1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California.
6 * Copyright (c) 2004 The FreeBSD Foundation
7 * Copyright (c) 2004-2008 Robert N. M. Watson
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 /*
36 * Comments on the socket life cycle:
37 *
38 * soalloc() sets of socket layer state for a socket, called only by
39 * socreate() and sonewconn(). Socket layer private.
40 *
41 * sodealloc() tears down socket layer state for a socket, called only by
42 * sofree() and sonewconn(). Socket layer private.
43 *
44 * pr_attach() associates protocol layer state with an allocated socket;
45 * called only once, may fail, aborting socket allocation. This is called
46 * from socreate() and sonewconn(). Socket layer private.
47 *
48 * pr_detach() disassociates protocol layer state from an attached socket,
49 * and will be called exactly once for sockets in which pr_attach() has
50 * been successfully called. If pr_attach() returned an error,
51 * pr_detach() will not be called. Socket layer private.
52 *
53 * pr_abort() and pr_close() notify the protocol layer that the last
54 * consumer of a socket is starting to tear down the socket, and that the
55 * protocol should terminate the connection. Historically, pr_abort() also
56 * detached protocol state from the socket state, but this is no longer the
57 * case. pr_fdclose() is called when userspace invokes close(2) on a socket
58 * file descriptor.
59 *
60 * socreate() creates a socket and attaches protocol state. This is a public
61 * interface that may be used by socket layer consumers to create new
62 * sockets.
63 *
64 * sonewconn() creates a socket and attaches protocol state. This is a
65 * public interface that may be used by protocols to create new sockets when
66 * a new connection is received and will be available for accept() on a
67 * listen socket.
68 *
69 * soclose() destroys a socket after possibly waiting for it to disconnect.
70 * This is a public interface that socket consumers should use to close and
71 * release a socket when done with it.
72 *
73 * soabort() destroys a socket without waiting for it to disconnect (used
74 * only for incoming connections that are already partially or fully
75 * connected). This is used internally by the socket layer when clearing
76 * listen socket queues (due to overflow or close on the listen socket), but
77 * is also a public interface protocols may use to abort connections in
78 * their incomplete listen queues should they no longer be required. Sockets
79 * placed in completed connection listen queues should not be aborted for
80 * reasons described in the comment above the soclose() implementation. This
81 * is not a general purpose close routine, and except in the specific
82 * circumstances described here, should not be used.
83 *
84 * sofree() will free a socket and its protocol state if all references on
85 * the socket have been released, and is the public interface to attempt to
86 * free a socket when a reference is removed. This is a socket layer private
87 * interface.
88 *
89 * NOTE: In addition to socreate() and soclose(), which provide a single
90 * socket reference to the consumer to be managed as required, there are two
91 * calls to explicitly manage socket references, soref(), and sorele().
92 * Currently, these are generally required only when transitioning a socket
93 * from a listen queue to a file descriptor, in order to prevent garbage
94 * collection of the socket at an untimely moment. For a number of reasons,
95 * these interfaces are not preferred, and should be avoided.
96 *
97 * NOTE: With regard to VNETs the general rule is that callers do not set
98 * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
99 * sofree(), sorele(), sonewconn() and sorflush(), which are usually called
100 * from a pre-set VNET context. sopoll_generic() currently does not need a
101 * VNET context to be set.
102 */
103
104 #include <sys/cdefs.h>
105 #include "opt_inet.h"
106 #include "opt_inet6.h"
107 #include "opt_kern_tls.h"
108 #include "opt_ktrace.h"
109 #include "opt_sctp.h"
110
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/capsicum.h>
114 #include <sys/fcntl.h>
115 #include <sys/limits.h>
116 #include <sys/lock.h>
117 #include <sys/mac.h>
118 #include <sys/malloc.h>
119 #include <sys/mbuf.h>
120 #include <sys/mutex.h>
121 #include <sys/domain.h>
122 #include <sys/file.h> /* for struct knote */
123 #include <sys/hhook.h>
124 #include <sys/kernel.h>
125 #include <sys/khelp.h>
126 #include <sys/kthread.h>
127 #include <sys/ktls.h>
128 #include <sys/event.h>
129 #include <sys/eventhandler.h>
130 #include <sys/poll.h>
131 #include <sys/proc.h>
132 #include <sys/protosw.h>
133 #include <sys/sbuf.h>
134 #include <sys/socket.h>
135 #include <sys/socketvar.h>
136 #include <sys/resourcevar.h>
137 #include <net/route.h>
138 #include <sys/sched.h>
139 #include <sys/signalvar.h>
140 #include <sys/smp.h>
141 #include <sys/stat.h>
142 #include <sys/sx.h>
143 #include <sys/sysctl.h>
144 #include <sys/taskqueue.h>
145 #include <sys/uio.h>
146 #include <sys/un.h>
147 #include <sys/unpcb.h>
148 #include <sys/jail.h>
149 #include <sys/syslog.h>
150 #include <netinet/in.h>
151 #include <netinet/in_pcb.h>
152 #include <netinet/tcp.h>
153
154 #include <net/vnet.h>
155
156 #include <security/mac/mac_framework.h>
157 #include <security/mac/mac_internal.h>
158
159 #include <vm/uma.h>
160
161 #ifdef COMPAT_FREEBSD32
162 #include <sys/mount.h>
163 #include <sys/sysent.h>
164 #include <compat/freebsd32/freebsd32.h>
165 #endif
166
167 static int soreceive_generic_locked(struct socket *so,
168 struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
169 struct mbuf **controlp, int *flagsp);
170 static int soreceive_rcvoob(struct socket *so, struct uio *uio,
171 int flags);
172 static int soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
173 struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
174 struct mbuf **controlp, int flags);
175 static int sosend_generic_locked(struct socket *so, struct sockaddr *addr,
176 struct uio *uio, struct mbuf *top, struct mbuf *control,
177 int flags, struct thread *td);
178 static void so_rdknl_lock(void *);
179 static void so_rdknl_unlock(void *);
180 static void so_rdknl_assert_lock(void *, int);
181 static void so_wrknl_lock(void *);
182 static void so_wrknl_unlock(void *);
183 static void so_wrknl_assert_lock(void *, int);
184
185 static void filt_sordetach(struct knote *kn);
186 static int filt_soread(struct knote *kn, long hint);
187 static void filt_sowdetach(struct knote *kn);
188 static int filt_sowrite(struct knote *kn, long hint);
189 static int filt_soempty(struct knote *kn, long hint);
190
191 static const struct filterops soread_filtops = {
192 .f_isfd = 1,
193 .f_detach = filt_sordetach,
194 .f_event = filt_soread,
195 .f_copy = knote_triv_copy,
196 };
197 static const struct filterops sowrite_filtops = {
198 .f_isfd = 1,
199 .f_detach = filt_sowdetach,
200 .f_event = filt_sowrite,
201 .f_copy = knote_triv_copy,
202 };
203 static const struct filterops soempty_filtops = {
204 .f_isfd = 1,
205 .f_detach = filt_sowdetach,
206 .f_event = filt_soempty,
207 .f_copy = knote_triv_copy,
208 };
209
210 so_gen_t so_gencnt; /* generation count for sockets */
211
212 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
213 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
214
215 #define VNET_SO_ASSERT(so) \
216 VNET_ASSERT(curvnet != NULL, \
217 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
218
219 #ifdef SOCKET_HHOOK
220 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
221 #define V_socket_hhh VNET(socket_hhh)
222 static inline int hhook_run_socket(struct socket *, void *, int32_t);
223 #endif
224
225 #ifdef COMPAT_FREEBSD32
226 #ifdef __amd64__
227 /* off_t has 4-byte alignment on i386 but not on other 32-bit platforms. */
228 #define __splice32_packed __packed
229 #else
230 #define __splice32_packed
231 #endif
232 struct splice32 {
233 int32_t sp_fd;
234 int64_t sp_max;
235 struct timeval32 sp_idle;
236 } __splice32_packed;
237 #undef __splice32_packed
238 #endif
239
240 /*
241 * Limit on the number of connections in the listen queue waiting
242 * for accept(2).
243 * NB: The original sysctl somaxconn is still available but hidden
244 * to prevent confusion about the actual purpose of this number.
245 */
246 VNET_DEFINE_STATIC(u_int, somaxconn) = SOMAXCONN;
247 #define V_somaxconn VNET(somaxconn)
248
249 static int
sysctl_somaxconn(SYSCTL_HANDLER_ARGS)250 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
251 {
252 int error;
253 u_int val;
254
255 val = V_somaxconn;
256 error = sysctl_handle_int(oidp, &val, 0, req);
257 if (error || !req->newptr )
258 return (error);
259
260 /*
261 * The purpose of the UINT_MAX / 3 limit, is so that the formula
262 * 3 * sol_qlimit / 2
263 * below, will not overflow.
264 */
265
266 if (val < 1 || val > UINT_MAX / 3)
267 return (EINVAL);
268
269 V_somaxconn = val;
270 return (0);
271 }
272 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
273 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
274 sysctl_somaxconn, "IU",
275 "Maximum listen socket pending connection accept queue size");
276 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
277 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0,
278 sizeof(u_int), sysctl_somaxconn, "IU",
279 "Maximum listen socket pending connection accept queue size (compat)");
280
281 static u_int numopensockets;
282 static int
sysctl_numopensockets(SYSCTL_HANDLER_ARGS)283 sysctl_numopensockets(SYSCTL_HANDLER_ARGS)
284 {
285 u_int val;
286
287 #ifdef VIMAGE
288 if(!IS_DEFAULT_VNET(curvnet))
289 val = curvnet->vnet_sockcnt;
290 else
291 #endif
292 val = numopensockets;
293 return (sysctl_handle_int(oidp, &val, 0, req));
294 }
295 SYSCTL_PROC(_kern_ipc, OID_AUTO, numopensockets,
296 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
297 sysctl_numopensockets, "IU", "Number of open sockets");
298
299 /*
300 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
301 * so_gencnt field.
302 */
303 static struct mtx so_global_mtx;
304 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
305
306 /*
307 * General IPC sysctl name space, used by sockets and a variety of other IPC
308 * types.
309 */
310 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
311 "IPC");
312
313 /*
314 * Initialize the socket subsystem and set up the socket
315 * memory allocator.
316 */
317 static uma_zone_t socket_zone;
318 int maxsockets;
319
320 static void
socket_zone_change(void * tag)321 socket_zone_change(void *tag)
322 {
323
324 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
325 }
326
327 static int splice_init_state;
328 static struct sx splice_init_lock;
329 SX_SYSINIT(splice_init_lock, &splice_init_lock, "splice_init");
330
331 static SYSCTL_NODE(_kern_ipc, OID_AUTO, splice, CTLFLAG_RW, 0,
332 "Settings relating to the SO_SPLICE socket option");
333
334 static bool splice_receive_stream = true;
335 SYSCTL_BOOL(_kern_ipc_splice, OID_AUTO, receive_stream, CTLFLAG_RWTUN,
336 &splice_receive_stream, 0,
337 "Use soreceive_stream() for stream splices");
338
339 static uma_zone_t splice_zone;
340 static struct proc *splice_proc;
341 struct splice_wq {
342 struct mtx mtx;
343 STAILQ_HEAD(, so_splice) head;
344 bool running;
345 } __aligned(CACHE_LINE_SIZE);
346 static struct splice_wq *splice_wq;
347 static uint32_t splice_index = 0;
348
349 static void so_splice_timeout(void *arg, int pending);
350 static void so_splice_xfer(struct so_splice *s);
351 static int so_unsplice(struct socket *so, bool timeout);
352
353 static void
splice_work_thread(void * ctx)354 splice_work_thread(void *ctx)
355 {
356 struct splice_wq *wq = ctx;
357 struct so_splice *s, *s_temp;
358 STAILQ_HEAD(, so_splice) local_head;
359 int cpu;
360
361 cpu = wq - splice_wq;
362 if (bootverbose)
363 printf("starting so_splice worker thread for CPU %d\n", cpu);
364
365 for (;;) {
366 mtx_lock(&wq->mtx);
367 while (STAILQ_EMPTY(&wq->head)) {
368 wq->running = false;
369 mtx_sleep(wq, &wq->mtx, 0, "-", 0);
370 wq->running = true;
371 }
372 STAILQ_INIT(&local_head);
373 STAILQ_CONCAT(&local_head, &wq->head);
374 STAILQ_INIT(&wq->head);
375 mtx_unlock(&wq->mtx);
376 STAILQ_FOREACH_SAFE(s, &local_head, next, s_temp) {
377 mtx_lock(&s->mtx);
378 CURVNET_SET(s->src->so_vnet);
379 so_splice_xfer(s);
380 CURVNET_RESTORE();
381 }
382 }
383 }
384
385 static void
so_splice_dispatch_async(struct so_splice * sp)386 so_splice_dispatch_async(struct so_splice *sp)
387 {
388 struct splice_wq *wq;
389 bool running;
390
391 wq = &splice_wq[sp->wq_index];
392 mtx_lock(&wq->mtx);
393 STAILQ_INSERT_TAIL(&wq->head, sp, next);
394 running = wq->running;
395 mtx_unlock(&wq->mtx);
396 if (!running)
397 wakeup(wq);
398 }
399
400 void
so_splice_dispatch(struct so_splice * sp)401 so_splice_dispatch(struct so_splice *sp)
402 {
403 mtx_assert(&sp->mtx, MA_OWNED);
404
405 if (sp->state != SPLICE_IDLE) {
406 mtx_unlock(&sp->mtx);
407 } else {
408 sp->state = SPLICE_QUEUED;
409 mtx_unlock(&sp->mtx);
410 so_splice_dispatch_async(sp);
411 }
412 }
413
414 static int
splice_zinit(void * mem,int size __unused,int flags __unused)415 splice_zinit(void *mem, int size __unused, int flags __unused)
416 {
417 struct so_splice *s;
418
419 s = (struct so_splice *)mem;
420 mtx_init(&s->mtx, "so_splice", NULL, MTX_DEF);
421 return (0);
422 }
423
424 static void
splice_zfini(void * mem,int size)425 splice_zfini(void *mem, int size)
426 {
427 struct so_splice *s;
428
429 s = (struct so_splice *)mem;
430 mtx_destroy(&s->mtx);
431 }
432
433 static int
splice_init(void)434 splice_init(void)
435 {
436 struct thread *td;
437 int error, i, state;
438
439 state = atomic_load_acq_int(&splice_init_state);
440 if (__predict_true(state > 0))
441 return (0);
442 if (state < 0)
443 return (ENXIO);
444 sx_xlock(&splice_init_lock);
445 if (splice_init_state != 0) {
446 sx_xunlock(&splice_init_lock);
447 return (0);
448 }
449
450 splice_zone = uma_zcreate("splice", sizeof(struct so_splice), NULL,
451 NULL, splice_zinit, splice_zfini, UMA_ALIGN_CACHE, 0);
452
453 splice_wq = mallocarray(mp_maxid + 1, sizeof(*splice_wq), M_TEMP,
454 M_WAITOK | M_ZERO);
455
456 /*
457 * Initialize the workqueues to run the splice work. We create a
458 * work queue for each CPU.
459 */
460 CPU_FOREACH(i) {
461 STAILQ_INIT(&splice_wq[i].head);
462 mtx_init(&splice_wq[i].mtx, "splice work queue", NULL, MTX_DEF);
463 }
464
465 /* Start kthreads for each workqueue. */
466 error = 0;
467 CPU_FOREACH(i) {
468 error = kproc_kthread_add(splice_work_thread, &splice_wq[i],
469 &splice_proc, &td, 0, 0, "so_splice", "thr_%d", i);
470 if (error) {
471 printf("Can't add so_splice thread %d error %d\n",
472 i, error);
473 break;
474 }
475
476 /*
477 * It's possible to create loops with SO_SPLICE; ensure that
478 * worker threads aren't able to starve the system too easily.
479 */
480 thread_lock(td);
481 sched_prio(td, PUSER);
482 thread_unlock(td);
483 }
484
485 splice_init_state = error != 0 ? -1 : 1;
486 sx_xunlock(&splice_init_lock);
487
488 return (error);
489 }
490
491 /*
492 * Lock a pair of socket's I/O locks for splicing. Avoid blocking while holding
493 * one lock in order to avoid potential deadlocks in case there is some other
494 * code path which acquires more than one I/O lock at a time.
495 */
496 static void
splice_lock_pair(struct socket * so_src,struct socket * so_dst)497 splice_lock_pair(struct socket *so_src, struct socket *so_dst)
498 {
499 int error;
500
501 for (;;) {
502 error = SOCK_IO_SEND_LOCK(so_dst, SBL_WAIT | SBL_NOINTR);
503 KASSERT(error == 0,
504 ("%s: failed to lock send I/O lock: %d", __func__, error));
505 error = SOCK_IO_RECV_LOCK(so_src, 0);
506 KASSERT(error == 0 || error == EWOULDBLOCK,
507 ("%s: failed to lock recv I/O lock: %d", __func__, error));
508 if (error == 0)
509 break;
510 SOCK_IO_SEND_UNLOCK(so_dst);
511
512 error = SOCK_IO_RECV_LOCK(so_src, SBL_WAIT | SBL_NOINTR);
513 KASSERT(error == 0,
514 ("%s: failed to lock recv I/O lock: %d", __func__, error));
515 error = SOCK_IO_SEND_LOCK(so_dst, 0);
516 KASSERT(error == 0 || error == EWOULDBLOCK,
517 ("%s: failed to lock send I/O lock: %d", __func__, error));
518 if (error == 0)
519 break;
520 SOCK_IO_RECV_UNLOCK(so_src);
521 }
522 }
523
524 static void
splice_unlock_pair(struct socket * so_src,struct socket * so_dst)525 splice_unlock_pair(struct socket *so_src, struct socket *so_dst)
526 {
527 SOCK_IO_RECV_UNLOCK(so_src);
528 SOCK_IO_SEND_UNLOCK(so_dst);
529 }
530
531 /*
532 * Move data from the source to the sink. Assumes that both of the relevant
533 * socket I/O locks are held.
534 */
535 static int
so_splice_xfer_data(struct socket * so_src,struct socket * so_dst,off_t max,ssize_t * lenp)536 so_splice_xfer_data(struct socket *so_src, struct socket *so_dst, off_t max,
537 ssize_t *lenp)
538 {
539 struct uio uio;
540 struct mbuf *m;
541 struct sockbuf *sb_src, *sb_dst;
542 ssize_t len;
543 long space;
544 int error, flags;
545
546 SOCK_IO_RECV_ASSERT_LOCKED(so_src);
547 SOCK_IO_SEND_ASSERT_LOCKED(so_dst);
548
549 error = 0;
550 m = NULL;
551 memset(&uio, 0, sizeof(uio));
552
553 sb_src = &so_src->so_rcv;
554 sb_dst = &so_dst->so_snd;
555
556 space = sbspace(sb_dst);
557 if (space < 0)
558 space = 0;
559 len = MIN(max, MIN(space, sbavail(sb_src)));
560 if (len == 0) {
561 SOCK_RECVBUF_LOCK(so_src);
562 if ((sb_src->sb_state & SBS_CANTRCVMORE) != 0)
563 error = EPIPE;
564 SOCK_RECVBUF_UNLOCK(so_src);
565 } else {
566 flags = MSG_DONTWAIT;
567 uio.uio_resid = len;
568 if (splice_receive_stream && sb_src->sb_tls_info == NULL) {
569 error = soreceive_stream_locked(so_src, sb_src, NULL,
570 &uio, &m, NULL, flags);
571 } else {
572 error = soreceive_generic_locked(so_src, NULL,
573 &uio, &m, NULL, &flags);
574 }
575 if (error != 0 && m != NULL) {
576 m_freem(m);
577 m = NULL;
578 }
579 }
580 if (m != NULL) {
581 len -= uio.uio_resid;
582 error = sosend_generic_locked(so_dst, NULL, NULL, m, NULL,
583 MSG_DONTWAIT, curthread);
584 } else if (error == 0) {
585 len = 0;
586 SOCK_SENDBUF_LOCK(so_dst);
587 if ((sb_dst->sb_state & SBS_CANTSENDMORE) != 0)
588 error = EPIPE;
589 SOCK_SENDBUF_UNLOCK(so_dst);
590 }
591 if (error == 0)
592 *lenp = len;
593 return (error);
594 }
595
596 /*
597 * Transfer data from the source to the sink.
598 */
599 static void
so_splice_xfer(struct so_splice * sp)600 so_splice_xfer(struct so_splice *sp)
601 {
602 struct socket *so_src, *so_dst;
603 off_t max;
604 ssize_t len;
605 int error;
606
607 mtx_assert(&sp->mtx, MA_OWNED);
608 KASSERT(sp->state == SPLICE_QUEUED || sp->state == SPLICE_CLOSING,
609 ("so_splice_xfer: invalid state %d", sp->state));
610 KASSERT(sp->max != 0, ("so_splice_xfer: max == 0"));
611
612 if (sp->state == SPLICE_CLOSING) {
613 /* Userspace asked us to close the splice. */
614 goto closing;
615 }
616
617 sp->state = SPLICE_RUNNING;
618 so_src = sp->src;
619 so_dst = sp->dst;
620 max = sp->max > 0 ? sp->max - so_src->so_splice_sent : OFF_MAX;
621 if (max < 0)
622 max = 0;
623
624 /*
625 * Lock the sockets in order to block userspace from doing anything
626 * sneaky. If an error occurs or one of the sockets can no longer
627 * transfer data, we will automatically unsplice.
628 */
629 mtx_unlock(&sp->mtx);
630 splice_lock_pair(so_src, so_dst);
631
632 error = so_splice_xfer_data(so_src, so_dst, max, &len);
633
634 mtx_lock(&sp->mtx);
635
636 /*
637 * Update our stats while still holding the socket locks. This
638 * synchronizes with getsockopt(SO_SPLICE), see the comment there.
639 */
640 if (error == 0) {
641 KASSERT(len >= 0, ("%s: len %zd < 0", __func__, len));
642 so_src->so_splice_sent += len;
643 }
644 splice_unlock_pair(so_src, so_dst);
645
646 switch (sp->state) {
647 case SPLICE_CLOSING:
648 closing:
649 sp->state = SPLICE_CLOSED;
650 wakeup(sp);
651 mtx_unlock(&sp->mtx);
652 break;
653 case SPLICE_RUNNING:
654 if (error != 0 ||
655 (sp->max > 0 && so_src->so_splice_sent >= sp->max)) {
656 sp->state = SPLICE_EXCEPTION;
657 soref(so_src);
658 mtx_unlock(&sp->mtx);
659 (void)so_unsplice(so_src, false);
660 sorele(so_src);
661 } else {
662 /*
663 * Locklessly check for additional bytes in the source's
664 * receive buffer and queue more work if possible. We
665 * may end up queuing needless work, but that's ok, and
666 * if we race with a thread inserting more data into the
667 * buffer and observe sbavail() == 0, the splice mutex
668 * ensures that splice_push() will queue more work for
669 * us.
670 */
671 if (sbavail(&so_src->so_rcv) > 0 &&
672 sbspace(&so_dst->so_snd) > 0) {
673 sp->state = SPLICE_QUEUED;
674 mtx_unlock(&sp->mtx);
675 so_splice_dispatch_async(sp);
676 } else {
677 sp->state = SPLICE_IDLE;
678 mtx_unlock(&sp->mtx);
679 }
680 }
681 break;
682 default:
683 __assert_unreachable();
684 }
685 }
686
687 static void
socket_init(void * tag)688 socket_init(void *tag)
689 {
690
691 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
692 NULL, NULL, UMA_ALIGN_PTR, 0);
693 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
694 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
695 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
696 EVENTHANDLER_PRI_FIRST);
697 }
698 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
699
700 #ifdef SOCKET_HHOOK
701 static void
socket_hhook_register(int subtype)702 socket_hhook_register(int subtype)
703 {
704
705 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
706 &V_socket_hhh[subtype],
707 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
708 printf("%s: WARNING: unable to register hook\n", __func__);
709 }
710
711 static void
socket_hhook_deregister(int subtype)712 socket_hhook_deregister(int subtype)
713 {
714
715 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
716 printf("%s: WARNING: unable to deregister hook\n", __func__);
717 }
718
719 static void
socket_vnet_init(const void * unused __unused)720 socket_vnet_init(const void *unused __unused)
721 {
722 int i;
723
724 /* We expect a contiguous range */
725 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
726 socket_hhook_register(i);
727 }
728 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
729 socket_vnet_init, NULL);
730
731 static void
socket_vnet_uninit(const void * unused __unused)732 socket_vnet_uninit(const void *unused __unused)
733 {
734 int i;
735
736 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
737 socket_hhook_deregister(i);
738 }
739 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
740 socket_vnet_uninit, NULL);
741 #endif /* SOCKET_HHOOK */
742
743 /*
744 * Initialise maxsockets. This SYSINIT must be run after
745 * tunable_mbinit().
746 */
747 static void
init_maxsockets(void * ignored)748 init_maxsockets(void *ignored)
749 {
750
751 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
752 maxsockets = imax(maxsockets, maxfiles);
753 }
754 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
755
756 /*
757 * Sysctl to get and set the maximum global sockets limit. Notify protocols
758 * of the change so that they can update their dependent limits as required.
759 */
760 static int
sysctl_maxsockets(SYSCTL_HANDLER_ARGS)761 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
762 {
763 int error, newmaxsockets;
764
765 newmaxsockets = maxsockets;
766 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
767 if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
768 if (newmaxsockets > maxsockets &&
769 newmaxsockets <= maxfiles) {
770 maxsockets = newmaxsockets;
771 EVENTHANDLER_INVOKE(maxsockets_change);
772 } else
773 error = EINVAL;
774 }
775 return (error);
776 }
777 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
778 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
779 &maxsockets, 0, sysctl_maxsockets, "IU",
780 "Maximum number of sockets available");
781
782 /*
783 * Socket operation routines. These routines are called by the routines in
784 * sys_socket.c or from a system process, and implement the semantics of
785 * socket operations by switching out to the protocol specific routines.
786 */
787
788 /*
789 * Get a socket structure from our zone, and initialize it. Note that it
790 * would probably be better to allocate socket and PCB at the same time, but
791 * I'm not convinced that all the protocols can be easily modified to do
792 * this.
793 *
794 * soalloc() returns a socket with a ref count of 0.
795 */
796 static struct socket *
soalloc(struct vnet * vnet)797 soalloc(struct vnet *vnet)
798 {
799 struct socket *so;
800
801 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
802 if (so == NULL)
803 return (NULL);
804 #ifdef MAC
805 if (mac_socket_init(so, M_NOWAIT) != 0) {
806 uma_zfree(socket_zone, so);
807 return (NULL);
808 }
809 #endif
810 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
811 uma_zfree(socket_zone, so);
812 return (NULL);
813 }
814
815 /*
816 * The socket locking protocol allows to lock 2 sockets at a time,
817 * however, the first one must be a listening socket. WITNESS lacks
818 * a feature to change class of an existing lock, so we use DUPOK.
819 */
820 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
821 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
822 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
823 so->so_rcv.sb_sel = &so->so_rdsel;
824 so->so_snd.sb_sel = &so->so_wrsel;
825 sx_init(&so->so_snd_sx, "so_snd_sx");
826 sx_init(&so->so_rcv_sx, "so_rcv_sx");
827 TAILQ_INIT(&so->so_snd.sb_aiojobq);
828 TAILQ_INIT(&so->so_rcv.sb_aiojobq);
829 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
830 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
831 #ifdef VIMAGE
832 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
833 __func__, __LINE__, so));
834 so->so_vnet = vnet;
835 #endif
836 #ifdef SOCKET_HHOOK
837 /* We shouldn't need the so_global_mtx */
838 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
839 /* Do we need more comprehensive error returns? */
840 uma_zfree(socket_zone, so);
841 return (NULL);
842 }
843 #endif
844 mtx_lock(&so_global_mtx);
845 so->so_gencnt = ++so_gencnt;
846 ++numopensockets;
847 #ifdef VIMAGE
848 vnet->vnet_sockcnt++;
849 #endif
850 mtx_unlock(&so_global_mtx);
851
852 return (so);
853 }
854
855 /*
856 * Free the storage associated with a socket at the socket layer, tear down
857 * locks, labels, etc. All protocol state is assumed already to have been
858 * torn down (and possibly never set up) by the caller.
859 */
860 void
sodealloc(struct socket * so)861 sodealloc(struct socket *so)
862 {
863
864 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
865 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
866
867 mtx_lock(&so_global_mtx);
868 so->so_gencnt = ++so_gencnt;
869 --numopensockets; /* Could be below, but faster here. */
870 #ifdef VIMAGE
871 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
872 __func__, __LINE__, so));
873 so->so_vnet->vnet_sockcnt--;
874 #endif
875 mtx_unlock(&so_global_mtx);
876 #ifdef MAC
877 mac_socket_destroy(so);
878 #endif
879 #ifdef SOCKET_HHOOK
880 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
881 #endif
882
883 khelp_destroy_osd(&so->osd);
884 if (SOLISTENING(so)) {
885 if (so->sol_accept_filter != NULL)
886 accept_filt_setopt(so, NULL);
887 } else {
888 if (so->so_rcv.sb_hiwat)
889 (void)chgsbsize(so->so_cred->cr_uidinfo,
890 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
891 if (so->so_snd.sb_hiwat)
892 (void)chgsbsize(so->so_cred->cr_uidinfo,
893 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
894 sx_destroy(&so->so_snd_sx);
895 sx_destroy(&so->so_rcv_sx);
896 mtx_destroy(&so->so_snd_mtx);
897 mtx_destroy(&so->so_rcv_mtx);
898 }
899 crfree(so->so_cred);
900 mtx_destroy(&so->so_lock);
901 uma_zfree(socket_zone, so);
902 }
903
904 /*
905 * socreate returns a socket with a ref count of 1 and a file descriptor
906 * reference. The socket should be closed with soclose().
907 */
908 int
socreate(int dom,struct socket ** aso,int type,int proto,struct ucred * cred,struct thread * td)909 socreate(int dom, struct socket **aso, int type, int proto,
910 struct ucred *cred, struct thread *td)
911 {
912 struct protosw *prp;
913 struct socket *so;
914 int error;
915
916 /*
917 * XXX: divert(4) historically abused PF_INET. Keep this compatibility
918 * shim until all applications have been updated.
919 */
920 if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
921 proto == IPPROTO_DIVERT)) {
922 dom = PF_DIVERT;
923 printf("%s uses obsolete way to create divert(4) socket\n",
924 td->td_proc->p_comm);
925 }
926
927 prp = pffindproto(dom, type, proto);
928 if (prp == NULL) {
929 /* No support for domain. */
930 if (pffinddomain(dom) == NULL)
931 return (EAFNOSUPPORT);
932 /* No support for socket type. */
933 if (proto == 0 && type != 0)
934 return (EPROTOTYPE);
935 return (EPROTONOSUPPORT);
936 }
937
938 MPASS(prp->pr_attach);
939
940 if ((prp->pr_flags & PR_CAPATTACH) == 0) {
941 if (CAP_TRACING(td))
942 ktrcapfail(CAPFAIL_PROTO, &proto);
943 if (IN_CAPABILITY_MODE(td))
944 return (ECAPMODE);
945 }
946
947 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
948 return (EPROTONOSUPPORT);
949
950 so = soalloc(CRED_TO_VNET(cred));
951 if (so == NULL)
952 return (ENOBUFS);
953
954 so->so_type = type;
955 so->so_cred = crhold(cred);
956 if ((prp->pr_domain->dom_family == PF_INET) ||
957 (prp->pr_domain->dom_family == PF_INET6) ||
958 (prp->pr_domain->dom_family == PF_ROUTE))
959 so->so_fibnum = td->td_proc->p_fibnum;
960 else
961 so->so_fibnum = 0;
962 so->so_proto = prp;
963 #ifdef MAC
964 mac_socket_create(cred, so);
965 #endif
966 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
967 so_rdknl_assert_lock);
968 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
969 so_wrknl_assert_lock);
970 if ((prp->pr_flags & PR_SOCKBUF) == 0) {
971 so->so_snd.sb_mtx = &so->so_snd_mtx;
972 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
973 }
974 /*
975 * Auto-sizing of socket buffers is managed by the protocols and
976 * the appropriate flags must be set in the pr_attach() method.
977 */
978 CURVNET_SET(so->so_vnet);
979 error = prp->pr_attach(so, proto, td);
980 CURVNET_RESTORE();
981 if (error) {
982 sodealloc(so);
983 return (error);
984 }
985 soref(so);
986 *aso = so;
987 return (0);
988 }
989
990 #ifdef REGRESSION
991 static int regression_sonewconn_earlytest = 1;
992 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
993 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
994 #endif
995
996 static int sooverprio = LOG_DEBUG;
997 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW,
998 &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable");
999
1000 static struct timeval overinterval = { 60, 0 };
1001 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
1002 &overinterval,
1003 "Delay in seconds between warnings for listen socket overflows");
1004
1005 /*
1006 * When an attempt at a new connection is noted on a socket which supports
1007 * accept(2), the protocol has two options:
1008 * 1) Call legacy sonewconn() function, which would call protocol attach
1009 * method, same as used for socket(2).
1010 * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
1011 * and then call solisten_enqueue().
1012 *
1013 * Note: the ref count on the socket is 0 on return.
1014 */
1015 struct socket *
solisten_clone(struct socket * head)1016 solisten_clone(struct socket *head)
1017 {
1018 struct sbuf descrsb;
1019 struct socket *so;
1020 int len, overcount;
1021 u_int qlen;
1022 const char localprefix[] = "local:";
1023 char descrbuf[SUNPATHLEN + sizeof(localprefix)];
1024 #if defined(INET6)
1025 char addrbuf[INET6_ADDRSTRLEN];
1026 #elif defined(INET)
1027 char addrbuf[INET_ADDRSTRLEN];
1028 #endif
1029 bool dolog, over;
1030
1031 SOLISTEN_LOCK(head);
1032 over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
1033 #ifdef REGRESSION
1034 if (regression_sonewconn_earlytest && over) {
1035 #else
1036 if (over) {
1037 #endif
1038 head->sol_overcount++;
1039 dolog = (sooverprio >= 0) &&
1040 !!ratecheck(&head->sol_lastover, &overinterval);
1041
1042 /*
1043 * If we're going to log, copy the overflow count and queue
1044 * length from the listen socket before dropping the lock.
1045 * Also, reset the overflow count.
1046 */
1047 if (dolog) {
1048 overcount = head->sol_overcount;
1049 head->sol_overcount = 0;
1050 qlen = head->sol_qlen;
1051 }
1052 SOLISTEN_UNLOCK(head);
1053
1054 if (dolog) {
1055 /*
1056 * Try to print something descriptive about the
1057 * socket for the error message.
1058 */
1059 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
1060 SBUF_FIXEDLEN);
1061 switch (head->so_proto->pr_domain->dom_family) {
1062 #if defined(INET) || defined(INET6)
1063 #ifdef INET
1064 case AF_INET:
1065 #endif
1066 #ifdef INET6
1067 case AF_INET6:
1068 if (head->so_proto->pr_domain->dom_family ==
1069 AF_INET6 ||
1070 (sotoinpcb(head)->inp_inc.inc_flags &
1071 INC_ISIPV6)) {
1072 ip6_sprintf(addrbuf,
1073 &sotoinpcb(head)->inp_inc.inc6_laddr);
1074 sbuf_printf(&descrsb, "[%s]", addrbuf);
1075 } else
1076 #endif
1077 {
1078 #ifdef INET
1079 inet_ntoa_r(
1080 sotoinpcb(head)->inp_inc.inc_laddr,
1081 addrbuf);
1082 sbuf_cat(&descrsb, addrbuf);
1083 #endif
1084 }
1085 sbuf_printf(&descrsb, ":%hu (proto %u)",
1086 ntohs(sotoinpcb(head)->inp_inc.inc_lport),
1087 head->so_proto->pr_protocol);
1088 break;
1089 #endif /* INET || INET6 */
1090 case AF_UNIX:
1091 sbuf_cat(&descrsb, localprefix);
1092 if (sotounpcb(head)->unp_addr != NULL)
1093 len =
1094 sotounpcb(head)->unp_addr->sun_len -
1095 offsetof(struct sockaddr_un,
1096 sun_path);
1097 else
1098 len = 0;
1099 if (len > 0)
1100 sbuf_bcat(&descrsb,
1101 sotounpcb(head)->unp_addr->sun_path,
1102 len);
1103 else
1104 sbuf_cat(&descrsb, "(unknown)");
1105 break;
1106 }
1107
1108 /*
1109 * If we can't print something more specific, at least
1110 * print the domain name.
1111 */
1112 if (sbuf_finish(&descrsb) != 0 ||
1113 sbuf_len(&descrsb) <= 0) {
1114 sbuf_clear(&descrsb);
1115 sbuf_cat(&descrsb,
1116 head->so_proto->pr_domain->dom_name ?:
1117 "unknown");
1118 sbuf_finish(&descrsb);
1119 }
1120 KASSERT(sbuf_len(&descrsb) > 0,
1121 ("%s: sbuf creation failed", __func__));
1122 /*
1123 * Preserve the historic listen queue overflow log
1124 * message, that starts with "sonewconn:". It has
1125 * been known to sysadmins for years and also test
1126 * sys/kern/sonewconn_overflow checks for it.
1127 */
1128 if (head->so_cred == 0) {
1129 log(LOG_PRI(sooverprio),
1130 "sonewconn: pcb %p (%s): "
1131 "Listen queue overflow: %i already in "
1132 "queue awaiting acceptance (%d "
1133 "occurrences)\n", head->so_pcb,
1134 sbuf_data(&descrsb),
1135 qlen, overcount);
1136 } else {
1137 log(LOG_PRI(sooverprio),
1138 "sonewconn: pcb %p (%s): "
1139 "Listen queue overflow: "
1140 "%i already in queue awaiting acceptance "
1141 "(%d occurrences), euid %d, rgid %d, jail %s\n",
1142 head->so_pcb, sbuf_data(&descrsb), qlen,
1143 overcount, head->so_cred->cr_uid,
1144 head->so_cred->cr_rgid,
1145 head->so_cred->cr_prison ?
1146 head->so_cred->cr_prison->pr_name :
1147 "not_jailed");
1148 }
1149 sbuf_delete(&descrsb);
1150
1151 overcount = 0;
1152 }
1153
1154 return (NULL);
1155 }
1156 SOLISTEN_UNLOCK(head);
1157 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
1158 __func__, head));
1159 so = soalloc(head->so_vnet);
1160 if (so == NULL) {
1161 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1162 "limit reached or out of memory\n",
1163 __func__, head->so_pcb);
1164 return (NULL);
1165 }
1166 so->so_listen = head;
1167 so->so_type = head->so_type;
1168 /*
1169 * POSIX is ambiguous on what options an accept(2)ed socket should
1170 * inherit from the listener. Words "create a new socket" may be
1171 * interpreted as not inheriting anything. Best programming practice
1172 * for application developers is to not rely on such inheritance.
1173 * FreeBSD had historically inherited all so_options excluding
1174 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options,
1175 * including those completely irrelevant to a new born socket. For
1176 * compatibility with older versions we will inherit a list of
1177 * meaningful options.
1178 * The crucial bit to inherit is SO_ACCEPTFILTER. We need it present
1179 * in the child socket for soisconnected() promoting socket from the
1180 * incomplete queue to complete. It will be cleared before the child
1181 * gets available to accept(2).
1182 */
1183 so->so_options = head->so_options & (SO_ACCEPTFILTER | SO_KEEPALIVE |
1184 SO_DONTROUTE | SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE);
1185 so->so_linger = head->so_linger;
1186 so->so_state = head->so_state;
1187 so->so_fibnum = head->so_fibnum;
1188 so->so_proto = head->so_proto;
1189 so->so_cred = crhold(head->so_cred);
1190 #ifdef SOCKET_HHOOK
1191 if (V_socket_hhh[HHOOK_SOCKET_NEWCONN]->hhh_nhooks > 0) {
1192 if (hhook_run_socket(so, head, HHOOK_SOCKET_NEWCONN)) {
1193 sodealloc(so);
1194 log(LOG_DEBUG, "%s: hhook run failed\n", __func__);
1195 return (NULL);
1196 }
1197 }
1198 #endif
1199 #ifdef MAC
1200 mac_socket_newconn(head, so);
1201 #endif
1202 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1203 so_rdknl_assert_lock);
1204 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1205 so_wrknl_assert_lock);
1206 VNET_SO_ASSERT(head);
1207 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
1208 sodealloc(so);
1209 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1210 __func__, head->so_pcb);
1211 return (NULL);
1212 }
1213 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
1214 so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
1215 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
1216 so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
1217 so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
1218 so->so_snd.sb_flags = head->sol_sbsnd_flags &
1219 (SB_AUTOSIZE | SB_AUTOLOWAT);
1220 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1221 so->so_snd.sb_mtx = &so->so_snd_mtx;
1222 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1223 }
1224
1225 return (so);
1226 }
1227
1228 /* Connstatus may be 0 or SS_ISCONNECTED. */
1229 struct socket *
1230 sonewconn(struct socket *head, int connstatus)
1231 {
1232 struct socket *so;
1233
1234 if ((so = solisten_clone(head)) == NULL)
1235 return (NULL);
1236
1237 if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
1238 sodealloc(so);
1239 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1240 __func__, head->so_pcb);
1241 return (NULL);
1242 }
1243
1244 (void)solisten_enqueue(so, connstatus);
1245
1246 return (so);
1247 }
1248
1249 /*
1250 * Enqueue socket cloned by solisten_clone() to the listen queue of the
1251 * listener it has been cloned from.
1252 *
1253 * Return 'true' if socket landed on complete queue, otherwise 'false'.
1254 */
1255 bool
1256 solisten_enqueue(struct socket *so, int connstatus)
1257 {
1258 struct socket *head = so->so_listen;
1259
1260 MPASS(refcount_load(&so->so_count) == 0);
1261 refcount_init(&so->so_count, 1);
1262
1263 SOLISTEN_LOCK(head);
1264 if (head->sol_accept_filter != NULL)
1265 connstatus = 0;
1266 so->so_state |= connstatus;
1267 soref(head); /* A socket on (in)complete queue refs head. */
1268 if (connstatus) {
1269 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
1270 so->so_qstate = SQ_COMP;
1271 head->sol_qlen++;
1272 solisten_wakeup(head); /* unlocks */
1273 return (true);
1274 } else {
1275 /*
1276 * Keep removing sockets from the head until there's room for
1277 * us to insert on the tail. In pre-locking revisions, this
1278 * was a simple if(), but as we could be racing with other
1279 * threads and soabort() requires dropping locks, we must
1280 * loop waiting for the condition to be true.
1281 */
1282 while (head->sol_incqlen > head->sol_qlimit) {
1283 struct socket *sp;
1284
1285 sp = TAILQ_FIRST(&head->sol_incomp);
1286 TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
1287 head->sol_incqlen--;
1288 SOCK_LOCK(sp);
1289 sp->so_qstate = SQ_NONE;
1290 sp->so_listen = NULL;
1291 SOCK_UNLOCK(sp);
1292 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */
1293 soabort(sp);
1294 SOLISTEN_LOCK(head);
1295 }
1296 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
1297 so->so_qstate = SQ_INCOMP;
1298 head->sol_incqlen++;
1299 SOLISTEN_UNLOCK(head);
1300 return (false);
1301 }
1302 }
1303
1304 #if defined(SCTP) || defined(SCTP_SUPPORT)
1305 /*
1306 * Socket part of sctp_peeloff(). Detach a new socket from an
1307 * association. The new socket is returned with a reference.
1308 *
1309 * XXXGL: reduce copy-paste with solisten_clone().
1310 */
1311 struct socket *
1312 sopeeloff(struct socket *head)
1313 {
1314 struct socket *so;
1315
1316 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
1317 __func__, __LINE__, head));
1318 so = soalloc(head->so_vnet);
1319 if (so == NULL) {
1320 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1321 "limit reached or out of memory\n",
1322 __func__, head->so_pcb);
1323 return (NULL);
1324 }
1325 so->so_type = head->so_type;
1326 so->so_options = head->so_options;
1327 so->so_linger = head->so_linger;
1328 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
1329 so->so_fibnum = head->so_fibnum;
1330 so->so_proto = head->so_proto;
1331 so->so_cred = crhold(head->so_cred);
1332 #ifdef MAC
1333 mac_socket_newconn(head, so);
1334 #endif
1335 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1336 so_rdknl_assert_lock);
1337 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1338 so_wrknl_assert_lock);
1339 VNET_SO_ASSERT(head);
1340 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
1341 sodealloc(so);
1342 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1343 __func__, head->so_pcb);
1344 return (NULL);
1345 }
1346 if (so->so_proto->pr_attach(so, 0, NULL)) {
1347 sodealloc(so);
1348 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1349 __func__, head->so_pcb);
1350 return (NULL);
1351 }
1352 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
1353 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
1354 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
1355 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
1356 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
1357 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
1358 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1359 so->so_snd.sb_mtx = &so->so_snd_mtx;
1360 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1361 }
1362
1363 soref(so);
1364
1365 return (so);
1366 }
1367 #endif /* SCTP */
1368
1369 int
1370 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
1371 {
1372 int error;
1373
1374 CURVNET_SET(so->so_vnet);
1375 error = so->so_proto->pr_bind(so, nam, td);
1376 CURVNET_RESTORE();
1377 return (error);
1378 }
1379
1380 int
1381 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1382 {
1383 int error;
1384
1385 CURVNET_SET(so->so_vnet);
1386 error = so->so_proto->pr_bindat(fd, so, nam, td);
1387 CURVNET_RESTORE();
1388 return (error);
1389 }
1390
1391 /*
1392 * solisten() transitions a socket from a non-listening state to a listening
1393 * state, but can also be used to update the listen queue depth on an
1394 * existing listen socket. The protocol will call back into the sockets
1395 * layer using solisten_proto_check() and solisten_proto() to check and set
1396 * socket-layer listen state. Call backs are used so that the protocol can
1397 * acquire both protocol and socket layer locks in whatever order is required
1398 * by the protocol.
1399 *
1400 * Protocol implementors are advised to hold the socket lock across the
1401 * socket-layer test and set to avoid races at the socket layer.
1402 */
1403 int
1404 solisten(struct socket *so, int backlog, struct thread *td)
1405 {
1406 int error;
1407
1408 CURVNET_SET(so->so_vnet);
1409 error = so->so_proto->pr_listen(so, backlog, td);
1410 CURVNET_RESTORE();
1411 return (error);
1412 }
1413
1414 /*
1415 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in
1416 * order to interlock with socket I/O.
1417 */
1418 int
1419 solisten_proto_check(struct socket *so)
1420 {
1421 SOCK_LOCK_ASSERT(so);
1422
1423 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1424 SS_ISDISCONNECTING)) != 0)
1425 return (EINVAL);
1426
1427 /*
1428 * Sleeping is not permitted here, so simply fail if userspace is
1429 * attempting to transmit or receive on the socket. This kind of
1430 * transient failure is not ideal, but it should occur only if userspace
1431 * is misusing the socket interfaces.
1432 */
1433 if (!sx_try_xlock(&so->so_snd_sx))
1434 return (EAGAIN);
1435 if (!sx_try_xlock(&so->so_rcv_sx)) {
1436 sx_xunlock(&so->so_snd_sx);
1437 return (EAGAIN);
1438 }
1439 mtx_lock(&so->so_snd_mtx);
1440 mtx_lock(&so->so_rcv_mtx);
1441
1442 /* Interlock with soo_aio_queue() and KTLS. */
1443 if (!SOLISTENING(so)) {
1444 bool ktls;
1445
1446 #ifdef KERN_TLS
1447 ktls = so->so_snd.sb_tls_info != NULL ||
1448 so->so_rcv.sb_tls_info != NULL;
1449 #else
1450 ktls = false;
1451 #endif
1452 if (ktls ||
1453 (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
1454 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) {
1455 solisten_proto_abort(so);
1456 return (EINVAL);
1457 }
1458 }
1459
1460 return (0);
1461 }
1462
1463 /*
1464 * Undo the setup done by solisten_proto_check().
1465 */
1466 void
1467 solisten_proto_abort(struct socket *so)
1468 {
1469 mtx_unlock(&so->so_snd_mtx);
1470 mtx_unlock(&so->so_rcv_mtx);
1471 sx_xunlock(&so->so_snd_sx);
1472 sx_xunlock(&so->so_rcv_sx);
1473 }
1474
1475 void
1476 solisten_proto(struct socket *so, int backlog)
1477 {
1478 int sbrcv_lowat, sbsnd_lowat;
1479 u_int sbrcv_hiwat, sbsnd_hiwat;
1480 short sbrcv_flags, sbsnd_flags;
1481 sbintime_t sbrcv_timeo, sbsnd_timeo;
1482
1483 SOCK_LOCK_ASSERT(so);
1484 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1485 SS_ISDISCONNECTING)) == 0,
1486 ("%s: bad socket state %p", __func__, so));
1487
1488 if (SOLISTENING(so))
1489 goto listening;
1490
1491 /*
1492 * Change this socket to listening state.
1493 */
1494 sbrcv_lowat = so->so_rcv.sb_lowat;
1495 sbsnd_lowat = so->so_snd.sb_lowat;
1496 sbrcv_hiwat = so->so_rcv.sb_hiwat;
1497 sbsnd_hiwat = so->so_snd.sb_hiwat;
1498 sbrcv_flags = so->so_rcv.sb_flags;
1499 sbsnd_flags = so->so_snd.sb_flags;
1500 sbrcv_timeo = so->so_rcv.sb_timeo;
1501 sbsnd_timeo = so->so_snd.sb_timeo;
1502
1503 #ifdef MAC
1504 mac_socketpeer_label_free(so->so_peerlabel);
1505 #endif
1506
1507 if (!(so->so_proto->pr_flags & PR_SOCKBUF)) {
1508 sbdestroy(so, SO_SND);
1509 sbdestroy(so, SO_RCV);
1510 }
1511
1512 #ifdef INVARIANTS
1513 bzero(&so->so_rcv,
1514 sizeof(struct socket) - offsetof(struct socket, so_rcv));
1515 #endif
1516
1517 so->sol_sbrcv_lowat = sbrcv_lowat;
1518 so->sol_sbsnd_lowat = sbsnd_lowat;
1519 so->sol_sbrcv_hiwat = sbrcv_hiwat;
1520 so->sol_sbsnd_hiwat = sbsnd_hiwat;
1521 so->sol_sbrcv_flags = sbrcv_flags;
1522 so->sol_sbsnd_flags = sbsnd_flags;
1523 so->sol_sbrcv_timeo = sbrcv_timeo;
1524 so->sol_sbsnd_timeo = sbsnd_timeo;
1525
1526 so->sol_qlen = so->sol_incqlen = 0;
1527 TAILQ_INIT(&so->sol_incomp);
1528 TAILQ_INIT(&so->sol_comp);
1529
1530 so->sol_accept_filter = NULL;
1531 so->sol_accept_filter_arg = NULL;
1532 so->sol_accept_filter_str = NULL;
1533
1534 so->sol_upcall = NULL;
1535 so->sol_upcallarg = NULL;
1536
1537 so->so_options |= SO_ACCEPTCONN;
1538
1539 listening:
1540 if (backlog < 0 || backlog > V_somaxconn)
1541 backlog = V_somaxconn;
1542 so->sol_qlimit = backlog;
1543
1544 mtx_unlock(&so->so_snd_mtx);
1545 mtx_unlock(&so->so_rcv_mtx);
1546 sx_xunlock(&so->so_snd_sx);
1547 sx_xunlock(&so->so_rcv_sx);
1548 }
1549
1550 /*
1551 * Wakeup listeners/subsystems once we have a complete connection.
1552 * Enters with lock, returns unlocked.
1553 */
1554 void
1555 solisten_wakeup(struct socket *sol)
1556 {
1557
1558 if (sol->sol_upcall != NULL)
1559 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1560 else {
1561 selwakeuppri(&sol->so_rdsel, PSOCK);
1562 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1563 }
1564 SOLISTEN_UNLOCK(sol);
1565 wakeup_one(&sol->sol_comp);
1566 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1567 pgsigio(&sol->so_sigio, SIGIO, 0);
1568 }
1569
1570 /*
1571 * Return single connection off a listening socket queue. Main consumer of
1572 * the function is kern_accept4(). Some modules, that do their own accept
1573 * management also use the function. The socket reference held by the
1574 * listen queue is handed to the caller.
1575 *
1576 * Listening socket must be locked on entry and is returned unlocked on
1577 * return.
1578 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1579 */
1580 int
1581 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1582 {
1583 struct socket *so;
1584 int error;
1585
1586 SOLISTEN_LOCK_ASSERT(head);
1587
1588 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1589 head->so_error == 0) {
1590 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1591 "accept", 0);
1592 if (error != 0) {
1593 SOLISTEN_UNLOCK(head);
1594 return (error);
1595 }
1596 }
1597 if (head->so_error) {
1598 error = head->so_error;
1599 head->so_error = 0;
1600 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1601 error = EWOULDBLOCK;
1602 else
1603 error = 0;
1604 if (error) {
1605 SOLISTEN_UNLOCK(head);
1606 return (error);
1607 }
1608 so = TAILQ_FIRST(&head->sol_comp);
1609 SOCK_LOCK(so);
1610 KASSERT(so->so_qstate == SQ_COMP,
1611 ("%s: so %p not SQ_COMP", __func__, so));
1612 head->sol_qlen--;
1613 so->so_qstate = SQ_NONE;
1614 so->so_listen = NULL;
1615 TAILQ_REMOVE(&head->sol_comp, so, so_list);
1616 if (flags & ACCEPT4_INHERIT)
1617 so->so_state |= (head->so_state & SS_NBIO);
1618 else
1619 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1620 SOCK_UNLOCK(so);
1621 sorele_locked(head);
1622
1623 *ret = so;
1624 return (0);
1625 }
1626
1627 static struct so_splice *
1628 so_splice_alloc(off_t max)
1629 {
1630 struct so_splice *sp;
1631
1632 sp = uma_zalloc(splice_zone, M_WAITOK);
1633 sp->src = NULL;
1634 sp->dst = NULL;
1635 sp->max = max > 0 ? max : -1;
1636 do {
1637 sp->wq_index = atomic_fetchadd_32(&splice_index, 1) %
1638 (mp_maxid + 1);
1639 } while (CPU_ABSENT(sp->wq_index));
1640 sp->state = SPLICE_INIT;
1641 TIMEOUT_TASK_INIT(taskqueue_thread, &sp->timeout, 0, so_splice_timeout,
1642 sp);
1643 return (sp);
1644 }
1645
1646 static void
1647 so_splice_free(struct so_splice *sp)
1648 {
1649 KASSERT(sp->state == SPLICE_CLOSED,
1650 ("so_splice_free: sp %p not closed", sp));
1651 uma_zfree(splice_zone, sp);
1652 }
1653
1654 static void
1655 so_splice_timeout(void *arg, int pending __unused)
1656 {
1657 struct so_splice *sp;
1658
1659 sp = arg;
1660 (void)so_unsplice(sp->src, true);
1661 }
1662
1663 /*
1664 * Splice the output from so to the input of so2.
1665 */
1666 static int
1667 so_splice(struct socket *so, struct socket *so2, struct splice *splice)
1668 {
1669 struct so_splice *sp;
1670 int error;
1671
1672 if (splice->sp_max < 0)
1673 return (EINVAL);
1674 /* Handle only TCP for now; TODO: other streaming protos */
1675 if (so->so_proto->pr_protocol != IPPROTO_TCP ||
1676 so2->so_proto->pr_protocol != IPPROTO_TCP)
1677 return (EPROTONOSUPPORT);
1678 if (so->so_vnet != so2->so_vnet)
1679 return (EINVAL);
1680
1681 /* so_splice_xfer() assumes that we're using these implementations. */
1682 KASSERT(so->so_proto->pr_sosend == sosend_generic,
1683 ("so_splice: sosend not sosend_generic"));
1684 KASSERT(so2->so_proto->pr_soreceive == soreceive_generic ||
1685 so2->so_proto->pr_soreceive == soreceive_stream,
1686 ("so_splice: soreceive not soreceive_generic/stream"));
1687
1688 sp = so_splice_alloc(splice->sp_max);
1689 so->so_splice_sent = 0;
1690 sp->src = so;
1691 sp->dst = so2;
1692
1693 error = 0;
1694 SOCK_LOCK(so);
1695 if (SOLISTENING(so))
1696 error = EINVAL;
1697 else if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1698 error = ENOTCONN;
1699 else if (so->so_splice != NULL)
1700 error = EBUSY;
1701 if (error != 0) {
1702 SOCK_UNLOCK(so);
1703 uma_zfree(splice_zone, sp);
1704 return (error);
1705 }
1706 SOCK_RECVBUF_LOCK(so);
1707 if (so->so_rcv.sb_tls_info != NULL) {
1708 SOCK_RECVBUF_UNLOCK(so);
1709 SOCK_UNLOCK(so);
1710 uma_zfree(splice_zone, sp);
1711 return (EINVAL);
1712 }
1713 so->so_rcv.sb_flags |= SB_SPLICED;
1714 so->so_splice = sp;
1715 soref(so);
1716 SOCK_RECVBUF_UNLOCK(so);
1717 SOCK_UNLOCK(so);
1718
1719 error = 0;
1720 SOCK_LOCK(so2);
1721 if (SOLISTENING(so2))
1722 error = EINVAL;
1723 else if ((so2->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1724 error = ENOTCONN;
1725 else if (so2->so_splice_back != NULL)
1726 error = EBUSY;
1727 if (error != 0) {
1728 SOCK_UNLOCK(so2);
1729 so_unsplice(so, false);
1730 return (error);
1731 }
1732 SOCK_SENDBUF_LOCK(so2);
1733 if (so->so_snd.sb_tls_info != NULL) {
1734 SOCK_SENDBUF_UNLOCK(so2);
1735 SOCK_UNLOCK(so2);
1736 so_unsplice(so, false);
1737 return (EINVAL);
1738 }
1739 so2->so_snd.sb_flags |= SB_SPLICED;
1740 so2->so_splice_back = sp;
1741 soref(so2);
1742 mtx_lock(&sp->mtx);
1743 SOCK_SENDBUF_UNLOCK(so2);
1744 SOCK_UNLOCK(so2);
1745
1746 if (splice->sp_idle.tv_sec != 0 || splice->sp_idle.tv_usec != 0) {
1747 taskqueue_enqueue_timeout_sbt(taskqueue_thread, &sp->timeout,
1748 tvtosbt(splice->sp_idle), 0, C_PREL(4));
1749 }
1750
1751 /*
1752 * Transfer any data already present in the socket buffer.
1753 */
1754 KASSERT(sp->state == SPLICE_INIT,
1755 ("so_splice: splice %p state %d", sp, sp->state));
1756 sp->state = SPLICE_QUEUED;
1757 so_splice_xfer(sp);
1758 return (0);
1759 }
1760
1761 static int
1762 so_unsplice(struct socket *so, bool timeout)
1763 {
1764 struct socket *so2;
1765 struct so_splice *sp;
1766 bool drain, so2rele;
1767
1768 /*
1769 * First unset SB_SPLICED and hide the splice structure so that
1770 * wakeup routines will stop enqueuing work. This also ensures that
1771 * a only a single thread will proceed with the unsplice.
1772 */
1773 SOCK_LOCK(so);
1774 if (SOLISTENING(so)) {
1775 SOCK_UNLOCK(so);
1776 return (EINVAL);
1777 }
1778 SOCK_RECVBUF_LOCK(so);
1779 if ((so->so_rcv.sb_flags & SB_SPLICED) == 0) {
1780 SOCK_RECVBUF_UNLOCK(so);
1781 SOCK_UNLOCK(so);
1782 return (ENOTCONN);
1783 }
1784 sp = so->so_splice;
1785 mtx_lock(&sp->mtx);
1786 if (sp->state == SPLICE_INIT) {
1787 /*
1788 * A splice is in the middle of being set up.
1789 */
1790 mtx_unlock(&sp->mtx);
1791 SOCK_RECVBUF_UNLOCK(so);
1792 SOCK_UNLOCK(so);
1793 return (ENOTCONN);
1794 }
1795 mtx_unlock(&sp->mtx);
1796 so->so_rcv.sb_flags &= ~SB_SPLICED;
1797 so->so_splice = NULL;
1798 SOCK_RECVBUF_UNLOCK(so);
1799 SOCK_UNLOCK(so);
1800
1801 so2 = sp->dst;
1802 SOCK_LOCK(so2);
1803 KASSERT(!SOLISTENING(so2), ("%s: so2 is listening", __func__));
1804 SOCK_SENDBUF_LOCK(so2);
1805 KASSERT(sp->state == SPLICE_INIT ||
1806 (so2->so_snd.sb_flags & SB_SPLICED) != 0,
1807 ("%s: so2 is not spliced", __func__));
1808 KASSERT(sp->state == SPLICE_INIT ||
1809 so2->so_splice_back == sp,
1810 ("%s: so_splice_back != sp", __func__));
1811 so2->so_snd.sb_flags &= ~SB_SPLICED;
1812 so2rele = so2->so_splice_back != NULL;
1813 so2->so_splice_back = NULL;
1814 SOCK_SENDBUF_UNLOCK(so2);
1815 SOCK_UNLOCK(so2);
1816
1817 /*
1818 * No new work is being enqueued. The worker thread might be
1819 * splicing data right now, in which case we want to wait for it to
1820 * finish before proceeding.
1821 */
1822 mtx_lock(&sp->mtx);
1823 switch (sp->state) {
1824 case SPLICE_QUEUED:
1825 case SPLICE_RUNNING:
1826 sp->state = SPLICE_CLOSING;
1827 while (sp->state == SPLICE_CLOSING)
1828 msleep(sp, &sp->mtx, PSOCK, "unsplice", 0);
1829 break;
1830 case SPLICE_INIT:
1831 case SPLICE_IDLE:
1832 case SPLICE_EXCEPTION:
1833 sp->state = SPLICE_CLOSED;
1834 break;
1835 default:
1836 __assert_unreachable();
1837 }
1838 if (!timeout) {
1839 drain = taskqueue_cancel_timeout(taskqueue_thread, &sp->timeout,
1840 NULL) != 0;
1841 } else {
1842 drain = false;
1843 }
1844 mtx_unlock(&sp->mtx);
1845 if (drain)
1846 taskqueue_drain_timeout(taskqueue_thread, &sp->timeout);
1847
1848 /*
1849 * Now we hold the sole reference to the splice structure.
1850 * Clean up: signal userspace and release socket references.
1851 */
1852 sorwakeup(so);
1853 CURVNET_SET(so->so_vnet);
1854 sorele(so);
1855 sowwakeup(so2);
1856 if (so2rele)
1857 sorele(so2);
1858 CURVNET_RESTORE();
1859 so_splice_free(sp);
1860 return (0);
1861 }
1862
1863 /*
1864 * Free socket upon release of the very last reference.
1865 */
1866 static void
1867 sofree(struct socket *so)
1868 {
1869 struct protosw *pr = so->so_proto;
1870
1871 SOCK_LOCK_ASSERT(so);
1872 KASSERT(refcount_load(&so->so_count) == 0,
1873 ("%s: so %p has references", __func__, so));
1874 KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1875 ("%s: so %p is on listen queue", __func__, so));
1876 KASSERT(SOLISTENING(so) || (so->so_rcv.sb_flags & SB_SPLICED) == 0,
1877 ("%s: so %p rcvbuf is spliced", __func__, so));
1878 KASSERT(SOLISTENING(so) || (so->so_snd.sb_flags & SB_SPLICED) == 0,
1879 ("%s: so %p sndbuf is spliced", __func__, so));
1880 KASSERT(so->so_splice == NULL && so->so_splice_back == NULL,
1881 ("%s: so %p has spliced data", __func__, so));
1882
1883 SOCK_UNLOCK(so);
1884
1885 if (so->so_dtor != NULL)
1886 so->so_dtor(so);
1887
1888 VNET_SO_ASSERT(so);
1889 if (pr->pr_detach != NULL)
1890 pr->pr_detach(so);
1891
1892 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1893 /*
1894 * From this point on, we assume that no other references to
1895 * this socket exist anywhere else in the stack. Therefore,
1896 * no locks need to be acquired or held.
1897 */
1898 #ifdef INVARIANTS
1899 SOCK_SENDBUF_LOCK(so);
1900 SOCK_RECVBUF_LOCK(so);
1901 #endif
1902 sbdestroy(so, SO_SND);
1903 sbdestroy(so, SO_RCV);
1904 #ifdef INVARIANTS
1905 SOCK_SENDBUF_UNLOCK(so);
1906 SOCK_RECVBUF_UNLOCK(so);
1907 #endif
1908 }
1909 seldrain(&so->so_rdsel);
1910 seldrain(&so->so_wrsel);
1911 knlist_destroy(&so->so_rdsel.si_note);
1912 knlist_destroy(&so->so_wrsel.si_note);
1913 sodealloc(so);
1914 }
1915
1916 /*
1917 * Release a reference on a socket while holding the socket lock.
1918 * Unlocks the socket lock before returning.
1919 */
1920 void
1921 sorele_locked(struct socket *so)
1922 {
1923 SOCK_LOCK_ASSERT(so);
1924 if (refcount_release(&so->so_count))
1925 sofree(so);
1926 else
1927 SOCK_UNLOCK(so);
1928 }
1929
1930 /*
1931 * Close a socket on last file table reference removal. Initiate disconnect
1932 * if connected. Free socket when disconnect complete.
1933 *
1934 * This function will sorele() the socket. Note that soclose() may be called
1935 * prior to the ref count reaching zero. The actual socket structure will
1936 * not be freed until the ref count reaches zero.
1937 */
1938 int
1939 soclose(struct socket *so)
1940 {
1941 struct accept_queue lqueue;
1942 int error = 0;
1943 bool listening, last __diagused;
1944
1945 CURVNET_SET(so->so_vnet);
1946 funsetown(&so->so_sigio);
1947 if (so->so_state & SS_ISCONNECTED) {
1948 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1949 error = sodisconnect(so);
1950 if (error) {
1951 if (error == ENOTCONN)
1952 error = 0;
1953 goto drop;
1954 }
1955 }
1956
1957 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1958 if ((so->so_state & SS_ISDISCONNECTING) &&
1959 (so->so_state & SS_NBIO))
1960 goto drop;
1961 while (so->so_state & SS_ISCONNECTED) {
1962 error = tsleep(&so->so_timeo,
1963 PSOCK | PCATCH, "soclos",
1964 so->so_linger * hz);
1965 if (error)
1966 break;
1967 }
1968 }
1969 }
1970
1971 drop:
1972 if (so->so_proto->pr_close != NULL)
1973 so->so_proto->pr_close(so);
1974
1975 SOCK_LOCK(so);
1976 if ((listening = SOLISTENING(so))) {
1977 struct socket *sp;
1978
1979 TAILQ_INIT(&lqueue);
1980 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1981 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1982
1983 so->sol_qlen = so->sol_incqlen = 0;
1984
1985 TAILQ_FOREACH(sp, &lqueue, so_list) {
1986 SOCK_LOCK(sp);
1987 sp->so_qstate = SQ_NONE;
1988 sp->so_listen = NULL;
1989 SOCK_UNLOCK(sp);
1990 last = refcount_release(&so->so_count);
1991 KASSERT(!last, ("%s: released last reference for %p",
1992 __func__, so));
1993 }
1994 }
1995 sorele_locked(so);
1996 if (listening) {
1997 struct socket *sp, *tsp;
1998
1999 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
2000 soabort(sp);
2001 }
2002 CURVNET_RESTORE();
2003 return (error);
2004 }
2005
2006 /*
2007 * soabort() is used to abruptly tear down a connection, such as when a
2008 * resource limit is reached (listen queue depth exceeded), or if a listen
2009 * socket is closed while there are sockets waiting to be accepted.
2010 *
2011 * This interface is tricky, because it is called on an unreferenced socket,
2012 * and must be called only by a thread that has actually removed the socket
2013 * from the listen queue it was on. Likely this thread holds the last
2014 * reference on the socket and soabort() will proceed with sofree(). But
2015 * it might be not the last, as the sockets on the listen queues are seen
2016 * from the protocol side.
2017 *
2018 * This interface will call into the protocol code, so must not be called
2019 * with any socket locks held. Protocols do call it while holding their own
2020 * recursible protocol mutexes, but this is something that should be subject
2021 * to review in the future.
2022 *
2023 * Usually socket should have a single reference left, but this is not a
2024 * requirement. In the past, when we have had named references for file
2025 * descriptor and protocol, we asserted that none of them are being held.
2026 */
2027 void
2028 soabort(struct socket *so)
2029 {
2030
2031 VNET_SO_ASSERT(so);
2032
2033 if (so->so_proto->pr_abort != NULL)
2034 so->so_proto->pr_abort(so);
2035 SOCK_LOCK(so);
2036 sorele_locked(so);
2037 }
2038
2039 int
2040 soaccept(struct socket *so, struct sockaddr *sa)
2041 {
2042 #ifdef INVARIANTS
2043 u_char len = sa->sa_len;
2044 #endif
2045 int error;
2046
2047 CURVNET_SET(so->so_vnet);
2048 error = so->so_proto->pr_accept(so, sa);
2049 KASSERT(sa->sa_len <= len,
2050 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2051 CURVNET_RESTORE();
2052 return (error);
2053 }
2054
2055 int
2056 sopeeraddr(struct socket *so, struct sockaddr *sa)
2057 {
2058 #ifdef INVARIANTS
2059 u_char len = sa->sa_len;
2060 #endif
2061 int error;
2062
2063 CURVNET_ASSERT_SET();
2064
2065 error = so->so_proto->pr_peeraddr(so, sa);
2066 KASSERT(sa->sa_len <= len,
2067 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2068
2069 return (error);
2070 }
2071
2072 int
2073 sosockaddr(struct socket *so, struct sockaddr *sa)
2074 {
2075 #ifdef INVARIANTS
2076 u_char len = sa->sa_len;
2077 #endif
2078 int error;
2079
2080 CURVNET_SET(so->so_vnet);
2081 error = so->so_proto->pr_sockaddr(so, sa);
2082 KASSERT(sa->sa_len <= len,
2083 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2084 CURVNET_RESTORE();
2085
2086 return (error);
2087 }
2088
2089 int
2090 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
2091 {
2092
2093 return (soconnectat(AT_FDCWD, so, nam, td));
2094 }
2095
2096 int
2097 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
2098 {
2099 int error;
2100
2101 CURVNET_SET(so->so_vnet);
2102
2103 /*
2104 * If protocol is connection-based, can only connect once.
2105 * Otherwise, if connected, try to disconnect first. This allows
2106 * user to disconnect by connecting to, e.g., a null address.
2107 *
2108 * Note, this check is racy and may need to be re-evaluated at the
2109 * protocol layer.
2110 */
2111 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
2112 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
2113 (error = sodisconnect(so)))) {
2114 error = EISCONN;
2115 } else {
2116 /*
2117 * Prevent accumulated error from previous connection from
2118 * biting us.
2119 */
2120 so->so_error = 0;
2121 if (fd == AT_FDCWD) {
2122 error = so->so_proto->pr_connect(so, nam, td);
2123 } else {
2124 error = so->so_proto->pr_connectat(fd, so, nam, td);
2125 }
2126 }
2127 CURVNET_RESTORE();
2128
2129 return (error);
2130 }
2131
2132 int
2133 soconnect2(struct socket *so1, struct socket *so2)
2134 {
2135 int error;
2136
2137 CURVNET_SET(so1->so_vnet);
2138 error = so1->so_proto->pr_connect2(so1, so2);
2139 CURVNET_RESTORE();
2140 return (error);
2141 }
2142
2143 int
2144 sodisconnect(struct socket *so)
2145 {
2146 int error;
2147
2148 if ((so->so_state & SS_ISCONNECTED) == 0)
2149 return (ENOTCONN);
2150 if (so->so_state & SS_ISDISCONNECTING)
2151 return (EALREADY);
2152 VNET_SO_ASSERT(so);
2153 error = so->so_proto->pr_disconnect(so);
2154 return (error);
2155 }
2156
2157 int
2158 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
2159 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2160 {
2161 long space;
2162 ssize_t resid;
2163 int clen = 0, error, dontroute;
2164
2165 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
2166 KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
2167 ("sosend_dgram: !PR_ATOMIC"));
2168
2169 if (uio != NULL)
2170 resid = uio->uio_resid;
2171 else
2172 resid = top->m_pkthdr.len;
2173 /*
2174 * In theory resid should be unsigned. However, space must be
2175 * signed, as it might be less than 0 if we over-committed, and we
2176 * must use a signed comparison of space and resid. On the other
2177 * hand, a negative resid causes us to loop sending 0-length
2178 * segments to the protocol.
2179 */
2180 if (resid < 0) {
2181 error = EINVAL;
2182 goto out;
2183 }
2184
2185 dontroute =
2186 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
2187 if (td != NULL)
2188 td->td_ru.ru_msgsnd++;
2189 if (control != NULL)
2190 clen = control->m_len;
2191
2192 SOCKBUF_LOCK(&so->so_snd);
2193 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2194 SOCKBUF_UNLOCK(&so->so_snd);
2195 error = EPIPE;
2196 goto out;
2197 }
2198 if (so->so_error) {
2199 error = so->so_error;
2200 so->so_error = 0;
2201 SOCKBUF_UNLOCK(&so->so_snd);
2202 goto out;
2203 }
2204 if ((so->so_state & SS_ISCONNECTED) == 0) {
2205 /*
2206 * `sendto' and `sendmsg' is allowed on a connection-based
2207 * socket if it supports implied connect. Return ENOTCONN if
2208 * not connected and no address is supplied.
2209 */
2210 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2211 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2212 if (!(resid == 0 && clen != 0)) {
2213 SOCKBUF_UNLOCK(&so->so_snd);
2214 error = ENOTCONN;
2215 goto out;
2216 }
2217 } else if (addr == NULL) {
2218 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2219 error = ENOTCONN;
2220 else
2221 error = EDESTADDRREQ;
2222 SOCKBUF_UNLOCK(&so->so_snd);
2223 goto out;
2224 }
2225 }
2226
2227 /*
2228 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a
2229 * problem and need fixing.
2230 */
2231 space = sbspace(&so->so_snd);
2232 if (flags & MSG_OOB)
2233 space += 1024;
2234 space -= clen;
2235 SOCKBUF_UNLOCK(&so->so_snd);
2236 if (resid > space) {
2237 error = EMSGSIZE;
2238 goto out;
2239 }
2240 if (uio == NULL) {
2241 resid = 0;
2242 if (flags & MSG_EOR)
2243 top->m_flags |= M_EOR;
2244 } else {
2245 /*
2246 * Copy the data from userland into a mbuf chain.
2247 * If no data is to be copied in, a single empty mbuf
2248 * is returned.
2249 */
2250 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
2251 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
2252 if (top == NULL) {
2253 error = EFAULT; /* only possible error */
2254 goto out;
2255 }
2256 space -= resid - uio->uio_resid;
2257 resid = uio->uio_resid;
2258 }
2259 KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
2260 /*
2261 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
2262 * than with.
2263 */
2264 if (dontroute) {
2265 SOCK_LOCK(so);
2266 so->so_options |= SO_DONTROUTE;
2267 SOCK_UNLOCK(so);
2268 }
2269 /*
2270 * XXX all the SBS_CANTSENDMORE checks previously done could be out
2271 * of date. We could have received a reset packet in an interrupt or
2272 * maybe we slept while doing page faults in uiomove() etc. We could
2273 * probably recheck again inside the locking protection here, but
2274 * there are probably other places that this also happens. We must
2275 * rethink this.
2276 */
2277 VNET_SO_ASSERT(so);
2278 error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
2279 /*
2280 * If the user set MSG_EOF, the protocol understands this flag and
2281 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
2282 */
2283 ((flags & MSG_EOF) &&
2284 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2285 (resid <= 0)) ?
2286 PRUS_EOF :
2287 /* If there is more to send set PRUS_MORETOCOME */
2288 (flags & MSG_MORETOCOME) ||
2289 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
2290 top, addr, control, td);
2291 if (dontroute) {
2292 SOCK_LOCK(so);
2293 so->so_options &= ~SO_DONTROUTE;
2294 SOCK_UNLOCK(so);
2295 }
2296 clen = 0;
2297 control = NULL;
2298 top = NULL;
2299 out:
2300 if (top != NULL)
2301 m_freem(top);
2302 if (control != NULL)
2303 m_freem(control);
2304 return (error);
2305 }
2306
2307 /*
2308 * Send on a socket. If send must go all at once and message is larger than
2309 * send buffering, then hard error. Lock against other senders. If must go
2310 * all at once and not enough room now, then inform user that this would
2311 * block and do nothing. Otherwise, if nonblocking, send as much as
2312 * possible. The data to be sent is described by "uio" if nonzero, otherwise
2313 * by the mbuf chain "top" (which must be null if uio is not). Data provided
2314 * in mbuf chain must be small enough to send all at once.
2315 *
2316 * Returns nonzero on error, timeout or signal; callers must check for short
2317 * counts if EINTR/ERESTART are returned. Data and control buffers are freed
2318 * on return.
2319 */
2320 static int
2321 sosend_generic_locked(struct socket *so, struct sockaddr *addr, struct uio *uio,
2322 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2323 {
2324 long space;
2325 ssize_t resid;
2326 int clen = 0, error, dontroute;
2327 int atomic = sosendallatonce(so) || top;
2328 int pr_send_flag;
2329 #ifdef KERN_TLS
2330 struct ktls_session *tls;
2331 int tls_enq_cnt, tls_send_flag;
2332 uint8_t tls_rtype;
2333
2334 tls = NULL;
2335 tls_rtype = TLS_RLTYPE_APP;
2336 #endif
2337
2338 SOCK_IO_SEND_ASSERT_LOCKED(so);
2339
2340 if (uio != NULL)
2341 resid = uio->uio_resid;
2342 else if ((top->m_flags & M_PKTHDR) != 0)
2343 resid = top->m_pkthdr.len;
2344 else
2345 resid = m_length(top, NULL);
2346 /*
2347 * In theory resid should be unsigned. However, space must be
2348 * signed, as it might be less than 0 if we over-committed, and we
2349 * must use a signed comparison of space and resid. On the other
2350 * hand, a negative resid causes us to loop sending 0-length
2351 * segments to the protocol.
2352 *
2353 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
2354 * type sockets since that's an error.
2355 */
2356 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
2357 error = EINVAL;
2358 goto out;
2359 }
2360
2361 dontroute =
2362 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
2363 (so->so_proto->pr_flags & PR_ATOMIC);
2364 if (td != NULL)
2365 td->td_ru.ru_msgsnd++;
2366 if (control != NULL)
2367 clen = control->m_len;
2368
2369 #ifdef KERN_TLS
2370 tls_send_flag = 0;
2371 tls = ktls_hold(so->so_snd.sb_tls_info);
2372 if (tls != NULL) {
2373 if (tls->mode == TCP_TLS_MODE_SW)
2374 tls_send_flag = PRUS_NOTREADY;
2375
2376 if (control != NULL) {
2377 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2378
2379 if (clen >= sizeof(*cm) &&
2380 cm->cmsg_type == TLS_SET_RECORD_TYPE) {
2381 tls_rtype = *((uint8_t *)CMSG_DATA(cm));
2382 clen = 0;
2383 m_freem(control);
2384 control = NULL;
2385 atomic = 1;
2386 }
2387 }
2388
2389 if (resid == 0 && !ktls_permit_empty_frames(tls)) {
2390 error = EINVAL;
2391 goto out;
2392 }
2393 }
2394 #endif
2395
2396 restart:
2397 do {
2398 SOCKBUF_LOCK(&so->so_snd);
2399 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2400 SOCKBUF_UNLOCK(&so->so_snd);
2401 error = EPIPE;
2402 goto out;
2403 }
2404 if (so->so_error) {
2405 error = so->so_error;
2406 so->so_error = 0;
2407 SOCKBUF_UNLOCK(&so->so_snd);
2408 goto out;
2409 }
2410 if ((so->so_state & SS_ISCONNECTED) == 0) {
2411 /*
2412 * `sendto' and `sendmsg' is allowed on a connection-
2413 * based socket if it supports implied connect.
2414 * Return ENOTCONN if not connected and no address is
2415 * supplied.
2416 */
2417 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2418 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2419 if (!(resid == 0 && clen != 0)) {
2420 SOCKBUF_UNLOCK(&so->so_snd);
2421 error = ENOTCONN;
2422 goto out;
2423 }
2424 } else if (addr == NULL) {
2425 SOCKBUF_UNLOCK(&so->so_snd);
2426 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2427 error = ENOTCONN;
2428 else
2429 error = EDESTADDRREQ;
2430 goto out;
2431 }
2432 }
2433 space = sbspace(&so->so_snd);
2434 if (flags & MSG_OOB)
2435 space += 1024;
2436 if ((atomic && resid > so->so_snd.sb_hiwat) ||
2437 clen > so->so_snd.sb_hiwat) {
2438 SOCKBUF_UNLOCK(&so->so_snd);
2439 error = EMSGSIZE;
2440 goto out;
2441 }
2442 if (space < resid + clen &&
2443 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
2444 if ((so->so_state & SS_NBIO) ||
2445 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
2446 SOCKBUF_UNLOCK(&so->so_snd);
2447 error = EWOULDBLOCK;
2448 goto out;
2449 }
2450 error = sbwait(so, SO_SND);
2451 SOCKBUF_UNLOCK(&so->so_snd);
2452 if (error)
2453 goto out;
2454 goto restart;
2455 }
2456 SOCKBUF_UNLOCK(&so->so_snd);
2457 space -= clen;
2458 do {
2459 if (uio == NULL) {
2460 resid = 0;
2461 if (flags & MSG_EOR)
2462 top->m_flags |= M_EOR;
2463 #ifdef KERN_TLS
2464 if (tls != NULL) {
2465 ktls_frame(top, tls, &tls_enq_cnt,
2466 tls_rtype);
2467 tls_rtype = TLS_RLTYPE_APP;
2468 }
2469 #endif
2470 } else {
2471 /*
2472 * Copy the data from userland into a mbuf
2473 * chain. If resid is 0, which can happen
2474 * only if we have control to send, then
2475 * a single empty mbuf is returned. This
2476 * is a workaround to prevent protocol send
2477 * methods to panic.
2478 */
2479 #ifdef KERN_TLS
2480 if (tls != NULL) {
2481 top = m_uiotombuf(uio, M_WAITOK, space,
2482 tls->params.max_frame_len,
2483 M_EXTPG |
2484 ((flags & MSG_EOR) ? M_EOR : 0));
2485 if (top != NULL) {
2486 ktls_frame(top, tls,
2487 &tls_enq_cnt, tls_rtype);
2488 }
2489 tls_rtype = TLS_RLTYPE_APP;
2490 } else
2491 #endif
2492 top = m_uiotombuf(uio, M_WAITOK, space,
2493 (atomic ? max_hdr : 0),
2494 (atomic ? M_PKTHDR : 0) |
2495 ((flags & MSG_EOR) ? M_EOR : 0));
2496 if (top == NULL) {
2497 error = EFAULT; /* only possible error */
2498 goto out;
2499 }
2500 space -= resid - uio->uio_resid;
2501 resid = uio->uio_resid;
2502 }
2503 if (dontroute) {
2504 SOCK_LOCK(so);
2505 so->so_options |= SO_DONTROUTE;
2506 SOCK_UNLOCK(so);
2507 }
2508 /*
2509 * XXX all the SBS_CANTSENDMORE checks previously
2510 * done could be out of date. We could have received
2511 * a reset packet in an interrupt or maybe we slept
2512 * while doing page faults in uiomove() etc. We
2513 * could probably recheck again inside the locking
2514 * protection here, but there are probably other
2515 * places that this also happens. We must rethink
2516 * this.
2517 */
2518 VNET_SO_ASSERT(so);
2519
2520 pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
2521 /*
2522 * If the user set MSG_EOF, the protocol understands
2523 * this flag and nothing left to send then use
2524 * PRU_SEND_EOF instead of PRU_SEND.
2525 */
2526 ((flags & MSG_EOF) &&
2527 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2528 (resid <= 0)) ?
2529 PRUS_EOF :
2530 /* If there is more to send set PRUS_MORETOCOME. */
2531 (flags & MSG_MORETOCOME) ||
2532 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
2533
2534 #ifdef KERN_TLS
2535 pr_send_flag |= tls_send_flag;
2536 #endif
2537
2538 error = so->so_proto->pr_send(so, pr_send_flag, top,
2539 addr, control, td);
2540
2541 if (dontroute) {
2542 SOCK_LOCK(so);
2543 so->so_options &= ~SO_DONTROUTE;
2544 SOCK_UNLOCK(so);
2545 }
2546
2547 #ifdef KERN_TLS
2548 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
2549 if (error != 0) {
2550 m_freem(top);
2551 top = NULL;
2552 } else {
2553 soref(so);
2554 ktls_enqueue(top, so, tls_enq_cnt);
2555 }
2556 }
2557 #endif
2558 clen = 0;
2559 control = NULL;
2560 top = NULL;
2561 if (error)
2562 goto out;
2563 } while (resid && space > 0);
2564 } while (resid);
2565
2566 out:
2567 #ifdef KERN_TLS
2568 if (tls != NULL)
2569 ktls_free(tls);
2570 #endif
2571 if (top != NULL)
2572 m_freem(top);
2573 if (control != NULL)
2574 m_freem(control);
2575 return (error);
2576 }
2577
2578 int
2579 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
2580 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2581 {
2582 int error;
2583
2584 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
2585 if (error)
2586 return (error);
2587 error = sosend_generic_locked(so, addr, uio, top, control, flags, td);
2588 SOCK_IO_SEND_UNLOCK(so);
2589 return (error);
2590 }
2591
2592 /*
2593 * Send to a socket from a kernel thread.
2594 *
2595 * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
2596 * Exception is nfs/bootp_subr.c. It is arguable that the VNET context needs
2597 * to be set at all. This function should just boil down to a static inline
2598 * calling the protocol method.
2599 */
2600 int
2601 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2602 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2603 {
2604 int error;
2605
2606 CURVNET_SET(so->so_vnet);
2607 error = so->so_proto->pr_sosend(so, addr, uio,
2608 top, control, flags, td);
2609 CURVNET_RESTORE();
2610 return (error);
2611 }
2612
2613 /*
2614 * send(2), write(2) or aio_write(2) on a socket.
2615 */
2616 int
2617 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2618 struct mbuf *control, int flags, struct proc *userproc)
2619 {
2620 struct thread *td;
2621 ssize_t len;
2622 int error;
2623
2624 td = uio->uio_td;
2625 len = uio->uio_resid;
2626 CURVNET_SET(so->so_vnet);
2627 error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
2628 td);
2629 CURVNET_RESTORE();
2630 if (error != 0) {
2631 /*
2632 * Clear transient errors for stream protocols if they made
2633 * some progress. Make exclusion for aio(4) that would
2634 * schedule a new write in case of EWOULDBLOCK and clear
2635 * error itself. See soaio_process_job().
2636 */
2637 if (uio->uio_resid != len &&
2638 (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
2639 userproc == NULL &&
2640 (error == ERESTART || error == EINTR ||
2641 error == EWOULDBLOCK))
2642 error = 0;
2643 /* Generation of SIGPIPE can be controlled per socket. */
2644 if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
2645 (flags & MSG_NOSIGNAL) == 0) {
2646 if (userproc != NULL) {
2647 /* aio(4) job */
2648 PROC_LOCK(userproc);
2649 kern_psignal(userproc, SIGPIPE);
2650 PROC_UNLOCK(userproc);
2651 } else {
2652 PROC_LOCK(td->td_proc);
2653 tdsignal(td, SIGPIPE);
2654 PROC_UNLOCK(td->td_proc);
2655 }
2656 }
2657 }
2658 return (error);
2659 }
2660
2661 /*
2662 * The part of soreceive() that implements reading non-inline out-of-band
2663 * data from a socket. For more complete comments, see soreceive(), from
2664 * which this code originated.
2665 *
2666 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
2667 * unable to return an mbuf chain to the caller.
2668 */
2669 static int
2670 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
2671 {
2672 struct protosw *pr = so->so_proto;
2673 struct mbuf *m;
2674 int error;
2675
2676 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
2677 VNET_SO_ASSERT(so);
2678
2679 m = m_get(M_WAITOK, MT_DATA);
2680 error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
2681 if (error)
2682 goto bad;
2683 do {
2684 error = uiomove(mtod(m, void *),
2685 (int) min(uio->uio_resid, m->m_len), uio);
2686 m = m_free(m);
2687 } while (uio->uio_resid && error == 0 && m);
2688 bad:
2689 if (m != NULL)
2690 m_freem(m);
2691 return (error);
2692 }
2693
2694 /*
2695 * Following replacement or removal of the first mbuf on the first mbuf chain
2696 * of a socket buffer, push necessary state changes back into the socket
2697 * buffer so that other consumers see the values consistently. 'nextrecord'
2698 * is the callers locally stored value of the original value of
2699 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
2700 * NOTE: 'nextrecord' may be NULL.
2701 */
2702 static __inline void
2703 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
2704 {
2705
2706 SOCKBUF_LOCK_ASSERT(sb);
2707 /*
2708 * First, update for the new value of nextrecord. If necessary, make
2709 * it the first record.
2710 */
2711 if (sb->sb_mb != NULL)
2712 sb->sb_mb->m_nextpkt = nextrecord;
2713 else
2714 sb->sb_mb = nextrecord;
2715
2716 /*
2717 * Now update any dependent socket buffer fields to reflect the new
2718 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the
2719 * addition of a second clause that takes care of the case where
2720 * sb_mb has been updated, but remains the last record.
2721 */
2722 if (sb->sb_mb == NULL) {
2723 sb->sb_mbtail = NULL;
2724 sb->sb_lastrecord = NULL;
2725 } else if (sb->sb_mb->m_nextpkt == NULL)
2726 sb->sb_lastrecord = sb->sb_mb;
2727 }
2728
2729 /*
2730 * Implement receive operations on a socket. We depend on the way that
2731 * records are added to the sockbuf by sbappend. In particular, each record
2732 * (mbufs linked through m_next) must begin with an address if the protocol
2733 * so specifies, followed by an optional mbuf or mbufs containing ancillary
2734 * data, and then zero or more mbufs of data. In order to allow parallelism
2735 * between network receive and copying to user space, as well as avoid
2736 * sleeping with a mutex held, we release the socket buffer mutex during the
2737 * user space copy. Although the sockbuf is locked, new data may still be
2738 * appended, and thus we must maintain consistency of the sockbuf during that
2739 * time.
2740 *
2741 * The caller may receive the data as a single mbuf chain by supplying an
2742 * mbuf **mp0 for use in returning the chain. The uio is then used only for
2743 * the count in uio_resid.
2744 */
2745 static int
2746 soreceive_generic_locked(struct socket *so, struct sockaddr **psa,
2747 struct uio *uio, struct mbuf **mp, struct mbuf **controlp, int *flagsp)
2748 {
2749 struct mbuf *m;
2750 int flags, error, offset;
2751 ssize_t len;
2752 struct protosw *pr = so->so_proto;
2753 struct mbuf *nextrecord;
2754 int moff, type = 0;
2755 ssize_t orig_resid = uio->uio_resid;
2756 bool report_real_len = false;
2757
2758 SOCK_IO_RECV_ASSERT_LOCKED(so);
2759
2760 error = 0;
2761 if (flagsp != NULL) {
2762 report_real_len = *flagsp & MSG_TRUNC;
2763 *flagsp &= ~MSG_TRUNC;
2764 flags = *flagsp &~ MSG_EOR;
2765 } else
2766 flags = 0;
2767
2768 restart:
2769 SOCKBUF_LOCK(&so->so_rcv);
2770 m = so->so_rcv.sb_mb;
2771 /*
2772 * If we have less data than requested, block awaiting more (subject
2773 * to any timeout) if:
2774 * 1. the current count is less than the low water mark, or
2775 * 2. MSG_DONTWAIT is not set
2776 */
2777 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
2778 sbavail(&so->so_rcv) < uio->uio_resid) &&
2779 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
2780 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
2781 KASSERT(m != NULL || !sbavail(&so->so_rcv),
2782 ("receive: m == %p sbavail == %u",
2783 m, sbavail(&so->so_rcv)));
2784 if (so->so_error || so->so_rerror) {
2785 if (m != NULL)
2786 goto dontblock;
2787 if (so->so_error)
2788 error = so->so_error;
2789 else
2790 error = so->so_rerror;
2791 if ((flags & MSG_PEEK) == 0) {
2792 if (so->so_error)
2793 so->so_error = 0;
2794 else
2795 so->so_rerror = 0;
2796 }
2797 SOCKBUF_UNLOCK(&so->so_rcv);
2798 goto release;
2799 }
2800 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2801 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2802 if (m != NULL)
2803 goto dontblock;
2804 #ifdef KERN_TLS
2805 else if (so->so_rcv.sb_tlsdcc == 0 &&
2806 so->so_rcv.sb_tlscc == 0) {
2807 #else
2808 else {
2809 #endif
2810 SOCKBUF_UNLOCK(&so->so_rcv);
2811 goto release;
2812 }
2813 }
2814 for (; m != NULL; m = m->m_next)
2815 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
2816 m = so->so_rcv.sb_mb;
2817 goto dontblock;
2818 }
2819 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2820 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2821 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2822 SOCKBUF_UNLOCK(&so->so_rcv);
2823 error = ENOTCONN;
2824 goto release;
2825 }
2826 if (uio->uio_resid == 0 && !report_real_len) {
2827 SOCKBUF_UNLOCK(&so->so_rcv);
2828 goto release;
2829 }
2830 if ((so->so_state & SS_NBIO) ||
2831 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2832 SOCKBUF_UNLOCK(&so->so_rcv);
2833 error = EWOULDBLOCK;
2834 goto release;
2835 }
2836 SBLASTRECORDCHK(&so->so_rcv);
2837 SBLASTMBUFCHK(&so->so_rcv);
2838 error = sbwait(so, SO_RCV);
2839 SOCKBUF_UNLOCK(&so->so_rcv);
2840 if (error)
2841 goto release;
2842 goto restart;
2843 }
2844 dontblock:
2845 /*
2846 * From this point onward, we maintain 'nextrecord' as a cache of the
2847 * pointer to the next record in the socket buffer. We must keep the
2848 * various socket buffer pointers and local stack versions of the
2849 * pointers in sync, pushing out modifications before dropping the
2850 * socket buffer mutex, and re-reading them when picking it up.
2851 *
2852 * Otherwise, we will race with the network stack appending new data
2853 * or records onto the socket buffer by using inconsistent/stale
2854 * versions of the field, possibly resulting in socket buffer
2855 * corruption.
2856 *
2857 * By holding the high-level sblock(), we prevent simultaneous
2858 * readers from pulling off the front of the socket buffer.
2859 */
2860 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2861 if (uio->uio_td)
2862 uio->uio_td->td_ru.ru_msgrcv++;
2863 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2864 SBLASTRECORDCHK(&so->so_rcv);
2865 SBLASTMBUFCHK(&so->so_rcv);
2866 nextrecord = m->m_nextpkt;
2867 if (pr->pr_flags & PR_ADDR) {
2868 KASSERT(m->m_type == MT_SONAME,
2869 ("m->m_type == %d", m->m_type));
2870 orig_resid = 0;
2871 if (psa != NULL)
2872 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
2873 M_NOWAIT);
2874 if (flags & MSG_PEEK) {
2875 m = m->m_next;
2876 } else {
2877 sbfree(&so->so_rcv, m);
2878 so->so_rcv.sb_mb = m_free(m);
2879 m = so->so_rcv.sb_mb;
2880 sockbuf_pushsync(&so->so_rcv, nextrecord);
2881 }
2882 }
2883
2884 /*
2885 * Process one or more MT_CONTROL mbufs present before any data mbufs
2886 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
2887 * just copy the data; if !MSG_PEEK, we call into the protocol to
2888 * perform externalization (or freeing if controlp == NULL).
2889 */
2890 if (m != NULL && m->m_type == MT_CONTROL) {
2891 struct mbuf *cm = NULL, *cmn;
2892 struct mbuf **cme = &cm;
2893 #ifdef KERN_TLS
2894 struct cmsghdr *cmsg;
2895 struct tls_get_record tgr;
2896
2897 /*
2898 * For MSG_TLSAPPDATA, check for an alert record.
2899 * If found, return ENXIO without removing
2900 * it from the receive queue. This allows a subsequent
2901 * call without MSG_TLSAPPDATA to receive it.
2902 * Note that, for TLS, there should only be a single
2903 * control mbuf with the TLS_GET_RECORD message in it.
2904 */
2905 if (flags & MSG_TLSAPPDATA) {
2906 cmsg = mtod(m, struct cmsghdr *);
2907 if (cmsg->cmsg_type == TLS_GET_RECORD &&
2908 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2909 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2910 if (__predict_false(tgr.tls_type ==
2911 TLS_RLTYPE_ALERT)) {
2912 SOCKBUF_UNLOCK(&so->so_rcv);
2913 error = ENXIO;
2914 goto release;
2915 }
2916 }
2917 }
2918 #endif
2919
2920 do {
2921 if (flags & MSG_PEEK) {
2922 if (controlp != NULL) {
2923 *controlp = m_copym(m, 0, m->m_len,
2924 M_NOWAIT);
2925 controlp = &(*controlp)->m_next;
2926 }
2927 m = m->m_next;
2928 } else {
2929 sbfree(&so->so_rcv, m);
2930 so->so_rcv.sb_mb = m->m_next;
2931 m->m_next = NULL;
2932 *cme = m;
2933 cme = &(*cme)->m_next;
2934 m = so->so_rcv.sb_mb;
2935 }
2936 } while (m != NULL && m->m_type == MT_CONTROL);
2937 if ((flags & MSG_PEEK) == 0)
2938 sockbuf_pushsync(&so->so_rcv, nextrecord);
2939 while (cm != NULL) {
2940 cmn = cm->m_next;
2941 cm->m_next = NULL;
2942 if (controlp != NULL)
2943 *controlp = cm;
2944 else
2945 m_freem(cm);
2946 if (controlp != NULL) {
2947 while (*controlp != NULL)
2948 controlp = &(*controlp)->m_next;
2949 }
2950 cm = cmn;
2951 }
2952 if (m != NULL)
2953 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2954 else
2955 nextrecord = so->so_rcv.sb_mb;
2956 orig_resid = 0;
2957 }
2958 if (m != NULL) {
2959 if ((flags & MSG_PEEK) == 0) {
2960 KASSERT(m->m_nextpkt == nextrecord,
2961 ("soreceive: post-control, nextrecord !sync"));
2962 if (nextrecord == NULL) {
2963 KASSERT(so->so_rcv.sb_mb == m,
2964 ("soreceive: post-control, sb_mb!=m"));
2965 KASSERT(so->so_rcv.sb_lastrecord == m,
2966 ("soreceive: post-control, lastrecord!=m"));
2967 }
2968 }
2969 type = m->m_type;
2970 if (type == MT_OOBDATA)
2971 flags |= MSG_OOB;
2972 } else {
2973 if ((flags & MSG_PEEK) == 0) {
2974 KASSERT(so->so_rcv.sb_mb == nextrecord,
2975 ("soreceive: sb_mb != nextrecord"));
2976 if (so->so_rcv.sb_mb == NULL) {
2977 KASSERT(so->so_rcv.sb_lastrecord == NULL,
2978 ("soreceive: sb_lastercord != NULL"));
2979 }
2980 }
2981 }
2982 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2983 SBLASTRECORDCHK(&so->so_rcv);
2984 SBLASTMBUFCHK(&so->so_rcv);
2985
2986 /*
2987 * Now continue to read any data mbufs off of the head of the socket
2988 * buffer until the read request is satisfied. Note that 'type' is
2989 * used to store the type of any mbuf reads that have happened so far
2990 * such that soreceive() can stop reading if the type changes, which
2991 * causes soreceive() to return only one of regular data and inline
2992 * out-of-band data in a single socket receive operation.
2993 */
2994 moff = 0;
2995 offset = 0;
2996 while (m != NULL && !(m->m_flags & M_NOTREADY) && uio->uio_resid > 0 &&
2997 error == 0) {
2998 /*
2999 * If the type of mbuf has changed since the last mbuf
3000 * examined ('type'), end the receive operation.
3001 */
3002 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3003 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
3004 if (type != m->m_type)
3005 break;
3006 } else if (type == MT_OOBDATA)
3007 break;
3008 else
3009 KASSERT(m->m_type == MT_DATA,
3010 ("m->m_type == %d", m->m_type));
3011 so->so_rcv.sb_state &= ~SBS_RCVATMARK;
3012 len = uio->uio_resid;
3013 if (so->so_oobmark && len > so->so_oobmark - offset)
3014 len = so->so_oobmark - offset;
3015 if (len > m->m_len - moff)
3016 len = m->m_len - moff;
3017 /*
3018 * If mp is set, just pass back the mbufs. Otherwise copy
3019 * them out via the uio, then free. Sockbuf must be
3020 * consistent here (points to current mbuf, it points to next
3021 * record) when we drop priority; we must note any additions
3022 * to the sockbuf when we block interrupts again.
3023 */
3024 if (mp == NULL) {
3025 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3026 SBLASTRECORDCHK(&so->so_rcv);
3027 SBLASTMBUFCHK(&so->so_rcv);
3028 SOCKBUF_UNLOCK(&so->so_rcv);
3029 if ((m->m_flags & M_EXTPG) != 0)
3030 error = m_unmapped_uiomove(m, moff, uio,
3031 (int)len);
3032 else
3033 error = uiomove(mtod(m, char *) + moff,
3034 (int)len, uio);
3035 SOCKBUF_LOCK(&so->so_rcv);
3036 if (error) {
3037 /*
3038 * The MT_SONAME mbuf has already been removed
3039 * from the record, so it is necessary to
3040 * remove the data mbufs, if any, to preserve
3041 * the invariant in the case of PR_ADDR that
3042 * requires MT_SONAME mbufs at the head of
3043 * each record.
3044 */
3045 if (pr->pr_flags & PR_ATOMIC &&
3046 ((flags & MSG_PEEK) == 0))
3047 (void)sbdroprecord_locked(&so->so_rcv);
3048 SOCKBUF_UNLOCK(&so->so_rcv);
3049 goto release;
3050 }
3051 } else
3052 uio->uio_resid -= len;
3053 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3054 if (len == m->m_len - moff) {
3055 if (m->m_flags & M_EOR)
3056 flags |= MSG_EOR;
3057 if (flags & MSG_PEEK) {
3058 m = m->m_next;
3059 moff = 0;
3060 } else {
3061 nextrecord = m->m_nextpkt;
3062 sbfree(&so->so_rcv, m);
3063 if (mp != NULL) {
3064 m->m_nextpkt = NULL;
3065 *mp = m;
3066 mp = &m->m_next;
3067 so->so_rcv.sb_mb = m = m->m_next;
3068 *mp = NULL;
3069 } else {
3070 so->so_rcv.sb_mb = m_free(m);
3071 m = so->so_rcv.sb_mb;
3072 }
3073 sockbuf_pushsync(&so->so_rcv, nextrecord);
3074 SBLASTRECORDCHK(&so->so_rcv);
3075 SBLASTMBUFCHK(&so->so_rcv);
3076 }
3077 } else {
3078 if (flags & MSG_PEEK)
3079 moff += len;
3080 else {
3081 if (mp != NULL) {
3082 if (flags & MSG_DONTWAIT) {
3083 *mp = m_copym(m, 0, len,
3084 M_NOWAIT);
3085 if (*mp == NULL) {
3086 /*
3087 * m_copym() couldn't
3088 * allocate an mbuf.
3089 * Adjust uio_resid back
3090 * (it was adjusted
3091 * down by len bytes,
3092 * which we didn't end
3093 * up "copying" over).
3094 */
3095 uio->uio_resid += len;
3096 break;
3097 }
3098 } else {
3099 SOCKBUF_UNLOCK(&so->so_rcv);
3100 *mp = m_copym(m, 0, len,
3101 M_WAITOK);
3102 SOCKBUF_LOCK(&so->so_rcv);
3103 }
3104 }
3105 sbcut_locked(&so->so_rcv, len);
3106 }
3107 }
3108 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3109 if (so->so_oobmark) {
3110 if ((flags & MSG_PEEK) == 0) {
3111 so->so_oobmark -= len;
3112 if (so->so_oobmark == 0) {
3113 so->so_rcv.sb_state |= SBS_RCVATMARK;
3114 break;
3115 }
3116 } else {
3117 offset += len;
3118 if (offset == so->so_oobmark)
3119 break;
3120 }
3121 }
3122 if (flags & MSG_EOR)
3123 break;
3124 /*
3125 * If the MSG_WAITALL flag is set (for non-atomic socket), we
3126 * must not quit until "uio->uio_resid == 0" or an error
3127 * termination. If a signal/timeout occurs, return with a
3128 * short count but without error. Keep sockbuf locked
3129 * against other readers.
3130 */
3131 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
3132 !sosendallatonce(so) && nextrecord == NULL) {
3133 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3134 if (so->so_error || so->so_rerror ||
3135 so->so_rcv.sb_state & SBS_CANTRCVMORE)
3136 break;
3137 /*
3138 * Notify the protocol that some data has been
3139 * drained before blocking.
3140 */
3141 if (pr->pr_flags & PR_WANTRCVD) {
3142 SOCKBUF_UNLOCK(&so->so_rcv);
3143 VNET_SO_ASSERT(so);
3144 pr->pr_rcvd(so, flags);
3145 SOCKBUF_LOCK(&so->so_rcv);
3146 if (__predict_false(so->so_rcv.sb_mb == NULL &&
3147 (so->so_error || so->so_rerror ||
3148 so->so_rcv.sb_state & SBS_CANTRCVMORE)))
3149 break;
3150 }
3151 SBLASTRECORDCHK(&so->so_rcv);
3152 SBLASTMBUFCHK(&so->so_rcv);
3153 /*
3154 * We could receive some data while was notifying
3155 * the protocol. Skip blocking in this case.
3156 */
3157 if (so->so_rcv.sb_mb == NULL) {
3158 error = sbwait(so, SO_RCV);
3159 if (error) {
3160 SOCKBUF_UNLOCK(&so->so_rcv);
3161 goto release;
3162 }
3163 }
3164 m = so->so_rcv.sb_mb;
3165 if (m != NULL)
3166 nextrecord = m->m_nextpkt;
3167 }
3168 }
3169
3170 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3171 if (m != NULL && pr->pr_flags & PR_ATOMIC) {
3172 if (report_real_len)
3173 uio->uio_resid -= m_length(m, NULL) - moff;
3174 flags |= MSG_TRUNC;
3175 if ((flags & MSG_PEEK) == 0)
3176 (void) sbdroprecord_locked(&so->so_rcv);
3177 }
3178 if ((flags & MSG_PEEK) == 0) {
3179 if (m == NULL) {
3180 /*
3181 * First part is an inline SB_EMPTY_FIXUP(). Second
3182 * part makes sure sb_lastrecord is up-to-date if
3183 * there is still data in the socket buffer.
3184 */
3185 so->so_rcv.sb_mb = nextrecord;
3186 if (so->so_rcv.sb_mb == NULL) {
3187 so->so_rcv.sb_mbtail = NULL;
3188 so->so_rcv.sb_lastrecord = NULL;
3189 } else if (nextrecord->m_nextpkt == NULL)
3190 so->so_rcv.sb_lastrecord = nextrecord;
3191 }
3192 SBLASTRECORDCHK(&so->so_rcv);
3193 SBLASTMBUFCHK(&so->so_rcv);
3194 /*
3195 * If soreceive() is being done from the socket callback,
3196 * then don't need to generate ACK to peer to update window,
3197 * since ACK will be generated on return to TCP.
3198 */
3199 if (!(flags & MSG_SOCALLBCK) &&
3200 (pr->pr_flags & PR_WANTRCVD)) {
3201 SOCKBUF_UNLOCK(&so->so_rcv);
3202 VNET_SO_ASSERT(so);
3203 pr->pr_rcvd(so, flags);
3204 SOCKBUF_LOCK(&so->so_rcv);
3205 }
3206 }
3207 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3208 if (orig_resid == uio->uio_resid && orig_resid &&
3209 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
3210 SOCKBUF_UNLOCK(&so->so_rcv);
3211 goto restart;
3212 }
3213 SOCKBUF_UNLOCK(&so->so_rcv);
3214
3215 if (flagsp != NULL)
3216 *flagsp |= flags;
3217 release:
3218 return (error);
3219 }
3220
3221 int
3222 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
3223 struct mbuf **mp, struct mbuf **controlp, int *flagsp)
3224 {
3225 int error, flags;
3226
3227 if (psa != NULL)
3228 *psa = NULL;
3229 if (controlp != NULL)
3230 *controlp = NULL;
3231 if (flagsp != NULL) {
3232 flags = *flagsp;
3233 if ((flags & MSG_OOB) != 0)
3234 return (soreceive_rcvoob(so, uio, flags));
3235 } else {
3236 flags = 0;
3237 }
3238 if (mp != NULL)
3239 *mp = NULL;
3240
3241 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3242 if (error)
3243 return (error);
3244 error = soreceive_generic_locked(so, psa, uio, mp, controlp, flagsp);
3245 SOCK_IO_RECV_UNLOCK(so);
3246 return (error);
3247 }
3248
3249 /*
3250 * Optimized version of soreceive() for stream (TCP) sockets.
3251 */
3252 static int
3253 soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
3254 struct sockaddr **psa, struct uio *uio, struct mbuf **mp0,
3255 struct mbuf **controlp, int flags)
3256 {
3257 int len = 0, error = 0, oresid;
3258 struct mbuf *m, *n = NULL;
3259
3260 SOCK_IO_RECV_ASSERT_LOCKED(so);
3261
3262 /* Easy one, no space to copyout anything. */
3263 if (uio->uio_resid == 0)
3264 return (EINVAL);
3265 oresid = uio->uio_resid;
3266
3267 SOCKBUF_LOCK(sb);
3268 /* We will never ever get anything unless we are or were connected. */
3269 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
3270 error = ENOTCONN;
3271 goto out;
3272 }
3273
3274 restart:
3275 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3276
3277 /* Abort if socket has reported problems. */
3278 if (so->so_error) {
3279 if (sbavail(sb) > 0)
3280 goto deliver;
3281 if (oresid > uio->uio_resid)
3282 goto out;
3283 error = so->so_error;
3284 if (!(flags & MSG_PEEK))
3285 so->so_error = 0;
3286 goto out;
3287 }
3288
3289 /* Door is closed. Deliver what is left, if any. */
3290 if (sb->sb_state & SBS_CANTRCVMORE) {
3291 if (sbavail(sb) > 0)
3292 goto deliver;
3293 else
3294 goto out;
3295 }
3296
3297 /* Socket buffer is empty and we shall not block. */
3298 if (sbavail(sb) == 0 &&
3299 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
3300 error = EAGAIN;
3301 goto out;
3302 }
3303
3304 /* Socket buffer got some data that we shall deliver now. */
3305 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
3306 ((so->so_state & SS_NBIO) ||
3307 (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
3308 sbavail(sb) >= sb->sb_lowat ||
3309 sbavail(sb) >= uio->uio_resid ||
3310 sbavail(sb) >= sb->sb_hiwat) ) {
3311 goto deliver;
3312 }
3313
3314 /* On MSG_WAITALL we must wait until all data or error arrives. */
3315 if ((flags & MSG_WAITALL) &&
3316 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
3317 goto deliver;
3318
3319 /*
3320 * Wait and block until (more) data comes in.
3321 * NB: Drops the sockbuf lock during wait.
3322 */
3323 error = sbwait(so, SO_RCV);
3324 if (error)
3325 goto out;
3326 goto restart;
3327
3328 deliver:
3329 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3330 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
3331 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
3332
3333 /* Statistics. */
3334 if (uio->uio_td)
3335 uio->uio_td->td_ru.ru_msgrcv++;
3336
3337 /* Fill uio until full or current end of socket buffer is reached. */
3338 len = min(uio->uio_resid, sbavail(sb));
3339 if (mp0 != NULL) {
3340 /* Dequeue as many mbufs as possible. */
3341 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
3342 if (*mp0 == NULL)
3343 *mp0 = sb->sb_mb;
3344 else
3345 m_cat(*mp0, sb->sb_mb);
3346 for (m = sb->sb_mb;
3347 m != NULL && m->m_len <= len;
3348 m = m->m_next) {
3349 KASSERT(!(m->m_flags & M_NOTREADY),
3350 ("%s: m %p not available", __func__, m));
3351 len -= m->m_len;
3352 uio->uio_resid -= m->m_len;
3353 sbfree(sb, m);
3354 n = m;
3355 }
3356 n->m_next = NULL;
3357 sb->sb_mb = m;
3358 sb->sb_lastrecord = sb->sb_mb;
3359 if (sb->sb_mb == NULL)
3360 SB_EMPTY_FIXUP(sb);
3361 }
3362 /* Copy the remainder. */
3363 if (len > 0) {
3364 KASSERT(sb->sb_mb != NULL,
3365 ("%s: len > 0 && sb->sb_mb empty", __func__));
3366
3367 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
3368 if (m == NULL)
3369 len = 0; /* Don't flush data from sockbuf. */
3370 else
3371 uio->uio_resid -= len;
3372 if (*mp0 != NULL)
3373 m_cat(*mp0, m);
3374 else
3375 *mp0 = m;
3376 if (*mp0 == NULL) {
3377 error = ENOBUFS;
3378 goto out;
3379 }
3380 }
3381 } else {
3382 /* NB: Must unlock socket buffer as uiomove may sleep. */
3383 SOCKBUF_UNLOCK(sb);
3384 error = m_mbuftouio(uio, sb->sb_mb, len);
3385 SOCKBUF_LOCK(sb);
3386 if (error)
3387 goto out;
3388 }
3389 SBLASTRECORDCHK(sb);
3390 SBLASTMBUFCHK(sb);
3391
3392 /*
3393 * Remove the delivered data from the socket buffer unless we
3394 * were only peeking.
3395 */
3396 if (!(flags & MSG_PEEK)) {
3397 if (len > 0)
3398 sbdrop_locked(sb, len);
3399
3400 /* Notify protocol that we drained some data. */
3401 if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
3402 (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
3403 !(flags & MSG_SOCALLBCK))) {
3404 SOCKBUF_UNLOCK(sb);
3405 VNET_SO_ASSERT(so);
3406 so->so_proto->pr_rcvd(so, flags);
3407 SOCKBUF_LOCK(sb);
3408 }
3409 }
3410
3411 /*
3412 * For MSG_WAITALL we may have to loop again and wait for
3413 * more data to come in.
3414 */
3415 if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
3416 goto restart;
3417 out:
3418 SBLASTRECORDCHK(sb);
3419 SBLASTMBUFCHK(sb);
3420 SOCKBUF_UNLOCK(sb);
3421 return (error);
3422 }
3423
3424 int
3425 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
3426 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3427 {
3428 struct sockbuf *sb;
3429 int error, flags;
3430
3431 sb = &so->so_rcv;
3432
3433 /* We only do stream sockets. */
3434 if (so->so_type != SOCK_STREAM)
3435 return (EINVAL);
3436 if (psa != NULL)
3437 *psa = NULL;
3438 if (flagsp != NULL)
3439 flags = *flagsp & ~MSG_EOR;
3440 else
3441 flags = 0;
3442 if (controlp != NULL)
3443 *controlp = NULL;
3444 if (flags & MSG_OOB)
3445 return (soreceive_rcvoob(so, uio, flags));
3446 if (mp0 != NULL)
3447 *mp0 = NULL;
3448
3449 #ifdef KERN_TLS
3450 /*
3451 * KTLS store TLS records as records with a control message to
3452 * describe the framing.
3453 *
3454 * We check once here before acquiring locks to optimize the
3455 * common case.
3456 */
3457 if (sb->sb_tls_info != NULL)
3458 return (soreceive_generic(so, psa, uio, mp0, controlp,
3459 flagsp));
3460 #endif
3461
3462 /*
3463 * Prevent other threads from reading from the socket. This lock may be
3464 * dropped in order to sleep waiting for data to arrive.
3465 */
3466 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3467 if (error)
3468 return (error);
3469 #ifdef KERN_TLS
3470 if (__predict_false(sb->sb_tls_info != NULL)) {
3471 SOCK_IO_RECV_UNLOCK(so);
3472 return (soreceive_generic(so, psa, uio, mp0, controlp,
3473 flagsp));
3474 }
3475 #endif
3476 error = soreceive_stream_locked(so, sb, psa, uio, mp0, controlp, flags);
3477 SOCK_IO_RECV_UNLOCK(so);
3478 return (error);
3479 }
3480
3481 /*
3482 * Optimized version of soreceive() for simple datagram cases from userspace.
3483 * Unlike in the stream case, we're able to drop a datagram if copyout()
3484 * fails, and because we handle datagrams atomically, we don't need to use a
3485 * sleep lock to prevent I/O interlacing.
3486 */
3487 int
3488 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
3489 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3490 {
3491 struct mbuf *m, *m2;
3492 int flags, error;
3493 ssize_t len;
3494 struct protosw *pr = so->so_proto;
3495 struct mbuf *nextrecord;
3496
3497 if (psa != NULL)
3498 *psa = NULL;
3499 if (controlp != NULL)
3500 *controlp = NULL;
3501 if (flagsp != NULL)
3502 flags = *flagsp &~ MSG_EOR;
3503 else
3504 flags = 0;
3505
3506 /*
3507 * For any complicated cases, fall back to the full
3508 * soreceive_generic().
3509 */
3510 if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
3511 return (soreceive_generic(so, psa, uio, mp0, controlp,
3512 flagsp));
3513
3514 /*
3515 * Enforce restrictions on use.
3516 */
3517 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
3518 ("soreceive_dgram: wantrcvd"));
3519 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
3520 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
3521 ("soreceive_dgram: SBS_RCVATMARK"));
3522 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
3523 ("soreceive_dgram: P_CONNREQUIRED"));
3524
3525 /*
3526 * Loop blocking while waiting for a datagram.
3527 */
3528 SOCKBUF_LOCK(&so->so_rcv);
3529 while ((m = so->so_rcv.sb_mb) == NULL) {
3530 KASSERT(sbavail(&so->so_rcv) == 0,
3531 ("soreceive_dgram: sb_mb NULL but sbavail %u",
3532 sbavail(&so->so_rcv)));
3533 if (so->so_error) {
3534 error = so->so_error;
3535 so->so_error = 0;
3536 SOCKBUF_UNLOCK(&so->so_rcv);
3537 return (error);
3538 }
3539 if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
3540 uio->uio_resid == 0) {
3541 SOCKBUF_UNLOCK(&so->so_rcv);
3542 return (0);
3543 }
3544 if ((so->so_state & SS_NBIO) ||
3545 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
3546 SOCKBUF_UNLOCK(&so->so_rcv);
3547 return (EWOULDBLOCK);
3548 }
3549 SBLASTRECORDCHK(&so->so_rcv);
3550 SBLASTMBUFCHK(&so->so_rcv);
3551 error = sbwait(so, SO_RCV);
3552 if (error) {
3553 SOCKBUF_UNLOCK(&so->so_rcv);
3554 return (error);
3555 }
3556 }
3557 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3558
3559 if (uio->uio_td)
3560 uio->uio_td->td_ru.ru_msgrcv++;
3561 SBLASTRECORDCHK(&so->so_rcv);
3562 SBLASTMBUFCHK(&so->so_rcv);
3563 nextrecord = m->m_nextpkt;
3564 if (nextrecord == NULL) {
3565 KASSERT(so->so_rcv.sb_lastrecord == m,
3566 ("soreceive_dgram: lastrecord != m"));
3567 }
3568
3569 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
3570 ("soreceive_dgram: m_nextpkt != nextrecord"));
3571
3572 /*
3573 * Pull 'm' and its chain off the front of the packet queue.
3574 */
3575 so->so_rcv.sb_mb = NULL;
3576 sockbuf_pushsync(&so->so_rcv, nextrecord);
3577
3578 /*
3579 * Walk 'm's chain and free that many bytes from the socket buffer.
3580 */
3581 for (m2 = m; m2 != NULL; m2 = m2->m_next)
3582 sbfree(&so->so_rcv, m2);
3583
3584 /*
3585 * Do a few last checks before we let go of the lock.
3586 */
3587 SBLASTRECORDCHK(&so->so_rcv);
3588 SBLASTMBUFCHK(&so->so_rcv);
3589 SOCKBUF_UNLOCK(&so->so_rcv);
3590
3591 if (pr->pr_flags & PR_ADDR) {
3592 KASSERT(m->m_type == MT_SONAME,
3593 ("m->m_type == %d", m->m_type));
3594 if (psa != NULL)
3595 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
3596 M_WAITOK);
3597 m = m_free(m);
3598 }
3599 KASSERT(m, ("%s: no data or control after soname", __func__));
3600
3601 /*
3602 * Packet to copyout() is now in 'm' and it is disconnected from the
3603 * queue.
3604 *
3605 * Process one or more MT_CONTROL mbufs present before any data mbufs
3606 * in the first mbuf chain on the socket buffer. We call into the
3607 * protocol to perform externalization (or freeing if controlp ==
3608 * NULL). In some cases there can be only MT_CONTROL mbufs without
3609 * MT_DATA mbufs.
3610 */
3611 if (m->m_type == MT_CONTROL) {
3612 struct mbuf *cm = NULL, *cmn;
3613 struct mbuf **cme = &cm;
3614
3615 do {
3616 m2 = m->m_next;
3617 m->m_next = NULL;
3618 *cme = m;
3619 cme = &(*cme)->m_next;
3620 m = m2;
3621 } while (m != NULL && m->m_type == MT_CONTROL);
3622 while (cm != NULL) {
3623 cmn = cm->m_next;
3624 cm->m_next = NULL;
3625 if (controlp != NULL)
3626 *controlp = cm;
3627 else
3628 m_freem(cm);
3629 if (controlp != NULL) {
3630 while (*controlp != NULL)
3631 controlp = &(*controlp)->m_next;
3632 }
3633 cm = cmn;
3634 }
3635 }
3636 KASSERT(m == NULL || m->m_type == MT_DATA,
3637 ("soreceive_dgram: !data"));
3638 while (m != NULL && uio->uio_resid > 0) {
3639 len = uio->uio_resid;
3640 if (len > m->m_len)
3641 len = m->m_len;
3642 error = uiomove(mtod(m, char *), (int)len, uio);
3643 if (error) {
3644 m_freem(m);
3645 return (error);
3646 }
3647 if (len == m->m_len)
3648 m = m_free(m);
3649 else {
3650 m->m_data += len;
3651 m->m_len -= len;
3652 }
3653 }
3654 if (m != NULL) {
3655 flags |= MSG_TRUNC;
3656 m_freem(m);
3657 }
3658 if (flagsp != NULL)
3659 *flagsp |= flags;
3660 return (0);
3661 }
3662
3663 int
3664 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
3665 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3666 {
3667 int error;
3668
3669 CURVNET_SET(so->so_vnet);
3670 error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
3671 CURVNET_RESTORE();
3672 return (error);
3673 }
3674
3675 int
3676 soshutdown(struct socket *so, enum shutdown_how how)
3677 {
3678 int error;
3679
3680 CURVNET_SET(so->so_vnet);
3681 error = so->so_proto->pr_shutdown(so, how);
3682 CURVNET_RESTORE();
3683
3684 return (error);
3685 }
3686
3687 /*
3688 * Used by several pr_shutdown implementations that use generic socket buffers.
3689 */
3690 void
3691 sorflush(struct socket *so)
3692 {
3693 int error;
3694
3695 VNET_SO_ASSERT(so);
3696
3697 /*
3698 * Dislodge threads currently blocked in receive and wait to acquire
3699 * a lock against other simultaneous readers before clearing the
3700 * socket buffer. Don't let our acquire be interrupted by a signal
3701 * despite any existing socket disposition on interruptable waiting.
3702 *
3703 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive
3704 * methods that read the top of the socket buffer without acquisition
3705 * of the socket buffer mutex, assuming that top of the buffer
3706 * exclusively belongs to the read(2) syscall. This is handy when
3707 * performing MSG_PEEK.
3708 */
3709 socantrcvmore(so);
3710
3711 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
3712 if (error != 0) {
3713 KASSERT(SOLISTENING(so),
3714 ("%s: soiolock(%p) failed", __func__, so));
3715 return;
3716 }
3717
3718 sbrelease(so, SO_RCV);
3719 SOCK_IO_RECV_UNLOCK(so);
3720
3721 }
3722
3723 int
3724 sosetfib(struct socket *so, int fibnum)
3725 {
3726 if (fibnum < 0 || fibnum >= rt_numfibs)
3727 return (EINVAL);
3728
3729 SOCK_LOCK(so);
3730 so->so_fibnum = fibnum;
3731 SOCK_UNLOCK(so);
3732
3733 return (0);
3734 }
3735
3736 #ifdef SOCKET_HHOOK
3737 /*
3738 * Wrapper for Socket established helper hook.
3739 * Parameters: socket, context of the hook point, hook id.
3740 */
3741 static inline int
3742 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
3743 {
3744 struct socket_hhook_data hhook_data = {
3745 .so = so,
3746 .hctx = hctx,
3747 .m = NULL,
3748 .status = 0
3749 };
3750
3751 CURVNET_SET(so->so_vnet);
3752 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
3753 CURVNET_RESTORE();
3754
3755 /* Ugly but needed, since hhooks return void for now */
3756 return (hhook_data.status);
3757 }
3758 #endif
3759
3760 /*
3761 * Perhaps this routine, and sooptcopyout(), below, ought to come in an
3762 * additional variant to handle the case where the option value needs to be
3763 * some kind of integer, but not a specific size. In addition to their use
3764 * here, these functions are also called by the protocol-level pr_ctloutput()
3765 * routines.
3766 */
3767 int
3768 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
3769 {
3770 size_t valsize;
3771
3772 /*
3773 * If the user gives us more than we wanted, we ignore it, but if we
3774 * don't get the minimum length the caller wants, we return EINVAL.
3775 * On success, sopt->sopt_valsize is set to however much we actually
3776 * retrieved.
3777 */
3778 if ((valsize = sopt->sopt_valsize) < minlen)
3779 return EINVAL;
3780 if (valsize > len)
3781 sopt->sopt_valsize = valsize = len;
3782
3783 if (sopt->sopt_td != NULL)
3784 return (copyin(sopt->sopt_val, buf, valsize));
3785
3786 bcopy(sopt->sopt_val, buf, valsize);
3787 return (0);
3788 }
3789
3790 /*
3791 * Kernel version of setsockopt(2).
3792 *
3793 * XXX: optlen is size_t, not socklen_t
3794 */
3795 int
3796 so_setsockopt(struct socket *so, int level, int optname, void *optval,
3797 size_t optlen)
3798 {
3799 struct sockopt sopt;
3800
3801 sopt.sopt_level = level;
3802 sopt.sopt_name = optname;
3803 sopt.sopt_dir = SOPT_SET;
3804 sopt.sopt_val = optval;
3805 sopt.sopt_valsize = optlen;
3806 sopt.sopt_td = NULL;
3807 return (sosetopt(so, &sopt));
3808 }
3809
3810 int
3811 sosetopt(struct socket *so, struct sockopt *sopt)
3812 {
3813 int error, optval;
3814 struct linger l;
3815 struct timeval tv;
3816 sbintime_t val, *valp;
3817 uint32_t val32;
3818 #ifdef MAC
3819 struct mac extmac;
3820 #endif
3821
3822 CURVNET_SET(so->so_vnet);
3823 error = 0;
3824 if (sopt->sopt_level != SOL_SOCKET) {
3825 error = so->so_proto->pr_ctloutput(so, sopt);
3826 } else {
3827 switch (sopt->sopt_name) {
3828 case SO_ACCEPTFILTER:
3829 error = accept_filt_setopt(so, sopt);
3830 if (error)
3831 goto bad;
3832 break;
3833
3834 case SO_LINGER:
3835 error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3836 if (error)
3837 goto bad;
3838 if (l.l_linger < 0 ||
3839 l.l_linger > USHRT_MAX ||
3840 l.l_linger > (INT_MAX / hz)) {
3841 error = EDOM;
3842 goto bad;
3843 }
3844 SOCK_LOCK(so);
3845 so->so_linger = l.l_linger;
3846 if (l.l_onoff)
3847 so->so_options |= SO_LINGER;
3848 else
3849 so->so_options &= ~SO_LINGER;
3850 SOCK_UNLOCK(so);
3851 break;
3852
3853 case SO_DEBUG:
3854 case SO_KEEPALIVE:
3855 case SO_DONTROUTE:
3856 case SO_USELOOPBACK:
3857 case SO_BROADCAST:
3858 case SO_REUSEADDR:
3859 case SO_REUSEPORT:
3860 case SO_REUSEPORT_LB:
3861 case SO_OOBINLINE:
3862 case SO_TIMESTAMP:
3863 case SO_BINTIME:
3864 case SO_NOSIGPIPE:
3865 case SO_NO_DDP:
3866 case SO_NO_OFFLOAD:
3867 case SO_RERROR:
3868 error = sooptcopyin(sopt, &optval, sizeof optval,
3869 sizeof optval);
3870 if (error)
3871 goto bad;
3872 SOCK_LOCK(so);
3873 if (optval)
3874 so->so_options |= sopt->sopt_name;
3875 else
3876 so->so_options &= ~sopt->sopt_name;
3877 SOCK_UNLOCK(so);
3878 break;
3879
3880 case SO_SETFIB:
3881 error = so->so_proto->pr_ctloutput(so, sopt);
3882 break;
3883
3884 case SO_USER_COOKIE:
3885 error = sooptcopyin(sopt, &val32, sizeof val32,
3886 sizeof val32);
3887 if (error)
3888 goto bad;
3889 so->so_user_cookie = val32;
3890 break;
3891
3892 case SO_SNDBUF:
3893 case SO_RCVBUF:
3894 case SO_SNDLOWAT:
3895 case SO_RCVLOWAT:
3896 error = so->so_proto->pr_setsbopt(so, sopt);
3897 if (error)
3898 goto bad;
3899 break;
3900
3901 case SO_SNDTIMEO:
3902 case SO_RCVTIMEO:
3903 #ifdef COMPAT_FREEBSD32
3904 if (SV_CURPROC_FLAG(SV_ILP32)) {
3905 struct timeval32 tv32;
3906
3907 error = sooptcopyin(sopt, &tv32, sizeof tv32,
3908 sizeof tv32);
3909 CP(tv32, tv, tv_sec);
3910 CP(tv32, tv, tv_usec);
3911 } else
3912 #endif
3913 error = sooptcopyin(sopt, &tv, sizeof tv,
3914 sizeof tv);
3915 if (error)
3916 goto bad;
3917 if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3918 tv.tv_usec >= 1000000) {
3919 error = EDOM;
3920 goto bad;
3921 }
3922 if (tv.tv_sec > INT32_MAX)
3923 val = SBT_MAX;
3924 else
3925 val = tvtosbt(tv);
3926 SOCK_LOCK(so);
3927 valp = sopt->sopt_name == SO_SNDTIMEO ?
3928 (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3929 &so->so_snd.sb_timeo) :
3930 (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3931 &so->so_rcv.sb_timeo);
3932 *valp = val;
3933 SOCK_UNLOCK(so);
3934 break;
3935
3936 case SO_LABEL:
3937 #ifdef MAC
3938 error = sooptcopyin(sopt, &extmac, sizeof extmac,
3939 sizeof extmac);
3940 if (error)
3941 goto bad;
3942 error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3943 so, &extmac);
3944 #else
3945 error = EOPNOTSUPP;
3946 #endif
3947 break;
3948
3949 case SO_TS_CLOCK:
3950 error = sooptcopyin(sopt, &optval, sizeof optval,
3951 sizeof optval);
3952 if (error)
3953 goto bad;
3954 if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3955 error = EINVAL;
3956 goto bad;
3957 }
3958 so->so_ts_clock = optval;
3959 break;
3960
3961 case SO_MAX_PACING_RATE:
3962 error = sooptcopyin(sopt, &val32, sizeof(val32),
3963 sizeof(val32));
3964 if (error)
3965 goto bad;
3966 so->so_max_pacing_rate = val32;
3967 break;
3968
3969 case SO_SPLICE: {
3970 struct splice splice;
3971
3972 #ifdef COMPAT_FREEBSD32
3973 if (SV_CURPROC_FLAG(SV_ILP32)) {
3974 struct splice32 splice32;
3975
3976 error = sooptcopyin(sopt, &splice32,
3977 sizeof(splice32), sizeof(splice32));
3978 if (error == 0) {
3979 splice.sp_fd = splice32.sp_fd;
3980 splice.sp_max = splice32.sp_max;
3981 CP(splice32.sp_idle, splice.sp_idle,
3982 tv_sec);
3983 CP(splice32.sp_idle, splice.sp_idle,
3984 tv_usec);
3985 }
3986 } else
3987 #endif
3988 {
3989 error = sooptcopyin(sopt, &splice,
3990 sizeof(splice), sizeof(splice));
3991 }
3992 if (error)
3993 goto bad;
3994 #ifdef KTRACE
3995 if (KTRPOINT(curthread, KTR_STRUCT))
3996 ktrsplice(&splice);
3997 #endif
3998
3999 error = splice_init();
4000 if (error != 0)
4001 goto bad;
4002
4003 if (splice.sp_fd >= 0) {
4004 struct file *fp;
4005 struct socket *so2;
4006
4007 if (!cap_rights_contains(sopt->sopt_rights,
4008 &cap_recv_rights)) {
4009 error = ENOTCAPABLE;
4010 goto bad;
4011 }
4012 error = getsock(sopt->sopt_td, splice.sp_fd,
4013 &cap_send_rights, &fp);
4014 if (error != 0)
4015 goto bad;
4016 so2 = fp->f_data;
4017
4018 error = so_splice(so, so2, &splice);
4019 fdrop(fp, sopt->sopt_td);
4020 } else {
4021 error = so_unsplice(so, false);
4022 }
4023 break;
4024 }
4025 default:
4026 #ifdef SOCKET_HHOOK
4027 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4028 error = hhook_run_socket(so, sopt,
4029 HHOOK_SOCKET_OPT);
4030 else
4031 #endif
4032 error = ENOPROTOOPT;
4033 break;
4034 }
4035 if (error == 0)
4036 (void)so->so_proto->pr_ctloutput(so, sopt);
4037 }
4038 bad:
4039 CURVNET_RESTORE();
4040 return (error);
4041 }
4042
4043 /*
4044 * Helper routine for getsockopt.
4045 */
4046 int
4047 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
4048 {
4049 int error;
4050 size_t valsize;
4051
4052 error = 0;
4053
4054 /*
4055 * Documented get behavior is that we always return a value, possibly
4056 * truncated to fit in the user's buffer. Traditional behavior is
4057 * that we always tell the user precisely how much we copied, rather
4058 * than something useful like the total amount we had available for
4059 * her. Note that this interface is not idempotent; the entire
4060 * answer must be generated ahead of time.
4061 */
4062 valsize = min(len, sopt->sopt_valsize);
4063 sopt->sopt_valsize = valsize;
4064 if (sopt->sopt_val != NULL) {
4065 if (sopt->sopt_td != NULL)
4066 error = copyout(buf, sopt->sopt_val, valsize);
4067 else
4068 bcopy(buf, sopt->sopt_val, valsize);
4069 }
4070 return (error);
4071 }
4072
4073 int
4074 sogetopt(struct socket *so, struct sockopt *sopt)
4075 {
4076 int error, optval;
4077 struct linger l;
4078 struct timeval tv;
4079 #ifdef MAC
4080 struct mac extmac;
4081 #endif
4082
4083 CURVNET_SET(so->so_vnet);
4084 error = 0;
4085 if (sopt->sopt_level != SOL_SOCKET) {
4086 error = so->so_proto->pr_ctloutput(so, sopt);
4087 CURVNET_RESTORE();
4088 return (error);
4089 } else {
4090 switch (sopt->sopt_name) {
4091 case SO_ACCEPTFILTER:
4092 error = accept_filt_getopt(so, sopt);
4093 break;
4094
4095 case SO_LINGER:
4096 SOCK_LOCK(so);
4097 l.l_onoff = so->so_options & SO_LINGER;
4098 l.l_linger = so->so_linger;
4099 SOCK_UNLOCK(so);
4100 error = sooptcopyout(sopt, &l, sizeof l);
4101 break;
4102
4103 case SO_USELOOPBACK:
4104 case SO_DONTROUTE:
4105 case SO_DEBUG:
4106 case SO_KEEPALIVE:
4107 case SO_REUSEADDR:
4108 case SO_REUSEPORT:
4109 case SO_REUSEPORT_LB:
4110 case SO_BROADCAST:
4111 case SO_OOBINLINE:
4112 case SO_ACCEPTCONN:
4113 case SO_TIMESTAMP:
4114 case SO_BINTIME:
4115 case SO_NOSIGPIPE:
4116 case SO_NO_DDP:
4117 case SO_NO_OFFLOAD:
4118 case SO_RERROR:
4119 optval = so->so_options & sopt->sopt_name;
4120 integer:
4121 error = sooptcopyout(sopt, &optval, sizeof optval);
4122 break;
4123
4124 case SO_FIB:
4125 SOCK_LOCK(so);
4126 optval = so->so_fibnum;
4127 SOCK_UNLOCK(so);
4128 goto integer;
4129
4130 case SO_DOMAIN:
4131 optval = so->so_proto->pr_domain->dom_family;
4132 goto integer;
4133
4134 case SO_TYPE:
4135 optval = so->so_type;
4136 goto integer;
4137
4138 case SO_PROTOCOL:
4139 optval = so->so_proto->pr_protocol;
4140 goto integer;
4141
4142 case SO_ERROR:
4143 SOCK_LOCK(so);
4144 if (so->so_error) {
4145 optval = so->so_error;
4146 so->so_error = 0;
4147 } else {
4148 optval = so->so_rerror;
4149 so->so_rerror = 0;
4150 }
4151 SOCK_UNLOCK(so);
4152 goto integer;
4153
4154 case SO_SNDBUF:
4155 SOCK_LOCK(so);
4156 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
4157 so->so_snd.sb_hiwat;
4158 SOCK_UNLOCK(so);
4159 goto integer;
4160
4161 case SO_RCVBUF:
4162 SOCK_LOCK(so);
4163 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
4164 so->so_rcv.sb_hiwat;
4165 SOCK_UNLOCK(so);
4166 goto integer;
4167
4168 case SO_SNDLOWAT:
4169 SOCK_LOCK(so);
4170 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
4171 so->so_snd.sb_lowat;
4172 SOCK_UNLOCK(so);
4173 goto integer;
4174
4175 case SO_RCVLOWAT:
4176 SOCK_LOCK(so);
4177 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
4178 so->so_rcv.sb_lowat;
4179 SOCK_UNLOCK(so);
4180 goto integer;
4181
4182 case SO_SNDTIMEO:
4183 case SO_RCVTIMEO:
4184 SOCK_LOCK(so);
4185 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
4186 (SOLISTENING(so) ? so->sol_sbsnd_timeo :
4187 so->so_snd.sb_timeo) :
4188 (SOLISTENING(so) ? so->sol_sbrcv_timeo :
4189 so->so_rcv.sb_timeo));
4190 SOCK_UNLOCK(so);
4191 #ifdef COMPAT_FREEBSD32
4192 if (SV_CURPROC_FLAG(SV_ILP32)) {
4193 struct timeval32 tv32;
4194
4195 CP(tv, tv32, tv_sec);
4196 CP(tv, tv32, tv_usec);
4197 error = sooptcopyout(sopt, &tv32, sizeof tv32);
4198 } else
4199 #endif
4200 error = sooptcopyout(sopt, &tv, sizeof tv);
4201 break;
4202
4203 case SO_LABEL:
4204 #ifdef MAC
4205 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4206 sizeof(extmac));
4207 if (error)
4208 goto bad;
4209 error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
4210 so, &extmac);
4211 if (error)
4212 goto bad;
4213 /* Don't copy out extmac, it is unchanged. */
4214 #else
4215 error = EOPNOTSUPP;
4216 #endif
4217 break;
4218
4219 case SO_PEERLABEL:
4220 #ifdef MAC
4221 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4222 sizeof(extmac));
4223 if (error)
4224 goto bad;
4225 error = mac_getsockopt_peerlabel(
4226 sopt->sopt_td->td_ucred, so, &extmac);
4227 if (error)
4228 goto bad;
4229 /* Don't copy out extmac, it is unchanged. */
4230 #else
4231 error = EOPNOTSUPP;
4232 #endif
4233 break;
4234
4235 case SO_LISTENQLIMIT:
4236 SOCK_LOCK(so);
4237 optval = SOLISTENING(so) ? so->sol_qlimit : 0;
4238 SOCK_UNLOCK(so);
4239 goto integer;
4240
4241 case SO_LISTENQLEN:
4242 SOCK_LOCK(so);
4243 optval = SOLISTENING(so) ? so->sol_qlen : 0;
4244 SOCK_UNLOCK(so);
4245 goto integer;
4246
4247 case SO_LISTENINCQLEN:
4248 SOCK_LOCK(so);
4249 optval = SOLISTENING(so) ? so->sol_incqlen : 0;
4250 SOCK_UNLOCK(so);
4251 goto integer;
4252
4253 case SO_TS_CLOCK:
4254 optval = so->so_ts_clock;
4255 goto integer;
4256
4257 case SO_MAX_PACING_RATE:
4258 optval = so->so_max_pacing_rate;
4259 goto integer;
4260
4261 case SO_SPLICE: {
4262 off_t n;
4263
4264 /*
4265 * Acquire the I/O lock to serialize with
4266 * so_splice_xfer(). This is not required for
4267 * correctness, but makes testing simpler: once a byte
4268 * has been transmitted to the sink and observed (e.g.,
4269 * by reading from the socket to which the sink is
4270 * connected), a subsequent getsockopt(SO_SPLICE) will
4271 * return an up-to-date value.
4272 */
4273 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT);
4274 if (error != 0)
4275 goto bad;
4276 SOCK_LOCK(so);
4277 if (SOLISTENING(so)) {
4278 n = 0;
4279 } else {
4280 n = so->so_splice_sent;
4281 }
4282 SOCK_UNLOCK(so);
4283 SOCK_IO_RECV_UNLOCK(so);
4284 error = sooptcopyout(sopt, &n, sizeof(n));
4285 break;
4286 }
4287
4288 default:
4289 #ifdef SOCKET_HHOOK
4290 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4291 error = hhook_run_socket(so, sopt,
4292 HHOOK_SOCKET_OPT);
4293 else
4294 #endif
4295 error = ENOPROTOOPT;
4296 break;
4297 }
4298 }
4299 bad:
4300 CURVNET_RESTORE();
4301 return (error);
4302 }
4303
4304 int
4305 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
4306 {
4307 struct mbuf *m, *m_prev;
4308 int sopt_size = sopt->sopt_valsize;
4309
4310 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4311 if (m == NULL)
4312 return ENOBUFS;
4313 if (sopt_size > MLEN) {
4314 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
4315 if ((m->m_flags & M_EXT) == 0) {
4316 m_free(m);
4317 return ENOBUFS;
4318 }
4319 m->m_len = min(MCLBYTES, sopt_size);
4320 } else {
4321 m->m_len = min(MLEN, sopt_size);
4322 }
4323 sopt_size -= m->m_len;
4324 *mp = m;
4325 m_prev = m;
4326
4327 while (sopt_size) {
4328 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4329 if (m == NULL) {
4330 m_freem(*mp);
4331 return ENOBUFS;
4332 }
4333 if (sopt_size > MLEN) {
4334 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
4335 M_NOWAIT);
4336 if ((m->m_flags & M_EXT) == 0) {
4337 m_freem(m);
4338 m_freem(*mp);
4339 return ENOBUFS;
4340 }
4341 m->m_len = min(MCLBYTES, sopt_size);
4342 } else {
4343 m->m_len = min(MLEN, sopt_size);
4344 }
4345 sopt_size -= m->m_len;
4346 m_prev->m_next = m;
4347 m_prev = m;
4348 }
4349 return (0);
4350 }
4351
4352 int
4353 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
4354 {
4355 struct mbuf *m0 = m;
4356
4357 if (sopt->sopt_val == NULL)
4358 return (0);
4359 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4360 if (sopt->sopt_td != NULL) {
4361 int error;
4362
4363 error = copyin(sopt->sopt_val, mtod(m, char *),
4364 m->m_len);
4365 if (error != 0) {
4366 m_freem(m0);
4367 return(error);
4368 }
4369 } else
4370 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
4371 sopt->sopt_valsize -= m->m_len;
4372 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4373 m = m->m_next;
4374 }
4375 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
4376 panic("ip6_sooptmcopyin");
4377 return (0);
4378 }
4379
4380 int
4381 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
4382 {
4383 struct mbuf *m0 = m;
4384 size_t valsize = 0;
4385
4386 if (sopt->sopt_val == NULL)
4387 return (0);
4388 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4389 if (sopt->sopt_td != NULL) {
4390 int error;
4391
4392 error = copyout(mtod(m, char *), sopt->sopt_val,
4393 m->m_len);
4394 if (error != 0) {
4395 m_freem(m0);
4396 return(error);
4397 }
4398 } else
4399 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
4400 sopt->sopt_valsize -= m->m_len;
4401 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4402 valsize += m->m_len;
4403 m = m->m_next;
4404 }
4405 if (m != NULL) {
4406 /* enough soopt buffer should be given from user-land */
4407 m_freem(m0);
4408 return(EINVAL);
4409 }
4410 sopt->sopt_valsize = valsize;
4411 return (0);
4412 }
4413
4414 /*
4415 * sohasoutofband(): protocol notifies socket layer of the arrival of new
4416 * out-of-band data, which will then notify socket consumers.
4417 */
4418 void
4419 sohasoutofband(struct socket *so)
4420 {
4421
4422 if (so->so_sigio != NULL)
4423 pgsigio(&so->so_sigio, SIGURG, 0);
4424 selwakeuppri(&so->so_rdsel, PSOCK);
4425 }
4426
4427 int
4428 sopoll_generic(struct socket *so, int events, struct thread *td)
4429 {
4430 int revents;
4431
4432 SOCK_LOCK(so);
4433 if (SOLISTENING(so)) {
4434 if (!(events & (POLLIN | POLLRDNORM)))
4435 revents = 0;
4436 else if (!TAILQ_EMPTY(&so->sol_comp))
4437 revents = events & (POLLIN | POLLRDNORM);
4438 else if ((events & POLLINIGNEOF) == 0 && so->so_error)
4439 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
4440 else {
4441 selrecord(td, &so->so_rdsel);
4442 revents = 0;
4443 }
4444 } else {
4445 revents = 0;
4446 SOCK_SENDBUF_LOCK(so);
4447 SOCK_RECVBUF_LOCK(so);
4448 if (events & (POLLIN | POLLRDNORM))
4449 if (soreadabledata(so) && !isspliced(so))
4450 revents |= events & (POLLIN | POLLRDNORM);
4451 if (events & (POLLOUT | POLLWRNORM))
4452 if (sowriteable(so) && !issplicedback(so))
4453 revents |= events & (POLLOUT | POLLWRNORM);
4454 if (events & (POLLPRI | POLLRDBAND))
4455 if (so->so_oobmark ||
4456 (so->so_rcv.sb_state & SBS_RCVATMARK))
4457 revents |= events & (POLLPRI | POLLRDBAND);
4458 if ((events & POLLINIGNEOF) == 0) {
4459 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4460 revents |= events & (POLLIN | POLLRDNORM);
4461 if (so->so_snd.sb_state & SBS_CANTSENDMORE)
4462 revents |= POLLHUP;
4463 }
4464 }
4465 if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
4466 revents |= events & POLLRDHUP;
4467 if (revents == 0) {
4468 if (events &
4469 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
4470 selrecord(td, &so->so_rdsel);
4471 so->so_rcv.sb_flags |= SB_SEL;
4472 }
4473 if (events & (POLLOUT | POLLWRNORM)) {
4474 selrecord(td, &so->so_wrsel);
4475 so->so_snd.sb_flags |= SB_SEL;
4476 }
4477 }
4478 SOCK_RECVBUF_UNLOCK(so);
4479 SOCK_SENDBUF_UNLOCK(so);
4480 }
4481 SOCK_UNLOCK(so);
4482 return (revents);
4483 }
4484
4485 int
4486 sokqfilter_generic(struct socket *so, struct knote *kn)
4487 {
4488 struct sockbuf *sb;
4489 sb_which which;
4490 struct knlist *knl;
4491
4492 switch (kn->kn_filter) {
4493 case EVFILT_READ:
4494 kn->kn_fop = &soread_filtops;
4495 knl = &so->so_rdsel.si_note;
4496 sb = &so->so_rcv;
4497 which = SO_RCV;
4498 break;
4499 case EVFILT_WRITE:
4500 kn->kn_fop = &sowrite_filtops;
4501 knl = &so->so_wrsel.si_note;
4502 sb = &so->so_snd;
4503 which = SO_SND;
4504 break;
4505 case EVFILT_EMPTY:
4506 kn->kn_fop = &soempty_filtops;
4507 knl = &so->so_wrsel.si_note;
4508 sb = &so->so_snd;
4509 which = SO_SND;
4510 break;
4511 default:
4512 return (EINVAL);
4513 }
4514
4515 SOCK_LOCK(so);
4516 if (SOLISTENING(so)) {
4517 knlist_add(knl, kn, 1);
4518 } else {
4519 SOCK_BUF_LOCK(so, which);
4520 knlist_add(knl, kn, 1);
4521 sb->sb_flags |= SB_KNOTE;
4522 if ((kn->kn_sfflags & NOTE_LOWAT) &&
4523 (sb->sb_flags & SB_AUTOLOWAT))
4524 sb->sb_flags &= ~SB_AUTOLOWAT;
4525 SOCK_BUF_UNLOCK(so, which);
4526 }
4527 SOCK_UNLOCK(so);
4528 return (0);
4529 }
4530
4531 static void
4532 filt_sordetach(struct knote *kn)
4533 {
4534 struct socket *so = kn->kn_fp->f_data;
4535
4536 so_rdknl_lock(so);
4537 knlist_remove(&so->so_rdsel.si_note, kn, 1);
4538 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
4539 so->so_rcv.sb_flags &= ~SB_KNOTE;
4540 so_rdknl_unlock(so);
4541 }
4542
4543 /*ARGSUSED*/
4544 static int
4545 filt_soread(struct knote *kn, long hint)
4546 {
4547 struct socket *so;
4548
4549 so = kn->kn_fp->f_data;
4550
4551 if (SOLISTENING(so)) {
4552 SOCK_LOCK_ASSERT(so);
4553 kn->kn_data = so->sol_qlen;
4554 if (so->so_error) {
4555 kn->kn_flags |= EV_EOF;
4556 kn->kn_fflags = so->so_error;
4557 return (1);
4558 }
4559 return (!TAILQ_EMPTY(&so->sol_comp));
4560 }
4561
4562 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
4563 return (0);
4564
4565 SOCK_RECVBUF_LOCK_ASSERT(so);
4566
4567 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
4568 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4569 kn->kn_flags |= EV_EOF;
4570 kn->kn_fflags = so->so_error;
4571 return (1);
4572 } else if (so->so_error || so->so_rerror)
4573 return (1);
4574
4575 if (kn->kn_sfflags & NOTE_LOWAT) {
4576 if (kn->kn_data >= kn->kn_sdata)
4577 return (1);
4578 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
4579 return (1);
4580
4581 #ifdef SOCKET_HHOOK
4582 /* This hook returning non-zero indicates an event, not error */
4583 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
4584 #else
4585 return (0);
4586 #endif
4587 }
4588
4589 static void
4590 filt_sowdetach(struct knote *kn)
4591 {
4592 struct socket *so = kn->kn_fp->f_data;
4593
4594 so_wrknl_lock(so);
4595 knlist_remove(&so->so_wrsel.si_note, kn, 1);
4596 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
4597 so->so_snd.sb_flags &= ~SB_KNOTE;
4598 so_wrknl_unlock(so);
4599 }
4600
4601 /*ARGSUSED*/
4602 static int
4603 filt_sowrite(struct knote *kn, long hint)
4604 {
4605 struct socket *so;
4606
4607 so = kn->kn_fp->f_data;
4608
4609 if (SOLISTENING(so))
4610 return (0);
4611
4612 SOCK_SENDBUF_LOCK_ASSERT(so);
4613 kn->kn_data = sbspace(&so->so_snd);
4614
4615 #ifdef SOCKET_HHOOK
4616 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
4617 #endif
4618
4619 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
4620 kn->kn_flags |= EV_EOF;
4621 kn->kn_fflags = so->so_error;
4622 return (1);
4623 } else if (so->so_error) /* temporary udp error */
4624 return (1);
4625 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
4626 (so->so_proto->pr_flags & PR_CONNREQUIRED))
4627 return (0);
4628 else if (kn->kn_sfflags & NOTE_LOWAT)
4629 return (kn->kn_data >= kn->kn_sdata);
4630 else
4631 return (kn->kn_data >= so->so_snd.sb_lowat);
4632 }
4633
4634 static int
4635 filt_soempty(struct knote *kn, long hint)
4636 {
4637 struct socket *so;
4638
4639 so = kn->kn_fp->f_data;
4640
4641 if (SOLISTENING(so))
4642 return (1);
4643
4644 SOCK_SENDBUF_LOCK_ASSERT(so);
4645 kn->kn_data = sbused(&so->so_snd);
4646
4647 if (kn->kn_data == 0)
4648 return (1);
4649 else
4650 return (0);
4651 }
4652
4653 int
4654 socheckuid(struct socket *so, uid_t uid)
4655 {
4656
4657 if (so == NULL)
4658 return (EPERM);
4659 if (so->so_cred->cr_uid != uid)
4660 return (EPERM);
4661 return (0);
4662 }
4663
4664 /*
4665 * These functions are used by protocols to notify the socket layer (and its
4666 * consumers) of state changes in the sockets driven by protocol-side events.
4667 */
4668
4669 /*
4670 * Procedures to manipulate state flags of socket and do appropriate wakeups.
4671 *
4672 * Normal sequence from the active (originating) side is that
4673 * soisconnecting() is called during processing of connect() call, resulting
4674 * in an eventual call to soisconnected() if/when the connection is
4675 * established. When the connection is torn down soisdisconnecting() is
4676 * called during processing of disconnect() call, and soisdisconnected() is
4677 * called when the connection to the peer is totally severed. The semantics
4678 * of these routines are such that connectionless protocols can call
4679 * soisconnected() and soisdisconnected() only, bypassing the in-progress
4680 * calls when setting up a ``connection'' takes no time.
4681 *
4682 * From the passive side, a socket is created with two queues of sockets:
4683 * so_incomp for connections in progress and so_comp for connections already
4684 * made and awaiting user acceptance. As a protocol is preparing incoming
4685 * connections, it creates a socket structure queued on so_incomp by calling
4686 * sonewconn(). When the connection is established, soisconnected() is
4687 * called, and transfers the socket structure to so_comp, making it available
4688 * to accept().
4689 *
4690 * If a socket is closed with sockets on either so_incomp or so_comp, these
4691 * sockets are dropped.
4692 *
4693 * If higher-level protocols are implemented in the kernel, the wakeups done
4694 * here will sometimes cause software-interrupt process scheduling.
4695 */
4696 void
4697 soisconnecting(struct socket *so)
4698 {
4699
4700 SOCK_LOCK(so);
4701 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
4702 so->so_state |= SS_ISCONNECTING;
4703 SOCK_UNLOCK(so);
4704 }
4705
4706 void
4707 soisconnected(struct socket *so)
4708 {
4709 bool last __diagused;
4710
4711 SOCK_LOCK(so);
4712 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING);
4713 so->so_state |= SS_ISCONNECTED;
4714
4715 if (so->so_qstate == SQ_INCOMP) {
4716 struct socket *head = so->so_listen;
4717 int ret;
4718
4719 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
4720 /*
4721 * Promoting a socket from incomplete queue to complete, we
4722 * need to go through reverse order of locking. We first do
4723 * trylock, and if that doesn't succeed, we go the hard way
4724 * leaving a reference and rechecking consistency after proper
4725 * locking.
4726 */
4727 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
4728 soref(head);
4729 SOCK_UNLOCK(so);
4730 SOLISTEN_LOCK(head);
4731 SOCK_LOCK(so);
4732 if (__predict_false(head != so->so_listen)) {
4733 /*
4734 * The socket went off the listen queue,
4735 * should be lost race to close(2) of sol.
4736 * The socket is about to soabort().
4737 */
4738 SOCK_UNLOCK(so);
4739 sorele_locked(head);
4740 return;
4741 }
4742 last = refcount_release(&head->so_count);
4743 KASSERT(!last, ("%s: released last reference for %p",
4744 __func__, head));
4745 }
4746 again:
4747 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
4748 TAILQ_REMOVE(&head->sol_incomp, so, so_list);
4749 head->sol_incqlen--;
4750 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
4751 head->sol_qlen++;
4752 so->so_qstate = SQ_COMP;
4753 SOCK_UNLOCK(so);
4754 solisten_wakeup(head); /* unlocks */
4755 } else {
4756 SOCK_RECVBUF_LOCK(so);
4757 soupcall_set(so, SO_RCV,
4758 head->sol_accept_filter->accf_callback,
4759 head->sol_accept_filter_arg);
4760 so->so_options &= ~SO_ACCEPTFILTER;
4761 ret = head->sol_accept_filter->accf_callback(so,
4762 head->sol_accept_filter_arg, M_NOWAIT);
4763 if (ret == SU_ISCONNECTED) {
4764 soupcall_clear(so, SO_RCV);
4765 SOCK_RECVBUF_UNLOCK(so);
4766 goto again;
4767 }
4768 SOCK_RECVBUF_UNLOCK(so);
4769 SOCK_UNLOCK(so);
4770 SOLISTEN_UNLOCK(head);
4771 }
4772 return;
4773 }
4774 SOCK_UNLOCK(so);
4775 wakeup(&so->so_timeo);
4776 sorwakeup(so);
4777 sowwakeup(so);
4778 }
4779
4780 void
4781 soisdisconnecting(struct socket *so)
4782 {
4783
4784 SOCK_LOCK(so);
4785 so->so_state &= ~SS_ISCONNECTING;
4786 so->so_state |= SS_ISDISCONNECTING;
4787
4788 if (!SOLISTENING(so)) {
4789 SOCK_RECVBUF_LOCK(so);
4790 socantrcvmore_locked(so);
4791 SOCK_SENDBUF_LOCK(so);
4792 socantsendmore_locked(so);
4793 }
4794 SOCK_UNLOCK(so);
4795 wakeup(&so->so_timeo);
4796 }
4797
4798 void
4799 soisdisconnected(struct socket *so)
4800 {
4801
4802 SOCK_LOCK(so);
4803
4804 /*
4805 * There is at least one reader of so_state that does not
4806 * acquire socket lock, namely soreceive_generic(). Ensure
4807 * that it never sees all flags that track connection status
4808 * cleared, by ordering the update with a barrier semantic of
4809 * our release thread fence.
4810 */
4811 so->so_state |= SS_ISDISCONNECTED;
4812 atomic_thread_fence_rel();
4813 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4814
4815 if (!SOLISTENING(so)) {
4816 SOCK_UNLOCK(so);
4817 SOCK_RECVBUF_LOCK(so);
4818 socantrcvmore_locked(so);
4819 SOCK_SENDBUF_LOCK(so);
4820 sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4821 socantsendmore_locked(so);
4822 } else
4823 SOCK_UNLOCK(so);
4824 wakeup(&so->so_timeo);
4825 }
4826
4827 int
4828 soiolock(struct socket *so, struct sx *sx, int flags)
4829 {
4830 int error;
4831
4832 KASSERT((flags & SBL_VALID) == flags,
4833 ("soiolock: invalid flags %#x", flags));
4834
4835 if ((flags & SBL_WAIT) != 0) {
4836 if ((flags & SBL_NOINTR) != 0) {
4837 sx_xlock(sx);
4838 } else {
4839 error = sx_xlock_sig(sx);
4840 if (error != 0)
4841 return (error);
4842 }
4843 } else if (!sx_try_xlock(sx)) {
4844 return (EWOULDBLOCK);
4845 }
4846
4847 if (__predict_false(SOLISTENING(so))) {
4848 sx_xunlock(sx);
4849 return (ENOTCONN);
4850 }
4851 return (0);
4852 }
4853
4854 void
4855 soiounlock(struct sx *sx)
4856 {
4857 sx_xunlock(sx);
4858 }
4859
4860 /*
4861 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4862 */
4863 struct sockaddr *
4864 sodupsockaddr(const struct sockaddr *sa, int mflags)
4865 {
4866 struct sockaddr *sa2;
4867
4868 sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4869 if (sa2)
4870 bcopy(sa, sa2, sa->sa_len);
4871 return sa2;
4872 }
4873
4874 /*
4875 * Register per-socket destructor.
4876 */
4877 void
4878 sodtor_set(struct socket *so, so_dtor_t *func)
4879 {
4880
4881 SOCK_LOCK_ASSERT(so);
4882 so->so_dtor = func;
4883 }
4884
4885 /*
4886 * Register per-socket buffer upcalls.
4887 */
4888 void
4889 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4890 {
4891 struct sockbuf *sb;
4892
4893 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4894
4895 switch (which) {
4896 case SO_RCV:
4897 sb = &so->so_rcv;
4898 break;
4899 case SO_SND:
4900 sb = &so->so_snd;
4901 break;
4902 }
4903 SOCK_BUF_LOCK_ASSERT(so, which);
4904 sb->sb_upcall = func;
4905 sb->sb_upcallarg = arg;
4906 sb->sb_flags |= SB_UPCALL;
4907 }
4908
4909 void
4910 soupcall_clear(struct socket *so, sb_which which)
4911 {
4912 struct sockbuf *sb;
4913
4914 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4915
4916 switch (which) {
4917 case SO_RCV:
4918 sb = &so->so_rcv;
4919 break;
4920 case SO_SND:
4921 sb = &so->so_snd;
4922 break;
4923 }
4924 SOCK_BUF_LOCK_ASSERT(so, which);
4925 KASSERT(sb->sb_upcall != NULL,
4926 ("%s: so %p no upcall to clear", __func__, so));
4927 sb->sb_upcall = NULL;
4928 sb->sb_upcallarg = NULL;
4929 sb->sb_flags &= ~SB_UPCALL;
4930 }
4931
4932 void
4933 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4934 {
4935
4936 SOLISTEN_LOCK_ASSERT(so);
4937 so->sol_upcall = func;
4938 so->sol_upcallarg = arg;
4939 }
4940
4941 static void
4942 so_rdknl_lock(void *arg)
4943 {
4944 struct socket *so = arg;
4945
4946 retry:
4947 if (SOLISTENING(so)) {
4948 SOLISTEN_LOCK(so);
4949 } else {
4950 SOCK_RECVBUF_LOCK(so);
4951 if (__predict_false(SOLISTENING(so))) {
4952 SOCK_RECVBUF_UNLOCK(so);
4953 goto retry;
4954 }
4955 }
4956 }
4957
4958 static void
4959 so_rdknl_unlock(void *arg)
4960 {
4961 struct socket *so = arg;
4962
4963 if (SOLISTENING(so))
4964 SOLISTEN_UNLOCK(so);
4965 else
4966 SOCK_RECVBUF_UNLOCK(so);
4967 }
4968
4969 static void
4970 so_rdknl_assert_lock(void *arg, int what)
4971 {
4972 struct socket *so = arg;
4973
4974 if (what == LA_LOCKED) {
4975 if (SOLISTENING(so))
4976 SOLISTEN_LOCK_ASSERT(so);
4977 else
4978 SOCK_RECVBUF_LOCK_ASSERT(so);
4979 } else {
4980 if (SOLISTENING(so))
4981 SOLISTEN_UNLOCK_ASSERT(so);
4982 else
4983 SOCK_RECVBUF_UNLOCK_ASSERT(so);
4984 }
4985 }
4986
4987 static void
4988 so_wrknl_lock(void *arg)
4989 {
4990 struct socket *so = arg;
4991
4992 retry:
4993 if (SOLISTENING(so)) {
4994 SOLISTEN_LOCK(so);
4995 } else {
4996 SOCK_SENDBUF_LOCK(so);
4997 if (__predict_false(SOLISTENING(so))) {
4998 SOCK_SENDBUF_UNLOCK(so);
4999 goto retry;
5000 }
5001 }
5002 }
5003
5004 static void
5005 so_wrknl_unlock(void *arg)
5006 {
5007 struct socket *so = arg;
5008
5009 if (SOLISTENING(so))
5010 SOLISTEN_UNLOCK(so);
5011 else
5012 SOCK_SENDBUF_UNLOCK(so);
5013 }
5014
5015 static void
5016 so_wrknl_assert_lock(void *arg, int what)
5017 {
5018 struct socket *so = arg;
5019
5020 if (what == LA_LOCKED) {
5021 if (SOLISTENING(so))
5022 SOLISTEN_LOCK_ASSERT(so);
5023 else
5024 SOCK_SENDBUF_LOCK_ASSERT(so);
5025 } else {
5026 if (SOLISTENING(so))
5027 SOLISTEN_UNLOCK_ASSERT(so);
5028 else
5029 SOCK_SENDBUF_UNLOCK_ASSERT(so);
5030 }
5031 }
5032
5033 /*
5034 * Create an external-format (``xsocket'') structure using the information in
5035 * the kernel-format socket structure pointed to by so. This is done to
5036 * reduce the spew of irrelevant information over this interface, to isolate
5037 * user code from changes in the kernel structure, and potentially to provide
5038 * information-hiding if we decide that some of this information should be
5039 * hidden from users.
5040 */
5041 void
5042 sotoxsocket(struct socket *so, struct xsocket *xso)
5043 {
5044
5045 bzero(xso, sizeof(*xso));
5046 xso->xso_len = sizeof *xso;
5047 xso->xso_so = (uintptr_t)so;
5048 xso->so_type = so->so_type;
5049 xso->so_options = so->so_options;
5050 xso->so_linger = so->so_linger;
5051 xso->so_state = so->so_state;
5052 xso->so_pcb = (uintptr_t)so->so_pcb;
5053 xso->xso_protocol = so->so_proto->pr_protocol;
5054 xso->xso_family = so->so_proto->pr_domain->dom_family;
5055 xso->so_timeo = so->so_timeo;
5056 xso->so_error = so->so_error;
5057 xso->so_uid = so->so_cred->cr_uid;
5058 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
5059 SOCK_LOCK(so);
5060 xso->so_fibnum = so->so_fibnum;
5061 if (SOLISTENING(so)) {
5062 xso->so_qlen = so->sol_qlen;
5063 xso->so_incqlen = so->sol_incqlen;
5064 xso->so_qlimit = so->sol_qlimit;
5065 xso->so_oobmark = 0;
5066 } else {
5067 xso->so_state |= so->so_qstate;
5068 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
5069 xso->so_oobmark = so->so_oobmark;
5070 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
5071 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
5072 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
5073 xso->so_splice_so = (uintptr_t)so->so_splice->dst;
5074 }
5075 SOCK_UNLOCK(so);
5076 }
5077
5078 int
5079 so_options_get(const struct socket *so)
5080 {
5081
5082 return (so->so_options);
5083 }
5084
5085 void
5086 so_options_set(struct socket *so, int val)
5087 {
5088
5089 so->so_options = val;
5090 }
5091
5092 int
5093 so_error_get(const struct socket *so)
5094 {
5095
5096 return (so->so_error);
5097 }
5098
5099 void
5100 so_error_set(struct socket *so, int val)
5101 {
5102
5103 so->so_error = val;
5104 }
5105