max_addr_len);
1435 error = copyout_name(name, namelen, namelenp,
1436 (void *)sock_addrp, sock_addrlen);
1437 }
1438 kmem_free(sock_addrp, so->so_max_addr_len);
1439 rel_out:
1440 releasef(sock);
1441 bad: return (error != 0 ? set_errno(error) : 0);
1442 }
1443
1444 /*ARGSUSED3*/
1445 int
getsockname(int sock,struct sockaddr * name,socklen_t * namelenp,int version)1446 getsockname(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
1447 {
1448 struct sonode *so;
1449 int error;
1450 socklen_t namelen, sock_addrlen;
1451 struct sockaddr *sock_addrp;
1452
1453 dprint(1, ("getsockname(%d, %p, %p)\n",
1454 sock, (void *)name, (void *)namelenp));
1455
1456 if ((so = getsonode(sock, &error, NULL)) == NULL)
1457 goto bad;
1458
1459 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1460 if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1461 (name == NULL && namelen != 0)) {
1462 error = EFAULT;
1463 goto rel_out;
1464 }
1465
1466 sock_addrlen = so->so_max_addr_len;
1467 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1468 if ((error = socket_getsockname(so, sock_addrp, &sock_addrlen,
1469 CRED())) == 0) {
1470 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1471 ASSERT(sock_addrlen <= so->so_max_addr_len);
1472 error = copyout_name(name, namelen, namelenp,
1473 (void *)sock_addrp, sock_addrlen);
1474 }
1475 kmem_free(sock_addrp, so->so_max_addr_len);
1476 rel_out:
1477 releasef(sock);
1478 bad: return (error != 0 ? set_errno(error) : 0);
1479 }
1480
1481 /*ARGSUSED5*/
1482 int
getsockopt(int sock,int level,int option_name,void * option_value,socklen_t * option_lenp,int version)1483 getsockopt(int sock, int level, int option_name, void *option_value,
1484 socklen_t *option_lenp, int version)
1485 {
1486 struct sonode *so;
1487 socklen_t optlen, optlen_res;
1488 void *optval;
1489 int error;
1490
1491 dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n",
1492 sock, level, option_name, option_value, (void *)option_lenp));
1493
1494 if ((so = getsonode(sock, &error, NULL)) == NULL)
1495 return (set_errno(error));
1496
1497 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1498 if (copyin(option_lenp, &optlen, sizeof (optlen))) {
1499 releasef(sock);
1500 return (set_errno(EFAULT));
1501 }
1502 /*
1503 * Verify that the length is not excessive to prevent
1504 * an application from consuming all of kernel memory.
1505 */
1506 if (optlen > SO_MAXARGSIZE) {
1507 error = EINVAL;
1508 releasef(sock);
1509 return (set_errno(error));
1510 }
1511 optval = kmem_alloc(optlen, KM_SLEEP);
1512 optlen_res = optlen;
1513 error = socket_getsockopt(so, level, option_name, optval,
1514 &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2,
1515 CRED());
1516 releasef(sock);
1517 if (error) {
1518 kmem_free(optval, optlen);
1519 return (set_errno(error));
1520 }
1521 error = copyout_arg(option_value, optlen, option_lenp,
1522 optval, optlen_res);
1523 kmem_free(optval, optlen);
1524 if (error)
1525 return (set_errno(error));
1526 return (0);
1527 }
1528
1529 /*ARGSUSED5*/
1530 int
setsockopt(int sock,int level,int option_name,void * option_value,socklen_t option_len,int version)1531 setsockopt(int sock, int level, int option_name, void *option_value,
1532 socklen_t option_len, int version)
1533 {
1534 struct sonode *so;
1535 intptr_t buffer[2];
1536 void *optval = NULL;
1537 int error;
1538
1539 dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n",
1540 sock, level, option_name, option_value, option_len));
1541
1542 if ((so = getsonode(sock, &error, NULL)) == NULL)
1543 return (set_errno(error));
1544
1545 if (option_value != NULL) {
1546 if (option_len != 0) {
1547 /*
1548 * Verify that the length is not excessive to prevent
1549 * an application from consuming all of kernel memory.
1550 */
1551 if (option_len > SO_MAXARGSIZE) {
1552 error = EINVAL;
1553 goto done2;
1554 }
1555 optval = option_len <= sizeof (buffer) ?
1556 &buffer : kmem_alloc((size_t)option_len, KM_SLEEP);
1557 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1558 if (copyin(option_value, optval, (size_t)option_len)) {
1559 error = EFAULT;
1560 goto done1;
1561 }
1562 }
1563 } else
1564 option_len = 0;
1565
1566 error = socket_setsockopt(so, level, option_name, optval,
1567 (t_uscalar_t)option_len, CRED());
1568 done1:
1569 if (optval != buffer)
1570 kmem_free(optval, (size_t)option_len);
1571 done2:
1572 releasef(sock);
1573 if (error)
1574 return (set_errno(error));
1575 return (0);
1576 }
1577
1578 static int
sockconf_add_sock(int family,int type,int protocol,char * name)1579 sockconf_add_sock(int family, int type, int protocol, char *name)
1580 {
1581 int error = 0;
1582 char *kdevpath = NULL;
1583 char *kmodule = NULL;
1584 char *buf = NULL;
1585 size_t pathlen = 0;
1586 struct sockparams *sp;
1587
1588 if (name == NULL)
1589 return (EINVAL);
1590 /*
1591 * Copyin the name.
1592 * This also makes it possible to check for too long pathnames.
1593 * Compress the space needed for the name before passing it
1594 * to soconfig - soconfig will store the string until
1595 * the configuration is removed.
1596 */
1597 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1598 if ((error = copyinstr(name, buf, MAXPATHLEN, &pathlen)) != 0) {
1599 kmem_free(buf, MAXPATHLEN);
1600 return (error);
1601 }
1602 if (strncmp(buf, "/dev", strlen("/dev")) == 0) {
1603 /* For device */
1604
1605 /*
1606 * Special handling for NCA:
1607 *
1608 * DEV_NCA is never opened even if an application
1609 * requests for AF_NCA. The device opened is instead a
1610 * predefined AF_INET transport (NCA_INET_DEV).
1611 *
1612 * Prior to Volo (PSARC/2007/587) NCA would determine
1613 * the device using a lookup, which worked then because
1614 * all protocols were based on TPI. Since TPI is no
1615 * longer the default, we have to explicitly state
1616 * which device to use.
1617 */
1618 if (strcmp(buf, NCA_DEV) == 0) {
1619 /* only support entry <28, 2, 0> */
1620 if (family != AF_NCA || type != SOCK_STREAM ||
1621 protocol != 0) {
1622 kmem_free(buf, MAXPATHLEN);
1623 return (EINVAL);
1624 }
1625
1626 pathlen = strlen(NCA_INET_DEV) + 1;
1627 kdevpath = kmem_alloc(pathlen, KM_SLEEP);
1628 bcopy(NCA_INET_DEV, kdevpath, pathlen);
1629 kdevpath[pathlen - 1] = '\0';
1630 } else {
1631 kdevpath = kmem_alloc(pathlen, KM_SLEEP);
1632 bcopy(buf, kdevpath, pathlen);
1633 kdevpath[pathlen - 1] = '\0';
1634 }
1635 } else {
1636 /* For socket module */
1637 kmodule = kmem_alloc(pathlen, KM_SLEEP);
1638 bcopy(buf, kmodule, pathlen);
1639 kmodule[pathlen - 1] = '\0';
1640 pathlen = 0;
1641 }
1642 kmem_free(buf, MAXPATHLEN);
1643
1644 /* sockparams_create frees mod name and devpath upon failure */
1645 sp = sockparams_create(family, type, protocol, kmodule,
1646 kdevpath, pathlen, 0, KM_SLEEP, &error);
1647 if (sp != NULL) {
1648 error = sockparams_add(sp);
1649 if (error != 0)
1650 sockparams_destroy(sp);
1651 }
1652
1653 return (error);
1654 }
1655
1656 static int
sockconf_remove_sock(int family,int type,int protocol)1657 sockconf_remove_sock(int family, int type, int protocol)
1658 {
1659 return (sockparams_delete(family, type, protocol));
1660 }
1661
1662 static int
sockconfig_remove_filter(const char * uname)1663 sockconfig_remove_filter(const char *uname)
1664 {
1665 char kname[SOF_MAXNAMELEN];
1666 size_t len;
1667 int error;
1668 sof_entry_t *ent;
1669
1670 if ((error = copyinstr(uname, kname, SOF_MAXNAMELEN, &len)) != 0)
1671 return (error);
1672
1673 ent = sof_entry_remove_by_name(kname);
1674 if (ent == NULL)
1675 return (ENXIO);
1676
1677 mutex_enter(&ent->sofe_lock);
1678 ASSERT(!(ent->sofe_flags & SOFEF_CONDEMED));
1679 if (ent->sofe_refcnt == 0) {
1680 mutex_exit(&ent->sofe_lock);
1681 sof_entry_free(ent);
1682 } else {
1683 /* let the last socket free the filter */
1684 ent->sofe_flags |= SOFEF_CONDEMED;
1685 mutex_exit(&ent->sofe_lock);
1686 }
1687
1688 return (0);
1689 }
1690
1691 static int
sockconfig_add_filter(const char * uname,void * ufilpropp)1692 sockconfig_add_filter(const char *uname, void *ufilpropp)
1693 {
1694 struct sockconfig_filter_props filprop;
1695 sof_entry_t *ent;
1696 int error;
1697 size_t tuplesz, len;
1698 char hintbuf[SOF_MAXNAMELEN];
1699
1700 ent = kmem_zalloc(sizeof (sof_entry_t), KM_SLEEP);
1701 mutex_init(&ent->sofe_lock, NULL, MUTEX_DEFAULT, NULL);
1702
1703 if ((error = copyinstr(uname, ent->sofe_name, SOF_MAXNAMELEN,
1704 &len)) != 0) {
1705 sof_entry_free(ent);
1706 return (error);
1707 }
1708
1709 if (get_udatamodel() == DATAMODEL_NATIVE) {
1710 if (copyin(ufilpropp, &filprop, sizeof (filprop)) != 0) {
1711 sof_entry_free(ent);
1712 return (EFAULT);
1713 }
1714 }
1715 #ifdef _SYSCALL32_IMPL
1716 else {
1717 struct sockconfig_filter_props32 filprop32;
1718
1719 if (copyin(ufilpropp, &filprop32, sizeof (filprop32)) != 0) {
1720 sof_entry_free(ent);
1721 return (EFAULT);
1722 }
1723 filprop.sfp_modname = (char *)(uintptr_t)filprop32.sfp_modname;
1724 filprop.sfp_autoattach = filprop32.sfp_autoattach;
1725 filprop.sfp_hint = filprop32.sfp_hint;
1726 filprop.sfp_hintarg = (char *)(uintptr_t)filprop32.sfp_hintarg;
1727 filprop.sfp_socktuple_cnt = filprop32.sfp_socktuple_cnt;
1728 filprop.sfp_socktuple =
1729 (sof_socktuple_t *)(uintptr_t)filprop32.sfp_socktuple;
1730 }
1731 #endif /* _SYSCALL32_IMPL */
1732
1733 if ((error = copyinstr(filprop.sfp_modname, ent->sofe_modname,
1734 sizeof (ent->sofe_modname), &len)) != 0) {
1735 sof_entry_free(ent);
1736 return (error);
1737 }
1738
1739 /*
1740 * A filter must specify at least one socket tuple.
1741 */
1742 if (filprop.sfp_socktuple_cnt == 0 ||
1743 filprop.sfp_socktuple_cnt > SOF_MAXSOCKTUPLECNT) {
1744 sof_entry_free(ent);
1745 return (EINVAL);
1746 }
1747 ent->sofe_flags = filprop.sfp_autoattach ? SOFEF_AUTO : SOFEF_PROG;
1748 ent->sofe_hint = filprop.sfp_hint;
1749
1750 /*
1751 * Verify the hint, and copy in the hint argument, if necessary.
1752 */
1753 switch (ent->sofe_hint) {
1754 case SOF_HINT_BEFORE:
1755 case SOF_HINT_AFTER:
1756 if ((error = copyinstr(filprop.sfp_hintarg, hintbuf,
1757 sizeof (hintbuf), &len)) != 0) {
1758 sof_entry_free(ent);
1759 return (error);
1760 }
1761 ent->sofe_hintarg = kmem_alloc(len, KM_SLEEP);
1762 bcopy(hintbuf, ent->sofe_hintarg, len);
1763 /* FALLTHRU */
1764 case SOF_HINT_TOP:
1765 case SOF_HINT_BOTTOM:
1766 /* hints cannot be used with programmatic filters */
1767 if (ent->sofe_flags & SOFEF_PROG) {
1768 sof_entry_free(ent);
1769 return (EINVAL);
1770 }
1771 break;
1772 case SOF_HINT_NONE:
1773 break;
1774 default:
1775 /* bad hint value */
1776 sof_entry_free(ent);
1777 return (EINVAL);
1778 }
1779
1780 ent->sofe_socktuple_cnt = filprop.sfp_socktuple_cnt;
1781 tuplesz = sizeof (sof_socktuple_t) * ent->sofe_socktuple_cnt;
1782 ent->sofe_socktuple = kmem_alloc(tuplesz, KM_SLEEP);
1783
1784 if (get_udatamodel() == DATAMODEL_NATIVE) {
1785 if (copyin(filprop.sfp_socktuple, ent->sofe_socktuple,
1786 tuplesz)) {
1787 sof_entry_free(ent);
1788 return (EFAULT);
1789 }
1790 }
1791 #ifdef _SYSCALL32_IMPL
1792 else {
1793 int i;
1794 caddr_t data = (caddr_t)filprop.sfp_socktuple;
1795 sof_socktuple_t *tup = ent->sofe_socktuple;
1796 sof_socktuple32_t tup32;
1797
1798 tup = ent->sofe_socktuple;
1799 for (i = 0; i < ent->sofe_socktuple_cnt; i++, tup++) {
1800 ASSERT(tup < ent->sofe_socktuple + tuplesz);
1801
1802 if (copyin(data, &tup32, sizeof (tup32)) != 0) {
1803 sof_entry_free(ent);
1804 return (EFAULT);
1805 }
1806 tup->sofst_family = tup32.sofst_family;
1807 tup->sofst_type = tup32.sofst_type;
1808 tup->sofst_protocol = tup32.sofst_protocol;
1809
1810 data += sizeof (tup32);
1811 }
1812 }
1813 #endif /* _SYSCALL32_IMPL */
1814
1815 /* Sockets can start using the filter as soon as the filter is added */
1816 if ((error = sof_entry_add(ent)) != 0)
1817 sof_entry_free(ent);
1818
1819 return (error);
1820 }
1821
1822 /*
1823 * Socket configuration system call. It is used to add and remove
1824 * socket types.
1825 */
1826 int
sockconfig(int cmd,void * arg1,void * arg2,void * arg3,void * arg4)1827 sockconfig(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
1828 {
1829 int error = 0;
1830
1831 if (secpolicy_net_config(CRED(), B_FALSE) != 0)
1832 return (set_errno(EPERM));
1833
1834 if (sockfs_defer_nl7c_init) {
1835 nl7c_init();
1836 sockfs_defer_nl7c_init = 0;
1837 }
1838
1839 switch (cmd) {
1840 case SOCKCONFIG_ADD_SOCK:
1841 error = sockconf_add_sock((int)(uintptr_t)arg1,
1842 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3, arg4);
1843 break;
1844 case SOCKCONFIG_REMOVE_SOCK:
1845 error = sockconf_remove_sock((int)(uintptr_t)arg1,
1846 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3);
1847 break;
1848 case SOCKCONFIG_ADD_FILTER:
1849 error = sockconfig_add_filter((const char *)arg1, arg2);
1850 break;
1851 case SOCKCONFIG_REMOVE_FILTER:
1852 error = sockconfig_remove_filter((const char *)arg1);
1853 break;
1854 case SOCKCONFIG_GET_SOCKTABLE:
1855 error = sockparams_copyout_socktable((int)(uintptr_t)arg1);
1856 break;
1857 default:
1858 #ifdef DEBUG
1859 cmn_err(CE_NOTE, "sockconfig: unkonwn subcommand %d", cmd);
1860 #endif
1861 error = EINVAL;
1862 break;
1863 }
1864
1865 if (error != 0) {
1866 eprintline(error);
1867 return (set_errno(error));
1868 }
1869 return (0);
1870 }
1871
1872
1873 /*
1874 * Sendfile is implemented through two schemes, direct I/O or by
1875 * caching in the filesystem page cache. We cache the input file by
1876 * default and use direct I/O only if sendfile_max_size is set
1877 * appropriately as explained below. Note that this logic is consistent
1878 * with other filesystems where caching is turned on by default
1879 * unless explicitly turned off by using the DIRECTIO ioctl.
1880 *
1881 * We choose a slightly different scheme here. One can turn off
1882 * caching by setting sendfile_max_size to 0. One can also enable
1883 * caching of files <= sendfile_max_size by setting sendfile_max_size
1884 * to an appropriate value. By default sendfile_max_size is set to the
1885 * maximum value so that all files are cached. In future, we may provide
1886 * better interfaces for caching the file.
1887 *
1888 * Sendfile through Direct I/O (Zero copy)
1889 * --------------------------------------
1890 *
1891 * As disks are normally slower than the network, we can't have a
1892 * single thread that reads the disk and writes to the network. We
1893 * need to have parallelism. This is done by having the sendfile
1894 * thread create another thread that reads from the filesystem
1895 * and queues it for network processing. In this scheme, the data
1896 * is never copied anywhere i.e it is zero copy unlike the other
1897 * scheme.
1898 *
1899 * We have a sendfile queue (snfq) where each sendfile
1900 * request (snf_req_t) is queued for processing by a thread. Number
1901 * of threads is dynamically allocated and they exit if they are idling
1902 * beyond a specified amount of time. When each request (snf_req_t) is
1903 * processed by a thread, it produces a number of mblk_t structures to
1904 * be consumed by the sendfile thread. snf_deque and snf_enque are
1905 * used for consuming and producing mblks. Size of the filesystem
1906 * read is determined by the tunable (sendfile_read_size). A single
1907 * mblk holds sendfile_read_size worth of data (except the last
1908 * read of the file) which is sent down as a whole to the network.
1909 * sendfile_read_size is set to 1 MB as this seems to be the optimal
1910 * value for the UFS filesystem backed by a striped storage array.
1911 *
1912 * Synchronisation between read (producer) and write (consumer) threads.
1913 * --------------------------------------------------------------------
1914 *
1915 * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while
1916 * adding and deleting items in this list. Error can happen anytime
1917 * during read or write. There could be unprocessed mblks in the
1918 * sr_ib_XXX list when a read or write error occurs. Whenever error
1919 * is encountered, we need two things to happen :
1920 *
1921 * a) One of the threads need to clean the mblks.
1922 * b) When one thread encounters an error, the other should stop.
1923 *
1924 * For (a), we don't want to penalize the reader thread as it could do
1925 * some useful work processing other requests. For (b), the error can
1926 * be detected by examining sr_read_error or sr_write_error.
1927 * sr_lock protects sr_read_error and sr_write_error. If both reader and
1928 * writer encounters error, we need to report the write error back to
1929 * the application as that's what would have happened if the operations
1930 * were done sequentially. With this in mind, following should work :
1931 *
1932 * - Check for errors before read or write.
1933 * - If the reader encounters error, set the error in sr_read_error.
1934 * Check sr_write_error, if it is set, send cv_signal as it is
1935 * waiting for reader to complete. If it is not set, the writer
1936 * is either running sinking data to the network or blocked
1937 * because of flow control. For handling the latter case, we
1938 * always send a signal. In any case, it will examine sr_read_error
1939 * and return. sr_read_error is marked with SR_READ_DONE to tell
1940 * the writer that the reader is done in all the cases.
1941 * - If the writer encounters error, set the error in sr_write_error.
1942 * The reader thread is either blocked because of flow control or
1943 * running reading data from the disk. For the former, we need to
1944 * wakeup the thread. Again to keep it simple, we always wake up
1945 * the reader thread. Then, wait for the read thread to complete
1946 * if it is not done yet. Cleanup and return.
1947 *
1948 * High and low water marks for the read thread.
1949 * --------------------------------------------
1950 *
1951 * If sendfile() is used to send data over a slow network, we need to
1952 * make sure that the read thread does not produce data at a faster
1953 * rate than the network. This can happen if the disk is faster than
1954 * the network. In such a case, we don't want to build a very large queue.
1955 * But we would still like to get all of the network throughput possible.
1956 * This implies that network should never block waiting for data.
1957 * As there are lot of disk throughput/network throughput combinations
1958 * possible, it is difficult to come up with an accurate number.
1959 * A typical 10K RPM disk has a max seek latency 17ms and rotational
1960 * latency of 3ms for reading a disk block. Thus, the total latency to
1961 * initiate a new read, transfer data from the disk and queue for
1962 * transmission would take about a max of 25ms. Todays max transfer rate
1963 * for network is 100MB/sec. If the thread is blocked because of flow
1964 * control, it would take 25ms to get new data ready for transmission.
1965 * We have to make sure that network is not idling, while we are initiating
1966 * new transfers. So, at 100MB/sec, to keep network busy we would need
1967 * 2.5MB of data. Rounding off, we keep the low water mark to be 3MB of data.
1968 * We need to pick a high water mark so that the woken up thread would
1969 * do considerable work before blocking again to prevent thrashing. Currently,
1970 * we pick this to be 10 times that of the low water mark.
1971 *
1972 * Sendfile with segmap caching (One copy from page cache to mblks).
1973 * ----------------------------------------------------------------
1974 *
1975 * We use the segmap cache for caching the file, if the size of file
1976 * is <= sendfile_max_size. In this case we don't use threads as VM
1977 * is reasonably fast enough to keep up with the network. If the underlying
1978 * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth
1979 * of data into segmap space, and use the virtual address from segmap
1980 * directly through desballoc() to avoid copy. Once the transport is done
1981 * with the data, the mapping will be released through segmap_release()
1982 * called by the call-back routine.
1983 *
1984 * If zero-copy is not allowed by the transport, we simply call VOP_READ()
1985 * to copy the data from the filesystem into our temporary network buffer.
1986 *
1987 * To disable caching, set sendfile_max_size to 0.
1988 */
1989
1990 uint_t sendfile_read_size = 1024 * 1024;
1991 #define SENDFILE_REQ_LOWAT 3 * 1024 * 1024
1992 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT;
1993 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT;
1994 struct sendfile_stats sf_stats;
1995 struct sendfile_queue *snfq;
1996 clock_t snfq_timeout;
1997 off64_t sendfile_max_size;
1998
1999 static void snf_enque(snf_req_t *, mblk_t *);
2000 static mblk_t *snf_deque(snf_req_t *);
2001
2002 void
sendfile_init(void)2003 sendfile_init(void)
2004 {
2005 snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP);
2006
2007 mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL);
2008 cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL);
2009 snfq->snfq_max_threads = max_ncpus;
2010 snfq_timeout = SNFQ_TIMEOUT;
2011 /* Cache all files by default. */
2012 sendfile_max_size = MAXOFFSET_T;
2013 }
2014
2015 /*
2016 * Queues a mblk_t for network processing.
2017 */
2018 static void
snf_enque(snf_req_t * sr,mblk_t * mp)2019 snf_enque(snf_req_t *sr, mblk_t *mp)
2020 {
2021 mp->b_next = NULL;
2022 mutex_enter(&sr->sr_lock);
2023 if (sr->sr_mp_head == NULL) {
2024 sr->sr_mp_head = sr->sr_mp_tail = mp;
2025 cv_signal(&sr->sr_cv);
2026 } else {
2027 sr->sr_mp_tail->b_next = mp;
2028 sr->sr_mp_tail = mp;
2029 }
2030 sr->sr_qlen += MBLKL(mp);
2031 while ((sr->sr_qlen > sr->sr_hiwat) &&
2032 (sr->sr_write_error == 0)) {
2033 sf_stats.ss_full_waits++;
2034 cv_wait(&sr->sr_cv, &sr->sr_lock);
2035 }
2036 mutex_exit(&sr->sr_lock);
2037 }
2038
2039 /*
2040 * De-queues a mblk_t for network processing.
2041 */
2042 static mblk_t *
snf_deque(snf_req_t * sr)2043 snf_deque(snf_req_t *sr)
2044 {
2045 mblk_t *mp;
2046
2047 mutex_enter(&sr->sr_lock);
2048 /*
2049 * If we have encountered an error on read or read is
2050 * completed and no more mblks, return NULL.
2051 * We need to check for NULL sr_mp_head also as
2052 * the reads could have completed and there is
2053 * nothing more to come.
2054 */
2055 if (((sr->sr_read_error & ~SR_READ_DONE) != 0) ||
2056 ((sr->sr_read_error & SR_READ_DONE) &&
2057 sr->sr_mp_head == NULL)) {
2058 mutex_exit(&sr->sr_lock);
2059 return (NULL);
2060 }
2061 /*
2062 * To start with neither SR_READ_DONE is marked nor
2063 * the error is set. When we wake up from cv_wait,
2064 * following are the possibilities :
2065 *
2066 * a) sr_read_error is zero and mblks are queued.
2067 * b) sr_read_error is set to SR_READ_DONE
2068 * and mblks are queued.
2069 * c) sr_read_error is set to SR_READ_DONE
2070 * and no mblks.
2071 * d) sr_read_error is set to some error other
2072 * than SR_READ_DONE.
2073 */
2074
2075 while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) {
2076 sf_stats.ss_empty_waits++;
2077 cv_wait(&sr->sr_cv, &sr->sr_lock);
2078 }
2079 /* Handle (a) and (b) first - the normal case. */
2080 if (((sr->sr_read_error & ~SR_READ_DONE) == 0) &&
2081 (sr->sr_mp_head != NULL)) {
2082 mp = sr->sr_mp_head;
2083 sr->sr_mp_head = mp->b_next;
2084 sr->sr_qlen -= MBLKL(mp);
2085 if (sr->sr_qlen < sr->sr_lowat)
2086 cv_signal(&sr->sr_cv);
2087 mutex_exit(&sr->sr_lock);
2088 mp->b_next = NULL;
2089 return (mp);
2090 }
2091 /* Handle (c) and (d). */
2092 mutex_exit(&sr->sr_lock);
2093 return (NULL);
2094 }
2095
2096 /*
2097 * Reads data from the filesystem and queues it for network processing.
2098 */
2099 void
snf_async_read(snf_req_t * sr)2100 snf_async_read(snf_req_t *sr)
2101 {
2102 size_t iosize;
2103 u_offset_t fileoff;
2104 u_offset_t size;
2105 int ret_size;
2106 int error;
2107 file_t *fp;
2108 mblk_t *mp;
2109 struct vnode *vp;
2110 int extra = 0;
2111 int maxblk = 0;
2112 int wroff = 0;
2113 struct sonode *so;
2114
2115 fp = sr->sr_fp;
2116 size = sr->sr_file_size;
2117 fileoff = sr->sr_file_off;
2118
2119 /*
2120 * Ignore the error for filesystems that doesn't support DIRECTIO.
2121 */
2122 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0,
2123 kcred, NULL, NULL);
2124
2125 vp = sr->sr_vp;
2126 if (vp->v_type == VSOCK) {
2127 stdata_t *stp;
2128
2129 /*
2130 * Get the extra space to insert a header and a trailer.
2131 */
2132 so = VTOSO(vp);
2133 stp = vp->v_stream;
2134 if (stp == NULL) {
2135 wroff = so->so_proto_props.sopp_wroff;
2136 maxblk = so->so_proto_props.sopp_maxblk;
2137 extra = wroff + so->so_proto_props.sopp_tail;
2138 } else {
2139 wroff = (int)(stp->sd_wroff);
2140 maxblk = (int)(stp->sd_maxblk);
2141 extra = wroff + (int)(stp->sd_tail);
2142 }
2143 }
2144
2145 while ((size != 0) && (sr->sr_write_error == 0)) {
2146
2147 iosize = (int)MIN(sr->sr_maxpsz, size);
2148
2149 /*
2150 * Socket filters can limit the mblk size,
2151 * so limit reads to maxblk if there are
2152 * filters present.
2153 */
2154 if (vp->v_type == VSOCK &&
2155 so->so_filter_active > 0 && maxblk != INFPSZ)
2156 iosize = (int)MIN(iosize, maxblk);
2157
2158 if (is_system_labeled()) {
2159 mp = allocb_cred(iosize + extra, CRED(),
2160 curproc->p_pid);
2161 } else {
2162 mp = allocb(iosize + extra, BPRI_MED);
2163 }
2164 if (mp == NULL) {
2165 error = EAGAIN;
2166 break;
2167 }
2168
2169 mp->b_rptr += wroff;
2170
2171 ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize);
2172
2173 /* Error or Reached EOF ? */
2174 if ((error != 0) || (ret_size == 0)) {
2175 freeb(mp);
2176 break;
2177 }
2178 mp->b_wptr = mp->b_rptr + ret_size;
2179
2180 snf_enque(sr, mp);
2181 size -= ret_size;
2182 fileoff += ret_size;
2183 }
2184 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0,
2185 kcred, NULL, NULL);
2186 mutex_enter(&sr->sr_lock);
2187 sr->sr_read_error = error;
2188 sr->sr_read_error |= SR_READ_DONE;
2189 cv_signal(&sr->sr_cv);
2190 mutex_exit(&sr->sr_lock);
2191 }
2192
2193 void
snf_async_thread(void)2194 snf_async_thread(void)
2195 {
2196 snf_req_t *sr;
2197 callb_cpr_t cprinfo;
2198 clock_t time_left = 1;
2199
2200 CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq");
2201
2202 mutex_enter(&snfq->snfq_lock);
2203 for (;;) {
2204 /*
2205 * If we didn't find a entry, then block until woken up
2206 * again and then look through the queues again.
2207 */
2208 while ((sr = snfq->snfq_req_head) == NULL) {
2209 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2210 if (time_left <= 0) {
2211 snfq->snfq_svc_threads--;
2212 CALLB_CPR_EXIT(&cprinfo);
2213 thread_exit();
2214 /* NOTREACHED */
2215 }
2216 snfq->snfq_idle_cnt++;
2217
2218 time_left = cv_reltimedwait(&snfq->snfq_cv,
2219 &snfq->snfq_lock, snfq_timeout, TR_CLOCK_TICK);
2220 snfq->snfq_idle_cnt--;
2221
2222 CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock);
2223 }
2224 snfq->snfq_req_head = sr->sr_next;
2225 snfq->snfq_req_cnt--;
2226 mutex_exit(&snfq->snfq_lock);
2227 snf_async_read(sr);
2228 mutex_enter(&snfq->snfq_lock);
2229 }
2230 }
2231
2232
2233 snf_req_t *
create_thread(int operation,struct vnode * vp,file_t * fp,u_offset_t fileoff,u_offset_t size)2234 create_thread(int operation, struct vnode *vp, file_t *fp,
2235 u_offset_t fileoff, u_offset_t size)
2236 {
2237 snf_req_t *sr;
2238 stdata_t *stp;
2239
2240 sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP);
2241
2242 sr->sr_vp = vp;
2243 sr->sr_fp = fp;
2244 stp = vp->v_stream;
2245
2246 /*
2247 * store sd_qn_maxpsz into sr_maxpsz while we have stream head.
2248 * stream might be closed before thread returns from snf_async_read.
2249 */
2250 if (stp != NULL && stp->sd_qn_maxpsz > 0) {
2251 sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz);
2252 } else {
2253 sr->sr_maxpsz = MAXBSIZE;
2254 }
2255
2256 sr->sr_operation = operation;
2257 sr->sr_file_off = fileoff;
2258 sr->sr_file_size = size;
2259 sr->sr_hiwat = sendfile_req_hiwat;
2260 sr->sr_lowat = sendfile_req_lowat;
2261 mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL);
2262 cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL);
2263 /*
2264 * See whether we need another thread for servicing this
2265 * request. If there are already enough requests queued
2266 * for the threads, create one if not exceeding
2267 * snfq_max_threads.
2268 */
2269 mutex_enter(&snfq->snfq_lock);
2270 if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt &&
2271 snfq->snfq_svc_threads < snfq->snfq_max_threads) {
2272 (void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0,
2273 TS_RUN, minclsyspri);
2274 snfq->snfq_svc_threads++;
2275 }
2276 if (snfq->snfq_req_head == NULL) {
2277 snfq->snfq_req_head = snfq->snfq_req_tail = sr;
2278 cv_signal(&snfq->snfq_cv);
2279 } else {
2280 snfq->snfq_req_tail->sr_next = sr;
2281 snfq->snfq_req_tail = sr;
2282 }
2283 snfq->snfq_req_cnt++;
2284 mutex_exit(&snfq->snfq_lock);
2285 return (sr);
2286 }
2287
2288 int
snf_direct_io(file_t * fp,file_t * rfp,u_offset_t fileoff,u_offset_t size,ssize_t * count)2289 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size,
2290 ssize_t *count)
2291 {
2292 snf_req_t *sr;
2293 mblk_t *mp;
2294 int iosize;
2295 int error = 0;
2296 short fflag;
2297 struct vnode *vp;
2298 int ksize;
2299 struct nmsghdr msg;
2300
2301 ksize = 0;
2302 *count = 0;
2303 bzero(&msg, sizeof (msg));
2304
2305 vp = fp->f_vnode;
2306 fflag = fp->f_flag;
2307 if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL)
2308 return (EAGAIN);
2309
2310 /*
2311 * We check for read error in snf_deque. It has to check
2312 * for successful READ_DONE and return NULL, and we might
2313 * as well make an additional check there.
2314 */
2315 while ((mp = snf_deque(sr)) != NULL) {
2316
2317 if (ISSIG(curthread, JUSTLOOKING)) {
2318 freeb(mp);
2319 error = EINTR;
2320 break;
2321 }
2322 iosize = MBLKL(mp);
2323
2324 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2325
2326 if (error != 0) {
2327 if (mp != NULL)
2328 freeb(mp);
2329 break;
2330 }
2331 ksize += iosize;
2332 }
2333 *count = ksize;
2334
2335 mutex_enter(&sr->sr_lock);
2336 sr->sr_write_error = error;
2337 /* Look at the big comments on why we cv_signal here. */
2338 cv_signal(&sr->sr_cv);
2339
2340 /* Wait for the reader to complete always. */
2341 while (!(sr->sr_read_error & SR_READ_DONE)) {
2342 cv_wait(&sr->sr_cv, &sr->sr_lock);
2343 }
2344 /* If there is no write error, check for read error. */
2345 if (error == 0)
2346 error = (sr->sr_read_error & ~SR_READ_DONE);
2347
2348 if (error != 0) {
2349 mblk_t *next_mp;
2350
2351 mp = sr->sr_mp_head;
2352 while (mp != NULL) {
2353 next_mp = mp->b_next;
2354 mp->b_next = NULL;
2355 freeb(mp);
2356 mp = next_mp;
2357 }
2358 }
2359 mutex_exit(&sr->sr_lock);
2360 kmem_free(sr, sizeof (snf_req_t));
2361 return (error);
2362 }
2363
2364 /* Maximum no.of pages allocated by vpm for sendfile at a time */
2365 #define SNF_VPMMAXPGS (VPMMAXPGS/2)
2366
2367 /*
2368 * Maximum no.of elements in the list returned by vpm, including
2369 * NULL for the last entry
2370 */
2371 #define SNF_MAXVMAPS (SNF_VPMMAXPGS + 1)
2372
2373 typedef struct {
2374 unsigned int snfv_ref;
2375 frtn_t snfv_frtn;
2376 vnode_t *snfv_vp;
2377 struct vmap snfv_vml[SNF_MAXVMAPS];
2378 } snf_vmap_desbinfo;
2379
2380 typedef struct {
2381 frtn_t snfi_frtn;
2382 caddr_t snfi_base;
2383 uint_t snfi_mapoff;
2384 size_t snfi_len;
2385 vnode_t *snfi_vp;
2386 } snf_smap_desbinfo;
2387
2388 /*
2389 * The callback function used for vpm mapped mblks called when the last ref of
2390 * the mblk is dropped which normally occurs when TCP receives the ack. But it
2391 * can be the driver too due to lazy reclaim.
2392 */
2393 void
snf_vmap_desbfree(snf_vmap_desbinfo * snfv)2394 snf_vmap_desbfree(snf_vmap_desbinfo *snfv)
2395 {
2396 ASSERT(snfv->snfv_ref != 0);
2397 if (atomic_dec_32_nv(&snfv->snfv_ref) == 0) {
2398 vpm_unmap_pages(snfv->snfv_vml, S_READ);
2399 VN_RELE(snfv->snfv_vp);
2400 kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2401 }
2402 }
2403
2404 /*
2405 * The callback function used for segmap'ped mblks called when the last ref of
2406 * the mblk is dropped which normally occurs when TCP receives the ack. But it
2407 * can be the driver too due to lazy reclaim.
2408 */
2409 void
snf_smap_desbfree(snf_smap_desbinfo * snfi)2410 snf_smap_desbfree(snf_smap_desbinfo *snfi)
2411 {
2412 if (! IS_KPM_ADDR(snfi->snfi_base)) {
2413 /*
2414 * We don't need to call segmap_fault(F_SOFTUNLOCK) for
2415 * segmap_kpm as long as the latter never falls back to
2416 * "use_segmap_range". (See segmap_getmapflt().)
2417 *
2418 * Using S_OTHER saves an redundant hat_setref() in
2419 * segmap_unlock()
2420 */
2421 (void) segmap_fault(kas.a_hat, segkmap,
2422 (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base +
2423 snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len,
2424 F_SOFTUNLOCK, S_OTHER);
2425 }
2426 (void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED);
2427 VN_RELE(snfi->snfi_vp);
2428 kmem_free(snfi, sizeof (*snfi));
2429 }
2430
2431 /*
2432 * Use segmap or vpm instead of bcopy to send down a desballoca'ed, mblk.
2433 * When segmap is used, the mblk contains a segmap slot of no more
2434 * than MAXBSIZE.
2435 *
2436 * With vpm, a maximum of SNF_MAXVMAPS page-sized mappings can be obtained
2437 * in each iteration and sent by socket_sendmblk until an error occurs or
2438 * the requested size has been transferred. An mblk is esballoca'ed from
2439 * each mapped page and a chain of these mblk is sent to the transport layer.
2440 * vpm will be called to unmap the pages when all mblks have been freed by
2441 * free_func.
2442 *
2443 * At the end of the whole sendfile() operation, we wait till the data from
2444 * the last mblk is ack'ed by the transport before returning so that the
2445 * caller of sendfile() can safely modify the file content.
2446 *
2447 * The caller of this function should make sure that total_size does not exceed
2448 * the actual file size of fvp.
2449 */
2450 int
snf_segmap(file_t * fp,vnode_t * fvp,u_offset_t fileoff,u_offset_t total_size,ssize_t * count,boolean_t nowait)2451 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t total_size,
2452 ssize_t *count, boolean_t nowait)
2453 {
2454 caddr_t base;
2455 int mapoff;
2456 vnode_t *vp;
2457 mblk_t *mp = NULL;
2458 int chain_size;
2459 int error;
2460 clock_t deadlk_wait;
2461 short fflag;
2462 int ksize;
2463 struct vattr va;
2464 boolean_t dowait = B_FALSE;
2465 struct nmsghdr msg;
2466
2467 vp = fp->f_vnode;
2468 fflag = fp->f_flag;
2469 ksize = 0;
2470 bzero(&msg, sizeof (msg));
2471
2472 for (;;) {
2473 if (ISSIG(curthread, JUSTLOOKING)) {
2474 error = EINTR;
2475 break;
2476 }
2477
2478 if (vpm_enable) {
2479 snf_vmap_desbinfo *snfv;
2480 mblk_t *nmp;
2481 int mblk_size;
2482 int maxsize;
2483 int i;
2484
2485 mapoff = fileoff & PAGEOFFSET;
2486 maxsize = MIN((SNF_VPMMAXPGS * PAGESIZE), total_size);
2487
2488 snfv = kmem_zalloc(sizeof (snf_vmap_desbinfo),
2489 KM_SLEEP);
2490
2491 /*
2492 * Get vpm mappings for maxsize with read access.
2493 * If the pages aren't available yet, we get
2494 * DEADLK, so wait and try again a little later using
2495 * an increasing wait. We might be here a long time.
2496 *
2497 * If delay_sig returns EINTR, be sure to exit and
2498 * pass it up to the caller.
2499 */
2500 deadlk_wait = 0;
2501 while ((error = vpm_map_pages(fvp, fileoff,
2502 (size_t)maxsize, (VPM_FETCHPAGE), snfv->snfv_vml,
2503 SNF_MAXVMAPS, NULL, S_READ)) == EDEADLK) {
2504 deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2505 if ((error = delay_sig(deadlk_wait)) != 0) {
2506 break;
2507 }
2508 }
2509 if (error != 0) {
2510 kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2511 error = (error == EINTR) ? EINTR : EIO;
2512 goto out;
2513 }
2514 snfv->snfv_frtn.free_func = snf_vmap_desbfree;
2515 snfv->snfv_frtn.free_arg = (caddr_t)snfv;
2516
2517 /* Construct the mblk chain from the page mappings */
2518 chain_size = 0;
2519 for (i = 0; (snfv->snfv_vml[i].vs_addr != NULL) &&
2520 total_size > 0; i++) {
2521 ASSERT(chain_size < maxsize);
2522 mblk_size = MIN(snfv->snfv_vml[i].vs_len -
2523 mapoff, total_size);
2524 nmp = esballoca(
2525 (uchar_t *)snfv->snfv_vml[i].vs_addr +
2526 mapoff, mblk_size, BPRI_HI,
2527 &snfv->snfv_frtn);
2528
2529 /*
2530 * We return EAGAIN after unmapping the pages
2531 * if we cannot allocate the the head of the
2532 * chain. Otherwise, we continue sending the
2533 * mblks constructed so far.
2534 */
2535 if (nmp == NULL) {
2536 if (i == 0) {
2537 vpm_unmap_pages(snfv->snfv_vml,
2538 S_READ);
2539 kmem_free(snfv,
2540 sizeof (snf_vmap_desbinfo));
2541 error = EAGAIN;
2542 goto out;
2543 }
2544 break;
2545 }
2546 /* Mark this dblk with the zero-copy flag */
2547 nmp->b_datap->db_struioflag |= STRUIO_ZC;
2548 nmp->b_wptr += mblk_size;
2549 chain_size += mblk_size;
2550 fileoff += mblk_size;
2551 total_size -= mblk_size;
2552 snfv->snfv_ref++;
2553 mapoff = 0;
2554 if (i > 0)
2555 linkb(mp, nmp);
2556 else
2557 mp = nmp;
2558 }
2559 VN_HOLD(fvp);
2560 snfv->snfv_vp = fvp;
2561 } else {
2562 /* vpm not supported. fallback to segmap */
2563 snf_smap_desbinfo *snfi;
2564
2565 mapoff = fileoff & MAXBOFFSET;
2566 chain_size = MAXBSIZE - mapoff;
2567 if (chain_size > total_size)
2568 chain_size = total_size;
2569 /*
2570 * we don't forcefault because we'll call
2571 * segmap_fault(F_SOFTLOCK) next.
2572 *
2573 * S_READ will get the ref bit set (by either
2574 * segmap_getmapflt() or segmap_fault()) and page
2575 * shared locked.
2576 */
2577 base = segmap_getmapflt(segkmap, fvp, fileoff,
2578 chain_size, segmap_kpm ? SM_FAULT : 0, S_READ);
2579
2580 snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP);
2581 snfi->snfi_len = (size_t)roundup(mapoff+chain_size,
2582 PAGESIZE)- (mapoff & PAGEMASK);
2583 /*
2584 * We must call segmap_fault() even for segmap_kpm
2585 * because that's how error gets returned.
2586 * (segmap_getmapflt() never fails but segmap_fault()
2587 * does.)
2588 *
2589 * If the pages aren't available yet, we get
2590 * DEADLK, so wait and try again a little later using
2591 * an increasing wait. We might be here a long time.
2592 *
2593 * If delay_sig returns EINTR, be sure to exit and
2594 * pass it up to the caller.
2595 */
2596 deadlk_wait = 0;
2597 while ((error = FC_ERRNO(segmap_fault(kas.a_hat,
2598 segkmap, (caddr_t)(uintptr_t)(((uintptr_t)base +
2599 mapoff) & PAGEMASK), snfi->snfi_len, F_SOFTLOCK,
2600 S_READ))) == EDEADLK) {
2601 deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2602 if ((error = delay_sig(deadlk_wait)) != 0) {
2603 break;
2604 }
2605 }
2606 if (error != 0) {
2607 (void) segmap_release(segkmap, base, 0);
2608 kmem_free(snfi, sizeof (*snfi));
2609 error = (error == EINTR) ? EINTR : EIO;
2610 goto out;
2611 }
2612 snfi->snfi_frtn.free_func = snf_smap_desbfree;
2613 snfi->snfi_frtn.free_arg = (caddr_t)snfi;
2614 snfi->snfi_base = base;
2615 snfi->snfi_mapoff = mapoff;
2616 mp = esballoca((uchar_t *)base + mapoff, chain_size,
2617 BPRI_HI, &snfi->snfi_frtn);
2618
2619 if (mp == NULL) {
2620 (void) segmap_fault(kas.a_hat, segkmap,
2621 (caddr_t)(uintptr_t)(((uintptr_t)base +
2622 mapoff) & PAGEMASK), snfi->snfi_len,
2623 F_SOFTUNLOCK, S_OTHER);
2624 (void) segmap_release(segkmap, base, 0);
2625 kmem_free(snfi, sizeof (*snfi));
2626 freemsg(mp);
2627 error = EAGAIN;
2628 goto out;
2629 }
2630 VN_HOLD(fvp);
2631 snfi->snfi_vp = fvp;
2632 mp->b_wptr += chain_size;
2633
2634 /* Mark this dblk with the zero-copy flag */
2635 mp->b_datap->db_struioflag |= STRUIO_ZC;
2636 fileoff += chain_size;
2637 total_size -= chain_size;
2638 }
2639
2640 if (total_size == 0 && !nowait) {
2641 ASSERT(!dowait);
2642 dowait = B_TRUE;
2643 mp->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
2644 }
2645 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2646 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2647 if (error != 0) {
2648 /*
2649 * mp contains the mblks that were not sent by
2650 * socket_sendmblk. Use its size to update *count
2651 */
2652 *count = ksize + (chain_size - msgdsize(mp));
2653 if (mp != NULL)
2654 freemsg(mp);
2655 return (error);
2656 }
2657 ksize += chain_size;
2658 if (total_size == 0)
2659 goto done;
2660
2661 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2662 va.va_mask = AT_SIZE;
2663 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2664 if (error)
2665 break;
2666 /* Read as much as possible. */
2667 if (fileoff >= va.va_size)
2668 break;
2669 if (total_size + fileoff > va.va_size)
2670 total_size = va.va_size - fileoff;
2671 }
2672 out:
2673 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2674 done:
2675 *count = ksize;
2676 if (dowait) {
2677 stdata_t *stp;
2678
2679 stp = vp->v_stream;
2680 if (stp == NULL) {
2681 struct sonode *so;
2682 so = VTOSO(vp);
2683 error = so_zcopy_wait(so);
2684 } else {
2685 mutex_enter(&stp->sd_lock);
2686 while (!(stp->sd_flag & STZCNOTIFY)) {
2687 if (cv_wait_sig(&stp->sd_zcopy_wait,
2688 &stp->sd_lock) == 0) {
2689 error = EINTR;
2690 break;
2691 }
2692 }
2693 stp->sd_flag &= ~STZCNOTIFY;
2694 mutex_exit(&stp->sd_lock);
2695 }
2696 }
2697 return (error);
2698 }
2699
2700 int
snf_cache(file_t * fp,vnode_t * fvp,u_offset_t fileoff,u_offset_t size,uint_t maxpsz,ssize_t * count)2701 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size,
2702 uint_t maxpsz, ssize_t *count)
2703 {
2704 struct vnode *vp;
2705 mblk_t *mp;
2706 int iosize;
2707 int extra = 0;
2708 int error;
2709 short fflag;
2710 int ksize;
2711 int ioflag;
2712 struct uio auio;
2713 struct iovec aiov;
2714 struct vattr va;
2715 int maxblk = 0;
2716 int wroff = 0;
2717 struct sonode *so;
2718 struct nmsghdr msg;
2719
2720 vp = fp->f_vnode;
2721 if (vp->v_type == VSOCK) {
2722 stdata_t *stp;
2723
2724 /*
2725 * Get the extra space to insert a header and a trailer.
2726 */
2727 so = VTOSO(vp);
2728 stp = vp->v_stream;
2729 if (stp == NULL) {
2730 wroff = so->so_proto_props.sopp_wroff;
2731 maxblk = so->so_proto_props.sopp_maxblk;
2732 extra = wroff + so->so_proto_props.sopp_tail;
2733 } else {
2734 wroff = (int)(stp->sd_wroff);
2735 maxblk = (int)(stp->sd_maxblk);
2736 extra = wroff + (int)(stp->sd_tail);
2737 }
2738 }
2739 bzero(&msg, sizeof (msg));
2740 fflag = fp->f_flag;
2741 ksize = 0;
2742 auio.uio_iov = &aiov;
2743 auio.uio_iovcnt = 1;
2744 auio.uio_segflg = UIO_SYSSPACE;
2745 auio.uio_llimit = MAXOFFSET_T;
2746 auio.uio_fmode = fflag;
2747 auio.uio_extflg = UIO_COPY_CACHED;
2748 ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC);
2749 /* If read sync is not asked for, filter sync flags */
2750 if ((ioflag & FRSYNC) == 0)
2751 ioflag &= ~(FSYNC|FDSYNC);
2752 for (;;) {
2753 if (ISSIG(curthread, JUSTLOOKING)) {
2754 error = EINTR;
2755 break;
2756 }
2757 iosize = (int)MIN(maxpsz, size);
2758
2759 /*
2760 * Socket filters can limit the mblk size,
2761 * so limit reads to maxblk if there are
2762 * filters present.
2763 */
2764 if (vp->v_type == VSOCK &&
2765 so->so_filter_active > 0 && maxblk != INFPSZ)
2766 iosize = (int)MIN(iosize, maxblk);
2767
2768 if (is_system_labeled()) {
2769 mp = allocb_cred(iosize + extra, CRED(),
2770 curproc->p_pid);
2771 } else {
2772 mp = allocb(iosize + extra, BPRI_MED);
2773 }
2774 if (mp == NULL) {
2775 error = EAGAIN;
2776 break;
2777 }
2778
2779 mp->b_rptr += wroff;
2780
2781 aiov.iov_base = (caddr_t)mp->b_rptr;
2782 aiov.iov_len = iosize;
2783 auio.uio_loffset = fileoff;
2784 auio.uio_resid = iosize;
2785
2786 error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL);
2787 iosize -= auio.uio_resid;
2788
2789 if (error == EINTR && iosize != 0)
2790 error = 0;
2791
2792 if (error != 0 || iosize == 0) {
2793 freeb(mp);
2794 break;
2795 }
2796 mp->b_wptr = mp->b_rptr + iosize;
2797
2798 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2799
2800 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2801
2802 if (error != 0) {
2803 *count = ksize;
2804 if (mp != NULL)
2805 freeb(mp);
2806 return (error);
2807 }
2808 ksize += iosize;
2809 size -= iosize;
2810 if (size == 0)
2811 goto done;
2812
2813 fileoff += iosize;
2814 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2815 va.va_mask = AT_SIZE;
2816 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2817 if (error)
2818 break;
2819 /* Read as much as possible. */
2820 if (fileoff >= va.va_size)
2821 size = 0;
2822 else if (size + fileoff > va.va_size)
2823 size = va.va_size - fileoff;
2824 }
2825 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2826 done:
2827 *count = ksize;
2828 return (error);
2829 }
2830
2831 #if defined(_SYSCALL32_IMPL) || defined(_ILP32)
2832 /*
2833 * Largefile support for 32 bit applications only.
2834 */
2835 int
sosendfile64(file_t * fp,file_t * rfp,const struct ksendfilevec64 * sfv,ssize32_t * count32)2836 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv,
2837 ssize32_t *count32)
2838 {
2839 ssize32_t sfv_len;
2840 u_offset_t sfv_off, va_size;
2841 struct vnode *vp, *fvp, *realvp;
2842 struct vattr va;
2843 stdata_t *stp;
2844 ssize_t count = 0;
2845 int error = 0;
2846 boolean_t dozcopy = B_FALSE;
2847 uint_t maxpsz;
2848
2849 sfv_len = (ssize32_t)sfv->sfv_len;
2850 if (sfv_len < 0) {
2851 error = EINVAL;
2852 goto out;
2853 }
2854
2855 if (sfv_len == 0) goto out;
2856
2857 sfv_off = (u_offset_t)sfv->sfv_off;
2858
2859 /* Same checks as in pread */
2860 if (sfv_off > MAXOFFSET_T) {
2861 error = EINVAL;
2862 goto out;
2863 }
2864 if (sfv_off + sfv_len > MAXOFFSET_T)
2865 sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off);
2866
2867 /*
2868 * There are no more checks on sfv_len. So, we cast it to
2869 * u_offset_t and share the snf_direct_io/snf_cache code between
2870 * 32 bit and 64 bit.
2871 *
2872 * TODO: should do nbl_need_check() like read()?
2873 */
2874 if (sfv_len > sendfile_max_size) {
2875 sf_stats.ss_file_not_cached++;
2876 error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len,
2877 &count);
2878 goto out;
2879 }
2880 fvp = rfp->f_vnode;
2881 if (VOP_REALVP(fvp, &realvp, NULL) == 0)
2882 fvp = realvp;
2883 /*
2884 * Grab the lock as a reader to prevent the file size
2885 * from changing underneath.
2886 */
2887 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2888 va.va_mask = AT_SIZE;
2889 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2890 va_size = va.va_size;
2891 if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) {
2892 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2893 goto out;
2894 }
2895 /* Read as much as possible. */
2896 if (sfv_off + sfv_len > va_size)
2897 sfv_len = va_size - sfv_off;
2898
2899 vp = fp->f_vnode;
2900 stp = vp->v_stream;
2901 /*
2902 * When the NOWAIT flag is not set, we enable zero-copy only if the
2903 * transfer size is large enough. This prevents performance loss
2904 * when the caller sends the file piece by piece.
2905 */
2906 if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) ||
2907 (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) &&
2908 !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) {
2909 uint_t copyflag;
2910 copyflag = stp != NULL ? stp->sd_copyflag :
2911 VTOSO(vp)->so_proto_props.sopp_zcopyflag;
2912 if ((copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) {
2913 int on = 1;
2914
2915 if (socket_setsockopt(VTOSO(vp), SOL_SOCKET,
2916 SO_SND_COPYAVOID, &on, sizeof (on), CRED()) == 0)
2917 dozcopy = B_TRUE;
2918 } else {
2919 dozcopy = copyflag & STZCVMSAFE;
2920 }
2921 }
2922 if (dozcopy) {
2923 sf_stats.ss_file_segmap++;
2924 error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2925 &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0));
2926 } else {
2927 if (vp->v_type == VSOCK && stp == NULL) {
2928 sonode_t *so = VTOSO(vp);
2929 maxpsz = so->so_proto_props.sopp_maxpsz;
2930 } else if (stp != NULL) {
2931 maxpsz = stp->sd_qn_maxpsz;
2932 } else {
2933 maxpsz = maxphys;
2934 }
2935
2936 if (maxpsz == INFPSZ)
2937 maxpsz = maxphys;
2938 else
2939 maxpsz = roundup(maxpsz, MAXBSIZE);
2940 sf_stats.ss_file_cached++;
2941 error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2942 maxpsz, &count);
2943 }
2944 out:
2945 releasef(sfv->sfv_fd);
2946 *count32 = (ssize32_t)count;
2947 return (error);
2948 }
2949 #endif
2950
2951 #ifdef _SYSCALL32_IMPL
2952 /*
2953 * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a
2954 * ssize_t rather than ssize32_t; see the comments above read32 for details.
2955 */
2956
2957 ssize_t
recv32(int32_t sock,caddr32_t buffer,size32_t len,int32_t flags)2958 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2959 {
2960 return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2961 }
2962
2963 ssize_t
recvfrom32(int32_t sock,caddr32_t buffer,size32_t len,int32_t flags,caddr32_t name,caddr32_t namelenp)2964 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2965 caddr32_t name, caddr32_t namelenp)
2966 {
2967 return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2968 (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp));
2969 }
2970
2971 ssize_t
send32(int32_t sock,caddr32_t buffer,size32_t len,int32_t flags)2972 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2973 {
2974 return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2975 }
2976
2977 ssize_t
sendto32(int32_t sock,caddr32_t buffer,size32_t len,int32_t flags,caddr32_t name,socklen_t namelen)2978 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2979 caddr32_t name, socklen_t namelen)
2980 {
2981 return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2982 (void *)(uintptr_t)name, namelen));
2983 }
2984 #endif /* _SYSCALL32_IMPL */
2985
2986 /*
2987 * Function wrappers (mostly around the sonode switch) for
2988 * backward compatibility.
2989 */
2990
2991 int
soaccept(struct sonode * so,int fflag,struct sonode ** nsop)2992 soaccept(struct sonode *so, int fflag, struct sonode **nsop)
2993 {
2994 return (socket_accept(so, fflag, CRED(), nsop));
2995 }
2996
2997 int
sobind(struct sonode * so,struct sockaddr * name,socklen_t namelen,int backlog,int flags)2998 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen,
2999 int backlog, int flags)
3000 {
3001 int error;
3002
3003 error = socket_bind(so, name, namelen, flags, CRED());
3004 if (error == 0 && backlog != 0)
3005 return (socket_listen(so, backlog, CRED()));
3006
3007 return (error);
3008 }
3009
3010 int
solisten(struct sonode * so,int backlog)3011 solisten(struct sonode *so, int backlog)
3012 {
3013 return (socket_listen(so, backlog, CRED()));
3014 }
3015
3016 int
soconnect(struct sonode * so,struct sockaddr * name,socklen_t namelen,int fflag,int flags)3017 soconnect(struct sonode *so, struct sockaddr *name, socklen_t namelen,
3018 int fflag, int flags)
3019 {
3020 return (socket_connect(so, name, namelen, fflag, flags, CRED()));
3021 }
3022
3023 int
sorecvmsg(struct sonode * so,struct nmsghdr * msg,struct uio * uiop)3024 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
3025 {
3026 return (socket_recvmsg(so, msg, uiop, CRED()));
3027 }
3028
3029 int
sosendmsg(struct sonode * so,struct nmsghdr * msg,struct uio * uiop)3030 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
3031 {
3032 return (socket_sendmsg(so, msg, uiop, CRED()));
3033 }
3034
3035 int
soshutdown(struct sonode * so,int how)3036 soshutdown(struct sonode *so, int how)
3037 {
3038 return (socket_shutdown(so, how, CRED()));
3039 }
3040
3041 int
sogetsockopt(struct sonode * so,int level,int option_name,void * optval,socklen_t * optlenp,int flags)3042 sogetsockopt(struct sonode *so, int level, int option_name, void *optval,
3043 socklen_t *optlenp, int flags)
3044 {
3045 return (socket_getsockopt(so, level, option_name, optval, optlenp,
3046 flags, CRED()));
3047 }
3048
3049 int
sosetsockopt(struct sonode * so,int level,int option_name,const void * optval,t_uscalar_t optlen)3050 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval,
3051 t_uscalar_t optlen)
3052 {
3053 return (socket_setsockopt(so, level, option_name, optval, optlen,
3054 CRED()));
3055 }
3056
3057 /*
3058 * Because this is backward compatibility interface it only needs to be
3059 * able to handle the creation of TPI sockfs sockets.
3060 */
3061 struct sonode *
socreate(struct sockparams * sp,int family,int type,int protocol,int version,int * errorp)3062 socreate(struct sockparams *sp, int family, int type, int protocol, int version,
3063 int *errorp)
3064 {
3065 struct sonode *so;
3066
3067 ASSERT(sp != NULL);
3068
3069 so = sp->sp_smod_info->smod_sock_create_func(sp, family, type, protocol,
3070 version, SOCKET_SLEEP, errorp, CRED());
3071 if (so == NULL) {
3072 SOCKPARAMS_DEC_REF(sp);
3073 } else {
3074 if ((*errorp = SOP_INIT(so, NULL, CRED(), SOCKET_SLEEP)) == 0) {
3075 /* Cannot fail, only bumps so_count */
3076 (void) VOP_OPEN(&SOTOV(so), FREAD|FWRITE, CRED(), NULL);
3077 } else {
3078 socket_destroy(so);
3079 so = NULL;
3080 }
3081 }
3082 return (so);
3083 }
3084