1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California.
6 * Copyright (c) 2004 The FreeBSD Foundation
7 * Copyright (c) 2004-2008 Robert N. M. Watson
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 /*
36 * Comments on the socket life cycle:
37 *
38 * soalloc() sets of socket layer state for a socket, called only by
39 * socreate() and sonewconn(). Socket layer private.
40 *
41 * sodealloc() tears down socket layer state for a socket, called only by
42 * sofree() and sonewconn(). Socket layer private.
43 *
44 * pr_attach() associates protocol layer state with an allocated socket;
45 * called only once, may fail, aborting socket allocation. This is called
46 * from socreate() and sonewconn(). Socket layer private.
47 *
48 * pr_detach() disassociates protocol layer state from an attached socket,
49 * and will be called exactly once for sockets in which pr_attach() has
50 * been successfully called. If pr_attach() returned an error,
51 * pr_detach() will not be called. Socket layer private.
52 *
53 * pr_abort() and pr_close() notify the protocol layer that the last
54 * consumer of a socket is starting to tear down the socket, and that the
55 * protocol should terminate the connection. Historically, pr_abort() also
56 * detached protocol state from the socket state, but this is no longer the
57 * case. pr_fdclose() is called when userspace invokes close(2) on a socket
58 * file descriptor.
59 *
60 * socreate() creates a socket and attaches protocol state. This is a public
61 * interface that may be used by socket layer consumers to create new
62 * sockets.
63 *
64 * sonewconn() creates a socket and attaches protocol state. This is a
65 * public interface that may be used by protocols to create new sockets when
66 * a new connection is received and will be available for accept() on a
67 * listen socket.
68 *
69 * soclose() destroys a socket after possibly waiting for it to disconnect.
70 * This is a public interface that socket consumers should use to close and
71 * release a socket when done with it.
72 *
73 * soabort() destroys a socket without waiting for it to disconnect (used
74 * only for incoming connections that are already partially or fully
75 * connected). This is used internally by the socket layer when clearing
76 * listen socket queues (due to overflow or close on the listen socket), but
77 * is also a public interface protocols may use to abort connections in
78 * their incomplete listen queues should they no longer be required. Sockets
79 * placed in completed connection listen queues should not be aborted for
80 * reasons described in the comment above the soclose() implementation. This
81 * is not a general purpose close routine, and except in the specific
82 * circumstances described here, should not be used.
83 *
84 * sofree() will free a socket and its protocol state if all references on
85 * the socket have been released, and is the public interface to attempt to
86 * free a socket when a reference is removed. This is a socket layer private
87 * interface.
88 *
89 * NOTE: In addition to socreate() and soclose(), which provide a single
90 * socket reference to the consumer to be managed as required, there are two
91 * calls to explicitly manage socket references, soref(), and sorele().
92 * Currently, these are generally required only when transitioning a socket
93 * from a listen queue to a file descriptor, in order to prevent garbage
94 * collection of the socket at an untimely moment. For a number of reasons,
95 * these interfaces are not preferred, and should be avoided.
96 *
97 * NOTE: With regard to VNETs the general rule is that callers do not set
98 * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
99 * sofree(), sorele(), sonewconn() and sorflush(), which are usually called
100 * from a pre-set VNET context. sopoll_generic() currently does not need a
101 * VNET context to be set.
102 */
103
104 #include <sys/cdefs.h>
105 #include "opt_inet.h"
106 #include "opt_inet6.h"
107 #include "opt_kern_tls.h"
108 #include "opt_ktrace.h"
109 #include "opt_sctp.h"
110
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/capsicum.h>
114 #include <sys/fcntl.h>
115 #include <sys/limits.h>
116 #include <sys/lock.h>
117 #include <sys/mac.h>
118 #include <sys/malloc.h>
119 #include <sys/mbuf.h>
120 #include <sys/mutex.h>
121 #include <sys/domain.h>
122 #include <sys/file.h> /* for struct knote */
123 #include <sys/hhook.h>
124 #include <sys/kernel.h>
125 #include <sys/khelp.h>
126 #include <sys/kthread.h>
127 #include <sys/ktls.h>
128 #include <sys/event.h>
129 #include <sys/eventhandler.h>
130 #include <sys/poll.h>
131 #include <sys/proc.h>
132 #include <sys/protosw.h>
133 #include <sys/sbuf.h>
134 #include <sys/socket.h>
135 #include <sys/socketvar.h>
136 #include <sys/resourcevar.h>
137 #include <net/route.h>
138 #include <sys/sched.h>
139 #include <sys/signalvar.h>
140 #include <sys/smp.h>
141 #include <sys/stat.h>
142 #include <sys/sx.h>
143 #include <sys/sysctl.h>
144 #include <sys/taskqueue.h>
145 #include <sys/uio.h>
146 #include <sys/un.h>
147 #include <sys/unpcb.h>
148 #include <sys/jail.h>
149 #include <sys/syslog.h>
150 #include <netinet/in.h>
151 #include <netinet/in_pcb.h>
152 #include <netinet/tcp.h>
153
154 #include <net/vnet.h>
155
156 #include <security/mac/mac_framework.h>
157 #include <security/mac/mac_internal.h>
158
159 #include <vm/uma.h>
160
161 #ifdef COMPAT_FREEBSD32
162 #include <sys/mount.h>
163 #include <sys/sysent.h>
164 #include <compat/freebsd32/freebsd32.h>
165 #endif
166
167 static int soreceive_generic_locked(struct socket *so,
168 struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
169 struct mbuf **controlp, int *flagsp);
170 static int soreceive_rcvoob(struct socket *so, struct uio *uio,
171 int flags);
172 static int soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
173 struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
174 struct mbuf **controlp, int flags);
175 static int sosend_generic_locked(struct socket *so, struct sockaddr *addr,
176 struct uio *uio, struct mbuf *top, struct mbuf *control,
177 int flags, struct thread *td);
178 static void so_rdknl_lock(void *);
179 static void so_rdknl_unlock(void *);
180 static void so_rdknl_assert_lock(void *, int);
181 static void so_wrknl_lock(void *);
182 static void so_wrknl_unlock(void *);
183 static void so_wrknl_assert_lock(void *, int);
184
185 static void filt_sordetach(struct knote *kn);
186 static int filt_soread(struct knote *kn, long hint);
187 static void filt_sowdetach(struct knote *kn);
188 static int filt_sowrite(struct knote *kn, long hint);
189 static int filt_soempty(struct knote *kn, long hint);
190
191 static const struct filterops soread_filtops = {
192 .f_isfd = 1,
193 .f_detach = filt_sordetach,
194 .f_event = filt_soread,
195 .f_copy = knote_triv_copy,
196 };
197 static const struct filterops sowrite_filtops = {
198 .f_isfd = 1,
199 .f_detach = filt_sowdetach,
200 .f_event = filt_sowrite,
201 .f_copy = knote_triv_copy,
202 };
203 static const struct filterops soempty_filtops = {
204 .f_isfd = 1,
205 .f_detach = filt_sowdetach,
206 .f_event = filt_soempty,
207 .f_copy = knote_triv_copy,
208 };
209
210 so_gen_t so_gencnt; /* generation count for sockets */
211
212 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
213 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
214
215 #define VNET_SO_ASSERT(so) \
216 VNET_ASSERT(curvnet != NULL, \
217 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
218
219 #ifdef SOCKET_HHOOK
220 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
221 #define V_socket_hhh VNET(socket_hhh)
222 static inline int hhook_run_socket(struct socket *, void *, int32_t);
223 #endif
224
225 #ifdef COMPAT_FREEBSD32
226 #ifdef __amd64__
227 /* off_t has 4-byte alignment on i386 but not on other 32-bit platforms. */
228 #define __splice32_packed __packed
229 #else
230 #define __splice32_packed
231 #endif
232 struct splice32 {
233 int32_t sp_fd;
234 int64_t sp_max;
235 struct timeval32 sp_idle;
236 } __splice32_packed;
237 #undef __splice32_packed
238 #endif
239
240 /*
241 * Limit on the number of connections in the listen queue waiting
242 * for accept(2).
243 * NB: The original sysctl somaxconn is still available but hidden
244 * to prevent confusion about the actual purpose of this number.
245 */
246 VNET_DEFINE_STATIC(u_int, somaxconn) = SOMAXCONN;
247 #define V_somaxconn VNET(somaxconn)
248
249 static int
sysctl_somaxconn(SYSCTL_HANDLER_ARGS)250 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
251 {
252 int error;
253 u_int val;
254
255 val = V_somaxconn;
256 error = sysctl_handle_int(oidp, &val, 0, req);
257 if (error || !req->newptr )
258 return (error);
259
260 /*
261 * The purpose of the UINT_MAX / 3 limit, is so that the formula
262 * 3 * sol_qlimit / 2
263 * below, will not overflow.
264 */
265
266 if (val < 1 || val > UINT_MAX / 3)
267 return (EINVAL);
268
269 V_somaxconn = val;
270 return (0);
271 }
272 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
273 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
274 sysctl_somaxconn, "IU",
275 "Maximum listen socket pending connection accept queue size");
276 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
277 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0,
278 sizeof(u_int), sysctl_somaxconn, "IU",
279 "Maximum listen socket pending connection accept queue size (compat)");
280
281 static u_int numopensockets;
282 static int
sysctl_numopensockets(SYSCTL_HANDLER_ARGS)283 sysctl_numopensockets(SYSCTL_HANDLER_ARGS)
284 {
285 u_int val;
286
287 #ifdef VIMAGE
288 if(!IS_DEFAULT_VNET(curvnet))
289 val = curvnet->vnet_sockcnt;
290 else
291 #endif
292 val = numopensockets;
293 return (sysctl_handle_int(oidp, &val, 0, req));
294 }
295 SYSCTL_PROC(_kern_ipc, OID_AUTO, numopensockets,
296 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
297 sysctl_numopensockets, "IU", "Number of open sockets");
298
299 /*
300 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
301 * so_gencnt field.
302 */
303 static struct mtx so_global_mtx;
304 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
305
306 /*
307 * General IPC sysctl name space, used by sockets and a variety of other IPC
308 * types.
309 */
310 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
311 "IPC");
312
313 /*
314 * Initialize the socket subsystem and set up the socket
315 * memory allocator.
316 */
317 static uma_zone_t socket_zone;
318 int maxsockets;
319
320 static void
socket_zone_change(void * tag)321 socket_zone_change(void *tag)
322 {
323
324 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
325 }
326
327 static int splice_init_state;
328 static struct sx splice_init_lock;
329 SX_SYSINIT(splice_init_lock, &splice_init_lock, "splice_init");
330
331 static SYSCTL_NODE(_kern_ipc, OID_AUTO, splice, CTLFLAG_RW, 0,
332 "Settings relating to the SO_SPLICE socket option");
333
334 static bool splice_receive_stream = true;
335 SYSCTL_BOOL(_kern_ipc_splice, OID_AUTO, receive_stream, CTLFLAG_RWTUN,
336 &splice_receive_stream, 0,
337 "Use soreceive_stream() for stream splices");
338
339 static uma_zone_t splice_zone;
340 static struct proc *splice_proc;
341 struct splice_wq {
342 struct mtx mtx;
343 STAILQ_HEAD(, so_splice) head;
344 bool running;
345 } __aligned(CACHE_LINE_SIZE);
346 static struct splice_wq *splice_wq;
347 static uint32_t splice_index = 0;
348
349 static void so_splice_timeout(void *arg, int pending);
350 static void so_splice_xfer(struct so_splice *s);
351 static int so_unsplice(struct socket *so, bool timeout);
352
353 static void
splice_work_thread(void * ctx)354 splice_work_thread(void *ctx)
355 {
356 struct splice_wq *wq = ctx;
357 struct so_splice *s, *s_temp;
358 STAILQ_HEAD(, so_splice) local_head;
359 int cpu;
360
361 cpu = wq - splice_wq;
362 if (bootverbose)
363 printf("starting so_splice worker thread for CPU %d\n", cpu);
364
365 for (;;) {
366 mtx_lock(&wq->mtx);
367 while (STAILQ_EMPTY(&wq->head)) {
368 wq->running = false;
369 mtx_sleep(wq, &wq->mtx, 0, "-", 0);
370 wq->running = true;
371 }
372 STAILQ_INIT(&local_head);
373 STAILQ_CONCAT(&local_head, &wq->head);
374 STAILQ_INIT(&wq->head);
375 mtx_unlock(&wq->mtx);
376 STAILQ_FOREACH_SAFE(s, &local_head, next, s_temp) {
377 mtx_lock(&s->mtx);
378 CURVNET_SET(s->src->so_vnet);
379 so_splice_xfer(s);
380 CURVNET_RESTORE();
381 }
382 }
383 }
384
385 static void
so_splice_dispatch_async(struct so_splice * sp)386 so_splice_dispatch_async(struct so_splice *sp)
387 {
388 struct splice_wq *wq;
389 bool running;
390
391 wq = &splice_wq[sp->wq_index];
392 mtx_lock(&wq->mtx);
393 STAILQ_INSERT_TAIL(&wq->head, sp, next);
394 running = wq->running;
395 mtx_unlock(&wq->mtx);
396 if (!running)
397 wakeup(wq);
398 }
399
400 void
so_splice_dispatch(struct so_splice * sp)401 so_splice_dispatch(struct so_splice *sp)
402 {
403 mtx_assert(&sp->mtx, MA_OWNED);
404
405 if (sp->state != SPLICE_IDLE) {
406 mtx_unlock(&sp->mtx);
407 } else {
408 sp->state = SPLICE_QUEUED;
409 mtx_unlock(&sp->mtx);
410 so_splice_dispatch_async(sp);
411 }
412 }
413
414 static int
splice_zinit(void * mem,int size __unused,int flags __unused)415 splice_zinit(void *mem, int size __unused, int flags __unused)
416 {
417 struct so_splice *s;
418
419 s = (struct so_splice *)mem;
420 mtx_init(&s->mtx, "so_splice", NULL, MTX_DEF);
421 return (0);
422 }
423
424 static void
splice_zfini(void * mem,int size)425 splice_zfini(void *mem, int size)
426 {
427 struct so_splice *s;
428
429 s = (struct so_splice *)mem;
430 mtx_destroy(&s->mtx);
431 }
432
433 static int
splice_init(void)434 splice_init(void)
435 {
436 struct thread *td;
437 int error, i, state;
438
439 state = atomic_load_acq_int(&splice_init_state);
440 if (__predict_true(state > 0))
441 return (0);
442 if (state < 0)
443 return (ENXIO);
444 sx_xlock(&splice_init_lock);
445 if (splice_init_state != 0) {
446 sx_xunlock(&splice_init_lock);
447 return (0);
448 }
449
450 splice_zone = uma_zcreate("splice", sizeof(struct so_splice), NULL,
451 NULL, splice_zinit, splice_zfini, UMA_ALIGN_CACHE, 0);
452
453 splice_wq = mallocarray(mp_maxid + 1, sizeof(*splice_wq), M_TEMP,
454 M_WAITOK | M_ZERO);
455
456 /*
457 * Initialize the workqueues to run the splice work. We create a
458 * work queue for each CPU.
459 */
460 CPU_FOREACH(i) {
461 STAILQ_INIT(&splice_wq[i].head);
462 mtx_init(&splice_wq[i].mtx, "splice work queue", NULL, MTX_DEF);
463 }
464
465 /* Start kthreads for each workqueue. */
466 error = 0;
467 CPU_FOREACH(i) {
468 error = kproc_kthread_add(splice_work_thread, &splice_wq[i],
469 &splice_proc, &td, 0, 0, "so_splice", "thr_%d", i);
470 if (error) {
471 printf("Can't add so_splice thread %d error %d\n",
472 i, error);
473 break;
474 }
475
476 /*
477 * It's possible to create loops with SO_SPLICE; ensure that
478 * worker threads aren't able to starve the system too easily.
479 */
480 thread_lock(td);
481 sched_prio(td, PUSER);
482 thread_unlock(td);
483 }
484
485 splice_init_state = error != 0 ? -1 : 1;
486 sx_xunlock(&splice_init_lock);
487
488 return (error);
489 }
490
491 /*
492 * Lock a pair of socket's I/O locks for splicing. Avoid blocking while holding
493 * one lock in order to avoid potential deadlocks in case there is some other
494 * code path which acquires more than one I/O lock at a time.
495 */
496 static void
splice_lock_pair(struct socket * so_src,struct socket * so_dst)497 splice_lock_pair(struct socket *so_src, struct socket *so_dst)
498 {
499 int error;
500
501 for (;;) {
502 error = SOCK_IO_SEND_LOCK(so_dst, SBL_WAIT | SBL_NOINTR);
503 KASSERT(error == 0,
504 ("%s: failed to lock send I/O lock: %d", __func__, error));
505 error = SOCK_IO_RECV_LOCK(so_src, 0);
506 KASSERT(error == 0 || error == EWOULDBLOCK,
507 ("%s: failed to lock recv I/O lock: %d", __func__, error));
508 if (error == 0)
509 break;
510 SOCK_IO_SEND_UNLOCK(so_dst);
511
512 error = SOCK_IO_RECV_LOCK(so_src, SBL_WAIT | SBL_NOINTR);
513 KASSERT(error == 0,
514 ("%s: failed to lock recv I/O lock: %d", __func__, error));
515 error = SOCK_IO_SEND_LOCK(so_dst, 0);
516 KASSERT(error == 0 || error == EWOULDBLOCK,
517 ("%s: failed to lock send I/O lock: %d", __func__, error));
518 if (error == 0)
519 break;
520 SOCK_IO_RECV_UNLOCK(so_src);
521 }
522 }
523
524 static void
splice_unlock_pair(struct socket * so_src,struct socket * so_dst)525 splice_unlock_pair(struct socket *so_src, struct socket *so_dst)
526 {
527 SOCK_IO_RECV_UNLOCK(so_src);
528 SOCK_IO_SEND_UNLOCK(so_dst);
529 }
530
531 /*
532 * Move data from the source to the sink. Assumes that both of the relevant
533 * socket I/O locks are held.
534 */
535 static int
so_splice_xfer_data(struct socket * so_src,struct socket * so_dst,off_t max,ssize_t * lenp)536 so_splice_xfer_data(struct socket *so_src, struct socket *so_dst, off_t max,
537 ssize_t *lenp)
538 {
539 struct uio uio;
540 struct mbuf *m;
541 struct sockbuf *sb_src, *sb_dst;
542 ssize_t len;
543 long space;
544 int error, flags;
545
546 SOCK_IO_RECV_ASSERT_LOCKED(so_src);
547 SOCK_IO_SEND_ASSERT_LOCKED(so_dst);
548
549 error = 0;
550 m = NULL;
551 memset(&uio, 0, sizeof(uio));
552
553 sb_src = &so_src->so_rcv;
554 sb_dst = &so_dst->so_snd;
555
556 space = sbspace(sb_dst);
557 if (space < 0)
558 space = 0;
559 len = MIN(max, MIN(space, sbavail(sb_src)));
560 if (len == 0) {
561 SOCK_RECVBUF_LOCK(so_src);
562 if ((sb_src->sb_state & SBS_CANTRCVMORE) != 0)
563 error = EPIPE;
564 SOCK_RECVBUF_UNLOCK(so_src);
565 } else {
566 flags = MSG_DONTWAIT;
567 uio.uio_resid = len;
568 if (splice_receive_stream && sb_src->sb_tls_info == NULL) {
569 error = soreceive_stream_locked(so_src, sb_src, NULL,
570 &uio, &m, NULL, flags);
571 } else {
572 error = soreceive_generic_locked(so_src, NULL,
573 &uio, &m, NULL, &flags);
574 }
575 if (error != 0 && m != NULL) {
576 m_freem(m);
577 m = NULL;
578 }
579 }
580 if (m != NULL) {
581 len -= uio.uio_resid;
582 error = sosend_generic_locked(so_dst, NULL, NULL, m, NULL,
583 MSG_DONTWAIT, curthread);
584 } else if (error == 0) {
585 len = 0;
586 SOCK_SENDBUF_LOCK(so_dst);
587 if ((sb_dst->sb_state & SBS_CANTSENDMORE) != 0)
588 error = EPIPE;
589 SOCK_SENDBUF_UNLOCK(so_dst);
590 }
591 if (error == 0)
592 *lenp = len;
593 return (error);
594 }
595
596 /*
597 * Transfer data from the source to the sink.
598 */
599 static void
so_splice_xfer(struct so_splice * sp)600 so_splice_xfer(struct so_splice *sp)
601 {
602 struct socket *so_src, *so_dst;
603 off_t max;
604 ssize_t len;
605 int error;
606
607 mtx_assert(&sp->mtx, MA_OWNED);
608 KASSERT(sp->state == SPLICE_QUEUED || sp->state == SPLICE_CLOSING,
609 ("so_splice_xfer: invalid state %d", sp->state));
610 KASSERT(sp->max != 0, ("so_splice_xfer: max == 0"));
611
612 if (sp->state == SPLICE_CLOSING) {
613 /* Userspace asked us to close the splice. */
614 goto closing;
615 }
616
617 sp->state = SPLICE_RUNNING;
618 so_src = sp->src;
619 so_dst = sp->dst;
620 max = sp->max > 0 ? sp->max - so_src->so_splice_sent : OFF_MAX;
621 if (max < 0)
622 max = 0;
623
624 /*
625 * Lock the sockets in order to block userspace from doing anything
626 * sneaky. If an error occurs or one of the sockets can no longer
627 * transfer data, we will automatically unsplice.
628 */
629 mtx_unlock(&sp->mtx);
630 splice_lock_pair(so_src, so_dst);
631
632 error = so_splice_xfer_data(so_src, so_dst, max, &len);
633
634 mtx_lock(&sp->mtx);
635
636 /*
637 * Update our stats while still holding the socket locks. This
638 * synchronizes with getsockopt(SO_SPLICE), see the comment there.
639 */
640 if (error == 0) {
641 KASSERT(len >= 0, ("%s: len %zd < 0", __func__, len));
642 so_src->so_splice_sent += len;
643 }
644 splice_unlock_pair(so_src, so_dst);
645
646 switch (sp->state) {
647 case SPLICE_CLOSING:
648 closing:
649 sp->state = SPLICE_CLOSED;
650 wakeup(sp);
651 mtx_unlock(&sp->mtx);
652 break;
653 case SPLICE_RUNNING:
654 if (error != 0 ||
655 (sp->max > 0 && so_src->so_splice_sent >= sp->max)) {
656 sp->state = SPLICE_EXCEPTION;
657 soref(so_src);
658 mtx_unlock(&sp->mtx);
659 (void)so_unsplice(so_src, false);
660 sorele(so_src);
661 } else {
662 /*
663 * Locklessly check for additional bytes in the source's
664 * receive buffer and queue more work if possible. We
665 * may end up queuing needless work, but that's ok, and
666 * if we race with a thread inserting more data into the
667 * buffer and observe sbavail() == 0, the splice mutex
668 * ensures that splice_push() will queue more work for
669 * us.
670 */
671 if (sbavail(&so_src->so_rcv) > 0 &&
672 sbspace(&so_dst->so_snd) > 0) {
673 sp->state = SPLICE_QUEUED;
674 mtx_unlock(&sp->mtx);
675 so_splice_dispatch_async(sp);
676 } else {
677 sp->state = SPLICE_IDLE;
678 mtx_unlock(&sp->mtx);
679 }
680 }
681 break;
682 default:
683 __assert_unreachable();
684 }
685 }
686
687 static void
socket_init(void * tag)688 socket_init(void *tag)
689 {
690
691 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
692 NULL, NULL, UMA_ALIGN_PTR, 0);
693 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
694 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
695 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
696 EVENTHANDLER_PRI_FIRST);
697 }
698 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
699
700 #ifdef SOCKET_HHOOK
701 static void
socket_hhook_register(int subtype)702 socket_hhook_register(int subtype)
703 {
704
705 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
706 &V_socket_hhh[subtype],
707 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
708 printf("%s: WARNING: unable to register hook\n", __func__);
709 }
710
711 static void
socket_hhook_deregister(int subtype)712 socket_hhook_deregister(int subtype)
713 {
714
715 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
716 printf("%s: WARNING: unable to deregister hook\n", __func__);
717 }
718
719 static void
socket_vnet_init(const void * unused __unused)720 socket_vnet_init(const void *unused __unused)
721 {
722 int i;
723
724 /* We expect a contiguous range */
725 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
726 socket_hhook_register(i);
727 }
728 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
729 socket_vnet_init, NULL);
730
731 static void
socket_vnet_uninit(const void * unused __unused)732 socket_vnet_uninit(const void *unused __unused)
733 {
734 int i;
735
736 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
737 socket_hhook_deregister(i);
738 }
739 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
740 socket_vnet_uninit, NULL);
741 #endif /* SOCKET_HHOOK */
742
743 /*
744 * Initialise maxsockets. This SYSINIT must be run after
745 * tunable_mbinit().
746 */
747 static void
init_maxsockets(void * ignored)748 init_maxsockets(void *ignored)
749 {
750
751 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
752 maxsockets = imax(maxsockets, maxfiles);
753 }
754 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
755
756 /*
757 * Sysctl to get and set the maximum global sockets limit. Notify protocols
758 * of the change so that they can update their dependent limits as required.
759 */
760 static int
sysctl_maxsockets(SYSCTL_HANDLER_ARGS)761 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
762 {
763 int error, newmaxsockets;
764
765 newmaxsockets = maxsockets;
766 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
767 if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
768 if (newmaxsockets > maxsockets &&
769 newmaxsockets <= maxfiles) {
770 maxsockets = newmaxsockets;
771 EVENTHANDLER_INVOKE(maxsockets_change);
772 } else
773 error = EINVAL;
774 }
775 return (error);
776 }
777 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
778 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
779 &maxsockets, 0, sysctl_maxsockets, "IU",
780 "Maximum number of sockets available");
781
782 /*
783 * Socket operation routines. These routines are called by the routines in
784 * sys_socket.c or from a system process, and implement the semantics of
785 * socket operations by switching out to the protocol specific routines.
786 */
787
788 /*
789 * Get a socket structure from our zone, and initialize it. Note that it
790 * would probably be better to allocate socket and PCB at the same time, but
791 * I'm not convinced that all the protocols can be easily modified to do
792 * this.
793 *
794 * soalloc() returns a socket with a ref count of 0.
795 */
796 static struct socket *
soalloc(struct vnet * vnet)797 soalloc(struct vnet *vnet)
798 {
799 struct socket *so;
800
801 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
802 if (so == NULL)
803 return (NULL);
804 #ifdef MAC
805 if (mac_socket_init(so, M_NOWAIT) != 0) {
806 uma_zfree(socket_zone, so);
807 return (NULL);
808 }
809 #endif
810 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
811 uma_zfree(socket_zone, so);
812 return (NULL);
813 }
814
815 /*
816 * The socket locking protocol allows to lock 2 sockets at a time,
817 * however, the first one must be a listening socket. WITNESS lacks
818 * a feature to change class of an existing lock, so we use DUPOK.
819 */
820 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
821 so->so_rcv.sb_sel = &so->so_rdsel;
822 so->so_snd.sb_sel = &so->so_wrsel;
823 sx_init(&so->so_snd_sx, "so_snd_sx");
824 sx_init(&so->so_rcv_sx, "so_rcv_sx");
825 TAILQ_INIT(&so->so_snd.sb_aiojobq);
826 TAILQ_INIT(&so->so_rcv.sb_aiojobq);
827 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
828 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
829 #ifdef VIMAGE
830 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
831 __func__, __LINE__, so));
832 so->so_vnet = vnet;
833 #endif
834 #ifdef SOCKET_HHOOK
835 /* We shouldn't need the so_global_mtx */
836 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
837 /* Do we need more comprehensive error returns? */
838 uma_zfree(socket_zone, so);
839 return (NULL);
840 }
841 #endif
842 mtx_lock(&so_global_mtx);
843 so->so_gencnt = ++so_gencnt;
844 ++numopensockets;
845 #ifdef VIMAGE
846 vnet->vnet_sockcnt++;
847 #endif
848 mtx_unlock(&so_global_mtx);
849
850 return (so);
851 }
852
853 /*
854 * Free the storage associated with a socket at the socket layer, tear down
855 * locks, labels, etc. All protocol state is assumed already to have been
856 * torn down (and possibly never set up) by the caller.
857 */
858 void
sodealloc(struct socket * so)859 sodealloc(struct socket *so)
860 {
861
862 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
863 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
864
865 mtx_lock(&so_global_mtx);
866 so->so_gencnt = ++so_gencnt;
867 --numopensockets; /* Could be below, but faster here. */
868 #ifdef VIMAGE
869 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
870 __func__, __LINE__, so));
871 so->so_vnet->vnet_sockcnt--;
872 #endif
873 mtx_unlock(&so_global_mtx);
874 #ifdef MAC
875 mac_socket_destroy(so);
876 #endif
877 #ifdef SOCKET_HHOOK
878 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
879 #endif
880
881 khelp_destroy_osd(&so->osd);
882 if (SOLISTENING(so)) {
883 if (so->sol_accept_filter != NULL)
884 accept_filt_setopt(so, NULL);
885 } else {
886 if (so->so_rcv.sb_hiwat)
887 (void)chgsbsize(so->so_cred->cr_uidinfo,
888 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
889 if (so->so_snd.sb_hiwat)
890 (void)chgsbsize(so->so_cred->cr_uidinfo,
891 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
892 sx_destroy(&so->so_snd_sx);
893 sx_destroy(&so->so_rcv_sx);
894 }
895 crfree(so->so_cred);
896 mtx_destroy(&so->so_lock);
897 uma_zfree(socket_zone, so);
898 }
899
900 /*
901 * Shim to accomodate protocols that already do their own socket buffers
902 * management (marked with PR_SOCKBUF) with protocols that yet do not.
903 *
904 * Attach via socket(2) is different from attach via accept(2). In case of
905 * normal socket(2) syscall it is the pr_attach that calls soreserve(), even
906 * for protocols that don't yet do PR_SOCKBUF. In case of accepted connection
907 * it is our shim that calls soreserve() and the hiwat values are taken from
908 * the parent socket.
909 */
910 static int
soattach(struct socket * so,int proto,struct thread * td,struct socket * head)911 soattach(struct socket *so, int proto, struct thread *td, struct socket *head)
912 {
913 int error;
914
915 VNET_ASSERT(curvnet == so->so_vnet,
916 ("%s: %p != %p", __func__, curvnet, so->so_vnet));
917
918 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
919 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
920 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
921 so->so_snd.sb_mtx = &so->so_snd_mtx;
922 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
923 }
924 if (head == NULL || (error = soreserve(so, head->sol_sbsnd_hiwat,
925 head->sol_sbrcv_hiwat)) == 0)
926 error = so->so_proto->pr_attach(so, proto, td);
927 if (error != 0 && (so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
928 mtx_destroy(&so->so_snd_mtx);
929 mtx_destroy(&so->so_rcv_mtx);
930 }
931
932 return (error);
933 }
934
935 /*
936 * socreate returns a socket with a ref count of 1 and a file descriptor
937 * reference. The socket should be closed with soclose().
938 */
939 int
socreate(int dom,struct socket ** aso,int type,int proto,struct ucred * cred,struct thread * td)940 socreate(int dom, struct socket **aso, int type, int proto,
941 struct ucred *cred, struct thread *td)
942 {
943 struct protosw *prp;
944 struct socket *so;
945 int error;
946
947 prp = pffindproto(dom, type, proto);
948 if (prp == NULL) {
949 /* No support for domain. */
950 if (pffinddomain(dom) == NULL)
951 return (EAFNOSUPPORT);
952 /* No support for socket type. */
953 if (proto == 0 && type != 0)
954 return (EPROTOTYPE);
955 return (EPROTONOSUPPORT);
956 }
957
958 MPASS(prp->pr_attach);
959
960 if ((prp->pr_flags & PR_CAPATTACH) == 0) {
961 if (CAP_TRACING(td))
962 ktrcapfail(CAPFAIL_PROTO, &proto);
963 if (IN_CAPABILITY_MODE(td))
964 return (ECAPMODE);
965 }
966
967 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
968 return (EPROTONOSUPPORT);
969
970 so = soalloc(CRED_TO_VNET(cred));
971 if (so == NULL)
972 return (ENOBUFS);
973
974 so->so_type = type;
975 so->so_cred = crhold(cred);
976 if ((prp->pr_domain->dom_family == PF_INET) ||
977 (prp->pr_domain->dom_family == PF_INET6) ||
978 (prp->pr_domain->dom_family == PF_ROUTE))
979 so->so_fibnum = td->td_proc->p_fibnum;
980 else
981 so->so_fibnum = 0;
982 so->so_proto = prp;
983 #ifdef MAC
984 mac_socket_create(cred, so);
985 #endif
986 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
987 so_rdknl_assert_lock);
988 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
989 so_wrknl_assert_lock);
990 CURVNET_SET(so->so_vnet);
991 error = soattach(so, proto, td, NULL);
992 CURVNET_RESTORE();
993 if (error) {
994 sodealloc(so);
995 return (error);
996 }
997 soref(so);
998 *aso = so;
999 return (0);
1000 }
1001
1002 #ifdef REGRESSION
1003 static int regression_sonewconn_earlytest = 1;
1004 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
1005 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
1006 #endif
1007
1008 static int sooverprio = LOG_DEBUG;
1009 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW,
1010 &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable");
1011
1012 static struct timeval overinterval = { 60, 0 };
1013 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
1014 &overinterval,
1015 "Delay in seconds between warnings for listen socket overflows");
1016
1017 /*
1018 * When an attempt at a new connection is noted on a socket which supports
1019 * accept(2), the protocol has two options:
1020 * 1) Call legacy sonewconn() function, which would call protocol attach
1021 * method, same as used for socket(2).
1022 * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
1023 * and then call solisten_enqueue().
1024 *
1025 * Note: the ref count on the socket is 0 on return.
1026 */
1027 struct socket *
solisten_clone(struct socket * head)1028 solisten_clone(struct socket *head)
1029 {
1030 struct sbuf descrsb;
1031 struct socket *so;
1032 int len, overcount;
1033 u_int qlen;
1034 const char localprefix[] = "local:";
1035 char descrbuf[SUNPATHLEN + sizeof(localprefix)];
1036 #if defined(INET6)
1037 char addrbuf[INET6_ADDRSTRLEN];
1038 #elif defined(INET)
1039 char addrbuf[INET_ADDRSTRLEN];
1040 #endif
1041 bool dolog, over;
1042
1043 SOLISTEN_LOCK(head);
1044 over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
1045 #ifdef REGRESSION
1046 if (regression_sonewconn_earlytest && over) {
1047 #else
1048 if (over) {
1049 #endif
1050 head->sol_overcount++;
1051 dolog = (sooverprio >= 0) &&
1052 !!ratecheck(&head->sol_lastover, &overinterval);
1053
1054 /*
1055 * If we're going to log, copy the overflow count and queue
1056 * length from the listen socket before dropping the lock.
1057 * Also, reset the overflow count.
1058 */
1059 if (dolog) {
1060 overcount = head->sol_overcount;
1061 head->sol_overcount = 0;
1062 qlen = head->sol_qlen;
1063 }
1064 SOLISTEN_UNLOCK(head);
1065
1066 if (dolog) {
1067 /*
1068 * Try to print something descriptive about the
1069 * socket for the error message.
1070 */
1071 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
1072 SBUF_FIXEDLEN);
1073 switch (head->so_proto->pr_domain->dom_family) {
1074 #if defined(INET) || defined(INET6)
1075 #ifdef INET
1076 case AF_INET:
1077 #endif
1078 #ifdef INET6
1079 case AF_INET6:
1080 if (head->so_proto->pr_domain->dom_family ==
1081 AF_INET6 ||
1082 (sotoinpcb(head)->inp_inc.inc_flags &
1083 INC_ISIPV6)) {
1084 ip6_sprintf(addrbuf,
1085 &sotoinpcb(head)->inp_inc.inc6_laddr);
1086 sbuf_printf(&descrsb, "[%s]", addrbuf);
1087 } else
1088 #endif
1089 {
1090 #ifdef INET
1091 inet_ntoa_r(
1092 sotoinpcb(head)->inp_inc.inc_laddr,
1093 addrbuf);
1094 sbuf_cat(&descrsb, addrbuf);
1095 #endif
1096 }
1097 sbuf_printf(&descrsb, ":%hu (proto %u)",
1098 ntohs(sotoinpcb(head)->inp_inc.inc_lport),
1099 head->so_proto->pr_protocol);
1100 break;
1101 #endif /* INET || INET6 */
1102 case AF_UNIX:
1103 sbuf_cat(&descrsb, localprefix);
1104 if (sotounpcb(head)->unp_addr != NULL)
1105 len =
1106 sotounpcb(head)->unp_addr->sun_len -
1107 offsetof(struct sockaddr_un,
1108 sun_path);
1109 else
1110 len = 0;
1111 if (len > 0)
1112 sbuf_bcat(&descrsb,
1113 sotounpcb(head)->unp_addr->sun_path,
1114 len);
1115 else
1116 sbuf_cat(&descrsb, "(unknown)");
1117 break;
1118 }
1119
1120 /*
1121 * If we can't print something more specific, at least
1122 * print the domain name.
1123 */
1124 if (sbuf_finish(&descrsb) != 0 ||
1125 sbuf_len(&descrsb) <= 0) {
1126 sbuf_clear(&descrsb);
1127 sbuf_cat(&descrsb,
1128 head->so_proto->pr_domain->dom_name ?:
1129 "unknown");
1130 sbuf_finish(&descrsb);
1131 }
1132 KASSERT(sbuf_len(&descrsb) > 0,
1133 ("%s: sbuf creation failed", __func__));
1134 /*
1135 * Preserve the historic listen queue overflow log
1136 * message, that starts with "sonewconn:". It has
1137 * been known to sysadmins for years and also test
1138 * sys/kern/sonewconn_overflow checks for it.
1139 */
1140 if (head->so_cred == 0) {
1141 log(LOG_PRI(sooverprio),
1142 "sonewconn: pcb %p (%s): "
1143 "Listen queue overflow: %i already in "
1144 "queue awaiting acceptance (%d "
1145 "occurrences)\n", head->so_pcb,
1146 sbuf_data(&descrsb),
1147 qlen, overcount);
1148 } else {
1149 log(LOG_PRI(sooverprio),
1150 "sonewconn: pcb %p (%s): "
1151 "Listen queue overflow: "
1152 "%i already in queue awaiting acceptance "
1153 "(%d occurrences), euid %d, rgid %d, jail %s\n",
1154 head->so_pcb, sbuf_data(&descrsb), qlen,
1155 overcount, head->so_cred->cr_uid,
1156 head->so_cred->cr_rgid,
1157 head->so_cred->cr_prison ?
1158 head->so_cred->cr_prison->pr_name :
1159 "not_jailed");
1160 }
1161 sbuf_delete(&descrsb);
1162
1163 overcount = 0;
1164 }
1165
1166 return (NULL);
1167 }
1168 SOLISTEN_UNLOCK(head);
1169 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
1170 __func__, head));
1171 so = soalloc(head->so_vnet);
1172 if (so == NULL) {
1173 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1174 "limit reached or out of memory\n",
1175 __func__, head->so_pcb);
1176 return (NULL);
1177 }
1178 so->so_listen = head;
1179 so->so_type = head->so_type;
1180 /*
1181 * POSIX is ambiguous on what options an accept(2)ed socket should
1182 * inherit from the listener. Words "create a new socket" may be
1183 * interpreted as not inheriting anything. Best programming practice
1184 * for application developers is to not rely on such inheritance.
1185 * FreeBSD had historically inherited all so_options excluding
1186 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options,
1187 * including those completely irrelevant to a new born socket. For
1188 * compatibility with older versions we will inherit a list of
1189 * meaningful options.
1190 * The crucial bit to inherit is SO_ACCEPTFILTER. We need it present
1191 * in the child socket for soisconnected() promoting socket from the
1192 * incomplete queue to complete. It will be cleared before the child
1193 * gets available to accept(2).
1194 */
1195 so->so_options = head->so_options & (SO_ACCEPTFILTER | SO_KEEPALIVE |
1196 SO_DONTROUTE | SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE);
1197 so->so_linger = head->so_linger;
1198 so->so_state = head->so_state;
1199 so->so_fibnum = head->so_fibnum;
1200 so->so_proto = head->so_proto;
1201 so->so_cred = crhold(head->so_cred);
1202 #ifdef SOCKET_HHOOK
1203 if (V_socket_hhh[HHOOK_SOCKET_NEWCONN]->hhh_nhooks > 0) {
1204 if (hhook_run_socket(so, head, HHOOK_SOCKET_NEWCONN)) {
1205 sodealloc(so);
1206 log(LOG_DEBUG, "%s: hhook run failed\n", __func__);
1207 return (NULL);
1208 }
1209 }
1210 #endif
1211 #ifdef MAC
1212 mac_socket_newconn(head, so);
1213 #endif
1214 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1215 so_rdknl_assert_lock);
1216 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1217 so_wrknl_assert_lock);
1218 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
1219 so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
1220 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
1221 so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
1222 so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
1223 so->so_snd.sb_flags = head->sol_sbsnd_flags &
1224 (SB_AUTOSIZE | SB_AUTOLOWAT);
1225
1226 return (so);
1227 }
1228
1229 /* Connstatus may be 0 or SS_ISCONNECTED. */
1230 struct socket *
1231 sonewconn(struct socket *head, int connstatus)
1232 {
1233 struct socket *so;
1234
1235 if ((so = solisten_clone(head)) == NULL)
1236 return (NULL);
1237
1238 if (soattach(so, 0, NULL, head) != 0) {
1239 sodealloc(so);
1240 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1241 __func__, head->so_pcb);
1242 return (NULL);
1243 }
1244
1245 (void)solisten_enqueue(so, connstatus);
1246
1247 return (so);
1248 }
1249
1250 /*
1251 * Enqueue socket cloned by solisten_clone() to the listen queue of the
1252 * listener it has been cloned from.
1253 *
1254 * Return 'true' if socket landed on complete queue, otherwise 'false'.
1255 */
1256 bool
1257 solisten_enqueue(struct socket *so, int connstatus)
1258 {
1259 struct socket *head = so->so_listen;
1260
1261 MPASS(refcount_load(&so->so_count) == 0);
1262 refcount_init(&so->so_count, 1);
1263
1264 SOLISTEN_LOCK(head);
1265 if (head->sol_accept_filter != NULL)
1266 connstatus = 0;
1267 so->so_state |= connstatus;
1268 soref(head); /* A socket on (in)complete queue refs head. */
1269 if (connstatus) {
1270 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
1271 so->so_qstate = SQ_COMP;
1272 head->sol_qlen++;
1273 solisten_wakeup(head); /* unlocks */
1274 return (true);
1275 } else {
1276 /*
1277 * Keep removing sockets from the head until there's room for
1278 * us to insert on the tail. In pre-locking revisions, this
1279 * was a simple if(), but as we could be racing with other
1280 * threads and soabort() requires dropping locks, we must
1281 * loop waiting for the condition to be true.
1282 */
1283 while (head->sol_incqlen > head->sol_qlimit) {
1284 struct socket *sp;
1285
1286 sp = TAILQ_FIRST(&head->sol_incomp);
1287 TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
1288 head->sol_incqlen--;
1289 SOCK_LOCK(sp);
1290 sp->so_qstate = SQ_NONE;
1291 sp->so_listen = NULL;
1292 SOCK_UNLOCK(sp);
1293 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */
1294 soabort(sp);
1295 SOLISTEN_LOCK(head);
1296 }
1297 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
1298 so->so_qstate = SQ_INCOMP;
1299 head->sol_incqlen++;
1300 SOLISTEN_UNLOCK(head);
1301 return (false);
1302 }
1303 }
1304
1305 #if defined(SCTP) || defined(SCTP_SUPPORT)
1306 /*
1307 * Socket part of sctp_peeloff(). Create a new socket for an
1308 * association. The new socket is returned with a reference.
1309 *
1310 * XXXGL: reduce copy-paste with solisten_clone().
1311 */
1312 struct socket *
1313 sopeeloff(struct socket *head)
1314 {
1315 struct socket *so;
1316
1317 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
1318 __func__, __LINE__, head));
1319 KASSERT(head->so_type == SOCK_SEQPACKET,
1320 ("%s: unexpecte so_type: %d", __func__, head->so_type));
1321 so = soalloc(head->so_vnet);
1322 if (so == NULL) {
1323 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1324 "limit reached or out of memory\n",
1325 __func__, head->so_pcb);
1326 return (NULL);
1327 }
1328 so->so_type = SOCK_STREAM;
1329 so->so_options = head->so_options;
1330 so->so_linger = head->so_linger;
1331 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
1332 so->so_fibnum = head->so_fibnum;
1333 so->so_proto = head->so_proto;
1334 so->so_cred = crhold(head->so_cred);
1335 #ifdef MAC
1336 mac_socket_newconn(head, so);
1337 #endif
1338 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1339 so_rdknl_assert_lock);
1340 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1341 so_wrknl_assert_lock);
1342 if (soattach(so, 0, NULL, head)) {
1343 sodealloc(so);
1344 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1345 __func__, head->so_pcb);
1346 return (NULL);
1347 }
1348 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
1349 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
1350 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
1351 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
1352 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
1353 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
1354
1355 soref(so);
1356
1357 return (so);
1358 }
1359 #endif /* SCTP */
1360
1361 int
1362 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
1363 {
1364 int error;
1365
1366 CURVNET_SET(so->so_vnet);
1367 error = so->so_proto->pr_bind(so, nam, td);
1368 CURVNET_RESTORE();
1369 return (error);
1370 }
1371
1372 int
1373 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1374 {
1375 int error;
1376
1377 CURVNET_SET(so->so_vnet);
1378 error = so->so_proto->pr_bindat(fd, so, nam, td);
1379 CURVNET_RESTORE();
1380 return (error);
1381 }
1382
1383 /*
1384 * solisten() transitions a socket from a non-listening state to a listening
1385 * state, but can also be used to update the listen queue depth on an
1386 * existing listen socket. The protocol will call back into the sockets
1387 * layer using solisten_proto_check() and solisten_proto() to check and set
1388 * socket-layer listen state. Call backs are used so that the protocol can
1389 * acquire both protocol and socket layer locks in whatever order is required
1390 * by the protocol.
1391 *
1392 * Protocol implementors are advised to hold the socket lock across the
1393 * socket-layer test and set to avoid races at the socket layer.
1394 */
1395 int
1396 solisten(struct socket *so, int backlog, struct thread *td)
1397 {
1398 int error;
1399
1400 CURVNET_SET(so->so_vnet);
1401 error = so->so_proto->pr_listen(so, backlog, td);
1402 CURVNET_RESTORE();
1403 return (error);
1404 }
1405
1406 /*
1407 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in
1408 * order to interlock with socket I/O.
1409 */
1410 int
1411 solisten_proto_check(struct socket *so)
1412 {
1413 SOCK_LOCK_ASSERT(so);
1414
1415 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1416 SS_ISDISCONNECTING)) != 0)
1417 return (EINVAL);
1418
1419 /*
1420 * Sleeping is not permitted here, so simply fail if userspace is
1421 * attempting to transmit or receive on the socket. This kind of
1422 * transient failure is not ideal, but it should occur only if userspace
1423 * is misusing the socket interfaces.
1424 */
1425 if (!sx_try_xlock(&so->so_snd_sx))
1426 return (EAGAIN);
1427 if (!sx_try_xlock(&so->so_rcv_sx)) {
1428 sx_xunlock(&so->so_snd_sx);
1429 return (EAGAIN);
1430 }
1431 mtx_lock(&so->so_snd_mtx);
1432 mtx_lock(&so->so_rcv_mtx);
1433
1434 /* Interlock with soo_aio_queue() and KTLS. */
1435 if (!SOLISTENING(so)) {
1436 bool ktls;
1437
1438 #ifdef KERN_TLS
1439 ktls = so->so_snd.sb_tls_info != NULL ||
1440 so->so_rcv.sb_tls_info != NULL;
1441 #else
1442 ktls = false;
1443 #endif
1444 if (ktls ||
1445 (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
1446 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) {
1447 solisten_proto_abort(so);
1448 return (EINVAL);
1449 }
1450 }
1451
1452 return (0);
1453 }
1454
1455 /*
1456 * Undo the setup done by solisten_proto_check().
1457 */
1458 void
1459 solisten_proto_abort(struct socket *so)
1460 {
1461 mtx_unlock(&so->so_snd_mtx);
1462 mtx_unlock(&so->so_rcv_mtx);
1463 sx_xunlock(&so->so_snd_sx);
1464 sx_xunlock(&so->so_rcv_sx);
1465 }
1466
1467 void
1468 solisten_proto(struct socket *so, int backlog)
1469 {
1470 int sbrcv_lowat, sbsnd_lowat;
1471 u_int sbrcv_hiwat, sbsnd_hiwat;
1472 short sbrcv_flags, sbsnd_flags;
1473 sbintime_t sbrcv_timeo, sbsnd_timeo;
1474
1475 SOCK_LOCK_ASSERT(so);
1476 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1477 SS_ISDISCONNECTING)) == 0,
1478 ("%s: bad socket state %p", __func__, so));
1479
1480 if (SOLISTENING(so))
1481 goto listening;
1482
1483 /*
1484 * Change this socket to listening state.
1485 */
1486 sbrcv_lowat = so->so_rcv.sb_lowat;
1487 sbsnd_lowat = so->so_snd.sb_lowat;
1488 sbrcv_hiwat = so->so_rcv.sb_hiwat;
1489 sbsnd_hiwat = so->so_snd.sb_hiwat;
1490 sbrcv_flags = so->so_rcv.sb_flags;
1491 sbsnd_flags = so->so_snd.sb_flags;
1492 sbrcv_timeo = so->so_rcv.sb_timeo;
1493 sbsnd_timeo = so->so_snd.sb_timeo;
1494
1495 #ifdef MAC
1496 mac_socketpeer_label_free(so->so_peerlabel);
1497 #endif
1498
1499 if (!(so->so_proto->pr_flags & PR_SOCKBUF)) {
1500 sbdestroy(so, SO_SND);
1501 sbdestroy(so, SO_RCV);
1502 }
1503
1504 #ifdef INVARIANTS
1505 bzero(&so->so_rcv,
1506 sizeof(struct socket) - offsetof(struct socket, so_rcv));
1507 #endif
1508
1509 so->sol_sbrcv_lowat = sbrcv_lowat;
1510 so->sol_sbsnd_lowat = sbsnd_lowat;
1511 so->sol_sbrcv_hiwat = sbrcv_hiwat;
1512 so->sol_sbsnd_hiwat = sbsnd_hiwat;
1513 so->sol_sbrcv_flags = sbrcv_flags;
1514 so->sol_sbsnd_flags = sbsnd_flags;
1515 so->sol_sbrcv_timeo = sbrcv_timeo;
1516 so->sol_sbsnd_timeo = sbsnd_timeo;
1517
1518 so->sol_qlen = so->sol_incqlen = 0;
1519 TAILQ_INIT(&so->sol_incomp);
1520 TAILQ_INIT(&so->sol_comp);
1521
1522 so->sol_accept_filter = NULL;
1523 so->sol_accept_filter_arg = NULL;
1524 so->sol_accept_filter_str = NULL;
1525
1526 so->sol_upcall = NULL;
1527 so->sol_upcallarg = NULL;
1528
1529 so->so_options |= SO_ACCEPTCONN;
1530
1531 listening:
1532 if (backlog < 0 || backlog > V_somaxconn)
1533 backlog = V_somaxconn;
1534 so->sol_qlimit = backlog;
1535
1536 mtx_unlock(&so->so_snd_mtx);
1537 mtx_unlock(&so->so_rcv_mtx);
1538 sx_xunlock(&so->so_snd_sx);
1539 sx_xunlock(&so->so_rcv_sx);
1540 }
1541
1542 /*
1543 * Wakeup listeners/subsystems once we have a complete connection.
1544 * Enters with lock, returns unlocked.
1545 */
1546 void
1547 solisten_wakeup(struct socket *sol)
1548 {
1549
1550 if (sol->sol_upcall != NULL)
1551 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1552 else {
1553 selwakeuppri(&sol->so_rdsel, PSOCK);
1554 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1555 }
1556 SOLISTEN_UNLOCK(sol);
1557 wakeup_one(&sol->sol_comp);
1558 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1559 pgsigio(&sol->so_sigio, SIGIO, 0);
1560 }
1561
1562 /*
1563 * Return single connection off a listening socket queue. Main consumer of
1564 * the function is kern_accept4(). Some modules, that do their own accept
1565 * management also use the function. The socket reference held by the
1566 * listen queue is handed to the caller.
1567 *
1568 * Listening socket must be locked on entry and is returned unlocked on
1569 * return.
1570 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1571 */
1572 int
1573 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1574 {
1575 struct socket *so;
1576 int error;
1577
1578 SOLISTEN_LOCK_ASSERT(head);
1579
1580 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1581 head->so_error == 0) {
1582 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1583 "accept", 0);
1584 if (error != 0) {
1585 SOLISTEN_UNLOCK(head);
1586 return (error);
1587 }
1588 }
1589 if (head->so_error) {
1590 error = head->so_error;
1591 head->so_error = 0;
1592 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1593 error = EWOULDBLOCK;
1594 else
1595 error = 0;
1596 if (error) {
1597 SOLISTEN_UNLOCK(head);
1598 return (error);
1599 }
1600 so = TAILQ_FIRST(&head->sol_comp);
1601 SOCK_LOCK(so);
1602 KASSERT(so->so_qstate == SQ_COMP,
1603 ("%s: so %p not SQ_COMP", __func__, so));
1604 head->sol_qlen--;
1605 so->so_qstate = SQ_NONE;
1606 so->so_listen = NULL;
1607 TAILQ_REMOVE(&head->sol_comp, so, so_list);
1608 if (flags & ACCEPT4_INHERIT)
1609 so->so_state |= (head->so_state & SS_NBIO);
1610 else
1611 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1612 SOCK_UNLOCK(so);
1613 sorele_locked(head);
1614
1615 *ret = so;
1616 return (0);
1617 }
1618
1619 static struct so_splice *
1620 so_splice_alloc(off_t max)
1621 {
1622 struct so_splice *sp;
1623
1624 sp = uma_zalloc(splice_zone, M_WAITOK);
1625 sp->src = NULL;
1626 sp->dst = NULL;
1627 sp->max = max > 0 ? max : -1;
1628 do {
1629 sp->wq_index = atomic_fetchadd_32(&splice_index, 1) %
1630 (mp_maxid + 1);
1631 } while (CPU_ABSENT(sp->wq_index));
1632 sp->state = SPLICE_INIT;
1633 TIMEOUT_TASK_INIT(taskqueue_thread, &sp->timeout, 0, so_splice_timeout,
1634 sp);
1635 return (sp);
1636 }
1637
1638 static void
1639 so_splice_free(struct so_splice *sp)
1640 {
1641 KASSERT(sp->state == SPLICE_CLOSED,
1642 ("so_splice_free: sp %p not closed", sp));
1643 uma_zfree(splice_zone, sp);
1644 }
1645
1646 static void
1647 so_splice_timeout(void *arg, int pending __unused)
1648 {
1649 struct so_splice *sp;
1650
1651 sp = arg;
1652 (void)so_unsplice(sp->src, true);
1653 }
1654
1655 /*
1656 * Splice the output from so to the input of so2.
1657 */
1658 static int
1659 so_splice(struct socket *so, struct socket *so2, struct splice *splice)
1660 {
1661 struct so_splice *sp;
1662 int error;
1663
1664 if (splice->sp_max < 0)
1665 return (EINVAL);
1666 /* Handle only TCP for now; TODO: other streaming protos */
1667 if (so->so_proto->pr_protocol != IPPROTO_TCP ||
1668 so2->so_proto->pr_protocol != IPPROTO_TCP)
1669 return (EPROTONOSUPPORT);
1670 if (so->so_vnet != so2->so_vnet)
1671 return (EINVAL);
1672
1673 /* so_splice_xfer() assumes that we're using these implementations. */
1674 KASSERT(so->so_proto->pr_sosend == sosend_generic,
1675 ("so_splice: sosend not sosend_generic"));
1676 KASSERT(so2->so_proto->pr_soreceive == soreceive_generic ||
1677 so2->so_proto->pr_soreceive == soreceive_stream,
1678 ("so_splice: soreceive not soreceive_generic/stream"));
1679
1680 sp = so_splice_alloc(splice->sp_max);
1681 so->so_splice_sent = 0;
1682 sp->src = so;
1683 sp->dst = so2;
1684
1685 error = 0;
1686 SOCK_LOCK(so);
1687 if (SOLISTENING(so))
1688 error = EINVAL;
1689 else if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1690 error = ENOTCONN;
1691 else if (so->so_splice != NULL)
1692 error = EBUSY;
1693 if (error != 0) {
1694 SOCK_UNLOCK(so);
1695 uma_zfree(splice_zone, sp);
1696 return (error);
1697 }
1698 SOCK_RECVBUF_LOCK(so);
1699 if (so->so_rcv.sb_tls_info != NULL) {
1700 SOCK_RECVBUF_UNLOCK(so);
1701 SOCK_UNLOCK(so);
1702 uma_zfree(splice_zone, sp);
1703 return (EINVAL);
1704 }
1705 so->so_rcv.sb_flags |= SB_SPLICED;
1706 so->so_splice = sp;
1707 soref(so);
1708 SOCK_RECVBUF_UNLOCK(so);
1709 SOCK_UNLOCK(so);
1710
1711 error = 0;
1712 SOCK_LOCK(so2);
1713 if (SOLISTENING(so2))
1714 error = EINVAL;
1715 else if ((so2->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1716 error = ENOTCONN;
1717 else if (so2->so_splice_back != NULL)
1718 error = EBUSY;
1719 if (error != 0) {
1720 SOCK_UNLOCK(so2);
1721 mtx_lock(&sp->mtx);
1722 sp->dst = NULL;
1723 sp->state = SPLICE_EXCEPTION;
1724 mtx_unlock(&sp->mtx);
1725 so_unsplice(so, false);
1726 return (error);
1727 }
1728 SOCK_SENDBUF_LOCK(so2);
1729 if (so->so_snd.sb_tls_info != NULL) {
1730 SOCK_SENDBUF_UNLOCK(so2);
1731 SOCK_UNLOCK(so2);
1732 mtx_lock(&sp->mtx);
1733 sp->dst = NULL;
1734 sp->state = SPLICE_EXCEPTION;
1735 mtx_unlock(&sp->mtx);
1736 so_unsplice(so, false);
1737 return (EINVAL);
1738 }
1739 so2->so_snd.sb_flags |= SB_SPLICED;
1740 so2->so_splice_back = sp;
1741 soref(so2);
1742 mtx_lock(&sp->mtx);
1743 SOCK_SENDBUF_UNLOCK(so2);
1744 SOCK_UNLOCK(so2);
1745
1746 if (splice->sp_idle.tv_sec != 0 || splice->sp_idle.tv_usec != 0) {
1747 taskqueue_enqueue_timeout_sbt(taskqueue_thread, &sp->timeout,
1748 tvtosbt(splice->sp_idle), 0, C_PREL(4));
1749 }
1750
1751 /*
1752 * Transfer any data already present in the socket buffer.
1753 */
1754 KASSERT(sp->state == SPLICE_INIT,
1755 ("so_splice: splice %p state %d", sp, sp->state));
1756 sp->state = SPLICE_QUEUED;
1757 so_splice_xfer(sp);
1758 return (0);
1759 }
1760
1761 static int
1762 so_unsplice(struct socket *so, bool timeout)
1763 {
1764 struct socket *so2;
1765 struct so_splice *sp;
1766 bool drain, so2rele;
1767
1768 /*
1769 * First unset SB_SPLICED and hide the splice structure so that
1770 * wakeup routines will stop enqueuing work. This also ensures that
1771 * a only a single thread will proceed with the unsplice.
1772 */
1773 SOCK_LOCK(so);
1774 if (SOLISTENING(so)) {
1775 SOCK_UNLOCK(so);
1776 return (EINVAL);
1777 }
1778 SOCK_RECVBUF_LOCK(so);
1779 if ((so->so_rcv.sb_flags & SB_SPLICED) == 0) {
1780 SOCK_RECVBUF_UNLOCK(so);
1781 SOCK_UNLOCK(so);
1782 return (ENOTCONN);
1783 }
1784 sp = so->so_splice;
1785 mtx_lock(&sp->mtx);
1786 if (sp->state == SPLICE_INIT) {
1787 /*
1788 * A splice is in the middle of being set up.
1789 */
1790 mtx_unlock(&sp->mtx);
1791 SOCK_RECVBUF_UNLOCK(so);
1792 SOCK_UNLOCK(so);
1793 return (ENOTCONN);
1794 }
1795 mtx_unlock(&sp->mtx);
1796 so->so_rcv.sb_flags &= ~SB_SPLICED;
1797 so->so_splice = NULL;
1798 SOCK_RECVBUF_UNLOCK(so);
1799 SOCK_UNLOCK(so);
1800
1801 so2 = sp->dst;
1802 if (so2 != NULL) {
1803 SOCK_LOCK(so2);
1804 KASSERT(!SOLISTENING(so2), ("%s: so2 is listening", __func__));
1805 SOCK_SENDBUF_LOCK(so2);
1806 KASSERT((so2->so_snd.sb_flags & SB_SPLICED) != 0,
1807 ("%s: so2 is not spliced", __func__));
1808 KASSERT(so2->so_splice_back == sp,
1809 ("%s: so_splice_back != sp", __func__));
1810 so2->so_snd.sb_flags &= ~SB_SPLICED;
1811 so2rele = so2->so_splice_back != NULL;
1812 so2->so_splice_back = NULL;
1813 SOCK_SENDBUF_UNLOCK(so2);
1814 SOCK_UNLOCK(so2);
1815 }
1816
1817 /*
1818 * No new work is being enqueued. The worker thread might be
1819 * splicing data right now, in which case we want to wait for it to
1820 * finish before proceeding.
1821 */
1822 mtx_lock(&sp->mtx);
1823 switch (sp->state) {
1824 case SPLICE_QUEUED:
1825 case SPLICE_RUNNING:
1826 sp->state = SPLICE_CLOSING;
1827 while (sp->state == SPLICE_CLOSING)
1828 msleep(sp, &sp->mtx, PSOCK, "unsplice", 0);
1829 break;
1830 case SPLICE_INIT:
1831 case SPLICE_IDLE:
1832 case SPLICE_EXCEPTION:
1833 sp->state = SPLICE_CLOSED;
1834 break;
1835 default:
1836 __assert_unreachable();
1837 }
1838 if (!timeout) {
1839 drain = taskqueue_cancel_timeout(taskqueue_thread, &sp->timeout,
1840 NULL) != 0;
1841 } else {
1842 drain = false;
1843 }
1844 mtx_unlock(&sp->mtx);
1845 if (drain)
1846 taskqueue_drain_timeout(taskqueue_thread, &sp->timeout);
1847
1848 /*
1849 * Now we hold the sole reference to the splice structure.
1850 * Clean up: signal userspace and release socket references.
1851 */
1852 sorwakeup(so);
1853 CURVNET_SET(so->so_vnet);
1854 sorele(so);
1855 if (so2 != NULL) {
1856 sowwakeup(so2);
1857 if (so2rele)
1858 sorele(so2);
1859 }
1860 CURVNET_RESTORE();
1861 so_splice_free(sp);
1862 return (0);
1863 }
1864
1865 /*
1866 * Free socket upon release of the very last reference.
1867 */
1868 static void
1869 sofree(struct socket *so)
1870 {
1871 struct protosw *pr = so->so_proto;
1872
1873 SOCK_LOCK_ASSERT(so);
1874 KASSERT(refcount_load(&so->so_count) == 0,
1875 ("%s: so %p has references", __func__, so));
1876 KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1877 ("%s: so %p is on listen queue", __func__, so));
1878 KASSERT(SOLISTENING(so) || (so->so_rcv.sb_flags & SB_SPLICED) == 0,
1879 ("%s: so %p rcvbuf is spliced", __func__, so));
1880 KASSERT(SOLISTENING(so) || (so->so_snd.sb_flags & SB_SPLICED) == 0,
1881 ("%s: so %p sndbuf is spliced", __func__, so));
1882 KASSERT(so->so_splice == NULL && so->so_splice_back == NULL,
1883 ("%s: so %p has spliced data", __func__, so));
1884
1885 SOCK_UNLOCK(so);
1886
1887 if (so->so_dtor != NULL)
1888 so->so_dtor(so);
1889
1890 VNET_SO_ASSERT(so);
1891 if (pr->pr_detach != NULL)
1892 pr->pr_detach(so);
1893
1894 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1895 /*
1896 * From this point on, we assume that no other references to
1897 * this socket exist anywhere else in the stack. Therefore,
1898 * no locks need to be acquired or held.
1899 */
1900 #ifdef INVARIANTS
1901 SOCK_SENDBUF_LOCK(so);
1902 SOCK_RECVBUF_LOCK(so);
1903 #endif
1904 sbdestroy(so, SO_SND);
1905 sbdestroy(so, SO_RCV);
1906 #ifdef INVARIANTS
1907 SOCK_SENDBUF_UNLOCK(so);
1908 SOCK_RECVBUF_UNLOCK(so);
1909 #endif
1910 mtx_destroy(&so->so_snd_mtx);
1911 mtx_destroy(&so->so_rcv_mtx);
1912 }
1913 seldrain(&so->so_rdsel);
1914 seldrain(&so->so_wrsel);
1915 knlist_destroy(&so->so_rdsel.si_note);
1916 knlist_destroy(&so->so_wrsel.si_note);
1917 sodealloc(so);
1918 }
1919
1920 /*
1921 * Release a reference on a socket while holding the socket lock.
1922 * Unlocks the socket lock before returning.
1923 */
1924 void
1925 sorele_locked(struct socket *so)
1926 {
1927 SOCK_LOCK_ASSERT(so);
1928 if (refcount_release(&so->so_count))
1929 sofree(so);
1930 else
1931 SOCK_UNLOCK(so);
1932 }
1933
1934 /*
1935 * Close a socket on last file table reference removal. Initiate disconnect
1936 * if connected. Free socket when disconnect complete.
1937 *
1938 * This function will sorele() the socket. Note that soclose() may be called
1939 * prior to the ref count reaching zero. The actual socket structure will
1940 * not be freed until the ref count reaches zero.
1941 */
1942 int
1943 soclose(struct socket *so)
1944 {
1945 struct accept_queue lqueue;
1946 int error = 0;
1947 bool listening, last __diagused;
1948
1949 CURVNET_SET(so->so_vnet);
1950 funsetown(&so->so_sigio);
1951 if (so->so_state & SS_ISCONNECTED) {
1952 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1953 error = sodisconnect(so);
1954 if (error) {
1955 if (error == ENOTCONN)
1956 error = 0;
1957 goto drop;
1958 }
1959 }
1960
1961 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1962 if ((so->so_state & SS_ISDISCONNECTING) &&
1963 (so->so_state & SS_NBIO))
1964 goto drop;
1965 while (so->so_state & SS_ISCONNECTED) {
1966 error = tsleep(&so->so_timeo,
1967 PSOCK | PCATCH, "soclos",
1968 so->so_linger * hz);
1969 if (error)
1970 break;
1971 }
1972 }
1973 }
1974
1975 drop:
1976 if (so->so_proto->pr_close != NULL)
1977 so->so_proto->pr_close(so);
1978
1979 SOCK_LOCK(so);
1980 if ((listening = SOLISTENING(so))) {
1981 struct socket *sp;
1982
1983 TAILQ_INIT(&lqueue);
1984 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1985 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1986
1987 so->sol_qlen = so->sol_incqlen = 0;
1988
1989 TAILQ_FOREACH(sp, &lqueue, so_list) {
1990 SOCK_LOCK(sp);
1991 sp->so_qstate = SQ_NONE;
1992 sp->so_listen = NULL;
1993 SOCK_UNLOCK(sp);
1994 last = refcount_release(&so->so_count);
1995 KASSERT(!last, ("%s: released last reference for %p",
1996 __func__, so));
1997 }
1998 }
1999 sorele_locked(so);
2000 if (listening) {
2001 struct socket *sp, *tsp;
2002
2003 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
2004 soabort(sp);
2005 }
2006 CURVNET_RESTORE();
2007 return (error);
2008 }
2009
2010 /*
2011 * soabort() is used to abruptly tear down a connection, such as when a
2012 * resource limit is reached (listen queue depth exceeded), or if a listen
2013 * socket is closed while there are sockets waiting to be accepted.
2014 *
2015 * This interface is tricky, because it is called on an unreferenced socket,
2016 * and must be called only by a thread that has actually removed the socket
2017 * from the listen queue it was on. Likely this thread holds the last
2018 * reference on the socket and soabort() will proceed with sofree(). But
2019 * it might be not the last, as the sockets on the listen queues are seen
2020 * from the protocol side.
2021 *
2022 * This interface will call into the protocol code, so must not be called
2023 * with any socket locks held. Protocols do call it while holding their own
2024 * recursible protocol mutexes, but this is something that should be subject
2025 * to review in the future.
2026 *
2027 * Usually socket should have a single reference left, but this is not a
2028 * requirement. In the past, when we have had named references for file
2029 * descriptor and protocol, we asserted that none of them are being held.
2030 */
2031 void
2032 soabort(struct socket *so)
2033 {
2034
2035 VNET_SO_ASSERT(so);
2036
2037 if (so->so_proto->pr_abort != NULL)
2038 so->so_proto->pr_abort(so);
2039 SOCK_LOCK(so);
2040 sorele_locked(so);
2041 }
2042
2043 int
2044 soaccept(struct socket *so, struct sockaddr *sa)
2045 {
2046 #ifdef INVARIANTS
2047 u_char len = sa->sa_len;
2048 #endif
2049 int error;
2050
2051 CURVNET_SET(so->so_vnet);
2052 error = so->so_proto->pr_accept(so, sa);
2053 KASSERT(sa->sa_len <= len,
2054 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2055 CURVNET_RESTORE();
2056 return (error);
2057 }
2058
2059 int
2060 sopeeraddr(struct socket *so, struct sockaddr *sa)
2061 {
2062 #ifdef INVARIANTS
2063 u_char len = sa->sa_len;
2064 #endif
2065 int error;
2066
2067 CURVNET_ASSERT_SET();
2068
2069 error = so->so_proto->pr_peeraddr(so, sa);
2070 KASSERT(sa->sa_len <= len,
2071 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2072
2073 return (error);
2074 }
2075
2076 int
2077 sosockaddr(struct socket *so, struct sockaddr *sa)
2078 {
2079 #ifdef INVARIANTS
2080 u_char len = sa->sa_len;
2081 #endif
2082 int error;
2083
2084 CURVNET_SET(so->so_vnet);
2085 error = so->so_proto->pr_sockaddr(so, sa);
2086 KASSERT(sa->sa_len <= len,
2087 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2088 CURVNET_RESTORE();
2089
2090 return (error);
2091 }
2092
2093 int
2094 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
2095 {
2096
2097 return (soconnectat(AT_FDCWD, so, nam, td));
2098 }
2099
2100 int
2101 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
2102 {
2103 int error;
2104
2105 CURVNET_SET(so->so_vnet);
2106
2107 /*
2108 * If protocol is connection-based, can only connect once.
2109 * Otherwise, if connected, try to disconnect first. This allows
2110 * user to disconnect by connecting to, e.g., a null address.
2111 *
2112 * Note, this check is racy and may need to be re-evaluated at the
2113 * protocol layer.
2114 */
2115 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
2116 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
2117 (error = sodisconnect(so)))) {
2118 error = EISCONN;
2119 } else {
2120 /*
2121 * Prevent accumulated error from previous connection from
2122 * biting us.
2123 */
2124 so->so_error = 0;
2125 if (fd == AT_FDCWD) {
2126 error = so->so_proto->pr_connect(so, nam, td);
2127 } else {
2128 error = so->so_proto->pr_connectat(fd, so, nam, td);
2129 }
2130 }
2131 CURVNET_RESTORE();
2132
2133 return (error);
2134 }
2135
2136 int
2137 soconnect2(struct socket *so1, struct socket *so2)
2138 {
2139 int error;
2140
2141 CURVNET_SET(so1->so_vnet);
2142 error = so1->so_proto->pr_connect2(so1, so2);
2143 CURVNET_RESTORE();
2144 return (error);
2145 }
2146
2147 int
2148 sodisconnect(struct socket *so)
2149 {
2150 int error;
2151
2152 if ((so->so_state & SS_ISCONNECTED) == 0)
2153 return (ENOTCONN);
2154 if (so->so_state & SS_ISDISCONNECTING)
2155 return (EALREADY);
2156 VNET_SO_ASSERT(so);
2157 error = so->so_proto->pr_disconnect(so);
2158 return (error);
2159 }
2160
2161 int
2162 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
2163 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2164 {
2165 long space;
2166 ssize_t resid;
2167 int clen = 0, error, dontroute;
2168
2169 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
2170 KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
2171 ("sosend_dgram: !PR_ATOMIC"));
2172
2173 if (uio != NULL)
2174 resid = uio->uio_resid;
2175 else
2176 resid = top->m_pkthdr.len;
2177 /*
2178 * In theory resid should be unsigned. However, space must be
2179 * signed, as it might be less than 0 if we over-committed, and we
2180 * must use a signed comparison of space and resid. On the other
2181 * hand, a negative resid causes us to loop sending 0-length
2182 * segments to the protocol.
2183 */
2184 if (resid < 0) {
2185 error = EINVAL;
2186 goto out;
2187 }
2188
2189 dontroute =
2190 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
2191 if (td != NULL)
2192 td->td_ru.ru_msgsnd++;
2193 if (control != NULL)
2194 clen = control->m_len;
2195
2196 SOCKBUF_LOCK(&so->so_snd);
2197 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2198 SOCKBUF_UNLOCK(&so->so_snd);
2199 error = EPIPE;
2200 goto out;
2201 }
2202 if (so->so_error) {
2203 error = so->so_error;
2204 so->so_error = 0;
2205 SOCKBUF_UNLOCK(&so->so_snd);
2206 goto out;
2207 }
2208 if ((so->so_state & SS_ISCONNECTED) == 0) {
2209 /*
2210 * `sendto' and `sendmsg' is allowed on a connection-based
2211 * socket if it supports implied connect. Return ENOTCONN if
2212 * not connected and no address is supplied.
2213 */
2214 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2215 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2216 if (!(resid == 0 && clen != 0)) {
2217 SOCKBUF_UNLOCK(&so->so_snd);
2218 error = ENOTCONN;
2219 goto out;
2220 }
2221 } else if (addr == NULL) {
2222 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2223 error = ENOTCONN;
2224 else
2225 error = EDESTADDRREQ;
2226 SOCKBUF_UNLOCK(&so->so_snd);
2227 goto out;
2228 }
2229 }
2230
2231 /*
2232 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a
2233 * problem and need fixing.
2234 */
2235 space = sbspace(&so->so_snd);
2236 if (flags & MSG_OOB)
2237 space += 1024;
2238 space -= clen;
2239 SOCKBUF_UNLOCK(&so->so_snd);
2240 if (resid > space) {
2241 error = EMSGSIZE;
2242 goto out;
2243 }
2244 if (uio == NULL) {
2245 resid = 0;
2246 if (flags & MSG_EOR)
2247 top->m_flags |= M_EOR;
2248 } else {
2249 /*
2250 * Copy the data from userland into a mbuf chain.
2251 * If no data is to be copied in, a single empty mbuf
2252 * is returned.
2253 */
2254 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
2255 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
2256 if (top == NULL) {
2257 error = EFAULT; /* only possible error */
2258 goto out;
2259 }
2260 space -= resid - uio->uio_resid;
2261 resid = uio->uio_resid;
2262 }
2263 KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
2264 /*
2265 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
2266 * than with.
2267 */
2268 if (dontroute) {
2269 SOCK_LOCK(so);
2270 so->so_options |= SO_DONTROUTE;
2271 SOCK_UNLOCK(so);
2272 }
2273 /*
2274 * XXX all the SBS_CANTSENDMORE checks previously done could be out
2275 * of date. We could have received a reset packet in an interrupt or
2276 * maybe we slept while doing page faults in uiomove() etc. We could
2277 * probably recheck again inside the locking protection here, but
2278 * there are probably other places that this also happens. We must
2279 * rethink this.
2280 */
2281 VNET_SO_ASSERT(so);
2282 error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
2283 /*
2284 * If the user set MSG_EOF, the protocol understands this flag and
2285 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
2286 */
2287 ((flags & MSG_EOF) &&
2288 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2289 (resid <= 0)) ?
2290 PRUS_EOF :
2291 /* If there is more to send set PRUS_MORETOCOME */
2292 (flags & MSG_MORETOCOME) ||
2293 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
2294 top, addr, control, td);
2295 if (dontroute) {
2296 SOCK_LOCK(so);
2297 so->so_options &= ~SO_DONTROUTE;
2298 SOCK_UNLOCK(so);
2299 }
2300 clen = 0;
2301 control = NULL;
2302 top = NULL;
2303 out:
2304 if (top != NULL)
2305 m_freem(top);
2306 if (control != NULL)
2307 m_freem(control);
2308 return (error);
2309 }
2310
2311 /*
2312 * Send on a socket. If send must go all at once and message is larger than
2313 * send buffering, then hard error. Lock against other senders. If must go
2314 * all at once and not enough room now, then inform user that this would
2315 * block and do nothing. Otherwise, if nonblocking, send as much as
2316 * possible. The data to be sent is described by "uio" if nonzero, otherwise
2317 * by the mbuf chain "top" (which must be null if uio is not). Data provided
2318 * in mbuf chain must be small enough to send all at once.
2319 *
2320 * Returns nonzero on error, timeout or signal; callers must check for short
2321 * counts if EINTR/ERESTART are returned. Data and control buffers are freed
2322 * on return.
2323 */
2324 static int
2325 sosend_generic_locked(struct socket *so, struct sockaddr *addr, struct uio *uio,
2326 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2327 {
2328 long space;
2329 ssize_t resid;
2330 int clen = 0, error, dontroute;
2331 int atomic = sosendallatonce(so) || top;
2332 int pr_send_flag;
2333 #ifdef KERN_TLS
2334 struct ktls_session *tls;
2335 int tls_enq_cnt, tls_send_flag;
2336 uint8_t tls_rtype;
2337
2338 tls = NULL;
2339 tls_rtype = TLS_RLTYPE_APP;
2340 #endif
2341
2342 SOCK_IO_SEND_ASSERT_LOCKED(so);
2343
2344 if (uio != NULL)
2345 resid = uio->uio_resid;
2346 else if ((top->m_flags & M_PKTHDR) != 0)
2347 resid = top->m_pkthdr.len;
2348 else
2349 resid = m_length(top, NULL);
2350 /*
2351 * In theory resid should be unsigned. However, space must be
2352 * signed, as it might be less than 0 if we over-committed, and we
2353 * must use a signed comparison of space and resid. On the other
2354 * hand, a negative resid causes us to loop sending 0-length
2355 * segments to the protocol.
2356 *
2357 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
2358 * type sockets since that's an error.
2359 */
2360 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
2361 error = EINVAL;
2362 goto out;
2363 }
2364
2365 dontroute =
2366 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
2367 (so->so_proto->pr_flags & PR_ATOMIC);
2368 if (td != NULL)
2369 td->td_ru.ru_msgsnd++;
2370 if (control != NULL)
2371 clen = control->m_len;
2372
2373 #ifdef KERN_TLS
2374 tls_send_flag = 0;
2375 tls = ktls_hold(so->so_snd.sb_tls_info);
2376 if (tls != NULL) {
2377 if (tls->mode == TCP_TLS_MODE_SW)
2378 tls_send_flag = PRUS_NOTREADY;
2379
2380 if (control != NULL) {
2381 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2382
2383 if (clen >= sizeof(*cm) &&
2384 cm->cmsg_type == TLS_SET_RECORD_TYPE) {
2385 tls_rtype = *((uint8_t *)CMSG_DATA(cm));
2386 clen = 0;
2387 m_freem(control);
2388 control = NULL;
2389 atomic = 1;
2390 }
2391 }
2392
2393 if (resid == 0 && !ktls_permit_empty_frames(tls)) {
2394 error = EINVAL;
2395 goto out;
2396 }
2397 }
2398 #endif
2399
2400 restart:
2401 do {
2402 SOCKBUF_LOCK(&so->so_snd);
2403 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2404 SOCKBUF_UNLOCK(&so->so_snd);
2405 error = EPIPE;
2406 goto out;
2407 }
2408 if (so->so_error) {
2409 error = so->so_error;
2410 so->so_error = 0;
2411 SOCKBUF_UNLOCK(&so->so_snd);
2412 goto out;
2413 }
2414 if ((so->so_state & SS_ISCONNECTED) == 0) {
2415 /*
2416 * `sendto' and `sendmsg' is allowed on a connection-
2417 * based socket if it supports implied connect.
2418 * Return ENOTCONN if not connected and no address is
2419 * supplied.
2420 */
2421 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2422 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2423 if (!(resid == 0 && clen != 0)) {
2424 SOCKBUF_UNLOCK(&so->so_snd);
2425 error = ENOTCONN;
2426 goto out;
2427 }
2428 } else if (addr == NULL) {
2429 SOCKBUF_UNLOCK(&so->so_snd);
2430 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2431 error = ENOTCONN;
2432 else
2433 error = EDESTADDRREQ;
2434 goto out;
2435 }
2436 }
2437 space = sbspace(&so->so_snd);
2438 if (flags & MSG_OOB)
2439 space += 1024;
2440 if ((atomic && resid > so->so_snd.sb_hiwat) ||
2441 clen > so->so_snd.sb_hiwat) {
2442 SOCKBUF_UNLOCK(&so->so_snd);
2443 error = EMSGSIZE;
2444 goto out;
2445 }
2446 if (space < resid + clen &&
2447 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
2448 if ((so->so_state & SS_NBIO) ||
2449 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
2450 SOCKBUF_UNLOCK(&so->so_snd);
2451 error = EWOULDBLOCK;
2452 goto out;
2453 }
2454 error = sbwait(so, SO_SND);
2455 SOCKBUF_UNLOCK(&so->so_snd);
2456 if (error)
2457 goto out;
2458 goto restart;
2459 }
2460 SOCKBUF_UNLOCK(&so->so_snd);
2461 space -= clen;
2462 do {
2463 if (uio == NULL) {
2464 resid = 0;
2465 if (flags & MSG_EOR)
2466 top->m_flags |= M_EOR;
2467 #ifdef KERN_TLS
2468 if (tls != NULL) {
2469 ktls_frame(top, tls, &tls_enq_cnt,
2470 tls_rtype);
2471 tls_rtype = TLS_RLTYPE_APP;
2472 }
2473 #endif
2474 } else {
2475 /*
2476 * Copy the data from userland into a mbuf
2477 * chain. If resid is 0, which can happen
2478 * only if we have control to send, then
2479 * a single empty mbuf is returned. This
2480 * is a workaround to prevent protocol send
2481 * methods to panic.
2482 */
2483 #ifdef KERN_TLS
2484 if (tls != NULL) {
2485 top = m_uiotombuf(uio, M_WAITOK, space,
2486 tls->params.max_frame_len,
2487 M_EXTPG |
2488 ((flags & MSG_EOR) ? M_EOR : 0));
2489 if (top != NULL) {
2490 ktls_frame(top, tls,
2491 &tls_enq_cnt, tls_rtype);
2492 }
2493 tls_rtype = TLS_RLTYPE_APP;
2494 } else
2495 #endif
2496 top = m_uiotombuf(uio, M_WAITOK, space,
2497 (atomic ? max_hdr : 0),
2498 (atomic ? M_PKTHDR : 0) |
2499 ((flags & MSG_EOR) ? M_EOR : 0));
2500 if (top == NULL) {
2501 error = EFAULT; /* only possible error */
2502 goto out;
2503 }
2504 space -= resid - uio->uio_resid;
2505 resid = uio->uio_resid;
2506 }
2507 if (dontroute) {
2508 SOCK_LOCK(so);
2509 so->so_options |= SO_DONTROUTE;
2510 SOCK_UNLOCK(so);
2511 }
2512 /*
2513 * XXX all the SBS_CANTSENDMORE checks previously
2514 * done could be out of date. We could have received
2515 * a reset packet in an interrupt or maybe we slept
2516 * while doing page faults in uiomove() etc. We
2517 * could probably recheck again inside the locking
2518 * protection here, but there are probably other
2519 * places that this also happens. We must rethink
2520 * this.
2521 */
2522 VNET_SO_ASSERT(so);
2523
2524 pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
2525 /*
2526 * If the user set MSG_EOF, the protocol understands
2527 * this flag and nothing left to send then use
2528 * PRU_SEND_EOF instead of PRU_SEND.
2529 */
2530 ((flags & MSG_EOF) &&
2531 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2532 (resid <= 0)) ?
2533 PRUS_EOF :
2534 /* If there is more to send set PRUS_MORETOCOME. */
2535 (flags & MSG_MORETOCOME) ||
2536 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
2537
2538 #ifdef KERN_TLS
2539 pr_send_flag |= tls_send_flag;
2540 #endif
2541
2542 error = so->so_proto->pr_send(so, pr_send_flag, top,
2543 addr, control, td);
2544
2545 if (dontroute) {
2546 SOCK_LOCK(so);
2547 so->so_options &= ~SO_DONTROUTE;
2548 SOCK_UNLOCK(so);
2549 }
2550
2551 #ifdef KERN_TLS
2552 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
2553 if (error != 0) {
2554 m_freem(top);
2555 top = NULL;
2556 } else {
2557 soref(so);
2558 ktls_enqueue(top, so, tls_enq_cnt);
2559 }
2560 }
2561 #endif
2562 clen = 0;
2563 control = NULL;
2564 top = NULL;
2565 if (error)
2566 goto out;
2567 } while (resid && space > 0);
2568 } while (resid);
2569
2570 out:
2571 #ifdef KERN_TLS
2572 if (tls != NULL)
2573 ktls_free(tls);
2574 #endif
2575 if (top != NULL)
2576 m_freem(top);
2577 if (control != NULL)
2578 m_freem(control);
2579 return (error);
2580 }
2581
2582 int
2583 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
2584 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2585 {
2586 int error;
2587
2588 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
2589 if (error)
2590 return (error);
2591 error = sosend_generic_locked(so, addr, uio, top, control, flags, td);
2592 SOCK_IO_SEND_UNLOCK(so);
2593 return (error);
2594 }
2595
2596 /*
2597 * Send to a socket from a kernel thread.
2598 *
2599 * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
2600 * Exception is nfs/bootp_subr.c. It is arguable that the VNET context needs
2601 * to be set at all. This function should just boil down to a static inline
2602 * calling the protocol method.
2603 */
2604 int
2605 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2606 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2607 {
2608 int error;
2609
2610 CURVNET_SET(so->so_vnet);
2611 error = so->so_proto->pr_sosend(so, addr, uio,
2612 top, control, flags, td);
2613 CURVNET_RESTORE();
2614 return (error);
2615 }
2616
2617 /*
2618 * send(2), write(2) or aio_write(2) on a socket.
2619 */
2620 int
2621 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2622 struct mbuf *control, int flags, struct proc *userproc)
2623 {
2624 struct thread *td;
2625 ssize_t len;
2626 int error;
2627
2628 td = uio->uio_td;
2629 len = uio->uio_resid;
2630 CURVNET_SET(so->so_vnet);
2631 error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
2632 td);
2633 CURVNET_RESTORE();
2634 if (error != 0) {
2635 /*
2636 * Clear transient errors for stream protocols if they made
2637 * some progress. Make exclusion for aio(4) that would
2638 * schedule a new write in case of EWOULDBLOCK and clear
2639 * error itself. See soaio_process_job().
2640 */
2641 if (uio->uio_resid != len &&
2642 (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
2643 userproc == NULL &&
2644 (error == ERESTART || error == EINTR ||
2645 error == EWOULDBLOCK))
2646 error = 0;
2647 /* Generation of SIGPIPE can be controlled per socket. */
2648 if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
2649 (flags & MSG_NOSIGNAL) == 0) {
2650 if (userproc != NULL) {
2651 /* aio(4) job */
2652 PROC_LOCK(userproc);
2653 kern_psignal(userproc, SIGPIPE);
2654 PROC_UNLOCK(userproc);
2655 } else {
2656 PROC_LOCK(td->td_proc);
2657 tdsignal(td, SIGPIPE);
2658 PROC_UNLOCK(td->td_proc);
2659 }
2660 }
2661 }
2662 return (error);
2663 }
2664
2665 /*
2666 * The part of soreceive() that implements reading non-inline out-of-band
2667 * data from a socket. For more complete comments, see soreceive(), from
2668 * which this code originated.
2669 *
2670 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
2671 * unable to return an mbuf chain to the caller.
2672 */
2673 static int
2674 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
2675 {
2676 struct protosw *pr = so->so_proto;
2677 struct mbuf *m;
2678 int error;
2679
2680 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
2681 VNET_SO_ASSERT(so);
2682
2683 m = m_get(M_WAITOK, MT_DATA);
2684 error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
2685 if (error)
2686 goto bad;
2687 do {
2688 error = uiomove(mtod(m, void *),
2689 (int) min(uio->uio_resid, m->m_len), uio);
2690 m = m_free(m);
2691 } while (uio->uio_resid && error == 0 && m);
2692 bad:
2693 if (m != NULL)
2694 m_freem(m);
2695 return (error);
2696 }
2697
2698 /*
2699 * Following replacement or removal of the first mbuf on the first mbuf chain
2700 * of a socket buffer, push necessary state changes back into the socket
2701 * buffer so that other consumers see the values consistently. 'nextrecord'
2702 * is the callers locally stored value of the original value of
2703 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
2704 * NOTE: 'nextrecord' may be NULL.
2705 */
2706 static __inline void
2707 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
2708 {
2709
2710 SOCKBUF_LOCK_ASSERT(sb);
2711 /*
2712 * First, update for the new value of nextrecord. If necessary, make
2713 * it the first record.
2714 */
2715 if (sb->sb_mb != NULL)
2716 sb->sb_mb->m_nextpkt = nextrecord;
2717 else
2718 sb->sb_mb = nextrecord;
2719
2720 /*
2721 * Now update any dependent socket buffer fields to reflect the new
2722 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the
2723 * addition of a second clause that takes care of the case where
2724 * sb_mb has been updated, but remains the last record.
2725 */
2726 if (sb->sb_mb == NULL) {
2727 sb->sb_mbtail = NULL;
2728 sb->sb_lastrecord = NULL;
2729 } else if (sb->sb_mb->m_nextpkt == NULL)
2730 sb->sb_lastrecord = sb->sb_mb;
2731 }
2732
2733 /*
2734 * Implement receive operations on a socket. We depend on the way that
2735 * records are added to the sockbuf by sbappend. In particular, each record
2736 * (mbufs linked through m_next) must begin with an address if the protocol
2737 * so specifies, followed by an optional mbuf or mbufs containing ancillary
2738 * data, and then zero or more mbufs of data. In order to allow parallelism
2739 * between network receive and copying to user space, as well as avoid
2740 * sleeping with a mutex held, we release the socket buffer mutex during the
2741 * user space copy. Although the sockbuf is locked, new data may still be
2742 * appended, and thus we must maintain consistency of the sockbuf during that
2743 * time.
2744 *
2745 * The caller may receive the data as a single mbuf chain by supplying an
2746 * mbuf **mp for use in returning the chain. The uio is then used only for
2747 * the count in uio_resid.
2748 */
2749 static int
2750 soreceive_generic_locked(struct socket *so, struct sockaddr **psa,
2751 struct uio *uio, struct mbuf **mp, struct mbuf **controlp, int *flagsp)
2752 {
2753 struct mbuf *m;
2754 int flags, error, offset;
2755 ssize_t len;
2756 struct protosw *pr = so->so_proto;
2757 struct mbuf *nextrecord;
2758 int moff, type = 0;
2759 ssize_t orig_resid = uio->uio_resid;
2760 bool report_real_len = false;
2761
2762 SOCK_IO_RECV_ASSERT_LOCKED(so);
2763
2764 error = 0;
2765 if (flagsp != NULL) {
2766 report_real_len = *flagsp & MSG_TRUNC;
2767 *flagsp &= ~MSG_TRUNC;
2768 flags = *flagsp &~ MSG_EOR;
2769 } else
2770 flags = 0;
2771
2772 restart:
2773 SOCKBUF_LOCK(&so->so_rcv);
2774 m = so->so_rcv.sb_mb;
2775 /*
2776 * If we have less data than requested, block awaiting more (subject
2777 * to any timeout) if:
2778 * 1. the current count is less than the low water mark, or
2779 * 2. MSG_DONTWAIT is not set
2780 */
2781 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
2782 sbavail(&so->so_rcv) < uio->uio_resid) &&
2783 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
2784 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
2785 KASSERT(m != NULL || !sbavail(&so->so_rcv),
2786 ("receive: m == %p sbavail == %u",
2787 m, sbavail(&so->so_rcv)));
2788 if (so->so_error || so->so_rerror) {
2789 if (m != NULL)
2790 goto dontblock;
2791 if (so->so_error)
2792 error = so->so_error;
2793 else
2794 error = so->so_rerror;
2795 if ((flags & MSG_PEEK) == 0) {
2796 if (so->so_error)
2797 so->so_error = 0;
2798 else
2799 so->so_rerror = 0;
2800 }
2801 SOCKBUF_UNLOCK(&so->so_rcv);
2802 goto release;
2803 }
2804 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2805 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2806 if (m != NULL)
2807 goto dontblock;
2808 #ifdef KERN_TLS
2809 else if (so->so_rcv.sb_tlsdcc == 0 &&
2810 so->so_rcv.sb_tlscc == 0) {
2811 #else
2812 else {
2813 #endif
2814 SOCKBUF_UNLOCK(&so->so_rcv);
2815 goto release;
2816 }
2817 }
2818 for (; m != NULL; m = m->m_next)
2819 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
2820 m = so->so_rcv.sb_mb;
2821 goto dontblock;
2822 }
2823 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2824 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2825 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2826 SOCKBUF_UNLOCK(&so->so_rcv);
2827 error = ENOTCONN;
2828 goto release;
2829 }
2830 if (uio->uio_resid == 0 && !report_real_len) {
2831 SOCKBUF_UNLOCK(&so->so_rcv);
2832 goto release;
2833 }
2834 if ((so->so_state & SS_NBIO) ||
2835 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2836 SOCKBUF_UNLOCK(&so->so_rcv);
2837 error = EWOULDBLOCK;
2838 goto release;
2839 }
2840 SBLASTRECORDCHK(&so->so_rcv);
2841 SBLASTMBUFCHK(&so->so_rcv);
2842 error = sbwait(so, SO_RCV);
2843 SOCKBUF_UNLOCK(&so->so_rcv);
2844 if (error)
2845 goto release;
2846 goto restart;
2847 }
2848 dontblock:
2849 /*
2850 * From this point onward, we maintain 'nextrecord' as a cache of the
2851 * pointer to the next record in the socket buffer. We must keep the
2852 * various socket buffer pointers and local stack versions of the
2853 * pointers in sync, pushing out modifications before dropping the
2854 * socket buffer mutex, and re-reading them when picking it up.
2855 *
2856 * Otherwise, we will race with the network stack appending new data
2857 * or records onto the socket buffer by using inconsistent/stale
2858 * versions of the field, possibly resulting in socket buffer
2859 * corruption.
2860 *
2861 * By holding the high-level sblock(), we prevent simultaneous
2862 * readers from pulling off the front of the socket buffer.
2863 */
2864 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2865 if (uio->uio_td)
2866 uio->uio_td->td_ru.ru_msgrcv++;
2867 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2868 SBLASTRECORDCHK(&so->so_rcv);
2869 SBLASTMBUFCHK(&so->so_rcv);
2870 nextrecord = m->m_nextpkt;
2871 if (pr->pr_flags & PR_ADDR) {
2872 KASSERT(m->m_type == MT_SONAME,
2873 ("m->m_type == %d", m->m_type));
2874 orig_resid = 0;
2875 if (psa != NULL)
2876 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
2877 M_NOWAIT);
2878 if (flags & MSG_PEEK) {
2879 m = m->m_next;
2880 } else {
2881 sbfree(&so->so_rcv, m);
2882 so->so_rcv.sb_mb = m_free(m);
2883 m = so->so_rcv.sb_mb;
2884 sockbuf_pushsync(&so->so_rcv, nextrecord);
2885 }
2886 }
2887
2888 /*
2889 * Process one or more MT_CONTROL mbufs present before any data mbufs
2890 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
2891 * just copy the data; if !MSG_PEEK, we call into the protocol to
2892 * perform externalization (or freeing if controlp == NULL).
2893 */
2894 if (m != NULL && m->m_type == MT_CONTROL) {
2895 struct mbuf *cm = NULL, *cmn;
2896 struct mbuf **cme = &cm;
2897 #ifdef KERN_TLS
2898 struct cmsghdr *cmsg;
2899 struct tls_get_record tgr;
2900
2901 /*
2902 * For MSG_TLSAPPDATA, check for an alert record.
2903 * If found, return ENXIO without removing
2904 * it from the receive queue. This allows a subsequent
2905 * call without MSG_TLSAPPDATA to receive it.
2906 * Note that, for TLS, there should only be a single
2907 * control mbuf with the TLS_GET_RECORD message in it.
2908 */
2909 if (flags & MSG_TLSAPPDATA) {
2910 cmsg = mtod(m, struct cmsghdr *);
2911 if (cmsg->cmsg_type == TLS_GET_RECORD &&
2912 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2913 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2914 if (__predict_false(tgr.tls_type ==
2915 TLS_RLTYPE_ALERT)) {
2916 SOCKBUF_UNLOCK(&so->so_rcv);
2917 error = ENXIO;
2918 goto release;
2919 }
2920 }
2921 }
2922 #endif
2923
2924 do {
2925 if (flags & MSG_PEEK) {
2926 if (controlp != NULL) {
2927 *controlp = m_copym(m, 0, m->m_len,
2928 M_NOWAIT);
2929 controlp = &(*controlp)->m_next;
2930 }
2931 m = m->m_next;
2932 } else {
2933 sbfree(&so->so_rcv, m);
2934 so->so_rcv.sb_mb = m->m_next;
2935 m->m_next = NULL;
2936 *cme = m;
2937 cme = &(*cme)->m_next;
2938 m = so->so_rcv.sb_mb;
2939 }
2940 } while (m != NULL && m->m_type == MT_CONTROL);
2941 if ((flags & MSG_PEEK) == 0)
2942 sockbuf_pushsync(&so->so_rcv, nextrecord);
2943 while (cm != NULL) {
2944 cmn = cm->m_next;
2945 cm->m_next = NULL;
2946 if (controlp != NULL)
2947 *controlp = cm;
2948 else
2949 m_freem(cm);
2950 if (controlp != NULL) {
2951 while (*controlp != NULL)
2952 controlp = &(*controlp)->m_next;
2953 }
2954 cm = cmn;
2955 }
2956 if (m != NULL)
2957 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2958 else
2959 nextrecord = so->so_rcv.sb_mb;
2960 orig_resid = 0;
2961 }
2962 if (m != NULL) {
2963 if ((flags & MSG_PEEK) == 0) {
2964 KASSERT(m->m_nextpkt == nextrecord,
2965 ("soreceive: post-control, nextrecord !sync"));
2966 if (nextrecord == NULL) {
2967 KASSERT(so->so_rcv.sb_mb == m,
2968 ("soreceive: post-control, sb_mb!=m"));
2969 KASSERT(so->so_rcv.sb_lastrecord == m,
2970 ("soreceive: post-control, lastrecord!=m"));
2971 }
2972 }
2973 type = m->m_type;
2974 if (type == MT_OOBDATA)
2975 flags |= MSG_OOB;
2976 } else {
2977 if ((flags & MSG_PEEK) == 0) {
2978 KASSERT(so->so_rcv.sb_mb == nextrecord,
2979 ("soreceive: sb_mb != nextrecord"));
2980 if (so->so_rcv.sb_mb == NULL) {
2981 KASSERT(so->so_rcv.sb_lastrecord == NULL,
2982 ("soreceive: sb_lastercord != NULL"));
2983 }
2984 }
2985 }
2986 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2987 SBLASTRECORDCHK(&so->so_rcv);
2988 SBLASTMBUFCHK(&so->so_rcv);
2989
2990 /*
2991 * Now continue to read any data mbufs off of the head of the socket
2992 * buffer until the read request is satisfied. Note that 'type' is
2993 * used to store the type of any mbuf reads that have happened so far
2994 * such that soreceive() can stop reading if the type changes, which
2995 * causes soreceive() to return only one of regular data and inline
2996 * out-of-band data in a single socket receive operation.
2997 */
2998 moff = 0;
2999 offset = 0;
3000 while (m != NULL && !(m->m_flags & M_NOTREADY) && uio->uio_resid > 0 &&
3001 error == 0) {
3002 /*
3003 * If the type of mbuf has changed since the last mbuf
3004 * examined ('type'), end the receive operation.
3005 */
3006 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3007 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
3008 if (type != m->m_type)
3009 break;
3010 } else if (type == MT_OOBDATA)
3011 break;
3012 else
3013 KASSERT(m->m_type == MT_DATA,
3014 ("m->m_type == %d", m->m_type));
3015 so->so_rcv.sb_state &= ~SBS_RCVATMARK;
3016 len = uio->uio_resid;
3017 if (so->so_oobmark && len > so->so_oobmark - offset)
3018 len = so->so_oobmark - offset;
3019 if (len > m->m_len - moff)
3020 len = m->m_len - moff;
3021 /*
3022 * If mp is set, just pass back the mbufs. Otherwise copy
3023 * them out via the uio, then free. Sockbuf must be
3024 * consistent here (points to current mbuf, it points to next
3025 * record) when we drop priority; we must note any additions
3026 * to the sockbuf when we block interrupts again.
3027 */
3028 if (mp == NULL) {
3029 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3030 SBLASTRECORDCHK(&so->so_rcv);
3031 SBLASTMBUFCHK(&so->so_rcv);
3032 SOCKBUF_UNLOCK(&so->so_rcv);
3033 if ((m->m_flags & M_EXTPG) != 0)
3034 error = m_unmapped_uiomove(m, moff, uio,
3035 (int)len);
3036 else
3037 error = uiomove(mtod(m, char *) + moff,
3038 (int)len, uio);
3039 SOCKBUF_LOCK(&so->so_rcv);
3040 if (error) {
3041 /*
3042 * The MT_SONAME mbuf has already been removed
3043 * from the record, so it is necessary to
3044 * remove the data mbufs, if any, to preserve
3045 * the invariant in the case of PR_ADDR that
3046 * requires MT_SONAME mbufs at the head of
3047 * each record.
3048 */
3049 if (pr->pr_flags & PR_ATOMIC &&
3050 ((flags & MSG_PEEK) == 0))
3051 (void)sbdroprecord_locked(&so->so_rcv);
3052 SOCKBUF_UNLOCK(&so->so_rcv);
3053 goto release;
3054 }
3055 } else
3056 uio->uio_resid -= len;
3057 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3058 if (len == m->m_len - moff) {
3059 if (m->m_flags & M_EOR)
3060 flags |= MSG_EOR;
3061 if (flags & MSG_PEEK) {
3062 m = m->m_next;
3063 moff = 0;
3064 } else {
3065 nextrecord = m->m_nextpkt;
3066 sbfree(&so->so_rcv, m);
3067 if (mp != NULL) {
3068 m->m_nextpkt = NULL;
3069 *mp = m;
3070 mp = &m->m_next;
3071 so->so_rcv.sb_mb = m = m->m_next;
3072 *mp = NULL;
3073 } else {
3074 so->so_rcv.sb_mb = m_free(m);
3075 m = so->so_rcv.sb_mb;
3076 }
3077 sockbuf_pushsync(&so->so_rcv, nextrecord);
3078 SBLASTRECORDCHK(&so->so_rcv);
3079 SBLASTMBUFCHK(&so->so_rcv);
3080 }
3081 } else {
3082 if (flags & MSG_PEEK)
3083 moff += len;
3084 else {
3085 if (mp != NULL) {
3086 if (flags & MSG_DONTWAIT) {
3087 *mp = m_copym(m, 0, len,
3088 M_NOWAIT);
3089 if (*mp == NULL) {
3090 /*
3091 * m_copym() couldn't
3092 * allocate an mbuf.
3093 * Adjust uio_resid back
3094 * (it was adjusted
3095 * down by len bytes,
3096 * which we didn't end
3097 * up "copying" over).
3098 */
3099 uio->uio_resid += len;
3100 break;
3101 }
3102 } else {
3103 SOCKBUF_UNLOCK(&so->so_rcv);
3104 *mp = m_copym(m, 0, len,
3105 M_WAITOK);
3106 SOCKBUF_LOCK(&so->so_rcv);
3107 }
3108 }
3109 sbcut_locked(&so->so_rcv, len);
3110 }
3111 }
3112 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3113 if (so->so_oobmark) {
3114 if ((flags & MSG_PEEK) == 0) {
3115 so->so_oobmark -= len;
3116 if (so->so_oobmark == 0) {
3117 so->so_rcv.sb_state |= SBS_RCVATMARK;
3118 break;
3119 }
3120 } else {
3121 offset += len;
3122 if (offset == so->so_oobmark)
3123 break;
3124 }
3125 }
3126 if (flags & MSG_EOR)
3127 break;
3128 /*
3129 * If the MSG_WAITALL flag is set (for non-atomic socket), we
3130 * must not quit until "uio->uio_resid == 0" or an error
3131 * termination. If a signal/timeout occurs, return with a
3132 * short count but without error. Keep sockbuf locked
3133 * against other readers.
3134 */
3135 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
3136 !sosendallatonce(so) && nextrecord == NULL) {
3137 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3138 if (so->so_error || so->so_rerror ||
3139 so->so_rcv.sb_state & SBS_CANTRCVMORE)
3140 break;
3141 /*
3142 * Notify the protocol that some data has been
3143 * drained before blocking.
3144 */
3145 if (pr->pr_flags & PR_WANTRCVD) {
3146 SOCKBUF_UNLOCK(&so->so_rcv);
3147 VNET_SO_ASSERT(so);
3148 pr->pr_rcvd(so, flags);
3149 SOCKBUF_LOCK(&so->so_rcv);
3150 if (__predict_false(so->so_rcv.sb_mb == NULL &&
3151 (so->so_error || so->so_rerror ||
3152 so->so_rcv.sb_state & SBS_CANTRCVMORE)))
3153 break;
3154 }
3155 SBLASTRECORDCHK(&so->so_rcv);
3156 SBLASTMBUFCHK(&so->so_rcv);
3157 /*
3158 * We could receive some data while was notifying
3159 * the protocol. Skip blocking in this case.
3160 */
3161 if (so->so_rcv.sb_mb == NULL) {
3162 error = sbwait(so, SO_RCV);
3163 if (error) {
3164 SOCKBUF_UNLOCK(&so->so_rcv);
3165 goto release;
3166 }
3167 }
3168 m = so->so_rcv.sb_mb;
3169 if (m != NULL)
3170 nextrecord = m->m_nextpkt;
3171 }
3172 }
3173
3174 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3175 if (m != NULL && pr->pr_flags & PR_ATOMIC) {
3176 if (report_real_len)
3177 uio->uio_resid -= m_length(m, NULL) - moff;
3178 flags |= MSG_TRUNC;
3179 if ((flags & MSG_PEEK) == 0)
3180 (void) sbdroprecord_locked(&so->so_rcv);
3181 }
3182 if ((flags & MSG_PEEK) == 0) {
3183 if (m == NULL) {
3184 /*
3185 * First part is an inline SB_EMPTY_FIXUP(). Second
3186 * part makes sure sb_lastrecord is up-to-date if
3187 * there is still data in the socket buffer.
3188 */
3189 so->so_rcv.sb_mb = nextrecord;
3190 if (so->so_rcv.sb_mb == NULL) {
3191 so->so_rcv.sb_mbtail = NULL;
3192 so->so_rcv.sb_lastrecord = NULL;
3193 } else if (nextrecord->m_nextpkt == NULL)
3194 so->so_rcv.sb_lastrecord = nextrecord;
3195 }
3196 SBLASTRECORDCHK(&so->so_rcv);
3197 SBLASTMBUFCHK(&so->so_rcv);
3198 /*
3199 * If soreceive() is being done from the socket callback,
3200 * then don't need to generate ACK to peer to update window,
3201 * since ACK will be generated on return to TCP.
3202 */
3203 if (!(flags & MSG_SOCALLBCK) &&
3204 (pr->pr_flags & PR_WANTRCVD)) {
3205 SOCKBUF_UNLOCK(&so->so_rcv);
3206 VNET_SO_ASSERT(so);
3207 pr->pr_rcvd(so, flags);
3208 SOCKBUF_LOCK(&so->so_rcv);
3209 }
3210 }
3211 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3212 if (orig_resid == uio->uio_resid && orig_resid &&
3213 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
3214 SOCKBUF_UNLOCK(&so->so_rcv);
3215 goto restart;
3216 }
3217 SOCKBUF_UNLOCK(&so->so_rcv);
3218
3219 if (flagsp != NULL)
3220 *flagsp |= flags;
3221 release:
3222 return (error);
3223 }
3224
3225 int
3226 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
3227 struct mbuf **mp, struct mbuf **controlp, int *flagsp)
3228 {
3229 int error, flags;
3230
3231 if (psa != NULL)
3232 *psa = NULL;
3233 if (controlp != NULL)
3234 *controlp = NULL;
3235 if (flagsp != NULL) {
3236 flags = *flagsp;
3237 if ((flags & MSG_OOB) != 0)
3238 return (soreceive_rcvoob(so, uio, flags));
3239 } else {
3240 flags = 0;
3241 }
3242 if (mp != NULL)
3243 *mp = NULL;
3244
3245 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3246 if (error)
3247 return (error);
3248 error = soreceive_generic_locked(so, psa, uio, mp, controlp, flagsp);
3249 SOCK_IO_RECV_UNLOCK(so);
3250 return (error);
3251 }
3252
3253 /*
3254 * Optimized version of soreceive() for stream (TCP) sockets.
3255 */
3256 static int
3257 soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
3258 struct sockaddr **psa, struct uio *uio, struct mbuf **mp0,
3259 struct mbuf **controlp, int flags)
3260 {
3261 int len = 0, error = 0, oresid;
3262 struct mbuf *m, *n = NULL;
3263
3264 SOCK_IO_RECV_ASSERT_LOCKED(so);
3265
3266 /* Easy one, no space to copyout anything. */
3267 if (uio->uio_resid == 0)
3268 return (EINVAL);
3269 oresid = uio->uio_resid;
3270
3271 SOCKBUF_LOCK(sb);
3272 /* We will never ever get anything unless we are or were connected. */
3273 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
3274 error = ENOTCONN;
3275 goto out;
3276 }
3277
3278 restart:
3279 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3280
3281 /* Abort if socket has reported problems. */
3282 if (so->so_error) {
3283 if (sbavail(sb) > 0)
3284 goto deliver;
3285 if (oresid > uio->uio_resid)
3286 goto out;
3287 error = so->so_error;
3288 if (!(flags & MSG_PEEK))
3289 so->so_error = 0;
3290 goto out;
3291 }
3292
3293 /* Door is closed. Deliver what is left, if any. */
3294 if (sb->sb_state & SBS_CANTRCVMORE) {
3295 if (sbavail(sb) > 0)
3296 goto deliver;
3297 else
3298 goto out;
3299 }
3300
3301 /* Socket buffer is empty and we shall not block. */
3302 if (sbavail(sb) == 0 &&
3303 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
3304 error = EAGAIN;
3305 goto out;
3306 }
3307
3308 /* Socket buffer got some data that we shall deliver now. */
3309 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
3310 ((so->so_state & SS_NBIO) ||
3311 (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
3312 sbavail(sb) >= sb->sb_lowat ||
3313 sbavail(sb) >= uio->uio_resid ||
3314 sbavail(sb) >= sb->sb_hiwat) ) {
3315 goto deliver;
3316 }
3317
3318 /* On MSG_WAITALL we must wait until all data or error arrives. */
3319 if ((flags & MSG_WAITALL) &&
3320 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
3321 goto deliver;
3322
3323 /*
3324 * Wait and block until (more) data comes in.
3325 * NB: Drops the sockbuf lock during wait.
3326 */
3327 error = sbwait(so, SO_RCV);
3328 if (error)
3329 goto out;
3330 goto restart;
3331
3332 deliver:
3333 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3334 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
3335 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
3336
3337 /* Statistics. */
3338 if (uio->uio_td)
3339 uio->uio_td->td_ru.ru_msgrcv++;
3340
3341 /* Fill uio until full or current end of socket buffer is reached. */
3342 len = min(uio->uio_resid, sbavail(sb));
3343 if (mp0 != NULL) {
3344 /* Dequeue as many mbufs as possible. */
3345 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
3346 if (*mp0 == NULL)
3347 *mp0 = sb->sb_mb;
3348 else
3349 m_cat(*mp0, sb->sb_mb);
3350 for (m = sb->sb_mb;
3351 m != NULL && m->m_len <= len;
3352 m = m->m_next) {
3353 KASSERT(!(m->m_flags & M_NOTREADY),
3354 ("%s: m %p not available", __func__, m));
3355 len -= m->m_len;
3356 uio->uio_resid -= m->m_len;
3357 sbfree(sb, m);
3358 n = m;
3359 }
3360 n->m_next = NULL;
3361 sb->sb_mb = m;
3362 sb->sb_lastrecord = sb->sb_mb;
3363 if (sb->sb_mb == NULL)
3364 SB_EMPTY_FIXUP(sb);
3365 }
3366 /* Copy the remainder. */
3367 if (len > 0) {
3368 KASSERT(sb->sb_mb != NULL,
3369 ("%s: len > 0 && sb->sb_mb empty", __func__));
3370
3371 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
3372 if (m == NULL)
3373 len = 0; /* Don't flush data from sockbuf. */
3374 else
3375 uio->uio_resid -= len;
3376 if (*mp0 != NULL)
3377 m_cat(*mp0, m);
3378 else
3379 *mp0 = m;
3380 if (*mp0 == NULL) {
3381 error = ENOBUFS;
3382 goto out;
3383 }
3384 }
3385 } else {
3386 /* NB: Must unlock socket buffer as uiomove may sleep. */
3387 SOCKBUF_UNLOCK(sb);
3388 error = m_mbuftouio(uio, sb->sb_mb, len);
3389 SOCKBUF_LOCK(sb);
3390 if (error)
3391 goto out;
3392 }
3393 SBLASTRECORDCHK(sb);
3394 SBLASTMBUFCHK(sb);
3395
3396 /*
3397 * Remove the delivered data from the socket buffer unless we
3398 * were only peeking.
3399 */
3400 if (!(flags & MSG_PEEK)) {
3401 if (len > 0)
3402 sbdrop_locked(sb, len);
3403
3404 /* Notify protocol that we drained some data. */
3405 if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
3406 (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
3407 !(flags & MSG_SOCALLBCK))) {
3408 SOCKBUF_UNLOCK(sb);
3409 VNET_SO_ASSERT(so);
3410 so->so_proto->pr_rcvd(so, flags);
3411 SOCKBUF_LOCK(sb);
3412 }
3413 }
3414
3415 /*
3416 * For MSG_WAITALL we may have to loop again and wait for
3417 * more data to come in.
3418 */
3419 if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
3420 goto restart;
3421 out:
3422 SBLASTRECORDCHK(sb);
3423 SBLASTMBUFCHK(sb);
3424 SOCKBUF_UNLOCK(sb);
3425 return (error);
3426 }
3427
3428 int
3429 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
3430 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3431 {
3432 struct sockbuf *sb;
3433 int error, flags;
3434
3435 sb = &so->so_rcv;
3436
3437 /* We only do stream sockets. */
3438 if (so->so_type != SOCK_STREAM)
3439 return (EINVAL);
3440 if (psa != NULL)
3441 *psa = NULL;
3442 if (flagsp != NULL)
3443 flags = *flagsp & ~MSG_EOR;
3444 else
3445 flags = 0;
3446 if (controlp != NULL)
3447 *controlp = NULL;
3448 if (flags & MSG_OOB)
3449 return (soreceive_rcvoob(so, uio, flags));
3450 if (mp0 != NULL)
3451 *mp0 = NULL;
3452
3453 #ifdef KERN_TLS
3454 /*
3455 * KTLS store TLS records as records with a control message to
3456 * describe the framing.
3457 *
3458 * We check once here before acquiring locks to optimize the
3459 * common case.
3460 */
3461 if (sb->sb_tls_info != NULL)
3462 return (soreceive_generic(so, psa, uio, mp0, controlp,
3463 flagsp));
3464 #endif
3465
3466 /*
3467 * Prevent other threads from reading from the socket. This lock may be
3468 * dropped in order to sleep waiting for data to arrive.
3469 */
3470 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3471 if (error)
3472 return (error);
3473 #ifdef KERN_TLS
3474 if (__predict_false(sb->sb_tls_info != NULL)) {
3475 SOCK_IO_RECV_UNLOCK(so);
3476 return (soreceive_generic(so, psa, uio, mp0, controlp,
3477 flagsp));
3478 }
3479 #endif
3480 error = soreceive_stream_locked(so, sb, psa, uio, mp0, controlp, flags);
3481 SOCK_IO_RECV_UNLOCK(so);
3482 return (error);
3483 }
3484
3485 /*
3486 * Optimized version of soreceive() for simple datagram cases from userspace.
3487 * Unlike in the stream case, we're able to drop a datagram if copyout()
3488 * fails, and because we handle datagrams atomically, we don't need to use a
3489 * sleep lock to prevent I/O interlacing.
3490 */
3491 int
3492 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
3493 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3494 {
3495 struct mbuf *m, *m2;
3496 int flags, error;
3497 ssize_t len;
3498 struct protosw *pr = so->so_proto;
3499 struct mbuf *nextrecord;
3500
3501 if (psa != NULL)
3502 *psa = NULL;
3503 if (controlp != NULL)
3504 *controlp = NULL;
3505 if (flagsp != NULL)
3506 flags = *flagsp &~ MSG_EOR;
3507 else
3508 flags = 0;
3509
3510 /*
3511 * For any complicated cases, fall back to the full
3512 * soreceive_generic().
3513 */
3514 if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
3515 return (soreceive_generic(so, psa, uio, mp0, controlp,
3516 flagsp));
3517
3518 /*
3519 * Enforce restrictions on use.
3520 */
3521 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
3522 ("soreceive_dgram: wantrcvd"));
3523 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
3524 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
3525 ("soreceive_dgram: SBS_RCVATMARK"));
3526 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
3527 ("soreceive_dgram: P_CONNREQUIRED"));
3528
3529 /*
3530 * Loop blocking while waiting for a datagram.
3531 */
3532 SOCKBUF_LOCK(&so->so_rcv);
3533 while ((m = so->so_rcv.sb_mb) == NULL) {
3534 KASSERT(sbavail(&so->so_rcv) == 0,
3535 ("soreceive_dgram: sb_mb NULL but sbavail %u",
3536 sbavail(&so->so_rcv)));
3537 if (so->so_error) {
3538 error = so->so_error;
3539 so->so_error = 0;
3540 SOCKBUF_UNLOCK(&so->so_rcv);
3541 return (error);
3542 }
3543 if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
3544 uio->uio_resid == 0) {
3545 SOCKBUF_UNLOCK(&so->so_rcv);
3546 return (0);
3547 }
3548 if ((so->so_state & SS_NBIO) ||
3549 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
3550 SOCKBUF_UNLOCK(&so->so_rcv);
3551 return (EWOULDBLOCK);
3552 }
3553 SBLASTRECORDCHK(&so->so_rcv);
3554 SBLASTMBUFCHK(&so->so_rcv);
3555 error = sbwait(so, SO_RCV);
3556 if (error) {
3557 SOCKBUF_UNLOCK(&so->so_rcv);
3558 return (error);
3559 }
3560 }
3561 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3562
3563 if (uio->uio_td)
3564 uio->uio_td->td_ru.ru_msgrcv++;
3565 SBLASTRECORDCHK(&so->so_rcv);
3566 SBLASTMBUFCHK(&so->so_rcv);
3567 nextrecord = m->m_nextpkt;
3568 if (nextrecord == NULL) {
3569 KASSERT(so->so_rcv.sb_lastrecord == m,
3570 ("soreceive_dgram: lastrecord != m"));
3571 }
3572
3573 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
3574 ("soreceive_dgram: m_nextpkt != nextrecord"));
3575
3576 /*
3577 * Pull 'm' and its chain off the front of the packet queue.
3578 */
3579 so->so_rcv.sb_mb = NULL;
3580 sockbuf_pushsync(&so->so_rcv, nextrecord);
3581
3582 /*
3583 * Walk 'm's chain and free that many bytes from the socket buffer.
3584 */
3585 for (m2 = m; m2 != NULL; m2 = m2->m_next)
3586 sbfree(&so->so_rcv, m2);
3587
3588 /*
3589 * Do a few last checks before we let go of the lock.
3590 */
3591 SBLASTRECORDCHK(&so->so_rcv);
3592 SBLASTMBUFCHK(&so->so_rcv);
3593 SOCKBUF_UNLOCK(&so->so_rcv);
3594
3595 if (pr->pr_flags & PR_ADDR) {
3596 KASSERT(m->m_type == MT_SONAME,
3597 ("m->m_type == %d", m->m_type));
3598 if (psa != NULL)
3599 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
3600 M_WAITOK);
3601 m = m_free(m);
3602 }
3603 KASSERT(m, ("%s: no data or control after soname", __func__));
3604
3605 /*
3606 * Packet to copyout() is now in 'm' and it is disconnected from the
3607 * queue.
3608 *
3609 * Process one or more MT_CONTROL mbufs present before any data mbufs
3610 * in the first mbuf chain on the socket buffer. We call into the
3611 * protocol to perform externalization (or freeing if controlp ==
3612 * NULL). In some cases there can be only MT_CONTROL mbufs without
3613 * MT_DATA mbufs.
3614 */
3615 if (m->m_type == MT_CONTROL) {
3616 struct mbuf *cm = NULL, *cmn;
3617 struct mbuf **cme = &cm;
3618
3619 do {
3620 m2 = m->m_next;
3621 m->m_next = NULL;
3622 *cme = m;
3623 cme = &(*cme)->m_next;
3624 m = m2;
3625 } while (m != NULL && m->m_type == MT_CONTROL);
3626 while (cm != NULL) {
3627 cmn = cm->m_next;
3628 cm->m_next = NULL;
3629 if (controlp != NULL)
3630 *controlp = cm;
3631 else
3632 m_freem(cm);
3633 if (controlp != NULL) {
3634 while (*controlp != NULL)
3635 controlp = &(*controlp)->m_next;
3636 }
3637 cm = cmn;
3638 }
3639 }
3640 KASSERT(m == NULL || m->m_type == MT_DATA,
3641 ("soreceive_dgram: !data"));
3642 while (m != NULL && uio->uio_resid > 0) {
3643 len = uio->uio_resid;
3644 if (len > m->m_len)
3645 len = m->m_len;
3646 error = uiomove(mtod(m, char *), (int)len, uio);
3647 if (error) {
3648 m_freem(m);
3649 return (error);
3650 }
3651 if (len == m->m_len)
3652 m = m_free(m);
3653 else {
3654 m->m_data += len;
3655 m->m_len -= len;
3656 }
3657 }
3658 if (m != NULL) {
3659 flags |= MSG_TRUNC;
3660 m_freem(m);
3661 }
3662 if (flagsp != NULL)
3663 *flagsp |= flags;
3664 return (0);
3665 }
3666
3667 int
3668 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
3669 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3670 {
3671 int error;
3672
3673 CURVNET_SET(so->so_vnet);
3674 error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
3675 CURVNET_RESTORE();
3676 return (error);
3677 }
3678
3679 int
3680 soshutdown(struct socket *so, enum shutdown_how how)
3681 {
3682 int error;
3683
3684 CURVNET_SET(so->so_vnet);
3685 error = so->so_proto->pr_shutdown(so, how);
3686 CURVNET_RESTORE();
3687
3688 return (error);
3689 }
3690
3691 /*
3692 * Used by several pr_shutdown implementations that use generic socket buffers.
3693 */
3694 void
3695 sorflush(struct socket *so)
3696 {
3697 int error;
3698
3699 VNET_SO_ASSERT(so);
3700
3701 /*
3702 * Dislodge threads currently blocked in receive and wait to acquire
3703 * a lock against other simultaneous readers before clearing the
3704 * socket buffer. Don't let our acquire be interrupted by a signal
3705 * despite any existing socket disposition on interruptable waiting.
3706 *
3707 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive
3708 * methods that read the top of the socket buffer without acquisition
3709 * of the socket buffer mutex, assuming that top of the buffer
3710 * exclusively belongs to the read(2) syscall. This is handy when
3711 * performing MSG_PEEK.
3712 */
3713 socantrcvmore(so);
3714
3715 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
3716 if (error != 0) {
3717 KASSERT(SOLISTENING(so),
3718 ("%s: soiolock(%p) failed", __func__, so));
3719 return;
3720 }
3721
3722 sbrelease(so, SO_RCV);
3723 SOCK_IO_RECV_UNLOCK(so);
3724
3725 }
3726
3727 int
3728 sosetfib(struct socket *so, int fibnum)
3729 {
3730 if (fibnum < 0 || fibnum >= rt_numfibs)
3731 return (EINVAL);
3732
3733 SOCK_LOCK(so);
3734 so->so_fibnum = fibnum;
3735 SOCK_UNLOCK(so);
3736
3737 return (0);
3738 }
3739
3740 #ifdef SOCKET_HHOOK
3741 /*
3742 * Wrapper for Socket established helper hook.
3743 * Parameters: socket, context of the hook point, hook id.
3744 */
3745 static inline int
3746 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
3747 {
3748 struct socket_hhook_data hhook_data = {
3749 .so = so,
3750 .hctx = hctx,
3751 .m = NULL,
3752 .status = 0
3753 };
3754
3755 CURVNET_SET(so->so_vnet);
3756 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
3757 CURVNET_RESTORE();
3758
3759 /* Ugly but needed, since hhooks return void for now */
3760 return (hhook_data.status);
3761 }
3762 #endif
3763
3764 /*
3765 * Perhaps this routine, and sooptcopyout(), below, ought to come in an
3766 * additional variant to handle the case where the option value needs to be
3767 * some kind of integer, but not a specific size. In addition to their use
3768 * here, these functions are also called by the protocol-level pr_ctloutput()
3769 * routines.
3770 */
3771 int
3772 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
3773 {
3774 size_t valsize;
3775
3776 /*
3777 * If the user gives us more than we wanted, we ignore it, but if we
3778 * don't get the minimum length the caller wants, we return EINVAL.
3779 * On success, sopt->sopt_valsize is set to however much we actually
3780 * retrieved.
3781 */
3782 if ((valsize = sopt->sopt_valsize) < minlen)
3783 return EINVAL;
3784 if (valsize > len)
3785 sopt->sopt_valsize = valsize = len;
3786
3787 if (sopt->sopt_td != NULL)
3788 return (copyin(sopt->sopt_val, buf, valsize));
3789
3790 bcopy(sopt->sopt_val, buf, valsize);
3791 return (0);
3792 }
3793
3794 /*
3795 * Kernel version of setsockopt(2).
3796 *
3797 * XXX: optlen is size_t, not socklen_t
3798 */
3799 int
3800 so_setsockopt(struct socket *so, int level, int optname, void *optval,
3801 size_t optlen)
3802 {
3803 struct sockopt sopt;
3804
3805 sopt.sopt_level = level;
3806 sopt.sopt_name = optname;
3807 sopt.sopt_dir = SOPT_SET;
3808 sopt.sopt_val = optval;
3809 sopt.sopt_valsize = optlen;
3810 sopt.sopt_td = NULL;
3811 return (sosetopt(so, &sopt));
3812 }
3813
3814 int
3815 sosetopt(struct socket *so, struct sockopt *sopt)
3816 {
3817 int error, optval;
3818 struct linger l;
3819 struct timeval tv;
3820 sbintime_t val, *valp;
3821 uint32_t val32;
3822 #ifdef MAC
3823 struct mac extmac;
3824 #endif
3825
3826 CURVNET_SET(so->so_vnet);
3827 error = 0;
3828 if (sopt->sopt_level != SOL_SOCKET) {
3829 error = so->so_proto->pr_ctloutput(so, sopt);
3830 } else {
3831 switch (sopt->sopt_name) {
3832 case SO_ACCEPTFILTER:
3833 error = accept_filt_setopt(so, sopt);
3834 if (error)
3835 goto bad;
3836 break;
3837
3838 case SO_LINGER:
3839 error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3840 if (error)
3841 goto bad;
3842 if (l.l_linger < 0 ||
3843 l.l_linger > USHRT_MAX ||
3844 l.l_linger > (INT_MAX / hz)) {
3845 error = EDOM;
3846 goto bad;
3847 }
3848 SOCK_LOCK(so);
3849 so->so_linger = l.l_linger;
3850 if (l.l_onoff)
3851 so->so_options |= SO_LINGER;
3852 else
3853 so->so_options &= ~SO_LINGER;
3854 SOCK_UNLOCK(so);
3855 break;
3856
3857 case SO_DEBUG:
3858 case SO_KEEPALIVE:
3859 case SO_DONTROUTE:
3860 case SO_USELOOPBACK:
3861 case SO_BROADCAST:
3862 case SO_REUSEADDR:
3863 case SO_REUSEPORT:
3864 case SO_REUSEPORT_LB:
3865 case SO_OOBINLINE:
3866 case SO_TIMESTAMP:
3867 case SO_BINTIME:
3868 case SO_NOSIGPIPE:
3869 case SO_NO_DDP:
3870 case SO_NO_OFFLOAD:
3871 case SO_RERROR:
3872 error = sooptcopyin(sopt, &optval, sizeof optval,
3873 sizeof optval);
3874 if (error)
3875 goto bad;
3876 SOCK_LOCK(so);
3877 if (optval)
3878 so->so_options |= sopt->sopt_name;
3879 else
3880 so->so_options &= ~sopt->sopt_name;
3881 SOCK_UNLOCK(so);
3882 break;
3883
3884 case SO_SETFIB:
3885 error = so->so_proto->pr_ctloutput(so, sopt);
3886 break;
3887
3888 case SO_USER_COOKIE:
3889 error = sooptcopyin(sopt, &val32, sizeof val32,
3890 sizeof val32);
3891 if (error)
3892 goto bad;
3893 so->so_user_cookie = val32;
3894 break;
3895
3896 case SO_SNDBUF:
3897 case SO_RCVBUF:
3898 case SO_SNDLOWAT:
3899 case SO_RCVLOWAT:
3900 error = so->so_proto->pr_setsbopt(so, sopt);
3901 if (error)
3902 goto bad;
3903 break;
3904
3905 case SO_SNDTIMEO:
3906 case SO_RCVTIMEO:
3907 #ifdef COMPAT_FREEBSD32
3908 if (SV_CURPROC_FLAG(SV_ILP32)) {
3909 struct timeval32 tv32;
3910
3911 error = sooptcopyin(sopt, &tv32, sizeof tv32,
3912 sizeof tv32);
3913 CP(tv32, tv, tv_sec);
3914 CP(tv32, tv, tv_usec);
3915 } else
3916 #endif
3917 error = sooptcopyin(sopt, &tv, sizeof tv,
3918 sizeof tv);
3919 if (error)
3920 goto bad;
3921 if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3922 tv.tv_usec >= 1000000) {
3923 error = EDOM;
3924 goto bad;
3925 }
3926 if (tv.tv_sec > INT32_MAX)
3927 val = SBT_MAX;
3928 else
3929 val = tvtosbt(tv);
3930 SOCK_LOCK(so);
3931 valp = sopt->sopt_name == SO_SNDTIMEO ?
3932 (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3933 &so->so_snd.sb_timeo) :
3934 (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3935 &so->so_rcv.sb_timeo);
3936 *valp = val;
3937 SOCK_UNLOCK(so);
3938 break;
3939
3940 case SO_LABEL:
3941 #ifdef MAC
3942 error = sooptcopyin(sopt, &extmac, sizeof extmac,
3943 sizeof extmac);
3944 if (error)
3945 goto bad;
3946 error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3947 so, &extmac);
3948 #else
3949 error = EOPNOTSUPP;
3950 #endif
3951 break;
3952
3953 case SO_TS_CLOCK:
3954 error = sooptcopyin(sopt, &optval, sizeof optval,
3955 sizeof optval);
3956 if (error)
3957 goto bad;
3958 if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3959 error = EINVAL;
3960 goto bad;
3961 }
3962 so->so_ts_clock = optval;
3963 break;
3964
3965 case SO_MAX_PACING_RATE:
3966 error = sooptcopyin(sopt, &val32, sizeof(val32),
3967 sizeof(val32));
3968 if (error)
3969 goto bad;
3970 so->so_max_pacing_rate = val32;
3971 break;
3972
3973 case SO_SPLICE: {
3974 struct splice splice;
3975
3976 #ifdef COMPAT_FREEBSD32
3977 if (SV_CURPROC_FLAG(SV_ILP32)) {
3978 struct splice32 splice32;
3979
3980 error = sooptcopyin(sopt, &splice32,
3981 sizeof(splice32), sizeof(splice32));
3982 if (error == 0) {
3983 splice.sp_fd = splice32.sp_fd;
3984 splice.sp_max = splice32.sp_max;
3985 CP(splice32.sp_idle, splice.sp_idle,
3986 tv_sec);
3987 CP(splice32.sp_idle, splice.sp_idle,
3988 tv_usec);
3989 }
3990 } else
3991 #endif
3992 {
3993 error = sooptcopyin(sopt, &splice,
3994 sizeof(splice), sizeof(splice));
3995 }
3996 if (error)
3997 goto bad;
3998 #ifdef KTRACE
3999 if (KTRPOINT(curthread, KTR_STRUCT))
4000 ktrsplice(&splice);
4001 #endif
4002
4003 error = splice_init();
4004 if (error != 0)
4005 goto bad;
4006
4007 if (splice.sp_fd >= 0) {
4008 struct file *fp;
4009 struct socket *so2;
4010
4011 if (!cap_rights_contains(sopt->sopt_rights,
4012 &cap_recv_rights)) {
4013 error = ENOTCAPABLE;
4014 goto bad;
4015 }
4016 error = getsock(sopt->sopt_td, splice.sp_fd,
4017 &cap_send_rights, &fp);
4018 if (error != 0)
4019 goto bad;
4020 so2 = fp->f_data;
4021
4022 error = so_splice(so, so2, &splice);
4023 fdrop(fp, sopt->sopt_td);
4024 } else {
4025 error = so_unsplice(so, false);
4026 }
4027 break;
4028 }
4029 default:
4030 #ifdef SOCKET_HHOOK
4031 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4032 error = hhook_run_socket(so, sopt,
4033 HHOOK_SOCKET_OPT);
4034 else
4035 #endif
4036 error = ENOPROTOOPT;
4037 break;
4038 }
4039 if (error == 0)
4040 (void)so->so_proto->pr_ctloutput(so, sopt);
4041 }
4042 bad:
4043 CURVNET_RESTORE();
4044 return (error);
4045 }
4046
4047 /*
4048 * Helper routine for getsockopt.
4049 */
4050 int
4051 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
4052 {
4053 int error;
4054 size_t valsize;
4055
4056 error = 0;
4057
4058 /*
4059 * Documented get behavior is that we always return a value, possibly
4060 * truncated to fit in the user's buffer. Traditional behavior is
4061 * that we always tell the user precisely how much we copied, rather
4062 * than something useful like the total amount we had available for
4063 * her. Note that this interface is not idempotent; the entire
4064 * answer must be generated ahead of time.
4065 */
4066 valsize = min(len, sopt->sopt_valsize);
4067 sopt->sopt_valsize = valsize;
4068 if (sopt->sopt_val != NULL) {
4069 if (sopt->sopt_td != NULL)
4070 error = copyout(buf, sopt->sopt_val, valsize);
4071 else
4072 bcopy(buf, sopt->sopt_val, valsize);
4073 }
4074 return (error);
4075 }
4076
4077 int
4078 sogetopt(struct socket *so, struct sockopt *sopt)
4079 {
4080 int error, optval;
4081 struct linger l;
4082 struct timeval tv;
4083 #ifdef MAC
4084 struct mac extmac;
4085 #endif
4086
4087 CURVNET_SET(so->so_vnet);
4088 error = 0;
4089 if (sopt->sopt_level != SOL_SOCKET) {
4090 error = so->so_proto->pr_ctloutput(so, sopt);
4091 CURVNET_RESTORE();
4092 return (error);
4093 } else {
4094 switch (sopt->sopt_name) {
4095 case SO_ACCEPTFILTER:
4096 error = accept_filt_getopt(so, sopt);
4097 break;
4098
4099 case SO_LINGER:
4100 SOCK_LOCK(so);
4101 l.l_onoff = so->so_options & SO_LINGER;
4102 l.l_linger = so->so_linger;
4103 SOCK_UNLOCK(so);
4104 error = sooptcopyout(sopt, &l, sizeof l);
4105 break;
4106
4107 case SO_USELOOPBACK:
4108 case SO_DONTROUTE:
4109 case SO_DEBUG:
4110 case SO_KEEPALIVE:
4111 case SO_REUSEADDR:
4112 case SO_REUSEPORT:
4113 case SO_REUSEPORT_LB:
4114 case SO_BROADCAST:
4115 case SO_OOBINLINE:
4116 case SO_ACCEPTCONN:
4117 case SO_TIMESTAMP:
4118 case SO_BINTIME:
4119 case SO_NOSIGPIPE:
4120 case SO_NO_DDP:
4121 case SO_NO_OFFLOAD:
4122 case SO_RERROR:
4123 optval = so->so_options & sopt->sopt_name;
4124 integer:
4125 error = sooptcopyout(sopt, &optval, sizeof optval);
4126 break;
4127
4128 case SO_FIB:
4129 SOCK_LOCK(so);
4130 optval = so->so_fibnum;
4131 SOCK_UNLOCK(so);
4132 goto integer;
4133
4134 case SO_DOMAIN:
4135 optval = so->so_proto->pr_domain->dom_family;
4136 goto integer;
4137
4138 case SO_TYPE:
4139 optval = so->so_type;
4140 goto integer;
4141
4142 case SO_PROTOCOL:
4143 optval = so->so_proto->pr_protocol;
4144 goto integer;
4145
4146 case SO_ERROR:
4147 SOCK_LOCK(so);
4148 if (so->so_error) {
4149 optval = so->so_error;
4150 so->so_error = 0;
4151 } else {
4152 optval = so->so_rerror;
4153 so->so_rerror = 0;
4154 }
4155 SOCK_UNLOCK(so);
4156 goto integer;
4157
4158 case SO_SNDBUF:
4159 SOCK_LOCK(so);
4160 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
4161 so->so_snd.sb_hiwat;
4162 SOCK_UNLOCK(so);
4163 goto integer;
4164
4165 case SO_RCVBUF:
4166 SOCK_LOCK(so);
4167 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
4168 so->so_rcv.sb_hiwat;
4169 SOCK_UNLOCK(so);
4170 goto integer;
4171
4172 case SO_SNDLOWAT:
4173 SOCK_LOCK(so);
4174 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
4175 so->so_snd.sb_lowat;
4176 SOCK_UNLOCK(so);
4177 goto integer;
4178
4179 case SO_RCVLOWAT:
4180 SOCK_LOCK(so);
4181 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
4182 so->so_rcv.sb_lowat;
4183 SOCK_UNLOCK(so);
4184 goto integer;
4185
4186 case SO_SNDTIMEO:
4187 case SO_RCVTIMEO:
4188 SOCK_LOCK(so);
4189 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
4190 (SOLISTENING(so) ? so->sol_sbsnd_timeo :
4191 so->so_snd.sb_timeo) :
4192 (SOLISTENING(so) ? so->sol_sbrcv_timeo :
4193 so->so_rcv.sb_timeo));
4194 SOCK_UNLOCK(so);
4195 #ifdef COMPAT_FREEBSD32
4196 if (SV_CURPROC_FLAG(SV_ILP32)) {
4197 struct timeval32 tv32;
4198
4199 CP(tv, tv32, tv_sec);
4200 CP(tv, tv32, tv_usec);
4201 error = sooptcopyout(sopt, &tv32, sizeof tv32);
4202 } else
4203 #endif
4204 error = sooptcopyout(sopt, &tv, sizeof tv);
4205 break;
4206
4207 case SO_LABEL:
4208 #ifdef MAC
4209 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4210 sizeof(extmac));
4211 if (error)
4212 goto bad;
4213 error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
4214 so, &extmac);
4215 if (error)
4216 goto bad;
4217 /* Don't copy out extmac, it is unchanged. */
4218 #else
4219 error = EOPNOTSUPP;
4220 #endif
4221 break;
4222
4223 case SO_PEERLABEL:
4224 #ifdef MAC
4225 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4226 sizeof(extmac));
4227 if (error)
4228 goto bad;
4229 error = mac_getsockopt_peerlabel(
4230 sopt->sopt_td->td_ucred, so, &extmac);
4231 if (error)
4232 goto bad;
4233 /* Don't copy out extmac, it is unchanged. */
4234 #else
4235 error = EOPNOTSUPP;
4236 #endif
4237 break;
4238
4239 case SO_LISTENQLIMIT:
4240 SOCK_LOCK(so);
4241 optval = SOLISTENING(so) ? so->sol_qlimit : 0;
4242 SOCK_UNLOCK(so);
4243 goto integer;
4244
4245 case SO_LISTENQLEN:
4246 SOCK_LOCK(so);
4247 optval = SOLISTENING(so) ? so->sol_qlen : 0;
4248 SOCK_UNLOCK(so);
4249 goto integer;
4250
4251 case SO_LISTENINCQLEN:
4252 SOCK_LOCK(so);
4253 optval = SOLISTENING(so) ? so->sol_incqlen : 0;
4254 SOCK_UNLOCK(so);
4255 goto integer;
4256
4257 case SO_TS_CLOCK:
4258 optval = so->so_ts_clock;
4259 goto integer;
4260
4261 case SO_MAX_PACING_RATE:
4262 optval = so->so_max_pacing_rate;
4263 goto integer;
4264
4265 case SO_SPLICE: {
4266 off_t n;
4267
4268 /*
4269 * Acquire the I/O lock to serialize with
4270 * so_splice_xfer(). This is not required for
4271 * correctness, but makes testing simpler: once a byte
4272 * has been transmitted to the sink and observed (e.g.,
4273 * by reading from the socket to which the sink is
4274 * connected), a subsequent getsockopt(SO_SPLICE) will
4275 * return an up-to-date value.
4276 */
4277 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT);
4278 if (error != 0)
4279 goto bad;
4280 SOCK_LOCK(so);
4281 if (SOLISTENING(so)) {
4282 n = 0;
4283 } else {
4284 n = so->so_splice_sent;
4285 }
4286 SOCK_UNLOCK(so);
4287 SOCK_IO_RECV_UNLOCK(so);
4288 error = sooptcopyout(sopt, &n, sizeof(n));
4289 break;
4290 }
4291
4292 default:
4293 #ifdef SOCKET_HHOOK
4294 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4295 error = hhook_run_socket(so, sopt,
4296 HHOOK_SOCKET_OPT);
4297 else
4298 #endif
4299 error = ENOPROTOOPT;
4300 break;
4301 }
4302 }
4303 bad:
4304 CURVNET_RESTORE();
4305 return (error);
4306 }
4307
4308 int
4309 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
4310 {
4311 struct mbuf *m, *m_prev;
4312 int sopt_size = sopt->sopt_valsize;
4313
4314 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4315 if (m == NULL)
4316 return ENOBUFS;
4317 if (sopt_size > MLEN) {
4318 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
4319 if ((m->m_flags & M_EXT) == 0) {
4320 m_free(m);
4321 return ENOBUFS;
4322 }
4323 m->m_len = min(MCLBYTES, sopt_size);
4324 } else {
4325 m->m_len = min(MLEN, sopt_size);
4326 }
4327 sopt_size -= m->m_len;
4328 *mp = m;
4329 m_prev = m;
4330
4331 while (sopt_size) {
4332 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4333 if (m == NULL) {
4334 m_freem(*mp);
4335 return ENOBUFS;
4336 }
4337 if (sopt_size > MLEN) {
4338 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
4339 M_NOWAIT);
4340 if ((m->m_flags & M_EXT) == 0) {
4341 m_freem(m);
4342 m_freem(*mp);
4343 return ENOBUFS;
4344 }
4345 m->m_len = min(MCLBYTES, sopt_size);
4346 } else {
4347 m->m_len = min(MLEN, sopt_size);
4348 }
4349 sopt_size -= m->m_len;
4350 m_prev->m_next = m;
4351 m_prev = m;
4352 }
4353 return (0);
4354 }
4355
4356 int
4357 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
4358 {
4359 struct mbuf *m0 = m;
4360
4361 if (sopt->sopt_val == NULL)
4362 return (0);
4363 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4364 if (sopt->sopt_td != NULL) {
4365 int error;
4366
4367 error = copyin(sopt->sopt_val, mtod(m, char *),
4368 m->m_len);
4369 if (error != 0) {
4370 m_freem(m0);
4371 return(error);
4372 }
4373 } else
4374 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
4375 sopt->sopt_valsize -= m->m_len;
4376 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4377 m = m->m_next;
4378 }
4379 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
4380 panic("ip6_sooptmcopyin");
4381 return (0);
4382 }
4383
4384 int
4385 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
4386 {
4387 struct mbuf *m0 = m;
4388 size_t valsize = 0;
4389
4390 if (sopt->sopt_val == NULL)
4391 return (0);
4392 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4393 if (sopt->sopt_td != NULL) {
4394 int error;
4395
4396 error = copyout(mtod(m, char *), sopt->sopt_val,
4397 m->m_len);
4398 if (error != 0) {
4399 m_freem(m0);
4400 return(error);
4401 }
4402 } else
4403 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
4404 sopt->sopt_valsize -= m->m_len;
4405 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4406 valsize += m->m_len;
4407 m = m->m_next;
4408 }
4409 if (m != NULL) {
4410 /* enough soopt buffer should be given from user-land */
4411 m_freem(m0);
4412 return(EINVAL);
4413 }
4414 sopt->sopt_valsize = valsize;
4415 return (0);
4416 }
4417
4418 /*
4419 * sohasoutofband(): protocol notifies socket layer of the arrival of new
4420 * out-of-band data, which will then notify socket consumers.
4421 */
4422 void
4423 sohasoutofband(struct socket *so)
4424 {
4425
4426 if (so->so_sigio != NULL)
4427 pgsigio(&so->so_sigio, SIGURG, 0);
4428 selwakeuppri(&so->so_rdsel, PSOCK);
4429 }
4430
4431 int
4432 sopoll_generic(struct socket *so, int events, struct thread *td)
4433 {
4434 int revents;
4435
4436 SOCK_LOCK(so);
4437 if (SOLISTENING(so)) {
4438 if (!(events & (POLLIN | POLLRDNORM)))
4439 revents = 0;
4440 else if (!TAILQ_EMPTY(&so->sol_comp))
4441 revents = events & (POLLIN | POLLRDNORM);
4442 else if ((events & POLLINIGNEOF) == 0 && so->so_error)
4443 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
4444 else {
4445 selrecord(td, &so->so_rdsel);
4446 revents = 0;
4447 }
4448 } else {
4449 revents = 0;
4450 SOCK_SENDBUF_LOCK(so);
4451 SOCK_RECVBUF_LOCK(so);
4452 if (events & (POLLIN | POLLRDNORM))
4453 if (soreadabledata(so) && !isspliced(so))
4454 revents |= events & (POLLIN | POLLRDNORM);
4455 if (events & (POLLOUT | POLLWRNORM))
4456 if (sowriteable(so) && !issplicedback(so))
4457 revents |= events & (POLLOUT | POLLWRNORM);
4458 if (events & (POLLPRI | POLLRDBAND))
4459 if (so->so_oobmark ||
4460 (so->so_rcv.sb_state & SBS_RCVATMARK))
4461 revents |= events & (POLLPRI | POLLRDBAND);
4462 if ((events & POLLINIGNEOF) == 0) {
4463 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4464 revents |= events & (POLLIN | POLLRDNORM);
4465 if (so->so_snd.sb_state & SBS_CANTSENDMORE)
4466 revents |= POLLHUP;
4467 }
4468 }
4469 if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
4470 revents |= events & POLLRDHUP;
4471 if (revents == 0) {
4472 if (events &
4473 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
4474 selrecord(td, &so->so_rdsel);
4475 so->so_rcv.sb_flags |= SB_SEL;
4476 }
4477 if (events & (POLLOUT | POLLWRNORM)) {
4478 selrecord(td, &so->so_wrsel);
4479 so->so_snd.sb_flags |= SB_SEL;
4480 }
4481 }
4482 SOCK_RECVBUF_UNLOCK(so);
4483 SOCK_SENDBUF_UNLOCK(so);
4484 }
4485 SOCK_UNLOCK(so);
4486 return (revents);
4487 }
4488
4489 int
4490 sokqfilter_generic(struct socket *so, struct knote *kn)
4491 {
4492 struct sockbuf *sb;
4493 sb_which which;
4494 struct knlist *knl;
4495
4496 switch (kn->kn_filter) {
4497 case EVFILT_READ:
4498 kn->kn_fop = &soread_filtops;
4499 knl = &so->so_rdsel.si_note;
4500 sb = &so->so_rcv;
4501 which = SO_RCV;
4502 break;
4503 case EVFILT_WRITE:
4504 kn->kn_fop = &sowrite_filtops;
4505 knl = &so->so_wrsel.si_note;
4506 sb = &so->so_snd;
4507 which = SO_SND;
4508 break;
4509 case EVFILT_EMPTY:
4510 kn->kn_fop = &soempty_filtops;
4511 knl = &so->so_wrsel.si_note;
4512 sb = &so->so_snd;
4513 which = SO_SND;
4514 break;
4515 default:
4516 return (EINVAL);
4517 }
4518
4519 SOCK_LOCK(so);
4520 if (SOLISTENING(so)) {
4521 knlist_add(knl, kn, 1);
4522 } else {
4523 SOCK_BUF_LOCK(so, which);
4524 knlist_add(knl, kn, 1);
4525 sb->sb_flags |= SB_KNOTE;
4526 if ((kn->kn_sfflags & NOTE_LOWAT) &&
4527 (sb->sb_flags & SB_AUTOLOWAT))
4528 sb->sb_flags &= ~SB_AUTOLOWAT;
4529 SOCK_BUF_UNLOCK(so, which);
4530 }
4531 SOCK_UNLOCK(so);
4532 return (0);
4533 }
4534
4535 static void
4536 filt_sordetach(struct knote *kn)
4537 {
4538 struct socket *so = kn->kn_fp->f_data;
4539
4540 so_rdknl_lock(so);
4541 knlist_remove(&so->so_rdsel.si_note, kn, 1);
4542 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
4543 so->so_rcv.sb_flags &= ~SB_KNOTE;
4544 so_rdknl_unlock(so);
4545 }
4546
4547 /*ARGSUSED*/
4548 static int
4549 filt_soread(struct knote *kn, long hint)
4550 {
4551 struct socket *so;
4552
4553 so = kn->kn_fp->f_data;
4554
4555 if (SOLISTENING(so)) {
4556 SOCK_LOCK_ASSERT(so);
4557 kn->kn_data = so->sol_qlen;
4558 if (so->so_error) {
4559 kn->kn_flags |= EV_EOF;
4560 kn->kn_fflags = so->so_error;
4561 return (1);
4562 }
4563 return (!TAILQ_EMPTY(&so->sol_comp));
4564 }
4565
4566 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
4567 return (0);
4568
4569 SOCK_RECVBUF_LOCK_ASSERT(so);
4570
4571 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
4572 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4573 kn->kn_flags |= EV_EOF;
4574 kn->kn_fflags = so->so_error;
4575 return (1);
4576 } else if (so->so_error || so->so_rerror)
4577 return (1);
4578
4579 if (kn->kn_sfflags & NOTE_LOWAT) {
4580 if (kn->kn_data >= kn->kn_sdata)
4581 return (1);
4582 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
4583 return (1);
4584
4585 #ifdef SOCKET_HHOOK
4586 /* This hook returning non-zero indicates an event, not error */
4587 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
4588 #else
4589 return (0);
4590 #endif
4591 }
4592
4593 static void
4594 filt_sowdetach(struct knote *kn)
4595 {
4596 struct socket *so = kn->kn_fp->f_data;
4597
4598 so_wrknl_lock(so);
4599 knlist_remove(&so->so_wrsel.si_note, kn, 1);
4600 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
4601 so->so_snd.sb_flags &= ~SB_KNOTE;
4602 so_wrknl_unlock(so);
4603 }
4604
4605 /*ARGSUSED*/
4606 static int
4607 filt_sowrite(struct knote *kn, long hint)
4608 {
4609 struct socket *so;
4610
4611 so = kn->kn_fp->f_data;
4612
4613 if (SOLISTENING(so))
4614 return (0);
4615
4616 SOCK_SENDBUF_LOCK_ASSERT(so);
4617 kn->kn_data = sbspace(&so->so_snd);
4618
4619 #ifdef SOCKET_HHOOK
4620 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
4621 #endif
4622
4623 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
4624 kn->kn_flags |= EV_EOF;
4625 kn->kn_fflags = so->so_error;
4626 return (1);
4627 } else if (so->so_error) /* temporary udp error */
4628 return (1);
4629 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
4630 (so->so_proto->pr_flags & PR_CONNREQUIRED))
4631 return (0);
4632 else if (kn->kn_sfflags & NOTE_LOWAT)
4633 return (kn->kn_data >= kn->kn_sdata);
4634 else
4635 return (kn->kn_data >= so->so_snd.sb_lowat);
4636 }
4637
4638 static int
4639 filt_soempty(struct knote *kn, long hint)
4640 {
4641 struct socket *so;
4642
4643 so = kn->kn_fp->f_data;
4644
4645 if (SOLISTENING(so))
4646 return (1);
4647
4648 SOCK_SENDBUF_LOCK_ASSERT(so);
4649 kn->kn_data = sbused(&so->so_snd);
4650
4651 if (kn->kn_data == 0)
4652 return (1);
4653 else
4654 return (0);
4655 }
4656
4657 int
4658 socheckuid(struct socket *so, uid_t uid)
4659 {
4660
4661 if (so == NULL)
4662 return (EPERM);
4663 if (so->so_cred->cr_uid != uid)
4664 return (EPERM);
4665 return (0);
4666 }
4667
4668 /*
4669 * These functions are used by protocols to notify the socket layer (and its
4670 * consumers) of state changes in the sockets driven by protocol-side events.
4671 */
4672
4673 /*
4674 * Procedures to manipulate state flags of socket and do appropriate wakeups.
4675 *
4676 * Normal sequence from the active (originating) side is that
4677 * soisconnecting() is called during processing of connect() call, resulting
4678 * in an eventual call to soisconnected() if/when the connection is
4679 * established. When the connection is torn down soisdisconnecting() is
4680 * called during processing of disconnect() call, and soisdisconnected() is
4681 * called when the connection to the peer is totally severed. The semantics
4682 * of these routines are such that connectionless protocols can call
4683 * soisconnected() and soisdisconnected() only, bypassing the in-progress
4684 * calls when setting up a ``connection'' takes no time.
4685 *
4686 * From the passive side, a socket is created with two queues of sockets:
4687 * so_incomp for connections in progress and so_comp for connections already
4688 * made and awaiting user acceptance. As a protocol is preparing incoming
4689 * connections, it creates a socket structure queued on so_incomp by calling
4690 * sonewconn(). When the connection is established, soisconnected() is
4691 * called, and transfers the socket structure to so_comp, making it available
4692 * to accept().
4693 *
4694 * If a socket is closed with sockets on either so_incomp or so_comp, these
4695 * sockets are dropped.
4696 *
4697 * If higher-level protocols are implemented in the kernel, the wakeups done
4698 * here will sometimes cause software-interrupt process scheduling.
4699 */
4700 void
4701 soisconnecting(struct socket *so)
4702 {
4703
4704 SOCK_LOCK(so);
4705 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
4706 so->so_state |= SS_ISCONNECTING;
4707 SOCK_UNLOCK(so);
4708 }
4709
4710 void
4711 soisconnected(struct socket *so)
4712 {
4713 bool last __diagused;
4714
4715 SOCK_LOCK(so);
4716 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING);
4717 so->so_state |= SS_ISCONNECTED;
4718
4719 if (so->so_qstate == SQ_INCOMP) {
4720 struct socket *head = so->so_listen;
4721 int ret;
4722
4723 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
4724 /*
4725 * Promoting a socket from incomplete queue to complete, we
4726 * need to go through reverse order of locking. We first do
4727 * trylock, and if that doesn't succeed, we go the hard way
4728 * leaving a reference and rechecking consistency after proper
4729 * locking.
4730 */
4731 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
4732 soref(head);
4733 SOCK_UNLOCK(so);
4734 SOLISTEN_LOCK(head);
4735 SOCK_LOCK(so);
4736 if (__predict_false(head != so->so_listen)) {
4737 /*
4738 * The socket went off the listen queue,
4739 * should be lost race to close(2) of sol.
4740 * The socket is about to soabort().
4741 */
4742 SOCK_UNLOCK(so);
4743 sorele_locked(head);
4744 return;
4745 }
4746 last = refcount_release(&head->so_count);
4747 KASSERT(!last, ("%s: released last reference for %p",
4748 __func__, head));
4749 }
4750 again:
4751 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
4752 TAILQ_REMOVE(&head->sol_incomp, so, so_list);
4753 head->sol_incqlen--;
4754 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
4755 head->sol_qlen++;
4756 so->so_qstate = SQ_COMP;
4757 SOCK_UNLOCK(so);
4758 solisten_wakeup(head); /* unlocks */
4759 } else {
4760 SOCK_RECVBUF_LOCK(so);
4761 soupcall_set(so, SO_RCV,
4762 head->sol_accept_filter->accf_callback,
4763 head->sol_accept_filter_arg);
4764 so->so_options &= ~SO_ACCEPTFILTER;
4765 ret = head->sol_accept_filter->accf_callback(so,
4766 head->sol_accept_filter_arg, M_NOWAIT);
4767 if (ret == SU_ISCONNECTED) {
4768 soupcall_clear(so, SO_RCV);
4769 SOCK_RECVBUF_UNLOCK(so);
4770 goto again;
4771 }
4772 SOCK_RECVBUF_UNLOCK(so);
4773 SOCK_UNLOCK(so);
4774 SOLISTEN_UNLOCK(head);
4775 }
4776 return;
4777 }
4778 SOCK_UNLOCK(so);
4779 wakeup(&so->so_timeo);
4780 sorwakeup(so);
4781 sowwakeup(so);
4782 }
4783
4784 void
4785 soisdisconnecting(struct socket *so)
4786 {
4787
4788 SOCK_LOCK(so);
4789 so->so_state &= ~SS_ISCONNECTING;
4790 so->so_state |= SS_ISDISCONNECTING;
4791
4792 if (!SOLISTENING(so)) {
4793 SOCK_RECVBUF_LOCK(so);
4794 socantrcvmore_locked(so);
4795 SOCK_SENDBUF_LOCK(so);
4796 socantsendmore_locked(so);
4797 }
4798 SOCK_UNLOCK(so);
4799 wakeup(&so->so_timeo);
4800 }
4801
4802 void
4803 soisdisconnected(struct socket *so)
4804 {
4805
4806 SOCK_LOCK(so);
4807
4808 /*
4809 * There is at least one reader of so_state that does not
4810 * acquire socket lock, namely soreceive_generic(). Ensure
4811 * that it never sees all flags that track connection status
4812 * cleared, by ordering the update with a barrier semantic of
4813 * our release thread fence.
4814 */
4815 so->so_state |= SS_ISDISCONNECTED;
4816 atomic_thread_fence_rel();
4817 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4818
4819 if (!SOLISTENING(so)) {
4820 SOCK_UNLOCK(so);
4821 SOCK_RECVBUF_LOCK(so);
4822 socantrcvmore_locked(so);
4823 SOCK_SENDBUF_LOCK(so);
4824 sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4825 socantsendmore_locked(so);
4826 } else
4827 SOCK_UNLOCK(so);
4828 wakeup(&so->so_timeo);
4829 }
4830
4831 int
4832 soiolock(struct socket *so, struct sx *sx, int flags)
4833 {
4834 int error;
4835
4836 KASSERT((flags & SBL_VALID) == flags,
4837 ("soiolock: invalid flags %#x", flags));
4838
4839 if ((flags & SBL_WAIT) != 0) {
4840 if ((flags & SBL_NOINTR) != 0) {
4841 sx_xlock(sx);
4842 } else {
4843 error = sx_xlock_sig(sx);
4844 if (error != 0)
4845 return (error);
4846 }
4847 } else if (!sx_try_xlock(sx)) {
4848 return (EWOULDBLOCK);
4849 }
4850
4851 if (__predict_false(SOLISTENING(so))) {
4852 sx_xunlock(sx);
4853 return (ENOTCONN);
4854 }
4855 return (0);
4856 }
4857
4858 void
4859 soiounlock(struct sx *sx)
4860 {
4861 sx_xunlock(sx);
4862 }
4863
4864 /*
4865 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4866 */
4867 struct sockaddr *
4868 sodupsockaddr(const struct sockaddr *sa, int mflags)
4869 {
4870 struct sockaddr *sa2;
4871
4872 sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4873 if (sa2)
4874 bcopy(sa, sa2, sa->sa_len);
4875 return sa2;
4876 }
4877
4878 /*
4879 * Register per-socket destructor.
4880 */
4881 void
4882 sodtor_set(struct socket *so, so_dtor_t *func)
4883 {
4884
4885 SOCK_LOCK_ASSERT(so);
4886 so->so_dtor = func;
4887 }
4888
4889 /*
4890 * Register per-socket buffer upcalls.
4891 */
4892 void
4893 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4894 {
4895 struct sockbuf *sb;
4896
4897 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4898
4899 switch (which) {
4900 case SO_RCV:
4901 sb = &so->so_rcv;
4902 break;
4903 case SO_SND:
4904 sb = &so->so_snd;
4905 break;
4906 }
4907 SOCK_BUF_LOCK_ASSERT(so, which);
4908 sb->sb_upcall = func;
4909 sb->sb_upcallarg = arg;
4910 sb->sb_flags |= SB_UPCALL;
4911 }
4912
4913 void
4914 soupcall_clear(struct socket *so, sb_which which)
4915 {
4916 struct sockbuf *sb;
4917
4918 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4919
4920 switch (which) {
4921 case SO_RCV:
4922 sb = &so->so_rcv;
4923 break;
4924 case SO_SND:
4925 sb = &so->so_snd;
4926 break;
4927 }
4928 SOCK_BUF_LOCK_ASSERT(so, which);
4929 KASSERT(sb->sb_upcall != NULL,
4930 ("%s: so %p no upcall to clear", __func__, so));
4931 sb->sb_upcall = NULL;
4932 sb->sb_upcallarg = NULL;
4933 sb->sb_flags &= ~SB_UPCALL;
4934 }
4935
4936 void
4937 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4938 {
4939
4940 SOLISTEN_LOCK_ASSERT(so);
4941 so->sol_upcall = func;
4942 so->sol_upcallarg = arg;
4943 }
4944
4945 static void
4946 so_rdknl_lock(void *arg)
4947 {
4948 struct socket *so = arg;
4949
4950 retry:
4951 if (SOLISTENING(so)) {
4952 SOLISTEN_LOCK(so);
4953 } else {
4954 SOCK_RECVBUF_LOCK(so);
4955 if (__predict_false(SOLISTENING(so))) {
4956 SOCK_RECVBUF_UNLOCK(so);
4957 goto retry;
4958 }
4959 }
4960 }
4961
4962 static void
4963 so_rdknl_unlock(void *arg)
4964 {
4965 struct socket *so = arg;
4966
4967 if (SOLISTENING(so))
4968 SOLISTEN_UNLOCK(so);
4969 else
4970 SOCK_RECVBUF_UNLOCK(so);
4971 }
4972
4973 static void
4974 so_rdknl_assert_lock(void *arg, int what)
4975 {
4976 struct socket *so = arg;
4977
4978 if (what == LA_LOCKED) {
4979 if (SOLISTENING(so))
4980 SOLISTEN_LOCK_ASSERT(so);
4981 else
4982 SOCK_RECVBUF_LOCK_ASSERT(so);
4983 } else {
4984 if (SOLISTENING(so))
4985 SOLISTEN_UNLOCK_ASSERT(so);
4986 else
4987 SOCK_RECVBUF_UNLOCK_ASSERT(so);
4988 }
4989 }
4990
4991 static void
4992 so_wrknl_lock(void *arg)
4993 {
4994 struct socket *so = arg;
4995
4996 retry:
4997 if (SOLISTENING(so)) {
4998 SOLISTEN_LOCK(so);
4999 } else {
5000 SOCK_SENDBUF_LOCK(so);
5001 if (__predict_false(SOLISTENING(so))) {
5002 SOCK_SENDBUF_UNLOCK(so);
5003 goto retry;
5004 }
5005 }
5006 }
5007
5008 static void
5009 so_wrknl_unlock(void *arg)
5010 {
5011 struct socket *so = arg;
5012
5013 if (SOLISTENING(so))
5014 SOLISTEN_UNLOCK(so);
5015 else
5016 SOCK_SENDBUF_UNLOCK(so);
5017 }
5018
5019 static void
5020 so_wrknl_assert_lock(void *arg, int what)
5021 {
5022 struct socket *so = arg;
5023
5024 if (what == LA_LOCKED) {
5025 if (SOLISTENING(so))
5026 SOLISTEN_LOCK_ASSERT(so);
5027 else
5028 SOCK_SENDBUF_LOCK_ASSERT(so);
5029 } else {
5030 if (SOLISTENING(so))
5031 SOLISTEN_UNLOCK_ASSERT(so);
5032 else
5033 SOCK_SENDBUF_UNLOCK_ASSERT(so);
5034 }
5035 }
5036
5037 /*
5038 * Create an external-format (``xsocket'') structure using the information in
5039 * the kernel-format socket structure pointed to by so. This is done to
5040 * reduce the spew of irrelevant information over this interface, to isolate
5041 * user code from changes in the kernel structure, and potentially to provide
5042 * information-hiding if we decide that some of this information should be
5043 * hidden from users.
5044 */
5045 void
5046 sotoxsocket(struct socket *so, struct xsocket *xso)
5047 {
5048
5049 bzero(xso, sizeof(*xso));
5050 xso->xso_len = sizeof *xso;
5051 xso->xso_so = (uintptr_t)so;
5052 xso->so_type = so->so_type;
5053 xso->so_options = so->so_options;
5054 xso->so_linger = so->so_linger;
5055 xso->so_state = so->so_state;
5056 xso->so_pcb = (uintptr_t)so->so_pcb;
5057 xso->xso_protocol = so->so_proto->pr_protocol;
5058 xso->xso_family = so->so_proto->pr_domain->dom_family;
5059 xso->so_timeo = so->so_timeo;
5060 xso->so_error = so->so_error;
5061 xso->so_uid = so->so_cred->cr_uid;
5062 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
5063 SOCK_LOCK(so);
5064 xso->so_fibnum = so->so_fibnum;
5065 if (SOLISTENING(so)) {
5066 xso->so_qlen = so->sol_qlen;
5067 xso->so_incqlen = so->sol_incqlen;
5068 xso->so_qlimit = so->sol_qlimit;
5069 xso->so_oobmark = 0;
5070 } else {
5071 xso->so_state |= so->so_qstate;
5072 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
5073 xso->so_oobmark = so->so_oobmark;
5074 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
5075 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
5076 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
5077 xso->so_splice_so = (uintptr_t)so->so_splice->dst;
5078 }
5079 SOCK_UNLOCK(so);
5080 }
5081
5082 int
5083 so_options_get(const struct socket *so)
5084 {
5085
5086 return (so->so_options);
5087 }
5088
5089 void
5090 so_options_set(struct socket *so, int val)
5091 {
5092
5093 so->so_options = val;
5094 }
5095
5096 int
5097 so_error_get(const struct socket *so)
5098 {
5099
5100 return (so->so_error);
5101 }
5102
5103 void
5104 so_error_set(struct socket *so, int val)
5105 {
5106
5107 so->so_error = val;
5108 }
5109