xref: /freebsd/sys/kern/uipc_socket.c (revision 1e9bca400b9c7ae3dc3f31aa48df69cf2259e16c)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2004 The FreeBSD Foundation
7  * Copyright (c) 2004-2008 Robert N. M. Watson
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn().  Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn().  Socket layer private.
43  *
44  * pru_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation.  This is called
46  * from socreate() and sonewconn().  Socket layer private.
47  *
48  * pru_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pru_attach() has
50  * been successfully called.  If pru_attach() returned an error,
51  * pru_detach() will not be called.  Socket layer private.
52  *
53  * pru_abort() and pru_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection.  Historically, pru_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.
58  *
59  * socreate() creates a socket and attaches protocol state.  This is a public
60  * interface that may be used by socket layer consumers to create new
61  * sockets.
62  *
63  * sonewconn() creates a socket and attaches protocol state.  This is a
64  * public interface  that may be used by protocols to create new sockets when
65  * a new connection is received and will be available for accept() on a
66  * listen socket.
67  *
68  * soclose() destroys a socket after possibly waiting for it to disconnect.
69  * This is a public interface that socket consumers should use to close and
70  * release a socket when done with it.
71  *
72  * soabort() destroys a socket without waiting for it to disconnect (used
73  * only for incoming connections that are already partially or fully
74  * connected).  This is used internally by the socket layer when clearing
75  * listen socket queues (due to overflow or close on the listen socket), but
76  * is also a public interface protocols may use to abort connections in
77  * their incomplete listen queues should they no longer be required.  Sockets
78  * placed in completed connection listen queues should not be aborted for
79  * reasons described in the comment above the soclose() implementation.  This
80  * is not a general purpose close routine, and except in the specific
81  * circumstances described here, should not be used.
82  *
83  * sofree() will free a socket and its protocol state if all references on
84  * the socket have been released, and is the public interface to attempt to
85  * free a socket when a reference is removed.  This is a socket layer private
86  * interface.
87  *
88  * NOTE: In addition to socreate() and soclose(), which provide a single
89  * socket reference to the consumer to be managed as required, there are two
90  * calls to explicitly manage socket references, soref(), and sorele().
91  * Currently, these are generally required only when transitioning a socket
92  * from a listen queue to a file descriptor, in order to prevent garbage
93  * collection of the socket at an untimely moment.  For a number of reasons,
94  * these interfaces are not preferred, and should be avoided.
95  *
96  * NOTE: With regard to VNETs the general rule is that callers do not set
97  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98  * sofree(), sorele(), sonewconn() and sorflush(), which are usually called
99  * from a pre-set VNET context.  sopoll() currently does not need a VNET
100  * context to be set.
101  */
102 
103 #include <sys/cdefs.h>
104 #include "opt_inet.h"
105 #include "opt_inet6.h"
106 #include "opt_kern_tls.h"
107 #include "opt_ktrace.h"
108 #include "opt_sctp.h"
109 
110 #include <sys/param.h>
111 #include <sys/systm.h>
112 #include <sys/capsicum.h>
113 #include <sys/fcntl.h>
114 #include <sys/limits.h>
115 #include <sys/lock.h>
116 #include <sys/mac.h>
117 #include <sys/malloc.h>
118 #include <sys/mbuf.h>
119 #include <sys/mutex.h>
120 #include <sys/domain.h>
121 #include <sys/file.h>			/* for struct knote */
122 #include <sys/hhook.h>
123 #include <sys/kernel.h>
124 #include <sys/khelp.h>
125 #include <sys/kthread.h>
126 #include <sys/ktls.h>
127 #include <sys/event.h>
128 #include <sys/eventhandler.h>
129 #include <sys/poll.h>
130 #include <sys/proc.h>
131 #include <sys/protosw.h>
132 #include <sys/sbuf.h>
133 #include <sys/socket.h>
134 #include <sys/socketvar.h>
135 #include <sys/resourcevar.h>
136 #include <net/route.h>
137 #include <sys/sched.h>
138 #include <sys/signalvar.h>
139 #include <sys/smp.h>
140 #include <sys/stat.h>
141 #include <sys/sx.h>
142 #include <sys/sysctl.h>
143 #include <sys/taskqueue.h>
144 #include <sys/uio.h>
145 #include <sys/un.h>
146 #include <sys/unpcb.h>
147 #include <sys/jail.h>
148 #include <sys/syslog.h>
149 #include <netinet/in.h>
150 #include <netinet/in_pcb.h>
151 #include <netinet/tcp.h>
152 
153 #include <net/vnet.h>
154 
155 #include <security/mac/mac_framework.h>
156 #include <security/mac/mac_internal.h>
157 
158 #include <vm/uma.h>
159 
160 #ifdef COMPAT_FREEBSD32
161 #include <sys/mount.h>
162 #include <sys/sysent.h>
163 #include <compat/freebsd32/freebsd32.h>
164 #endif
165 
166 static int	soreceive_generic_locked(struct socket *so,
167 		    struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
168 		    struct mbuf **controlp, int *flagsp);
169 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
170 		    int flags);
171 static int	soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
172 		    struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
173 		    struct mbuf **controlp, int flags);
174 static int	sosend_generic_locked(struct socket *so, struct sockaddr *addr,
175 		    struct uio *uio, struct mbuf *top, struct mbuf *control,
176 		    int flags, struct thread *td);
177 static void	so_rdknl_lock(void *);
178 static void	so_rdknl_unlock(void *);
179 static void	so_rdknl_assert_lock(void *, int);
180 static void	so_wrknl_lock(void *);
181 static void	so_wrknl_unlock(void *);
182 static void	so_wrknl_assert_lock(void *, int);
183 
184 static void	filt_sordetach(struct knote *kn);
185 static int	filt_soread(struct knote *kn, long hint);
186 static void	filt_sowdetach(struct knote *kn);
187 static int	filt_sowrite(struct knote *kn, long hint);
188 static int	filt_soempty(struct knote *kn, long hint);
189 fo_kqfilter_t	soo_kqfilter;
190 
191 static const struct filterops soread_filtops = {
192 	.f_isfd = 1,
193 	.f_detach = filt_sordetach,
194 	.f_event = filt_soread,
195 };
196 static const struct filterops sowrite_filtops = {
197 	.f_isfd = 1,
198 	.f_detach = filt_sowdetach,
199 	.f_event = filt_sowrite,
200 };
201 static const struct filterops soempty_filtops = {
202 	.f_isfd = 1,
203 	.f_detach = filt_sowdetach,
204 	.f_event = filt_soempty,
205 };
206 
207 so_gen_t	so_gencnt;	/* generation count for sockets */
208 
209 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
210 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
211 
212 #define	VNET_SO_ASSERT(so)						\
213 	VNET_ASSERT(curvnet != NULL,					\
214 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
215 
216 #ifdef SOCKET_HHOOK
217 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
218 #define	V_socket_hhh		VNET(socket_hhh)
219 static inline int hhook_run_socket(struct socket *, void *, int32_t);
220 #endif
221 
222 #ifdef COMPAT_FREEBSD32
223 #ifdef __amd64__
224 /* off_t has 4-byte alignment on i386 but not on other 32-bit platforms. */
225 #define	__splice32_packed	__packed
226 #else
227 #define	__splice32_packed
228 #endif
229 struct splice32 {
230 	int32_t	sp_fd;
231 	int64_t sp_max;
232 	struct timeval32 sp_idle;
233 } __splice32_packed;
234 #undef __splice32_packed
235 #endif
236 
237 /*
238  * Limit on the number of connections in the listen queue waiting
239  * for accept(2).
240  * NB: The original sysctl somaxconn is still available but hidden
241  * to prevent confusion about the actual purpose of this number.
242  */
243 VNET_DEFINE_STATIC(u_int, somaxconn) = SOMAXCONN;
244 #define	V_somaxconn	VNET(somaxconn)
245 
246 static int
247 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
248 {
249 	int error;
250 	u_int val;
251 
252 	val = V_somaxconn;
253 	error = sysctl_handle_int(oidp, &val, 0, req);
254 	if (error || !req->newptr )
255 		return (error);
256 
257 	/*
258 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
259 	 *   3 * sol_qlimit / 2
260 	 * below, will not overflow.
261          */
262 
263 	if (val < 1 || val > UINT_MAX / 3)
264 		return (EINVAL);
265 
266 	V_somaxconn = val;
267 	return (0);
268 }
269 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
270     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
271     sysctl_somaxconn, "IU",
272     "Maximum listen socket pending connection accept queue size");
273 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
274     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0,
275     sizeof(u_int), sysctl_somaxconn, "IU",
276     "Maximum listen socket pending connection accept queue size (compat)");
277 
278 static u_int numopensockets;
279 static int
280 sysctl_numopensockets(SYSCTL_HANDLER_ARGS)
281 {
282 	u_int val;
283 
284 #ifdef VIMAGE
285 	if(!IS_DEFAULT_VNET(curvnet))
286 		val = curvnet->vnet_sockcnt;
287 	else
288 #endif
289 		val = numopensockets;
290 	return (sysctl_handle_int(oidp, &val, 0, req));
291 }
292 SYSCTL_PROC(_kern_ipc, OID_AUTO, numopensockets,
293     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
294     sysctl_numopensockets, "IU", "Number of open sockets");
295 
296 /*
297  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
298  * so_gencnt field.
299  */
300 static struct mtx so_global_mtx;
301 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
302 
303 /*
304  * General IPC sysctl name space, used by sockets and a variety of other IPC
305  * types.
306  */
307 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
308     "IPC");
309 
310 /*
311  * Initialize the socket subsystem and set up the socket
312  * memory allocator.
313  */
314 static uma_zone_t socket_zone;
315 int	maxsockets;
316 
317 static void
318 socket_zone_change(void *tag)
319 {
320 
321 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
322 }
323 
324 static int splice_init_state;
325 static struct sx splice_init_lock;
326 SX_SYSINIT(splice_init_lock, &splice_init_lock, "splice_init");
327 
328 static SYSCTL_NODE(_kern_ipc, OID_AUTO, splice, CTLFLAG_RW, 0,
329     "Settings relating to the SO_SPLICE socket option");
330 
331 static bool splice_receive_stream = true;
332 SYSCTL_BOOL(_kern_ipc_splice, OID_AUTO, receive_stream, CTLFLAG_RWTUN,
333     &splice_receive_stream, 0,
334     "Use soreceive_stream() for stream splices");
335 
336 static uma_zone_t splice_zone;
337 static struct proc *splice_proc;
338 struct splice_wq {
339 	struct mtx	mtx;
340 	STAILQ_HEAD(, so_splice) head;
341 	bool		running;
342 } __aligned(CACHE_LINE_SIZE);
343 static struct splice_wq *splice_wq;
344 static uint32_t splice_index = 0;
345 
346 static void so_splice_timeout(void *arg, int pending);
347 static void so_splice_xfer(struct so_splice *s);
348 static int so_unsplice(struct socket *so, bool timeout);
349 
350 static void
351 splice_work_thread(void *ctx)
352 {
353 	struct splice_wq *wq = ctx;
354 	struct so_splice *s, *s_temp;
355 	STAILQ_HEAD(, so_splice) local_head;
356 	int cpu;
357 
358 	cpu = wq - splice_wq;
359 	if (bootverbose)
360 		printf("starting so_splice worker thread for CPU %d\n", cpu);
361 
362 	for (;;) {
363 		mtx_lock(&wq->mtx);
364 		while (STAILQ_EMPTY(&wq->head)) {
365 			wq->running = false;
366 			mtx_sleep(wq, &wq->mtx, 0, "-", 0);
367 			wq->running = true;
368 		}
369 		STAILQ_INIT(&local_head);
370 		STAILQ_CONCAT(&local_head, &wq->head);
371 		STAILQ_INIT(&wq->head);
372 		mtx_unlock(&wq->mtx);
373 		STAILQ_FOREACH_SAFE(s, &local_head, next, s_temp) {
374 			mtx_lock(&s->mtx);
375 			CURVNET_SET(s->src->so_vnet);
376 			so_splice_xfer(s);
377 			CURVNET_RESTORE();
378 		}
379 	}
380 }
381 
382 static void
383 so_splice_dispatch_async(struct so_splice *sp)
384 {
385 	struct splice_wq *wq;
386 	bool running;
387 
388 	wq = &splice_wq[sp->wq_index];
389 	mtx_lock(&wq->mtx);
390 	STAILQ_INSERT_TAIL(&wq->head, sp, next);
391 	running = wq->running;
392 	mtx_unlock(&wq->mtx);
393 	if (!running)
394 		wakeup(wq);
395 }
396 
397 void
398 so_splice_dispatch(struct so_splice *sp)
399 {
400 	mtx_assert(&sp->mtx, MA_OWNED);
401 
402 	if (sp->state != SPLICE_IDLE) {
403 		mtx_unlock(&sp->mtx);
404 	} else {
405 		sp->state = SPLICE_QUEUED;
406 		mtx_unlock(&sp->mtx);
407 		so_splice_dispatch_async(sp);
408 	}
409 }
410 
411 static int
412 splice_zinit(void *mem, int size __unused, int flags __unused)
413 {
414 	struct so_splice *s;
415 
416 	s = (struct so_splice *)mem;
417 	mtx_init(&s->mtx, "so_splice", NULL, MTX_DEF);
418 	return (0);
419 }
420 
421 static void
422 splice_zfini(void *mem, int size)
423 {
424 	struct so_splice *s;
425 
426 	s = (struct so_splice *)mem;
427 	mtx_destroy(&s->mtx);
428 }
429 
430 static int
431 splice_init(void)
432 {
433 	struct thread *td;
434 	int error, i, state;
435 
436 	state = atomic_load_acq_int(&splice_init_state);
437 	if (__predict_true(state > 0))
438 		return (0);
439 	if (state < 0)
440 		return (ENXIO);
441 	sx_xlock(&splice_init_lock);
442 	if (splice_init_state != 0) {
443 		sx_xunlock(&splice_init_lock);
444 		return (0);
445 	}
446 
447 	splice_zone = uma_zcreate("splice", sizeof(struct so_splice), NULL,
448 	    NULL, splice_zinit, splice_zfini, UMA_ALIGN_CACHE, 0);
449 
450 	splice_wq = mallocarray(mp_maxid + 1, sizeof(*splice_wq), M_TEMP,
451 	    M_WAITOK | M_ZERO);
452 
453 	/*
454 	 * Initialize the workqueues to run the splice work.  We create a
455 	 * work queue for each CPU.
456 	 */
457 	CPU_FOREACH(i) {
458 		STAILQ_INIT(&splice_wq[i].head);
459 		mtx_init(&splice_wq[i].mtx, "splice work queue", NULL, MTX_DEF);
460 	}
461 
462 	/* Start kthreads for each workqueue. */
463 	error = 0;
464 	CPU_FOREACH(i) {
465 		error = kproc_kthread_add(splice_work_thread, &splice_wq[i],
466 		    &splice_proc, &td, 0, 0, "so_splice", "thr_%d", i);
467 		if (error) {
468 			printf("Can't add so_splice thread %d error %d\n",
469 			    i, error);
470 			break;
471 		}
472 
473 		/*
474 		 * It's possible to create loops with SO_SPLICE; ensure that
475 		 * worker threads aren't able to starve the system too easily.
476 		 */
477 		thread_lock(td);
478 		sched_prio(td, PUSER);
479 		thread_unlock(td);
480 	}
481 
482 	splice_init_state = error != 0 ? -1 : 1;
483 	sx_xunlock(&splice_init_lock);
484 
485 	return (error);
486 }
487 
488 /*
489  * Lock a pair of socket's I/O locks for splicing.  Avoid blocking while holding
490  * one lock in order to avoid potential deadlocks in case there is some other
491  * code path which acquires more than one I/O lock at a time.
492  */
493 static void
494 splice_lock_pair(struct socket *so_src, struct socket *so_dst)
495 {
496 	int error;
497 
498 	for (;;) {
499 		error = SOCK_IO_SEND_LOCK(so_dst, SBL_WAIT | SBL_NOINTR);
500 		KASSERT(error == 0,
501 		    ("%s: failed to lock send I/O lock: %d", __func__, error));
502 		error = SOCK_IO_RECV_LOCK(so_src, 0);
503 		KASSERT(error == 0 || error == EWOULDBLOCK,
504 		    ("%s: failed to lock recv I/O lock: %d", __func__, error));
505 		if (error == 0)
506 			break;
507 		SOCK_IO_SEND_UNLOCK(so_dst);
508 
509 		error = SOCK_IO_RECV_LOCK(so_src, SBL_WAIT | SBL_NOINTR);
510 		KASSERT(error == 0,
511 		    ("%s: failed to lock recv I/O lock: %d", __func__, error));
512 		error = SOCK_IO_SEND_LOCK(so_dst, 0);
513 		KASSERT(error == 0 || error == EWOULDBLOCK,
514 		    ("%s: failed to lock send I/O lock: %d", __func__, error));
515 		if (error == 0)
516 			break;
517 		SOCK_IO_RECV_UNLOCK(so_src);
518 	}
519 }
520 
521 static void
522 splice_unlock_pair(struct socket *so_src, struct socket *so_dst)
523 {
524 	SOCK_IO_RECV_UNLOCK(so_src);
525 	SOCK_IO_SEND_UNLOCK(so_dst);
526 }
527 
528 /*
529  * Move data from the source to the sink.  Assumes that both of the relevant
530  * socket I/O locks are held.
531  */
532 static int
533 so_splice_xfer_data(struct socket *so_src, struct socket *so_dst, off_t max,
534     ssize_t *lenp)
535 {
536 	struct uio uio;
537 	struct mbuf *m;
538 	struct sockbuf *sb_src, *sb_dst;
539 	ssize_t len;
540 	long space;
541 	int error, flags;
542 
543 	SOCK_IO_RECV_ASSERT_LOCKED(so_src);
544 	SOCK_IO_SEND_ASSERT_LOCKED(so_dst);
545 
546 	error = 0;
547 	m = NULL;
548 	memset(&uio, 0, sizeof(uio));
549 
550 	sb_src = &so_src->so_rcv;
551 	sb_dst = &so_dst->so_snd;
552 
553 	space = sbspace(sb_dst);
554 	if (space < 0)
555 		space = 0;
556 	len = MIN(max, MIN(space, sbavail(sb_src)));
557 	if (len == 0) {
558 		SOCK_RECVBUF_LOCK(so_src);
559 		if ((sb_src->sb_state & SBS_CANTRCVMORE) != 0)
560 			error = EPIPE;
561 		SOCK_RECVBUF_UNLOCK(so_src);
562 	} else {
563 		flags = MSG_DONTWAIT;
564 		uio.uio_resid = len;
565 		if (splice_receive_stream && sb_src->sb_tls_info == NULL) {
566 			error = soreceive_stream_locked(so_src, sb_src, NULL,
567 			    &uio, &m, NULL, flags);
568 		} else {
569 			error = soreceive_generic_locked(so_src, NULL,
570 			    &uio, &m, NULL, &flags);
571 		}
572 		if (error != 0 && m != NULL) {
573 			m_freem(m);
574 			m = NULL;
575 		}
576 	}
577 	if (m != NULL) {
578 		len -= uio.uio_resid;
579 		error = sosend_generic_locked(so_dst, NULL, NULL, m, NULL,
580 		    MSG_DONTWAIT, curthread);
581 	} else if (error == 0) {
582 		len = 0;
583 		SOCK_SENDBUF_LOCK(so_dst);
584 		if ((sb_dst->sb_state & SBS_CANTSENDMORE) != 0)
585 			error = EPIPE;
586 		SOCK_SENDBUF_UNLOCK(so_dst);
587 	}
588 	if (error == 0)
589 		*lenp = len;
590 	return (error);
591 }
592 
593 /*
594  * Transfer data from the source to the sink.
595  *
596  * If "direct" is true, the transfer is done in the context of whichever thread
597  * is operating on one of the socket buffers.  We do not know which locks are
598  * held, so we can only trylock the socket buffers; if this fails, we fall back
599  * to the worker thread, which invokes this routine with "direct" set to false.
600  */
601 static void
602 so_splice_xfer(struct so_splice *sp)
603 {
604 	struct socket *so_src, *so_dst;
605 	off_t max;
606 	ssize_t len;
607 	int error;
608 
609 	mtx_assert(&sp->mtx, MA_OWNED);
610 	KASSERT(sp->state == SPLICE_QUEUED || sp->state == SPLICE_CLOSING,
611 	    ("so_splice_xfer: invalid state %d", sp->state));
612 	KASSERT(sp->max != 0, ("so_splice_xfer: max == 0"));
613 
614 	if (sp->state == SPLICE_CLOSING) {
615 		/* Userspace asked us to close the splice. */
616 		goto closing;
617 	}
618 
619 	sp->state = SPLICE_RUNNING;
620 	so_src = sp->src;
621 	so_dst = sp->dst;
622 	max = sp->max > 0 ? sp->max - so_src->so_splice_sent : OFF_MAX;
623 	if (max < 0)
624 		max = 0;
625 
626 	/*
627 	 * Lock the sockets in order to block userspace from doing anything
628 	 * sneaky.  If an error occurs or one of the sockets can no longer
629 	 * transfer data, we will automatically unsplice.
630 	 */
631 	mtx_unlock(&sp->mtx);
632 	splice_lock_pair(so_src, so_dst);
633 
634 	error = so_splice_xfer_data(so_src, so_dst, max, &len);
635 
636 	mtx_lock(&sp->mtx);
637 
638 	/*
639 	 * Update our stats while still holding the socket locks.  This
640 	 * synchronizes with getsockopt(SO_SPLICE), see the comment there.
641 	 */
642 	if (error == 0) {
643 		KASSERT(len >= 0, ("%s: len %zd < 0", __func__, len));
644 		so_src->so_splice_sent += len;
645 	}
646 	splice_unlock_pair(so_src, so_dst);
647 
648 	switch (sp->state) {
649 	case SPLICE_CLOSING:
650 closing:
651 		sp->state = SPLICE_CLOSED;
652 		wakeup(sp);
653 		mtx_unlock(&sp->mtx);
654 		break;
655 	case SPLICE_RUNNING:
656 		if (error != 0 ||
657 		    (sp->max > 0 && so_src->so_splice_sent >= sp->max)) {
658 			sp->state = SPLICE_EXCEPTION;
659 			soref(so_src);
660 			mtx_unlock(&sp->mtx);
661 			(void)so_unsplice(so_src, false);
662 			sorele(so_src);
663 		} else {
664 			/*
665 			 * Locklessly check for additional bytes in the source's
666 			 * receive buffer and queue more work if possible.  We
667 			 * may end up queuing needless work, but that's ok, and
668 			 * if we race with a thread inserting more data into the
669 			 * buffer and observe sbavail() == 0, the splice mutex
670 			 * ensures that splice_push() will queue more work for
671 			 * us.
672 			 */
673 			if (sbavail(&so_src->so_rcv) > 0 &&
674 			    sbspace(&so_dst->so_snd) > 0) {
675 				sp->state = SPLICE_QUEUED;
676 				mtx_unlock(&sp->mtx);
677 				so_splice_dispatch_async(sp);
678 			} else {
679 				sp->state = SPLICE_IDLE;
680 				mtx_unlock(&sp->mtx);
681 			}
682 		}
683 		break;
684 	default:
685 		__assert_unreachable();
686 	}
687 }
688 
689 static void
690 socket_init(void *tag)
691 {
692 
693 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
694 	    NULL, NULL, UMA_ALIGN_PTR, 0);
695 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
696 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
697 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
698 	    EVENTHANDLER_PRI_FIRST);
699 }
700 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
701 
702 #ifdef SOCKET_HHOOK
703 static void
704 socket_hhook_register(int subtype)
705 {
706 
707 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
708 	    &V_socket_hhh[subtype],
709 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
710 		printf("%s: WARNING: unable to register hook\n", __func__);
711 }
712 
713 static void
714 socket_hhook_deregister(int subtype)
715 {
716 
717 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
718 		printf("%s: WARNING: unable to deregister hook\n", __func__);
719 }
720 
721 static void
722 socket_vnet_init(const void *unused __unused)
723 {
724 	int i;
725 
726 	/* We expect a contiguous range */
727 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
728 		socket_hhook_register(i);
729 }
730 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
731     socket_vnet_init, NULL);
732 
733 static void
734 socket_vnet_uninit(const void *unused __unused)
735 {
736 	int i;
737 
738 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
739 		socket_hhook_deregister(i);
740 }
741 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
742     socket_vnet_uninit, NULL);
743 #endif	/* SOCKET_HHOOK */
744 
745 /*
746  * Initialise maxsockets.  This SYSINIT must be run after
747  * tunable_mbinit().
748  */
749 static void
750 init_maxsockets(void *ignored)
751 {
752 
753 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
754 	maxsockets = imax(maxsockets, maxfiles);
755 }
756 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
757 
758 /*
759  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
760  * of the change so that they can update their dependent limits as required.
761  */
762 static int
763 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
764 {
765 	int error, newmaxsockets;
766 
767 	newmaxsockets = maxsockets;
768 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
769 	if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
770 		if (newmaxsockets > maxsockets &&
771 		    newmaxsockets <= maxfiles) {
772 			maxsockets = newmaxsockets;
773 			EVENTHANDLER_INVOKE(maxsockets_change);
774 		} else
775 			error = EINVAL;
776 	}
777 	return (error);
778 }
779 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
780     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
781     &maxsockets, 0, sysctl_maxsockets, "IU",
782     "Maximum number of sockets available");
783 
784 /*
785  * Socket operation routines.  These routines are called by the routines in
786  * sys_socket.c or from a system process, and implement the semantics of
787  * socket operations by switching out to the protocol specific routines.
788  */
789 
790 /*
791  * Get a socket structure from our zone, and initialize it.  Note that it
792  * would probably be better to allocate socket and PCB at the same time, but
793  * I'm not convinced that all the protocols can be easily modified to do
794  * this.
795  *
796  * soalloc() returns a socket with a ref count of 0.
797  */
798 static struct socket *
799 soalloc(struct vnet *vnet)
800 {
801 	struct socket *so;
802 
803 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
804 	if (so == NULL)
805 		return (NULL);
806 #ifdef MAC
807 	if (mac_socket_init(so, M_NOWAIT) != 0) {
808 		uma_zfree(socket_zone, so);
809 		return (NULL);
810 	}
811 #endif
812 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
813 		uma_zfree(socket_zone, so);
814 		return (NULL);
815 	}
816 
817 	/*
818 	 * The socket locking protocol allows to lock 2 sockets at a time,
819 	 * however, the first one must be a listening socket.  WITNESS lacks
820 	 * a feature to change class of an existing lock, so we use DUPOK.
821 	 */
822 	mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
823 	mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
824 	mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
825 	so->so_rcv.sb_sel = &so->so_rdsel;
826 	so->so_snd.sb_sel = &so->so_wrsel;
827 	sx_init(&so->so_snd_sx, "so_snd_sx");
828 	sx_init(&so->so_rcv_sx, "so_rcv_sx");
829 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
830 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
831 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
832 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
833 #ifdef VIMAGE
834 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
835 	    __func__, __LINE__, so));
836 	so->so_vnet = vnet;
837 #endif
838 #ifdef SOCKET_HHOOK
839 	/* We shouldn't need the so_global_mtx */
840 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
841 		/* Do we need more comprehensive error returns? */
842 		uma_zfree(socket_zone, so);
843 		return (NULL);
844 	}
845 #endif
846 	mtx_lock(&so_global_mtx);
847 	so->so_gencnt = ++so_gencnt;
848 	++numopensockets;
849 #ifdef VIMAGE
850 	vnet->vnet_sockcnt++;
851 #endif
852 	mtx_unlock(&so_global_mtx);
853 
854 	return (so);
855 }
856 
857 /*
858  * Free the storage associated with a socket at the socket layer, tear down
859  * locks, labels, etc.  All protocol state is assumed already to have been
860  * torn down (and possibly never set up) by the caller.
861  */
862 void
863 sodealloc(struct socket *so)
864 {
865 
866 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
867 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
868 
869 	mtx_lock(&so_global_mtx);
870 	so->so_gencnt = ++so_gencnt;
871 	--numopensockets;	/* Could be below, but faster here. */
872 #ifdef VIMAGE
873 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
874 	    __func__, __LINE__, so));
875 	so->so_vnet->vnet_sockcnt--;
876 #endif
877 	mtx_unlock(&so_global_mtx);
878 #ifdef MAC
879 	mac_socket_destroy(so);
880 #endif
881 #ifdef SOCKET_HHOOK
882 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
883 #endif
884 
885 	khelp_destroy_osd(&so->osd);
886 	if (SOLISTENING(so)) {
887 		if (so->sol_accept_filter != NULL)
888 			accept_filt_setopt(so, NULL);
889 	} else {
890 		if (so->so_rcv.sb_hiwat)
891 			(void)chgsbsize(so->so_cred->cr_uidinfo,
892 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
893 		if (so->so_snd.sb_hiwat)
894 			(void)chgsbsize(so->so_cred->cr_uidinfo,
895 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
896 		sx_destroy(&so->so_snd_sx);
897 		sx_destroy(&so->so_rcv_sx);
898 		mtx_destroy(&so->so_snd_mtx);
899 		mtx_destroy(&so->so_rcv_mtx);
900 	}
901 	crfree(so->so_cred);
902 	mtx_destroy(&so->so_lock);
903 	uma_zfree(socket_zone, so);
904 }
905 
906 /*
907  * socreate returns a socket with a ref count of 1 and a file descriptor
908  * reference.  The socket should be closed with soclose().
909  */
910 int
911 socreate(int dom, struct socket **aso, int type, int proto,
912     struct ucred *cred, struct thread *td)
913 {
914 	struct protosw *prp;
915 	struct socket *so;
916 	int error;
917 
918 	/*
919 	 * XXX: divert(4) historically abused PF_INET.  Keep this compatibility
920 	 * shim until all applications have been updated.
921 	 */
922 	if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
923 	    proto == IPPROTO_DIVERT)) {
924 		dom = PF_DIVERT;
925 		printf("%s uses obsolete way to create divert(4) socket\n",
926 		    td->td_proc->p_comm);
927 	}
928 
929 	prp = pffindproto(dom, type, proto);
930 	if (prp == NULL) {
931 		/* No support for domain. */
932 		if (pffinddomain(dom) == NULL)
933 			return (EAFNOSUPPORT);
934 		/* No support for socket type. */
935 		if (proto == 0 && type != 0)
936 			return (EPROTOTYPE);
937 		return (EPROTONOSUPPORT);
938 	}
939 
940 	MPASS(prp->pr_attach);
941 
942 	if ((prp->pr_flags & PR_CAPATTACH) == 0) {
943 		if (CAP_TRACING(td))
944 			ktrcapfail(CAPFAIL_PROTO, &proto);
945 		if (IN_CAPABILITY_MODE(td))
946 			return (ECAPMODE);
947 	}
948 
949 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
950 		return (EPROTONOSUPPORT);
951 
952 	so = soalloc(CRED_TO_VNET(cred));
953 	if (so == NULL)
954 		return (ENOBUFS);
955 
956 	so->so_type = type;
957 	so->so_cred = crhold(cred);
958 	if ((prp->pr_domain->dom_family == PF_INET) ||
959 	    (prp->pr_domain->dom_family == PF_INET6) ||
960 	    (prp->pr_domain->dom_family == PF_ROUTE))
961 		so->so_fibnum = td->td_proc->p_fibnum;
962 	else
963 		so->so_fibnum = 0;
964 	so->so_proto = prp;
965 #ifdef MAC
966 	mac_socket_create(cred, so);
967 #endif
968 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
969 	    so_rdknl_assert_lock);
970 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
971 	    so_wrknl_assert_lock);
972 	if ((prp->pr_flags & PR_SOCKBUF) == 0) {
973 		so->so_snd.sb_mtx = &so->so_snd_mtx;
974 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
975 	}
976 	/*
977 	 * Auto-sizing of socket buffers is managed by the protocols and
978 	 * the appropriate flags must be set in the pru_attach function.
979 	 */
980 	CURVNET_SET(so->so_vnet);
981 	error = prp->pr_attach(so, proto, td);
982 	CURVNET_RESTORE();
983 	if (error) {
984 		sodealloc(so);
985 		return (error);
986 	}
987 	soref(so);
988 	*aso = so;
989 	return (0);
990 }
991 
992 #ifdef REGRESSION
993 static int regression_sonewconn_earlytest = 1;
994 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
995     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
996 #endif
997 
998 static int sooverprio = LOG_DEBUG;
999 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW,
1000     &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable");
1001 
1002 static struct timeval overinterval = { 60, 0 };
1003 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
1004     &overinterval,
1005     "Delay in seconds between warnings for listen socket overflows");
1006 
1007 /*
1008  * When an attempt at a new connection is noted on a socket which supports
1009  * accept(2), the protocol has two options:
1010  * 1) Call legacy sonewconn() function, which would call protocol attach
1011  *    method, same as used for socket(2).
1012  * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
1013  *    and then call solisten_enqueue().
1014  *
1015  * Note: the ref count on the socket is 0 on return.
1016  */
1017 struct socket *
1018 solisten_clone(struct socket *head)
1019 {
1020 	struct sbuf descrsb;
1021 	struct socket *so;
1022 	int len, overcount;
1023 	u_int qlen;
1024 	const char localprefix[] = "local:";
1025 	char descrbuf[SUNPATHLEN + sizeof(localprefix)];
1026 #if defined(INET6)
1027 	char addrbuf[INET6_ADDRSTRLEN];
1028 #elif defined(INET)
1029 	char addrbuf[INET_ADDRSTRLEN];
1030 #endif
1031 	bool dolog, over;
1032 
1033 	SOLISTEN_LOCK(head);
1034 	over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
1035 #ifdef REGRESSION
1036 	if (regression_sonewconn_earlytest && over) {
1037 #else
1038 	if (over) {
1039 #endif
1040 		head->sol_overcount++;
1041 		dolog = (sooverprio >= 0) &&
1042 			!!ratecheck(&head->sol_lastover, &overinterval);
1043 
1044 		/*
1045 		 * If we're going to log, copy the overflow count and queue
1046 		 * length from the listen socket before dropping the lock.
1047 		 * Also, reset the overflow count.
1048 		 */
1049 		if (dolog) {
1050 			overcount = head->sol_overcount;
1051 			head->sol_overcount = 0;
1052 			qlen = head->sol_qlen;
1053 		}
1054 		SOLISTEN_UNLOCK(head);
1055 
1056 		if (dolog) {
1057 			/*
1058 			 * Try to print something descriptive about the
1059 			 * socket for the error message.
1060 			 */
1061 			sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
1062 			    SBUF_FIXEDLEN);
1063 			switch (head->so_proto->pr_domain->dom_family) {
1064 #if defined(INET) || defined(INET6)
1065 #ifdef INET
1066 			case AF_INET:
1067 #endif
1068 #ifdef INET6
1069 			case AF_INET6:
1070 				if (head->so_proto->pr_domain->dom_family ==
1071 				    AF_INET6 ||
1072 				    (sotoinpcb(head)->inp_inc.inc_flags &
1073 				    INC_ISIPV6)) {
1074 					ip6_sprintf(addrbuf,
1075 					    &sotoinpcb(head)->inp_inc.inc6_laddr);
1076 					sbuf_printf(&descrsb, "[%s]", addrbuf);
1077 				} else
1078 #endif
1079 				{
1080 #ifdef INET
1081 					inet_ntoa_r(
1082 					    sotoinpcb(head)->inp_inc.inc_laddr,
1083 					    addrbuf);
1084 					sbuf_cat(&descrsb, addrbuf);
1085 #endif
1086 				}
1087 				sbuf_printf(&descrsb, ":%hu (proto %u)",
1088 				    ntohs(sotoinpcb(head)->inp_inc.inc_lport),
1089 				    head->so_proto->pr_protocol);
1090 				break;
1091 #endif /* INET || INET6 */
1092 			case AF_UNIX:
1093 				sbuf_cat(&descrsb, localprefix);
1094 				if (sotounpcb(head)->unp_addr != NULL)
1095 					len =
1096 					    sotounpcb(head)->unp_addr->sun_len -
1097 					    offsetof(struct sockaddr_un,
1098 					    sun_path);
1099 				else
1100 					len = 0;
1101 				if (len > 0)
1102 					sbuf_bcat(&descrsb,
1103 					    sotounpcb(head)->unp_addr->sun_path,
1104 					    len);
1105 				else
1106 					sbuf_cat(&descrsb, "(unknown)");
1107 				break;
1108 			}
1109 
1110 			/*
1111 			 * If we can't print something more specific, at least
1112 			 * print the domain name.
1113 			 */
1114 			if (sbuf_finish(&descrsb) != 0 ||
1115 			    sbuf_len(&descrsb) <= 0) {
1116 				sbuf_clear(&descrsb);
1117 				sbuf_cat(&descrsb,
1118 				    head->so_proto->pr_domain->dom_name ?:
1119 				    "unknown");
1120 				sbuf_finish(&descrsb);
1121 			}
1122 			KASSERT(sbuf_len(&descrsb) > 0,
1123 			    ("%s: sbuf creation failed", __func__));
1124 			/*
1125 			 * Preserve the historic listen queue overflow log
1126 			 * message, that starts with "sonewconn:".  It has
1127 			 * been known to sysadmins for years and also test
1128 			 * sys/kern/sonewconn_overflow checks for it.
1129 			 */
1130 			if (head->so_cred == 0) {
1131 				log(LOG_PRI(sooverprio),
1132 				    "sonewconn: pcb %p (%s): "
1133 				    "Listen queue overflow: %i already in "
1134 				    "queue awaiting acceptance (%d "
1135 				    "occurrences)\n", head->so_pcb,
1136 				    sbuf_data(&descrsb),
1137 			    	qlen, overcount);
1138 			} else {
1139 				log(LOG_PRI(sooverprio),
1140 				    "sonewconn: pcb %p (%s): "
1141 				    "Listen queue overflow: "
1142 				    "%i already in queue awaiting acceptance "
1143 				    "(%d occurrences), euid %d, rgid %d, jail %s\n",
1144 				    head->so_pcb, sbuf_data(&descrsb), qlen,
1145 				    overcount, head->so_cred->cr_uid,
1146 				    head->so_cred->cr_rgid,
1147 				    head->so_cred->cr_prison ?
1148 					head->so_cred->cr_prison->pr_name :
1149 					"not_jailed");
1150 			}
1151 			sbuf_delete(&descrsb);
1152 
1153 			overcount = 0;
1154 		}
1155 
1156 		return (NULL);
1157 	}
1158 	SOLISTEN_UNLOCK(head);
1159 	VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
1160 	    __func__, head));
1161 	so = soalloc(head->so_vnet);
1162 	if (so == NULL) {
1163 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1164 		    "limit reached or out of memory\n",
1165 		    __func__, head->so_pcb);
1166 		return (NULL);
1167 	}
1168 	so->so_listen = head;
1169 	so->so_type = head->so_type;
1170 	/*
1171 	 * POSIX is ambiguous on what options an accept(2)ed socket should
1172 	 * inherit from the listener.  Words "create a new socket" may be
1173 	 * interpreted as not inheriting anything.  Best programming practice
1174 	 * for application developers is to not rely on such inheritance.
1175 	 * FreeBSD had historically inherited all so_options excluding
1176 	 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options,
1177 	 * including those completely irrelevant to a new born socket.  For
1178 	 * compatibility with older versions we will inherit a list of
1179 	 * meaningful options.
1180 	 * The crucial bit to inherit is SO_ACCEPTFILTER.  We need it present
1181 	 * in the child socket for soisconnected() promoting socket from the
1182 	 * incomplete queue to complete.  It will be cleared before the child
1183 	 * gets available to accept(2).
1184 	 */
1185 	so->so_options = head->so_options & (SO_ACCEPTFILTER | SO_KEEPALIVE |
1186 	    SO_DONTROUTE | SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE);
1187 	so->so_linger = head->so_linger;
1188 	so->so_state = head->so_state;
1189 	so->so_fibnum = head->so_fibnum;
1190 	so->so_proto = head->so_proto;
1191 	so->so_cred = crhold(head->so_cred);
1192 #ifdef SOCKET_HHOOK
1193 	if (V_socket_hhh[HHOOK_SOCKET_NEWCONN]->hhh_nhooks > 0) {
1194 		if (hhook_run_socket(so, head, HHOOK_SOCKET_NEWCONN)) {
1195 			sodealloc(so);
1196 			log(LOG_DEBUG, "%s: hhook run failed\n", __func__);
1197 			return (NULL);
1198 		}
1199 	}
1200 #endif
1201 #ifdef MAC
1202 	mac_socket_newconn(head, so);
1203 #endif
1204 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1205 	    so_rdknl_assert_lock);
1206 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1207 	    so_wrknl_assert_lock);
1208 	VNET_SO_ASSERT(head);
1209 	if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
1210 		sodealloc(so);
1211 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1212 		    __func__, head->so_pcb);
1213 		return (NULL);
1214 	}
1215 	so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
1216 	so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
1217 	so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
1218 	so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
1219 	so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
1220 	so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE;
1221 	if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1222 		so->so_snd.sb_mtx = &so->so_snd_mtx;
1223 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1224 	}
1225 
1226 	return (so);
1227 }
1228 
1229 /* Connstatus may be 0 or SS_ISCONNECTED. */
1230 struct socket *
1231 sonewconn(struct socket *head, int connstatus)
1232 {
1233 	struct socket *so;
1234 
1235 	if ((so = solisten_clone(head)) == NULL)
1236 		return (NULL);
1237 
1238 	if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
1239 		sodealloc(so);
1240 		log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1241 		    __func__, head->so_pcb);
1242 		return (NULL);
1243 	}
1244 
1245 	(void)solisten_enqueue(so, connstatus);
1246 
1247 	return (so);
1248 }
1249 
1250 /*
1251  * Enqueue socket cloned by solisten_clone() to the listen queue of the
1252  * listener it has been cloned from.
1253  *
1254  * Return 'true' if socket landed on complete queue, otherwise 'false'.
1255  */
1256 bool
1257 solisten_enqueue(struct socket *so, int connstatus)
1258 {
1259 	struct socket *head = so->so_listen;
1260 
1261 	MPASS(refcount_load(&so->so_count) == 0);
1262 	refcount_init(&so->so_count, 1);
1263 
1264 	SOLISTEN_LOCK(head);
1265 	if (head->sol_accept_filter != NULL)
1266 		connstatus = 0;
1267 	so->so_state |= connstatus;
1268 	soref(head); /* A socket on (in)complete queue refs head. */
1269 	if (connstatus) {
1270 		TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
1271 		so->so_qstate = SQ_COMP;
1272 		head->sol_qlen++;
1273 		solisten_wakeup(head);	/* unlocks */
1274 		return (true);
1275 	} else {
1276 		/*
1277 		 * Keep removing sockets from the head until there's room for
1278 		 * us to insert on the tail.  In pre-locking revisions, this
1279 		 * was a simple if(), but as we could be racing with other
1280 		 * threads and soabort() requires dropping locks, we must
1281 		 * loop waiting for the condition to be true.
1282 		 */
1283 		while (head->sol_incqlen > head->sol_qlimit) {
1284 			struct socket *sp;
1285 
1286 			sp = TAILQ_FIRST(&head->sol_incomp);
1287 			TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
1288 			head->sol_incqlen--;
1289 			SOCK_LOCK(sp);
1290 			sp->so_qstate = SQ_NONE;
1291 			sp->so_listen = NULL;
1292 			SOCK_UNLOCK(sp);
1293 			sorele_locked(head);	/* does SOLISTEN_UNLOCK, head stays */
1294 			soabort(sp);
1295 			SOLISTEN_LOCK(head);
1296 		}
1297 		TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
1298 		so->so_qstate = SQ_INCOMP;
1299 		head->sol_incqlen++;
1300 		SOLISTEN_UNLOCK(head);
1301 		return (false);
1302 	}
1303 }
1304 
1305 #if defined(SCTP) || defined(SCTP_SUPPORT)
1306 /*
1307  * Socket part of sctp_peeloff().  Detach a new socket from an
1308  * association.  The new socket is returned with a reference.
1309  *
1310  * XXXGL: reduce copy-paste with solisten_clone().
1311  */
1312 struct socket *
1313 sopeeloff(struct socket *head)
1314 {
1315 	struct socket *so;
1316 
1317 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
1318 	    __func__, __LINE__, head));
1319 	so = soalloc(head->so_vnet);
1320 	if (so == NULL) {
1321 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1322 		    "limit reached or out of memory\n",
1323 		    __func__, head->so_pcb);
1324 		return (NULL);
1325 	}
1326 	so->so_type = head->so_type;
1327 	so->so_options = head->so_options;
1328 	so->so_linger = head->so_linger;
1329 	so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
1330 	so->so_fibnum = head->so_fibnum;
1331 	so->so_proto = head->so_proto;
1332 	so->so_cred = crhold(head->so_cred);
1333 #ifdef MAC
1334 	mac_socket_newconn(head, so);
1335 #endif
1336 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1337 	    so_rdknl_assert_lock);
1338 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1339 	    so_wrknl_assert_lock);
1340 	VNET_SO_ASSERT(head);
1341 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
1342 		sodealloc(so);
1343 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1344 		    __func__, head->so_pcb);
1345 		return (NULL);
1346 	}
1347 	if ((*so->so_proto->pr_attach)(so, 0, NULL)) {
1348 		sodealloc(so);
1349 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
1350 		    __func__, head->so_pcb);
1351 		return (NULL);
1352 	}
1353 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
1354 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
1355 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
1356 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
1357 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
1358 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
1359 	if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1360 		so->so_snd.sb_mtx = &so->so_snd_mtx;
1361 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1362 	}
1363 
1364 	soref(so);
1365 
1366 	return (so);
1367 }
1368 #endif	/* SCTP */
1369 
1370 int
1371 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
1372 {
1373 	int error;
1374 
1375 	CURVNET_SET(so->so_vnet);
1376 	error = so->so_proto->pr_bind(so, nam, td);
1377 	CURVNET_RESTORE();
1378 	return (error);
1379 }
1380 
1381 int
1382 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1383 {
1384 	int error;
1385 
1386 	CURVNET_SET(so->so_vnet);
1387 	error = so->so_proto->pr_bindat(fd, so, nam, td);
1388 	CURVNET_RESTORE();
1389 	return (error);
1390 }
1391 
1392 /*
1393  * solisten() transitions a socket from a non-listening state to a listening
1394  * state, but can also be used to update the listen queue depth on an
1395  * existing listen socket.  The protocol will call back into the sockets
1396  * layer using solisten_proto_check() and solisten_proto() to check and set
1397  * socket-layer listen state.  Call backs are used so that the protocol can
1398  * acquire both protocol and socket layer locks in whatever order is required
1399  * by the protocol.
1400  *
1401  * Protocol implementors are advised to hold the socket lock across the
1402  * socket-layer test and set to avoid races at the socket layer.
1403  */
1404 int
1405 solisten(struct socket *so, int backlog, struct thread *td)
1406 {
1407 	int error;
1408 
1409 	CURVNET_SET(so->so_vnet);
1410 	error = so->so_proto->pr_listen(so, backlog, td);
1411 	CURVNET_RESTORE();
1412 	return (error);
1413 }
1414 
1415 /*
1416  * Prepare for a call to solisten_proto().  Acquire all socket buffer locks in
1417  * order to interlock with socket I/O.
1418  */
1419 int
1420 solisten_proto_check(struct socket *so)
1421 {
1422 	SOCK_LOCK_ASSERT(so);
1423 
1424 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1425 	    SS_ISDISCONNECTING)) != 0)
1426 		return (EINVAL);
1427 
1428 	/*
1429 	 * Sleeping is not permitted here, so simply fail if userspace is
1430 	 * attempting to transmit or receive on the socket.  This kind of
1431 	 * transient failure is not ideal, but it should occur only if userspace
1432 	 * is misusing the socket interfaces.
1433 	 */
1434 	if (!sx_try_xlock(&so->so_snd_sx))
1435 		return (EAGAIN);
1436 	if (!sx_try_xlock(&so->so_rcv_sx)) {
1437 		sx_xunlock(&so->so_snd_sx);
1438 		return (EAGAIN);
1439 	}
1440 	mtx_lock(&so->so_snd_mtx);
1441 	mtx_lock(&so->so_rcv_mtx);
1442 
1443 	/* Interlock with soo_aio_queue() and KTLS. */
1444 	if (!SOLISTENING(so)) {
1445 		bool ktls;
1446 
1447 #ifdef KERN_TLS
1448 		ktls = so->so_snd.sb_tls_info != NULL ||
1449 		    so->so_rcv.sb_tls_info != NULL;
1450 #else
1451 		ktls = false;
1452 #endif
1453 		if (ktls ||
1454 		    (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
1455 		    (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) {
1456 			solisten_proto_abort(so);
1457 			return (EINVAL);
1458 		}
1459 	}
1460 
1461 	return (0);
1462 }
1463 
1464 /*
1465  * Undo the setup done by solisten_proto_check().
1466  */
1467 void
1468 solisten_proto_abort(struct socket *so)
1469 {
1470 	mtx_unlock(&so->so_snd_mtx);
1471 	mtx_unlock(&so->so_rcv_mtx);
1472 	sx_xunlock(&so->so_snd_sx);
1473 	sx_xunlock(&so->so_rcv_sx);
1474 }
1475 
1476 void
1477 solisten_proto(struct socket *so, int backlog)
1478 {
1479 	int sbrcv_lowat, sbsnd_lowat;
1480 	u_int sbrcv_hiwat, sbsnd_hiwat;
1481 	short sbrcv_flags, sbsnd_flags;
1482 	sbintime_t sbrcv_timeo, sbsnd_timeo;
1483 
1484 	SOCK_LOCK_ASSERT(so);
1485 	KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1486 	    SS_ISDISCONNECTING)) == 0,
1487 	    ("%s: bad socket state %p", __func__, so));
1488 
1489 	if (SOLISTENING(so))
1490 		goto listening;
1491 
1492 	/*
1493 	 * Change this socket to listening state.
1494 	 */
1495 	sbrcv_lowat = so->so_rcv.sb_lowat;
1496 	sbsnd_lowat = so->so_snd.sb_lowat;
1497 	sbrcv_hiwat = so->so_rcv.sb_hiwat;
1498 	sbsnd_hiwat = so->so_snd.sb_hiwat;
1499 	sbrcv_flags = so->so_rcv.sb_flags;
1500 	sbsnd_flags = so->so_snd.sb_flags;
1501 	sbrcv_timeo = so->so_rcv.sb_timeo;
1502 	sbsnd_timeo = so->so_snd.sb_timeo;
1503 
1504 #ifdef MAC
1505 	mac_socketpeer_label_free(so->so_peerlabel);
1506 #endif
1507 
1508 	if (!(so->so_proto->pr_flags & PR_SOCKBUF)) {
1509 		sbdestroy(so, SO_SND);
1510 		sbdestroy(so, SO_RCV);
1511 	}
1512 
1513 #ifdef INVARIANTS
1514 	bzero(&so->so_rcv,
1515 	    sizeof(struct socket) - offsetof(struct socket, so_rcv));
1516 #endif
1517 
1518 	so->sol_sbrcv_lowat = sbrcv_lowat;
1519 	so->sol_sbsnd_lowat = sbsnd_lowat;
1520 	so->sol_sbrcv_hiwat = sbrcv_hiwat;
1521 	so->sol_sbsnd_hiwat = sbsnd_hiwat;
1522 	so->sol_sbrcv_flags = sbrcv_flags;
1523 	so->sol_sbsnd_flags = sbsnd_flags;
1524 	so->sol_sbrcv_timeo = sbrcv_timeo;
1525 	so->sol_sbsnd_timeo = sbsnd_timeo;
1526 
1527 	so->sol_qlen = so->sol_incqlen = 0;
1528 	TAILQ_INIT(&so->sol_incomp);
1529 	TAILQ_INIT(&so->sol_comp);
1530 
1531 	so->sol_accept_filter = NULL;
1532 	so->sol_accept_filter_arg = NULL;
1533 	so->sol_accept_filter_str = NULL;
1534 
1535 	so->sol_upcall = NULL;
1536 	so->sol_upcallarg = NULL;
1537 
1538 	so->so_options |= SO_ACCEPTCONN;
1539 
1540 listening:
1541 	if (backlog < 0 || backlog > V_somaxconn)
1542 		backlog = V_somaxconn;
1543 	so->sol_qlimit = backlog;
1544 
1545 	mtx_unlock(&so->so_snd_mtx);
1546 	mtx_unlock(&so->so_rcv_mtx);
1547 	sx_xunlock(&so->so_snd_sx);
1548 	sx_xunlock(&so->so_rcv_sx);
1549 }
1550 
1551 /*
1552  * Wakeup listeners/subsystems once we have a complete connection.
1553  * Enters with lock, returns unlocked.
1554  */
1555 void
1556 solisten_wakeup(struct socket *sol)
1557 {
1558 
1559 	if (sol->sol_upcall != NULL)
1560 		(void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1561 	else {
1562 		selwakeuppri(&sol->so_rdsel, PSOCK);
1563 		KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1564 	}
1565 	SOLISTEN_UNLOCK(sol);
1566 	wakeup_one(&sol->sol_comp);
1567 	if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1568 		pgsigio(&sol->so_sigio, SIGIO, 0);
1569 }
1570 
1571 /*
1572  * Return single connection off a listening socket queue.  Main consumer of
1573  * the function is kern_accept4().  Some modules, that do their own accept
1574  * management also use the function.  The socket reference held by the
1575  * listen queue is handed to the caller.
1576  *
1577  * Listening socket must be locked on entry and is returned unlocked on
1578  * return.
1579  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1580  */
1581 int
1582 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1583 {
1584 	struct socket *so;
1585 	int error;
1586 
1587 	SOLISTEN_LOCK_ASSERT(head);
1588 
1589 	while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1590 	    head->so_error == 0) {
1591 		error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1592 		    "accept", 0);
1593 		if (error != 0) {
1594 			SOLISTEN_UNLOCK(head);
1595 			return (error);
1596 		}
1597 	}
1598 	if (head->so_error) {
1599 		error = head->so_error;
1600 		head->so_error = 0;
1601 	} else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1602 		error = EWOULDBLOCK;
1603 	else
1604 		error = 0;
1605 	if (error) {
1606 		SOLISTEN_UNLOCK(head);
1607 		return (error);
1608 	}
1609 	so = TAILQ_FIRST(&head->sol_comp);
1610 	SOCK_LOCK(so);
1611 	KASSERT(so->so_qstate == SQ_COMP,
1612 	    ("%s: so %p not SQ_COMP", __func__, so));
1613 	head->sol_qlen--;
1614 	so->so_qstate = SQ_NONE;
1615 	so->so_listen = NULL;
1616 	TAILQ_REMOVE(&head->sol_comp, so, so_list);
1617 	if (flags & ACCEPT4_INHERIT)
1618 		so->so_state |= (head->so_state & SS_NBIO);
1619 	else
1620 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1621 	SOCK_UNLOCK(so);
1622 	sorele_locked(head);
1623 
1624 	*ret = so;
1625 	return (0);
1626 }
1627 
1628 static struct so_splice *
1629 so_splice_alloc(off_t max)
1630 {
1631 	struct so_splice *sp;
1632 
1633 	sp = uma_zalloc(splice_zone, M_WAITOK);
1634 	sp->src = NULL;
1635 	sp->dst = NULL;
1636 	sp->max = max > 0 ? max : -1;
1637 	do {
1638 		sp->wq_index = atomic_fetchadd_32(&splice_index, 1) %
1639 		    (mp_maxid + 1);
1640 	} while (CPU_ABSENT(sp->wq_index));
1641 	sp->state = SPLICE_IDLE;
1642 	TIMEOUT_TASK_INIT(taskqueue_thread, &sp->timeout, 0, so_splice_timeout,
1643 	    sp);
1644 	return (sp);
1645 }
1646 
1647 static void
1648 so_splice_free(struct so_splice *sp)
1649 {
1650 	KASSERT(sp->state == SPLICE_CLOSED,
1651 	    ("so_splice_free: sp %p not closed", sp));
1652 	uma_zfree(splice_zone, sp);
1653 }
1654 
1655 static void
1656 so_splice_timeout(void *arg, int pending __unused)
1657 {
1658 	struct so_splice *sp;
1659 
1660 	sp = arg;
1661 	(void)so_unsplice(sp->src, true);
1662 }
1663 
1664 /*
1665  * Splice the output from so to the input of so2.
1666  */
1667 static int
1668 so_splice(struct socket *so, struct socket *so2, struct splice *splice)
1669 {
1670 	struct so_splice *sp;
1671 	int error;
1672 
1673 	if (splice->sp_max < 0)
1674 		return (EINVAL);
1675 	/* Handle only TCP for now; TODO: other streaming protos */
1676 	if (so->so_proto->pr_protocol != IPPROTO_TCP ||
1677 	    so2->so_proto->pr_protocol != IPPROTO_TCP)
1678 		return (EPROTONOSUPPORT);
1679 	if (so->so_vnet != so2->so_vnet)
1680 		return (EINVAL);
1681 
1682 	/* so_splice_xfer() assumes that we're using these implementations. */
1683 	KASSERT(so->so_proto->pr_sosend == sosend_generic,
1684 	    ("so_splice: sosend not sosend_generic"));
1685 	KASSERT(so2->so_proto->pr_soreceive == soreceive_generic ||
1686 	    so2->so_proto->pr_soreceive == soreceive_stream,
1687 	    ("so_splice: soreceive not soreceive_generic/stream"));
1688 
1689 	sp = so_splice_alloc(splice->sp_max);
1690 	so->so_splice_sent = 0;
1691 	sp->src = so;
1692 	sp->dst = so2;
1693 
1694 	error = 0;
1695 	SOCK_LOCK(so);
1696 	if (SOLISTENING(so))
1697 		error = EINVAL;
1698 	else if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1699 		error = ENOTCONN;
1700 	else if (so->so_splice != NULL)
1701 		error = EBUSY;
1702 	if (error != 0) {
1703 		SOCK_UNLOCK(so);
1704 		uma_zfree(splice_zone, sp);
1705 		return (error);
1706 	}
1707 	soref(so);
1708 	so->so_splice = sp;
1709 	SOCK_RECVBUF_LOCK(so);
1710 	so->so_rcv.sb_flags |= SB_SPLICED;
1711 	SOCK_RECVBUF_UNLOCK(so);
1712 	SOCK_UNLOCK(so);
1713 
1714 	error = 0;
1715 	SOCK_LOCK(so2);
1716 	if (SOLISTENING(so2))
1717 		error = EINVAL;
1718 	else if ((so2->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1719 		error = ENOTCONN;
1720 	else if (so2->so_splice_back != NULL)
1721 		error = EBUSY;
1722 	if (error != 0) {
1723 		SOCK_UNLOCK(so2);
1724 		SOCK_LOCK(so);
1725 		so->so_splice = NULL;
1726 		SOCK_RECVBUF_LOCK(so);
1727 		so->so_rcv.sb_flags &= ~SB_SPLICED;
1728 		SOCK_RECVBUF_UNLOCK(so);
1729 		SOCK_UNLOCK(so);
1730 		sorele(so);
1731 		uma_zfree(splice_zone, sp);
1732 		return (error);
1733 	}
1734 	soref(so2);
1735 	so2->so_splice_back = sp;
1736 	SOCK_SENDBUF_LOCK(so2);
1737 	so2->so_snd.sb_flags |= SB_SPLICED;
1738 	mtx_lock(&sp->mtx);
1739 	SOCK_SENDBUF_UNLOCK(so2);
1740 	SOCK_UNLOCK(so2);
1741 
1742 	if (splice->sp_idle.tv_sec != 0 || splice->sp_idle.tv_usec != 0) {
1743 		taskqueue_enqueue_timeout_sbt(taskqueue_thread, &sp->timeout,
1744 		    tvtosbt(splice->sp_idle), 0, C_PREL(4));
1745 	}
1746 
1747 	/*
1748 	 * Transfer any data already present in the socket buffer.
1749 	 */
1750 	sp->state = SPLICE_QUEUED;
1751 	so_splice_xfer(sp);
1752 	return (0);
1753 }
1754 
1755 static int
1756 so_unsplice(struct socket *so, bool timeout)
1757 {
1758 	struct socket *so2;
1759 	struct so_splice *sp;
1760 	bool drain;
1761 
1762 	/*
1763 	 * First unset SB_SPLICED and hide the splice structure so that
1764 	 * wakeup routines will stop enqueuing work.  This also ensures that
1765 	 * a only a single thread will proceed with the unsplice.
1766 	 */
1767 	SOCK_LOCK(so);
1768 	if (SOLISTENING(so)) {
1769 		SOCK_UNLOCK(so);
1770 		return (EINVAL);
1771 	}
1772 	SOCK_RECVBUF_LOCK(so);
1773 	if ((so->so_rcv.sb_flags & SB_SPLICED) == 0) {
1774 		SOCK_RECVBUF_UNLOCK(so);
1775 		SOCK_UNLOCK(so);
1776 		return (ENOTCONN);
1777 	}
1778 	so->so_rcv.sb_flags &= ~SB_SPLICED;
1779 	sp = so->so_splice;
1780 	so->so_splice = NULL;
1781 	SOCK_RECVBUF_UNLOCK(so);
1782 	SOCK_UNLOCK(so);
1783 
1784 	so2 = sp->dst;
1785 	SOCK_LOCK(so2);
1786 	KASSERT(!SOLISTENING(so2), ("%s: so2 is listening", __func__));
1787 	SOCK_SENDBUF_LOCK(so2);
1788 	KASSERT((so2->so_snd.sb_flags & SB_SPLICED) != 0,
1789 	    ("%s: so2 is not spliced", __func__));
1790 	KASSERT(so2->so_splice_back == sp,
1791 	    ("%s: so_splice_back != sp", __func__));
1792 	so2->so_snd.sb_flags &= ~SB_SPLICED;
1793 	so2->so_splice_back = NULL;
1794 	SOCK_SENDBUF_UNLOCK(so2);
1795 	SOCK_UNLOCK(so2);
1796 
1797 	/*
1798 	 * No new work is being enqueued.  The worker thread might be
1799 	 * splicing data right now, in which case we want to wait for it to
1800 	 * finish before proceeding.
1801 	 */
1802 	mtx_lock(&sp->mtx);
1803 	switch (sp->state) {
1804 	case SPLICE_QUEUED:
1805 	case SPLICE_RUNNING:
1806 		sp->state = SPLICE_CLOSING;
1807 		while (sp->state == SPLICE_CLOSING)
1808 			msleep(sp, &sp->mtx, PSOCK, "unsplice", 0);
1809 		break;
1810 	case SPLICE_IDLE:
1811 	case SPLICE_EXCEPTION:
1812 		sp->state = SPLICE_CLOSED;
1813 		break;
1814 	default:
1815 		__assert_unreachable();
1816 	}
1817 	if (!timeout) {
1818 		drain = taskqueue_cancel_timeout(taskqueue_thread, &sp->timeout,
1819 		    NULL) != 0;
1820 	} else {
1821 		drain = false;
1822 	}
1823 	mtx_unlock(&sp->mtx);
1824 	if (drain)
1825 		taskqueue_drain_timeout(taskqueue_thread, &sp->timeout);
1826 
1827 	/*
1828 	 * Now we hold the sole reference to the splice structure.
1829 	 * Clean up: signal userspace and release socket references.
1830 	 */
1831 	sorwakeup(so);
1832 	CURVNET_SET(so->so_vnet);
1833 	sorele(so);
1834 	sowwakeup(so2);
1835 	sorele(so2);
1836 	CURVNET_RESTORE();
1837 	so_splice_free(sp);
1838 	return (0);
1839 }
1840 
1841 /*
1842  * Free socket upon release of the very last reference.
1843  */
1844 static void
1845 sofree(struct socket *so)
1846 {
1847 	struct protosw *pr = so->so_proto;
1848 
1849 	SOCK_LOCK_ASSERT(so);
1850 	KASSERT(refcount_load(&so->so_count) == 0,
1851 	    ("%s: so %p has references", __func__, so));
1852 	KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1853 	    ("%s: so %p is on listen queue", __func__, so));
1854 	KASSERT(SOLISTENING(so) || (so->so_rcv.sb_flags & SB_SPLICED) == 0,
1855 	    ("%s: so %p rcvbuf is spliced", __func__, so));
1856 	KASSERT(SOLISTENING(so) || (so->so_snd.sb_flags & SB_SPLICED) == 0,
1857 	    ("%s: so %p sndbuf is spliced", __func__, so));
1858 	KASSERT(so->so_splice == NULL && so->so_splice_back == NULL,
1859 	    ("%s: so %p has spliced data", __func__, so));
1860 
1861 	SOCK_UNLOCK(so);
1862 
1863 	if (so->so_dtor != NULL)
1864 		so->so_dtor(so);
1865 
1866 	VNET_SO_ASSERT(so);
1867 	if (pr->pr_detach != NULL)
1868 		pr->pr_detach(so);
1869 
1870 	/*
1871 	 * From this point on, we assume that no other references to this
1872 	 * socket exist anywhere else in the stack.  Therefore, no locks need
1873 	 * to be acquired or held.
1874 	 */
1875 	if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1876 		sbdestroy(so, SO_SND);
1877 		sbdestroy(so, SO_RCV);
1878 	}
1879 	seldrain(&so->so_rdsel);
1880 	seldrain(&so->so_wrsel);
1881 	knlist_destroy(&so->so_rdsel.si_note);
1882 	knlist_destroy(&so->so_wrsel.si_note);
1883 	sodealloc(so);
1884 }
1885 
1886 /*
1887  * Release a reference on a socket while holding the socket lock.
1888  * Unlocks the socket lock before returning.
1889  */
1890 void
1891 sorele_locked(struct socket *so)
1892 {
1893 	SOCK_LOCK_ASSERT(so);
1894 	if (refcount_release(&so->so_count))
1895 		sofree(so);
1896 	else
1897 		SOCK_UNLOCK(so);
1898 }
1899 
1900 /*
1901  * Close a socket on last file table reference removal.  Initiate disconnect
1902  * if connected.  Free socket when disconnect complete.
1903  *
1904  * This function will sorele() the socket.  Note that soclose() may be called
1905  * prior to the ref count reaching zero.  The actual socket structure will
1906  * not be freed until the ref count reaches zero.
1907  */
1908 int
1909 soclose(struct socket *so)
1910 {
1911 	struct accept_queue lqueue;
1912 	int error = 0;
1913 	bool listening, last __diagused;
1914 
1915 	CURVNET_SET(so->so_vnet);
1916 	funsetown(&so->so_sigio);
1917 	if (so->so_state & SS_ISCONNECTED) {
1918 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1919 			error = sodisconnect(so);
1920 			if (error) {
1921 				if (error == ENOTCONN)
1922 					error = 0;
1923 				goto drop;
1924 			}
1925 		}
1926 
1927 		if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1928 			if ((so->so_state & SS_ISDISCONNECTING) &&
1929 			    (so->so_state & SS_NBIO))
1930 				goto drop;
1931 			while (so->so_state & SS_ISCONNECTED) {
1932 				error = tsleep(&so->so_timeo,
1933 				    PSOCK | PCATCH, "soclos",
1934 				    so->so_linger * hz);
1935 				if (error)
1936 					break;
1937 			}
1938 		}
1939 	}
1940 
1941 drop:
1942 	if (so->so_proto->pr_close != NULL)
1943 		so->so_proto->pr_close(so);
1944 
1945 	SOCK_LOCK(so);
1946 	if ((listening = SOLISTENING(so))) {
1947 		struct socket *sp;
1948 
1949 		TAILQ_INIT(&lqueue);
1950 		TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1951 		TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1952 
1953 		so->sol_qlen = so->sol_incqlen = 0;
1954 
1955 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1956 			SOCK_LOCK(sp);
1957 			sp->so_qstate = SQ_NONE;
1958 			sp->so_listen = NULL;
1959 			SOCK_UNLOCK(sp);
1960 			last = refcount_release(&so->so_count);
1961 			KASSERT(!last, ("%s: released last reference for %p",
1962 			    __func__, so));
1963 		}
1964 	}
1965 	sorele_locked(so);
1966 	if (listening) {
1967 		struct socket *sp, *tsp;
1968 
1969 		TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
1970 			soabort(sp);
1971 	}
1972 	CURVNET_RESTORE();
1973 	return (error);
1974 }
1975 
1976 /*
1977  * soabort() is used to abruptly tear down a connection, such as when a
1978  * resource limit is reached (listen queue depth exceeded), or if a listen
1979  * socket is closed while there are sockets waiting to be accepted.
1980  *
1981  * This interface is tricky, because it is called on an unreferenced socket,
1982  * and must be called only by a thread that has actually removed the socket
1983  * from the listen queue it was on.  Likely this thread holds the last
1984  * reference on the socket and soabort() will proceed with sofree().  But
1985  * it might be not the last, as the sockets on the listen queues are seen
1986  * from the protocol side.
1987  *
1988  * This interface will call into the protocol code, so must not be called
1989  * with any socket locks held.  Protocols do call it while holding their own
1990  * recursible protocol mutexes, but this is something that should be subject
1991  * to review in the future.
1992  *
1993  * Usually socket should have a single reference left, but this is not a
1994  * requirement.  In the past, when we have had named references for file
1995  * descriptor and protocol, we asserted that none of them are being held.
1996  */
1997 void
1998 soabort(struct socket *so)
1999 {
2000 
2001 	VNET_SO_ASSERT(so);
2002 
2003 	if (so->so_proto->pr_abort != NULL)
2004 		so->so_proto->pr_abort(so);
2005 	SOCK_LOCK(so);
2006 	sorele_locked(so);
2007 }
2008 
2009 int
2010 soaccept(struct socket *so, struct sockaddr *sa)
2011 {
2012 #ifdef INVARIANTS
2013 	u_char len = sa->sa_len;
2014 #endif
2015 	int error;
2016 
2017 	CURVNET_SET(so->so_vnet);
2018 	error = so->so_proto->pr_accept(so, sa);
2019 	KASSERT(sa->sa_len <= len,
2020 	    ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2021 	CURVNET_RESTORE();
2022 	return (error);
2023 }
2024 
2025 int
2026 sopeeraddr(struct socket *so, struct sockaddr *sa)
2027 {
2028 #ifdef INVARIANTS
2029 	u_char len = sa->sa_len;
2030 #endif
2031 	int error;
2032 
2033 	CURVNET_ASSERT_SET();
2034 
2035 	error = so->so_proto->pr_peeraddr(so, sa);
2036 	KASSERT(sa->sa_len <= len,
2037 	    ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2038 
2039 	return (error);
2040 }
2041 
2042 int
2043 sosockaddr(struct socket *so, struct sockaddr *sa)
2044 {
2045 #ifdef INVARIANTS
2046 	u_char len = sa->sa_len;
2047 #endif
2048 	int error;
2049 
2050 	CURVNET_SET(so->so_vnet);
2051 	error = so->so_proto->pr_sockaddr(so, sa);
2052 	KASSERT(sa->sa_len <= len,
2053 	    ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2054 	CURVNET_RESTORE();
2055 
2056 	return (error);
2057 }
2058 
2059 int
2060 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
2061 {
2062 
2063 	return (soconnectat(AT_FDCWD, so, nam, td));
2064 }
2065 
2066 int
2067 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
2068 {
2069 	int error;
2070 
2071 	CURVNET_SET(so->so_vnet);
2072 
2073 	/*
2074 	 * If protocol is connection-based, can only connect once.
2075 	 * Otherwise, if connected, try to disconnect first.  This allows
2076 	 * user to disconnect by connecting to, e.g., a null address.
2077 	 *
2078 	 * Note, this check is racy and may need to be re-evaluated at the
2079 	 * protocol layer.
2080 	 */
2081 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
2082 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
2083 	    (error = sodisconnect(so)))) {
2084 		error = EISCONN;
2085 	} else {
2086 		/*
2087 		 * Prevent accumulated error from previous connection from
2088 		 * biting us.
2089 		 */
2090 		so->so_error = 0;
2091 		if (fd == AT_FDCWD) {
2092 			error = so->so_proto->pr_connect(so, nam, td);
2093 		} else {
2094 			error = so->so_proto->pr_connectat(fd, so, nam, td);
2095 		}
2096 	}
2097 	CURVNET_RESTORE();
2098 
2099 	return (error);
2100 }
2101 
2102 int
2103 soconnect2(struct socket *so1, struct socket *so2)
2104 {
2105 	int error;
2106 
2107 	CURVNET_SET(so1->so_vnet);
2108 	error = so1->so_proto->pr_connect2(so1, so2);
2109 	CURVNET_RESTORE();
2110 	return (error);
2111 }
2112 
2113 int
2114 sodisconnect(struct socket *so)
2115 {
2116 	int error;
2117 
2118 	if ((so->so_state & SS_ISCONNECTED) == 0)
2119 		return (ENOTCONN);
2120 	if (so->so_state & SS_ISDISCONNECTING)
2121 		return (EALREADY);
2122 	VNET_SO_ASSERT(so);
2123 	error = so->so_proto->pr_disconnect(so);
2124 	return (error);
2125 }
2126 
2127 int
2128 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
2129     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2130 {
2131 	long space;
2132 	ssize_t resid;
2133 	int clen = 0, error, dontroute;
2134 
2135 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
2136 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
2137 	    ("sosend_dgram: !PR_ATOMIC"));
2138 
2139 	if (uio != NULL)
2140 		resid = uio->uio_resid;
2141 	else
2142 		resid = top->m_pkthdr.len;
2143 	/*
2144 	 * In theory resid should be unsigned.  However, space must be
2145 	 * signed, as it might be less than 0 if we over-committed, and we
2146 	 * must use a signed comparison of space and resid.  On the other
2147 	 * hand, a negative resid causes us to loop sending 0-length
2148 	 * segments to the protocol.
2149 	 */
2150 	if (resid < 0) {
2151 		error = EINVAL;
2152 		goto out;
2153 	}
2154 
2155 	dontroute =
2156 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
2157 	if (td != NULL)
2158 		td->td_ru.ru_msgsnd++;
2159 	if (control != NULL)
2160 		clen = control->m_len;
2161 
2162 	SOCKBUF_LOCK(&so->so_snd);
2163 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2164 		SOCKBUF_UNLOCK(&so->so_snd);
2165 		error = EPIPE;
2166 		goto out;
2167 	}
2168 	if (so->so_error) {
2169 		error = so->so_error;
2170 		so->so_error = 0;
2171 		SOCKBUF_UNLOCK(&so->so_snd);
2172 		goto out;
2173 	}
2174 	if ((so->so_state & SS_ISCONNECTED) == 0) {
2175 		/*
2176 		 * `sendto' and `sendmsg' is allowed on a connection-based
2177 		 * socket if it supports implied connect.  Return ENOTCONN if
2178 		 * not connected and no address is supplied.
2179 		 */
2180 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2181 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2182 			if (!(resid == 0 && clen != 0)) {
2183 				SOCKBUF_UNLOCK(&so->so_snd);
2184 				error = ENOTCONN;
2185 				goto out;
2186 			}
2187 		} else if (addr == NULL) {
2188 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2189 				error = ENOTCONN;
2190 			else
2191 				error = EDESTADDRREQ;
2192 			SOCKBUF_UNLOCK(&so->so_snd);
2193 			goto out;
2194 		}
2195 	}
2196 
2197 	/*
2198 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
2199 	 * problem and need fixing.
2200 	 */
2201 	space = sbspace(&so->so_snd);
2202 	if (flags & MSG_OOB)
2203 		space += 1024;
2204 	space -= clen;
2205 	SOCKBUF_UNLOCK(&so->so_snd);
2206 	if (resid > space) {
2207 		error = EMSGSIZE;
2208 		goto out;
2209 	}
2210 	if (uio == NULL) {
2211 		resid = 0;
2212 		if (flags & MSG_EOR)
2213 			top->m_flags |= M_EOR;
2214 	} else {
2215 		/*
2216 		 * Copy the data from userland into a mbuf chain.
2217 		 * If no data is to be copied in, a single empty mbuf
2218 		 * is returned.
2219 		 */
2220 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
2221 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
2222 		if (top == NULL) {
2223 			error = EFAULT;	/* only possible error */
2224 			goto out;
2225 		}
2226 		space -= resid - uio->uio_resid;
2227 		resid = uio->uio_resid;
2228 	}
2229 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
2230 	/*
2231 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
2232 	 * than with.
2233 	 */
2234 	if (dontroute) {
2235 		SOCK_LOCK(so);
2236 		so->so_options |= SO_DONTROUTE;
2237 		SOCK_UNLOCK(so);
2238 	}
2239 	/*
2240 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
2241 	 * of date.  We could have received a reset packet in an interrupt or
2242 	 * maybe we slept while doing page faults in uiomove() etc.  We could
2243 	 * probably recheck again inside the locking protection here, but
2244 	 * there are probably other places that this also happens.  We must
2245 	 * rethink this.
2246 	 */
2247 	VNET_SO_ASSERT(so);
2248 	error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
2249 	/*
2250 	 * If the user set MSG_EOF, the protocol understands this flag and
2251 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
2252 	 */
2253 	    ((flags & MSG_EOF) &&
2254 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2255 	     (resid <= 0)) ?
2256 		PRUS_EOF :
2257 		/* If there is more to send set PRUS_MORETOCOME */
2258 		(flags & MSG_MORETOCOME) ||
2259 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
2260 		top, addr, control, td);
2261 	if (dontroute) {
2262 		SOCK_LOCK(so);
2263 		so->so_options &= ~SO_DONTROUTE;
2264 		SOCK_UNLOCK(so);
2265 	}
2266 	clen = 0;
2267 	control = NULL;
2268 	top = NULL;
2269 out:
2270 	if (top != NULL)
2271 		m_freem(top);
2272 	if (control != NULL)
2273 		m_freem(control);
2274 	return (error);
2275 }
2276 
2277 /*
2278  * Send on a socket.  If send must go all at once and message is larger than
2279  * send buffering, then hard error.  Lock against other senders.  If must go
2280  * all at once and not enough room now, then inform user that this would
2281  * block and do nothing.  Otherwise, if nonblocking, send as much as
2282  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
2283  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
2284  * in mbuf chain must be small enough to send all at once.
2285  *
2286  * Returns nonzero on error, timeout or signal; callers must check for short
2287  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
2288  * on return.
2289  */
2290 static int
2291 sosend_generic_locked(struct socket *so, struct sockaddr *addr, struct uio *uio,
2292     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2293 {
2294 	long space;
2295 	ssize_t resid;
2296 	int clen = 0, error, dontroute;
2297 	int atomic = sosendallatonce(so) || top;
2298 	int pr_send_flag;
2299 #ifdef KERN_TLS
2300 	struct ktls_session *tls;
2301 	int tls_enq_cnt, tls_send_flag;
2302 	uint8_t tls_rtype;
2303 
2304 	tls = NULL;
2305 	tls_rtype = TLS_RLTYPE_APP;
2306 #endif
2307 
2308 	SOCK_IO_SEND_ASSERT_LOCKED(so);
2309 
2310 	if (uio != NULL)
2311 		resid = uio->uio_resid;
2312 	else if ((top->m_flags & M_PKTHDR) != 0)
2313 		resid = top->m_pkthdr.len;
2314 	else
2315 		resid = m_length(top, NULL);
2316 	/*
2317 	 * In theory resid should be unsigned.  However, space must be
2318 	 * signed, as it might be less than 0 if we over-committed, and we
2319 	 * must use a signed comparison of space and resid.  On the other
2320 	 * hand, a negative resid causes us to loop sending 0-length
2321 	 * segments to the protocol.
2322 	 *
2323 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
2324 	 * type sockets since that's an error.
2325 	 */
2326 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
2327 		error = EINVAL;
2328 		goto out;
2329 	}
2330 
2331 	dontroute =
2332 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
2333 	    (so->so_proto->pr_flags & PR_ATOMIC);
2334 	if (td != NULL)
2335 		td->td_ru.ru_msgsnd++;
2336 	if (control != NULL)
2337 		clen = control->m_len;
2338 
2339 #ifdef KERN_TLS
2340 	tls_send_flag = 0;
2341 	tls = ktls_hold(so->so_snd.sb_tls_info);
2342 	if (tls != NULL) {
2343 		if (tls->mode == TCP_TLS_MODE_SW)
2344 			tls_send_flag = PRUS_NOTREADY;
2345 
2346 		if (control != NULL) {
2347 			struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2348 
2349 			if (clen >= sizeof(*cm) &&
2350 			    cm->cmsg_type == TLS_SET_RECORD_TYPE) {
2351 				tls_rtype = *((uint8_t *)CMSG_DATA(cm));
2352 				clen = 0;
2353 				m_freem(control);
2354 				control = NULL;
2355 				atomic = 1;
2356 			}
2357 		}
2358 
2359 		if (resid == 0 && !ktls_permit_empty_frames(tls)) {
2360 			error = EINVAL;
2361 			goto out;
2362 		}
2363 	}
2364 #endif
2365 
2366 restart:
2367 	do {
2368 		SOCKBUF_LOCK(&so->so_snd);
2369 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2370 			SOCKBUF_UNLOCK(&so->so_snd);
2371 			error = EPIPE;
2372 			goto out;
2373 		}
2374 		if (so->so_error) {
2375 			error = so->so_error;
2376 			so->so_error = 0;
2377 			SOCKBUF_UNLOCK(&so->so_snd);
2378 			goto out;
2379 		}
2380 		if ((so->so_state & SS_ISCONNECTED) == 0) {
2381 			/*
2382 			 * `sendto' and `sendmsg' is allowed on a connection-
2383 			 * based socket if it supports implied connect.
2384 			 * Return ENOTCONN if not connected and no address is
2385 			 * supplied.
2386 			 */
2387 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2388 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2389 				if (!(resid == 0 && clen != 0)) {
2390 					SOCKBUF_UNLOCK(&so->so_snd);
2391 					error = ENOTCONN;
2392 					goto out;
2393 				}
2394 			} else if (addr == NULL) {
2395 				SOCKBUF_UNLOCK(&so->so_snd);
2396 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2397 					error = ENOTCONN;
2398 				else
2399 					error = EDESTADDRREQ;
2400 				goto out;
2401 			}
2402 		}
2403 		space = sbspace(&so->so_snd);
2404 		if (flags & MSG_OOB)
2405 			space += 1024;
2406 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
2407 		    clen > so->so_snd.sb_hiwat) {
2408 			SOCKBUF_UNLOCK(&so->so_snd);
2409 			error = EMSGSIZE;
2410 			goto out;
2411 		}
2412 		if (space < resid + clen &&
2413 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
2414 			if ((so->so_state & SS_NBIO) ||
2415 			    (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
2416 				SOCKBUF_UNLOCK(&so->so_snd);
2417 				error = EWOULDBLOCK;
2418 				goto out;
2419 			}
2420 			error = sbwait(so, SO_SND);
2421 			SOCKBUF_UNLOCK(&so->so_snd);
2422 			if (error)
2423 				goto out;
2424 			goto restart;
2425 		}
2426 		SOCKBUF_UNLOCK(&so->so_snd);
2427 		space -= clen;
2428 		do {
2429 			if (uio == NULL) {
2430 				resid = 0;
2431 				if (flags & MSG_EOR)
2432 					top->m_flags |= M_EOR;
2433 #ifdef KERN_TLS
2434 				if (tls != NULL) {
2435 					ktls_frame(top, tls, &tls_enq_cnt,
2436 					    tls_rtype);
2437 					tls_rtype = TLS_RLTYPE_APP;
2438 				}
2439 #endif
2440 			} else {
2441 				/*
2442 				 * Copy the data from userland into a mbuf
2443 				 * chain.  If resid is 0, which can happen
2444 				 * only if we have control to send, then
2445 				 * a single empty mbuf is returned.  This
2446 				 * is a workaround to prevent protocol send
2447 				 * methods to panic.
2448 				 */
2449 #ifdef KERN_TLS
2450 				if (tls != NULL) {
2451 					top = m_uiotombuf(uio, M_WAITOK, space,
2452 					    tls->params.max_frame_len,
2453 					    M_EXTPG |
2454 					    ((flags & MSG_EOR) ? M_EOR : 0));
2455 					if (top != NULL) {
2456 						ktls_frame(top, tls,
2457 						    &tls_enq_cnt, tls_rtype);
2458 					}
2459 					tls_rtype = TLS_RLTYPE_APP;
2460 				} else
2461 #endif
2462 					top = m_uiotombuf(uio, M_WAITOK, space,
2463 					    (atomic ? max_hdr : 0),
2464 					    (atomic ? M_PKTHDR : 0) |
2465 					    ((flags & MSG_EOR) ? M_EOR : 0));
2466 				if (top == NULL) {
2467 					error = EFAULT; /* only possible error */
2468 					goto out;
2469 				}
2470 				space -= resid - uio->uio_resid;
2471 				resid = uio->uio_resid;
2472 			}
2473 			if (dontroute) {
2474 				SOCK_LOCK(so);
2475 				so->so_options |= SO_DONTROUTE;
2476 				SOCK_UNLOCK(so);
2477 			}
2478 			/*
2479 			 * XXX all the SBS_CANTSENDMORE checks previously
2480 			 * done could be out of date.  We could have received
2481 			 * a reset packet in an interrupt or maybe we slept
2482 			 * while doing page faults in uiomove() etc.  We
2483 			 * could probably recheck again inside the locking
2484 			 * protection here, but there are probably other
2485 			 * places that this also happens.  We must rethink
2486 			 * this.
2487 			 */
2488 			VNET_SO_ASSERT(so);
2489 
2490 			pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
2491 			/*
2492 			 * If the user set MSG_EOF, the protocol understands
2493 			 * this flag and nothing left to send then use
2494 			 * PRU_SEND_EOF instead of PRU_SEND.
2495 			 */
2496 			    ((flags & MSG_EOF) &&
2497 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2498 			     (resid <= 0)) ?
2499 				PRUS_EOF :
2500 			/* If there is more to send set PRUS_MORETOCOME. */
2501 			    (flags & MSG_MORETOCOME) ||
2502 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
2503 
2504 #ifdef KERN_TLS
2505 			pr_send_flag |= tls_send_flag;
2506 #endif
2507 
2508 			error = so->so_proto->pr_send(so, pr_send_flag, top,
2509 			    addr, control, td);
2510 
2511 			if (dontroute) {
2512 				SOCK_LOCK(so);
2513 				so->so_options &= ~SO_DONTROUTE;
2514 				SOCK_UNLOCK(so);
2515 			}
2516 
2517 #ifdef KERN_TLS
2518 			if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
2519 				if (error != 0) {
2520 					m_freem(top);
2521 					top = NULL;
2522 				} else {
2523 					soref(so);
2524 					ktls_enqueue(top, so, tls_enq_cnt);
2525 				}
2526 			}
2527 #endif
2528 			clen = 0;
2529 			control = NULL;
2530 			top = NULL;
2531 			if (error)
2532 				goto out;
2533 		} while (resid && space > 0);
2534 	} while (resid);
2535 
2536 out:
2537 #ifdef KERN_TLS
2538 	if (tls != NULL)
2539 		ktls_free(tls);
2540 #endif
2541 	if (top != NULL)
2542 		m_freem(top);
2543 	if (control != NULL)
2544 		m_freem(control);
2545 	return (error);
2546 }
2547 
2548 int
2549 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
2550     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2551 {
2552 	int error;
2553 
2554 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
2555 	if (error)
2556 		return (error);
2557 	error = sosend_generic_locked(so, addr, uio, top, control, flags, td);
2558 	SOCK_IO_SEND_UNLOCK(so);
2559 	return (error);
2560 }
2561 
2562 /*
2563  * Send to a socket from a kernel thread.
2564  *
2565  * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
2566  * Exception is nfs/bootp_subr.c.  It is arguable that the VNET context needs
2567  * to be set at all.  This function should just boil down to a static inline
2568  * calling the protocol method.
2569  */
2570 int
2571 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2572     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2573 {
2574 	int error;
2575 
2576 	CURVNET_SET(so->so_vnet);
2577 	error = so->so_proto->pr_sosend(so, addr, uio,
2578 	    top, control, flags, td);
2579 	CURVNET_RESTORE();
2580 	return (error);
2581 }
2582 
2583 /*
2584  * send(2), write(2) or aio_write(2) on a socket.
2585  */
2586 int
2587 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2588     struct mbuf *control, int flags, struct proc *userproc)
2589 {
2590 	struct thread *td;
2591 	ssize_t len;
2592 	int error;
2593 
2594 	td = uio->uio_td;
2595 	len = uio->uio_resid;
2596 	CURVNET_SET(so->so_vnet);
2597 	error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
2598 	    td);
2599 	CURVNET_RESTORE();
2600 	if (error != 0) {
2601 		/*
2602 		 * Clear transient errors for stream protocols if they made
2603 		 * some progress.  Make exclusion for aio(4) that would
2604 		 * schedule a new write in case of EWOULDBLOCK and clear
2605 		 * error itself.  See soaio_process_job().
2606 		 */
2607 		if (uio->uio_resid != len &&
2608 		    (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
2609 		    userproc == NULL &&
2610 		    (error == ERESTART || error == EINTR ||
2611 		    error == EWOULDBLOCK))
2612 			error = 0;
2613 		/* Generation of SIGPIPE can be controlled per socket. */
2614 		if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
2615 		    (flags & MSG_NOSIGNAL) == 0) {
2616 			if (userproc != NULL) {
2617 				/* aio(4) job */
2618 				PROC_LOCK(userproc);
2619 				kern_psignal(userproc, SIGPIPE);
2620 				PROC_UNLOCK(userproc);
2621 			} else {
2622 				PROC_LOCK(td->td_proc);
2623 				tdsignal(td, SIGPIPE);
2624 				PROC_UNLOCK(td->td_proc);
2625 			}
2626 		}
2627 	}
2628 	return (error);
2629 }
2630 
2631 /*
2632  * The part of soreceive() that implements reading non-inline out-of-band
2633  * data from a socket.  For more complete comments, see soreceive(), from
2634  * which this code originated.
2635  *
2636  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
2637  * unable to return an mbuf chain to the caller.
2638  */
2639 static int
2640 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
2641 {
2642 	struct protosw *pr = so->so_proto;
2643 	struct mbuf *m;
2644 	int error;
2645 
2646 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
2647 	VNET_SO_ASSERT(so);
2648 
2649 	m = m_get(M_WAITOK, MT_DATA);
2650 	error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
2651 	if (error)
2652 		goto bad;
2653 	do {
2654 		error = uiomove(mtod(m, void *),
2655 		    (int) min(uio->uio_resid, m->m_len), uio);
2656 		m = m_free(m);
2657 	} while (uio->uio_resid && error == 0 && m);
2658 bad:
2659 	if (m != NULL)
2660 		m_freem(m);
2661 	return (error);
2662 }
2663 
2664 /*
2665  * Following replacement or removal of the first mbuf on the first mbuf chain
2666  * of a socket buffer, push necessary state changes back into the socket
2667  * buffer so that other consumers see the values consistently.  'nextrecord'
2668  * is the callers locally stored value of the original value of
2669  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
2670  * NOTE: 'nextrecord' may be NULL.
2671  */
2672 static __inline void
2673 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
2674 {
2675 
2676 	SOCKBUF_LOCK_ASSERT(sb);
2677 	/*
2678 	 * First, update for the new value of nextrecord.  If necessary, make
2679 	 * it the first record.
2680 	 */
2681 	if (sb->sb_mb != NULL)
2682 		sb->sb_mb->m_nextpkt = nextrecord;
2683 	else
2684 		sb->sb_mb = nextrecord;
2685 
2686 	/*
2687 	 * Now update any dependent socket buffer fields to reflect the new
2688 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
2689 	 * addition of a second clause that takes care of the case where
2690 	 * sb_mb has been updated, but remains the last record.
2691 	 */
2692 	if (sb->sb_mb == NULL) {
2693 		sb->sb_mbtail = NULL;
2694 		sb->sb_lastrecord = NULL;
2695 	} else if (sb->sb_mb->m_nextpkt == NULL)
2696 		sb->sb_lastrecord = sb->sb_mb;
2697 }
2698 
2699 /*
2700  * Implement receive operations on a socket.  We depend on the way that
2701  * records are added to the sockbuf by sbappend.  In particular, each record
2702  * (mbufs linked through m_next) must begin with an address if the protocol
2703  * so specifies, followed by an optional mbuf or mbufs containing ancillary
2704  * data, and then zero or more mbufs of data.  In order to allow parallelism
2705  * between network receive and copying to user space, as well as avoid
2706  * sleeping with a mutex held, we release the socket buffer mutex during the
2707  * user space copy.  Although the sockbuf is locked, new data may still be
2708  * appended, and thus we must maintain consistency of the sockbuf during that
2709  * time.
2710  *
2711  * The caller may receive the data as a single mbuf chain by supplying an
2712  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
2713  * the count in uio_resid.
2714  */
2715 static int
2716 soreceive_generic_locked(struct socket *so, struct sockaddr **psa,
2717     struct uio *uio, struct mbuf **mp, struct mbuf **controlp, int *flagsp)
2718 {
2719 	struct mbuf *m;
2720 	int flags, error, offset;
2721 	ssize_t len;
2722 	struct protosw *pr = so->so_proto;
2723 	struct mbuf *nextrecord;
2724 	int moff, type = 0;
2725 	ssize_t orig_resid = uio->uio_resid;
2726 	bool report_real_len = false;
2727 
2728 	SOCK_IO_RECV_ASSERT_LOCKED(so);
2729 
2730 	error = 0;
2731 	if (flagsp != NULL) {
2732 		report_real_len = *flagsp & MSG_TRUNC;
2733 		*flagsp &= ~MSG_TRUNC;
2734 		flags = *flagsp &~ MSG_EOR;
2735 	} else
2736 		flags = 0;
2737 
2738 restart:
2739 	SOCKBUF_LOCK(&so->so_rcv);
2740 	m = so->so_rcv.sb_mb;
2741 	/*
2742 	 * If we have less data than requested, block awaiting more (subject
2743 	 * to any timeout) if:
2744 	 *   1. the current count is less than the low water mark, or
2745 	 *   2. MSG_DONTWAIT is not set
2746 	 */
2747 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
2748 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
2749 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
2750 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
2751 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
2752 		    ("receive: m == %p sbavail == %u",
2753 		    m, sbavail(&so->so_rcv)));
2754 		if (so->so_error || so->so_rerror) {
2755 			if (m != NULL)
2756 				goto dontblock;
2757 			if (so->so_error)
2758 				error = so->so_error;
2759 			else
2760 				error = so->so_rerror;
2761 			if ((flags & MSG_PEEK) == 0) {
2762 				if (so->so_error)
2763 					so->so_error = 0;
2764 				else
2765 					so->so_rerror = 0;
2766 			}
2767 			SOCKBUF_UNLOCK(&so->so_rcv);
2768 			goto release;
2769 		}
2770 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2771 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2772 			if (m != NULL)
2773 				goto dontblock;
2774 #ifdef KERN_TLS
2775 			else if (so->so_rcv.sb_tlsdcc == 0 &&
2776 			    so->so_rcv.sb_tlscc == 0) {
2777 #else
2778 			else {
2779 #endif
2780 				SOCKBUF_UNLOCK(&so->so_rcv);
2781 				goto release;
2782 			}
2783 		}
2784 		for (; m != NULL; m = m->m_next)
2785 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
2786 				m = so->so_rcv.sb_mb;
2787 				goto dontblock;
2788 			}
2789 		if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2790 		    SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2791 		    (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2792 			SOCKBUF_UNLOCK(&so->so_rcv);
2793 			error = ENOTCONN;
2794 			goto release;
2795 		}
2796 		if (uio->uio_resid == 0 && !report_real_len) {
2797 			SOCKBUF_UNLOCK(&so->so_rcv);
2798 			goto release;
2799 		}
2800 		if ((so->so_state & SS_NBIO) ||
2801 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2802 			SOCKBUF_UNLOCK(&so->so_rcv);
2803 			error = EWOULDBLOCK;
2804 			goto release;
2805 		}
2806 		SBLASTRECORDCHK(&so->so_rcv);
2807 		SBLASTMBUFCHK(&so->so_rcv);
2808 		error = sbwait(so, SO_RCV);
2809 		SOCKBUF_UNLOCK(&so->so_rcv);
2810 		if (error)
2811 			goto release;
2812 		goto restart;
2813 	}
2814 dontblock:
2815 	/*
2816 	 * From this point onward, we maintain 'nextrecord' as a cache of the
2817 	 * pointer to the next record in the socket buffer.  We must keep the
2818 	 * various socket buffer pointers and local stack versions of the
2819 	 * pointers in sync, pushing out modifications before dropping the
2820 	 * socket buffer mutex, and re-reading them when picking it up.
2821 	 *
2822 	 * Otherwise, we will race with the network stack appending new data
2823 	 * or records onto the socket buffer by using inconsistent/stale
2824 	 * versions of the field, possibly resulting in socket buffer
2825 	 * corruption.
2826 	 *
2827 	 * By holding the high-level sblock(), we prevent simultaneous
2828 	 * readers from pulling off the front of the socket buffer.
2829 	 */
2830 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2831 	if (uio->uio_td)
2832 		uio->uio_td->td_ru.ru_msgrcv++;
2833 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2834 	SBLASTRECORDCHK(&so->so_rcv);
2835 	SBLASTMBUFCHK(&so->so_rcv);
2836 	nextrecord = m->m_nextpkt;
2837 	if (pr->pr_flags & PR_ADDR) {
2838 		KASSERT(m->m_type == MT_SONAME,
2839 		    ("m->m_type == %d", m->m_type));
2840 		orig_resid = 0;
2841 		if (psa != NULL)
2842 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2843 			    M_NOWAIT);
2844 		if (flags & MSG_PEEK) {
2845 			m = m->m_next;
2846 		} else {
2847 			sbfree(&so->so_rcv, m);
2848 			so->so_rcv.sb_mb = m_free(m);
2849 			m = so->so_rcv.sb_mb;
2850 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2851 		}
2852 	}
2853 
2854 	/*
2855 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2856 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
2857 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
2858 	 * perform externalization (or freeing if controlp == NULL).
2859 	 */
2860 	if (m != NULL && m->m_type == MT_CONTROL) {
2861 		struct mbuf *cm = NULL, *cmn;
2862 		struct mbuf **cme = &cm;
2863 #ifdef KERN_TLS
2864 		struct cmsghdr *cmsg;
2865 		struct tls_get_record tgr;
2866 
2867 		/*
2868 		 * For MSG_TLSAPPDATA, check for an alert record.
2869 		 * If found, return ENXIO without removing
2870 		 * it from the receive queue.  This allows a subsequent
2871 		 * call without MSG_TLSAPPDATA to receive it.
2872 		 * Note that, for TLS, there should only be a single
2873 		 * control mbuf with the TLS_GET_RECORD message in it.
2874 		 */
2875 		if (flags & MSG_TLSAPPDATA) {
2876 			cmsg = mtod(m, struct cmsghdr *);
2877 			if (cmsg->cmsg_type == TLS_GET_RECORD &&
2878 			    cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2879 				memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2880 				if (__predict_false(tgr.tls_type ==
2881 				    TLS_RLTYPE_ALERT)) {
2882 					SOCKBUF_UNLOCK(&so->so_rcv);
2883 					error = ENXIO;
2884 					goto release;
2885 				}
2886 			}
2887 		}
2888 #endif
2889 
2890 		do {
2891 			if (flags & MSG_PEEK) {
2892 				if (controlp != NULL) {
2893 					*controlp = m_copym(m, 0, m->m_len,
2894 					    M_NOWAIT);
2895 					controlp = &(*controlp)->m_next;
2896 				}
2897 				m = m->m_next;
2898 			} else {
2899 				sbfree(&so->so_rcv, m);
2900 				so->so_rcv.sb_mb = m->m_next;
2901 				m->m_next = NULL;
2902 				*cme = m;
2903 				cme = &(*cme)->m_next;
2904 				m = so->so_rcv.sb_mb;
2905 			}
2906 		} while (m != NULL && m->m_type == MT_CONTROL);
2907 		if ((flags & MSG_PEEK) == 0)
2908 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2909 		while (cm != NULL) {
2910 			cmn = cm->m_next;
2911 			cm->m_next = NULL;
2912 			if (pr->pr_domain->dom_externalize != NULL) {
2913 				SOCKBUF_UNLOCK(&so->so_rcv);
2914 				VNET_SO_ASSERT(so);
2915 				error = (*pr->pr_domain->dom_externalize)
2916 				    (cm, controlp, flags);
2917 				SOCKBUF_LOCK(&so->so_rcv);
2918 			} else if (controlp != NULL)
2919 				*controlp = cm;
2920 			else
2921 				m_freem(cm);
2922 			if (controlp != NULL) {
2923 				while (*controlp != NULL)
2924 					controlp = &(*controlp)->m_next;
2925 			}
2926 			cm = cmn;
2927 		}
2928 		if (m != NULL)
2929 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2930 		else
2931 			nextrecord = so->so_rcv.sb_mb;
2932 		orig_resid = 0;
2933 	}
2934 	if (m != NULL) {
2935 		if ((flags & MSG_PEEK) == 0) {
2936 			KASSERT(m->m_nextpkt == nextrecord,
2937 			    ("soreceive: post-control, nextrecord !sync"));
2938 			if (nextrecord == NULL) {
2939 				KASSERT(so->so_rcv.sb_mb == m,
2940 				    ("soreceive: post-control, sb_mb!=m"));
2941 				KASSERT(so->so_rcv.sb_lastrecord == m,
2942 				    ("soreceive: post-control, lastrecord!=m"));
2943 			}
2944 		}
2945 		type = m->m_type;
2946 		if (type == MT_OOBDATA)
2947 			flags |= MSG_OOB;
2948 	} else {
2949 		if ((flags & MSG_PEEK) == 0) {
2950 			KASSERT(so->so_rcv.sb_mb == nextrecord,
2951 			    ("soreceive: sb_mb != nextrecord"));
2952 			if (so->so_rcv.sb_mb == NULL) {
2953 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
2954 				    ("soreceive: sb_lastercord != NULL"));
2955 			}
2956 		}
2957 	}
2958 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2959 	SBLASTRECORDCHK(&so->so_rcv);
2960 	SBLASTMBUFCHK(&so->so_rcv);
2961 
2962 	/*
2963 	 * Now continue to read any data mbufs off of the head of the socket
2964 	 * buffer until the read request is satisfied.  Note that 'type' is
2965 	 * used to store the type of any mbuf reads that have happened so far
2966 	 * such that soreceive() can stop reading if the type changes, which
2967 	 * causes soreceive() to return only one of regular data and inline
2968 	 * out-of-band data in a single socket receive operation.
2969 	 */
2970 	moff = 0;
2971 	offset = 0;
2972 	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2973 	    && error == 0) {
2974 		/*
2975 		 * If the type of mbuf has changed since the last mbuf
2976 		 * examined ('type'), end the receive operation.
2977 		 */
2978 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2979 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2980 			if (type != m->m_type)
2981 				break;
2982 		} else if (type == MT_OOBDATA)
2983 			break;
2984 		else
2985 		    KASSERT(m->m_type == MT_DATA,
2986 			("m->m_type == %d", m->m_type));
2987 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
2988 		len = uio->uio_resid;
2989 		if (so->so_oobmark && len > so->so_oobmark - offset)
2990 			len = so->so_oobmark - offset;
2991 		if (len > m->m_len - moff)
2992 			len = m->m_len - moff;
2993 		/*
2994 		 * If mp is set, just pass back the mbufs.  Otherwise copy
2995 		 * them out via the uio, then free.  Sockbuf must be
2996 		 * consistent here (points to current mbuf, it points to next
2997 		 * record) when we drop priority; we must note any additions
2998 		 * to the sockbuf when we block interrupts again.
2999 		 */
3000 		if (mp == NULL) {
3001 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3002 			SBLASTRECORDCHK(&so->so_rcv);
3003 			SBLASTMBUFCHK(&so->so_rcv);
3004 			SOCKBUF_UNLOCK(&so->so_rcv);
3005 			if ((m->m_flags & M_EXTPG) != 0)
3006 				error = m_unmapped_uiomove(m, moff, uio,
3007 				    (int)len);
3008 			else
3009 				error = uiomove(mtod(m, char *) + moff,
3010 				    (int)len, uio);
3011 			SOCKBUF_LOCK(&so->so_rcv);
3012 			if (error) {
3013 				/*
3014 				 * The MT_SONAME mbuf has already been removed
3015 				 * from the record, so it is necessary to
3016 				 * remove the data mbufs, if any, to preserve
3017 				 * the invariant in the case of PR_ADDR that
3018 				 * requires MT_SONAME mbufs at the head of
3019 				 * each record.
3020 				 */
3021 				if (pr->pr_flags & PR_ATOMIC &&
3022 				    ((flags & MSG_PEEK) == 0))
3023 					(void)sbdroprecord_locked(&so->so_rcv);
3024 				SOCKBUF_UNLOCK(&so->so_rcv);
3025 				goto release;
3026 			}
3027 		} else
3028 			uio->uio_resid -= len;
3029 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3030 		if (len == m->m_len - moff) {
3031 			if (m->m_flags & M_EOR)
3032 				flags |= MSG_EOR;
3033 			if (flags & MSG_PEEK) {
3034 				m = m->m_next;
3035 				moff = 0;
3036 			} else {
3037 				nextrecord = m->m_nextpkt;
3038 				sbfree(&so->so_rcv, m);
3039 				if (mp != NULL) {
3040 					m->m_nextpkt = NULL;
3041 					*mp = m;
3042 					mp = &m->m_next;
3043 					so->so_rcv.sb_mb = m = m->m_next;
3044 					*mp = NULL;
3045 				} else {
3046 					so->so_rcv.sb_mb = m_free(m);
3047 					m = so->so_rcv.sb_mb;
3048 				}
3049 				sockbuf_pushsync(&so->so_rcv, nextrecord);
3050 				SBLASTRECORDCHK(&so->so_rcv);
3051 				SBLASTMBUFCHK(&so->so_rcv);
3052 			}
3053 		} else {
3054 			if (flags & MSG_PEEK)
3055 				moff += len;
3056 			else {
3057 				if (mp != NULL) {
3058 					if (flags & MSG_DONTWAIT) {
3059 						*mp = m_copym(m, 0, len,
3060 						    M_NOWAIT);
3061 						if (*mp == NULL) {
3062 							/*
3063 							 * m_copym() couldn't
3064 							 * allocate an mbuf.
3065 							 * Adjust uio_resid back
3066 							 * (it was adjusted
3067 							 * down by len bytes,
3068 							 * which we didn't end
3069 							 * up "copying" over).
3070 							 */
3071 							uio->uio_resid += len;
3072 							break;
3073 						}
3074 					} else {
3075 						SOCKBUF_UNLOCK(&so->so_rcv);
3076 						*mp = m_copym(m, 0, len,
3077 						    M_WAITOK);
3078 						SOCKBUF_LOCK(&so->so_rcv);
3079 					}
3080 				}
3081 				sbcut_locked(&so->so_rcv, len);
3082 			}
3083 		}
3084 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3085 		if (so->so_oobmark) {
3086 			if ((flags & MSG_PEEK) == 0) {
3087 				so->so_oobmark -= len;
3088 				if (so->so_oobmark == 0) {
3089 					so->so_rcv.sb_state |= SBS_RCVATMARK;
3090 					break;
3091 				}
3092 			} else {
3093 				offset += len;
3094 				if (offset == so->so_oobmark)
3095 					break;
3096 			}
3097 		}
3098 		if (flags & MSG_EOR)
3099 			break;
3100 		/*
3101 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
3102 		 * must not quit until "uio->uio_resid == 0" or an error
3103 		 * termination.  If a signal/timeout occurs, return with a
3104 		 * short count but without error.  Keep sockbuf locked
3105 		 * against other readers.
3106 		 */
3107 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
3108 		    !sosendallatonce(so) && nextrecord == NULL) {
3109 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3110 			if (so->so_error || so->so_rerror ||
3111 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
3112 				break;
3113 			/*
3114 			 * Notify the protocol that some data has been
3115 			 * drained before blocking.
3116 			 */
3117 			if (pr->pr_flags & PR_WANTRCVD) {
3118 				SOCKBUF_UNLOCK(&so->so_rcv);
3119 				VNET_SO_ASSERT(so);
3120 				pr->pr_rcvd(so, flags);
3121 				SOCKBUF_LOCK(&so->so_rcv);
3122 				if (__predict_false(so->so_rcv.sb_mb == NULL &&
3123 				    (so->so_error || so->so_rerror ||
3124 				    so->so_rcv.sb_state & SBS_CANTRCVMORE)))
3125 					break;
3126 			}
3127 			SBLASTRECORDCHK(&so->so_rcv);
3128 			SBLASTMBUFCHK(&so->so_rcv);
3129 			/*
3130 			 * We could receive some data while was notifying
3131 			 * the protocol. Skip blocking in this case.
3132 			 */
3133 			if (so->so_rcv.sb_mb == NULL) {
3134 				error = sbwait(so, SO_RCV);
3135 				if (error) {
3136 					SOCKBUF_UNLOCK(&so->so_rcv);
3137 					goto release;
3138 				}
3139 			}
3140 			m = so->so_rcv.sb_mb;
3141 			if (m != NULL)
3142 				nextrecord = m->m_nextpkt;
3143 		}
3144 	}
3145 
3146 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3147 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
3148 		if (report_real_len)
3149 			uio->uio_resid -= m_length(m, NULL) - moff;
3150 		flags |= MSG_TRUNC;
3151 		if ((flags & MSG_PEEK) == 0)
3152 			(void) sbdroprecord_locked(&so->so_rcv);
3153 	}
3154 	if ((flags & MSG_PEEK) == 0) {
3155 		if (m == NULL) {
3156 			/*
3157 			 * First part is an inline SB_EMPTY_FIXUP().  Second
3158 			 * part makes sure sb_lastrecord is up-to-date if
3159 			 * there is still data in the socket buffer.
3160 			 */
3161 			so->so_rcv.sb_mb = nextrecord;
3162 			if (so->so_rcv.sb_mb == NULL) {
3163 				so->so_rcv.sb_mbtail = NULL;
3164 				so->so_rcv.sb_lastrecord = NULL;
3165 			} else if (nextrecord->m_nextpkt == NULL)
3166 				so->so_rcv.sb_lastrecord = nextrecord;
3167 		}
3168 		SBLASTRECORDCHK(&so->so_rcv);
3169 		SBLASTMBUFCHK(&so->so_rcv);
3170 		/*
3171 		 * If soreceive() is being done from the socket callback,
3172 		 * then don't need to generate ACK to peer to update window,
3173 		 * since ACK will be generated on return to TCP.
3174 		 */
3175 		if (!(flags & MSG_SOCALLBCK) &&
3176 		    (pr->pr_flags & PR_WANTRCVD)) {
3177 			SOCKBUF_UNLOCK(&so->so_rcv);
3178 			VNET_SO_ASSERT(so);
3179 			pr->pr_rcvd(so, flags);
3180 			SOCKBUF_LOCK(&so->so_rcv);
3181 		}
3182 	}
3183 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3184 	if (orig_resid == uio->uio_resid && orig_resid &&
3185 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
3186 		SOCKBUF_UNLOCK(&so->so_rcv);
3187 		goto restart;
3188 	}
3189 	SOCKBUF_UNLOCK(&so->so_rcv);
3190 
3191 	if (flagsp != NULL)
3192 		*flagsp |= flags;
3193 release:
3194 	return (error);
3195 }
3196 
3197 int
3198 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
3199     struct mbuf **mp, struct mbuf **controlp, int *flagsp)
3200 {
3201 	int error, flags;
3202 
3203 	if (psa != NULL)
3204 		*psa = NULL;
3205 	if (controlp != NULL)
3206 		*controlp = NULL;
3207 	if (flagsp != NULL) {
3208 		flags = *flagsp;
3209 		if ((flags & MSG_OOB) != 0)
3210 			return (soreceive_rcvoob(so, uio, flags));
3211 	} else {
3212 		flags = 0;
3213 	}
3214 	if (mp != NULL)
3215 		*mp = NULL;
3216 
3217 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3218 	if (error)
3219 		return (error);
3220 	error = soreceive_generic_locked(so, psa, uio, mp, controlp, flagsp);
3221 	SOCK_IO_RECV_UNLOCK(so);
3222 	return (error);
3223 }
3224 
3225 /*
3226  * Optimized version of soreceive() for stream (TCP) sockets.
3227  */
3228 static int
3229 soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
3230     struct sockaddr **psa, struct uio *uio, struct mbuf **mp0,
3231     struct mbuf **controlp, int flags)
3232 {
3233 	int len = 0, error = 0, oresid;
3234 	struct mbuf *m, *n = NULL;
3235 
3236 	SOCK_IO_RECV_ASSERT_LOCKED(so);
3237 
3238 	/* Easy one, no space to copyout anything. */
3239 	if (uio->uio_resid == 0)
3240 		return (EINVAL);
3241 	oresid = uio->uio_resid;
3242 
3243 	SOCKBUF_LOCK(sb);
3244 	/* We will never ever get anything unless we are or were connected. */
3245 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
3246 		error = ENOTCONN;
3247 		goto out;
3248 	}
3249 
3250 restart:
3251 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3252 
3253 	/* Abort if socket has reported problems. */
3254 	if (so->so_error) {
3255 		if (sbavail(sb) > 0)
3256 			goto deliver;
3257 		if (oresid > uio->uio_resid)
3258 			goto out;
3259 		error = so->so_error;
3260 		if (!(flags & MSG_PEEK))
3261 			so->so_error = 0;
3262 		goto out;
3263 	}
3264 
3265 	/* Door is closed.  Deliver what is left, if any. */
3266 	if (sb->sb_state & SBS_CANTRCVMORE) {
3267 		if (sbavail(sb) > 0)
3268 			goto deliver;
3269 		else
3270 			goto out;
3271 	}
3272 
3273 	/* Socket buffer is empty and we shall not block. */
3274 	if (sbavail(sb) == 0 &&
3275 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
3276 		error = EAGAIN;
3277 		goto out;
3278 	}
3279 
3280 	/* Socket buffer got some data that we shall deliver now. */
3281 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
3282 	    ((so->so_state & SS_NBIO) ||
3283 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
3284 	     sbavail(sb) >= sb->sb_lowat ||
3285 	     sbavail(sb) >= uio->uio_resid ||
3286 	     sbavail(sb) >= sb->sb_hiwat) ) {
3287 		goto deliver;
3288 	}
3289 
3290 	/* On MSG_WAITALL we must wait until all data or error arrives. */
3291 	if ((flags & MSG_WAITALL) &&
3292 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
3293 		goto deliver;
3294 
3295 	/*
3296 	 * Wait and block until (more) data comes in.
3297 	 * NB: Drops the sockbuf lock during wait.
3298 	 */
3299 	error = sbwait(so, SO_RCV);
3300 	if (error)
3301 		goto out;
3302 	goto restart;
3303 
3304 deliver:
3305 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3306 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
3307 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
3308 
3309 	/* Statistics. */
3310 	if (uio->uio_td)
3311 		uio->uio_td->td_ru.ru_msgrcv++;
3312 
3313 	/* Fill uio until full or current end of socket buffer is reached. */
3314 	len = min(uio->uio_resid, sbavail(sb));
3315 	if (mp0 != NULL) {
3316 		/* Dequeue as many mbufs as possible. */
3317 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
3318 			if (*mp0 == NULL)
3319 				*mp0 = sb->sb_mb;
3320 			else
3321 				m_cat(*mp0, sb->sb_mb);
3322 			for (m = sb->sb_mb;
3323 			     m != NULL && m->m_len <= len;
3324 			     m = m->m_next) {
3325 				KASSERT(!(m->m_flags & M_NOTAVAIL),
3326 				    ("%s: m %p not available", __func__, m));
3327 				len -= m->m_len;
3328 				uio->uio_resid -= m->m_len;
3329 				sbfree(sb, m);
3330 				n = m;
3331 			}
3332 			n->m_next = NULL;
3333 			sb->sb_mb = m;
3334 			sb->sb_lastrecord = sb->sb_mb;
3335 			if (sb->sb_mb == NULL)
3336 				SB_EMPTY_FIXUP(sb);
3337 		}
3338 		/* Copy the remainder. */
3339 		if (len > 0) {
3340 			KASSERT(sb->sb_mb != NULL,
3341 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
3342 
3343 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
3344 			if (m == NULL)
3345 				len = 0;	/* Don't flush data from sockbuf. */
3346 			else
3347 				uio->uio_resid -= len;
3348 			if (*mp0 != NULL)
3349 				m_cat(*mp0, m);
3350 			else
3351 				*mp0 = m;
3352 			if (*mp0 == NULL) {
3353 				error = ENOBUFS;
3354 				goto out;
3355 			}
3356 		}
3357 	} else {
3358 		/* NB: Must unlock socket buffer as uiomove may sleep. */
3359 		SOCKBUF_UNLOCK(sb);
3360 		error = m_mbuftouio(uio, sb->sb_mb, len);
3361 		SOCKBUF_LOCK(sb);
3362 		if (error)
3363 			goto out;
3364 	}
3365 	SBLASTRECORDCHK(sb);
3366 	SBLASTMBUFCHK(sb);
3367 
3368 	/*
3369 	 * Remove the delivered data from the socket buffer unless we
3370 	 * were only peeking.
3371 	 */
3372 	if (!(flags & MSG_PEEK)) {
3373 		if (len > 0)
3374 			sbdrop_locked(sb, len);
3375 
3376 		/* Notify protocol that we drained some data. */
3377 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
3378 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
3379 		     !(flags & MSG_SOCALLBCK))) {
3380 			SOCKBUF_UNLOCK(sb);
3381 			VNET_SO_ASSERT(so);
3382 			so->so_proto->pr_rcvd(so, flags);
3383 			SOCKBUF_LOCK(sb);
3384 		}
3385 	}
3386 
3387 	/*
3388 	 * For MSG_WAITALL we may have to loop again and wait for
3389 	 * more data to come in.
3390 	 */
3391 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
3392 		goto restart;
3393 out:
3394 	SBLASTRECORDCHK(sb);
3395 	SBLASTMBUFCHK(sb);
3396 	SOCKBUF_UNLOCK(sb);
3397 	return (error);
3398 }
3399 
3400 int
3401 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
3402     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3403 {
3404 	struct sockbuf *sb;
3405 	int error, flags;
3406 
3407 	sb = &so->so_rcv;
3408 
3409 	/* We only do stream sockets. */
3410 	if (so->so_type != SOCK_STREAM)
3411 		return (EINVAL);
3412 	if (psa != NULL)
3413 		*psa = NULL;
3414 	if (flagsp != NULL)
3415 		flags = *flagsp & ~MSG_EOR;
3416 	else
3417 		flags = 0;
3418 	if (controlp != NULL)
3419 		*controlp = NULL;
3420 	if (flags & MSG_OOB)
3421 		return (soreceive_rcvoob(so, uio, flags));
3422 	if (mp0 != NULL)
3423 		*mp0 = NULL;
3424 
3425 #ifdef KERN_TLS
3426 	/*
3427 	 * KTLS store TLS records as records with a control message to
3428 	 * describe the framing.
3429 	 *
3430 	 * We check once here before acquiring locks to optimize the
3431 	 * common case.
3432 	 */
3433 	if (sb->sb_tls_info != NULL)
3434 		return (soreceive_generic(so, psa, uio, mp0, controlp,
3435 		    flagsp));
3436 #endif
3437 
3438 	/*
3439 	 * Prevent other threads from reading from the socket.  This lock may be
3440 	 * dropped in order to sleep waiting for data to arrive.
3441 	 */
3442 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3443 	if (error)
3444 		return (error);
3445 #ifdef KERN_TLS
3446 	if (__predict_false(sb->sb_tls_info != NULL)) {
3447 		SOCK_IO_RECV_UNLOCK(so);
3448 		return (soreceive_generic(so, psa, uio, mp0, controlp,
3449 		    flagsp));
3450 	}
3451 #endif
3452 	error = soreceive_stream_locked(so, sb, psa, uio, mp0, controlp, flags);
3453 	SOCK_IO_RECV_UNLOCK(so);
3454 	return (error);
3455 }
3456 
3457 /*
3458  * Optimized version of soreceive() for simple datagram cases from userspace.
3459  * Unlike in the stream case, we're able to drop a datagram if copyout()
3460  * fails, and because we handle datagrams atomically, we don't need to use a
3461  * sleep lock to prevent I/O interlacing.
3462  */
3463 int
3464 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
3465     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3466 {
3467 	struct mbuf *m, *m2;
3468 	int flags, error;
3469 	ssize_t len;
3470 	struct protosw *pr = so->so_proto;
3471 	struct mbuf *nextrecord;
3472 
3473 	if (psa != NULL)
3474 		*psa = NULL;
3475 	if (controlp != NULL)
3476 		*controlp = NULL;
3477 	if (flagsp != NULL)
3478 		flags = *flagsp &~ MSG_EOR;
3479 	else
3480 		flags = 0;
3481 
3482 	/*
3483 	 * For any complicated cases, fall back to the full
3484 	 * soreceive_generic().
3485 	 */
3486 	if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
3487 		return (soreceive_generic(so, psa, uio, mp0, controlp,
3488 		    flagsp));
3489 
3490 	/*
3491 	 * Enforce restrictions on use.
3492 	 */
3493 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
3494 	    ("soreceive_dgram: wantrcvd"));
3495 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
3496 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
3497 	    ("soreceive_dgram: SBS_RCVATMARK"));
3498 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
3499 	    ("soreceive_dgram: P_CONNREQUIRED"));
3500 
3501 	/*
3502 	 * Loop blocking while waiting for a datagram.
3503 	 */
3504 	SOCKBUF_LOCK(&so->so_rcv);
3505 	while ((m = so->so_rcv.sb_mb) == NULL) {
3506 		KASSERT(sbavail(&so->so_rcv) == 0,
3507 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
3508 		    sbavail(&so->so_rcv)));
3509 		if (so->so_error) {
3510 			error = so->so_error;
3511 			so->so_error = 0;
3512 			SOCKBUF_UNLOCK(&so->so_rcv);
3513 			return (error);
3514 		}
3515 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
3516 		    uio->uio_resid == 0) {
3517 			SOCKBUF_UNLOCK(&so->so_rcv);
3518 			return (0);
3519 		}
3520 		if ((so->so_state & SS_NBIO) ||
3521 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
3522 			SOCKBUF_UNLOCK(&so->so_rcv);
3523 			return (EWOULDBLOCK);
3524 		}
3525 		SBLASTRECORDCHK(&so->so_rcv);
3526 		SBLASTMBUFCHK(&so->so_rcv);
3527 		error = sbwait(so, SO_RCV);
3528 		if (error) {
3529 			SOCKBUF_UNLOCK(&so->so_rcv);
3530 			return (error);
3531 		}
3532 	}
3533 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3534 
3535 	if (uio->uio_td)
3536 		uio->uio_td->td_ru.ru_msgrcv++;
3537 	SBLASTRECORDCHK(&so->so_rcv);
3538 	SBLASTMBUFCHK(&so->so_rcv);
3539 	nextrecord = m->m_nextpkt;
3540 	if (nextrecord == NULL) {
3541 		KASSERT(so->so_rcv.sb_lastrecord == m,
3542 		    ("soreceive_dgram: lastrecord != m"));
3543 	}
3544 
3545 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
3546 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
3547 
3548 	/*
3549 	 * Pull 'm' and its chain off the front of the packet queue.
3550 	 */
3551 	so->so_rcv.sb_mb = NULL;
3552 	sockbuf_pushsync(&so->so_rcv, nextrecord);
3553 
3554 	/*
3555 	 * Walk 'm's chain and free that many bytes from the socket buffer.
3556 	 */
3557 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
3558 		sbfree(&so->so_rcv, m2);
3559 
3560 	/*
3561 	 * Do a few last checks before we let go of the lock.
3562 	 */
3563 	SBLASTRECORDCHK(&so->so_rcv);
3564 	SBLASTMBUFCHK(&so->so_rcv);
3565 	SOCKBUF_UNLOCK(&so->so_rcv);
3566 
3567 	if (pr->pr_flags & PR_ADDR) {
3568 		KASSERT(m->m_type == MT_SONAME,
3569 		    ("m->m_type == %d", m->m_type));
3570 		if (psa != NULL)
3571 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
3572 			    M_WAITOK);
3573 		m = m_free(m);
3574 	}
3575 	KASSERT(m, ("%s: no data or control after soname", __func__));
3576 
3577 	/*
3578 	 * Packet to copyout() is now in 'm' and it is disconnected from the
3579 	 * queue.
3580 	 *
3581 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
3582 	 * in the first mbuf chain on the socket buffer.  We call into the
3583 	 * protocol to perform externalization (or freeing if controlp ==
3584 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
3585 	 * MT_DATA mbufs.
3586 	 */
3587 	if (m->m_type == MT_CONTROL) {
3588 		struct mbuf *cm = NULL, *cmn;
3589 		struct mbuf **cme = &cm;
3590 
3591 		do {
3592 			m2 = m->m_next;
3593 			m->m_next = NULL;
3594 			*cme = m;
3595 			cme = &(*cme)->m_next;
3596 			m = m2;
3597 		} while (m != NULL && m->m_type == MT_CONTROL);
3598 		while (cm != NULL) {
3599 			cmn = cm->m_next;
3600 			cm->m_next = NULL;
3601 			if (pr->pr_domain->dom_externalize != NULL) {
3602 				error = (*pr->pr_domain->dom_externalize)
3603 				    (cm, controlp, flags);
3604 			} else if (controlp != NULL)
3605 				*controlp = cm;
3606 			else
3607 				m_freem(cm);
3608 			if (controlp != NULL) {
3609 				while (*controlp != NULL)
3610 					controlp = &(*controlp)->m_next;
3611 			}
3612 			cm = cmn;
3613 		}
3614 	}
3615 	KASSERT(m == NULL || m->m_type == MT_DATA,
3616 	    ("soreceive_dgram: !data"));
3617 	while (m != NULL && uio->uio_resid > 0) {
3618 		len = uio->uio_resid;
3619 		if (len > m->m_len)
3620 			len = m->m_len;
3621 		error = uiomove(mtod(m, char *), (int)len, uio);
3622 		if (error) {
3623 			m_freem(m);
3624 			return (error);
3625 		}
3626 		if (len == m->m_len)
3627 			m = m_free(m);
3628 		else {
3629 			m->m_data += len;
3630 			m->m_len -= len;
3631 		}
3632 	}
3633 	if (m != NULL) {
3634 		flags |= MSG_TRUNC;
3635 		m_freem(m);
3636 	}
3637 	if (flagsp != NULL)
3638 		*flagsp |= flags;
3639 	return (0);
3640 }
3641 
3642 int
3643 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
3644     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3645 {
3646 	int error;
3647 
3648 	CURVNET_SET(so->so_vnet);
3649 	error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
3650 	CURVNET_RESTORE();
3651 	return (error);
3652 }
3653 
3654 int
3655 soshutdown(struct socket *so, enum shutdown_how how)
3656 {
3657 	int error;
3658 
3659 	CURVNET_SET(so->so_vnet);
3660 	error = so->so_proto->pr_shutdown(so, how);
3661 	CURVNET_RESTORE();
3662 
3663 	return (error);
3664 }
3665 
3666 /*
3667  * Used by several pr_shutdown implementations that use generic socket buffers.
3668  */
3669 void
3670 sorflush(struct socket *so)
3671 {
3672 	int error;
3673 
3674 	VNET_SO_ASSERT(so);
3675 
3676 	/*
3677 	 * Dislodge threads currently blocked in receive and wait to acquire
3678 	 * a lock against other simultaneous readers before clearing the
3679 	 * socket buffer.  Don't let our acquire be interrupted by a signal
3680 	 * despite any existing socket disposition on interruptable waiting.
3681 	 *
3682 	 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive
3683 	 * methods that read the top of the socket buffer without acquisition
3684 	 * of the socket buffer mutex, assuming that top of the buffer
3685 	 * exclusively belongs to the read(2) syscall.  This is handy when
3686 	 * performing MSG_PEEK.
3687 	 */
3688 	socantrcvmore(so);
3689 
3690 	error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
3691 	if (error != 0) {
3692 		KASSERT(SOLISTENING(so),
3693 		    ("%s: soiolock(%p) failed", __func__, so));
3694 		return;
3695 	}
3696 
3697 	sbrelease(so, SO_RCV);
3698 	SOCK_IO_RECV_UNLOCK(so);
3699 
3700 }
3701 
3702 #ifdef SOCKET_HHOOK
3703 /*
3704  * Wrapper for Socket established helper hook.
3705  * Parameters: socket, context of the hook point, hook id.
3706  */
3707 static inline int
3708 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
3709 {
3710 	struct socket_hhook_data hhook_data = {
3711 		.so = so,
3712 		.hctx = hctx,
3713 		.m = NULL,
3714 		.status = 0
3715 	};
3716 
3717 	CURVNET_SET(so->so_vnet);
3718 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
3719 	CURVNET_RESTORE();
3720 
3721 	/* Ugly but needed, since hhooks return void for now */
3722 	return (hhook_data.status);
3723 }
3724 #endif
3725 
3726 /*
3727  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
3728  * additional variant to handle the case where the option value needs to be
3729  * some kind of integer, but not a specific size.  In addition to their use
3730  * here, these functions are also called by the protocol-level pr_ctloutput()
3731  * routines.
3732  */
3733 int
3734 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
3735 {
3736 	size_t	valsize;
3737 
3738 	/*
3739 	 * If the user gives us more than we wanted, we ignore it, but if we
3740 	 * don't get the minimum length the caller wants, we return EINVAL.
3741 	 * On success, sopt->sopt_valsize is set to however much we actually
3742 	 * retrieved.
3743 	 */
3744 	if ((valsize = sopt->sopt_valsize) < minlen)
3745 		return EINVAL;
3746 	if (valsize > len)
3747 		sopt->sopt_valsize = valsize = len;
3748 
3749 	if (sopt->sopt_td != NULL)
3750 		return (copyin(sopt->sopt_val, buf, valsize));
3751 
3752 	bcopy(sopt->sopt_val, buf, valsize);
3753 	return (0);
3754 }
3755 
3756 /*
3757  * Kernel version of setsockopt(2).
3758  *
3759  * XXX: optlen is size_t, not socklen_t
3760  */
3761 int
3762 so_setsockopt(struct socket *so, int level, int optname, void *optval,
3763     size_t optlen)
3764 {
3765 	struct sockopt sopt;
3766 
3767 	sopt.sopt_level = level;
3768 	sopt.sopt_name = optname;
3769 	sopt.sopt_dir = SOPT_SET;
3770 	sopt.sopt_val = optval;
3771 	sopt.sopt_valsize = optlen;
3772 	sopt.sopt_td = NULL;
3773 	return (sosetopt(so, &sopt));
3774 }
3775 
3776 int
3777 sosetopt(struct socket *so, struct sockopt *sopt)
3778 {
3779 	int	error, optval;
3780 	struct	linger l;
3781 	struct	timeval tv;
3782 	sbintime_t val, *valp;
3783 	uint32_t val32;
3784 #ifdef MAC
3785 	struct mac extmac;
3786 #endif
3787 
3788 	CURVNET_SET(so->so_vnet);
3789 	error = 0;
3790 	if (sopt->sopt_level != SOL_SOCKET) {
3791 		if (so->so_proto->pr_ctloutput != NULL)
3792 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3793 		else
3794 			error = ENOPROTOOPT;
3795 	} else {
3796 		switch (sopt->sopt_name) {
3797 		case SO_ACCEPTFILTER:
3798 			error = accept_filt_setopt(so, sopt);
3799 			if (error)
3800 				goto bad;
3801 			break;
3802 
3803 		case SO_LINGER:
3804 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3805 			if (error)
3806 				goto bad;
3807 			if (l.l_linger < 0 ||
3808 			    l.l_linger > USHRT_MAX ||
3809 			    l.l_linger > (INT_MAX / hz)) {
3810 				error = EDOM;
3811 				goto bad;
3812 			}
3813 			SOCK_LOCK(so);
3814 			so->so_linger = l.l_linger;
3815 			if (l.l_onoff)
3816 				so->so_options |= SO_LINGER;
3817 			else
3818 				so->so_options &= ~SO_LINGER;
3819 			SOCK_UNLOCK(so);
3820 			break;
3821 
3822 		case SO_DEBUG:
3823 		case SO_KEEPALIVE:
3824 		case SO_DONTROUTE:
3825 		case SO_USELOOPBACK:
3826 		case SO_BROADCAST:
3827 		case SO_REUSEADDR:
3828 		case SO_REUSEPORT:
3829 		case SO_REUSEPORT_LB:
3830 		case SO_OOBINLINE:
3831 		case SO_TIMESTAMP:
3832 		case SO_BINTIME:
3833 		case SO_NOSIGPIPE:
3834 		case SO_NO_DDP:
3835 		case SO_NO_OFFLOAD:
3836 		case SO_RERROR:
3837 			error = sooptcopyin(sopt, &optval, sizeof optval,
3838 			    sizeof optval);
3839 			if (error)
3840 				goto bad;
3841 			SOCK_LOCK(so);
3842 			if (optval)
3843 				so->so_options |= sopt->sopt_name;
3844 			else
3845 				so->so_options &= ~sopt->sopt_name;
3846 			SOCK_UNLOCK(so);
3847 			break;
3848 
3849 		case SO_SETFIB:
3850 			error = sooptcopyin(sopt, &optval, sizeof optval,
3851 			    sizeof optval);
3852 			if (error)
3853 				goto bad;
3854 
3855 			if (optval < 0 || optval >= rt_numfibs) {
3856 				error = EINVAL;
3857 				goto bad;
3858 			}
3859 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
3860 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
3861 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
3862 				so->so_fibnum = optval;
3863 			else
3864 				so->so_fibnum = 0;
3865 			break;
3866 
3867 		case SO_USER_COOKIE:
3868 			error = sooptcopyin(sopt, &val32, sizeof val32,
3869 			    sizeof val32);
3870 			if (error)
3871 				goto bad;
3872 			so->so_user_cookie = val32;
3873 			break;
3874 
3875 		case SO_SNDBUF:
3876 		case SO_RCVBUF:
3877 		case SO_SNDLOWAT:
3878 		case SO_RCVLOWAT:
3879 			error = so->so_proto->pr_setsbopt(so, sopt);
3880 			if (error)
3881 				goto bad;
3882 			break;
3883 
3884 		case SO_SNDTIMEO:
3885 		case SO_RCVTIMEO:
3886 #ifdef COMPAT_FREEBSD32
3887 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3888 				struct timeval32 tv32;
3889 
3890 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
3891 				    sizeof tv32);
3892 				CP(tv32, tv, tv_sec);
3893 				CP(tv32, tv, tv_usec);
3894 			} else
3895 #endif
3896 				error = sooptcopyin(sopt, &tv, sizeof tv,
3897 				    sizeof tv);
3898 			if (error)
3899 				goto bad;
3900 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3901 			    tv.tv_usec >= 1000000) {
3902 				error = EDOM;
3903 				goto bad;
3904 			}
3905 			if (tv.tv_sec > INT32_MAX)
3906 				val = SBT_MAX;
3907 			else
3908 				val = tvtosbt(tv);
3909 			SOCK_LOCK(so);
3910 			valp = sopt->sopt_name == SO_SNDTIMEO ?
3911 			    (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3912 			    &so->so_snd.sb_timeo) :
3913 			    (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3914 			    &so->so_rcv.sb_timeo);
3915 			*valp = val;
3916 			SOCK_UNLOCK(so);
3917 			break;
3918 
3919 		case SO_LABEL:
3920 #ifdef MAC
3921 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
3922 			    sizeof extmac);
3923 			if (error)
3924 				goto bad;
3925 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3926 			    so, &extmac);
3927 #else
3928 			error = EOPNOTSUPP;
3929 #endif
3930 			break;
3931 
3932 		case SO_TS_CLOCK:
3933 			error = sooptcopyin(sopt, &optval, sizeof optval,
3934 			    sizeof optval);
3935 			if (error)
3936 				goto bad;
3937 			if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3938 				error = EINVAL;
3939 				goto bad;
3940 			}
3941 			so->so_ts_clock = optval;
3942 			break;
3943 
3944 		case SO_MAX_PACING_RATE:
3945 			error = sooptcopyin(sopt, &val32, sizeof(val32),
3946 			    sizeof(val32));
3947 			if (error)
3948 				goto bad;
3949 			so->so_max_pacing_rate = val32;
3950 			break;
3951 
3952 		case SO_SPLICE: {
3953 			struct splice splice;
3954 
3955 #ifdef COMPAT_FREEBSD32
3956 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3957 				struct splice32 splice32;
3958 
3959 				error = sooptcopyin(sopt, &splice32,
3960 				    sizeof(splice32), sizeof(splice32));
3961 				if (error == 0) {
3962 					splice.sp_fd = splice32.sp_fd;
3963 					splice.sp_max = splice32.sp_max;
3964 					CP(splice32.sp_idle, splice.sp_idle,
3965 					    tv_sec);
3966 					CP(splice32.sp_idle, splice.sp_idle,
3967 					    tv_usec);
3968 				}
3969 			} else
3970 #endif
3971 			{
3972 				error = sooptcopyin(sopt, &splice,
3973 				    sizeof(splice), sizeof(splice));
3974 			}
3975 			if (error)
3976 				goto bad;
3977 #ifdef KTRACE
3978 			if (KTRPOINT(curthread, KTR_STRUCT))
3979 				ktrsplice(&splice);
3980 #endif
3981 
3982 			error = splice_init();
3983 			if (error != 0)
3984 				goto bad;
3985 
3986 			if (splice.sp_fd >= 0) {
3987 				struct file *fp;
3988 				struct socket *so2;
3989 
3990 				if (!cap_rights_contains(sopt->sopt_rights,
3991 				    &cap_recv_rights)) {
3992 					error = ENOTCAPABLE;
3993 					goto bad;
3994 				}
3995 				error = getsock(sopt->sopt_td, splice.sp_fd,
3996 				    &cap_send_rights, &fp);
3997 				if (error != 0)
3998 					goto bad;
3999 				so2 = fp->f_data;
4000 
4001 				error = so_splice(so, so2, &splice);
4002 				fdrop(fp, sopt->sopt_td);
4003 			} else {
4004 				error = so_unsplice(so, false);
4005 			}
4006 			break;
4007 		}
4008 		default:
4009 #ifdef SOCKET_HHOOK
4010 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4011 				error = hhook_run_socket(so, sopt,
4012 				    HHOOK_SOCKET_OPT);
4013 			else
4014 #endif
4015 				error = ENOPROTOOPT;
4016 			break;
4017 		}
4018 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
4019 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
4020 	}
4021 bad:
4022 	CURVNET_RESTORE();
4023 	return (error);
4024 }
4025 
4026 /*
4027  * Helper routine for getsockopt.
4028  */
4029 int
4030 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
4031 {
4032 	int	error;
4033 	size_t	valsize;
4034 
4035 	error = 0;
4036 
4037 	/*
4038 	 * Documented get behavior is that we always return a value, possibly
4039 	 * truncated to fit in the user's buffer.  Traditional behavior is
4040 	 * that we always tell the user precisely how much we copied, rather
4041 	 * than something useful like the total amount we had available for
4042 	 * her.  Note that this interface is not idempotent; the entire
4043 	 * answer must be generated ahead of time.
4044 	 */
4045 	valsize = min(len, sopt->sopt_valsize);
4046 	sopt->sopt_valsize = valsize;
4047 	if (sopt->sopt_val != NULL) {
4048 		if (sopt->sopt_td != NULL)
4049 			error = copyout(buf, sopt->sopt_val, valsize);
4050 		else
4051 			bcopy(buf, sopt->sopt_val, valsize);
4052 	}
4053 	return (error);
4054 }
4055 
4056 int
4057 sogetopt(struct socket *so, struct sockopt *sopt)
4058 {
4059 	int	error, optval;
4060 	struct	linger l;
4061 	struct	timeval tv;
4062 #ifdef MAC
4063 	struct mac extmac;
4064 #endif
4065 
4066 	CURVNET_SET(so->so_vnet);
4067 	error = 0;
4068 	if (sopt->sopt_level != SOL_SOCKET) {
4069 		if (so->so_proto->pr_ctloutput != NULL)
4070 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
4071 		else
4072 			error = ENOPROTOOPT;
4073 		CURVNET_RESTORE();
4074 		return (error);
4075 	} else {
4076 		switch (sopt->sopt_name) {
4077 		case SO_ACCEPTFILTER:
4078 			error = accept_filt_getopt(so, sopt);
4079 			break;
4080 
4081 		case SO_LINGER:
4082 			SOCK_LOCK(so);
4083 			l.l_onoff = so->so_options & SO_LINGER;
4084 			l.l_linger = so->so_linger;
4085 			SOCK_UNLOCK(so);
4086 			error = sooptcopyout(sopt, &l, sizeof l);
4087 			break;
4088 
4089 		case SO_USELOOPBACK:
4090 		case SO_DONTROUTE:
4091 		case SO_DEBUG:
4092 		case SO_KEEPALIVE:
4093 		case SO_REUSEADDR:
4094 		case SO_REUSEPORT:
4095 		case SO_REUSEPORT_LB:
4096 		case SO_BROADCAST:
4097 		case SO_OOBINLINE:
4098 		case SO_ACCEPTCONN:
4099 		case SO_TIMESTAMP:
4100 		case SO_BINTIME:
4101 		case SO_NOSIGPIPE:
4102 		case SO_NO_DDP:
4103 		case SO_NO_OFFLOAD:
4104 		case SO_RERROR:
4105 			optval = so->so_options & sopt->sopt_name;
4106 integer:
4107 			error = sooptcopyout(sopt, &optval, sizeof optval);
4108 			break;
4109 
4110 		case SO_DOMAIN:
4111 			optval = so->so_proto->pr_domain->dom_family;
4112 			goto integer;
4113 
4114 		case SO_TYPE:
4115 			optval = so->so_type;
4116 			goto integer;
4117 
4118 		case SO_PROTOCOL:
4119 			optval = so->so_proto->pr_protocol;
4120 			goto integer;
4121 
4122 		case SO_ERROR:
4123 			SOCK_LOCK(so);
4124 			if (so->so_error) {
4125 				optval = so->so_error;
4126 				so->so_error = 0;
4127 			} else {
4128 				optval = so->so_rerror;
4129 				so->so_rerror = 0;
4130 			}
4131 			SOCK_UNLOCK(so);
4132 			goto integer;
4133 
4134 		case SO_SNDBUF:
4135 			SOCK_LOCK(so);
4136 			optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
4137 			    so->so_snd.sb_hiwat;
4138 			SOCK_UNLOCK(so);
4139 			goto integer;
4140 
4141 		case SO_RCVBUF:
4142 			SOCK_LOCK(so);
4143 			optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
4144 			    so->so_rcv.sb_hiwat;
4145 			SOCK_UNLOCK(so);
4146 			goto integer;
4147 
4148 		case SO_SNDLOWAT:
4149 			SOCK_LOCK(so);
4150 			optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
4151 			    so->so_snd.sb_lowat;
4152 			SOCK_UNLOCK(so);
4153 			goto integer;
4154 
4155 		case SO_RCVLOWAT:
4156 			SOCK_LOCK(so);
4157 			optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
4158 			    so->so_rcv.sb_lowat;
4159 			SOCK_UNLOCK(so);
4160 			goto integer;
4161 
4162 		case SO_SNDTIMEO:
4163 		case SO_RCVTIMEO:
4164 			SOCK_LOCK(so);
4165 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
4166 			    (SOLISTENING(so) ? so->sol_sbsnd_timeo :
4167 			    so->so_snd.sb_timeo) :
4168 			    (SOLISTENING(so) ? so->sol_sbrcv_timeo :
4169 			    so->so_rcv.sb_timeo));
4170 			SOCK_UNLOCK(so);
4171 #ifdef COMPAT_FREEBSD32
4172 			if (SV_CURPROC_FLAG(SV_ILP32)) {
4173 				struct timeval32 tv32;
4174 
4175 				CP(tv, tv32, tv_sec);
4176 				CP(tv, tv32, tv_usec);
4177 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
4178 			} else
4179 #endif
4180 				error = sooptcopyout(sopt, &tv, sizeof tv);
4181 			break;
4182 
4183 		case SO_LABEL:
4184 #ifdef MAC
4185 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4186 			    sizeof(extmac));
4187 			if (error)
4188 				goto bad;
4189 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
4190 			    so, &extmac);
4191 			if (error)
4192 				goto bad;
4193 			/* Don't copy out extmac, it is unchanged. */
4194 #else
4195 			error = EOPNOTSUPP;
4196 #endif
4197 			break;
4198 
4199 		case SO_PEERLABEL:
4200 #ifdef MAC
4201 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4202 			    sizeof(extmac));
4203 			if (error)
4204 				goto bad;
4205 			error = mac_getsockopt_peerlabel(
4206 			    sopt->sopt_td->td_ucred, so, &extmac);
4207 			if (error)
4208 				goto bad;
4209 			/* Don't copy out extmac, it is unchanged. */
4210 #else
4211 			error = EOPNOTSUPP;
4212 #endif
4213 			break;
4214 
4215 		case SO_LISTENQLIMIT:
4216 			SOCK_LOCK(so);
4217 			optval = SOLISTENING(so) ? so->sol_qlimit : 0;
4218 			SOCK_UNLOCK(so);
4219 			goto integer;
4220 
4221 		case SO_LISTENQLEN:
4222 			SOCK_LOCK(so);
4223 			optval = SOLISTENING(so) ? so->sol_qlen : 0;
4224 			SOCK_UNLOCK(so);
4225 			goto integer;
4226 
4227 		case SO_LISTENINCQLEN:
4228 			SOCK_LOCK(so);
4229 			optval = SOLISTENING(so) ? so->sol_incqlen : 0;
4230 			SOCK_UNLOCK(so);
4231 			goto integer;
4232 
4233 		case SO_TS_CLOCK:
4234 			optval = so->so_ts_clock;
4235 			goto integer;
4236 
4237 		case SO_MAX_PACING_RATE:
4238 			optval = so->so_max_pacing_rate;
4239 			goto integer;
4240 
4241 		case SO_SPLICE: {
4242 			off_t n;
4243 
4244 			/*
4245 			 * Acquire the I/O lock to serialize with
4246 			 * so_splice_xfer().  This is not required for
4247 			 * correctness, but makes testing simpler: once a byte
4248 			 * has been transmitted to the sink and observed (e.g.,
4249 			 * by reading from the socket to which the sink is
4250 			 * connected), a subsequent getsockopt(SO_SPLICE) will
4251 			 * return an up-to-date value.
4252 			 */
4253 			error = SOCK_IO_RECV_LOCK(so, SBL_WAIT);
4254 			if (error != 0)
4255 				goto bad;
4256 			SOCK_LOCK(so);
4257 			if (SOLISTENING(so)) {
4258 				n = 0;
4259 			} else {
4260 				n = so->so_splice_sent;
4261 			}
4262 			SOCK_UNLOCK(so);
4263 			SOCK_IO_RECV_UNLOCK(so);
4264 			error = sooptcopyout(sopt, &n, sizeof(n));
4265 			break;
4266 		}
4267 
4268 		default:
4269 #ifdef SOCKET_HHOOK
4270 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4271 				error = hhook_run_socket(so, sopt,
4272 				    HHOOK_SOCKET_OPT);
4273 			else
4274 #endif
4275 				error = ENOPROTOOPT;
4276 			break;
4277 		}
4278 	}
4279 bad:
4280 	CURVNET_RESTORE();
4281 	return (error);
4282 }
4283 
4284 int
4285 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
4286 {
4287 	struct mbuf *m, *m_prev;
4288 	int sopt_size = sopt->sopt_valsize;
4289 
4290 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4291 	if (m == NULL)
4292 		return ENOBUFS;
4293 	if (sopt_size > MLEN) {
4294 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
4295 		if ((m->m_flags & M_EXT) == 0) {
4296 			m_free(m);
4297 			return ENOBUFS;
4298 		}
4299 		m->m_len = min(MCLBYTES, sopt_size);
4300 	} else {
4301 		m->m_len = min(MLEN, sopt_size);
4302 	}
4303 	sopt_size -= m->m_len;
4304 	*mp = m;
4305 	m_prev = m;
4306 
4307 	while (sopt_size) {
4308 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4309 		if (m == NULL) {
4310 			m_freem(*mp);
4311 			return ENOBUFS;
4312 		}
4313 		if (sopt_size > MLEN) {
4314 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
4315 			    M_NOWAIT);
4316 			if ((m->m_flags & M_EXT) == 0) {
4317 				m_freem(m);
4318 				m_freem(*mp);
4319 				return ENOBUFS;
4320 			}
4321 			m->m_len = min(MCLBYTES, sopt_size);
4322 		} else {
4323 			m->m_len = min(MLEN, sopt_size);
4324 		}
4325 		sopt_size -= m->m_len;
4326 		m_prev->m_next = m;
4327 		m_prev = m;
4328 	}
4329 	return (0);
4330 }
4331 
4332 int
4333 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
4334 {
4335 	struct mbuf *m0 = m;
4336 
4337 	if (sopt->sopt_val == NULL)
4338 		return (0);
4339 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4340 		if (sopt->sopt_td != NULL) {
4341 			int error;
4342 
4343 			error = copyin(sopt->sopt_val, mtod(m, char *),
4344 			    m->m_len);
4345 			if (error != 0) {
4346 				m_freem(m0);
4347 				return(error);
4348 			}
4349 		} else
4350 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
4351 		sopt->sopt_valsize -= m->m_len;
4352 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4353 		m = m->m_next;
4354 	}
4355 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
4356 		panic("ip6_sooptmcopyin");
4357 	return (0);
4358 }
4359 
4360 int
4361 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
4362 {
4363 	struct mbuf *m0 = m;
4364 	size_t valsize = 0;
4365 
4366 	if (sopt->sopt_val == NULL)
4367 		return (0);
4368 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4369 		if (sopt->sopt_td != NULL) {
4370 			int error;
4371 
4372 			error = copyout(mtod(m, char *), sopt->sopt_val,
4373 			    m->m_len);
4374 			if (error != 0) {
4375 				m_freem(m0);
4376 				return(error);
4377 			}
4378 		} else
4379 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
4380 		sopt->sopt_valsize -= m->m_len;
4381 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4382 		valsize += m->m_len;
4383 		m = m->m_next;
4384 	}
4385 	if (m != NULL) {
4386 		/* enough soopt buffer should be given from user-land */
4387 		m_freem(m0);
4388 		return(EINVAL);
4389 	}
4390 	sopt->sopt_valsize = valsize;
4391 	return (0);
4392 }
4393 
4394 /*
4395  * sohasoutofband(): protocol notifies socket layer of the arrival of new
4396  * out-of-band data, which will then notify socket consumers.
4397  */
4398 void
4399 sohasoutofband(struct socket *so)
4400 {
4401 
4402 	if (so->so_sigio != NULL)
4403 		pgsigio(&so->so_sigio, SIGURG, 0);
4404 	selwakeuppri(&so->so_rdsel, PSOCK);
4405 }
4406 
4407 int
4408 sopoll(struct socket *so, int events, struct ucred *active_cred,
4409     struct thread *td)
4410 {
4411 
4412 	/*
4413 	 * We do not need to set or assert curvnet as long as everyone uses
4414 	 * sopoll_generic().
4415 	 */
4416 	return (so->so_proto->pr_sopoll(so, events, active_cred, td));
4417 }
4418 
4419 int
4420 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
4421     struct thread *td)
4422 {
4423 	int revents;
4424 
4425 	SOCK_LOCK(so);
4426 	if (SOLISTENING(so)) {
4427 		if (!(events & (POLLIN | POLLRDNORM)))
4428 			revents = 0;
4429 		else if (!TAILQ_EMPTY(&so->sol_comp))
4430 			revents = events & (POLLIN | POLLRDNORM);
4431 		else if ((events & POLLINIGNEOF) == 0 && so->so_error)
4432 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
4433 		else {
4434 			selrecord(td, &so->so_rdsel);
4435 			revents = 0;
4436 		}
4437 	} else {
4438 		revents = 0;
4439 		SOCK_SENDBUF_LOCK(so);
4440 		SOCK_RECVBUF_LOCK(so);
4441 		if (events & (POLLIN | POLLRDNORM))
4442 			if (soreadabledata(so) && !isspliced(so))
4443 				revents |= events & (POLLIN | POLLRDNORM);
4444 		if (events & (POLLOUT | POLLWRNORM))
4445 			if (sowriteable(so) && !issplicedback(so))
4446 				revents |= events & (POLLOUT | POLLWRNORM);
4447 		if (events & (POLLPRI | POLLRDBAND))
4448 			if (so->so_oobmark ||
4449 			    (so->so_rcv.sb_state & SBS_RCVATMARK))
4450 				revents |= events & (POLLPRI | POLLRDBAND);
4451 		if ((events & POLLINIGNEOF) == 0) {
4452 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4453 				revents |= events & (POLLIN | POLLRDNORM);
4454 				if (so->so_snd.sb_state & SBS_CANTSENDMORE)
4455 					revents |= POLLHUP;
4456 			}
4457 		}
4458 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
4459 			revents |= events & POLLRDHUP;
4460 		if (revents == 0) {
4461 			if (events &
4462 			    (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
4463 				selrecord(td, &so->so_rdsel);
4464 				so->so_rcv.sb_flags |= SB_SEL;
4465 			}
4466 			if (events & (POLLOUT | POLLWRNORM)) {
4467 				selrecord(td, &so->so_wrsel);
4468 				so->so_snd.sb_flags |= SB_SEL;
4469 			}
4470 		}
4471 		SOCK_RECVBUF_UNLOCK(so);
4472 		SOCK_SENDBUF_UNLOCK(so);
4473 	}
4474 	SOCK_UNLOCK(so);
4475 	return (revents);
4476 }
4477 
4478 int
4479 soo_kqfilter(struct file *fp, struct knote *kn)
4480 {
4481 	struct socket *so = kn->kn_fp->f_data;
4482 	struct sockbuf *sb;
4483 	sb_which which;
4484 	struct knlist *knl;
4485 
4486 	switch (kn->kn_filter) {
4487 	case EVFILT_READ:
4488 		kn->kn_fop = &soread_filtops;
4489 		knl = &so->so_rdsel.si_note;
4490 		sb = &so->so_rcv;
4491 		which = SO_RCV;
4492 		break;
4493 	case EVFILT_WRITE:
4494 		kn->kn_fop = &sowrite_filtops;
4495 		knl = &so->so_wrsel.si_note;
4496 		sb = &so->so_snd;
4497 		which = SO_SND;
4498 		break;
4499 	case EVFILT_EMPTY:
4500 		kn->kn_fop = &soempty_filtops;
4501 		knl = &so->so_wrsel.si_note;
4502 		sb = &so->so_snd;
4503 		which = SO_SND;
4504 		break;
4505 	default:
4506 		return (EINVAL);
4507 	}
4508 
4509 	SOCK_LOCK(so);
4510 	if (SOLISTENING(so)) {
4511 		knlist_add(knl, kn, 1);
4512 	} else {
4513 		SOCK_BUF_LOCK(so, which);
4514 		knlist_add(knl, kn, 1);
4515 		sb->sb_flags |= SB_KNOTE;
4516 		SOCK_BUF_UNLOCK(so, which);
4517 	}
4518 	SOCK_UNLOCK(so);
4519 	return (0);
4520 }
4521 
4522 static void
4523 filt_sordetach(struct knote *kn)
4524 {
4525 	struct socket *so = kn->kn_fp->f_data;
4526 
4527 	so_rdknl_lock(so);
4528 	knlist_remove(&so->so_rdsel.si_note, kn, 1);
4529 	if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
4530 		so->so_rcv.sb_flags &= ~SB_KNOTE;
4531 	so_rdknl_unlock(so);
4532 }
4533 
4534 /*ARGSUSED*/
4535 static int
4536 filt_soread(struct knote *kn, long hint)
4537 {
4538 	struct socket *so;
4539 
4540 	so = kn->kn_fp->f_data;
4541 
4542 	if (SOLISTENING(so)) {
4543 		SOCK_LOCK_ASSERT(so);
4544 		kn->kn_data = so->sol_qlen;
4545 		if (so->so_error) {
4546 			kn->kn_flags |= EV_EOF;
4547 			kn->kn_fflags = so->so_error;
4548 			return (1);
4549 		}
4550 		return (!TAILQ_EMPTY(&so->sol_comp));
4551 	}
4552 
4553 	if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
4554 		return (0);
4555 
4556 	SOCK_RECVBUF_LOCK_ASSERT(so);
4557 
4558 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
4559 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4560 		kn->kn_flags |= EV_EOF;
4561 		kn->kn_fflags = so->so_error;
4562 		return (1);
4563 	} else if (so->so_error || so->so_rerror)
4564 		return (1);
4565 
4566 	if (kn->kn_sfflags & NOTE_LOWAT) {
4567 		if (kn->kn_data >= kn->kn_sdata)
4568 			return (1);
4569 	} else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
4570 		return (1);
4571 
4572 #ifdef SOCKET_HHOOK
4573 	/* This hook returning non-zero indicates an event, not error */
4574 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
4575 #else
4576 	return (0);
4577 #endif
4578 }
4579 
4580 static void
4581 filt_sowdetach(struct knote *kn)
4582 {
4583 	struct socket *so = kn->kn_fp->f_data;
4584 
4585 	so_wrknl_lock(so);
4586 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
4587 	if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
4588 		so->so_snd.sb_flags &= ~SB_KNOTE;
4589 	so_wrknl_unlock(so);
4590 }
4591 
4592 /*ARGSUSED*/
4593 static int
4594 filt_sowrite(struct knote *kn, long hint)
4595 {
4596 	struct socket *so;
4597 
4598 	so = kn->kn_fp->f_data;
4599 
4600 	if (SOLISTENING(so))
4601 		return (0);
4602 
4603 	SOCK_SENDBUF_LOCK_ASSERT(so);
4604 	kn->kn_data = sbspace(&so->so_snd);
4605 
4606 #ifdef SOCKET_HHOOK
4607 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
4608 #endif
4609 
4610 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
4611 		kn->kn_flags |= EV_EOF;
4612 		kn->kn_fflags = so->so_error;
4613 		return (1);
4614 	} else if (so->so_error)	/* temporary udp error */
4615 		return (1);
4616 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
4617 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
4618 		return (0);
4619 	else if (kn->kn_sfflags & NOTE_LOWAT)
4620 		return (kn->kn_data >= kn->kn_sdata);
4621 	else
4622 		return (kn->kn_data >= so->so_snd.sb_lowat);
4623 }
4624 
4625 static int
4626 filt_soempty(struct knote *kn, long hint)
4627 {
4628 	struct socket *so;
4629 
4630 	so = kn->kn_fp->f_data;
4631 
4632 	if (SOLISTENING(so))
4633 		return (1);
4634 
4635 	SOCK_SENDBUF_LOCK_ASSERT(so);
4636 	kn->kn_data = sbused(&so->so_snd);
4637 
4638 	if (kn->kn_data == 0)
4639 		return (1);
4640 	else
4641 		return (0);
4642 }
4643 
4644 int
4645 socheckuid(struct socket *so, uid_t uid)
4646 {
4647 
4648 	if (so == NULL)
4649 		return (EPERM);
4650 	if (so->so_cred->cr_uid != uid)
4651 		return (EPERM);
4652 	return (0);
4653 }
4654 
4655 /*
4656  * These functions are used by protocols to notify the socket layer (and its
4657  * consumers) of state changes in the sockets driven by protocol-side events.
4658  */
4659 
4660 /*
4661  * Procedures to manipulate state flags of socket and do appropriate wakeups.
4662  *
4663  * Normal sequence from the active (originating) side is that
4664  * soisconnecting() is called during processing of connect() call, resulting
4665  * in an eventual call to soisconnected() if/when the connection is
4666  * established.  When the connection is torn down soisdisconnecting() is
4667  * called during processing of disconnect() call, and soisdisconnected() is
4668  * called when the connection to the peer is totally severed.  The semantics
4669  * of these routines are such that connectionless protocols can call
4670  * soisconnected() and soisdisconnected() only, bypassing the in-progress
4671  * calls when setting up a ``connection'' takes no time.
4672  *
4673  * From the passive side, a socket is created with two queues of sockets:
4674  * so_incomp for connections in progress and so_comp for connections already
4675  * made and awaiting user acceptance.  As a protocol is preparing incoming
4676  * connections, it creates a socket structure queued on so_incomp by calling
4677  * sonewconn().  When the connection is established, soisconnected() is
4678  * called, and transfers the socket structure to so_comp, making it available
4679  * to accept().
4680  *
4681  * If a socket is closed with sockets on either so_incomp or so_comp, these
4682  * sockets are dropped.
4683  *
4684  * If higher-level protocols are implemented in the kernel, the wakeups done
4685  * here will sometimes cause software-interrupt process scheduling.
4686  */
4687 void
4688 soisconnecting(struct socket *so)
4689 {
4690 
4691 	SOCK_LOCK(so);
4692 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
4693 	so->so_state |= SS_ISCONNECTING;
4694 	SOCK_UNLOCK(so);
4695 }
4696 
4697 void
4698 soisconnected(struct socket *so)
4699 {
4700 	bool last __diagused;
4701 
4702 	SOCK_LOCK(so);
4703 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING);
4704 	so->so_state |= SS_ISCONNECTED;
4705 
4706 	if (so->so_qstate == SQ_INCOMP) {
4707 		struct socket *head = so->so_listen;
4708 		int ret;
4709 
4710 		KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
4711 		/*
4712 		 * Promoting a socket from incomplete queue to complete, we
4713 		 * need to go through reverse order of locking.  We first do
4714 		 * trylock, and if that doesn't succeed, we go the hard way
4715 		 * leaving a reference and rechecking consistency after proper
4716 		 * locking.
4717 		 */
4718 		if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
4719 			soref(head);
4720 			SOCK_UNLOCK(so);
4721 			SOLISTEN_LOCK(head);
4722 			SOCK_LOCK(so);
4723 			if (__predict_false(head != so->so_listen)) {
4724 				/*
4725 				 * The socket went off the listen queue,
4726 				 * should be lost race to close(2) of sol.
4727 				 * The socket is about to soabort().
4728 				 */
4729 				SOCK_UNLOCK(so);
4730 				sorele_locked(head);
4731 				return;
4732 			}
4733 			last = refcount_release(&head->so_count);
4734 			KASSERT(!last, ("%s: released last reference for %p",
4735 			    __func__, head));
4736 		}
4737 again:
4738 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
4739 			TAILQ_REMOVE(&head->sol_incomp, so, so_list);
4740 			head->sol_incqlen--;
4741 			TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
4742 			head->sol_qlen++;
4743 			so->so_qstate = SQ_COMP;
4744 			SOCK_UNLOCK(so);
4745 			solisten_wakeup(head);	/* unlocks */
4746 		} else {
4747 			SOCK_RECVBUF_LOCK(so);
4748 			soupcall_set(so, SO_RCV,
4749 			    head->sol_accept_filter->accf_callback,
4750 			    head->sol_accept_filter_arg);
4751 			so->so_options &= ~SO_ACCEPTFILTER;
4752 			ret = head->sol_accept_filter->accf_callback(so,
4753 			    head->sol_accept_filter_arg, M_NOWAIT);
4754 			if (ret == SU_ISCONNECTED) {
4755 				soupcall_clear(so, SO_RCV);
4756 				SOCK_RECVBUF_UNLOCK(so);
4757 				goto again;
4758 			}
4759 			SOCK_RECVBUF_UNLOCK(so);
4760 			SOCK_UNLOCK(so);
4761 			SOLISTEN_UNLOCK(head);
4762 		}
4763 		return;
4764 	}
4765 	SOCK_UNLOCK(so);
4766 	wakeup(&so->so_timeo);
4767 	sorwakeup(so);
4768 	sowwakeup(so);
4769 }
4770 
4771 void
4772 soisdisconnecting(struct socket *so)
4773 {
4774 
4775 	SOCK_LOCK(so);
4776 	so->so_state &= ~SS_ISCONNECTING;
4777 	so->so_state |= SS_ISDISCONNECTING;
4778 
4779 	if (!SOLISTENING(so)) {
4780 		SOCK_RECVBUF_LOCK(so);
4781 		socantrcvmore_locked(so);
4782 		SOCK_SENDBUF_LOCK(so);
4783 		socantsendmore_locked(so);
4784 	}
4785 	SOCK_UNLOCK(so);
4786 	wakeup(&so->so_timeo);
4787 }
4788 
4789 void
4790 soisdisconnected(struct socket *so)
4791 {
4792 
4793 	SOCK_LOCK(so);
4794 
4795 	/*
4796 	 * There is at least one reader of so_state that does not
4797 	 * acquire socket lock, namely soreceive_generic().  Ensure
4798 	 * that it never sees all flags that track connection status
4799 	 * cleared, by ordering the update with a barrier semantic of
4800 	 * our release thread fence.
4801 	 */
4802 	so->so_state |= SS_ISDISCONNECTED;
4803 	atomic_thread_fence_rel();
4804 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4805 
4806 	if (!SOLISTENING(so)) {
4807 		SOCK_UNLOCK(so);
4808 		SOCK_RECVBUF_LOCK(so);
4809 		socantrcvmore_locked(so);
4810 		SOCK_SENDBUF_LOCK(so);
4811 		sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4812 		socantsendmore_locked(so);
4813 	} else
4814 		SOCK_UNLOCK(so);
4815 	wakeup(&so->so_timeo);
4816 }
4817 
4818 int
4819 soiolock(struct socket *so, struct sx *sx, int flags)
4820 {
4821 	int error;
4822 
4823 	KASSERT((flags & SBL_VALID) == flags,
4824 	    ("soiolock: invalid flags %#x", flags));
4825 
4826 	if ((flags & SBL_WAIT) != 0) {
4827 		if ((flags & SBL_NOINTR) != 0) {
4828 			sx_xlock(sx);
4829 		} else {
4830 			error = sx_xlock_sig(sx);
4831 			if (error != 0)
4832 				return (error);
4833 		}
4834 	} else if (!sx_try_xlock(sx)) {
4835 		return (EWOULDBLOCK);
4836 	}
4837 
4838 	if (__predict_false(SOLISTENING(so))) {
4839 		sx_xunlock(sx);
4840 		return (ENOTCONN);
4841 	}
4842 	return (0);
4843 }
4844 
4845 void
4846 soiounlock(struct sx *sx)
4847 {
4848 	sx_xunlock(sx);
4849 }
4850 
4851 /*
4852  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4853  */
4854 struct sockaddr *
4855 sodupsockaddr(const struct sockaddr *sa, int mflags)
4856 {
4857 	struct sockaddr *sa2;
4858 
4859 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4860 	if (sa2)
4861 		bcopy(sa, sa2, sa->sa_len);
4862 	return sa2;
4863 }
4864 
4865 /*
4866  * Register per-socket destructor.
4867  */
4868 void
4869 sodtor_set(struct socket *so, so_dtor_t *func)
4870 {
4871 
4872 	SOCK_LOCK_ASSERT(so);
4873 	so->so_dtor = func;
4874 }
4875 
4876 /*
4877  * Register per-socket buffer upcalls.
4878  */
4879 void
4880 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4881 {
4882 	struct sockbuf *sb;
4883 
4884 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4885 
4886 	switch (which) {
4887 	case SO_RCV:
4888 		sb = &so->so_rcv;
4889 		break;
4890 	case SO_SND:
4891 		sb = &so->so_snd;
4892 		break;
4893 	}
4894 	SOCK_BUF_LOCK_ASSERT(so, which);
4895 	sb->sb_upcall = func;
4896 	sb->sb_upcallarg = arg;
4897 	sb->sb_flags |= SB_UPCALL;
4898 }
4899 
4900 void
4901 soupcall_clear(struct socket *so, sb_which which)
4902 {
4903 	struct sockbuf *sb;
4904 
4905 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4906 
4907 	switch (which) {
4908 	case SO_RCV:
4909 		sb = &so->so_rcv;
4910 		break;
4911 	case SO_SND:
4912 		sb = &so->so_snd;
4913 		break;
4914 	}
4915 	SOCK_BUF_LOCK_ASSERT(so, which);
4916 	KASSERT(sb->sb_upcall != NULL,
4917 	    ("%s: so %p no upcall to clear", __func__, so));
4918 	sb->sb_upcall = NULL;
4919 	sb->sb_upcallarg = NULL;
4920 	sb->sb_flags &= ~SB_UPCALL;
4921 }
4922 
4923 void
4924 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4925 {
4926 
4927 	SOLISTEN_LOCK_ASSERT(so);
4928 	so->sol_upcall = func;
4929 	so->sol_upcallarg = arg;
4930 }
4931 
4932 static void
4933 so_rdknl_lock(void *arg)
4934 {
4935 	struct socket *so = arg;
4936 
4937 retry:
4938 	if (SOLISTENING(so)) {
4939 		SOLISTEN_LOCK(so);
4940 	} else {
4941 		SOCK_RECVBUF_LOCK(so);
4942 		if (__predict_false(SOLISTENING(so))) {
4943 			SOCK_RECVBUF_UNLOCK(so);
4944 			goto retry;
4945 		}
4946 	}
4947 }
4948 
4949 static void
4950 so_rdknl_unlock(void *arg)
4951 {
4952 	struct socket *so = arg;
4953 
4954 	if (SOLISTENING(so))
4955 		SOLISTEN_UNLOCK(so);
4956 	else
4957 		SOCK_RECVBUF_UNLOCK(so);
4958 }
4959 
4960 static void
4961 so_rdknl_assert_lock(void *arg, int what)
4962 {
4963 	struct socket *so = arg;
4964 
4965 	if (what == LA_LOCKED) {
4966 		if (SOLISTENING(so))
4967 			SOLISTEN_LOCK_ASSERT(so);
4968 		else
4969 			SOCK_RECVBUF_LOCK_ASSERT(so);
4970 	} else {
4971 		if (SOLISTENING(so))
4972 			SOLISTEN_UNLOCK_ASSERT(so);
4973 		else
4974 			SOCK_RECVBUF_UNLOCK_ASSERT(so);
4975 	}
4976 }
4977 
4978 static void
4979 so_wrknl_lock(void *arg)
4980 {
4981 	struct socket *so = arg;
4982 
4983 retry:
4984 	if (SOLISTENING(so)) {
4985 		SOLISTEN_LOCK(so);
4986 	} else {
4987 		SOCK_SENDBUF_LOCK(so);
4988 		if (__predict_false(SOLISTENING(so))) {
4989 			SOCK_SENDBUF_UNLOCK(so);
4990 			goto retry;
4991 		}
4992 	}
4993 }
4994 
4995 static void
4996 so_wrknl_unlock(void *arg)
4997 {
4998 	struct socket *so = arg;
4999 
5000 	if (SOLISTENING(so))
5001 		SOLISTEN_UNLOCK(so);
5002 	else
5003 		SOCK_SENDBUF_UNLOCK(so);
5004 }
5005 
5006 static void
5007 so_wrknl_assert_lock(void *arg, int what)
5008 {
5009 	struct socket *so = arg;
5010 
5011 	if (what == LA_LOCKED) {
5012 		if (SOLISTENING(so))
5013 			SOLISTEN_LOCK_ASSERT(so);
5014 		else
5015 			SOCK_SENDBUF_LOCK_ASSERT(so);
5016 	} else {
5017 		if (SOLISTENING(so))
5018 			SOLISTEN_UNLOCK_ASSERT(so);
5019 		else
5020 			SOCK_SENDBUF_UNLOCK_ASSERT(so);
5021 	}
5022 }
5023 
5024 /*
5025  * Create an external-format (``xsocket'') structure using the information in
5026  * the kernel-format socket structure pointed to by so.  This is done to
5027  * reduce the spew of irrelevant information over this interface, to isolate
5028  * user code from changes in the kernel structure, and potentially to provide
5029  * information-hiding if we decide that some of this information should be
5030  * hidden from users.
5031  */
5032 void
5033 sotoxsocket(struct socket *so, struct xsocket *xso)
5034 {
5035 
5036 	bzero(xso, sizeof(*xso));
5037 	xso->xso_len = sizeof *xso;
5038 	xso->xso_so = (uintptr_t)so;
5039 	xso->so_type = so->so_type;
5040 	xso->so_options = so->so_options;
5041 	xso->so_linger = so->so_linger;
5042 	xso->so_state = so->so_state;
5043 	xso->so_pcb = (uintptr_t)so->so_pcb;
5044 	xso->xso_protocol = so->so_proto->pr_protocol;
5045 	xso->xso_family = so->so_proto->pr_domain->dom_family;
5046 	xso->so_timeo = so->so_timeo;
5047 	xso->so_error = so->so_error;
5048 	xso->so_uid = so->so_cred->cr_uid;
5049 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
5050 	SOCK_LOCK(so);
5051 	xso->so_fibnum = so->so_fibnum;
5052 	if (SOLISTENING(so)) {
5053 		xso->so_qlen = so->sol_qlen;
5054 		xso->so_incqlen = so->sol_incqlen;
5055 		xso->so_qlimit = so->sol_qlimit;
5056 		xso->so_oobmark = 0;
5057 	} else {
5058 		xso->so_state |= so->so_qstate;
5059 		xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
5060 		xso->so_oobmark = so->so_oobmark;
5061 		sbtoxsockbuf(&so->so_snd, &xso->so_snd);
5062 		sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
5063 		if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
5064 			xso->so_splice_so = (uintptr_t)so->so_splice->dst;
5065 	}
5066 	SOCK_UNLOCK(so);
5067 }
5068 
5069 int
5070 so_options_get(const struct socket *so)
5071 {
5072 
5073 	return (so->so_options);
5074 }
5075 
5076 void
5077 so_options_set(struct socket *so, int val)
5078 {
5079 
5080 	so->so_options = val;
5081 }
5082 
5083 int
5084 so_error_get(const struct socket *so)
5085 {
5086 
5087 	return (so->so_error);
5088 }
5089 
5090 void
5091 so_error_set(struct socket *so, int val)
5092 {
5093 
5094 	so->so_error = val;
5095 }
5096