xref: /freebsd/sys/kern/uipc_socket.c (revision 1390bba42caf53a00fa370f3844cd7b3725ed4ec)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2004 The FreeBSD Foundation
7  * Copyright (c) 2004-2008 Robert N. M. Watson
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn().  Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn().  Socket layer private.
43  *
44  * pr_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation.  This is called
46  * from socreate() and sonewconn().  Socket layer private.
47  *
48  * pr_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pr_attach() has
50  * been successfully called.  If pr_attach() returned an error,
51  * pr_detach() will not be called.  Socket layer private.
52  *
53  * pr_abort() and pr_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection.  Historically, pr_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.  pr_fdclose() is called when userspace invokes close(2) on a socket
58  * file descriptor.
59  *
60  * socreate() creates a socket and attaches protocol state.  This is a public
61  * interface that may be used by socket layer consumers to create new
62  * sockets.
63  *
64  * sonewconn() creates a socket and attaches protocol state.  This is a
65  * public interface  that may be used by protocols to create new sockets when
66  * a new connection is received and will be available for accept() on a
67  * listen socket.
68  *
69  * soclose() destroys a socket after possibly waiting for it to disconnect.
70  * This is a public interface that socket consumers should use to close and
71  * release a socket when done with it.
72  *
73  * soabort() destroys a socket without waiting for it to disconnect (used
74  * only for incoming connections that are already partially or fully
75  * connected).  This is used internally by the socket layer when clearing
76  * listen socket queues (due to overflow or close on the listen socket), but
77  * is also a public interface protocols may use to abort connections in
78  * their incomplete listen queues should they no longer be required.  Sockets
79  * placed in completed connection listen queues should not be aborted for
80  * reasons described in the comment above the soclose() implementation.  This
81  * is not a general purpose close routine, and except in the specific
82  * circumstances described here, should not be used.
83  *
84  * sofree() will free a socket and its protocol state if all references on
85  * the socket have been released, and is the public interface to attempt to
86  * free a socket when a reference is removed.  This is a socket layer private
87  * interface.
88  *
89  * NOTE: In addition to socreate() and soclose(), which provide a single
90  * socket reference to the consumer to be managed as required, there are two
91  * calls to explicitly manage socket references, soref(), and sorele().
92  * Currently, these are generally required only when transitioning a socket
93  * from a listen queue to a file descriptor, in order to prevent garbage
94  * collection of the socket at an untimely moment.  For a number of reasons,
95  * these interfaces are not preferred, and should be avoided.
96  *
97  * NOTE: With regard to VNETs the general rule is that callers do not set
98  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
99  * sofree(), sorele(), sonewconn() and sorflush(), which are usually called
100  * from a pre-set VNET context.  sopoll_generic() currently does not need a
101  * VNET context to be set.
102  */
103 
104 #include <sys/cdefs.h>
105 #include "opt_inet.h"
106 #include "opt_inet6.h"
107 #include "opt_kern_tls.h"
108 #include "opt_ktrace.h"
109 #include "opt_sctp.h"
110 
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/capsicum.h>
114 #include <sys/fcntl.h>
115 #include <sys/limits.h>
116 #include <sys/lock.h>
117 #include <sys/mac.h>
118 #include <sys/malloc.h>
119 #include <sys/mbuf.h>
120 #include <sys/mutex.h>
121 #include <sys/domain.h>
122 #include <sys/file.h>			/* for struct knote */
123 #include <sys/hhook.h>
124 #include <sys/kernel.h>
125 #include <sys/khelp.h>
126 #include <sys/kthread.h>
127 #include <sys/ktls.h>
128 #include <sys/event.h>
129 #include <sys/eventhandler.h>
130 #include <sys/poll.h>
131 #include <sys/proc.h>
132 #include <sys/protosw.h>
133 #include <sys/sbuf.h>
134 #include <sys/socket.h>
135 #include <sys/socketvar.h>
136 #include <sys/resourcevar.h>
137 #include <net/route.h>
138 #include <sys/sched.h>
139 #include <sys/signalvar.h>
140 #include <sys/smp.h>
141 #include <sys/stat.h>
142 #include <sys/sx.h>
143 #include <sys/sysctl.h>
144 #include <sys/taskqueue.h>
145 #include <sys/uio.h>
146 #include <sys/un.h>
147 #include <sys/unpcb.h>
148 #include <sys/jail.h>
149 #include <sys/syslog.h>
150 #include <netinet/in.h>
151 #include <netinet/in_pcb.h>
152 #include <netinet/tcp.h>
153 
154 #include <net/vnet.h>
155 
156 #include <security/mac/mac_framework.h>
157 #include <security/mac/mac_internal.h>
158 
159 #include <vm/uma.h>
160 
161 #ifdef COMPAT_FREEBSD32
162 #include <sys/mount.h>
163 #include <sys/sysent.h>
164 #include <compat/freebsd32/freebsd32.h>
165 #endif
166 
167 static int	soreceive_generic_locked(struct socket *so,
168 		    struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
169 		    struct mbuf **controlp, int *flagsp);
170 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
171 		    int flags);
172 static int	soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
173 		    struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
174 		    struct mbuf **controlp, int flags);
175 static int	sosend_generic_locked(struct socket *so, struct sockaddr *addr,
176 		    struct uio *uio, struct mbuf *top, struct mbuf *control,
177 		    int flags, struct thread *td);
178 static void	so_rdknl_lock(void *);
179 static void	so_rdknl_unlock(void *);
180 static void	so_rdknl_assert_lock(void *, int);
181 static void	so_wrknl_lock(void *);
182 static void	so_wrknl_unlock(void *);
183 static void	so_wrknl_assert_lock(void *, int);
184 
185 static void	filt_sordetach(struct knote *kn);
186 static int	filt_soread(struct knote *kn, long hint);
187 static void	filt_sowdetach(struct knote *kn);
188 static int	filt_sowrite(struct knote *kn, long hint);
189 static int	filt_soempty(struct knote *kn, long hint);
190 
191 static const struct filterops soread_filtops = {
192 	.f_isfd = 1,
193 	.f_detach = filt_sordetach,
194 	.f_event = filt_soread,
195 	.f_copy = knote_triv_copy,
196 };
197 static const struct filterops sowrite_filtops = {
198 	.f_isfd = 1,
199 	.f_detach = filt_sowdetach,
200 	.f_event = filt_sowrite,
201 	.f_copy = knote_triv_copy,
202 };
203 static const struct filterops soempty_filtops = {
204 	.f_isfd = 1,
205 	.f_detach = filt_sowdetach,
206 	.f_event = filt_soempty,
207 	.f_copy = knote_triv_copy,
208 };
209 
210 so_gen_t	so_gencnt;	/* generation count for sockets */
211 
212 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
213 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
214 
215 #define	VNET_SO_ASSERT(so)						\
216 	VNET_ASSERT(curvnet != NULL,					\
217 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
218 
219 #ifdef SOCKET_HHOOK
220 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
221 #define	V_socket_hhh		VNET(socket_hhh)
222 static inline int hhook_run_socket(struct socket *, void *, int32_t);
223 #endif
224 
225 #ifdef COMPAT_FREEBSD32
226 #ifdef __amd64__
227 /* off_t has 4-byte alignment on i386 but not on other 32-bit platforms. */
228 #define	__splice32_packed	__packed
229 #else
230 #define	__splice32_packed
231 #endif
232 struct splice32 {
233 	int32_t	sp_fd;
234 	int64_t sp_max;
235 	struct timeval32 sp_idle;
236 } __splice32_packed;
237 #undef __splice32_packed
238 #endif
239 
240 /*
241  * Limit on the number of connections in the listen queue waiting
242  * for accept(2).
243  * NB: The original sysctl somaxconn is still available but hidden
244  * to prevent confusion about the actual purpose of this number.
245  */
246 VNET_DEFINE_STATIC(u_int, somaxconn) = SOMAXCONN;
247 #define	V_somaxconn	VNET(somaxconn)
248 
249 static int
sysctl_somaxconn(SYSCTL_HANDLER_ARGS)250 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
251 {
252 	int error;
253 	u_int val;
254 
255 	val = V_somaxconn;
256 	error = sysctl_handle_int(oidp, &val, 0, req);
257 	if (error || !req->newptr )
258 		return (error);
259 
260 	/*
261 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
262 	 *   3 * sol_qlimit / 2
263 	 * below, will not overflow.
264          */
265 
266 	if (val < 1 || val > UINT_MAX / 3)
267 		return (EINVAL);
268 
269 	V_somaxconn = val;
270 	return (0);
271 }
272 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
273     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
274     sysctl_somaxconn, "IU",
275     "Maximum listen socket pending connection accept queue size");
276 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
277     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0,
278     sizeof(u_int), sysctl_somaxconn, "IU",
279     "Maximum listen socket pending connection accept queue size (compat)");
280 
281 static u_int numopensockets;
282 static int
sysctl_numopensockets(SYSCTL_HANDLER_ARGS)283 sysctl_numopensockets(SYSCTL_HANDLER_ARGS)
284 {
285 	u_int val;
286 
287 #ifdef VIMAGE
288 	if(!IS_DEFAULT_VNET(curvnet))
289 		val = curvnet->vnet_sockcnt;
290 	else
291 #endif
292 		val = numopensockets;
293 	return (sysctl_handle_int(oidp, &val, 0, req));
294 }
295 SYSCTL_PROC(_kern_ipc, OID_AUTO, numopensockets,
296     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
297     sysctl_numopensockets, "IU", "Number of open sockets");
298 
299 /*
300  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
301  * so_gencnt field.
302  */
303 static struct mtx so_global_mtx;
304 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
305 
306 /*
307  * General IPC sysctl name space, used by sockets and a variety of other IPC
308  * types.
309  */
310 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
311     "IPC");
312 
313 /*
314  * Initialize the socket subsystem and set up the socket
315  * memory allocator.
316  */
317 static uma_zone_t socket_zone;
318 int	maxsockets;
319 
320 static void
socket_zone_change(void * tag)321 socket_zone_change(void *tag)
322 {
323 
324 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
325 }
326 
327 static int splice_init_state;
328 static struct sx splice_init_lock;
329 SX_SYSINIT(splice_init_lock, &splice_init_lock, "splice_init");
330 
331 static SYSCTL_NODE(_kern_ipc, OID_AUTO, splice, CTLFLAG_RW, 0,
332     "Settings relating to the SO_SPLICE socket option");
333 
334 static bool splice_receive_stream = true;
335 SYSCTL_BOOL(_kern_ipc_splice, OID_AUTO, receive_stream, CTLFLAG_RWTUN,
336     &splice_receive_stream, 0,
337     "Use soreceive_stream() for stream splices");
338 
339 static uma_zone_t splice_zone;
340 static struct proc *splice_proc;
341 struct splice_wq {
342 	struct mtx	mtx;
343 	STAILQ_HEAD(, so_splice) head;
344 	bool		running;
345 } __aligned(CACHE_LINE_SIZE);
346 static struct splice_wq *splice_wq;
347 static uint32_t splice_index = 0;
348 
349 static void so_splice_timeout(void *arg, int pending);
350 static void so_splice_xfer(struct so_splice *s);
351 static int so_unsplice(struct socket *so, bool timeout);
352 
353 static void
splice_work_thread(void * ctx)354 splice_work_thread(void *ctx)
355 {
356 	struct splice_wq *wq = ctx;
357 	struct so_splice *s, *s_temp;
358 	STAILQ_HEAD(, so_splice) local_head;
359 	int cpu;
360 
361 	cpu = wq - splice_wq;
362 	if (bootverbose)
363 		printf("starting so_splice worker thread for CPU %d\n", cpu);
364 
365 	for (;;) {
366 		mtx_lock(&wq->mtx);
367 		while (STAILQ_EMPTY(&wq->head)) {
368 			wq->running = false;
369 			mtx_sleep(wq, &wq->mtx, 0, "-", 0);
370 			wq->running = true;
371 		}
372 		STAILQ_INIT(&local_head);
373 		STAILQ_CONCAT(&local_head, &wq->head);
374 		STAILQ_INIT(&wq->head);
375 		mtx_unlock(&wq->mtx);
376 		STAILQ_FOREACH_SAFE(s, &local_head, next, s_temp) {
377 			mtx_lock(&s->mtx);
378 			CURVNET_SET(s->src->so_vnet);
379 			so_splice_xfer(s);
380 			CURVNET_RESTORE();
381 		}
382 	}
383 }
384 
385 static void
so_splice_dispatch_async(struct so_splice * sp)386 so_splice_dispatch_async(struct so_splice *sp)
387 {
388 	struct splice_wq *wq;
389 	bool running;
390 
391 	wq = &splice_wq[sp->wq_index];
392 	mtx_lock(&wq->mtx);
393 	STAILQ_INSERT_TAIL(&wq->head, sp, next);
394 	running = wq->running;
395 	mtx_unlock(&wq->mtx);
396 	if (!running)
397 		wakeup(wq);
398 }
399 
400 void
so_splice_dispatch(struct so_splice * sp)401 so_splice_dispatch(struct so_splice *sp)
402 {
403 	mtx_assert(&sp->mtx, MA_OWNED);
404 
405 	if (sp->state != SPLICE_IDLE) {
406 		mtx_unlock(&sp->mtx);
407 	} else {
408 		sp->state = SPLICE_QUEUED;
409 		mtx_unlock(&sp->mtx);
410 		so_splice_dispatch_async(sp);
411 	}
412 }
413 
414 static int
splice_zinit(void * mem,int size __unused,int flags __unused)415 splice_zinit(void *mem, int size __unused, int flags __unused)
416 {
417 	struct so_splice *s;
418 
419 	s = (struct so_splice *)mem;
420 	mtx_init(&s->mtx, "so_splice", NULL, MTX_DEF);
421 	return (0);
422 }
423 
424 static void
splice_zfini(void * mem,int size)425 splice_zfini(void *mem, int size)
426 {
427 	struct so_splice *s;
428 
429 	s = (struct so_splice *)mem;
430 	mtx_destroy(&s->mtx);
431 }
432 
433 static int
splice_init(void)434 splice_init(void)
435 {
436 	struct thread *td;
437 	int error, i, state;
438 
439 	state = atomic_load_acq_int(&splice_init_state);
440 	if (__predict_true(state > 0))
441 		return (0);
442 	if (state < 0)
443 		return (ENXIO);
444 	sx_xlock(&splice_init_lock);
445 	if (splice_init_state != 0) {
446 		sx_xunlock(&splice_init_lock);
447 		return (0);
448 	}
449 
450 	splice_zone = uma_zcreate("splice", sizeof(struct so_splice), NULL,
451 	    NULL, splice_zinit, splice_zfini, UMA_ALIGN_CACHE, 0);
452 
453 	splice_wq = mallocarray(mp_maxid + 1, sizeof(*splice_wq), M_TEMP,
454 	    M_WAITOK | M_ZERO);
455 
456 	/*
457 	 * Initialize the workqueues to run the splice work.  We create a
458 	 * work queue for each CPU.
459 	 */
460 	CPU_FOREACH(i) {
461 		STAILQ_INIT(&splice_wq[i].head);
462 		mtx_init(&splice_wq[i].mtx, "splice work queue", NULL, MTX_DEF);
463 	}
464 
465 	/* Start kthreads for each workqueue. */
466 	error = 0;
467 	CPU_FOREACH(i) {
468 		error = kproc_kthread_add(splice_work_thread, &splice_wq[i],
469 		    &splice_proc, &td, 0, 0, "so_splice", "thr_%d", i);
470 		if (error) {
471 			printf("Can't add so_splice thread %d error %d\n",
472 			    i, error);
473 			break;
474 		}
475 
476 		/*
477 		 * It's possible to create loops with SO_SPLICE; ensure that
478 		 * worker threads aren't able to starve the system too easily.
479 		 */
480 		thread_lock(td);
481 		sched_prio(td, PUSER);
482 		thread_unlock(td);
483 	}
484 
485 	splice_init_state = error != 0 ? -1 : 1;
486 	sx_xunlock(&splice_init_lock);
487 
488 	return (error);
489 }
490 
491 /*
492  * Lock a pair of socket's I/O locks for splicing.  Avoid blocking while holding
493  * one lock in order to avoid potential deadlocks in case there is some other
494  * code path which acquires more than one I/O lock at a time.
495  */
496 static void
splice_lock_pair(struct socket * so_src,struct socket * so_dst)497 splice_lock_pair(struct socket *so_src, struct socket *so_dst)
498 {
499 	int error;
500 
501 	for (;;) {
502 		error = SOCK_IO_SEND_LOCK(so_dst, SBL_WAIT | SBL_NOINTR);
503 		KASSERT(error == 0,
504 		    ("%s: failed to lock send I/O lock: %d", __func__, error));
505 		error = SOCK_IO_RECV_LOCK(so_src, 0);
506 		KASSERT(error == 0 || error == EWOULDBLOCK,
507 		    ("%s: failed to lock recv I/O lock: %d", __func__, error));
508 		if (error == 0)
509 			break;
510 		SOCK_IO_SEND_UNLOCK(so_dst);
511 
512 		error = SOCK_IO_RECV_LOCK(so_src, SBL_WAIT | SBL_NOINTR);
513 		KASSERT(error == 0,
514 		    ("%s: failed to lock recv I/O lock: %d", __func__, error));
515 		error = SOCK_IO_SEND_LOCK(so_dst, 0);
516 		KASSERT(error == 0 || error == EWOULDBLOCK,
517 		    ("%s: failed to lock send I/O lock: %d", __func__, error));
518 		if (error == 0)
519 			break;
520 		SOCK_IO_RECV_UNLOCK(so_src);
521 	}
522 }
523 
524 static void
splice_unlock_pair(struct socket * so_src,struct socket * so_dst)525 splice_unlock_pair(struct socket *so_src, struct socket *so_dst)
526 {
527 	SOCK_IO_RECV_UNLOCK(so_src);
528 	SOCK_IO_SEND_UNLOCK(so_dst);
529 }
530 
531 /*
532  * Move data from the source to the sink.  Assumes that both of the relevant
533  * socket I/O locks are held.
534  */
535 static int
so_splice_xfer_data(struct socket * so_src,struct socket * so_dst,off_t max,ssize_t * lenp)536 so_splice_xfer_data(struct socket *so_src, struct socket *so_dst, off_t max,
537     ssize_t *lenp)
538 {
539 	struct uio uio;
540 	struct mbuf *m;
541 	struct sockbuf *sb_src, *sb_dst;
542 	ssize_t len;
543 	long space;
544 	int error, flags;
545 
546 	SOCK_IO_RECV_ASSERT_LOCKED(so_src);
547 	SOCK_IO_SEND_ASSERT_LOCKED(so_dst);
548 
549 	error = 0;
550 	m = NULL;
551 	memset(&uio, 0, sizeof(uio));
552 
553 	sb_src = &so_src->so_rcv;
554 	sb_dst = &so_dst->so_snd;
555 
556 	space = sbspace(sb_dst);
557 	if (space < 0)
558 		space = 0;
559 	len = MIN(max, MIN(space, sbavail(sb_src)));
560 	if (len == 0) {
561 		SOCK_RECVBUF_LOCK(so_src);
562 		if ((sb_src->sb_state & SBS_CANTRCVMORE) != 0)
563 			error = EPIPE;
564 		SOCK_RECVBUF_UNLOCK(so_src);
565 	} else {
566 		flags = MSG_DONTWAIT;
567 		uio.uio_resid = len;
568 		if (splice_receive_stream && sb_src->sb_tls_info == NULL) {
569 			error = soreceive_stream_locked(so_src, sb_src, NULL,
570 			    &uio, &m, NULL, flags);
571 		} else {
572 			error = soreceive_generic_locked(so_src, NULL,
573 			    &uio, &m, NULL, &flags);
574 		}
575 		if (error != 0 && m != NULL) {
576 			m_freem(m);
577 			m = NULL;
578 		}
579 	}
580 	if (m != NULL) {
581 		len -= uio.uio_resid;
582 		error = sosend_generic_locked(so_dst, NULL, NULL, m, NULL,
583 		    MSG_DONTWAIT, curthread);
584 	} else if (error == 0) {
585 		len = 0;
586 		SOCK_SENDBUF_LOCK(so_dst);
587 		if ((sb_dst->sb_state & SBS_CANTSENDMORE) != 0)
588 			error = EPIPE;
589 		SOCK_SENDBUF_UNLOCK(so_dst);
590 	}
591 	if (error == 0)
592 		*lenp = len;
593 	return (error);
594 }
595 
596 /*
597  * Transfer data from the source to the sink.
598  */
599 static void
so_splice_xfer(struct so_splice * sp)600 so_splice_xfer(struct so_splice *sp)
601 {
602 	struct socket *so_src, *so_dst;
603 	off_t max;
604 	ssize_t len;
605 	int error;
606 
607 	mtx_assert(&sp->mtx, MA_OWNED);
608 	KASSERT(sp->state == SPLICE_QUEUED || sp->state == SPLICE_CLOSING,
609 	    ("so_splice_xfer: invalid state %d", sp->state));
610 	KASSERT(sp->max != 0, ("so_splice_xfer: max == 0"));
611 
612 	if (sp->state == SPLICE_CLOSING) {
613 		/* Userspace asked us to close the splice. */
614 		goto closing;
615 	}
616 
617 	sp->state = SPLICE_RUNNING;
618 	so_src = sp->src;
619 	so_dst = sp->dst;
620 	max = sp->max > 0 ? sp->max - so_src->so_splice_sent : OFF_MAX;
621 	if (max < 0)
622 		max = 0;
623 
624 	/*
625 	 * Lock the sockets in order to block userspace from doing anything
626 	 * sneaky.  If an error occurs or one of the sockets can no longer
627 	 * transfer data, we will automatically unsplice.
628 	 */
629 	mtx_unlock(&sp->mtx);
630 	splice_lock_pair(so_src, so_dst);
631 
632 	error = so_splice_xfer_data(so_src, so_dst, max, &len);
633 
634 	mtx_lock(&sp->mtx);
635 
636 	/*
637 	 * Update our stats while still holding the socket locks.  This
638 	 * synchronizes with getsockopt(SO_SPLICE), see the comment there.
639 	 */
640 	if (error == 0) {
641 		KASSERT(len >= 0, ("%s: len %zd < 0", __func__, len));
642 		so_src->so_splice_sent += len;
643 	}
644 	splice_unlock_pair(so_src, so_dst);
645 
646 	switch (sp->state) {
647 	case SPLICE_CLOSING:
648 closing:
649 		sp->state = SPLICE_CLOSED;
650 		wakeup(sp);
651 		mtx_unlock(&sp->mtx);
652 		break;
653 	case SPLICE_RUNNING:
654 		if (error != 0 ||
655 		    (sp->max > 0 && so_src->so_splice_sent >= sp->max)) {
656 			sp->state = SPLICE_EXCEPTION;
657 			soref(so_src);
658 			mtx_unlock(&sp->mtx);
659 			(void)so_unsplice(so_src, false);
660 			sorele(so_src);
661 		} else {
662 			/*
663 			 * Locklessly check for additional bytes in the source's
664 			 * receive buffer and queue more work if possible.  We
665 			 * may end up queuing needless work, but that's ok, and
666 			 * if we race with a thread inserting more data into the
667 			 * buffer and observe sbavail() == 0, the splice mutex
668 			 * ensures that splice_push() will queue more work for
669 			 * us.
670 			 */
671 			if (sbavail(&so_src->so_rcv) > 0 &&
672 			    sbspace(&so_dst->so_snd) > 0) {
673 				sp->state = SPLICE_QUEUED;
674 				mtx_unlock(&sp->mtx);
675 				so_splice_dispatch_async(sp);
676 			} else {
677 				sp->state = SPLICE_IDLE;
678 				mtx_unlock(&sp->mtx);
679 			}
680 		}
681 		break;
682 	default:
683 		__assert_unreachable();
684 	}
685 }
686 
687 static void
socket_init(void * tag)688 socket_init(void *tag)
689 {
690 
691 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
692 	    NULL, NULL, UMA_ALIGN_PTR, 0);
693 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
694 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
695 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
696 	    EVENTHANDLER_PRI_FIRST);
697 }
698 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
699 
700 #ifdef SOCKET_HHOOK
701 static void
socket_hhook_register(int subtype)702 socket_hhook_register(int subtype)
703 {
704 
705 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
706 	    &V_socket_hhh[subtype],
707 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
708 		printf("%s: WARNING: unable to register hook\n", __func__);
709 }
710 
711 static void
socket_hhook_deregister(int subtype)712 socket_hhook_deregister(int subtype)
713 {
714 
715 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
716 		printf("%s: WARNING: unable to deregister hook\n", __func__);
717 }
718 
719 static void
socket_vnet_init(const void * unused __unused)720 socket_vnet_init(const void *unused __unused)
721 {
722 	int i;
723 
724 	/* We expect a contiguous range */
725 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
726 		socket_hhook_register(i);
727 }
728 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
729     socket_vnet_init, NULL);
730 
731 static void
socket_vnet_uninit(const void * unused __unused)732 socket_vnet_uninit(const void *unused __unused)
733 {
734 	int i;
735 
736 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
737 		socket_hhook_deregister(i);
738 }
739 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
740     socket_vnet_uninit, NULL);
741 #endif	/* SOCKET_HHOOK */
742 
743 /*
744  * Initialise maxsockets.  This SYSINIT must be run after
745  * tunable_mbinit().
746  */
747 static void
init_maxsockets(void * ignored)748 init_maxsockets(void *ignored)
749 {
750 
751 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
752 	maxsockets = imax(maxsockets, maxfiles);
753 }
754 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
755 
756 /*
757  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
758  * of the change so that they can update their dependent limits as required.
759  */
760 static int
sysctl_maxsockets(SYSCTL_HANDLER_ARGS)761 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
762 {
763 	int error, newmaxsockets;
764 
765 	newmaxsockets = maxsockets;
766 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
767 	if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
768 		if (newmaxsockets > maxsockets &&
769 		    newmaxsockets <= maxfiles) {
770 			maxsockets = newmaxsockets;
771 			EVENTHANDLER_INVOKE(maxsockets_change);
772 		} else
773 			error = EINVAL;
774 	}
775 	return (error);
776 }
777 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
778     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
779     &maxsockets, 0, sysctl_maxsockets, "IU",
780     "Maximum number of sockets available");
781 
782 /*
783  * Socket operation routines.  These routines are called by the routines in
784  * sys_socket.c or from a system process, and implement the semantics of
785  * socket operations by switching out to the protocol specific routines.
786  */
787 
788 /*
789  * Get a socket structure from our zone, and initialize it.  Note that it
790  * would probably be better to allocate socket and PCB at the same time, but
791  * I'm not convinced that all the protocols can be easily modified to do
792  * this.
793  *
794  * soalloc() returns a socket with a ref count of 0.
795  */
796 static struct socket *
soalloc(struct vnet * vnet)797 soalloc(struct vnet *vnet)
798 {
799 	struct socket *so;
800 
801 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
802 	if (so == NULL)
803 		return (NULL);
804 #ifdef MAC
805 	if (mac_socket_init(so, M_NOWAIT) != 0) {
806 		uma_zfree(socket_zone, so);
807 		return (NULL);
808 	}
809 #endif
810 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
811 		uma_zfree(socket_zone, so);
812 		return (NULL);
813 	}
814 
815 	/*
816 	 * The socket locking protocol allows to lock 2 sockets at a time,
817 	 * however, the first one must be a listening socket.  WITNESS lacks
818 	 * a feature to change class of an existing lock, so we use DUPOK.
819 	 */
820 	mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
821 	mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
822 	mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
823 	so->so_rcv.sb_sel = &so->so_rdsel;
824 	so->so_snd.sb_sel = &so->so_wrsel;
825 	sx_init(&so->so_snd_sx, "so_snd_sx");
826 	sx_init(&so->so_rcv_sx, "so_rcv_sx");
827 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
828 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
829 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
830 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
831 #ifdef VIMAGE
832 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
833 	    __func__, __LINE__, so));
834 	so->so_vnet = vnet;
835 #endif
836 #ifdef SOCKET_HHOOK
837 	/* We shouldn't need the so_global_mtx */
838 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
839 		/* Do we need more comprehensive error returns? */
840 		uma_zfree(socket_zone, so);
841 		return (NULL);
842 	}
843 #endif
844 	mtx_lock(&so_global_mtx);
845 	so->so_gencnt = ++so_gencnt;
846 	++numopensockets;
847 #ifdef VIMAGE
848 	vnet->vnet_sockcnt++;
849 #endif
850 	mtx_unlock(&so_global_mtx);
851 
852 	return (so);
853 }
854 
855 /*
856  * Free the storage associated with a socket at the socket layer, tear down
857  * locks, labels, etc.  All protocol state is assumed already to have been
858  * torn down (and possibly never set up) by the caller.
859  */
860 void
sodealloc(struct socket * so)861 sodealloc(struct socket *so)
862 {
863 
864 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
865 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
866 
867 	mtx_lock(&so_global_mtx);
868 	so->so_gencnt = ++so_gencnt;
869 	--numopensockets;	/* Could be below, but faster here. */
870 #ifdef VIMAGE
871 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
872 	    __func__, __LINE__, so));
873 	so->so_vnet->vnet_sockcnt--;
874 #endif
875 	mtx_unlock(&so_global_mtx);
876 #ifdef MAC
877 	mac_socket_destroy(so);
878 #endif
879 #ifdef SOCKET_HHOOK
880 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
881 #endif
882 
883 	khelp_destroy_osd(&so->osd);
884 	if (SOLISTENING(so)) {
885 		if (so->sol_accept_filter != NULL)
886 			accept_filt_setopt(so, NULL);
887 	} else {
888 		if (so->so_rcv.sb_hiwat)
889 			(void)chgsbsize(so->so_cred->cr_uidinfo,
890 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
891 		if (so->so_snd.sb_hiwat)
892 			(void)chgsbsize(so->so_cred->cr_uidinfo,
893 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
894 		sx_destroy(&so->so_snd_sx);
895 		sx_destroy(&so->so_rcv_sx);
896 		mtx_destroy(&so->so_snd_mtx);
897 		mtx_destroy(&so->so_rcv_mtx);
898 	}
899 	crfree(so->so_cred);
900 	mtx_destroy(&so->so_lock);
901 	uma_zfree(socket_zone, so);
902 }
903 
904 /*
905  * socreate returns a socket with a ref count of 1 and a file descriptor
906  * reference.  The socket should be closed with soclose().
907  */
908 int
socreate(int dom,struct socket ** aso,int type,int proto,struct ucred * cred,struct thread * td)909 socreate(int dom, struct socket **aso, int type, int proto,
910     struct ucred *cred, struct thread *td)
911 {
912 	struct protosw *prp;
913 	struct socket *so;
914 	int error;
915 
916 	/*
917 	 * XXX: divert(4) historically abused PF_INET.  Keep this compatibility
918 	 * shim until all applications have been updated.
919 	 */
920 	if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
921 	    proto == IPPROTO_DIVERT)) {
922 		dom = PF_DIVERT;
923 		printf("%s uses obsolete way to create divert(4) socket\n",
924 		    td->td_proc->p_comm);
925 	}
926 
927 	prp = pffindproto(dom, type, proto);
928 	if (prp == NULL) {
929 		/* No support for domain. */
930 		if (pffinddomain(dom) == NULL)
931 			return (EAFNOSUPPORT);
932 		/* No support for socket type. */
933 		if (proto == 0 && type != 0)
934 			return (EPROTOTYPE);
935 		return (EPROTONOSUPPORT);
936 	}
937 
938 	MPASS(prp->pr_attach);
939 
940 	if ((prp->pr_flags & PR_CAPATTACH) == 0) {
941 		if (CAP_TRACING(td))
942 			ktrcapfail(CAPFAIL_PROTO, &proto);
943 		if (IN_CAPABILITY_MODE(td))
944 			return (ECAPMODE);
945 	}
946 
947 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
948 		return (EPROTONOSUPPORT);
949 
950 	so = soalloc(CRED_TO_VNET(cred));
951 	if (so == NULL)
952 		return (ENOBUFS);
953 
954 	so->so_type = type;
955 	so->so_cred = crhold(cred);
956 	if ((prp->pr_domain->dom_family == PF_INET) ||
957 	    (prp->pr_domain->dom_family == PF_INET6) ||
958 	    (prp->pr_domain->dom_family == PF_ROUTE))
959 		so->so_fibnum = td->td_proc->p_fibnum;
960 	else
961 		so->so_fibnum = 0;
962 	so->so_proto = prp;
963 #ifdef MAC
964 	mac_socket_create(cred, so);
965 #endif
966 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
967 	    so_rdknl_assert_lock);
968 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
969 	    so_wrknl_assert_lock);
970 	if ((prp->pr_flags & PR_SOCKBUF) == 0) {
971 		so->so_snd.sb_mtx = &so->so_snd_mtx;
972 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
973 	}
974 	/*
975 	 * Auto-sizing of socket buffers is managed by the protocols and
976 	 * the appropriate flags must be set in the pr_attach() method.
977 	 */
978 	CURVNET_SET(so->so_vnet);
979 	error = prp->pr_attach(so, proto, td);
980 	CURVNET_RESTORE();
981 	if (error) {
982 		sodealloc(so);
983 		return (error);
984 	}
985 	soref(so);
986 	*aso = so;
987 	return (0);
988 }
989 
990 #ifdef REGRESSION
991 static int regression_sonewconn_earlytest = 1;
992 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
993     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
994 #endif
995 
996 static int sooverprio = LOG_DEBUG;
997 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW,
998     &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable");
999 
1000 static struct timeval overinterval = { 60, 0 };
1001 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
1002     &overinterval,
1003     "Delay in seconds between warnings for listen socket overflows");
1004 
1005 /*
1006  * When an attempt at a new connection is noted on a socket which supports
1007  * accept(2), the protocol has two options:
1008  * 1) Call legacy sonewconn() function, which would call protocol attach
1009  *    method, same as used for socket(2).
1010  * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
1011  *    and then call solisten_enqueue().
1012  *
1013  * Note: the ref count on the socket is 0 on return.
1014  */
1015 struct socket *
solisten_clone(struct socket * head)1016 solisten_clone(struct socket *head)
1017 {
1018 	struct sbuf descrsb;
1019 	struct socket *so;
1020 	int len, overcount;
1021 	u_int qlen;
1022 	const char localprefix[] = "local:";
1023 	char descrbuf[SUNPATHLEN + sizeof(localprefix)];
1024 #if defined(INET6)
1025 	char addrbuf[INET6_ADDRSTRLEN];
1026 #elif defined(INET)
1027 	char addrbuf[INET_ADDRSTRLEN];
1028 #endif
1029 	bool dolog, over;
1030 
1031 	SOLISTEN_LOCK(head);
1032 	over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
1033 #ifdef REGRESSION
1034 	if (regression_sonewconn_earlytest && over) {
1035 #else
1036 	if (over) {
1037 #endif
1038 		head->sol_overcount++;
1039 		dolog = (sooverprio >= 0) &&
1040 			!!ratecheck(&head->sol_lastover, &overinterval);
1041 
1042 		/*
1043 		 * If we're going to log, copy the overflow count and queue
1044 		 * length from the listen socket before dropping the lock.
1045 		 * Also, reset the overflow count.
1046 		 */
1047 		if (dolog) {
1048 			overcount = head->sol_overcount;
1049 			head->sol_overcount = 0;
1050 			qlen = head->sol_qlen;
1051 		}
1052 		SOLISTEN_UNLOCK(head);
1053 
1054 		if (dolog) {
1055 			/*
1056 			 * Try to print something descriptive about the
1057 			 * socket for the error message.
1058 			 */
1059 			sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
1060 			    SBUF_FIXEDLEN);
1061 			switch (head->so_proto->pr_domain->dom_family) {
1062 #if defined(INET) || defined(INET6)
1063 #ifdef INET
1064 			case AF_INET:
1065 #endif
1066 #ifdef INET6
1067 			case AF_INET6:
1068 				if (head->so_proto->pr_domain->dom_family ==
1069 				    AF_INET6 ||
1070 				    (sotoinpcb(head)->inp_inc.inc_flags &
1071 				    INC_ISIPV6)) {
1072 					ip6_sprintf(addrbuf,
1073 					    &sotoinpcb(head)->inp_inc.inc6_laddr);
1074 					sbuf_printf(&descrsb, "[%s]", addrbuf);
1075 				} else
1076 #endif
1077 				{
1078 #ifdef INET
1079 					inet_ntoa_r(
1080 					    sotoinpcb(head)->inp_inc.inc_laddr,
1081 					    addrbuf);
1082 					sbuf_cat(&descrsb, addrbuf);
1083 #endif
1084 				}
1085 				sbuf_printf(&descrsb, ":%hu (proto %u)",
1086 				    ntohs(sotoinpcb(head)->inp_inc.inc_lport),
1087 				    head->so_proto->pr_protocol);
1088 				break;
1089 #endif /* INET || INET6 */
1090 			case AF_UNIX:
1091 				sbuf_cat(&descrsb, localprefix);
1092 				if (sotounpcb(head)->unp_addr != NULL)
1093 					len =
1094 					    sotounpcb(head)->unp_addr->sun_len -
1095 					    offsetof(struct sockaddr_un,
1096 					    sun_path);
1097 				else
1098 					len = 0;
1099 				if (len > 0)
1100 					sbuf_bcat(&descrsb,
1101 					    sotounpcb(head)->unp_addr->sun_path,
1102 					    len);
1103 				else
1104 					sbuf_cat(&descrsb, "(unknown)");
1105 				break;
1106 			}
1107 
1108 			/*
1109 			 * If we can't print something more specific, at least
1110 			 * print the domain name.
1111 			 */
1112 			if (sbuf_finish(&descrsb) != 0 ||
1113 			    sbuf_len(&descrsb) <= 0) {
1114 				sbuf_clear(&descrsb);
1115 				sbuf_cat(&descrsb,
1116 				    head->so_proto->pr_domain->dom_name ?:
1117 				    "unknown");
1118 				sbuf_finish(&descrsb);
1119 			}
1120 			KASSERT(sbuf_len(&descrsb) > 0,
1121 			    ("%s: sbuf creation failed", __func__));
1122 			/*
1123 			 * Preserve the historic listen queue overflow log
1124 			 * message, that starts with "sonewconn:".  It has
1125 			 * been known to sysadmins for years and also test
1126 			 * sys/kern/sonewconn_overflow checks for it.
1127 			 */
1128 			if (head->so_cred == 0) {
1129 				log(LOG_PRI(sooverprio),
1130 				    "sonewconn: pcb %p (%s): "
1131 				    "Listen queue overflow: %i already in "
1132 				    "queue awaiting acceptance (%d "
1133 				    "occurrences)\n", head->so_pcb,
1134 				    sbuf_data(&descrsb),
1135 			    	qlen, overcount);
1136 			} else {
1137 				log(LOG_PRI(sooverprio),
1138 				    "sonewconn: pcb %p (%s): "
1139 				    "Listen queue overflow: "
1140 				    "%i already in queue awaiting acceptance "
1141 				    "(%d occurrences), euid %d, rgid %d, jail %s\n",
1142 				    head->so_pcb, sbuf_data(&descrsb), qlen,
1143 				    overcount, head->so_cred->cr_uid,
1144 				    head->so_cred->cr_rgid,
1145 				    head->so_cred->cr_prison ?
1146 					head->so_cred->cr_prison->pr_name :
1147 					"not_jailed");
1148 			}
1149 			sbuf_delete(&descrsb);
1150 
1151 			overcount = 0;
1152 		}
1153 
1154 		return (NULL);
1155 	}
1156 	SOLISTEN_UNLOCK(head);
1157 	VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
1158 	    __func__, head));
1159 	so = soalloc(head->so_vnet);
1160 	if (so == NULL) {
1161 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1162 		    "limit reached or out of memory\n",
1163 		    __func__, head->so_pcb);
1164 		return (NULL);
1165 	}
1166 	so->so_listen = head;
1167 	so->so_type = head->so_type;
1168 	/*
1169 	 * POSIX is ambiguous on what options an accept(2)ed socket should
1170 	 * inherit from the listener.  Words "create a new socket" may be
1171 	 * interpreted as not inheriting anything.  Best programming practice
1172 	 * for application developers is to not rely on such inheritance.
1173 	 * FreeBSD had historically inherited all so_options excluding
1174 	 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options,
1175 	 * including those completely irrelevant to a new born socket.  For
1176 	 * compatibility with older versions we will inherit a list of
1177 	 * meaningful options.
1178 	 * The crucial bit to inherit is SO_ACCEPTFILTER.  We need it present
1179 	 * in the child socket for soisconnected() promoting socket from the
1180 	 * incomplete queue to complete.  It will be cleared before the child
1181 	 * gets available to accept(2).
1182 	 */
1183 	so->so_options = head->so_options & (SO_ACCEPTFILTER | SO_KEEPALIVE |
1184 	    SO_DONTROUTE | SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE);
1185 	so->so_linger = head->so_linger;
1186 	so->so_state = head->so_state;
1187 	so->so_fibnum = head->so_fibnum;
1188 	so->so_proto = head->so_proto;
1189 	so->so_cred = crhold(head->so_cred);
1190 #ifdef SOCKET_HHOOK
1191 	if (V_socket_hhh[HHOOK_SOCKET_NEWCONN]->hhh_nhooks > 0) {
1192 		if (hhook_run_socket(so, head, HHOOK_SOCKET_NEWCONN)) {
1193 			sodealloc(so);
1194 			log(LOG_DEBUG, "%s: hhook run failed\n", __func__);
1195 			return (NULL);
1196 		}
1197 	}
1198 #endif
1199 #ifdef MAC
1200 	mac_socket_newconn(head, so);
1201 #endif
1202 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1203 	    so_rdknl_assert_lock);
1204 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1205 	    so_wrknl_assert_lock);
1206 	VNET_SO_ASSERT(head);
1207 	if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
1208 		sodealloc(so);
1209 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1210 		    __func__, head->so_pcb);
1211 		return (NULL);
1212 	}
1213 	so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
1214 	so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
1215 	so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
1216 	so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
1217 	so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
1218 	so->so_snd.sb_flags = head->sol_sbsnd_flags &
1219 	    (SB_AUTOSIZE | SB_AUTOLOWAT);
1220 	if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1221 		so->so_snd.sb_mtx = &so->so_snd_mtx;
1222 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1223 	}
1224 
1225 	return (so);
1226 }
1227 
1228 /* Connstatus may be 0 or SS_ISCONNECTED. */
1229 struct socket *
1230 sonewconn(struct socket *head, int connstatus)
1231 {
1232 	struct socket *so;
1233 
1234 	if ((so = solisten_clone(head)) == NULL)
1235 		return (NULL);
1236 
1237 	if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
1238 		sodealloc(so);
1239 		log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1240 		    __func__, head->so_pcb);
1241 		return (NULL);
1242 	}
1243 
1244 	(void)solisten_enqueue(so, connstatus);
1245 
1246 	return (so);
1247 }
1248 
1249 /*
1250  * Enqueue socket cloned by solisten_clone() to the listen queue of the
1251  * listener it has been cloned from.
1252  *
1253  * Return 'true' if socket landed on complete queue, otherwise 'false'.
1254  */
1255 bool
1256 solisten_enqueue(struct socket *so, int connstatus)
1257 {
1258 	struct socket *head = so->so_listen;
1259 
1260 	MPASS(refcount_load(&so->so_count) == 0);
1261 	refcount_init(&so->so_count, 1);
1262 
1263 	SOLISTEN_LOCK(head);
1264 	if (head->sol_accept_filter != NULL)
1265 		connstatus = 0;
1266 	so->so_state |= connstatus;
1267 	soref(head); /* A socket on (in)complete queue refs head. */
1268 	if (connstatus) {
1269 		TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
1270 		so->so_qstate = SQ_COMP;
1271 		head->sol_qlen++;
1272 		solisten_wakeup(head);	/* unlocks */
1273 		return (true);
1274 	} else {
1275 		/*
1276 		 * Keep removing sockets from the head until there's room for
1277 		 * us to insert on the tail.  In pre-locking revisions, this
1278 		 * was a simple if(), but as we could be racing with other
1279 		 * threads and soabort() requires dropping locks, we must
1280 		 * loop waiting for the condition to be true.
1281 		 */
1282 		while (head->sol_incqlen > head->sol_qlimit) {
1283 			struct socket *sp;
1284 
1285 			sp = TAILQ_FIRST(&head->sol_incomp);
1286 			TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
1287 			head->sol_incqlen--;
1288 			SOCK_LOCK(sp);
1289 			sp->so_qstate = SQ_NONE;
1290 			sp->so_listen = NULL;
1291 			SOCK_UNLOCK(sp);
1292 			sorele_locked(head);	/* does SOLISTEN_UNLOCK, head stays */
1293 			soabort(sp);
1294 			SOLISTEN_LOCK(head);
1295 		}
1296 		TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
1297 		so->so_qstate = SQ_INCOMP;
1298 		head->sol_incqlen++;
1299 		SOLISTEN_UNLOCK(head);
1300 		return (false);
1301 	}
1302 }
1303 
1304 #if defined(SCTP) || defined(SCTP_SUPPORT)
1305 /*
1306  * Socket part of sctp_peeloff().  Detach a new socket from an
1307  * association.  The new socket is returned with a reference.
1308  *
1309  * XXXGL: reduce copy-paste with solisten_clone().
1310  */
1311 struct socket *
1312 sopeeloff(struct socket *head)
1313 {
1314 	struct socket *so;
1315 
1316 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
1317 	    __func__, __LINE__, head));
1318 	so = soalloc(head->so_vnet);
1319 	if (so == NULL) {
1320 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1321 		    "limit reached or out of memory\n",
1322 		    __func__, head->so_pcb);
1323 		return (NULL);
1324 	}
1325 	so->so_type = head->so_type;
1326 	so->so_options = head->so_options;
1327 	so->so_linger = head->so_linger;
1328 	so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
1329 	so->so_fibnum = head->so_fibnum;
1330 	so->so_proto = head->so_proto;
1331 	so->so_cred = crhold(head->so_cred);
1332 #ifdef MAC
1333 	mac_socket_newconn(head, so);
1334 #endif
1335 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1336 	    so_rdknl_assert_lock);
1337 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1338 	    so_wrknl_assert_lock);
1339 	VNET_SO_ASSERT(head);
1340 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
1341 		sodealloc(so);
1342 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1343 		    __func__, head->so_pcb);
1344 		return (NULL);
1345 	}
1346 	if (so->so_proto->pr_attach(so, 0, NULL)) {
1347 		sodealloc(so);
1348 		log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1349 		    __func__, head->so_pcb);
1350 		return (NULL);
1351 	}
1352 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
1353 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
1354 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
1355 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
1356 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
1357 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
1358 	if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1359 		so->so_snd.sb_mtx = &so->so_snd_mtx;
1360 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1361 	}
1362 
1363 	soref(so);
1364 
1365 	return (so);
1366 }
1367 #endif	/* SCTP */
1368 
1369 int
1370 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
1371 {
1372 	int error;
1373 
1374 	CURVNET_SET(so->so_vnet);
1375 	error = so->so_proto->pr_bind(so, nam, td);
1376 	CURVNET_RESTORE();
1377 	return (error);
1378 }
1379 
1380 int
1381 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1382 {
1383 	int error;
1384 
1385 	CURVNET_SET(so->so_vnet);
1386 	error = so->so_proto->pr_bindat(fd, so, nam, td);
1387 	CURVNET_RESTORE();
1388 	return (error);
1389 }
1390 
1391 /*
1392  * solisten() transitions a socket from a non-listening state to a listening
1393  * state, but can also be used to update the listen queue depth on an
1394  * existing listen socket.  The protocol will call back into the sockets
1395  * layer using solisten_proto_check() and solisten_proto() to check and set
1396  * socket-layer listen state.  Call backs are used so that the protocol can
1397  * acquire both protocol and socket layer locks in whatever order is required
1398  * by the protocol.
1399  *
1400  * Protocol implementors are advised to hold the socket lock across the
1401  * socket-layer test and set to avoid races at the socket layer.
1402  */
1403 int
1404 solisten(struct socket *so, int backlog, struct thread *td)
1405 {
1406 	int error;
1407 
1408 	CURVNET_SET(so->so_vnet);
1409 	error = so->so_proto->pr_listen(so, backlog, td);
1410 	CURVNET_RESTORE();
1411 	return (error);
1412 }
1413 
1414 /*
1415  * Prepare for a call to solisten_proto().  Acquire all socket buffer locks in
1416  * order to interlock with socket I/O.
1417  */
1418 int
1419 solisten_proto_check(struct socket *so)
1420 {
1421 	SOCK_LOCK_ASSERT(so);
1422 
1423 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1424 	    SS_ISDISCONNECTING)) != 0)
1425 		return (EINVAL);
1426 
1427 	/*
1428 	 * Sleeping is not permitted here, so simply fail if userspace is
1429 	 * attempting to transmit or receive on the socket.  This kind of
1430 	 * transient failure is not ideal, but it should occur only if userspace
1431 	 * is misusing the socket interfaces.
1432 	 */
1433 	if (!sx_try_xlock(&so->so_snd_sx))
1434 		return (EAGAIN);
1435 	if (!sx_try_xlock(&so->so_rcv_sx)) {
1436 		sx_xunlock(&so->so_snd_sx);
1437 		return (EAGAIN);
1438 	}
1439 	mtx_lock(&so->so_snd_mtx);
1440 	mtx_lock(&so->so_rcv_mtx);
1441 
1442 	/* Interlock with soo_aio_queue() and KTLS. */
1443 	if (!SOLISTENING(so)) {
1444 		bool ktls;
1445 
1446 #ifdef KERN_TLS
1447 		ktls = so->so_snd.sb_tls_info != NULL ||
1448 		    so->so_rcv.sb_tls_info != NULL;
1449 #else
1450 		ktls = false;
1451 #endif
1452 		if (ktls ||
1453 		    (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
1454 		    (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) {
1455 			solisten_proto_abort(so);
1456 			return (EINVAL);
1457 		}
1458 	}
1459 
1460 	return (0);
1461 }
1462 
1463 /*
1464  * Undo the setup done by solisten_proto_check().
1465  */
1466 void
1467 solisten_proto_abort(struct socket *so)
1468 {
1469 	mtx_unlock(&so->so_snd_mtx);
1470 	mtx_unlock(&so->so_rcv_mtx);
1471 	sx_xunlock(&so->so_snd_sx);
1472 	sx_xunlock(&so->so_rcv_sx);
1473 }
1474 
1475 void
1476 solisten_proto(struct socket *so, int backlog)
1477 {
1478 	int sbrcv_lowat, sbsnd_lowat;
1479 	u_int sbrcv_hiwat, sbsnd_hiwat;
1480 	short sbrcv_flags, sbsnd_flags;
1481 	sbintime_t sbrcv_timeo, sbsnd_timeo;
1482 
1483 	SOCK_LOCK_ASSERT(so);
1484 	KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1485 	    SS_ISDISCONNECTING)) == 0,
1486 	    ("%s: bad socket state %p", __func__, so));
1487 
1488 	if (SOLISTENING(so))
1489 		goto listening;
1490 
1491 	/*
1492 	 * Change this socket to listening state.
1493 	 */
1494 	sbrcv_lowat = so->so_rcv.sb_lowat;
1495 	sbsnd_lowat = so->so_snd.sb_lowat;
1496 	sbrcv_hiwat = so->so_rcv.sb_hiwat;
1497 	sbsnd_hiwat = so->so_snd.sb_hiwat;
1498 	sbrcv_flags = so->so_rcv.sb_flags;
1499 	sbsnd_flags = so->so_snd.sb_flags;
1500 	sbrcv_timeo = so->so_rcv.sb_timeo;
1501 	sbsnd_timeo = so->so_snd.sb_timeo;
1502 
1503 #ifdef MAC
1504 	mac_socketpeer_label_free(so->so_peerlabel);
1505 #endif
1506 
1507 	if (!(so->so_proto->pr_flags & PR_SOCKBUF)) {
1508 		sbdestroy(so, SO_SND);
1509 		sbdestroy(so, SO_RCV);
1510 	}
1511 
1512 #ifdef INVARIANTS
1513 	bzero(&so->so_rcv,
1514 	    sizeof(struct socket) - offsetof(struct socket, so_rcv));
1515 #endif
1516 
1517 	so->sol_sbrcv_lowat = sbrcv_lowat;
1518 	so->sol_sbsnd_lowat = sbsnd_lowat;
1519 	so->sol_sbrcv_hiwat = sbrcv_hiwat;
1520 	so->sol_sbsnd_hiwat = sbsnd_hiwat;
1521 	so->sol_sbrcv_flags = sbrcv_flags;
1522 	so->sol_sbsnd_flags = sbsnd_flags;
1523 	so->sol_sbrcv_timeo = sbrcv_timeo;
1524 	so->sol_sbsnd_timeo = sbsnd_timeo;
1525 
1526 	so->sol_qlen = so->sol_incqlen = 0;
1527 	TAILQ_INIT(&so->sol_incomp);
1528 	TAILQ_INIT(&so->sol_comp);
1529 
1530 	so->sol_accept_filter = NULL;
1531 	so->sol_accept_filter_arg = NULL;
1532 	so->sol_accept_filter_str = NULL;
1533 
1534 	so->sol_upcall = NULL;
1535 	so->sol_upcallarg = NULL;
1536 
1537 	so->so_options |= SO_ACCEPTCONN;
1538 
1539 listening:
1540 	if (backlog < 0 || backlog > V_somaxconn)
1541 		backlog = V_somaxconn;
1542 	so->sol_qlimit = backlog;
1543 
1544 	mtx_unlock(&so->so_snd_mtx);
1545 	mtx_unlock(&so->so_rcv_mtx);
1546 	sx_xunlock(&so->so_snd_sx);
1547 	sx_xunlock(&so->so_rcv_sx);
1548 }
1549 
1550 /*
1551  * Wakeup listeners/subsystems once we have a complete connection.
1552  * Enters with lock, returns unlocked.
1553  */
1554 void
1555 solisten_wakeup(struct socket *sol)
1556 {
1557 
1558 	if (sol->sol_upcall != NULL)
1559 		(void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1560 	else {
1561 		selwakeuppri(&sol->so_rdsel, PSOCK);
1562 		KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1563 	}
1564 	SOLISTEN_UNLOCK(sol);
1565 	wakeup_one(&sol->sol_comp);
1566 	if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1567 		pgsigio(&sol->so_sigio, SIGIO, 0);
1568 }
1569 
1570 /*
1571  * Return single connection off a listening socket queue.  Main consumer of
1572  * the function is kern_accept4().  Some modules, that do their own accept
1573  * management also use the function.  The socket reference held by the
1574  * listen queue is handed to the caller.
1575  *
1576  * Listening socket must be locked on entry and is returned unlocked on
1577  * return.
1578  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1579  */
1580 int
1581 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1582 {
1583 	struct socket *so;
1584 	int error;
1585 
1586 	SOLISTEN_LOCK_ASSERT(head);
1587 
1588 	while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1589 	    head->so_error == 0) {
1590 		error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1591 		    "accept", 0);
1592 		if (error != 0) {
1593 			SOLISTEN_UNLOCK(head);
1594 			return (error);
1595 		}
1596 	}
1597 	if (head->so_error) {
1598 		error = head->so_error;
1599 		head->so_error = 0;
1600 	} else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1601 		error = EWOULDBLOCK;
1602 	else
1603 		error = 0;
1604 	if (error) {
1605 		SOLISTEN_UNLOCK(head);
1606 		return (error);
1607 	}
1608 	so = TAILQ_FIRST(&head->sol_comp);
1609 	SOCK_LOCK(so);
1610 	KASSERT(so->so_qstate == SQ_COMP,
1611 	    ("%s: so %p not SQ_COMP", __func__, so));
1612 	head->sol_qlen--;
1613 	so->so_qstate = SQ_NONE;
1614 	so->so_listen = NULL;
1615 	TAILQ_REMOVE(&head->sol_comp, so, so_list);
1616 	if (flags & ACCEPT4_INHERIT)
1617 		so->so_state |= (head->so_state & SS_NBIO);
1618 	else
1619 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1620 	SOCK_UNLOCK(so);
1621 	sorele_locked(head);
1622 
1623 	*ret = so;
1624 	return (0);
1625 }
1626 
1627 static struct so_splice *
1628 so_splice_alloc(off_t max)
1629 {
1630 	struct so_splice *sp;
1631 
1632 	sp = uma_zalloc(splice_zone, M_WAITOK);
1633 	sp->src = NULL;
1634 	sp->dst = NULL;
1635 	sp->max = max > 0 ? max : -1;
1636 	do {
1637 		sp->wq_index = atomic_fetchadd_32(&splice_index, 1) %
1638 		    (mp_maxid + 1);
1639 	} while (CPU_ABSENT(sp->wq_index));
1640 	sp->state = SPLICE_INIT;
1641 	TIMEOUT_TASK_INIT(taskqueue_thread, &sp->timeout, 0, so_splice_timeout,
1642 	    sp);
1643 	return (sp);
1644 }
1645 
1646 static void
1647 so_splice_free(struct so_splice *sp)
1648 {
1649 	KASSERT(sp->state == SPLICE_CLOSED,
1650 	    ("so_splice_free: sp %p not closed", sp));
1651 	uma_zfree(splice_zone, sp);
1652 }
1653 
1654 static void
1655 so_splice_timeout(void *arg, int pending __unused)
1656 {
1657 	struct so_splice *sp;
1658 
1659 	sp = arg;
1660 	(void)so_unsplice(sp->src, true);
1661 }
1662 
1663 /*
1664  * Splice the output from so to the input of so2.
1665  */
1666 static int
1667 so_splice(struct socket *so, struct socket *so2, struct splice *splice)
1668 {
1669 	struct so_splice *sp;
1670 	int error;
1671 
1672 	if (splice->sp_max < 0)
1673 		return (EINVAL);
1674 	/* Handle only TCP for now; TODO: other streaming protos */
1675 	if (so->so_proto->pr_protocol != IPPROTO_TCP ||
1676 	    so2->so_proto->pr_protocol != IPPROTO_TCP)
1677 		return (EPROTONOSUPPORT);
1678 	if (so->so_vnet != so2->so_vnet)
1679 		return (EINVAL);
1680 
1681 	/* so_splice_xfer() assumes that we're using these implementations. */
1682 	KASSERT(so->so_proto->pr_sosend == sosend_generic,
1683 	    ("so_splice: sosend not sosend_generic"));
1684 	KASSERT(so2->so_proto->pr_soreceive == soreceive_generic ||
1685 	    so2->so_proto->pr_soreceive == soreceive_stream,
1686 	    ("so_splice: soreceive not soreceive_generic/stream"));
1687 
1688 	sp = so_splice_alloc(splice->sp_max);
1689 	so->so_splice_sent = 0;
1690 	sp->src = so;
1691 	sp->dst = so2;
1692 
1693 	error = 0;
1694 	SOCK_LOCK(so);
1695 	if (SOLISTENING(so))
1696 		error = EINVAL;
1697 	else if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1698 		error = ENOTCONN;
1699 	else if (so->so_splice != NULL)
1700 		error = EBUSY;
1701 	if (error != 0) {
1702 		SOCK_UNLOCK(so);
1703 		uma_zfree(splice_zone, sp);
1704 		return (error);
1705 	}
1706 	SOCK_RECVBUF_LOCK(so);
1707 	if (so->so_rcv.sb_tls_info != NULL) {
1708 		SOCK_RECVBUF_UNLOCK(so);
1709 		SOCK_UNLOCK(so);
1710 		uma_zfree(splice_zone, sp);
1711 		return (EINVAL);
1712 	}
1713 	so->so_rcv.sb_flags |= SB_SPLICED;
1714 	so->so_splice = sp;
1715 	soref(so);
1716 	SOCK_RECVBUF_UNLOCK(so);
1717 	SOCK_UNLOCK(so);
1718 
1719 	error = 0;
1720 	SOCK_LOCK(so2);
1721 	if (SOLISTENING(so2))
1722 		error = EINVAL;
1723 	else if ((so2->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1724 		error = ENOTCONN;
1725 	else if (so2->so_splice_back != NULL)
1726 		error = EBUSY;
1727 	if (error != 0) {
1728 		SOCK_UNLOCK(so2);
1729 		so_unsplice(so, false);
1730 		return (error);
1731 	}
1732 	SOCK_SENDBUF_LOCK(so2);
1733 	if (so->so_snd.sb_tls_info != NULL) {
1734 		SOCK_SENDBUF_UNLOCK(so2);
1735 		SOCK_UNLOCK(so2);
1736 		so_unsplice(so, false);
1737 		return (EINVAL);
1738 	}
1739 	so2->so_snd.sb_flags |= SB_SPLICED;
1740 	so2->so_splice_back = sp;
1741 	soref(so2);
1742 	mtx_lock(&sp->mtx);
1743 	SOCK_SENDBUF_UNLOCK(so2);
1744 	SOCK_UNLOCK(so2);
1745 
1746 	if (splice->sp_idle.tv_sec != 0 || splice->sp_idle.tv_usec != 0) {
1747 		taskqueue_enqueue_timeout_sbt(taskqueue_thread, &sp->timeout,
1748 		    tvtosbt(splice->sp_idle), 0, C_PREL(4));
1749 	}
1750 
1751 	/*
1752 	 * Transfer any data already present in the socket buffer.
1753 	 */
1754 	KASSERT(sp->state == SPLICE_INIT,
1755 	    ("so_splice: splice %p state %d", sp, sp->state));
1756 	sp->state = SPLICE_QUEUED;
1757 	so_splice_xfer(sp);
1758 	return (0);
1759 }
1760 
1761 static int
1762 so_unsplice(struct socket *so, bool timeout)
1763 {
1764 	struct socket *so2;
1765 	struct so_splice *sp;
1766 	bool drain, so2rele;
1767 
1768 	/*
1769 	 * First unset SB_SPLICED and hide the splice structure so that
1770 	 * wakeup routines will stop enqueuing work.  This also ensures that
1771 	 * a only a single thread will proceed with the unsplice.
1772 	 */
1773 	SOCK_LOCK(so);
1774 	if (SOLISTENING(so)) {
1775 		SOCK_UNLOCK(so);
1776 		return (EINVAL);
1777 	}
1778 	SOCK_RECVBUF_LOCK(so);
1779 	if ((so->so_rcv.sb_flags & SB_SPLICED) == 0) {
1780 		SOCK_RECVBUF_UNLOCK(so);
1781 		SOCK_UNLOCK(so);
1782 		return (ENOTCONN);
1783 	}
1784 	sp = so->so_splice;
1785 	mtx_lock(&sp->mtx);
1786 	if (sp->state == SPLICE_INIT) {
1787 		/*
1788 		 * A splice is in the middle of being set up.
1789 		 */
1790 		mtx_unlock(&sp->mtx);
1791 		SOCK_RECVBUF_UNLOCK(so);
1792 		SOCK_UNLOCK(so);
1793 		return (ENOTCONN);
1794 	}
1795 	mtx_unlock(&sp->mtx);
1796 	so->so_rcv.sb_flags &= ~SB_SPLICED;
1797 	so->so_splice = NULL;
1798 	SOCK_RECVBUF_UNLOCK(so);
1799 	SOCK_UNLOCK(so);
1800 
1801 	so2 = sp->dst;
1802 	SOCK_LOCK(so2);
1803 	KASSERT(!SOLISTENING(so2), ("%s: so2 is listening", __func__));
1804 	SOCK_SENDBUF_LOCK(so2);
1805 	KASSERT(sp->state == SPLICE_INIT ||
1806 	    (so2->so_snd.sb_flags & SB_SPLICED) != 0,
1807 	    ("%s: so2 is not spliced", __func__));
1808 	KASSERT(sp->state == SPLICE_INIT ||
1809 	    so2->so_splice_back == sp,
1810 	    ("%s: so_splice_back != sp", __func__));
1811 	so2->so_snd.sb_flags &= ~SB_SPLICED;
1812 	so2rele = so2->so_splice_back != NULL;
1813 	so2->so_splice_back = NULL;
1814 	SOCK_SENDBUF_UNLOCK(so2);
1815 	SOCK_UNLOCK(so2);
1816 
1817 	/*
1818 	 * No new work is being enqueued.  The worker thread might be
1819 	 * splicing data right now, in which case we want to wait for it to
1820 	 * finish before proceeding.
1821 	 */
1822 	mtx_lock(&sp->mtx);
1823 	switch (sp->state) {
1824 	case SPLICE_QUEUED:
1825 	case SPLICE_RUNNING:
1826 		sp->state = SPLICE_CLOSING;
1827 		while (sp->state == SPLICE_CLOSING)
1828 			msleep(sp, &sp->mtx, PSOCK, "unsplice", 0);
1829 		break;
1830 	case SPLICE_INIT:
1831 	case SPLICE_IDLE:
1832 	case SPLICE_EXCEPTION:
1833 		sp->state = SPLICE_CLOSED;
1834 		break;
1835 	default:
1836 		__assert_unreachable();
1837 	}
1838 	if (!timeout) {
1839 		drain = taskqueue_cancel_timeout(taskqueue_thread, &sp->timeout,
1840 		    NULL) != 0;
1841 	} else {
1842 		drain = false;
1843 	}
1844 	mtx_unlock(&sp->mtx);
1845 	if (drain)
1846 		taskqueue_drain_timeout(taskqueue_thread, &sp->timeout);
1847 
1848 	/*
1849 	 * Now we hold the sole reference to the splice structure.
1850 	 * Clean up: signal userspace and release socket references.
1851 	 */
1852 	sorwakeup(so);
1853 	CURVNET_SET(so->so_vnet);
1854 	sorele(so);
1855 	sowwakeup(so2);
1856 	if (so2rele)
1857 		sorele(so2);
1858 	CURVNET_RESTORE();
1859 	so_splice_free(sp);
1860 	return (0);
1861 }
1862 
1863 /*
1864  * Free socket upon release of the very last reference.
1865  */
1866 static void
1867 sofree(struct socket *so)
1868 {
1869 	struct protosw *pr = so->so_proto;
1870 
1871 	SOCK_LOCK_ASSERT(so);
1872 	KASSERT(refcount_load(&so->so_count) == 0,
1873 	    ("%s: so %p has references", __func__, so));
1874 	KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1875 	    ("%s: so %p is on listen queue", __func__, so));
1876 	KASSERT(SOLISTENING(so) || (so->so_rcv.sb_flags & SB_SPLICED) == 0,
1877 	    ("%s: so %p rcvbuf is spliced", __func__, so));
1878 	KASSERT(SOLISTENING(so) || (so->so_snd.sb_flags & SB_SPLICED) == 0,
1879 	    ("%s: so %p sndbuf is spliced", __func__, so));
1880 	KASSERT(so->so_splice == NULL && so->so_splice_back == NULL,
1881 	    ("%s: so %p has spliced data", __func__, so));
1882 
1883 	SOCK_UNLOCK(so);
1884 
1885 	if (so->so_dtor != NULL)
1886 		so->so_dtor(so);
1887 
1888 	VNET_SO_ASSERT(so);
1889 	if (pr->pr_detach != NULL)
1890 		pr->pr_detach(so);
1891 
1892 	if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1893 		/*
1894 		 * From this point on, we assume that no other references to
1895 		 * this socket exist anywhere else in the stack.  Therefore,
1896 		 * no locks need to be acquired or held.
1897 		 */
1898 #ifdef INVARIANTS
1899 		SOCK_SENDBUF_LOCK(so);
1900 		SOCK_RECVBUF_LOCK(so);
1901 #endif
1902 		sbdestroy(so, SO_SND);
1903 		sbdestroy(so, SO_RCV);
1904 #ifdef INVARIANTS
1905 		SOCK_SENDBUF_UNLOCK(so);
1906 		SOCK_RECVBUF_UNLOCK(so);
1907 #endif
1908 	}
1909 	seldrain(&so->so_rdsel);
1910 	seldrain(&so->so_wrsel);
1911 	knlist_destroy(&so->so_rdsel.si_note);
1912 	knlist_destroy(&so->so_wrsel.si_note);
1913 	sodealloc(so);
1914 }
1915 
1916 /*
1917  * Release a reference on a socket while holding the socket lock.
1918  * Unlocks the socket lock before returning.
1919  */
1920 void
1921 sorele_locked(struct socket *so)
1922 {
1923 	SOCK_LOCK_ASSERT(so);
1924 	if (refcount_release(&so->so_count))
1925 		sofree(so);
1926 	else
1927 		SOCK_UNLOCK(so);
1928 }
1929 
1930 /*
1931  * Close a socket on last file table reference removal.  Initiate disconnect
1932  * if connected.  Free socket when disconnect complete.
1933  *
1934  * This function will sorele() the socket.  Note that soclose() may be called
1935  * prior to the ref count reaching zero.  The actual socket structure will
1936  * not be freed until the ref count reaches zero.
1937  */
1938 int
1939 soclose(struct socket *so)
1940 {
1941 	struct accept_queue lqueue;
1942 	int error = 0;
1943 	bool listening, last __diagused;
1944 
1945 	CURVNET_SET(so->so_vnet);
1946 	funsetown(&so->so_sigio);
1947 	if (so->so_state & SS_ISCONNECTED) {
1948 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1949 			error = sodisconnect(so);
1950 			if (error) {
1951 				if (error == ENOTCONN)
1952 					error = 0;
1953 				goto drop;
1954 			}
1955 		}
1956 
1957 		if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1958 			if ((so->so_state & SS_ISDISCONNECTING) &&
1959 			    (so->so_state & SS_NBIO))
1960 				goto drop;
1961 			while (so->so_state & SS_ISCONNECTED) {
1962 				error = tsleep(&so->so_timeo,
1963 				    PSOCK | PCATCH, "soclos",
1964 				    so->so_linger * hz);
1965 				if (error)
1966 					break;
1967 			}
1968 		}
1969 	}
1970 
1971 drop:
1972 	if (so->so_proto->pr_close != NULL)
1973 		so->so_proto->pr_close(so);
1974 
1975 	SOCK_LOCK(so);
1976 	if ((listening = SOLISTENING(so))) {
1977 		struct socket *sp;
1978 
1979 		TAILQ_INIT(&lqueue);
1980 		TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1981 		TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1982 
1983 		so->sol_qlen = so->sol_incqlen = 0;
1984 
1985 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1986 			SOCK_LOCK(sp);
1987 			sp->so_qstate = SQ_NONE;
1988 			sp->so_listen = NULL;
1989 			SOCK_UNLOCK(sp);
1990 			last = refcount_release(&so->so_count);
1991 			KASSERT(!last, ("%s: released last reference for %p",
1992 			    __func__, so));
1993 		}
1994 	}
1995 	sorele_locked(so);
1996 	if (listening) {
1997 		struct socket *sp, *tsp;
1998 
1999 		TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
2000 			soabort(sp);
2001 	}
2002 	CURVNET_RESTORE();
2003 	return (error);
2004 }
2005 
2006 /*
2007  * soabort() is used to abruptly tear down a connection, such as when a
2008  * resource limit is reached (listen queue depth exceeded), or if a listen
2009  * socket is closed while there are sockets waiting to be accepted.
2010  *
2011  * This interface is tricky, because it is called on an unreferenced socket,
2012  * and must be called only by a thread that has actually removed the socket
2013  * from the listen queue it was on.  Likely this thread holds the last
2014  * reference on the socket and soabort() will proceed with sofree().  But
2015  * it might be not the last, as the sockets on the listen queues are seen
2016  * from the protocol side.
2017  *
2018  * This interface will call into the protocol code, so must not be called
2019  * with any socket locks held.  Protocols do call it while holding their own
2020  * recursible protocol mutexes, but this is something that should be subject
2021  * to review in the future.
2022  *
2023  * Usually socket should have a single reference left, but this is not a
2024  * requirement.  In the past, when we have had named references for file
2025  * descriptor and protocol, we asserted that none of them are being held.
2026  */
2027 void
2028 soabort(struct socket *so)
2029 {
2030 
2031 	VNET_SO_ASSERT(so);
2032 
2033 	if (so->so_proto->pr_abort != NULL)
2034 		so->so_proto->pr_abort(so);
2035 	SOCK_LOCK(so);
2036 	sorele_locked(so);
2037 }
2038 
2039 int
2040 soaccept(struct socket *so, struct sockaddr *sa)
2041 {
2042 #ifdef INVARIANTS
2043 	u_char len = sa->sa_len;
2044 #endif
2045 	int error;
2046 
2047 	CURVNET_SET(so->so_vnet);
2048 	error = so->so_proto->pr_accept(so, sa);
2049 	KASSERT(sa->sa_len <= len,
2050 	    ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2051 	CURVNET_RESTORE();
2052 	return (error);
2053 }
2054 
2055 int
2056 sopeeraddr(struct socket *so, struct sockaddr *sa)
2057 {
2058 #ifdef INVARIANTS
2059 	u_char len = sa->sa_len;
2060 #endif
2061 	int error;
2062 
2063 	CURVNET_ASSERT_SET();
2064 
2065 	error = so->so_proto->pr_peeraddr(so, sa);
2066 	KASSERT(sa->sa_len <= len,
2067 	    ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2068 
2069 	return (error);
2070 }
2071 
2072 int
2073 sosockaddr(struct socket *so, struct sockaddr *sa)
2074 {
2075 #ifdef INVARIANTS
2076 	u_char len = sa->sa_len;
2077 #endif
2078 	int error;
2079 
2080 	CURVNET_SET(so->so_vnet);
2081 	error = so->so_proto->pr_sockaddr(so, sa);
2082 	KASSERT(sa->sa_len <= len,
2083 	    ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2084 	CURVNET_RESTORE();
2085 
2086 	return (error);
2087 }
2088 
2089 int
2090 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
2091 {
2092 
2093 	return (soconnectat(AT_FDCWD, so, nam, td));
2094 }
2095 
2096 int
2097 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
2098 {
2099 	int error;
2100 
2101 	CURVNET_SET(so->so_vnet);
2102 
2103 	/*
2104 	 * If protocol is connection-based, can only connect once.
2105 	 * Otherwise, if connected, try to disconnect first.  This allows
2106 	 * user to disconnect by connecting to, e.g., a null address.
2107 	 *
2108 	 * Note, this check is racy and may need to be re-evaluated at the
2109 	 * protocol layer.
2110 	 */
2111 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
2112 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
2113 	    (error = sodisconnect(so)))) {
2114 		error = EISCONN;
2115 	} else {
2116 		/*
2117 		 * Prevent accumulated error from previous connection from
2118 		 * biting us.
2119 		 */
2120 		so->so_error = 0;
2121 		if (fd == AT_FDCWD) {
2122 			error = so->so_proto->pr_connect(so, nam, td);
2123 		} else {
2124 			error = so->so_proto->pr_connectat(fd, so, nam, td);
2125 		}
2126 	}
2127 	CURVNET_RESTORE();
2128 
2129 	return (error);
2130 }
2131 
2132 int
2133 soconnect2(struct socket *so1, struct socket *so2)
2134 {
2135 	int error;
2136 
2137 	CURVNET_SET(so1->so_vnet);
2138 	error = so1->so_proto->pr_connect2(so1, so2);
2139 	CURVNET_RESTORE();
2140 	return (error);
2141 }
2142 
2143 int
2144 sodisconnect(struct socket *so)
2145 {
2146 	int error;
2147 
2148 	if ((so->so_state & SS_ISCONNECTED) == 0)
2149 		return (ENOTCONN);
2150 	if (so->so_state & SS_ISDISCONNECTING)
2151 		return (EALREADY);
2152 	VNET_SO_ASSERT(so);
2153 	error = so->so_proto->pr_disconnect(so);
2154 	return (error);
2155 }
2156 
2157 int
2158 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
2159     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2160 {
2161 	long space;
2162 	ssize_t resid;
2163 	int clen = 0, error, dontroute;
2164 
2165 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
2166 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
2167 	    ("sosend_dgram: !PR_ATOMIC"));
2168 
2169 	if (uio != NULL)
2170 		resid = uio->uio_resid;
2171 	else
2172 		resid = top->m_pkthdr.len;
2173 	/*
2174 	 * In theory resid should be unsigned.  However, space must be
2175 	 * signed, as it might be less than 0 if we over-committed, and we
2176 	 * must use a signed comparison of space and resid.  On the other
2177 	 * hand, a negative resid causes us to loop sending 0-length
2178 	 * segments to the protocol.
2179 	 */
2180 	if (resid < 0) {
2181 		error = EINVAL;
2182 		goto out;
2183 	}
2184 
2185 	dontroute =
2186 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
2187 	if (td != NULL)
2188 		td->td_ru.ru_msgsnd++;
2189 	if (control != NULL)
2190 		clen = control->m_len;
2191 
2192 	SOCKBUF_LOCK(&so->so_snd);
2193 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2194 		SOCKBUF_UNLOCK(&so->so_snd);
2195 		error = EPIPE;
2196 		goto out;
2197 	}
2198 	if (so->so_error) {
2199 		error = so->so_error;
2200 		so->so_error = 0;
2201 		SOCKBUF_UNLOCK(&so->so_snd);
2202 		goto out;
2203 	}
2204 	if ((so->so_state & SS_ISCONNECTED) == 0) {
2205 		/*
2206 		 * `sendto' and `sendmsg' is allowed on a connection-based
2207 		 * socket if it supports implied connect.  Return ENOTCONN if
2208 		 * not connected and no address is supplied.
2209 		 */
2210 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2211 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2212 			if (!(resid == 0 && clen != 0)) {
2213 				SOCKBUF_UNLOCK(&so->so_snd);
2214 				error = ENOTCONN;
2215 				goto out;
2216 			}
2217 		} else if (addr == NULL) {
2218 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2219 				error = ENOTCONN;
2220 			else
2221 				error = EDESTADDRREQ;
2222 			SOCKBUF_UNLOCK(&so->so_snd);
2223 			goto out;
2224 		}
2225 	}
2226 
2227 	/*
2228 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
2229 	 * problem and need fixing.
2230 	 */
2231 	space = sbspace(&so->so_snd);
2232 	if (flags & MSG_OOB)
2233 		space += 1024;
2234 	space -= clen;
2235 	SOCKBUF_UNLOCK(&so->so_snd);
2236 	if (resid > space) {
2237 		error = EMSGSIZE;
2238 		goto out;
2239 	}
2240 	if (uio == NULL) {
2241 		resid = 0;
2242 		if (flags & MSG_EOR)
2243 			top->m_flags |= M_EOR;
2244 	} else {
2245 		/*
2246 		 * Copy the data from userland into a mbuf chain.
2247 		 * If no data is to be copied in, a single empty mbuf
2248 		 * is returned.
2249 		 */
2250 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
2251 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
2252 		if (top == NULL) {
2253 			error = EFAULT;	/* only possible error */
2254 			goto out;
2255 		}
2256 		space -= resid - uio->uio_resid;
2257 		resid = uio->uio_resid;
2258 	}
2259 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
2260 	/*
2261 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
2262 	 * than with.
2263 	 */
2264 	if (dontroute) {
2265 		SOCK_LOCK(so);
2266 		so->so_options |= SO_DONTROUTE;
2267 		SOCK_UNLOCK(so);
2268 	}
2269 	/*
2270 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
2271 	 * of date.  We could have received a reset packet in an interrupt or
2272 	 * maybe we slept while doing page faults in uiomove() etc.  We could
2273 	 * probably recheck again inside the locking protection here, but
2274 	 * there are probably other places that this also happens.  We must
2275 	 * rethink this.
2276 	 */
2277 	VNET_SO_ASSERT(so);
2278 	error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
2279 	/*
2280 	 * If the user set MSG_EOF, the protocol understands this flag and
2281 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
2282 	 */
2283 	    ((flags & MSG_EOF) &&
2284 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2285 	     (resid <= 0)) ?
2286 		PRUS_EOF :
2287 		/* If there is more to send set PRUS_MORETOCOME */
2288 		(flags & MSG_MORETOCOME) ||
2289 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
2290 		top, addr, control, td);
2291 	if (dontroute) {
2292 		SOCK_LOCK(so);
2293 		so->so_options &= ~SO_DONTROUTE;
2294 		SOCK_UNLOCK(so);
2295 	}
2296 	clen = 0;
2297 	control = NULL;
2298 	top = NULL;
2299 out:
2300 	if (top != NULL)
2301 		m_freem(top);
2302 	if (control != NULL)
2303 		m_freem(control);
2304 	return (error);
2305 }
2306 
2307 /*
2308  * Send on a socket.  If send must go all at once and message is larger than
2309  * send buffering, then hard error.  Lock against other senders.  If must go
2310  * all at once and not enough room now, then inform user that this would
2311  * block and do nothing.  Otherwise, if nonblocking, send as much as
2312  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
2313  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
2314  * in mbuf chain must be small enough to send all at once.
2315  *
2316  * Returns nonzero on error, timeout or signal; callers must check for short
2317  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
2318  * on return.
2319  */
2320 static int
2321 sosend_generic_locked(struct socket *so, struct sockaddr *addr, struct uio *uio,
2322     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2323 {
2324 	long space;
2325 	ssize_t resid;
2326 	int clen = 0, error, dontroute;
2327 	int atomic = sosendallatonce(so) || top;
2328 	int pr_send_flag;
2329 #ifdef KERN_TLS
2330 	struct ktls_session *tls;
2331 	int tls_enq_cnt, tls_send_flag;
2332 	uint8_t tls_rtype;
2333 
2334 	tls = NULL;
2335 	tls_rtype = TLS_RLTYPE_APP;
2336 #endif
2337 
2338 	SOCK_IO_SEND_ASSERT_LOCKED(so);
2339 
2340 	if (uio != NULL)
2341 		resid = uio->uio_resid;
2342 	else if ((top->m_flags & M_PKTHDR) != 0)
2343 		resid = top->m_pkthdr.len;
2344 	else
2345 		resid = m_length(top, NULL);
2346 	/*
2347 	 * In theory resid should be unsigned.  However, space must be
2348 	 * signed, as it might be less than 0 if we over-committed, and we
2349 	 * must use a signed comparison of space and resid.  On the other
2350 	 * hand, a negative resid causes us to loop sending 0-length
2351 	 * segments to the protocol.
2352 	 *
2353 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
2354 	 * type sockets since that's an error.
2355 	 */
2356 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
2357 		error = EINVAL;
2358 		goto out;
2359 	}
2360 
2361 	dontroute =
2362 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
2363 	    (so->so_proto->pr_flags & PR_ATOMIC);
2364 	if (td != NULL)
2365 		td->td_ru.ru_msgsnd++;
2366 	if (control != NULL)
2367 		clen = control->m_len;
2368 
2369 #ifdef KERN_TLS
2370 	tls_send_flag = 0;
2371 	tls = ktls_hold(so->so_snd.sb_tls_info);
2372 	if (tls != NULL) {
2373 		if (tls->mode == TCP_TLS_MODE_SW)
2374 			tls_send_flag = PRUS_NOTREADY;
2375 
2376 		if (control != NULL) {
2377 			struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2378 
2379 			if (clen >= sizeof(*cm) &&
2380 			    cm->cmsg_type == TLS_SET_RECORD_TYPE) {
2381 				tls_rtype = *((uint8_t *)CMSG_DATA(cm));
2382 				clen = 0;
2383 				m_freem(control);
2384 				control = NULL;
2385 				atomic = 1;
2386 			}
2387 		}
2388 
2389 		if (resid == 0 && !ktls_permit_empty_frames(tls)) {
2390 			error = EINVAL;
2391 			goto out;
2392 		}
2393 	}
2394 #endif
2395 
2396 restart:
2397 	do {
2398 		SOCKBUF_LOCK(&so->so_snd);
2399 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2400 			SOCKBUF_UNLOCK(&so->so_snd);
2401 			error = EPIPE;
2402 			goto out;
2403 		}
2404 		if (so->so_error) {
2405 			error = so->so_error;
2406 			so->so_error = 0;
2407 			SOCKBUF_UNLOCK(&so->so_snd);
2408 			goto out;
2409 		}
2410 		if ((so->so_state & SS_ISCONNECTED) == 0) {
2411 			/*
2412 			 * `sendto' and `sendmsg' is allowed on a connection-
2413 			 * based socket if it supports implied connect.
2414 			 * Return ENOTCONN if not connected and no address is
2415 			 * supplied.
2416 			 */
2417 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2418 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2419 				if (!(resid == 0 && clen != 0)) {
2420 					SOCKBUF_UNLOCK(&so->so_snd);
2421 					error = ENOTCONN;
2422 					goto out;
2423 				}
2424 			} else if (addr == NULL) {
2425 				SOCKBUF_UNLOCK(&so->so_snd);
2426 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2427 					error = ENOTCONN;
2428 				else
2429 					error = EDESTADDRREQ;
2430 				goto out;
2431 			}
2432 		}
2433 		space = sbspace(&so->so_snd);
2434 		if (flags & MSG_OOB)
2435 			space += 1024;
2436 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
2437 		    clen > so->so_snd.sb_hiwat) {
2438 			SOCKBUF_UNLOCK(&so->so_snd);
2439 			error = EMSGSIZE;
2440 			goto out;
2441 		}
2442 		if (space < resid + clen &&
2443 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
2444 			if ((so->so_state & SS_NBIO) ||
2445 			    (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
2446 				SOCKBUF_UNLOCK(&so->so_snd);
2447 				error = EWOULDBLOCK;
2448 				goto out;
2449 			}
2450 			error = sbwait(so, SO_SND);
2451 			SOCKBUF_UNLOCK(&so->so_snd);
2452 			if (error)
2453 				goto out;
2454 			goto restart;
2455 		}
2456 		SOCKBUF_UNLOCK(&so->so_snd);
2457 		space -= clen;
2458 		do {
2459 			if (uio == NULL) {
2460 				resid = 0;
2461 				if (flags & MSG_EOR)
2462 					top->m_flags |= M_EOR;
2463 #ifdef KERN_TLS
2464 				if (tls != NULL) {
2465 					ktls_frame(top, tls, &tls_enq_cnt,
2466 					    tls_rtype);
2467 					tls_rtype = TLS_RLTYPE_APP;
2468 				}
2469 #endif
2470 			} else {
2471 				/*
2472 				 * Copy the data from userland into a mbuf
2473 				 * chain.  If resid is 0, which can happen
2474 				 * only if we have control to send, then
2475 				 * a single empty mbuf is returned.  This
2476 				 * is a workaround to prevent protocol send
2477 				 * methods to panic.
2478 				 */
2479 #ifdef KERN_TLS
2480 				if (tls != NULL) {
2481 					top = m_uiotombuf(uio, M_WAITOK, space,
2482 					    tls->params.max_frame_len,
2483 					    M_EXTPG |
2484 					    ((flags & MSG_EOR) ? M_EOR : 0));
2485 					if (top != NULL) {
2486 						ktls_frame(top, tls,
2487 						    &tls_enq_cnt, tls_rtype);
2488 					}
2489 					tls_rtype = TLS_RLTYPE_APP;
2490 				} else
2491 #endif
2492 					top = m_uiotombuf(uio, M_WAITOK, space,
2493 					    (atomic ? max_hdr : 0),
2494 					    (atomic ? M_PKTHDR : 0) |
2495 					    ((flags & MSG_EOR) ? M_EOR : 0));
2496 				if (top == NULL) {
2497 					error = EFAULT; /* only possible error */
2498 					goto out;
2499 				}
2500 				space -= resid - uio->uio_resid;
2501 				resid = uio->uio_resid;
2502 			}
2503 			if (dontroute) {
2504 				SOCK_LOCK(so);
2505 				so->so_options |= SO_DONTROUTE;
2506 				SOCK_UNLOCK(so);
2507 			}
2508 			/*
2509 			 * XXX all the SBS_CANTSENDMORE checks previously
2510 			 * done could be out of date.  We could have received
2511 			 * a reset packet in an interrupt or maybe we slept
2512 			 * while doing page faults in uiomove() etc.  We
2513 			 * could probably recheck again inside the locking
2514 			 * protection here, but there are probably other
2515 			 * places that this also happens.  We must rethink
2516 			 * this.
2517 			 */
2518 			VNET_SO_ASSERT(so);
2519 
2520 			pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
2521 			/*
2522 			 * If the user set MSG_EOF, the protocol understands
2523 			 * this flag and nothing left to send then use
2524 			 * PRU_SEND_EOF instead of PRU_SEND.
2525 			 */
2526 			    ((flags & MSG_EOF) &&
2527 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2528 			     (resid <= 0)) ?
2529 				PRUS_EOF :
2530 			/* If there is more to send set PRUS_MORETOCOME. */
2531 			    (flags & MSG_MORETOCOME) ||
2532 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
2533 
2534 #ifdef KERN_TLS
2535 			pr_send_flag |= tls_send_flag;
2536 #endif
2537 
2538 			error = so->so_proto->pr_send(so, pr_send_flag, top,
2539 			    addr, control, td);
2540 
2541 			if (dontroute) {
2542 				SOCK_LOCK(so);
2543 				so->so_options &= ~SO_DONTROUTE;
2544 				SOCK_UNLOCK(so);
2545 			}
2546 
2547 #ifdef KERN_TLS
2548 			if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
2549 				if (error != 0) {
2550 					m_freem(top);
2551 					top = NULL;
2552 				} else {
2553 					soref(so);
2554 					ktls_enqueue(top, so, tls_enq_cnt);
2555 				}
2556 			}
2557 #endif
2558 			clen = 0;
2559 			control = NULL;
2560 			top = NULL;
2561 			if (error)
2562 				goto out;
2563 		} while (resid && space > 0);
2564 	} while (resid);
2565 
2566 out:
2567 #ifdef KERN_TLS
2568 	if (tls != NULL)
2569 		ktls_free(tls);
2570 #endif
2571 	if (top != NULL)
2572 		m_freem(top);
2573 	if (control != NULL)
2574 		m_freem(control);
2575 	return (error);
2576 }
2577 
2578 int
2579 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
2580     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2581 {
2582 	int error;
2583 
2584 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
2585 	if (error)
2586 		return (error);
2587 	error = sosend_generic_locked(so, addr, uio, top, control, flags, td);
2588 	SOCK_IO_SEND_UNLOCK(so);
2589 	return (error);
2590 }
2591 
2592 /*
2593  * Send to a socket from a kernel thread.
2594  *
2595  * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
2596  * Exception is nfs/bootp_subr.c.  It is arguable that the VNET context needs
2597  * to be set at all.  This function should just boil down to a static inline
2598  * calling the protocol method.
2599  */
2600 int
2601 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2602     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2603 {
2604 	int error;
2605 
2606 	CURVNET_SET(so->so_vnet);
2607 	error = so->so_proto->pr_sosend(so, addr, uio,
2608 	    top, control, flags, td);
2609 	CURVNET_RESTORE();
2610 	return (error);
2611 }
2612 
2613 /*
2614  * send(2), write(2) or aio_write(2) on a socket.
2615  */
2616 int
2617 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2618     struct mbuf *control, int flags, struct proc *userproc)
2619 {
2620 	struct thread *td;
2621 	ssize_t len;
2622 	int error;
2623 
2624 	td = uio->uio_td;
2625 	len = uio->uio_resid;
2626 	CURVNET_SET(so->so_vnet);
2627 	error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
2628 	    td);
2629 	CURVNET_RESTORE();
2630 	if (error != 0) {
2631 		/*
2632 		 * Clear transient errors for stream protocols if they made
2633 		 * some progress.  Make exclusion for aio(4) that would
2634 		 * schedule a new write in case of EWOULDBLOCK and clear
2635 		 * error itself.  See soaio_process_job().
2636 		 */
2637 		if (uio->uio_resid != len &&
2638 		    (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
2639 		    userproc == NULL &&
2640 		    (error == ERESTART || error == EINTR ||
2641 		    error == EWOULDBLOCK))
2642 			error = 0;
2643 		/* Generation of SIGPIPE can be controlled per socket. */
2644 		if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
2645 		    (flags & MSG_NOSIGNAL) == 0) {
2646 			if (userproc != NULL) {
2647 				/* aio(4) job */
2648 				PROC_LOCK(userproc);
2649 				kern_psignal(userproc, SIGPIPE);
2650 				PROC_UNLOCK(userproc);
2651 			} else {
2652 				PROC_LOCK(td->td_proc);
2653 				tdsignal(td, SIGPIPE);
2654 				PROC_UNLOCK(td->td_proc);
2655 			}
2656 		}
2657 	}
2658 	return (error);
2659 }
2660 
2661 /*
2662  * The part of soreceive() that implements reading non-inline out-of-band
2663  * data from a socket.  For more complete comments, see soreceive(), from
2664  * which this code originated.
2665  *
2666  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
2667  * unable to return an mbuf chain to the caller.
2668  */
2669 static int
2670 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
2671 {
2672 	struct protosw *pr = so->so_proto;
2673 	struct mbuf *m;
2674 	int error;
2675 
2676 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
2677 	VNET_SO_ASSERT(so);
2678 
2679 	m = m_get(M_WAITOK, MT_DATA);
2680 	error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
2681 	if (error)
2682 		goto bad;
2683 	do {
2684 		error = uiomove(mtod(m, void *),
2685 		    (int) min(uio->uio_resid, m->m_len), uio);
2686 		m = m_free(m);
2687 	} while (uio->uio_resid && error == 0 && m);
2688 bad:
2689 	if (m != NULL)
2690 		m_freem(m);
2691 	return (error);
2692 }
2693 
2694 /*
2695  * Following replacement or removal of the first mbuf on the first mbuf chain
2696  * of a socket buffer, push necessary state changes back into the socket
2697  * buffer so that other consumers see the values consistently.  'nextrecord'
2698  * is the callers locally stored value of the original value of
2699  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
2700  * NOTE: 'nextrecord' may be NULL.
2701  */
2702 static __inline void
2703 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
2704 {
2705 
2706 	SOCKBUF_LOCK_ASSERT(sb);
2707 	/*
2708 	 * First, update for the new value of nextrecord.  If necessary, make
2709 	 * it the first record.
2710 	 */
2711 	if (sb->sb_mb != NULL)
2712 		sb->sb_mb->m_nextpkt = nextrecord;
2713 	else
2714 		sb->sb_mb = nextrecord;
2715 
2716 	/*
2717 	 * Now update any dependent socket buffer fields to reflect the new
2718 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
2719 	 * addition of a second clause that takes care of the case where
2720 	 * sb_mb has been updated, but remains the last record.
2721 	 */
2722 	if (sb->sb_mb == NULL) {
2723 		sb->sb_mbtail = NULL;
2724 		sb->sb_lastrecord = NULL;
2725 	} else if (sb->sb_mb->m_nextpkt == NULL)
2726 		sb->sb_lastrecord = sb->sb_mb;
2727 }
2728 
2729 /*
2730  * Implement receive operations on a socket.  We depend on the way that
2731  * records are added to the sockbuf by sbappend.  In particular, each record
2732  * (mbufs linked through m_next) must begin with an address if the protocol
2733  * so specifies, followed by an optional mbuf or mbufs containing ancillary
2734  * data, and then zero or more mbufs of data.  In order to allow parallelism
2735  * between network receive and copying to user space, as well as avoid
2736  * sleeping with a mutex held, we release the socket buffer mutex during the
2737  * user space copy.  Although the sockbuf is locked, new data may still be
2738  * appended, and thus we must maintain consistency of the sockbuf during that
2739  * time.
2740  *
2741  * The caller may receive the data as a single mbuf chain by supplying an
2742  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
2743  * the count in uio_resid.
2744  */
2745 static int
2746 soreceive_generic_locked(struct socket *so, struct sockaddr **psa,
2747     struct uio *uio, struct mbuf **mp, struct mbuf **controlp, int *flagsp)
2748 {
2749 	struct mbuf *m;
2750 	int flags, error, offset;
2751 	ssize_t len;
2752 	struct protosw *pr = so->so_proto;
2753 	struct mbuf *nextrecord;
2754 	int moff, type = 0;
2755 	ssize_t orig_resid = uio->uio_resid;
2756 	bool report_real_len = false;
2757 
2758 	SOCK_IO_RECV_ASSERT_LOCKED(so);
2759 
2760 	error = 0;
2761 	if (flagsp != NULL) {
2762 		report_real_len = *flagsp & MSG_TRUNC;
2763 		*flagsp &= ~MSG_TRUNC;
2764 		flags = *flagsp &~ MSG_EOR;
2765 	} else
2766 		flags = 0;
2767 
2768 restart:
2769 	SOCKBUF_LOCK(&so->so_rcv);
2770 	m = so->so_rcv.sb_mb;
2771 	/*
2772 	 * If we have less data than requested, block awaiting more (subject
2773 	 * to any timeout) if:
2774 	 *   1. the current count is less than the low water mark, or
2775 	 *   2. MSG_DONTWAIT is not set
2776 	 */
2777 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
2778 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
2779 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
2780 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
2781 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
2782 		    ("receive: m == %p sbavail == %u",
2783 		    m, sbavail(&so->so_rcv)));
2784 		if (so->so_error || so->so_rerror) {
2785 			if (m != NULL)
2786 				goto dontblock;
2787 			if (so->so_error)
2788 				error = so->so_error;
2789 			else
2790 				error = so->so_rerror;
2791 			if ((flags & MSG_PEEK) == 0) {
2792 				if (so->so_error)
2793 					so->so_error = 0;
2794 				else
2795 					so->so_rerror = 0;
2796 			}
2797 			SOCKBUF_UNLOCK(&so->so_rcv);
2798 			goto release;
2799 		}
2800 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2801 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2802 			if (m != NULL)
2803 				goto dontblock;
2804 #ifdef KERN_TLS
2805 			else if (so->so_rcv.sb_tlsdcc == 0 &&
2806 			    so->so_rcv.sb_tlscc == 0) {
2807 #else
2808 			else {
2809 #endif
2810 				SOCKBUF_UNLOCK(&so->so_rcv);
2811 				goto release;
2812 			}
2813 		}
2814 		for (; m != NULL; m = m->m_next)
2815 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
2816 				m = so->so_rcv.sb_mb;
2817 				goto dontblock;
2818 			}
2819 		if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2820 		    SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2821 		    (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2822 			SOCKBUF_UNLOCK(&so->so_rcv);
2823 			error = ENOTCONN;
2824 			goto release;
2825 		}
2826 		if (uio->uio_resid == 0 && !report_real_len) {
2827 			SOCKBUF_UNLOCK(&so->so_rcv);
2828 			goto release;
2829 		}
2830 		if ((so->so_state & SS_NBIO) ||
2831 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2832 			SOCKBUF_UNLOCK(&so->so_rcv);
2833 			error = EWOULDBLOCK;
2834 			goto release;
2835 		}
2836 		SBLASTRECORDCHK(&so->so_rcv);
2837 		SBLASTMBUFCHK(&so->so_rcv);
2838 		error = sbwait(so, SO_RCV);
2839 		SOCKBUF_UNLOCK(&so->so_rcv);
2840 		if (error)
2841 			goto release;
2842 		goto restart;
2843 	}
2844 dontblock:
2845 	/*
2846 	 * From this point onward, we maintain 'nextrecord' as a cache of the
2847 	 * pointer to the next record in the socket buffer.  We must keep the
2848 	 * various socket buffer pointers and local stack versions of the
2849 	 * pointers in sync, pushing out modifications before dropping the
2850 	 * socket buffer mutex, and re-reading them when picking it up.
2851 	 *
2852 	 * Otherwise, we will race with the network stack appending new data
2853 	 * or records onto the socket buffer by using inconsistent/stale
2854 	 * versions of the field, possibly resulting in socket buffer
2855 	 * corruption.
2856 	 *
2857 	 * By holding the high-level sblock(), we prevent simultaneous
2858 	 * readers from pulling off the front of the socket buffer.
2859 	 */
2860 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2861 	if (uio->uio_td)
2862 		uio->uio_td->td_ru.ru_msgrcv++;
2863 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2864 	SBLASTRECORDCHK(&so->so_rcv);
2865 	SBLASTMBUFCHK(&so->so_rcv);
2866 	nextrecord = m->m_nextpkt;
2867 	if (pr->pr_flags & PR_ADDR) {
2868 		KASSERT(m->m_type == MT_SONAME,
2869 		    ("m->m_type == %d", m->m_type));
2870 		orig_resid = 0;
2871 		if (psa != NULL)
2872 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2873 			    M_NOWAIT);
2874 		if (flags & MSG_PEEK) {
2875 			m = m->m_next;
2876 		} else {
2877 			sbfree(&so->so_rcv, m);
2878 			so->so_rcv.sb_mb = m_free(m);
2879 			m = so->so_rcv.sb_mb;
2880 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2881 		}
2882 	}
2883 
2884 	/*
2885 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2886 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
2887 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
2888 	 * perform externalization (or freeing if controlp == NULL).
2889 	 */
2890 	if (m != NULL && m->m_type == MT_CONTROL) {
2891 		struct mbuf *cm = NULL, *cmn;
2892 		struct mbuf **cme = &cm;
2893 #ifdef KERN_TLS
2894 		struct cmsghdr *cmsg;
2895 		struct tls_get_record tgr;
2896 
2897 		/*
2898 		 * For MSG_TLSAPPDATA, check for an alert record.
2899 		 * If found, return ENXIO without removing
2900 		 * it from the receive queue.  This allows a subsequent
2901 		 * call without MSG_TLSAPPDATA to receive it.
2902 		 * Note that, for TLS, there should only be a single
2903 		 * control mbuf with the TLS_GET_RECORD message in it.
2904 		 */
2905 		if (flags & MSG_TLSAPPDATA) {
2906 			cmsg = mtod(m, struct cmsghdr *);
2907 			if (cmsg->cmsg_type == TLS_GET_RECORD &&
2908 			    cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2909 				memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2910 				if (__predict_false(tgr.tls_type ==
2911 				    TLS_RLTYPE_ALERT)) {
2912 					SOCKBUF_UNLOCK(&so->so_rcv);
2913 					error = ENXIO;
2914 					goto release;
2915 				}
2916 			}
2917 		}
2918 #endif
2919 
2920 		do {
2921 			if (flags & MSG_PEEK) {
2922 				if (controlp != NULL) {
2923 					*controlp = m_copym(m, 0, m->m_len,
2924 					    M_NOWAIT);
2925 					controlp = &(*controlp)->m_next;
2926 				}
2927 				m = m->m_next;
2928 			} else {
2929 				sbfree(&so->so_rcv, m);
2930 				so->so_rcv.sb_mb = m->m_next;
2931 				m->m_next = NULL;
2932 				*cme = m;
2933 				cme = &(*cme)->m_next;
2934 				m = so->so_rcv.sb_mb;
2935 			}
2936 		} while (m != NULL && m->m_type == MT_CONTROL);
2937 		if ((flags & MSG_PEEK) == 0)
2938 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2939 		while (cm != NULL) {
2940 			cmn = cm->m_next;
2941 			cm->m_next = NULL;
2942 			if (controlp != NULL)
2943 				*controlp = cm;
2944 			else
2945 				m_freem(cm);
2946 			if (controlp != NULL) {
2947 				while (*controlp != NULL)
2948 					controlp = &(*controlp)->m_next;
2949 			}
2950 			cm = cmn;
2951 		}
2952 		if (m != NULL)
2953 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2954 		else
2955 			nextrecord = so->so_rcv.sb_mb;
2956 		orig_resid = 0;
2957 	}
2958 	if (m != NULL) {
2959 		if ((flags & MSG_PEEK) == 0) {
2960 			KASSERT(m->m_nextpkt == nextrecord,
2961 			    ("soreceive: post-control, nextrecord !sync"));
2962 			if (nextrecord == NULL) {
2963 				KASSERT(so->so_rcv.sb_mb == m,
2964 				    ("soreceive: post-control, sb_mb!=m"));
2965 				KASSERT(so->so_rcv.sb_lastrecord == m,
2966 				    ("soreceive: post-control, lastrecord!=m"));
2967 			}
2968 		}
2969 		type = m->m_type;
2970 		if (type == MT_OOBDATA)
2971 			flags |= MSG_OOB;
2972 	} else {
2973 		if ((flags & MSG_PEEK) == 0) {
2974 			KASSERT(so->so_rcv.sb_mb == nextrecord,
2975 			    ("soreceive: sb_mb != nextrecord"));
2976 			if (so->so_rcv.sb_mb == NULL) {
2977 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
2978 				    ("soreceive: sb_lastercord != NULL"));
2979 			}
2980 		}
2981 	}
2982 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2983 	SBLASTRECORDCHK(&so->so_rcv);
2984 	SBLASTMBUFCHK(&so->so_rcv);
2985 
2986 	/*
2987 	 * Now continue to read any data mbufs off of the head of the socket
2988 	 * buffer until the read request is satisfied.  Note that 'type' is
2989 	 * used to store the type of any mbuf reads that have happened so far
2990 	 * such that soreceive() can stop reading if the type changes, which
2991 	 * causes soreceive() to return only one of regular data and inline
2992 	 * out-of-band data in a single socket receive operation.
2993 	 */
2994 	moff = 0;
2995 	offset = 0;
2996 	while (m != NULL && !(m->m_flags & M_NOTREADY) && uio->uio_resid > 0 &&
2997 	    error == 0) {
2998 		/*
2999 		 * If the type of mbuf has changed since the last mbuf
3000 		 * examined ('type'), end the receive operation.
3001 		 */
3002 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3003 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
3004 			if (type != m->m_type)
3005 				break;
3006 		} else if (type == MT_OOBDATA)
3007 			break;
3008 		else
3009 		    KASSERT(m->m_type == MT_DATA,
3010 			("m->m_type == %d", m->m_type));
3011 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
3012 		len = uio->uio_resid;
3013 		if (so->so_oobmark && len > so->so_oobmark - offset)
3014 			len = so->so_oobmark - offset;
3015 		if (len > m->m_len - moff)
3016 			len = m->m_len - moff;
3017 		/*
3018 		 * If mp is set, just pass back the mbufs.  Otherwise copy
3019 		 * them out via the uio, then free.  Sockbuf must be
3020 		 * consistent here (points to current mbuf, it points to next
3021 		 * record) when we drop priority; we must note any additions
3022 		 * to the sockbuf when we block interrupts again.
3023 		 */
3024 		if (mp == NULL) {
3025 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3026 			SBLASTRECORDCHK(&so->so_rcv);
3027 			SBLASTMBUFCHK(&so->so_rcv);
3028 			SOCKBUF_UNLOCK(&so->so_rcv);
3029 			if ((m->m_flags & M_EXTPG) != 0)
3030 				error = m_unmapped_uiomove(m, moff, uio,
3031 				    (int)len);
3032 			else
3033 				error = uiomove(mtod(m, char *) + moff,
3034 				    (int)len, uio);
3035 			SOCKBUF_LOCK(&so->so_rcv);
3036 			if (error) {
3037 				/*
3038 				 * The MT_SONAME mbuf has already been removed
3039 				 * from the record, so it is necessary to
3040 				 * remove the data mbufs, if any, to preserve
3041 				 * the invariant in the case of PR_ADDR that
3042 				 * requires MT_SONAME mbufs at the head of
3043 				 * each record.
3044 				 */
3045 				if (pr->pr_flags & PR_ATOMIC &&
3046 				    ((flags & MSG_PEEK) == 0))
3047 					(void)sbdroprecord_locked(&so->so_rcv);
3048 				SOCKBUF_UNLOCK(&so->so_rcv);
3049 				goto release;
3050 			}
3051 		} else
3052 			uio->uio_resid -= len;
3053 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3054 		if (len == m->m_len - moff) {
3055 			if (m->m_flags & M_EOR)
3056 				flags |= MSG_EOR;
3057 			if (flags & MSG_PEEK) {
3058 				m = m->m_next;
3059 				moff = 0;
3060 			} else {
3061 				nextrecord = m->m_nextpkt;
3062 				sbfree(&so->so_rcv, m);
3063 				if (mp != NULL) {
3064 					m->m_nextpkt = NULL;
3065 					*mp = m;
3066 					mp = &m->m_next;
3067 					so->so_rcv.sb_mb = m = m->m_next;
3068 					*mp = NULL;
3069 				} else {
3070 					so->so_rcv.sb_mb = m_free(m);
3071 					m = so->so_rcv.sb_mb;
3072 				}
3073 				sockbuf_pushsync(&so->so_rcv, nextrecord);
3074 				SBLASTRECORDCHK(&so->so_rcv);
3075 				SBLASTMBUFCHK(&so->so_rcv);
3076 			}
3077 		} else {
3078 			if (flags & MSG_PEEK)
3079 				moff += len;
3080 			else {
3081 				if (mp != NULL) {
3082 					if (flags & MSG_DONTWAIT) {
3083 						*mp = m_copym(m, 0, len,
3084 						    M_NOWAIT);
3085 						if (*mp == NULL) {
3086 							/*
3087 							 * m_copym() couldn't
3088 							 * allocate an mbuf.
3089 							 * Adjust uio_resid back
3090 							 * (it was adjusted
3091 							 * down by len bytes,
3092 							 * which we didn't end
3093 							 * up "copying" over).
3094 							 */
3095 							uio->uio_resid += len;
3096 							break;
3097 						}
3098 					} else {
3099 						SOCKBUF_UNLOCK(&so->so_rcv);
3100 						*mp = m_copym(m, 0, len,
3101 						    M_WAITOK);
3102 						SOCKBUF_LOCK(&so->so_rcv);
3103 					}
3104 				}
3105 				sbcut_locked(&so->so_rcv, len);
3106 			}
3107 		}
3108 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3109 		if (so->so_oobmark) {
3110 			if ((flags & MSG_PEEK) == 0) {
3111 				so->so_oobmark -= len;
3112 				if (so->so_oobmark == 0) {
3113 					so->so_rcv.sb_state |= SBS_RCVATMARK;
3114 					break;
3115 				}
3116 			} else {
3117 				offset += len;
3118 				if (offset == so->so_oobmark)
3119 					break;
3120 			}
3121 		}
3122 		if (flags & MSG_EOR)
3123 			break;
3124 		/*
3125 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
3126 		 * must not quit until "uio->uio_resid == 0" or an error
3127 		 * termination.  If a signal/timeout occurs, return with a
3128 		 * short count but without error.  Keep sockbuf locked
3129 		 * against other readers.
3130 		 */
3131 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
3132 		    !sosendallatonce(so) && nextrecord == NULL) {
3133 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3134 			if (so->so_error || so->so_rerror ||
3135 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
3136 				break;
3137 			/*
3138 			 * Notify the protocol that some data has been
3139 			 * drained before blocking.
3140 			 */
3141 			if (pr->pr_flags & PR_WANTRCVD) {
3142 				SOCKBUF_UNLOCK(&so->so_rcv);
3143 				VNET_SO_ASSERT(so);
3144 				pr->pr_rcvd(so, flags);
3145 				SOCKBUF_LOCK(&so->so_rcv);
3146 				if (__predict_false(so->so_rcv.sb_mb == NULL &&
3147 				    (so->so_error || so->so_rerror ||
3148 				    so->so_rcv.sb_state & SBS_CANTRCVMORE)))
3149 					break;
3150 			}
3151 			SBLASTRECORDCHK(&so->so_rcv);
3152 			SBLASTMBUFCHK(&so->so_rcv);
3153 			/*
3154 			 * We could receive some data while was notifying
3155 			 * the protocol. Skip blocking in this case.
3156 			 */
3157 			if (so->so_rcv.sb_mb == NULL) {
3158 				error = sbwait(so, SO_RCV);
3159 				if (error) {
3160 					SOCKBUF_UNLOCK(&so->so_rcv);
3161 					goto release;
3162 				}
3163 			}
3164 			m = so->so_rcv.sb_mb;
3165 			if (m != NULL)
3166 				nextrecord = m->m_nextpkt;
3167 		}
3168 	}
3169 
3170 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3171 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
3172 		if (report_real_len)
3173 			uio->uio_resid -= m_length(m, NULL) - moff;
3174 		flags |= MSG_TRUNC;
3175 		if ((flags & MSG_PEEK) == 0)
3176 			(void) sbdroprecord_locked(&so->so_rcv);
3177 	}
3178 	if ((flags & MSG_PEEK) == 0) {
3179 		if (m == NULL) {
3180 			/*
3181 			 * First part is an inline SB_EMPTY_FIXUP().  Second
3182 			 * part makes sure sb_lastrecord is up-to-date if
3183 			 * there is still data in the socket buffer.
3184 			 */
3185 			so->so_rcv.sb_mb = nextrecord;
3186 			if (so->so_rcv.sb_mb == NULL) {
3187 				so->so_rcv.sb_mbtail = NULL;
3188 				so->so_rcv.sb_lastrecord = NULL;
3189 			} else if (nextrecord->m_nextpkt == NULL)
3190 				so->so_rcv.sb_lastrecord = nextrecord;
3191 		}
3192 		SBLASTRECORDCHK(&so->so_rcv);
3193 		SBLASTMBUFCHK(&so->so_rcv);
3194 		/*
3195 		 * If soreceive() is being done from the socket callback,
3196 		 * then don't need to generate ACK to peer to update window,
3197 		 * since ACK will be generated on return to TCP.
3198 		 */
3199 		if (!(flags & MSG_SOCALLBCK) &&
3200 		    (pr->pr_flags & PR_WANTRCVD)) {
3201 			SOCKBUF_UNLOCK(&so->so_rcv);
3202 			VNET_SO_ASSERT(so);
3203 			pr->pr_rcvd(so, flags);
3204 			SOCKBUF_LOCK(&so->so_rcv);
3205 		}
3206 	}
3207 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3208 	if (orig_resid == uio->uio_resid && orig_resid &&
3209 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
3210 		SOCKBUF_UNLOCK(&so->so_rcv);
3211 		goto restart;
3212 	}
3213 	SOCKBUF_UNLOCK(&so->so_rcv);
3214 
3215 	if (flagsp != NULL)
3216 		*flagsp |= flags;
3217 release:
3218 	return (error);
3219 }
3220 
3221 int
3222 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
3223     struct mbuf **mp, struct mbuf **controlp, int *flagsp)
3224 {
3225 	int error, flags;
3226 
3227 	if (psa != NULL)
3228 		*psa = NULL;
3229 	if (controlp != NULL)
3230 		*controlp = NULL;
3231 	if (flagsp != NULL) {
3232 		flags = *flagsp;
3233 		if ((flags & MSG_OOB) != 0)
3234 			return (soreceive_rcvoob(so, uio, flags));
3235 	} else {
3236 		flags = 0;
3237 	}
3238 	if (mp != NULL)
3239 		*mp = NULL;
3240 
3241 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3242 	if (error)
3243 		return (error);
3244 	error = soreceive_generic_locked(so, psa, uio, mp, controlp, flagsp);
3245 	SOCK_IO_RECV_UNLOCK(so);
3246 	return (error);
3247 }
3248 
3249 /*
3250  * Optimized version of soreceive() for stream (TCP) sockets.
3251  */
3252 static int
3253 soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
3254     struct sockaddr **psa, struct uio *uio, struct mbuf **mp0,
3255     struct mbuf **controlp, int flags)
3256 {
3257 	int len = 0, error = 0, oresid;
3258 	struct mbuf *m, *n = NULL;
3259 
3260 	SOCK_IO_RECV_ASSERT_LOCKED(so);
3261 
3262 	/* Easy one, no space to copyout anything. */
3263 	if (uio->uio_resid == 0)
3264 		return (EINVAL);
3265 	oresid = uio->uio_resid;
3266 
3267 	SOCKBUF_LOCK(sb);
3268 	/* We will never ever get anything unless we are or were connected. */
3269 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
3270 		error = ENOTCONN;
3271 		goto out;
3272 	}
3273 
3274 restart:
3275 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3276 
3277 	/* Abort if socket has reported problems. */
3278 	if (so->so_error) {
3279 		if (sbavail(sb) > 0)
3280 			goto deliver;
3281 		if (oresid > uio->uio_resid)
3282 			goto out;
3283 		error = so->so_error;
3284 		if (!(flags & MSG_PEEK))
3285 			so->so_error = 0;
3286 		goto out;
3287 	}
3288 
3289 	/* Door is closed.  Deliver what is left, if any. */
3290 	if (sb->sb_state & SBS_CANTRCVMORE) {
3291 		if (sbavail(sb) > 0)
3292 			goto deliver;
3293 		else
3294 			goto out;
3295 	}
3296 
3297 	/* Socket buffer is empty and we shall not block. */
3298 	if (sbavail(sb) == 0 &&
3299 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
3300 		error = EAGAIN;
3301 		goto out;
3302 	}
3303 
3304 	/* Socket buffer got some data that we shall deliver now. */
3305 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
3306 	    ((so->so_state & SS_NBIO) ||
3307 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
3308 	     sbavail(sb) >= sb->sb_lowat ||
3309 	     sbavail(sb) >= uio->uio_resid ||
3310 	     sbavail(sb) >= sb->sb_hiwat) ) {
3311 		goto deliver;
3312 	}
3313 
3314 	/* On MSG_WAITALL we must wait until all data or error arrives. */
3315 	if ((flags & MSG_WAITALL) &&
3316 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
3317 		goto deliver;
3318 
3319 	/*
3320 	 * Wait and block until (more) data comes in.
3321 	 * NB: Drops the sockbuf lock during wait.
3322 	 */
3323 	error = sbwait(so, SO_RCV);
3324 	if (error)
3325 		goto out;
3326 	goto restart;
3327 
3328 deliver:
3329 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3330 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
3331 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
3332 
3333 	/* Statistics. */
3334 	if (uio->uio_td)
3335 		uio->uio_td->td_ru.ru_msgrcv++;
3336 
3337 	/* Fill uio until full or current end of socket buffer is reached. */
3338 	len = min(uio->uio_resid, sbavail(sb));
3339 	if (mp0 != NULL) {
3340 		/* Dequeue as many mbufs as possible. */
3341 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
3342 			if (*mp0 == NULL)
3343 				*mp0 = sb->sb_mb;
3344 			else
3345 				m_cat(*mp0, sb->sb_mb);
3346 			for (m = sb->sb_mb;
3347 			     m != NULL && m->m_len <= len;
3348 			     m = m->m_next) {
3349 				KASSERT(!(m->m_flags & M_NOTREADY),
3350 				    ("%s: m %p not available", __func__, m));
3351 				len -= m->m_len;
3352 				uio->uio_resid -= m->m_len;
3353 				sbfree(sb, m);
3354 				n = m;
3355 			}
3356 			n->m_next = NULL;
3357 			sb->sb_mb = m;
3358 			sb->sb_lastrecord = sb->sb_mb;
3359 			if (sb->sb_mb == NULL)
3360 				SB_EMPTY_FIXUP(sb);
3361 		}
3362 		/* Copy the remainder. */
3363 		if (len > 0) {
3364 			KASSERT(sb->sb_mb != NULL,
3365 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
3366 
3367 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
3368 			if (m == NULL)
3369 				len = 0;	/* Don't flush data from sockbuf. */
3370 			else
3371 				uio->uio_resid -= len;
3372 			if (*mp0 != NULL)
3373 				m_cat(*mp0, m);
3374 			else
3375 				*mp0 = m;
3376 			if (*mp0 == NULL) {
3377 				error = ENOBUFS;
3378 				goto out;
3379 			}
3380 		}
3381 	} else {
3382 		/* NB: Must unlock socket buffer as uiomove may sleep. */
3383 		SOCKBUF_UNLOCK(sb);
3384 		error = m_mbuftouio(uio, sb->sb_mb, len);
3385 		SOCKBUF_LOCK(sb);
3386 		if (error)
3387 			goto out;
3388 	}
3389 	SBLASTRECORDCHK(sb);
3390 	SBLASTMBUFCHK(sb);
3391 
3392 	/*
3393 	 * Remove the delivered data from the socket buffer unless we
3394 	 * were only peeking.
3395 	 */
3396 	if (!(flags & MSG_PEEK)) {
3397 		if (len > 0)
3398 			sbdrop_locked(sb, len);
3399 
3400 		/* Notify protocol that we drained some data. */
3401 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
3402 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
3403 		     !(flags & MSG_SOCALLBCK))) {
3404 			SOCKBUF_UNLOCK(sb);
3405 			VNET_SO_ASSERT(so);
3406 			so->so_proto->pr_rcvd(so, flags);
3407 			SOCKBUF_LOCK(sb);
3408 		}
3409 	}
3410 
3411 	/*
3412 	 * For MSG_WAITALL we may have to loop again and wait for
3413 	 * more data to come in.
3414 	 */
3415 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
3416 		goto restart;
3417 out:
3418 	SBLASTRECORDCHK(sb);
3419 	SBLASTMBUFCHK(sb);
3420 	SOCKBUF_UNLOCK(sb);
3421 	return (error);
3422 }
3423 
3424 int
3425 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
3426     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3427 {
3428 	struct sockbuf *sb;
3429 	int error, flags;
3430 
3431 	sb = &so->so_rcv;
3432 
3433 	/* We only do stream sockets. */
3434 	if (so->so_type != SOCK_STREAM)
3435 		return (EINVAL);
3436 	if (psa != NULL)
3437 		*psa = NULL;
3438 	if (flagsp != NULL)
3439 		flags = *flagsp & ~MSG_EOR;
3440 	else
3441 		flags = 0;
3442 	if (controlp != NULL)
3443 		*controlp = NULL;
3444 	if (flags & MSG_OOB)
3445 		return (soreceive_rcvoob(so, uio, flags));
3446 	if (mp0 != NULL)
3447 		*mp0 = NULL;
3448 
3449 #ifdef KERN_TLS
3450 	/*
3451 	 * KTLS store TLS records as records with a control message to
3452 	 * describe the framing.
3453 	 *
3454 	 * We check once here before acquiring locks to optimize the
3455 	 * common case.
3456 	 */
3457 	if (sb->sb_tls_info != NULL)
3458 		return (soreceive_generic(so, psa, uio, mp0, controlp,
3459 		    flagsp));
3460 #endif
3461 
3462 	/*
3463 	 * Prevent other threads from reading from the socket.  This lock may be
3464 	 * dropped in order to sleep waiting for data to arrive.
3465 	 */
3466 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3467 	if (error)
3468 		return (error);
3469 #ifdef KERN_TLS
3470 	if (__predict_false(sb->sb_tls_info != NULL)) {
3471 		SOCK_IO_RECV_UNLOCK(so);
3472 		return (soreceive_generic(so, psa, uio, mp0, controlp,
3473 		    flagsp));
3474 	}
3475 #endif
3476 	error = soreceive_stream_locked(so, sb, psa, uio, mp0, controlp, flags);
3477 	SOCK_IO_RECV_UNLOCK(so);
3478 	return (error);
3479 }
3480 
3481 /*
3482  * Optimized version of soreceive() for simple datagram cases from userspace.
3483  * Unlike in the stream case, we're able to drop a datagram if copyout()
3484  * fails, and because we handle datagrams atomically, we don't need to use a
3485  * sleep lock to prevent I/O interlacing.
3486  */
3487 int
3488 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
3489     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3490 {
3491 	struct mbuf *m, *m2;
3492 	int flags, error;
3493 	ssize_t len;
3494 	struct protosw *pr = so->so_proto;
3495 	struct mbuf *nextrecord;
3496 
3497 	if (psa != NULL)
3498 		*psa = NULL;
3499 	if (controlp != NULL)
3500 		*controlp = NULL;
3501 	if (flagsp != NULL)
3502 		flags = *flagsp &~ MSG_EOR;
3503 	else
3504 		flags = 0;
3505 
3506 	/*
3507 	 * For any complicated cases, fall back to the full
3508 	 * soreceive_generic().
3509 	 */
3510 	if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
3511 		return (soreceive_generic(so, psa, uio, mp0, controlp,
3512 		    flagsp));
3513 
3514 	/*
3515 	 * Enforce restrictions on use.
3516 	 */
3517 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
3518 	    ("soreceive_dgram: wantrcvd"));
3519 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
3520 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
3521 	    ("soreceive_dgram: SBS_RCVATMARK"));
3522 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
3523 	    ("soreceive_dgram: P_CONNREQUIRED"));
3524 
3525 	/*
3526 	 * Loop blocking while waiting for a datagram.
3527 	 */
3528 	SOCKBUF_LOCK(&so->so_rcv);
3529 	while ((m = so->so_rcv.sb_mb) == NULL) {
3530 		KASSERT(sbavail(&so->so_rcv) == 0,
3531 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
3532 		    sbavail(&so->so_rcv)));
3533 		if (so->so_error) {
3534 			error = so->so_error;
3535 			so->so_error = 0;
3536 			SOCKBUF_UNLOCK(&so->so_rcv);
3537 			return (error);
3538 		}
3539 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
3540 		    uio->uio_resid == 0) {
3541 			SOCKBUF_UNLOCK(&so->so_rcv);
3542 			return (0);
3543 		}
3544 		if ((so->so_state & SS_NBIO) ||
3545 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
3546 			SOCKBUF_UNLOCK(&so->so_rcv);
3547 			return (EWOULDBLOCK);
3548 		}
3549 		SBLASTRECORDCHK(&so->so_rcv);
3550 		SBLASTMBUFCHK(&so->so_rcv);
3551 		error = sbwait(so, SO_RCV);
3552 		if (error) {
3553 			SOCKBUF_UNLOCK(&so->so_rcv);
3554 			return (error);
3555 		}
3556 	}
3557 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3558 
3559 	if (uio->uio_td)
3560 		uio->uio_td->td_ru.ru_msgrcv++;
3561 	SBLASTRECORDCHK(&so->so_rcv);
3562 	SBLASTMBUFCHK(&so->so_rcv);
3563 	nextrecord = m->m_nextpkt;
3564 	if (nextrecord == NULL) {
3565 		KASSERT(so->so_rcv.sb_lastrecord == m,
3566 		    ("soreceive_dgram: lastrecord != m"));
3567 	}
3568 
3569 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
3570 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
3571 
3572 	/*
3573 	 * Pull 'm' and its chain off the front of the packet queue.
3574 	 */
3575 	so->so_rcv.sb_mb = NULL;
3576 	sockbuf_pushsync(&so->so_rcv, nextrecord);
3577 
3578 	/*
3579 	 * Walk 'm's chain and free that many bytes from the socket buffer.
3580 	 */
3581 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
3582 		sbfree(&so->so_rcv, m2);
3583 
3584 	/*
3585 	 * Do a few last checks before we let go of the lock.
3586 	 */
3587 	SBLASTRECORDCHK(&so->so_rcv);
3588 	SBLASTMBUFCHK(&so->so_rcv);
3589 	SOCKBUF_UNLOCK(&so->so_rcv);
3590 
3591 	if (pr->pr_flags & PR_ADDR) {
3592 		KASSERT(m->m_type == MT_SONAME,
3593 		    ("m->m_type == %d", m->m_type));
3594 		if (psa != NULL)
3595 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
3596 			    M_WAITOK);
3597 		m = m_free(m);
3598 	}
3599 	KASSERT(m, ("%s: no data or control after soname", __func__));
3600 
3601 	/*
3602 	 * Packet to copyout() is now in 'm' and it is disconnected from the
3603 	 * queue.
3604 	 *
3605 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
3606 	 * in the first mbuf chain on the socket buffer.  We call into the
3607 	 * protocol to perform externalization (or freeing if controlp ==
3608 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
3609 	 * MT_DATA mbufs.
3610 	 */
3611 	if (m->m_type == MT_CONTROL) {
3612 		struct mbuf *cm = NULL, *cmn;
3613 		struct mbuf **cme = &cm;
3614 
3615 		do {
3616 			m2 = m->m_next;
3617 			m->m_next = NULL;
3618 			*cme = m;
3619 			cme = &(*cme)->m_next;
3620 			m = m2;
3621 		} while (m != NULL && m->m_type == MT_CONTROL);
3622 		while (cm != NULL) {
3623 			cmn = cm->m_next;
3624 			cm->m_next = NULL;
3625 			if (controlp != NULL)
3626 				*controlp = cm;
3627 			else
3628 				m_freem(cm);
3629 			if (controlp != NULL) {
3630 				while (*controlp != NULL)
3631 					controlp = &(*controlp)->m_next;
3632 			}
3633 			cm = cmn;
3634 		}
3635 	}
3636 	KASSERT(m == NULL || m->m_type == MT_DATA,
3637 	    ("soreceive_dgram: !data"));
3638 	while (m != NULL && uio->uio_resid > 0) {
3639 		len = uio->uio_resid;
3640 		if (len > m->m_len)
3641 			len = m->m_len;
3642 		error = uiomove(mtod(m, char *), (int)len, uio);
3643 		if (error) {
3644 			m_freem(m);
3645 			return (error);
3646 		}
3647 		if (len == m->m_len)
3648 			m = m_free(m);
3649 		else {
3650 			m->m_data += len;
3651 			m->m_len -= len;
3652 		}
3653 	}
3654 	if (m != NULL) {
3655 		flags |= MSG_TRUNC;
3656 		m_freem(m);
3657 	}
3658 	if (flagsp != NULL)
3659 		*flagsp |= flags;
3660 	return (0);
3661 }
3662 
3663 int
3664 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
3665     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3666 {
3667 	int error;
3668 
3669 	CURVNET_SET(so->so_vnet);
3670 	error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
3671 	CURVNET_RESTORE();
3672 	return (error);
3673 }
3674 
3675 int
3676 soshutdown(struct socket *so, enum shutdown_how how)
3677 {
3678 	int error;
3679 
3680 	CURVNET_SET(so->so_vnet);
3681 	error = so->so_proto->pr_shutdown(so, how);
3682 	CURVNET_RESTORE();
3683 
3684 	return (error);
3685 }
3686 
3687 /*
3688  * Used by several pr_shutdown implementations that use generic socket buffers.
3689  */
3690 void
3691 sorflush(struct socket *so)
3692 {
3693 	int error;
3694 
3695 	VNET_SO_ASSERT(so);
3696 
3697 	/*
3698 	 * Dislodge threads currently blocked in receive and wait to acquire
3699 	 * a lock against other simultaneous readers before clearing the
3700 	 * socket buffer.  Don't let our acquire be interrupted by a signal
3701 	 * despite any existing socket disposition on interruptable waiting.
3702 	 *
3703 	 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive
3704 	 * methods that read the top of the socket buffer without acquisition
3705 	 * of the socket buffer mutex, assuming that top of the buffer
3706 	 * exclusively belongs to the read(2) syscall.  This is handy when
3707 	 * performing MSG_PEEK.
3708 	 */
3709 	socantrcvmore(so);
3710 
3711 	error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
3712 	if (error != 0) {
3713 		KASSERT(SOLISTENING(so),
3714 		    ("%s: soiolock(%p) failed", __func__, so));
3715 		return;
3716 	}
3717 
3718 	sbrelease(so, SO_RCV);
3719 	SOCK_IO_RECV_UNLOCK(so);
3720 
3721 }
3722 
3723 int
3724 sosetfib(struct socket *so, int fibnum)
3725 {
3726 	if (fibnum < 0 || fibnum >= rt_numfibs)
3727 		return (EINVAL);
3728 
3729 	SOCK_LOCK(so);
3730 	so->so_fibnum = fibnum;
3731 	SOCK_UNLOCK(so);
3732 
3733 	return (0);
3734 }
3735 
3736 #ifdef SOCKET_HHOOK
3737 /*
3738  * Wrapper for Socket established helper hook.
3739  * Parameters: socket, context of the hook point, hook id.
3740  */
3741 static inline int
3742 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
3743 {
3744 	struct socket_hhook_data hhook_data = {
3745 		.so = so,
3746 		.hctx = hctx,
3747 		.m = NULL,
3748 		.status = 0
3749 	};
3750 
3751 	CURVNET_SET(so->so_vnet);
3752 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
3753 	CURVNET_RESTORE();
3754 
3755 	/* Ugly but needed, since hhooks return void for now */
3756 	return (hhook_data.status);
3757 }
3758 #endif
3759 
3760 /*
3761  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
3762  * additional variant to handle the case where the option value needs to be
3763  * some kind of integer, but not a specific size.  In addition to their use
3764  * here, these functions are also called by the protocol-level pr_ctloutput()
3765  * routines.
3766  */
3767 int
3768 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
3769 {
3770 	size_t	valsize;
3771 
3772 	/*
3773 	 * If the user gives us more than we wanted, we ignore it, but if we
3774 	 * don't get the minimum length the caller wants, we return EINVAL.
3775 	 * On success, sopt->sopt_valsize is set to however much we actually
3776 	 * retrieved.
3777 	 */
3778 	if ((valsize = sopt->sopt_valsize) < minlen)
3779 		return EINVAL;
3780 	if (valsize > len)
3781 		sopt->sopt_valsize = valsize = len;
3782 
3783 	if (sopt->sopt_td != NULL)
3784 		return (copyin(sopt->sopt_val, buf, valsize));
3785 
3786 	bcopy(sopt->sopt_val, buf, valsize);
3787 	return (0);
3788 }
3789 
3790 /*
3791  * Kernel version of setsockopt(2).
3792  *
3793  * XXX: optlen is size_t, not socklen_t
3794  */
3795 int
3796 so_setsockopt(struct socket *so, int level, int optname, void *optval,
3797     size_t optlen)
3798 {
3799 	struct sockopt sopt;
3800 
3801 	sopt.sopt_level = level;
3802 	sopt.sopt_name = optname;
3803 	sopt.sopt_dir = SOPT_SET;
3804 	sopt.sopt_val = optval;
3805 	sopt.sopt_valsize = optlen;
3806 	sopt.sopt_td = NULL;
3807 	return (sosetopt(so, &sopt));
3808 }
3809 
3810 int
3811 sosetopt(struct socket *so, struct sockopt *sopt)
3812 {
3813 	int	error, optval;
3814 	struct	linger l;
3815 	struct	timeval tv;
3816 	sbintime_t val, *valp;
3817 	uint32_t val32;
3818 #ifdef MAC
3819 	struct mac extmac;
3820 #endif
3821 
3822 	CURVNET_SET(so->so_vnet);
3823 	error = 0;
3824 	if (sopt->sopt_level != SOL_SOCKET) {
3825 		error = so->so_proto->pr_ctloutput(so, sopt);
3826 	} else {
3827 		switch (sopt->sopt_name) {
3828 		case SO_ACCEPTFILTER:
3829 			error = accept_filt_setopt(so, sopt);
3830 			if (error)
3831 				goto bad;
3832 			break;
3833 
3834 		case SO_LINGER:
3835 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3836 			if (error)
3837 				goto bad;
3838 			if (l.l_linger < 0 ||
3839 			    l.l_linger > USHRT_MAX ||
3840 			    l.l_linger > (INT_MAX / hz)) {
3841 				error = EDOM;
3842 				goto bad;
3843 			}
3844 			SOCK_LOCK(so);
3845 			so->so_linger = l.l_linger;
3846 			if (l.l_onoff)
3847 				so->so_options |= SO_LINGER;
3848 			else
3849 				so->so_options &= ~SO_LINGER;
3850 			SOCK_UNLOCK(so);
3851 			break;
3852 
3853 		case SO_DEBUG:
3854 		case SO_KEEPALIVE:
3855 		case SO_DONTROUTE:
3856 		case SO_USELOOPBACK:
3857 		case SO_BROADCAST:
3858 		case SO_REUSEADDR:
3859 		case SO_REUSEPORT:
3860 		case SO_REUSEPORT_LB:
3861 		case SO_OOBINLINE:
3862 		case SO_TIMESTAMP:
3863 		case SO_BINTIME:
3864 		case SO_NOSIGPIPE:
3865 		case SO_NO_DDP:
3866 		case SO_NO_OFFLOAD:
3867 		case SO_RERROR:
3868 			error = sooptcopyin(sopt, &optval, sizeof optval,
3869 			    sizeof optval);
3870 			if (error)
3871 				goto bad;
3872 			SOCK_LOCK(so);
3873 			if (optval)
3874 				so->so_options |= sopt->sopt_name;
3875 			else
3876 				so->so_options &= ~sopt->sopt_name;
3877 			SOCK_UNLOCK(so);
3878 			break;
3879 
3880 		case SO_SETFIB:
3881 			error = so->so_proto->pr_ctloutput(so, sopt);
3882 			break;
3883 
3884 		case SO_USER_COOKIE:
3885 			error = sooptcopyin(sopt, &val32, sizeof val32,
3886 			    sizeof val32);
3887 			if (error)
3888 				goto bad;
3889 			so->so_user_cookie = val32;
3890 			break;
3891 
3892 		case SO_SNDBUF:
3893 		case SO_RCVBUF:
3894 		case SO_SNDLOWAT:
3895 		case SO_RCVLOWAT:
3896 			error = so->so_proto->pr_setsbopt(so, sopt);
3897 			if (error)
3898 				goto bad;
3899 			break;
3900 
3901 		case SO_SNDTIMEO:
3902 		case SO_RCVTIMEO:
3903 #ifdef COMPAT_FREEBSD32
3904 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3905 				struct timeval32 tv32;
3906 
3907 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
3908 				    sizeof tv32);
3909 				CP(tv32, tv, tv_sec);
3910 				CP(tv32, tv, tv_usec);
3911 			} else
3912 #endif
3913 				error = sooptcopyin(sopt, &tv, sizeof tv,
3914 				    sizeof tv);
3915 			if (error)
3916 				goto bad;
3917 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3918 			    tv.tv_usec >= 1000000) {
3919 				error = EDOM;
3920 				goto bad;
3921 			}
3922 			if (tv.tv_sec > INT32_MAX)
3923 				val = SBT_MAX;
3924 			else
3925 				val = tvtosbt(tv);
3926 			SOCK_LOCK(so);
3927 			valp = sopt->sopt_name == SO_SNDTIMEO ?
3928 			    (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3929 			    &so->so_snd.sb_timeo) :
3930 			    (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3931 			    &so->so_rcv.sb_timeo);
3932 			*valp = val;
3933 			SOCK_UNLOCK(so);
3934 			break;
3935 
3936 		case SO_LABEL:
3937 #ifdef MAC
3938 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
3939 			    sizeof extmac);
3940 			if (error)
3941 				goto bad;
3942 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3943 			    so, &extmac);
3944 #else
3945 			error = EOPNOTSUPP;
3946 #endif
3947 			break;
3948 
3949 		case SO_TS_CLOCK:
3950 			error = sooptcopyin(sopt, &optval, sizeof optval,
3951 			    sizeof optval);
3952 			if (error)
3953 				goto bad;
3954 			if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3955 				error = EINVAL;
3956 				goto bad;
3957 			}
3958 			so->so_ts_clock = optval;
3959 			break;
3960 
3961 		case SO_MAX_PACING_RATE:
3962 			error = sooptcopyin(sopt, &val32, sizeof(val32),
3963 			    sizeof(val32));
3964 			if (error)
3965 				goto bad;
3966 			so->so_max_pacing_rate = val32;
3967 			break;
3968 
3969 		case SO_SPLICE: {
3970 			struct splice splice;
3971 
3972 #ifdef COMPAT_FREEBSD32
3973 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3974 				struct splice32 splice32;
3975 
3976 				error = sooptcopyin(sopt, &splice32,
3977 				    sizeof(splice32), sizeof(splice32));
3978 				if (error == 0) {
3979 					splice.sp_fd = splice32.sp_fd;
3980 					splice.sp_max = splice32.sp_max;
3981 					CP(splice32.sp_idle, splice.sp_idle,
3982 					    tv_sec);
3983 					CP(splice32.sp_idle, splice.sp_idle,
3984 					    tv_usec);
3985 				}
3986 			} else
3987 #endif
3988 			{
3989 				error = sooptcopyin(sopt, &splice,
3990 				    sizeof(splice), sizeof(splice));
3991 			}
3992 			if (error)
3993 				goto bad;
3994 #ifdef KTRACE
3995 			if (KTRPOINT(curthread, KTR_STRUCT))
3996 				ktrsplice(&splice);
3997 #endif
3998 
3999 			error = splice_init();
4000 			if (error != 0)
4001 				goto bad;
4002 
4003 			if (splice.sp_fd >= 0) {
4004 				struct file *fp;
4005 				struct socket *so2;
4006 
4007 				if (!cap_rights_contains(sopt->sopt_rights,
4008 				    &cap_recv_rights)) {
4009 					error = ENOTCAPABLE;
4010 					goto bad;
4011 				}
4012 				error = getsock(sopt->sopt_td, splice.sp_fd,
4013 				    &cap_send_rights, &fp);
4014 				if (error != 0)
4015 					goto bad;
4016 				so2 = fp->f_data;
4017 
4018 				error = so_splice(so, so2, &splice);
4019 				fdrop(fp, sopt->sopt_td);
4020 			} else {
4021 				error = so_unsplice(so, false);
4022 			}
4023 			break;
4024 		}
4025 		default:
4026 #ifdef SOCKET_HHOOK
4027 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4028 				error = hhook_run_socket(so, sopt,
4029 				    HHOOK_SOCKET_OPT);
4030 			else
4031 #endif
4032 				error = ENOPROTOOPT;
4033 			break;
4034 		}
4035 		if (error == 0)
4036 			(void)so->so_proto->pr_ctloutput(so, sopt);
4037 	}
4038 bad:
4039 	CURVNET_RESTORE();
4040 	return (error);
4041 }
4042 
4043 /*
4044  * Helper routine for getsockopt.
4045  */
4046 int
4047 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
4048 {
4049 	int	error;
4050 	size_t	valsize;
4051 
4052 	error = 0;
4053 
4054 	/*
4055 	 * Documented get behavior is that we always return a value, possibly
4056 	 * truncated to fit in the user's buffer.  Traditional behavior is
4057 	 * that we always tell the user precisely how much we copied, rather
4058 	 * than something useful like the total amount we had available for
4059 	 * her.  Note that this interface is not idempotent; the entire
4060 	 * answer must be generated ahead of time.
4061 	 */
4062 	valsize = min(len, sopt->sopt_valsize);
4063 	sopt->sopt_valsize = valsize;
4064 	if (sopt->sopt_val != NULL) {
4065 		if (sopt->sopt_td != NULL)
4066 			error = copyout(buf, sopt->sopt_val, valsize);
4067 		else
4068 			bcopy(buf, sopt->sopt_val, valsize);
4069 	}
4070 	return (error);
4071 }
4072 
4073 int
4074 sogetopt(struct socket *so, struct sockopt *sopt)
4075 {
4076 	int	error, optval;
4077 	struct	linger l;
4078 	struct	timeval tv;
4079 #ifdef MAC
4080 	struct mac extmac;
4081 #endif
4082 
4083 	CURVNET_SET(so->so_vnet);
4084 	error = 0;
4085 	if (sopt->sopt_level != SOL_SOCKET) {
4086 		error = so->so_proto->pr_ctloutput(so, sopt);
4087 		CURVNET_RESTORE();
4088 		return (error);
4089 	} else {
4090 		switch (sopt->sopt_name) {
4091 		case SO_ACCEPTFILTER:
4092 			error = accept_filt_getopt(so, sopt);
4093 			break;
4094 
4095 		case SO_LINGER:
4096 			SOCK_LOCK(so);
4097 			l.l_onoff = so->so_options & SO_LINGER;
4098 			l.l_linger = so->so_linger;
4099 			SOCK_UNLOCK(so);
4100 			error = sooptcopyout(sopt, &l, sizeof l);
4101 			break;
4102 
4103 		case SO_USELOOPBACK:
4104 		case SO_DONTROUTE:
4105 		case SO_DEBUG:
4106 		case SO_KEEPALIVE:
4107 		case SO_REUSEADDR:
4108 		case SO_REUSEPORT:
4109 		case SO_REUSEPORT_LB:
4110 		case SO_BROADCAST:
4111 		case SO_OOBINLINE:
4112 		case SO_ACCEPTCONN:
4113 		case SO_TIMESTAMP:
4114 		case SO_BINTIME:
4115 		case SO_NOSIGPIPE:
4116 		case SO_NO_DDP:
4117 		case SO_NO_OFFLOAD:
4118 		case SO_RERROR:
4119 			optval = so->so_options & sopt->sopt_name;
4120 integer:
4121 			error = sooptcopyout(sopt, &optval, sizeof optval);
4122 			break;
4123 
4124 		case SO_FIB:
4125 			SOCK_LOCK(so);
4126 			optval = so->so_fibnum;
4127 			SOCK_UNLOCK(so);
4128 			goto integer;
4129 
4130 		case SO_DOMAIN:
4131 			optval = so->so_proto->pr_domain->dom_family;
4132 			goto integer;
4133 
4134 		case SO_TYPE:
4135 			optval = so->so_type;
4136 			goto integer;
4137 
4138 		case SO_PROTOCOL:
4139 			optval = so->so_proto->pr_protocol;
4140 			goto integer;
4141 
4142 		case SO_ERROR:
4143 			SOCK_LOCK(so);
4144 			if (so->so_error) {
4145 				optval = so->so_error;
4146 				so->so_error = 0;
4147 			} else {
4148 				optval = so->so_rerror;
4149 				so->so_rerror = 0;
4150 			}
4151 			SOCK_UNLOCK(so);
4152 			goto integer;
4153 
4154 		case SO_SNDBUF:
4155 			SOCK_LOCK(so);
4156 			optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
4157 			    so->so_snd.sb_hiwat;
4158 			SOCK_UNLOCK(so);
4159 			goto integer;
4160 
4161 		case SO_RCVBUF:
4162 			SOCK_LOCK(so);
4163 			optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
4164 			    so->so_rcv.sb_hiwat;
4165 			SOCK_UNLOCK(so);
4166 			goto integer;
4167 
4168 		case SO_SNDLOWAT:
4169 			SOCK_LOCK(so);
4170 			optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
4171 			    so->so_snd.sb_lowat;
4172 			SOCK_UNLOCK(so);
4173 			goto integer;
4174 
4175 		case SO_RCVLOWAT:
4176 			SOCK_LOCK(so);
4177 			optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
4178 			    so->so_rcv.sb_lowat;
4179 			SOCK_UNLOCK(so);
4180 			goto integer;
4181 
4182 		case SO_SNDTIMEO:
4183 		case SO_RCVTIMEO:
4184 			SOCK_LOCK(so);
4185 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
4186 			    (SOLISTENING(so) ? so->sol_sbsnd_timeo :
4187 			    so->so_snd.sb_timeo) :
4188 			    (SOLISTENING(so) ? so->sol_sbrcv_timeo :
4189 			    so->so_rcv.sb_timeo));
4190 			SOCK_UNLOCK(so);
4191 #ifdef COMPAT_FREEBSD32
4192 			if (SV_CURPROC_FLAG(SV_ILP32)) {
4193 				struct timeval32 tv32;
4194 
4195 				CP(tv, tv32, tv_sec);
4196 				CP(tv, tv32, tv_usec);
4197 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
4198 			} else
4199 #endif
4200 				error = sooptcopyout(sopt, &tv, sizeof tv);
4201 			break;
4202 
4203 		case SO_LABEL:
4204 #ifdef MAC
4205 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4206 			    sizeof(extmac));
4207 			if (error)
4208 				goto bad;
4209 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
4210 			    so, &extmac);
4211 			if (error)
4212 				goto bad;
4213 			/* Don't copy out extmac, it is unchanged. */
4214 #else
4215 			error = EOPNOTSUPP;
4216 #endif
4217 			break;
4218 
4219 		case SO_PEERLABEL:
4220 #ifdef MAC
4221 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4222 			    sizeof(extmac));
4223 			if (error)
4224 				goto bad;
4225 			error = mac_getsockopt_peerlabel(
4226 			    sopt->sopt_td->td_ucred, so, &extmac);
4227 			if (error)
4228 				goto bad;
4229 			/* Don't copy out extmac, it is unchanged. */
4230 #else
4231 			error = EOPNOTSUPP;
4232 #endif
4233 			break;
4234 
4235 		case SO_LISTENQLIMIT:
4236 			SOCK_LOCK(so);
4237 			optval = SOLISTENING(so) ? so->sol_qlimit : 0;
4238 			SOCK_UNLOCK(so);
4239 			goto integer;
4240 
4241 		case SO_LISTENQLEN:
4242 			SOCK_LOCK(so);
4243 			optval = SOLISTENING(so) ? so->sol_qlen : 0;
4244 			SOCK_UNLOCK(so);
4245 			goto integer;
4246 
4247 		case SO_LISTENINCQLEN:
4248 			SOCK_LOCK(so);
4249 			optval = SOLISTENING(so) ? so->sol_incqlen : 0;
4250 			SOCK_UNLOCK(so);
4251 			goto integer;
4252 
4253 		case SO_TS_CLOCK:
4254 			optval = so->so_ts_clock;
4255 			goto integer;
4256 
4257 		case SO_MAX_PACING_RATE:
4258 			optval = so->so_max_pacing_rate;
4259 			goto integer;
4260 
4261 		case SO_SPLICE: {
4262 			off_t n;
4263 
4264 			/*
4265 			 * Acquire the I/O lock to serialize with
4266 			 * so_splice_xfer().  This is not required for
4267 			 * correctness, but makes testing simpler: once a byte
4268 			 * has been transmitted to the sink and observed (e.g.,
4269 			 * by reading from the socket to which the sink is
4270 			 * connected), a subsequent getsockopt(SO_SPLICE) will
4271 			 * return an up-to-date value.
4272 			 */
4273 			error = SOCK_IO_RECV_LOCK(so, SBL_WAIT);
4274 			if (error != 0)
4275 				goto bad;
4276 			SOCK_LOCK(so);
4277 			if (SOLISTENING(so)) {
4278 				n = 0;
4279 			} else {
4280 				n = so->so_splice_sent;
4281 			}
4282 			SOCK_UNLOCK(so);
4283 			SOCK_IO_RECV_UNLOCK(so);
4284 			error = sooptcopyout(sopt, &n, sizeof(n));
4285 			break;
4286 		}
4287 
4288 		default:
4289 #ifdef SOCKET_HHOOK
4290 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4291 				error = hhook_run_socket(so, sopt,
4292 				    HHOOK_SOCKET_OPT);
4293 			else
4294 #endif
4295 				error = ENOPROTOOPT;
4296 			break;
4297 		}
4298 	}
4299 bad:
4300 	CURVNET_RESTORE();
4301 	return (error);
4302 }
4303 
4304 int
4305 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
4306 {
4307 	struct mbuf *m, *m_prev;
4308 	int sopt_size = sopt->sopt_valsize;
4309 
4310 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4311 	if (m == NULL)
4312 		return ENOBUFS;
4313 	if (sopt_size > MLEN) {
4314 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
4315 		if ((m->m_flags & M_EXT) == 0) {
4316 			m_free(m);
4317 			return ENOBUFS;
4318 		}
4319 		m->m_len = min(MCLBYTES, sopt_size);
4320 	} else {
4321 		m->m_len = min(MLEN, sopt_size);
4322 	}
4323 	sopt_size -= m->m_len;
4324 	*mp = m;
4325 	m_prev = m;
4326 
4327 	while (sopt_size) {
4328 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4329 		if (m == NULL) {
4330 			m_freem(*mp);
4331 			return ENOBUFS;
4332 		}
4333 		if (sopt_size > MLEN) {
4334 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
4335 			    M_NOWAIT);
4336 			if ((m->m_flags & M_EXT) == 0) {
4337 				m_freem(m);
4338 				m_freem(*mp);
4339 				return ENOBUFS;
4340 			}
4341 			m->m_len = min(MCLBYTES, sopt_size);
4342 		} else {
4343 			m->m_len = min(MLEN, sopt_size);
4344 		}
4345 		sopt_size -= m->m_len;
4346 		m_prev->m_next = m;
4347 		m_prev = m;
4348 	}
4349 	return (0);
4350 }
4351 
4352 int
4353 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
4354 {
4355 	struct mbuf *m0 = m;
4356 
4357 	if (sopt->sopt_val == NULL)
4358 		return (0);
4359 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4360 		if (sopt->sopt_td != NULL) {
4361 			int error;
4362 
4363 			error = copyin(sopt->sopt_val, mtod(m, char *),
4364 			    m->m_len);
4365 			if (error != 0) {
4366 				m_freem(m0);
4367 				return(error);
4368 			}
4369 		} else
4370 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
4371 		sopt->sopt_valsize -= m->m_len;
4372 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4373 		m = m->m_next;
4374 	}
4375 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
4376 		panic("ip6_sooptmcopyin");
4377 	return (0);
4378 }
4379 
4380 int
4381 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
4382 {
4383 	struct mbuf *m0 = m;
4384 	size_t valsize = 0;
4385 
4386 	if (sopt->sopt_val == NULL)
4387 		return (0);
4388 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4389 		if (sopt->sopt_td != NULL) {
4390 			int error;
4391 
4392 			error = copyout(mtod(m, char *), sopt->sopt_val,
4393 			    m->m_len);
4394 			if (error != 0) {
4395 				m_freem(m0);
4396 				return(error);
4397 			}
4398 		} else
4399 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
4400 		sopt->sopt_valsize -= m->m_len;
4401 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4402 		valsize += m->m_len;
4403 		m = m->m_next;
4404 	}
4405 	if (m != NULL) {
4406 		/* enough soopt buffer should be given from user-land */
4407 		m_freem(m0);
4408 		return(EINVAL);
4409 	}
4410 	sopt->sopt_valsize = valsize;
4411 	return (0);
4412 }
4413 
4414 /*
4415  * sohasoutofband(): protocol notifies socket layer of the arrival of new
4416  * out-of-band data, which will then notify socket consumers.
4417  */
4418 void
4419 sohasoutofband(struct socket *so)
4420 {
4421 
4422 	if (so->so_sigio != NULL)
4423 		pgsigio(&so->so_sigio, SIGURG, 0);
4424 	selwakeuppri(&so->so_rdsel, PSOCK);
4425 }
4426 
4427 int
4428 sopoll_generic(struct socket *so, int events, struct thread *td)
4429 {
4430 	int revents;
4431 
4432 	SOCK_LOCK(so);
4433 	if (SOLISTENING(so)) {
4434 		if (!(events & (POLLIN | POLLRDNORM)))
4435 			revents = 0;
4436 		else if (!TAILQ_EMPTY(&so->sol_comp))
4437 			revents = events & (POLLIN | POLLRDNORM);
4438 		else if ((events & POLLINIGNEOF) == 0 && so->so_error)
4439 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
4440 		else {
4441 			selrecord(td, &so->so_rdsel);
4442 			revents = 0;
4443 		}
4444 	} else {
4445 		revents = 0;
4446 		SOCK_SENDBUF_LOCK(so);
4447 		SOCK_RECVBUF_LOCK(so);
4448 		if (events & (POLLIN | POLLRDNORM))
4449 			if (soreadabledata(so) && !isspliced(so))
4450 				revents |= events & (POLLIN | POLLRDNORM);
4451 		if (events & (POLLOUT | POLLWRNORM))
4452 			if (sowriteable(so) && !issplicedback(so))
4453 				revents |= events & (POLLOUT | POLLWRNORM);
4454 		if (events & (POLLPRI | POLLRDBAND))
4455 			if (so->so_oobmark ||
4456 			    (so->so_rcv.sb_state & SBS_RCVATMARK))
4457 				revents |= events & (POLLPRI | POLLRDBAND);
4458 		if ((events & POLLINIGNEOF) == 0) {
4459 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4460 				revents |= events & (POLLIN | POLLRDNORM);
4461 				if (so->so_snd.sb_state & SBS_CANTSENDMORE)
4462 					revents |= POLLHUP;
4463 			}
4464 		}
4465 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
4466 			revents |= events & POLLRDHUP;
4467 		if (revents == 0) {
4468 			if (events &
4469 			    (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
4470 				selrecord(td, &so->so_rdsel);
4471 				so->so_rcv.sb_flags |= SB_SEL;
4472 			}
4473 			if (events & (POLLOUT | POLLWRNORM)) {
4474 				selrecord(td, &so->so_wrsel);
4475 				so->so_snd.sb_flags |= SB_SEL;
4476 			}
4477 		}
4478 		SOCK_RECVBUF_UNLOCK(so);
4479 		SOCK_SENDBUF_UNLOCK(so);
4480 	}
4481 	SOCK_UNLOCK(so);
4482 	return (revents);
4483 }
4484 
4485 int
4486 sokqfilter_generic(struct socket *so, struct knote *kn)
4487 {
4488 	struct sockbuf *sb;
4489 	sb_which which;
4490 	struct knlist *knl;
4491 
4492 	switch (kn->kn_filter) {
4493 	case EVFILT_READ:
4494 		kn->kn_fop = &soread_filtops;
4495 		knl = &so->so_rdsel.si_note;
4496 		sb = &so->so_rcv;
4497 		which = SO_RCV;
4498 		break;
4499 	case EVFILT_WRITE:
4500 		kn->kn_fop = &sowrite_filtops;
4501 		knl = &so->so_wrsel.si_note;
4502 		sb = &so->so_snd;
4503 		which = SO_SND;
4504 		break;
4505 	case EVFILT_EMPTY:
4506 		kn->kn_fop = &soempty_filtops;
4507 		knl = &so->so_wrsel.si_note;
4508 		sb = &so->so_snd;
4509 		which = SO_SND;
4510 		break;
4511 	default:
4512 		return (EINVAL);
4513 	}
4514 
4515 	SOCK_LOCK(so);
4516 	if (SOLISTENING(so)) {
4517 		knlist_add(knl, kn, 1);
4518 	} else {
4519 		SOCK_BUF_LOCK(so, which);
4520 		knlist_add(knl, kn, 1);
4521 		sb->sb_flags |= SB_KNOTE;
4522 		if ((kn->kn_sfflags & NOTE_LOWAT) &&
4523 		    (sb->sb_flags & SB_AUTOLOWAT))
4524 			sb->sb_flags &= ~SB_AUTOLOWAT;
4525 		SOCK_BUF_UNLOCK(so, which);
4526 	}
4527 	SOCK_UNLOCK(so);
4528 	return (0);
4529 }
4530 
4531 static void
4532 filt_sordetach(struct knote *kn)
4533 {
4534 	struct socket *so = kn->kn_fp->f_data;
4535 
4536 	so_rdknl_lock(so);
4537 	knlist_remove(&so->so_rdsel.si_note, kn, 1);
4538 	if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
4539 		so->so_rcv.sb_flags &= ~SB_KNOTE;
4540 	so_rdknl_unlock(so);
4541 }
4542 
4543 /*ARGSUSED*/
4544 static int
4545 filt_soread(struct knote *kn, long hint)
4546 {
4547 	struct socket *so;
4548 
4549 	so = kn->kn_fp->f_data;
4550 
4551 	if (SOLISTENING(so)) {
4552 		SOCK_LOCK_ASSERT(so);
4553 		kn->kn_data = so->sol_qlen;
4554 		if (so->so_error) {
4555 			kn->kn_flags |= EV_EOF;
4556 			kn->kn_fflags = so->so_error;
4557 			return (1);
4558 		}
4559 		return (!TAILQ_EMPTY(&so->sol_comp));
4560 	}
4561 
4562 	if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
4563 		return (0);
4564 
4565 	SOCK_RECVBUF_LOCK_ASSERT(so);
4566 
4567 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
4568 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4569 		kn->kn_flags |= EV_EOF;
4570 		kn->kn_fflags = so->so_error;
4571 		return (1);
4572 	} else if (so->so_error || so->so_rerror)
4573 		return (1);
4574 
4575 	if (kn->kn_sfflags & NOTE_LOWAT) {
4576 		if (kn->kn_data >= kn->kn_sdata)
4577 			return (1);
4578 	} else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
4579 		return (1);
4580 
4581 #ifdef SOCKET_HHOOK
4582 	/* This hook returning non-zero indicates an event, not error */
4583 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
4584 #else
4585 	return (0);
4586 #endif
4587 }
4588 
4589 static void
4590 filt_sowdetach(struct knote *kn)
4591 {
4592 	struct socket *so = kn->kn_fp->f_data;
4593 
4594 	so_wrknl_lock(so);
4595 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
4596 	if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
4597 		so->so_snd.sb_flags &= ~SB_KNOTE;
4598 	so_wrknl_unlock(so);
4599 }
4600 
4601 /*ARGSUSED*/
4602 static int
4603 filt_sowrite(struct knote *kn, long hint)
4604 {
4605 	struct socket *so;
4606 
4607 	so = kn->kn_fp->f_data;
4608 
4609 	if (SOLISTENING(so))
4610 		return (0);
4611 
4612 	SOCK_SENDBUF_LOCK_ASSERT(so);
4613 	kn->kn_data = sbspace(&so->so_snd);
4614 
4615 #ifdef SOCKET_HHOOK
4616 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
4617 #endif
4618 
4619 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
4620 		kn->kn_flags |= EV_EOF;
4621 		kn->kn_fflags = so->so_error;
4622 		return (1);
4623 	} else if (so->so_error)	/* temporary udp error */
4624 		return (1);
4625 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
4626 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
4627 		return (0);
4628 	else if (kn->kn_sfflags & NOTE_LOWAT)
4629 		return (kn->kn_data >= kn->kn_sdata);
4630 	else
4631 		return (kn->kn_data >= so->so_snd.sb_lowat);
4632 }
4633 
4634 static int
4635 filt_soempty(struct knote *kn, long hint)
4636 {
4637 	struct socket *so;
4638 
4639 	so = kn->kn_fp->f_data;
4640 
4641 	if (SOLISTENING(so))
4642 		return (1);
4643 
4644 	SOCK_SENDBUF_LOCK_ASSERT(so);
4645 	kn->kn_data = sbused(&so->so_snd);
4646 
4647 	if (kn->kn_data == 0)
4648 		return (1);
4649 	else
4650 		return (0);
4651 }
4652 
4653 int
4654 socheckuid(struct socket *so, uid_t uid)
4655 {
4656 
4657 	if (so == NULL)
4658 		return (EPERM);
4659 	if (so->so_cred->cr_uid != uid)
4660 		return (EPERM);
4661 	return (0);
4662 }
4663 
4664 /*
4665  * These functions are used by protocols to notify the socket layer (and its
4666  * consumers) of state changes in the sockets driven by protocol-side events.
4667  */
4668 
4669 /*
4670  * Procedures to manipulate state flags of socket and do appropriate wakeups.
4671  *
4672  * Normal sequence from the active (originating) side is that
4673  * soisconnecting() is called during processing of connect() call, resulting
4674  * in an eventual call to soisconnected() if/when the connection is
4675  * established.  When the connection is torn down soisdisconnecting() is
4676  * called during processing of disconnect() call, and soisdisconnected() is
4677  * called when the connection to the peer is totally severed.  The semantics
4678  * of these routines are such that connectionless protocols can call
4679  * soisconnected() and soisdisconnected() only, bypassing the in-progress
4680  * calls when setting up a ``connection'' takes no time.
4681  *
4682  * From the passive side, a socket is created with two queues of sockets:
4683  * so_incomp for connections in progress and so_comp for connections already
4684  * made and awaiting user acceptance.  As a protocol is preparing incoming
4685  * connections, it creates a socket structure queued on so_incomp by calling
4686  * sonewconn().  When the connection is established, soisconnected() is
4687  * called, and transfers the socket structure to so_comp, making it available
4688  * to accept().
4689  *
4690  * If a socket is closed with sockets on either so_incomp or so_comp, these
4691  * sockets are dropped.
4692  *
4693  * If higher-level protocols are implemented in the kernel, the wakeups done
4694  * here will sometimes cause software-interrupt process scheduling.
4695  */
4696 void
4697 soisconnecting(struct socket *so)
4698 {
4699 
4700 	SOCK_LOCK(so);
4701 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
4702 	so->so_state |= SS_ISCONNECTING;
4703 	SOCK_UNLOCK(so);
4704 }
4705 
4706 void
4707 soisconnected(struct socket *so)
4708 {
4709 	bool last __diagused;
4710 
4711 	SOCK_LOCK(so);
4712 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING);
4713 	so->so_state |= SS_ISCONNECTED;
4714 
4715 	if (so->so_qstate == SQ_INCOMP) {
4716 		struct socket *head = so->so_listen;
4717 		int ret;
4718 
4719 		KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
4720 		/*
4721 		 * Promoting a socket from incomplete queue to complete, we
4722 		 * need to go through reverse order of locking.  We first do
4723 		 * trylock, and if that doesn't succeed, we go the hard way
4724 		 * leaving a reference and rechecking consistency after proper
4725 		 * locking.
4726 		 */
4727 		if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
4728 			soref(head);
4729 			SOCK_UNLOCK(so);
4730 			SOLISTEN_LOCK(head);
4731 			SOCK_LOCK(so);
4732 			if (__predict_false(head != so->so_listen)) {
4733 				/*
4734 				 * The socket went off the listen queue,
4735 				 * should be lost race to close(2) of sol.
4736 				 * The socket is about to soabort().
4737 				 */
4738 				SOCK_UNLOCK(so);
4739 				sorele_locked(head);
4740 				return;
4741 			}
4742 			last = refcount_release(&head->so_count);
4743 			KASSERT(!last, ("%s: released last reference for %p",
4744 			    __func__, head));
4745 		}
4746 again:
4747 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
4748 			TAILQ_REMOVE(&head->sol_incomp, so, so_list);
4749 			head->sol_incqlen--;
4750 			TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
4751 			head->sol_qlen++;
4752 			so->so_qstate = SQ_COMP;
4753 			SOCK_UNLOCK(so);
4754 			solisten_wakeup(head);	/* unlocks */
4755 		} else {
4756 			SOCK_RECVBUF_LOCK(so);
4757 			soupcall_set(so, SO_RCV,
4758 			    head->sol_accept_filter->accf_callback,
4759 			    head->sol_accept_filter_arg);
4760 			so->so_options &= ~SO_ACCEPTFILTER;
4761 			ret = head->sol_accept_filter->accf_callback(so,
4762 			    head->sol_accept_filter_arg, M_NOWAIT);
4763 			if (ret == SU_ISCONNECTED) {
4764 				soupcall_clear(so, SO_RCV);
4765 				SOCK_RECVBUF_UNLOCK(so);
4766 				goto again;
4767 			}
4768 			SOCK_RECVBUF_UNLOCK(so);
4769 			SOCK_UNLOCK(so);
4770 			SOLISTEN_UNLOCK(head);
4771 		}
4772 		return;
4773 	}
4774 	SOCK_UNLOCK(so);
4775 	wakeup(&so->so_timeo);
4776 	sorwakeup(so);
4777 	sowwakeup(so);
4778 }
4779 
4780 void
4781 soisdisconnecting(struct socket *so)
4782 {
4783 
4784 	SOCK_LOCK(so);
4785 	so->so_state &= ~SS_ISCONNECTING;
4786 	so->so_state |= SS_ISDISCONNECTING;
4787 
4788 	if (!SOLISTENING(so)) {
4789 		SOCK_RECVBUF_LOCK(so);
4790 		socantrcvmore_locked(so);
4791 		SOCK_SENDBUF_LOCK(so);
4792 		socantsendmore_locked(so);
4793 	}
4794 	SOCK_UNLOCK(so);
4795 	wakeup(&so->so_timeo);
4796 }
4797 
4798 void
4799 soisdisconnected(struct socket *so)
4800 {
4801 
4802 	SOCK_LOCK(so);
4803 
4804 	/*
4805 	 * There is at least one reader of so_state that does not
4806 	 * acquire socket lock, namely soreceive_generic().  Ensure
4807 	 * that it never sees all flags that track connection status
4808 	 * cleared, by ordering the update with a barrier semantic of
4809 	 * our release thread fence.
4810 	 */
4811 	so->so_state |= SS_ISDISCONNECTED;
4812 	atomic_thread_fence_rel();
4813 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4814 
4815 	if (!SOLISTENING(so)) {
4816 		SOCK_UNLOCK(so);
4817 		SOCK_RECVBUF_LOCK(so);
4818 		socantrcvmore_locked(so);
4819 		SOCK_SENDBUF_LOCK(so);
4820 		sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4821 		socantsendmore_locked(so);
4822 	} else
4823 		SOCK_UNLOCK(so);
4824 	wakeup(&so->so_timeo);
4825 }
4826 
4827 int
4828 soiolock(struct socket *so, struct sx *sx, int flags)
4829 {
4830 	int error;
4831 
4832 	KASSERT((flags & SBL_VALID) == flags,
4833 	    ("soiolock: invalid flags %#x", flags));
4834 
4835 	if ((flags & SBL_WAIT) != 0) {
4836 		if ((flags & SBL_NOINTR) != 0) {
4837 			sx_xlock(sx);
4838 		} else {
4839 			error = sx_xlock_sig(sx);
4840 			if (error != 0)
4841 				return (error);
4842 		}
4843 	} else if (!sx_try_xlock(sx)) {
4844 		return (EWOULDBLOCK);
4845 	}
4846 
4847 	if (__predict_false(SOLISTENING(so))) {
4848 		sx_xunlock(sx);
4849 		return (ENOTCONN);
4850 	}
4851 	return (0);
4852 }
4853 
4854 void
4855 soiounlock(struct sx *sx)
4856 {
4857 	sx_xunlock(sx);
4858 }
4859 
4860 /*
4861  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4862  */
4863 struct sockaddr *
4864 sodupsockaddr(const struct sockaddr *sa, int mflags)
4865 {
4866 	struct sockaddr *sa2;
4867 
4868 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4869 	if (sa2)
4870 		bcopy(sa, sa2, sa->sa_len);
4871 	return sa2;
4872 }
4873 
4874 /*
4875  * Register per-socket destructor.
4876  */
4877 void
4878 sodtor_set(struct socket *so, so_dtor_t *func)
4879 {
4880 
4881 	SOCK_LOCK_ASSERT(so);
4882 	so->so_dtor = func;
4883 }
4884 
4885 /*
4886  * Register per-socket buffer upcalls.
4887  */
4888 void
4889 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4890 {
4891 	struct sockbuf *sb;
4892 
4893 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4894 
4895 	switch (which) {
4896 	case SO_RCV:
4897 		sb = &so->so_rcv;
4898 		break;
4899 	case SO_SND:
4900 		sb = &so->so_snd;
4901 		break;
4902 	}
4903 	SOCK_BUF_LOCK_ASSERT(so, which);
4904 	sb->sb_upcall = func;
4905 	sb->sb_upcallarg = arg;
4906 	sb->sb_flags |= SB_UPCALL;
4907 }
4908 
4909 void
4910 soupcall_clear(struct socket *so, sb_which which)
4911 {
4912 	struct sockbuf *sb;
4913 
4914 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4915 
4916 	switch (which) {
4917 	case SO_RCV:
4918 		sb = &so->so_rcv;
4919 		break;
4920 	case SO_SND:
4921 		sb = &so->so_snd;
4922 		break;
4923 	}
4924 	SOCK_BUF_LOCK_ASSERT(so, which);
4925 	KASSERT(sb->sb_upcall != NULL,
4926 	    ("%s: so %p no upcall to clear", __func__, so));
4927 	sb->sb_upcall = NULL;
4928 	sb->sb_upcallarg = NULL;
4929 	sb->sb_flags &= ~SB_UPCALL;
4930 }
4931 
4932 void
4933 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4934 {
4935 
4936 	SOLISTEN_LOCK_ASSERT(so);
4937 	so->sol_upcall = func;
4938 	so->sol_upcallarg = arg;
4939 }
4940 
4941 static void
4942 so_rdknl_lock(void *arg)
4943 {
4944 	struct socket *so = arg;
4945 
4946 retry:
4947 	if (SOLISTENING(so)) {
4948 		SOLISTEN_LOCK(so);
4949 	} else {
4950 		SOCK_RECVBUF_LOCK(so);
4951 		if (__predict_false(SOLISTENING(so))) {
4952 			SOCK_RECVBUF_UNLOCK(so);
4953 			goto retry;
4954 		}
4955 	}
4956 }
4957 
4958 static void
4959 so_rdknl_unlock(void *arg)
4960 {
4961 	struct socket *so = arg;
4962 
4963 	if (SOLISTENING(so))
4964 		SOLISTEN_UNLOCK(so);
4965 	else
4966 		SOCK_RECVBUF_UNLOCK(so);
4967 }
4968 
4969 static void
4970 so_rdknl_assert_lock(void *arg, int what)
4971 {
4972 	struct socket *so = arg;
4973 
4974 	if (what == LA_LOCKED) {
4975 		if (SOLISTENING(so))
4976 			SOLISTEN_LOCK_ASSERT(so);
4977 		else
4978 			SOCK_RECVBUF_LOCK_ASSERT(so);
4979 	} else {
4980 		if (SOLISTENING(so))
4981 			SOLISTEN_UNLOCK_ASSERT(so);
4982 		else
4983 			SOCK_RECVBUF_UNLOCK_ASSERT(so);
4984 	}
4985 }
4986 
4987 static void
4988 so_wrknl_lock(void *arg)
4989 {
4990 	struct socket *so = arg;
4991 
4992 retry:
4993 	if (SOLISTENING(so)) {
4994 		SOLISTEN_LOCK(so);
4995 	} else {
4996 		SOCK_SENDBUF_LOCK(so);
4997 		if (__predict_false(SOLISTENING(so))) {
4998 			SOCK_SENDBUF_UNLOCK(so);
4999 			goto retry;
5000 		}
5001 	}
5002 }
5003 
5004 static void
5005 so_wrknl_unlock(void *arg)
5006 {
5007 	struct socket *so = arg;
5008 
5009 	if (SOLISTENING(so))
5010 		SOLISTEN_UNLOCK(so);
5011 	else
5012 		SOCK_SENDBUF_UNLOCK(so);
5013 }
5014 
5015 static void
5016 so_wrknl_assert_lock(void *arg, int what)
5017 {
5018 	struct socket *so = arg;
5019 
5020 	if (what == LA_LOCKED) {
5021 		if (SOLISTENING(so))
5022 			SOLISTEN_LOCK_ASSERT(so);
5023 		else
5024 			SOCK_SENDBUF_LOCK_ASSERT(so);
5025 	} else {
5026 		if (SOLISTENING(so))
5027 			SOLISTEN_UNLOCK_ASSERT(so);
5028 		else
5029 			SOCK_SENDBUF_UNLOCK_ASSERT(so);
5030 	}
5031 }
5032 
5033 /*
5034  * Create an external-format (``xsocket'') structure using the information in
5035  * the kernel-format socket structure pointed to by so.  This is done to
5036  * reduce the spew of irrelevant information over this interface, to isolate
5037  * user code from changes in the kernel structure, and potentially to provide
5038  * information-hiding if we decide that some of this information should be
5039  * hidden from users.
5040  */
5041 void
5042 sotoxsocket(struct socket *so, struct xsocket *xso)
5043 {
5044 
5045 	bzero(xso, sizeof(*xso));
5046 	xso->xso_len = sizeof *xso;
5047 	xso->xso_so = (uintptr_t)so;
5048 	xso->so_type = so->so_type;
5049 	xso->so_options = so->so_options;
5050 	xso->so_linger = so->so_linger;
5051 	xso->so_state = so->so_state;
5052 	xso->so_pcb = (uintptr_t)so->so_pcb;
5053 	xso->xso_protocol = so->so_proto->pr_protocol;
5054 	xso->xso_family = so->so_proto->pr_domain->dom_family;
5055 	xso->so_timeo = so->so_timeo;
5056 	xso->so_error = so->so_error;
5057 	xso->so_uid = so->so_cred->cr_uid;
5058 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
5059 	SOCK_LOCK(so);
5060 	xso->so_fibnum = so->so_fibnum;
5061 	if (SOLISTENING(so)) {
5062 		xso->so_qlen = so->sol_qlen;
5063 		xso->so_incqlen = so->sol_incqlen;
5064 		xso->so_qlimit = so->sol_qlimit;
5065 		xso->so_oobmark = 0;
5066 	} else {
5067 		xso->so_state |= so->so_qstate;
5068 		xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
5069 		xso->so_oobmark = so->so_oobmark;
5070 		sbtoxsockbuf(&so->so_snd, &xso->so_snd);
5071 		sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
5072 		if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
5073 			xso->so_splice_so = (uintptr_t)so->so_splice->dst;
5074 	}
5075 	SOCK_UNLOCK(so);
5076 }
5077 
5078 int
5079 so_options_get(const struct socket *so)
5080 {
5081 
5082 	return (so->so_options);
5083 }
5084 
5085 void
5086 so_options_set(struct socket *so, int val)
5087 {
5088 
5089 	so->so_options = val;
5090 }
5091 
5092 int
5093 so_error_get(const struct socket *so)
5094 {
5095 
5096 	return (so->so_error);
5097 }
5098 
5099 void
5100 so_error_set(struct socket *so, int val)
5101 {
5102 
5103 	so->so_error = val;
5104 }
5105