1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25 /*
26 * Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
27 */
28
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/signal.h>
32 #include <sys/cmn_err.h>
33
34 #include <sys/stropts.h>
35 #include <sys/socket.h>
36 #include <sys/socketvar.h>
37 #include <sys/sockio.h>
38 #include <sys/strsubr.h>
39 #include <sys/strsun.h>
40 #include <sys/atomic.h>
41 #include <sys/tihdr.h>
42
43 #include <fs/sockfs/sockcommon.h>
44 #include <fs/sockfs/sockfilter_impl.h>
45 #include <fs/sockfs/socktpi.h>
46 #include <fs/sockfs/sodirect.h>
47 #include <sys/ddi.h>
48 #include <inet/ip.h>
49 #include <sys/time.h>
50 #include <sys/cmn_err.h>
51
52 #ifdef SOCK_TEST
53 extern int do_useracc;
54 extern clock_t sock_test_timelimit;
55 #endif /* SOCK_TEST */
56
57 #define MBLK_PULL_LEN 64
58 uint32_t so_mblk_pull_len = MBLK_PULL_LEN;
59
60 #ifdef DEBUG
61 boolean_t so_debug_length = B_FALSE;
62 static boolean_t so_check_length(sonode_t *so);
63 #endif
64
65 static int
so_acceptq_dequeue_locked(struct sonode * so,boolean_t dontblock,struct sonode ** nsop)66 so_acceptq_dequeue_locked(struct sonode *so, boolean_t dontblock,
67 struct sonode **nsop)
68 {
69 struct sonode *nso = NULL;
70
71 *nsop = NULL;
72 ASSERT(MUTEX_HELD(&so->so_acceptq_lock));
73 while ((nso = list_remove_head(&so->so_acceptq_list)) == NULL) {
74 /*
75 * No need to check so_error here, because it is not
76 * possible for a listening socket to be reset or otherwise
77 * disconnected.
78 *
79 * So now we just need check if it's ok to wait.
80 */
81 if (dontblock)
82 return (EWOULDBLOCK);
83 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
84 return (EINTR);
85
86 if (cv_wait_sig_swap(&so->so_acceptq_cv,
87 &so->so_acceptq_lock) == 0)
88 return (EINTR);
89 }
90
91 ASSERT(nso != NULL);
92 ASSERT(so->so_acceptq_len > 0);
93 so->so_acceptq_len--;
94 nso->so_listener = NULL;
95
96 *nsop = nso;
97
98 return (0);
99 }
100
101 /*
102 * int so_acceptq_dequeue(struct sonode *, boolean_t, struct sonode **)
103 *
104 * Pulls a connection off of the accept queue.
105 *
106 * Arguments:
107 * so - listening socket
108 * dontblock - indicate whether it's ok to sleep if there are no
109 * connections on the queue
110 * nsop - Value-return argument
111 *
112 * Return values:
113 * 0 when a connection is successfully dequeued, in which case nsop
114 * is set to point to the new connection. Upon failure a non-zero
115 * value is returned, and the value of nsop is set to NULL.
116 *
117 * Note:
118 * so_acceptq_dequeue() may return prematurly if the socket is falling
119 * back to TPI.
120 */
121 int
so_acceptq_dequeue(struct sonode * so,boolean_t dontblock,struct sonode ** nsop)122 so_acceptq_dequeue(struct sonode *so, boolean_t dontblock,
123 struct sonode **nsop)
124 {
125 int error;
126
127 mutex_enter(&so->so_acceptq_lock);
128 error = so_acceptq_dequeue_locked(so, dontblock, nsop);
129 mutex_exit(&so->so_acceptq_lock);
130
131 return (error);
132 }
133
134 static void
so_acceptq_flush_impl(struct sonode * so,list_t * list,boolean_t doclose)135 so_acceptq_flush_impl(struct sonode *so, list_t *list, boolean_t doclose)
136 {
137 struct sonode *nso;
138
139 while ((nso = list_remove_head(list)) != NULL) {
140 nso->so_listener = NULL;
141 if (doclose) {
142 (void) socket_close(nso, 0, CRED());
143 } else {
144 /*
145 * Only used for fallback - not possible when filters
146 * are present.
147 */
148 ASSERT(so->so_filter_active == 0);
149 /*
150 * Since the socket is on the accept queue, there can
151 * only be one reference. We drop the reference and
152 * just blow off the socket.
153 */
154 ASSERT(nso->so_count == 1);
155 nso->so_count--;
156 /* drop the proto ref */
157 VN_RELE(SOTOV(nso));
158 }
159 socket_destroy(nso);
160 }
161 }
162 /*
163 * void so_acceptq_flush(struct sonode *so)
164 *
165 * Removes all pending connections from a listening socket, and
166 * frees the associated resources.
167 *
168 * Arguments
169 * so - listening socket
170 * doclose - make a close downcall for each socket on the accept queue
171 *
172 * Return values:
173 * None.
174 *
175 * Note:
176 * The caller has to ensure that no calls to so_acceptq_enqueue() or
177 * so_acceptq_dequeue() occur while the accept queue is being flushed.
178 * So either the socket needs to be in a state where no operations
179 * would come in, or so_lock needs to be obtained.
180 */
181 void
so_acceptq_flush(struct sonode * so,boolean_t doclose)182 so_acceptq_flush(struct sonode *so, boolean_t doclose)
183 {
184 so_acceptq_flush_impl(so, &so->so_acceptq_list, doclose);
185 so_acceptq_flush_impl(so, &so->so_acceptq_defer, doclose);
186
187 so->so_acceptq_len = 0;
188 }
189
190 int
so_wait_connected_locked(struct sonode * so,boolean_t nonblock,sock_connid_t id)191 so_wait_connected_locked(struct sonode *so, boolean_t nonblock,
192 sock_connid_t id)
193 {
194 ASSERT(MUTEX_HELD(&so->so_lock));
195
196 /*
197 * The protocol has notified us that a connection attempt is being
198 * made, so before we wait for a notification to arrive we must
199 * clear out any errors associated with earlier connection attempts.
200 */
201 if (so->so_error != 0 && SOCK_CONNID_LT(so->so_proto_connid, id))
202 so->so_error = 0;
203
204 while (SOCK_CONNID_LT(so->so_proto_connid, id)) {
205 if (nonblock)
206 return (EINPROGRESS);
207
208 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
209 return (EINTR);
210
211 if (cv_wait_sig_swap(&so->so_state_cv, &so->so_lock) == 0)
212 return (EINTR);
213 }
214
215 if (so->so_error != 0)
216 return (sogeterr(so, B_TRUE));
217 /*
218 * Under normal circumstances, so_error should contain an error
219 * in case the connect failed. However, it is possible for another
220 * thread to come in a consume the error, so generate a sensible
221 * error in that case.
222 */
223 if ((so->so_state & SS_ISCONNECTED) == 0)
224 return (ECONNREFUSED);
225
226 return (0);
227 }
228
229 /*
230 * int so_wait_connected(struct sonode *so, boolean_t nonblock,
231 * sock_connid_t id)
232 *
233 * Wait until the socket is connected or an error has occured.
234 *
235 * Arguments:
236 * so - socket
237 * nonblock - indicate whether it's ok to sleep if the connection has
238 * not yet been established
239 * gen - generation number that was returned by the protocol
240 * when the operation was started
241 *
242 * Returns:
243 * 0 if the connection attempt was successful, or an error indicating why
244 * the connection attempt failed.
245 */
246 int
so_wait_connected(struct sonode * so,boolean_t nonblock,sock_connid_t id)247 so_wait_connected(struct sonode *so, boolean_t nonblock, sock_connid_t id)
248 {
249 int error;
250
251 mutex_enter(&so->so_lock);
252 error = so_wait_connected_locked(so, nonblock, id);
253 mutex_exit(&so->so_lock);
254
255 return (error);
256 }
257
258 int
so_snd_wait_qnotfull_locked(struct sonode * so,boolean_t dontblock)259 so_snd_wait_qnotfull_locked(struct sonode *so, boolean_t dontblock)
260 {
261 int error;
262
263 ASSERT(MUTEX_HELD(&so->so_lock));
264 while (SO_SND_FLOWCTRLD(so)) {
265 if (so->so_state & SS_CANTSENDMORE)
266 return (EPIPE);
267 if (dontblock)
268 return (EWOULDBLOCK);
269
270 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
271 return (EINTR);
272
273 if (so->so_sndtimeo == 0) {
274 /*
275 * Zero means disable timeout.
276 */
277 error = cv_wait_sig(&so->so_snd_cv, &so->so_lock);
278 } else {
279 error = cv_reltimedwait_sig(&so->so_snd_cv,
280 &so->so_lock, so->so_sndtimeo, TR_CLOCK_TICK);
281 }
282 if (error == 0)
283 return (EINTR);
284 else if (error == -1)
285 return (EAGAIN);
286 }
287 return (0);
288 }
289
290 /*
291 * int so_wait_sendbuf(struct sonode *so, boolean_t dontblock)
292 *
293 * Wait for the transport to notify us about send buffers becoming
294 * available.
295 */
296 int
so_snd_wait_qnotfull(struct sonode * so,boolean_t dontblock)297 so_snd_wait_qnotfull(struct sonode *so, boolean_t dontblock)
298 {
299 int error = 0;
300
301 mutex_enter(&so->so_lock);
302 so->so_snd_wakeup = B_TRUE;
303 error = so_snd_wait_qnotfull_locked(so, dontblock);
304 so->so_snd_wakeup = B_FALSE;
305 mutex_exit(&so->so_lock);
306
307 return (error);
308 }
309
310 void
so_snd_qfull(struct sonode * so)311 so_snd_qfull(struct sonode *so)
312 {
313 mutex_enter(&so->so_lock);
314 so->so_snd_qfull = B_TRUE;
315 mutex_exit(&so->so_lock);
316 }
317
318 void
so_snd_qnotfull(struct sonode * so)319 so_snd_qnotfull(struct sonode *so)
320 {
321 mutex_enter(&so->so_lock);
322 so->so_snd_qfull = B_FALSE;
323 /* wake up everyone waiting for buffers */
324 cv_broadcast(&so->so_snd_cv);
325 mutex_exit(&so->so_lock);
326 }
327
328 /*
329 * Change the process/process group to which SIGIO is sent.
330 */
331 int
socket_chgpgrp(struct sonode * so,pid_t pid)332 socket_chgpgrp(struct sonode *so, pid_t pid)
333 {
334 int error;
335
336 ASSERT(MUTEX_HELD(&so->so_lock));
337 if (pid != 0) {
338 /*
339 * Permissions check by sending signal 0.
340 * Note that when kill fails it does a
341 * set_errno causing the system call to fail.
342 */
343 error = kill(pid, 0);
344 if (error != 0) {
345 return (error);
346 }
347 }
348 so->so_pgrp = pid;
349 return (0);
350 }
351
352
353 /*
354 * Generate a SIGIO, for 'writable' events include siginfo structure,
355 * for read events just send the signal.
356 */
357 /*ARGSUSED*/
358 static void
socket_sigproc(proc_t * proc,int event)359 socket_sigproc(proc_t *proc, int event)
360 {
361 k_siginfo_t info;
362
363 ASSERT(event & (SOCKETSIG_WRITE | SOCKETSIG_READ | SOCKETSIG_URG));
364
365 if (event & SOCKETSIG_WRITE) {
366 info.si_signo = SIGPOLL;
367 info.si_code = POLL_OUT;
368 info.si_errno = 0;
369 info.si_fd = 0;
370 info.si_band = 0;
371 sigaddq(proc, NULL, &info, KM_NOSLEEP);
372 }
373 if (event & SOCKETSIG_READ) {
374 sigtoproc(proc, NULL, SIGPOLL);
375 }
376 if (event & SOCKETSIG_URG) {
377 sigtoproc(proc, NULL, SIGURG);
378 }
379 }
380
381 void
socket_sendsig(struct sonode * so,int event)382 socket_sendsig(struct sonode *so, int event)
383 {
384 proc_t *proc;
385
386 ASSERT(MUTEX_HELD(&so->so_lock));
387
388 if (so->so_pgrp == 0 || (!(so->so_state & SS_ASYNC) &&
389 event != SOCKETSIG_URG)) {
390 return;
391 }
392
393 dprint(3, ("sending sig %d to %d\n", event, so->so_pgrp));
394
395 if (so->so_pgrp > 0) {
396 /*
397 * XXX This unfortunately still generates
398 * a signal when a fd is closed but
399 * the proc is active.
400 */
401 mutex_enter(&pidlock);
402 /*
403 * Even if the thread started in another zone, we're receiving
404 * on behalf of this socket's zone, so find the proc using the
405 * socket's zone ID.
406 */
407 proc = prfind_zone(so->so_pgrp, so->so_zoneid);
408 if (proc == NULL) {
409 mutex_exit(&pidlock);
410 return;
411 }
412 mutex_enter(&proc->p_lock);
413 mutex_exit(&pidlock);
414 socket_sigproc(proc, event);
415 mutex_exit(&proc->p_lock);
416 } else {
417 /*
418 * Send to process group. Hold pidlock across
419 * calls to socket_sigproc().
420 */
421 pid_t pgrp = -so->so_pgrp;
422
423 mutex_enter(&pidlock);
424 /*
425 * Even if the thread started in another zone, we're receiving
426 * on behalf of this socket's zone, so find the pgrp using the
427 * socket's zone ID.
428 */
429 proc = pgfind_zone(pgrp, so->so_zoneid);
430 while (proc != NULL) {
431 mutex_enter(&proc->p_lock);
432 socket_sigproc(proc, event);
433 mutex_exit(&proc->p_lock);
434 proc = proc->p_pglink;
435 }
436 mutex_exit(&pidlock);
437 }
438 }
439
440 #define MIN(a, b) ((a) < (b) ? (a) : (b))
441 /* Copy userdata into a new mblk_t */
442 mblk_t *
socopyinuio(uio_t * uiop,ssize_t iosize,size_t wroff,ssize_t maxblk,size_t tail_len,int * errorp)443 socopyinuio(uio_t *uiop, ssize_t iosize, size_t wroff, ssize_t maxblk,
444 size_t tail_len, int *errorp)
445 {
446 mblk_t *head = NULL, **tail = &head;
447
448 ASSERT(iosize == INFPSZ || iosize > 0);
449
450 if (iosize == INFPSZ || iosize > uiop->uio_resid)
451 iosize = uiop->uio_resid;
452
453 if (maxblk == INFPSZ)
454 maxblk = iosize;
455
456 /* Nothing to do in these cases, so we're done */
457 if (iosize < 0 || maxblk < 0 || (maxblk == 0 && iosize > 0))
458 goto done;
459
460 /*
461 * We will enter the loop below if iosize is 0; it will allocate an
462 * empty message block and call uiomove(9F) which will just return.
463 * We could avoid that with an extra check but would only slow
464 * down the much more likely case where iosize is larger than 0.
465 */
466 do {
467 ssize_t blocksize;
468 mblk_t *mp;
469
470 blocksize = MIN(iosize, maxblk);
471 ASSERT(blocksize >= 0);
472 mp = allocb(wroff + blocksize + tail_len, BPRI_MED);
473 if (mp == NULL) {
474 *errorp = ENOMEM;
475 return (head);
476 }
477 mp->b_rptr += wroff;
478 mp->b_wptr = mp->b_rptr + blocksize;
479
480 *tail = mp;
481 tail = &mp->b_cont;
482
483 /* uiomove(9F) either returns 0 or EFAULT */
484 if ((*errorp = uiomove(mp->b_rptr, (size_t)blocksize,
485 UIO_WRITE, uiop)) != 0) {
486 ASSERT(*errorp != ENOMEM);
487 freemsg(head);
488 return (NULL);
489 }
490
491 iosize -= blocksize;
492 } while (iosize > 0);
493
494 done:
495 *errorp = 0;
496 return (head);
497 }
498
499 mblk_t *
socopyoutuio(mblk_t * mp,struct uio * uiop,ssize_t max_read,int * errorp)500 socopyoutuio(mblk_t *mp, struct uio *uiop, ssize_t max_read, int *errorp)
501 {
502 int error;
503 ptrdiff_t n;
504 mblk_t *nmp;
505
506 ASSERT(mp->b_wptr >= mp->b_rptr);
507
508 /*
509 * max_read is the offset of the oobmark and read can not go pass
510 * the oobmark.
511 */
512 if (max_read == INFPSZ || max_read > uiop->uio_resid)
513 max_read = uiop->uio_resid;
514
515 do {
516 if ((n = MIN(max_read, MBLKL(mp))) != 0) {
517 ASSERT(n > 0);
518
519 error = uiomove(mp->b_rptr, n, UIO_READ, uiop);
520 if (error != 0) {
521 freemsg(mp);
522 *errorp = error;
523 return (NULL);
524 }
525 }
526
527 mp->b_rptr += n;
528 max_read -= n;
529 while (mp != NULL && (mp->b_rptr >= mp->b_wptr)) {
530 /*
531 * get rid of zero length mblks
532 */
533 nmp = mp;
534 mp = mp->b_cont;
535 freeb(nmp);
536 }
537 } while (mp != NULL && max_read > 0);
538
539 *errorp = 0;
540 return (mp);
541 }
542
543 static void
so_prepend_msg(struct sonode * so,mblk_t * mp,mblk_t * last_tail)544 so_prepend_msg(struct sonode *so, mblk_t *mp, mblk_t *last_tail)
545 {
546 ASSERT(last_tail != NULL);
547 mp->b_next = so->so_rcv_q_head;
548 mp->b_prev = last_tail;
549 ASSERT(!(DB_FLAGS(mp) & DBLK_UIOA));
550
551 if (so->so_rcv_q_head == NULL) {
552 ASSERT(so->so_rcv_q_last_head == NULL);
553 so->so_rcv_q_last_head = mp;
554 #ifdef DEBUG
555 } else {
556 ASSERT(!(DB_FLAGS(so->so_rcv_q_head) & DBLK_UIOA));
557 #endif
558 }
559 so->so_rcv_q_head = mp;
560
561 #ifdef DEBUG
562 if (so_debug_length) {
563 mutex_enter(&so->so_lock);
564 ASSERT(so_check_length(so));
565 mutex_exit(&so->so_lock);
566 }
567 #endif
568 }
569
570 /*
571 * Move a mblk chain (mp_head, mp_last_head) to the sonode's rcv queue so it
572 * can be processed by so_dequeue_msg().
573 */
574 void
so_process_new_message(struct sonode * so,mblk_t * mp_head,mblk_t * mp_last_head)575 so_process_new_message(struct sonode *so, mblk_t *mp_head, mblk_t *mp_last_head)
576 {
577 if (so->so_filter_active > 0 &&
578 (mp_head = sof_filter_data_in_proc(so, mp_head,
579 &mp_last_head)) == NULL)
580 return;
581
582 ASSERT(mp_head->b_prev != NULL);
583 if (so->so_rcv_q_head == NULL) {
584 so->so_rcv_q_head = mp_head;
585 so->so_rcv_q_last_head = mp_last_head;
586 ASSERT(so->so_rcv_q_last_head->b_prev != NULL);
587 } else {
588 boolean_t flag_equal = ((DB_FLAGS(mp_head) & DBLK_UIOA) ==
589 (DB_FLAGS(so->so_rcv_q_last_head) & DBLK_UIOA));
590
591 if (mp_head->b_next == NULL &&
592 DB_TYPE(mp_head) == M_DATA &&
593 DB_TYPE(so->so_rcv_q_last_head) == M_DATA && flag_equal) {
594 so->so_rcv_q_last_head->b_prev->b_cont = mp_head;
595 so->so_rcv_q_last_head->b_prev = mp_head->b_prev;
596 mp_head->b_prev = NULL;
597 } else if (flag_equal && (DB_FLAGS(mp_head) & DBLK_UIOA)) {
598 /*
599 * Append to last_head if more than one mblks, and both
600 * mp_head and last_head are I/OAT mblks.
601 */
602 ASSERT(mp_head->b_next != NULL);
603 so->so_rcv_q_last_head->b_prev->b_cont = mp_head;
604 so->so_rcv_q_last_head->b_prev = mp_head->b_prev;
605 mp_head->b_prev = NULL;
606
607 so->so_rcv_q_last_head->b_next = mp_head->b_next;
608 mp_head->b_next = NULL;
609 so->so_rcv_q_last_head = mp_last_head;
610 } else {
611 #ifdef DEBUG
612 {
613 mblk_t *tmp_mblk;
614 tmp_mblk = mp_head;
615 while (tmp_mblk != NULL) {
616 ASSERT(tmp_mblk->b_prev != NULL);
617 tmp_mblk = tmp_mblk->b_next;
618 }
619 }
620 #endif
621 so->so_rcv_q_last_head->b_next = mp_head;
622 so->so_rcv_q_last_head = mp_last_head;
623 }
624 }
625 }
626
627 /*
628 * Check flow control on a given sonode. Must have so_lock held, and
629 * this function will release the hold. Return true if flow control
630 * is cleared.
631 */
632 boolean_t
so_check_flow_control(struct sonode * so)633 so_check_flow_control(struct sonode *so)
634 {
635 ASSERT(MUTEX_HELD(&so->so_lock));
636
637 if (so->so_flowctrld && (so->so_rcv_queued < so->so_rcvlowat &&
638 !(so->so_state & SS_FIL_RCV_FLOWCTRL))) {
639 so->so_flowctrld = B_FALSE;
640 mutex_exit(&so->so_lock);
641 /*
642 * Open up flow control. SCTP does not have any downcalls, and
643 * it will clr flow ctrl in sosctp_recvmsg().
644 */
645 if (so->so_downcalls != NULL &&
646 so->so_downcalls->sd_clr_flowctrl != NULL) {
647 (*so->so_downcalls->sd_clr_flowctrl)
648 (so->so_proto_handle);
649 }
650 /* filters can start injecting data */
651 sof_sonode_notify_filters(so, SOF_EV_INJECT_DATA_IN_OK, 0);
652 return (B_TRUE);
653 } else {
654 mutex_exit(&so->so_lock);
655 return (B_FALSE);
656 }
657 }
658
659 int
so_dequeue_msg(struct sonode * so,mblk_t ** mctlp,struct uio * uiop,rval_t * rvalp,int flags)660 so_dequeue_msg(struct sonode *so, mblk_t **mctlp, struct uio *uiop,
661 rval_t *rvalp, int flags)
662 {
663 mblk_t *mp, *nmp;
664 mblk_t *savemp, *savemptail;
665 mblk_t *new_msg_head;
666 mblk_t *new_msg_last_head;
667 mblk_t *last_tail;
668 boolean_t partial_read;
669 boolean_t reset_atmark = B_FALSE;
670 int more = 0;
671 int error;
672 ssize_t oobmark;
673 sodirect_t *sodp = so->so_direct;
674
675 partial_read = B_FALSE;
676 *mctlp = NULL;
677 again:
678 mutex_enter(&so->so_lock);
679 again1:
680 #ifdef DEBUG
681 if (so_debug_length) {
682 ASSERT(so_check_length(so));
683 }
684 #endif
685 if (so->so_state & SS_RCVATMARK) {
686 /* Check whether the caller is OK to read past the mark */
687 if (flags & MSG_NOMARK) {
688 mutex_exit(&so->so_lock);
689 return (EWOULDBLOCK);
690 }
691 reset_atmark = B_TRUE;
692 }
693 /*
694 * First move messages from the dump area to processing area
695 */
696 if (sodp != NULL) {
697 if (sodp->sod_enabled) {
698 if (sodp->sod_uioa.uioa_state & UIOA_ALLOC) {
699 /* nothing to uioamove */
700 sodp = NULL;
701 } else if (sodp->sod_uioa.uioa_state & UIOA_INIT) {
702 sodp->sod_uioa.uioa_state &= UIOA_CLR;
703 sodp->sod_uioa.uioa_state |= UIOA_ENABLED;
704 /*
705 * try to uioamove() the data that
706 * has already queued.
707 */
708 sod_uioa_so_init(so, sodp, uiop);
709 }
710 } else {
711 sodp = NULL;
712 }
713 }
714 new_msg_head = so->so_rcv_head;
715 new_msg_last_head = so->so_rcv_last_head;
716 so->so_rcv_head = NULL;
717 so->so_rcv_last_head = NULL;
718 oobmark = so->so_oobmark;
719 /*
720 * We can release the lock as there can only be one reader
721 */
722 mutex_exit(&so->so_lock);
723
724 if (new_msg_head != NULL) {
725 so_process_new_message(so, new_msg_head, new_msg_last_head);
726 }
727 savemp = savemptail = NULL;
728 rvalp->r_vals = 0;
729 error = 0;
730 mp = so->so_rcv_q_head;
731
732 if (mp != NULL &&
733 (so->so_rcv_timer_tid == 0 ||
734 so->so_rcv_queued >= so->so_rcv_thresh)) {
735 partial_read = B_FALSE;
736
737 if (flags & MSG_PEEK) {
738 if ((nmp = dupmsg(mp)) == NULL &&
739 (nmp = copymsg(mp)) == NULL) {
740 size_t size = msgsize(mp);
741
742 error = strwaitbuf(size, BPRI_HI);
743 if (error) {
744 return (error);
745 }
746 goto again;
747 }
748 mp = nmp;
749 } else {
750 ASSERT(mp->b_prev != NULL);
751 last_tail = mp->b_prev;
752 mp->b_prev = NULL;
753 so->so_rcv_q_head = mp->b_next;
754 if (so->so_rcv_q_head == NULL) {
755 so->so_rcv_q_last_head = NULL;
756 }
757 mp->b_next = NULL;
758 }
759
760 ASSERT(mctlp != NULL);
761 /*
762 * First process PROTO or PCPROTO blocks, if any.
763 */
764 if (DB_TYPE(mp) != M_DATA) {
765 *mctlp = mp;
766 savemp = mp;
767 savemptail = mp;
768 ASSERT(DB_TYPE(mp) == M_PROTO ||
769 DB_TYPE(mp) == M_PCPROTO);
770 while (mp->b_cont != NULL &&
771 DB_TYPE(mp->b_cont) != M_DATA) {
772 ASSERT(DB_TYPE(mp->b_cont) == M_PROTO ||
773 DB_TYPE(mp->b_cont) == M_PCPROTO);
774 mp = mp->b_cont;
775 savemptail = mp;
776 }
777 mp = savemptail->b_cont;
778 savemptail->b_cont = NULL;
779 }
780
781 ASSERT(DB_TYPE(mp) == M_DATA);
782 /*
783 * Now process DATA blocks, if any. Note that for sodirect
784 * enabled socket, uio_resid can be 0.
785 */
786 if (uiop->uio_resid >= 0) {
787 ssize_t copied = 0;
788
789 if (sodp != NULL && (DB_FLAGS(mp) & DBLK_UIOA)) {
790 mutex_enter(&so->so_lock);
791 ASSERT(uiop == (uio_t *)&sodp->sod_uioa);
792 copied = sod_uioa_mblk(so, mp);
793 if (copied > 0)
794 partial_read = B_TRUE;
795 mutex_exit(&so->so_lock);
796 /* mark this mblk as processed */
797 mp = NULL;
798 } else {
799 ssize_t oldresid = uiop->uio_resid;
800
801 if (MBLKL(mp) < so_mblk_pull_len) {
802 if (pullupmsg(mp, -1) == 1) {
803 last_tail = mp;
804 }
805 }
806 /*
807 * Can not read beyond the oobmark
808 */
809 mp = socopyoutuio(mp, uiop,
810 oobmark == 0 ? INFPSZ : oobmark, &error);
811 if (error != 0) {
812 freemsg(*mctlp);
813 *mctlp = NULL;
814 more = 0;
815 goto done;
816 }
817 ASSERT(oldresid >= uiop->uio_resid);
818 copied = oldresid - uiop->uio_resid;
819 if (oldresid > uiop->uio_resid)
820 partial_read = B_TRUE;
821 }
822 ASSERT(copied >= 0);
823 if (copied > 0 && !(flags & MSG_PEEK)) {
824 mutex_enter(&so->so_lock);
825 so->so_rcv_queued -= copied;
826 ASSERT(so->so_oobmark >= 0);
827 if (so->so_oobmark > 0) {
828 so->so_oobmark -= copied;
829 ASSERT(so->so_oobmark >= 0);
830 if (so->so_oobmark == 0) {
831 ASSERT(so->so_state &
832 SS_OOBPEND);
833 so->so_oobmark = 0;
834 so->so_state |= SS_RCVATMARK;
835 }
836 }
837 /*
838 * so_check_flow_control() will drop
839 * so->so_lock.
840 */
841 rvalp->r_val2 = so_check_flow_control(so);
842 }
843 }
844 if (mp != NULL) { /* more data blocks in msg */
845 more |= MOREDATA;
846 if ((flags & (MSG_PEEK|MSG_TRUNC))) {
847 if (flags & MSG_PEEK) {
848 freemsg(mp);
849 } else {
850 unsigned int msize = msgdsize(mp);
851
852 freemsg(mp);
853 mutex_enter(&so->so_lock);
854 so->so_rcv_queued -= msize;
855 /*
856 * so_check_flow_control() will drop
857 * so->so_lock.
858 */
859 rvalp->r_val2 =
860 so_check_flow_control(so);
861 }
862 } else if (partial_read && !somsghasdata(mp)) {
863 /*
864 * Avoid queuing a zero-length tail part of
865 * a message. partial_read == 1 indicates that
866 * we read some of the message.
867 */
868 freemsg(mp);
869 more &= ~MOREDATA;
870 } else {
871 if (savemp != NULL &&
872 (flags & MSG_DUPCTRL)) {
873 mblk_t *nmp;
874 /*
875 * There should only be non data mblks
876 */
877 ASSERT(DB_TYPE(savemp) != M_DATA &&
878 DB_TYPE(savemptail) != M_DATA);
879 try_again:
880 if ((nmp = dupmsg(savemp)) == NULL &&
881 (nmp = copymsg(savemp)) == NULL) {
882
883 size_t size = msgsize(savemp);
884
885 error = strwaitbuf(size,
886 BPRI_HI);
887 if (error != 0) {
888 /*
889 * In case we
890 * cannot copy
891 * control data
892 * free the remaining
893 * data.
894 */
895 freemsg(mp);
896 goto done;
897 }
898 goto try_again;
899 }
900
901 ASSERT(nmp != NULL);
902 ASSERT(DB_TYPE(nmp) != M_DATA);
903 savemptail->b_cont = mp;
904 *mctlp = nmp;
905 mp = savemp;
906 }
907 /*
908 * putback mp
909 */
910 so_prepend_msg(so, mp, last_tail);
911 }
912 }
913
914 /* fast check so_rcv_head if there is more data */
915 if (partial_read && !(so->so_state & SS_RCVATMARK) &&
916 *mctlp == NULL && uiop->uio_resid > 0 &&
917 !(flags & MSG_PEEK) && so->so_rcv_head != NULL) {
918 goto again;
919 }
920 } else if (!partial_read) {
921 mutex_enter(&so->so_lock);
922 if (so->so_error != 0) {
923 error = sogeterr(so, !(flags & MSG_PEEK));
924 mutex_exit(&so->so_lock);
925 return (error);
926 }
927 /*
928 * No pending data. Return right away for nonblocking
929 * socket, otherwise sleep waiting for data.
930 */
931 if (!(so->so_state & SS_CANTRCVMORE) && uiop->uio_resid > 0) {
932 if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
933 (flags & MSG_DONTWAIT)) {
934 error = EWOULDBLOCK;
935 } else {
936 if (so->so_state & (SS_CLOSING |
937 SS_FALLBACK_PENDING)) {
938 mutex_exit(&so->so_lock);
939 error = EINTR;
940 goto done;
941 }
942
943 if (so->so_rcv_head != NULL) {
944 goto again1;
945 }
946 so->so_rcv_wakeup = B_TRUE;
947 so->so_rcv_wanted = uiop->uio_resid;
948 if (so->so_rcvtimeo == 0) {
949 /*
950 * Zero means disable timeout.
951 */
952 error = cv_wait_sig(&so->so_rcv_cv,
953 &so->so_lock);
954 } else {
955 error = cv_reltimedwait_sig(
956 &so->so_rcv_cv, &so->so_lock,
957 so->so_rcvtimeo, TR_CLOCK_TICK);
958 }
959 so->so_rcv_wakeup = B_FALSE;
960 so->so_rcv_wanted = 0;
961
962 if (error == 0) {
963 error = EINTR;
964 } else if (error == -1) {
965 error = EAGAIN;
966 } else {
967 goto again1;
968 }
969 }
970 }
971 mutex_exit(&so->so_lock);
972 }
973 if (reset_atmark && partial_read && !(flags & MSG_PEEK)) {
974 /*
975 * We are passed the mark, update state
976 * 4.3BSD and 4.4BSD clears the mark when peeking across it.
977 * The draft Posix socket spec states that the mark should
978 * not be cleared when peeking. We follow the latter.
979 */
980 mutex_enter(&so->so_lock);
981 ASSERT(so_verify_oobstate(so));
982 so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK);
983 freemsg(so->so_oobmsg);
984 so->so_oobmsg = NULL;
985 ASSERT(so_verify_oobstate(so));
986 mutex_exit(&so->so_lock);
987 }
988 ASSERT(so->so_rcv_wakeup == B_FALSE);
989 done:
990 if (sodp != NULL) {
991 mutex_enter(&so->so_lock);
992 if (sodp->sod_enabled &&
993 (sodp->sod_uioa.uioa_state & UIOA_ENABLED)) {
994 SOD_UIOAFINI(sodp);
995 if (sodp->sod_uioa.uioa_mbytes > 0) {
996 ASSERT(so->so_rcv_q_head != NULL ||
997 so->so_rcv_head != NULL);
998 so->so_rcv_queued -= sod_uioa_mblk(so, NULL);
999 if (error == EWOULDBLOCK)
1000 error = 0;
1001 }
1002 }
1003 mutex_exit(&so->so_lock);
1004 }
1005 #ifdef DEBUG
1006 if (so_debug_length) {
1007 mutex_enter(&so->so_lock);
1008 ASSERT(so_check_length(so));
1009 mutex_exit(&so->so_lock);
1010 }
1011 #endif
1012 rvalp->r_val1 = more;
1013 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1014 return (error);
1015 }
1016
1017 /*
1018 * Enqueue data from the protocol on the socket's rcv queue.
1019 *
1020 * We try to hook new M_DATA mblks onto an existing chain, however,
1021 * that cannot be done if the existing chain has already been
1022 * processed by I/OAT. Non-M_DATA mblks are just linked together via
1023 * b_next. In all cases the b_prev of the enqueued mblk is set to
1024 * point to the last mblk in its b_cont chain.
1025 */
1026 void
so_enqueue_msg(struct sonode * so,mblk_t * mp,size_t msg_size)1027 so_enqueue_msg(struct sonode *so, mblk_t *mp, size_t msg_size)
1028 {
1029 ASSERT(MUTEX_HELD(&so->so_lock));
1030
1031 #ifdef DEBUG
1032 if (so_debug_length) {
1033 ASSERT(so_check_length(so));
1034 }
1035 #endif
1036 so->so_rcv_queued += msg_size;
1037
1038 if (so->so_rcv_head == NULL) {
1039 ASSERT(so->so_rcv_last_head == NULL);
1040 so->so_rcv_head = mp;
1041 so->so_rcv_last_head = mp;
1042 } else if ((DB_TYPE(mp) == M_DATA &&
1043 DB_TYPE(so->so_rcv_last_head) == M_DATA) &&
1044 ((DB_FLAGS(mp) & DBLK_UIOA) ==
1045 (DB_FLAGS(so->so_rcv_last_head) & DBLK_UIOA))) {
1046 /* Added to the end */
1047 ASSERT(so->so_rcv_last_head != NULL);
1048 ASSERT(so->so_rcv_last_head->b_prev != NULL);
1049 so->so_rcv_last_head->b_prev->b_cont = mp;
1050 } else {
1051 /* Start a new end */
1052 so->so_rcv_last_head->b_next = mp;
1053 so->so_rcv_last_head = mp;
1054 }
1055 while (mp->b_cont != NULL)
1056 mp = mp->b_cont;
1057
1058 so->so_rcv_last_head->b_prev = mp;
1059 #ifdef DEBUG
1060 if (so_debug_length) {
1061 ASSERT(so_check_length(so));
1062 }
1063 #endif
1064 }
1065
1066 /*
1067 * Return B_TRUE if there is data in the message, B_FALSE otherwise.
1068 */
1069 boolean_t
somsghasdata(mblk_t * mp)1070 somsghasdata(mblk_t *mp)
1071 {
1072 for (; mp; mp = mp->b_cont)
1073 if (mp->b_datap->db_type == M_DATA) {
1074 ASSERT(mp->b_wptr >= mp->b_rptr);
1075 if (mp->b_wptr > mp->b_rptr)
1076 return (B_TRUE);
1077 }
1078 return (B_FALSE);
1079 }
1080
1081 /*
1082 * Flush the read side of sockfs.
1083 *
1084 * The caller must be sure that a reader is not already active when the
1085 * buffer is being flushed.
1086 */
1087 void
so_rcv_flush(struct sonode * so)1088 so_rcv_flush(struct sonode *so)
1089 {
1090 mblk_t *mp;
1091
1092 ASSERT(MUTEX_HELD(&so->so_lock));
1093
1094 if (so->so_oobmsg != NULL) {
1095 freemsg(so->so_oobmsg);
1096 so->so_oobmsg = NULL;
1097 so->so_oobmark = 0;
1098 so->so_state &=
1099 ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA|SS_RCVATMARK);
1100 }
1101
1102 /*
1103 * Free messages sitting in the recv queues
1104 */
1105 while (so->so_rcv_q_head != NULL) {
1106 mp = so->so_rcv_q_head;
1107 so->so_rcv_q_head = mp->b_next;
1108 mp->b_next = mp->b_prev = NULL;
1109 freemsg(mp);
1110 }
1111 while (so->so_rcv_head != NULL) {
1112 mp = so->so_rcv_head;
1113 so->so_rcv_head = mp->b_next;
1114 mp->b_next = mp->b_prev = NULL;
1115 freemsg(mp);
1116 }
1117 so->so_rcv_queued = 0;
1118 so->so_rcv_q_head = NULL;
1119 so->so_rcv_q_last_head = NULL;
1120 so->so_rcv_head = NULL;
1121 so->so_rcv_last_head = NULL;
1122 }
1123
1124 /*
1125 * Handle recv* calls that set MSG_OOB or MSG_OOB together with MSG_PEEK.
1126 */
1127 int
sorecvoob(struct sonode * so,struct nmsghdr * msg,struct uio * uiop,int flags,boolean_t oob_inline)1128 sorecvoob(struct sonode *so, struct nmsghdr *msg, struct uio *uiop, int flags,
1129 boolean_t oob_inline)
1130 {
1131 mblk_t *mp, *nmp;
1132 int error;
1133
1134 dprintso(so, 1, ("sorecvoob(%p, %p, 0x%x)\n", (void *)so, (void *)msg,
1135 flags));
1136
1137 if (msg != NULL) {
1138 /*
1139 * There is never any oob data with addresses or control since
1140 * the T_EXDATA_IND does not carry any options.
1141 */
1142 msg->msg_controllen = 0;
1143 msg->msg_namelen = 0;
1144 msg->msg_flags = 0;
1145 }
1146
1147 mutex_enter(&so->so_lock);
1148 ASSERT(so_verify_oobstate(so));
1149 if (oob_inline ||
1150 (so->so_state & (SS_OOBPEND|SS_HADOOBDATA)) != SS_OOBPEND) {
1151 dprintso(so, 1, ("sorecvoob: inline or data consumed\n"));
1152 mutex_exit(&so->so_lock);
1153 return (EINVAL);
1154 }
1155 if (!(so->so_state & SS_HAVEOOBDATA)) {
1156 dprintso(so, 1, ("sorecvoob: no data yet\n"));
1157 mutex_exit(&so->so_lock);
1158 return (EWOULDBLOCK);
1159 }
1160 ASSERT(so->so_oobmsg != NULL);
1161 mp = so->so_oobmsg;
1162 if (flags & MSG_PEEK) {
1163 /*
1164 * Since recv* can not return ENOBUFS we can not use dupmsg.
1165 * Instead we revert to the consolidation private
1166 * allocb_wait plus bcopy.
1167 */
1168 mblk_t *mp1;
1169
1170 mp1 = allocb_wait(msgdsize(mp), BPRI_MED, STR_NOSIG, NULL);
1171 ASSERT(mp1);
1172
1173 while (mp != NULL) {
1174 ssize_t size;
1175
1176 size = MBLKL(mp);
1177 bcopy(mp->b_rptr, mp1->b_wptr, size);
1178 mp1->b_wptr += size;
1179 ASSERT(mp1->b_wptr <= mp1->b_datap->db_lim);
1180 mp = mp->b_cont;
1181 }
1182 mp = mp1;
1183 } else {
1184 /*
1185 * Update the state indicating that the data has been consumed.
1186 * Keep SS_OOBPEND set until data is consumed past the mark.
1187 */
1188 so->so_oobmsg = NULL;
1189 so->so_state ^= SS_HAVEOOBDATA|SS_HADOOBDATA;
1190 }
1191 ASSERT(so_verify_oobstate(so));
1192 mutex_exit(&so->so_lock);
1193
1194 error = 0;
1195 nmp = mp;
1196 while (nmp != NULL && uiop->uio_resid > 0) {
1197 ssize_t n = MBLKL(nmp);
1198
1199 n = MIN(n, uiop->uio_resid);
1200 if (n > 0)
1201 error = uiomove(nmp->b_rptr, n,
1202 UIO_READ, uiop);
1203 if (error)
1204 break;
1205 nmp = nmp->b_cont;
1206 }
1207 ASSERT(mp->b_next == NULL && mp->b_prev == NULL);
1208 freemsg(mp);
1209 return (error);
1210 }
1211
1212 /*
1213 * Allocate and initializ sonode
1214 */
1215 /* ARGSUSED */
1216 struct sonode *
socket_sonode_create(struct sockparams * sp,int family,int type,int protocol,int version,int sflags,int * errorp,struct cred * cr)1217 socket_sonode_create(struct sockparams *sp, int family, int type,
1218 int protocol, int version, int sflags, int *errorp, struct cred *cr)
1219 {
1220 sonode_t *so;
1221 int kmflags;
1222
1223 /*
1224 * Choose the right set of sonodeops based on the upcall and
1225 * down call version that the protocol has provided
1226 */
1227 if (SOCK_UC_VERSION != sp->sp_smod_info->smod_uc_version ||
1228 SOCK_DC_VERSION != sp->sp_smod_info->smod_dc_version) {
1229 /*
1230 * mismatch
1231 */
1232 #ifdef DEBUG
1233 cmn_err(CE_CONT, "protocol and socket module version mismatch");
1234 #endif
1235 *errorp = EINVAL;
1236 return (NULL);
1237 }
1238
1239 kmflags = (sflags & SOCKET_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
1240
1241 so = kmem_cache_alloc(socket_cache, kmflags);
1242 if (so == NULL) {
1243 *errorp = ENOMEM;
1244 return (NULL);
1245 }
1246
1247 sonode_init(so, sp, family, type, protocol, &so_sonodeops);
1248
1249 if (version == SOV_DEFAULT)
1250 version = so_default_version;
1251
1252 so->so_version = (short)version;
1253
1254 /*
1255 * set the default values to be INFPSZ
1256 * if a protocol desires it can change the value later
1257 */
1258 so->so_proto_props.sopp_rxhiwat = SOCKET_RECVHIWATER;
1259 so->so_proto_props.sopp_rxlowat = SOCKET_RECVLOWATER;
1260 so->so_proto_props.sopp_maxpsz = INFPSZ;
1261 so->so_proto_props.sopp_maxblk = INFPSZ;
1262
1263 return (so);
1264 }
1265
1266 int
socket_init_common(struct sonode * so,struct sonode * pso,int flags,cred_t * cr)1267 socket_init_common(struct sonode *so, struct sonode *pso, int flags, cred_t *cr)
1268 {
1269 int error = 0;
1270
1271 if (pso != NULL) {
1272 /*
1273 * We have a passive open, so inherit basic state from
1274 * the parent (listener).
1275 *
1276 * No need to grab the new sonode's lock, since there is no
1277 * one that can have a reference to it.
1278 */
1279 mutex_enter(&pso->so_lock);
1280
1281 so->so_state |= SS_ISCONNECTED | (pso->so_state & SS_ASYNC);
1282 so->so_pgrp = pso->so_pgrp;
1283 so->so_rcvtimeo = pso->so_rcvtimeo;
1284 so->so_sndtimeo = pso->so_sndtimeo;
1285 so->so_xpg_rcvbuf = pso->so_xpg_rcvbuf;
1286 /*
1287 * Make note of the socket level options. TCP and IP level
1288 * options are already inherited. We could do all this after
1289 * accept is successful but doing it here simplifies code and
1290 * no harm done for error case.
1291 */
1292 so->so_options = pso->so_options & (SO_DEBUG|SO_REUSEADDR|
1293 SO_KEEPALIVE|SO_DONTROUTE|SO_BROADCAST|SO_USELOOPBACK|
1294 SO_OOBINLINE|SO_DGRAM_ERRIND|SO_LINGER);
1295 so->so_proto_props = pso->so_proto_props;
1296 so->so_mode = pso->so_mode;
1297 so->so_pollev = pso->so_pollev & SO_POLLEV_ALWAYS;
1298
1299 mutex_exit(&pso->so_lock);
1300
1301 /*
1302 * If the parent has any filters, try to inherit them.
1303 */
1304 if (pso->so_filter_active > 0 &&
1305 (error = sof_sonode_inherit_filters(so, pso)) != 0)
1306 return (error);
1307
1308 } else {
1309 struct sockparams *sp = so->so_sockparams;
1310 sock_upcalls_t *upcalls_to_use;
1311
1312 /*
1313 * Attach automatic filters, if there are any.
1314 */
1315 if (!list_is_empty(&sp->sp_auto_filters) &&
1316 (error = sof_sonode_autoattach_filters(so, cr)) != 0)
1317 return (error);
1318
1319 /* OK to attach filters */
1320 so->so_state |= SS_FILOP_OK;
1321
1322 /*
1323 * Based on the version number select the right upcalls to
1324 * pass down. Currently we only have one version so choose
1325 * default
1326 */
1327 upcalls_to_use = &so_upcalls;
1328
1329 /* active open, so create a lower handle */
1330 so->so_proto_handle =
1331 sp->sp_smod_info->smod_proto_create_func(so->so_family,
1332 so->so_type, so->so_protocol, &so->so_downcalls,
1333 &so->so_mode, &error, flags, cr);
1334
1335 if (so->so_proto_handle == NULL) {
1336 ASSERT(error != 0);
1337 /*
1338 * To be safe; if a lower handle cannot be created, and
1339 * the proto does not give a reason why, assume there
1340 * was a lack of memory.
1341 */
1342 return ((error == 0) ? ENOMEM : error);
1343 }
1344 ASSERT(so->so_downcalls != NULL);
1345 ASSERT(so->so_downcalls->sd_send != NULL ||
1346 so->so_downcalls->sd_send_uio != NULL);
1347 if (so->so_downcalls->sd_recv_uio != NULL) {
1348 ASSERT(so->so_downcalls->sd_poll != NULL);
1349 so->so_pollev |= SO_POLLEV_ALWAYS;
1350 }
1351
1352 (*so->so_downcalls->sd_activate)(so->so_proto_handle,
1353 (sock_upper_handle_t)so, upcalls_to_use, 0, cr);
1354
1355 /* Wildcard */
1356
1357 /*
1358 * FIXME No need for this, the protocol can deal with it in
1359 * sd_create(). Should update ICMP.
1360 */
1361 if (so->so_protocol != so->so_sockparams->sp_protocol) {
1362 int protocol = so->so_protocol;
1363 int error;
1364 /*
1365 * Issue SO_PROTOTYPE setsockopt.
1366 */
1367 error = socket_setsockopt(so, SOL_SOCKET, SO_PROTOTYPE,
1368 &protocol, (t_uscalar_t)sizeof (protocol), cr);
1369 if (error) {
1370 (void) (*so->so_downcalls->sd_close)
1371 (so->so_proto_handle, 0, cr);
1372
1373 mutex_enter(&so->so_lock);
1374 so_rcv_flush(so);
1375 mutex_exit(&so->so_lock);
1376 /*
1377 * Setsockopt often fails with ENOPROTOOPT but
1378 * socket() should fail with
1379 * EPROTONOSUPPORT/EPROTOTYPE.
1380 */
1381 return (EPROTONOSUPPORT);
1382 }
1383 }
1384 }
1385
1386 if (uioasync.enabled)
1387 sod_sock_init(so);
1388
1389 /* put an extra reference on the socket for the protocol */
1390 VN_HOLD(SOTOV(so));
1391
1392 return (0);
1393 }
1394
1395 /*
1396 * int socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode,
1397 * struct cred *cr, int32_t *rvalp)
1398 *
1399 * Handle ioctls that manipulate basic socket state; non-blocking,
1400 * async, etc.
1401 *
1402 * Returns:
1403 * < 0 - ioctl was not handle
1404 * >= 0 - ioctl was handled, if > 0, then it is an errno
1405 *
1406 * Notes:
1407 * Assumes the standard receive buffer is used to obtain info for
1408 * NREAD.
1409 */
1410 /* ARGSUSED */
1411 int
socket_ioctl_common(struct sonode * so,int cmd,intptr_t arg,int mode,struct cred * cr,int32_t * rvalp)1412 socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode,
1413 struct cred *cr, int32_t *rvalp)
1414 {
1415 switch (cmd) {
1416 case SIOCSQPTR:
1417 /*
1418 * SIOCSQPTR is valid only when helper stream is created
1419 * by the protocol.
1420 */
1421
1422 return (EOPNOTSUPP);
1423 case FIONBIO: {
1424 int32_t value;
1425
1426 if (so_copyin((void *)arg, &value, sizeof (int32_t),
1427 (mode & (int)FKIOCTL)))
1428 return (EFAULT);
1429
1430 mutex_enter(&so->so_lock);
1431 if (value) {
1432 so->so_state |= SS_NDELAY;
1433 } else {
1434 so->so_state &= ~SS_NDELAY;
1435 }
1436 mutex_exit(&so->so_lock);
1437 return (0);
1438 }
1439 case FIOASYNC: {
1440 int32_t value;
1441
1442 if (so_copyin((void *)arg, &value, sizeof (int32_t),
1443 (mode & (int)FKIOCTL)))
1444 return (EFAULT);
1445
1446 mutex_enter(&so->so_lock);
1447
1448 if (value) {
1449 /* Turn on SIGIO */
1450 so->so_state |= SS_ASYNC;
1451 } else {
1452 /* Turn off SIGIO */
1453 so->so_state &= ~SS_ASYNC;
1454 }
1455 mutex_exit(&so->so_lock);
1456
1457 return (0);
1458 }
1459
1460 case SIOCSPGRP:
1461 case FIOSETOWN: {
1462 int error;
1463 pid_t pid;
1464
1465 if (so_copyin((void *)arg, &pid, sizeof (pid_t),
1466 (mode & (int)FKIOCTL)))
1467 return (EFAULT);
1468
1469 mutex_enter(&so->so_lock);
1470 error = (pid != so->so_pgrp) ? socket_chgpgrp(so, pid) : 0;
1471 mutex_exit(&so->so_lock);
1472 return (error);
1473 }
1474 case SIOCGPGRP:
1475 case FIOGETOWN:
1476 if (so_copyout(&so->so_pgrp, (void *)arg,
1477 sizeof (pid_t), (mode & (int)FKIOCTL)))
1478 return (EFAULT);
1479
1480 return (0);
1481 case SIOCATMARK: {
1482 int retval;
1483
1484 /*
1485 * Only protocols that support urgent data can handle ATMARK.
1486 */
1487 if ((so->so_mode & SM_EXDATA) == 0)
1488 return (EINVAL);
1489
1490 /*
1491 * If the protocol is maintaining its own buffer, then the
1492 * request must be passed down.
1493 */
1494 if (so->so_downcalls->sd_recv_uio != NULL)
1495 return (-1);
1496
1497 retval = (so->so_state & SS_RCVATMARK) != 0;
1498
1499 if (so_copyout(&retval, (void *)arg, sizeof (int),
1500 (mode & (int)FKIOCTL))) {
1501 return (EFAULT);
1502 }
1503 return (0);
1504 }
1505
1506 case FIONREAD: {
1507 int retval;
1508
1509 /*
1510 * If the protocol is maintaining its own buffer, then the
1511 * request must be passed down.
1512 */
1513 if (so->so_downcalls->sd_recv_uio != NULL)
1514 return (-1);
1515
1516 retval = MIN(so->so_rcv_queued, INT_MAX);
1517
1518 if (so_copyout(&retval, (void *)arg,
1519 sizeof (retval), (mode & (int)FKIOCTL))) {
1520 return (EFAULT);
1521 }
1522 return (0);
1523 }
1524
1525 case _I_GETPEERCRED: {
1526 int error = 0;
1527
1528 if ((mode & FKIOCTL) == 0)
1529 return (EINVAL);
1530
1531 mutex_enter(&so->so_lock);
1532 if ((so->so_mode & SM_CONNREQUIRED) == 0) {
1533 error = ENOTSUP;
1534 } else if ((so->so_state & SS_ISCONNECTED) == 0) {
1535 error = ENOTCONN;
1536 } else if (so->so_peercred != NULL) {
1537 k_peercred_t *kp = (k_peercred_t *)arg;
1538 kp->pc_cr = so->so_peercred;
1539 kp->pc_cpid = so->so_cpid;
1540 crhold(so->so_peercred);
1541 } else {
1542 error = EINVAL;
1543 }
1544 mutex_exit(&so->so_lock);
1545 return (error);
1546 }
1547 default:
1548 return (-1);
1549 }
1550 }
1551
1552 /*
1553 * Handle the I_NREAD STREAM ioctl.
1554 */
1555 static int
so_strioc_nread(struct sonode * so,intptr_t arg,int mode,int32_t * rvalp)1556 so_strioc_nread(struct sonode *so, intptr_t arg, int mode, int32_t *rvalp)
1557 {
1558 size_t size = 0;
1559 int retval;
1560 int count = 0;
1561 mblk_t *mp;
1562 clock_t wakeup = drv_usectohz(10);
1563
1564 if (so->so_downcalls == NULL ||
1565 so->so_downcalls->sd_recv_uio != NULL)
1566 return (EINVAL);
1567
1568 mutex_enter(&so->so_lock);
1569 /* Wait for reader to get out of the way. */
1570 while (so->so_flag & SOREADLOCKED) {
1571 /*
1572 * If reader is waiting for data, then there should be nothing
1573 * on the rcv queue.
1574 */
1575 if (so->so_rcv_wakeup)
1576 goto out;
1577
1578 /* Do a timed sleep, in case the reader goes to sleep. */
1579 (void) cv_reltimedwait(&so->so_read_cv, &so->so_lock, wakeup,
1580 TR_CLOCK_TICK);
1581 }
1582
1583 /*
1584 * Since we are holding so_lock no new reader will come in, and the
1585 * protocol will not be able to enqueue data. So it's safe to walk
1586 * both rcv queues.
1587 */
1588 mp = so->so_rcv_q_head;
1589 if (mp != NULL) {
1590 size = msgdsize(so->so_rcv_q_head);
1591 for (; mp != NULL; mp = mp->b_next)
1592 count++;
1593 } else {
1594 /*
1595 * In case the processing list was empty, get the size of the
1596 * next msg in line.
1597 */
1598 size = msgdsize(so->so_rcv_head);
1599 }
1600
1601 for (mp = so->so_rcv_head; mp != NULL; mp = mp->b_next)
1602 count++;
1603 out:
1604 mutex_exit(&so->so_lock);
1605
1606 /*
1607 * Drop down from size_t to the "int" required by the
1608 * interface. Cap at INT_MAX.
1609 */
1610 retval = MIN(size, INT_MAX);
1611 if (so_copyout(&retval, (void *)arg, sizeof (retval),
1612 (mode & (int)FKIOCTL))) {
1613 return (EFAULT);
1614 } else {
1615 *rvalp = count;
1616 return (0);
1617 }
1618 }
1619
1620 /*
1621 * Process STREAM ioctls.
1622 *
1623 * Returns:
1624 * < 0 - ioctl was not handle
1625 * >= 0 - ioctl was handled, if > 0, then it is an errno
1626 */
1627 int
socket_strioc_common(struct sonode * so,int cmd,intptr_t arg,int mode,struct cred * cr,int32_t * rvalp)1628 socket_strioc_common(struct sonode *so, int cmd, intptr_t arg, int mode,
1629 struct cred *cr, int32_t *rvalp)
1630 {
1631 int retval;
1632
1633 /* Only STREAM iotcls are handled here */
1634 if ((cmd & 0xffffff00U) != STR)
1635 return (-1);
1636
1637 switch (cmd) {
1638 case I_CANPUT:
1639 /*
1640 * We return an error for I_CANPUT so that isastream(3C) will
1641 * not report the socket as being a STREAM.
1642 */
1643 return (EOPNOTSUPP);
1644 case I_NREAD:
1645 /* Avoid doing a fallback for I_NREAD. */
1646 return (so_strioc_nread(so, arg, mode, rvalp));
1647 case I_LOOK:
1648 /* Avoid doing a fallback for I_LOOK. */
1649 if (so_copyout("sockmod", (void *)arg, strlen("sockmod") + 1,
1650 (mode & (int)FKIOCTL))) {
1651 return (EFAULT);
1652 }
1653 return (0);
1654 default:
1655 break;
1656 }
1657
1658 /*
1659 * Try to fall back to TPI, and if successful, reissue the ioctl.
1660 */
1661 if ((retval = so_tpi_fallback(so, cr)) == 0) {
1662 /* Reissue the ioctl */
1663 ASSERT(so->so_rcv_q_head == NULL);
1664 return (SOP_IOCTL(so, cmd, arg, mode, cr, rvalp));
1665 } else {
1666 return (retval);
1667 }
1668 }
1669
1670 /*
1671 * This is called for all socket types to verify that the buffer size is large
1672 * enough for the option, and if we can, handle the request as well. Most
1673 * options will be forwarded to the protocol.
1674 */
1675 int
socket_getopt_common(struct sonode * so,int level,int option_name,void * optval,socklen_t * optlenp,int flags)1676 socket_getopt_common(struct sonode *so, int level, int option_name,
1677 void *optval, socklen_t *optlenp, int flags)
1678 {
1679 if (level != SOL_SOCKET)
1680 return (-1);
1681
1682 switch (option_name) {
1683 case SO_ERROR:
1684 case SO_DOMAIN:
1685 case SO_TYPE:
1686 case SO_ACCEPTCONN: {
1687 int32_t value;
1688 socklen_t optlen = *optlenp;
1689
1690 if (optlen < (t_uscalar_t)sizeof (int32_t)) {
1691 return (EINVAL);
1692 }
1693
1694 switch (option_name) {
1695 case SO_ERROR:
1696 mutex_enter(&so->so_lock);
1697 value = sogeterr(so, B_TRUE);
1698 mutex_exit(&so->so_lock);
1699 break;
1700 case SO_DOMAIN:
1701 value = so->so_family;
1702 break;
1703 case SO_TYPE:
1704 value = so->so_type;
1705 break;
1706 case SO_ACCEPTCONN:
1707 if (so->so_state & SS_ACCEPTCONN)
1708 value = SO_ACCEPTCONN;
1709 else
1710 value = 0;
1711 break;
1712 }
1713
1714 bcopy(&value, optval, sizeof (value));
1715 *optlenp = sizeof (value);
1716
1717 return (0);
1718 }
1719 case SO_SNDTIMEO:
1720 case SO_RCVTIMEO: {
1721 clock_t value;
1722 socklen_t optlen = *optlenp;
1723
1724 if (get_udatamodel() == DATAMODEL_NONE ||
1725 get_udatamodel() == DATAMODEL_NATIVE) {
1726 if (optlen < sizeof (struct timeval))
1727 return (EINVAL);
1728 } else {
1729 if (optlen < sizeof (struct timeval32))
1730 return (EINVAL);
1731 }
1732 if (option_name == SO_RCVTIMEO)
1733 value = drv_hztousec(so->so_rcvtimeo);
1734 else
1735 value = drv_hztousec(so->so_sndtimeo);
1736
1737 if (get_udatamodel() == DATAMODEL_NONE ||
1738 get_udatamodel() == DATAMODEL_NATIVE) {
1739 ((struct timeval *)(optval))->tv_sec =
1740 value / (1000 * 1000);
1741 ((struct timeval *)(optval))->tv_usec =
1742 value % (1000 * 1000);
1743 *optlenp = sizeof (struct timeval);
1744 } else {
1745 ((struct timeval32 *)(optval))->tv_sec =
1746 value / (1000 * 1000);
1747 ((struct timeval32 *)(optval))->tv_usec =
1748 value % (1000 * 1000);
1749 *optlenp = sizeof (struct timeval32);
1750 }
1751 return (0);
1752 }
1753 case SO_DEBUG:
1754 case SO_REUSEADDR:
1755 case SO_REUSEPORT:
1756 case SO_KEEPALIVE:
1757 case SO_DONTROUTE:
1758 case SO_BROADCAST:
1759 case SO_USELOOPBACK:
1760 case SO_OOBINLINE:
1761 case SO_SNDBUF:
1762 #ifdef notyet
1763 case SO_SNDLOWAT:
1764 case SO_RCVLOWAT:
1765 #endif /* notyet */
1766 case SO_DGRAM_ERRIND: {
1767 socklen_t optlen = *optlenp;
1768
1769 if (optlen < (t_uscalar_t)sizeof (int32_t))
1770 return (EINVAL);
1771 break;
1772 }
1773 case SO_RCVBUF: {
1774 socklen_t optlen = *optlenp;
1775
1776 if (optlen < (t_uscalar_t)sizeof (int32_t))
1777 return (EINVAL);
1778
1779 if ((flags & _SOGETSOCKOPT_XPG4_2) && so->so_xpg_rcvbuf != 0) {
1780 /*
1781 * XXX If SO_RCVBUF has been set and this is an
1782 * XPG 4.2 application then do not ask the transport
1783 * since the transport might adjust the value and not
1784 * return exactly what was set by the application.
1785 * For non-XPG 4.2 application we return the value
1786 * that the transport is actually using.
1787 */
1788 *(int32_t *)optval = so->so_xpg_rcvbuf;
1789 *optlenp = sizeof (so->so_xpg_rcvbuf);
1790 return (0);
1791 }
1792 /*
1793 * If the option has not been set then get a default
1794 * value from the transport.
1795 */
1796 break;
1797 }
1798 case SO_LINGER: {
1799 socklen_t optlen = *optlenp;
1800
1801 if (optlen < (t_uscalar_t)sizeof (struct linger))
1802 return (EINVAL);
1803 break;
1804 }
1805 case SO_SND_BUFINFO: {
1806 socklen_t optlen = *optlenp;
1807
1808 if (optlen < (t_uscalar_t)sizeof (struct so_snd_bufinfo))
1809 return (EINVAL);
1810 ((struct so_snd_bufinfo *)(optval))->sbi_wroff =
1811 (so->so_proto_props).sopp_wroff;
1812 ((struct so_snd_bufinfo *)(optval))->sbi_maxblk =
1813 (so->so_proto_props).sopp_maxblk;
1814 ((struct so_snd_bufinfo *)(optval))->sbi_maxpsz =
1815 (so->so_proto_props).sopp_maxpsz;
1816 ((struct so_snd_bufinfo *)(optval))->sbi_tail =
1817 (so->so_proto_props).sopp_tail;
1818 *optlenp = sizeof (struct so_snd_bufinfo);
1819 return (0);
1820 }
1821 case SO_SND_COPYAVOID: {
1822 sof_instance_t *inst;
1823
1824 /*
1825 * Avoid zero-copy if there is a filter with a data_out
1826 * callback. We could let the operation succeed, but then
1827 * the filter would have to copy the data anyway.
1828 */
1829 for (inst = so->so_filter_top; inst != NULL;
1830 inst = inst->sofi_next) {
1831 if (SOF_INTERESTED(inst, data_out))
1832 return (EOPNOTSUPP);
1833 }
1834 break;
1835 }
1836
1837 default:
1838 break;
1839 }
1840
1841 /* Unknown Option */
1842 return (-1);
1843 }
1844
1845 void
socket_sonode_destroy(struct sonode * so)1846 socket_sonode_destroy(struct sonode *so)
1847 {
1848 sonode_fini(so);
1849 kmem_cache_free(socket_cache, so);
1850 }
1851
1852 int
so_zcopy_wait(struct sonode * so)1853 so_zcopy_wait(struct sonode *so)
1854 {
1855 int error = 0;
1856
1857 mutex_enter(&so->so_lock);
1858 while (!(so->so_copyflag & STZCNOTIFY)) {
1859 if (so->so_state & SS_CLOSING) {
1860 mutex_exit(&so->so_lock);
1861 return (EINTR);
1862 }
1863 if (cv_wait_sig(&so->so_copy_cv, &so->so_lock) == 0) {
1864 error = EINTR;
1865 break;
1866 }
1867 }
1868 so->so_copyflag &= ~STZCNOTIFY;
1869 mutex_exit(&so->so_lock);
1870 return (error);
1871 }
1872
1873 void
so_timer_callback(void * arg)1874 so_timer_callback(void *arg)
1875 {
1876 struct sonode *so = (struct sonode *)arg;
1877
1878 mutex_enter(&so->so_lock);
1879
1880 so->so_rcv_timer_tid = 0;
1881 if (so->so_rcv_queued > 0) {
1882 so_notify_data(so, so->so_rcv_queued);
1883 } else {
1884 mutex_exit(&so->so_lock);
1885 }
1886 }
1887
1888 #ifdef DEBUG
1889 /*
1890 * Verify that the length stored in so_rcv_queued and the length of data blocks
1891 * queued is same.
1892 */
1893 static boolean_t
so_check_length(sonode_t * so)1894 so_check_length(sonode_t *so)
1895 {
1896 mblk_t *mp = so->so_rcv_q_head;
1897 int len = 0;
1898
1899 ASSERT(MUTEX_HELD(&so->so_lock));
1900
1901 if (mp != NULL) {
1902 len = msgdsize(mp);
1903 while ((mp = mp->b_next) != NULL)
1904 len += msgdsize(mp);
1905 }
1906 mp = so->so_rcv_head;
1907 if (mp != NULL) {
1908 len += msgdsize(mp);
1909 while ((mp = mp->b_next) != NULL)
1910 len += msgdsize(mp);
1911 }
1912 return ((len == so->so_rcv_queued) ? B_TRUE : B_FALSE);
1913 }
1914 #endif
1915
1916 int
so_get_mod_version(struct sockparams * sp)1917 so_get_mod_version(struct sockparams *sp)
1918 {
1919 ASSERT(sp != NULL && sp->sp_smod_info != NULL);
1920 return (sp->sp_smod_info->smod_version);
1921 }
1922
1923 /*
1924 * so_start_fallback()
1925 *
1926 * Block new socket operations from coming in, and wait for active operations
1927 * to complete. Threads that are sleeping will be woken up so they can get
1928 * out of the way.
1929 *
1930 * The caller must be a reader on so_fallback_rwlock.
1931 */
1932 static boolean_t
so_start_fallback(struct sonode * so)1933 so_start_fallback(struct sonode *so)
1934 {
1935 ASSERT(RW_READ_HELD(&so->so_fallback_rwlock));
1936
1937 mutex_enter(&so->so_lock);
1938 if (so->so_state & SS_FALLBACK_PENDING) {
1939 mutex_exit(&so->so_lock);
1940 return (B_FALSE);
1941 }
1942 so->so_state |= SS_FALLBACK_PENDING;
1943 /*
1944 * Poke all threads that might be sleeping. Any operation that comes
1945 * in after the cv_broadcast will observe the fallback pending flag
1946 * which cause the call to return where it would normally sleep.
1947 */
1948 cv_broadcast(&so->so_state_cv); /* threads in connect() */
1949 cv_broadcast(&so->so_rcv_cv); /* threads in recvmsg() */
1950 cv_broadcast(&so->so_snd_cv); /* threads in sendmsg() */
1951 mutex_enter(&so->so_acceptq_lock);
1952 cv_broadcast(&so->so_acceptq_cv); /* threads in accept() */
1953 mutex_exit(&so->so_acceptq_lock);
1954 mutex_exit(&so->so_lock);
1955
1956 /*
1957 * The main reason for the rw_tryupgrade call is to provide
1958 * observability during the fallback process. We want to
1959 * be able to see if there are pending operations.
1960 */
1961 if (rw_tryupgrade(&so->so_fallback_rwlock) == 0) {
1962 /*
1963 * It is safe to drop and reaquire the fallback lock, because
1964 * we are guaranteed that another fallback cannot take place.
1965 */
1966 rw_exit(&so->so_fallback_rwlock);
1967 DTRACE_PROBE1(pending__ops__wait, (struct sonode *), so);
1968 rw_enter(&so->so_fallback_rwlock, RW_WRITER);
1969 DTRACE_PROBE1(pending__ops__complete, (struct sonode *), so);
1970 }
1971
1972 return (B_TRUE);
1973 }
1974
1975 /*
1976 * so_end_fallback()
1977 *
1978 * Allow socket opertions back in.
1979 *
1980 * The caller must be a writer on so_fallback_rwlock.
1981 */
1982 static void
so_end_fallback(struct sonode * so)1983 so_end_fallback(struct sonode *so)
1984 {
1985 ASSERT(RW_ISWRITER(&so->so_fallback_rwlock));
1986
1987 mutex_enter(&so->so_lock);
1988 so->so_state &= ~(SS_FALLBACK_PENDING|SS_FALLBACK_DRAIN);
1989 mutex_exit(&so->so_lock);
1990
1991 rw_downgrade(&so->so_fallback_rwlock);
1992 }
1993
1994 /*
1995 * so_quiesced_cb()
1996 *
1997 * Callback passed to the protocol during fallback. It is called once
1998 * the endpoint is quiescent.
1999 *
2000 * No requests from the user, no notifications from the protocol, so it
2001 * is safe to synchronize the state. Data can also be moved without
2002 * risk for reordering.
2003 *
2004 * We do not need to hold so_lock, since there can be only one thread
2005 * operating on the sonode.
2006 */
2007 static mblk_t *
so_quiesced_cb(sock_upper_handle_t sock_handle,sock_quiesce_arg_t * arg,struct T_capability_ack * tcap,struct sockaddr * laddr,socklen_t laddrlen,struct sockaddr * faddr,socklen_t faddrlen,short opts)2008 so_quiesced_cb(sock_upper_handle_t sock_handle, sock_quiesce_arg_t *arg,
2009 struct T_capability_ack *tcap,
2010 struct sockaddr *laddr, socklen_t laddrlen,
2011 struct sockaddr *faddr, socklen_t faddrlen, short opts)
2012 {
2013 struct sonode *so = (struct sonode *)sock_handle;
2014 boolean_t atmark;
2015 mblk_t *retmp = NULL, **tailmpp = &retmp;
2016
2017 if (tcap != NULL)
2018 sotpi_update_state(so, tcap, laddr, laddrlen, faddr, faddrlen,
2019 opts);
2020
2021 /*
2022 * Some protocols do not quiece the data path during fallback. Once
2023 * we set the SS_FALLBACK_DRAIN flag any attempt to queue data will
2024 * fail and the protocol is responsible for saving the data for later
2025 * delivery (i.e., once the fallback has completed).
2026 */
2027 mutex_enter(&so->so_lock);
2028 so->so_state |= SS_FALLBACK_DRAIN;
2029 SOCKET_TIMER_CANCEL(so);
2030 mutex_exit(&so->so_lock);
2031
2032 if (so->so_rcv_head != NULL) {
2033 if (so->so_rcv_q_last_head == NULL)
2034 so->so_rcv_q_head = so->so_rcv_head;
2035 else
2036 so->so_rcv_q_last_head->b_next = so->so_rcv_head;
2037 so->so_rcv_q_last_head = so->so_rcv_last_head;
2038 }
2039
2040 atmark = (so->so_state & SS_RCVATMARK) != 0;
2041 /*
2042 * Clear any OOB state having to do with pending data. The TPI
2043 * code path will set the appropriate oob state when we move the
2044 * oob data to the STREAM head. We leave SS_HADOOBDATA since the oob
2045 * data has already been consumed.
2046 */
2047 so->so_state &= ~(SS_RCVATMARK|SS_OOBPEND|SS_HAVEOOBDATA);
2048
2049 ASSERT(so->so_oobmsg != NULL || so->so_oobmark <= so->so_rcv_queued);
2050
2051 /*
2052 * Move data to the STREAM head.
2053 */
2054 while (so->so_rcv_q_head != NULL) {
2055 mblk_t *mp = so->so_rcv_q_head;
2056 size_t mlen = msgdsize(mp);
2057
2058 so->so_rcv_q_head = mp->b_next;
2059 mp->b_next = NULL;
2060 mp->b_prev = NULL;
2061
2062 /*
2063 * Send T_EXDATA_IND if we are at the oob mark.
2064 */
2065 if (atmark) {
2066 struct T_exdata_ind *tei;
2067 mblk_t *mp1 = arg->soqa_exdata_mp;
2068
2069 arg->soqa_exdata_mp = NULL;
2070 ASSERT(mp1 != NULL);
2071 mp1->b_datap->db_type = M_PROTO;
2072 tei = (struct T_exdata_ind *)mp1->b_rptr;
2073 tei->PRIM_type = T_EXDATA_IND;
2074 tei->MORE_flag = 0;
2075 mp1->b_wptr = (uchar_t *)&tei[1];
2076
2077 if (IS_SO_OOB_INLINE(so)) {
2078 mp1->b_cont = mp;
2079 } else {
2080 ASSERT(so->so_oobmsg != NULL);
2081 mp1->b_cont = so->so_oobmsg;
2082 so->so_oobmsg = NULL;
2083
2084 /* process current mp next time around */
2085 mp->b_next = so->so_rcv_q_head;
2086 so->so_rcv_q_head = mp;
2087 mlen = 0;
2088 }
2089 mp = mp1;
2090
2091 /* we have consumed the oob mark */
2092 atmark = B_FALSE;
2093 } else if (so->so_oobmark > 0) {
2094 /*
2095 * Check if the OOB mark is within the current
2096 * mblk chain. In that case we have to split it up.
2097 */
2098 if (so->so_oobmark < mlen) {
2099 mblk_t *urg_mp = mp;
2100
2101 atmark = B_TRUE;
2102 mp = NULL;
2103 mlen = so->so_oobmark;
2104
2105 /*
2106 * It is assumed that the OOB mark does
2107 * not land within a mblk.
2108 */
2109 do {
2110 so->so_oobmark -= MBLKL(urg_mp);
2111 mp = urg_mp;
2112 urg_mp = urg_mp->b_cont;
2113 } while (so->so_oobmark > 0);
2114 mp->b_cont = NULL;
2115 if (urg_mp != NULL) {
2116 urg_mp->b_next = so->so_rcv_q_head;
2117 so->so_rcv_q_head = urg_mp;
2118 }
2119 } else {
2120 so->so_oobmark -= mlen;
2121 if (so->so_oobmark == 0)
2122 atmark = B_TRUE;
2123 }
2124 }
2125
2126 /*
2127 * Queue data on the STREAM head.
2128 */
2129 so->so_rcv_queued -= mlen;
2130 *tailmpp = mp;
2131 tailmpp = &mp->b_next;
2132 }
2133 so->so_rcv_head = NULL;
2134 so->so_rcv_last_head = NULL;
2135 so->so_rcv_q_head = NULL;
2136 so->so_rcv_q_last_head = NULL;
2137
2138 /*
2139 * Check if the oob byte is at the end of the data stream, or if the
2140 * oob byte has not yet arrived. In the latter case we have to send a
2141 * SIGURG and a mark indicator to the STREAM head. The mark indicator
2142 * is needed to guarantee correct behavior for SIOCATMARK. See block
2143 * comment in socktpi.h for more details.
2144 */
2145 if (atmark || so->so_oobmark > 0) {
2146 mblk_t *mp;
2147
2148 if (atmark && so->so_oobmsg != NULL) {
2149 struct T_exdata_ind *tei;
2150
2151 mp = arg->soqa_exdata_mp;
2152 arg->soqa_exdata_mp = NULL;
2153 ASSERT(mp != NULL);
2154 mp->b_datap->db_type = M_PROTO;
2155 tei = (struct T_exdata_ind *)mp->b_rptr;
2156 tei->PRIM_type = T_EXDATA_IND;
2157 tei->MORE_flag = 0;
2158 mp->b_wptr = (uchar_t *)&tei[1];
2159
2160 mp->b_cont = so->so_oobmsg;
2161 so->so_oobmsg = NULL;
2162
2163 *tailmpp = mp;
2164 tailmpp = &mp->b_next;
2165 } else {
2166 /* Send up the signal */
2167 mp = arg->soqa_exdata_mp;
2168 arg->soqa_exdata_mp = NULL;
2169 ASSERT(mp != NULL);
2170 DB_TYPE(mp) = M_PCSIG;
2171 *mp->b_wptr++ = (uchar_t)SIGURG;
2172 *tailmpp = mp;
2173 tailmpp = &mp->b_next;
2174
2175 /* Send up the mark indicator */
2176 mp = arg->soqa_urgmark_mp;
2177 arg->soqa_urgmark_mp = NULL;
2178 mp->b_flag = atmark ? MSGMARKNEXT : MSGNOTMARKNEXT;
2179 *tailmpp = mp;
2180 tailmpp = &mp->b_next;
2181
2182 so->so_oobmark = 0;
2183 }
2184 }
2185 ASSERT(so->so_oobmark == 0);
2186 ASSERT(so->so_rcv_queued == 0);
2187
2188 return (retmp);
2189 }
2190
2191 #ifdef DEBUG
2192 /*
2193 * Do an integrity check of the sonode. This should be done if a
2194 * fallback fails after sonode has initially been converted to use
2195 * TPI and subsequently have to be reverted.
2196 *
2197 * Failure to pass the integrity check will panic the system.
2198 */
2199 void
so_integrity_check(struct sonode * cur,struct sonode * orig)2200 so_integrity_check(struct sonode *cur, struct sonode *orig)
2201 {
2202 VERIFY(cur->so_vnode == orig->so_vnode);
2203 VERIFY(cur->so_ops == orig->so_ops);
2204 /*
2205 * For so_state we can only VERIFY the state flags in CHECK_STATE.
2206 * The other state flags might be affected by a notification from the
2207 * protocol.
2208 */
2209 #define CHECK_STATE (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_NDELAY|SS_NONBLOCK| \
2210 SS_ASYNC|SS_ACCEPTCONN|SS_SAVEDEOR|SS_RCVATMARK|SS_OOBPEND| \
2211 SS_HAVEOOBDATA|SS_HADOOBDATA|SS_SENTLASTREADSIG|SS_SENTLASTWRITESIG)
2212 VERIFY((cur->so_state & (orig->so_state & CHECK_STATE)) ==
2213 (orig->so_state & CHECK_STATE));
2214 VERIFY(cur->so_mode == orig->so_mode);
2215 VERIFY(cur->so_flag == orig->so_flag);
2216 VERIFY(cur->so_count == orig->so_count);
2217 /* Cannot VERIFY so_proto_connid; proto can update it */
2218 VERIFY(cur->so_sockparams == orig->so_sockparams);
2219 /* an error might have been recorded, but it can not be lost */
2220 VERIFY(cur->so_error != 0 || orig->so_error == 0);
2221 VERIFY(cur->so_family == orig->so_family);
2222 VERIFY(cur->so_type == orig->so_type);
2223 VERIFY(cur->so_protocol == orig->so_protocol);
2224 VERIFY(cur->so_version == orig->so_version);
2225 /* New conns might have arrived, but none should have been lost */
2226 VERIFY(cur->so_acceptq_len >= orig->so_acceptq_len);
2227 VERIFY(list_head(&cur->so_acceptq_list) ==
2228 list_head(&orig->so_acceptq_list));
2229 VERIFY(cur->so_backlog == orig->so_backlog);
2230 /* New OOB migth have arrived, but mark should not have been lost */
2231 VERIFY(cur->so_oobmark >= orig->so_oobmark);
2232 /* Cannot VERIFY so_oobmsg; the proto might have sent up a new one */
2233 VERIFY(cur->so_pgrp == orig->so_pgrp);
2234 VERIFY(cur->so_peercred == orig->so_peercred);
2235 VERIFY(cur->so_cpid == orig->so_cpid);
2236 VERIFY(cur->so_zoneid == orig->so_zoneid);
2237 /* New data migth have arrived, but none should have been lost */
2238 VERIFY(cur->so_rcv_queued >= orig->so_rcv_queued);
2239 VERIFY(cur->so_rcv_q_head == orig->so_rcv_q_head);
2240 VERIFY(cur->so_rcv_head == orig->so_rcv_head);
2241 VERIFY(cur->so_proto_handle == orig->so_proto_handle);
2242 VERIFY(cur->so_downcalls == orig->so_downcalls);
2243 /* Cannot VERIFY so_proto_props; they can be updated by proto */
2244 }
2245 #endif
2246
2247 /*
2248 * so_tpi_fallback()
2249 *
2250 * This is the fallback initation routine; things start here.
2251 *
2252 * Basic strategy:
2253 * o Block new socket operations from coming in
2254 * o Allocate/initate info needed by TPI
2255 * o Quiesce the connection, at which point we sync
2256 * state and move data
2257 * o Change operations (sonodeops) associated with the socket
2258 * o Unblock threads waiting for the fallback to finish
2259 */
2260 int
so_tpi_fallback(struct sonode * so,struct cred * cr)2261 so_tpi_fallback(struct sonode *so, struct cred *cr)
2262 {
2263 int error;
2264 queue_t *q;
2265 struct sockparams *sp;
2266 struct sockparams *newsp = NULL;
2267 so_proto_fallback_func_t fbfunc;
2268 const char *devpath;
2269 boolean_t direct;
2270 struct sonode *nso;
2271 sock_quiesce_arg_t arg = { NULL, NULL };
2272 #ifdef DEBUG
2273 struct sonode origso;
2274 #endif
2275 error = 0;
2276 sp = so->so_sockparams;
2277 fbfunc = sp->sp_smod_info->smod_proto_fallback_func;
2278
2279 /*
2280 * Cannot fallback if the socket has active filters
2281 */
2282 if (so->so_filter_active > 0)
2283 return (EINVAL);
2284
2285 switch (so->so_family) {
2286 case AF_INET:
2287 devpath = sp->sp_smod_info->smod_fallback_devpath_v4;
2288 break;
2289 case AF_INET6:
2290 devpath = sp->sp_smod_info->smod_fallback_devpath_v6;
2291 break;
2292 default:
2293 return (EINVAL);
2294 }
2295
2296 /*
2297 * Fallback can only happen if the socket module has a TPI device
2298 * and fallback function.
2299 */
2300 if (devpath == NULL || fbfunc == NULL)
2301 return (EINVAL);
2302
2303 /*
2304 * Initiate fallback; upon success we know that no new requests
2305 * will come in from the user.
2306 */
2307 if (!so_start_fallback(so))
2308 return (EAGAIN);
2309 #ifdef DEBUG
2310 /*
2311 * Make a copy of the sonode in case we need to make an integrity
2312 * check later on.
2313 */
2314 bcopy(so, &origso, sizeof (*so));
2315 #endif
2316
2317 sp->sp_stats.sps_nfallback.value.ui64++;
2318
2319 newsp = sockparams_hold_ephemeral_bydev(so->so_family, so->so_type,
2320 so->so_protocol, devpath, KM_SLEEP, &error);
2321 if (error != 0)
2322 goto out;
2323
2324 if (so->so_direct != NULL) {
2325 sodirect_t *sodp = so->so_direct;
2326 mutex_enter(&so->so_lock);
2327
2328 so->so_direct->sod_enabled = B_FALSE;
2329 so->so_state &= ~SS_SODIRECT;
2330 ASSERT(sodp->sod_uioafh == NULL);
2331 mutex_exit(&so->so_lock);
2332 }
2333
2334 /* Turn sonode into a TPI socket */
2335 error = sotpi_convert_sonode(so, newsp, &direct, &q, cr);
2336 if (error != 0)
2337 goto out;
2338 /*
2339 * When it comes to urgent data we have two cases to deal with;
2340 * (1) The oob byte has already arrived, or (2) the protocol has
2341 * notified that oob data is pending, but it has not yet arrived.
2342 *
2343 * For (1) all we need to do is send a T_EXDATA_IND to indicate were
2344 * in the byte stream the oob byte is. For (2) we have to send a
2345 * SIGURG (M_PCSIG), followed by a zero-length mblk indicating whether
2346 * the oob byte will be the next byte from the protocol.
2347 *
2348 * So in the worst case we need two mblks, one for the signal, another
2349 * for mark indication. In that case we use the exdata_mp for the sig.
2350 */
2351 arg.soqa_exdata_mp = allocb_wait(sizeof (struct T_exdata_ind),
2352 BPRI_MED, STR_NOSIG, NULL);
2353 arg.soqa_urgmark_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
2354
2355 /*
2356 * Now tell the protocol to start using TPI. so_quiesced_cb be
2357 * called once it's safe to synchronize state.
2358 */
2359 DTRACE_PROBE1(proto__fallback__begin, struct sonode *, so);
2360 error = (*fbfunc)(so->so_proto_handle, q, direct, so_quiesced_cb,
2361 &arg);
2362 DTRACE_PROBE1(proto__fallback__end, struct sonode *, so);
2363
2364 if (error != 0) {
2365 /* protocol was unable to do a fallback, revert the sonode */
2366 sotpi_revert_sonode(so, cr);
2367 goto out;
2368 }
2369
2370 /*
2371 * Walk the accept queue and notify the proto that they should
2372 * fall back to TPI. The protocol will send up the T_CONN_IND.
2373 */
2374 nso = list_head(&so->so_acceptq_list);
2375 while (nso != NULL) {
2376 int rval;
2377 struct sonode *next;
2378
2379 if (arg.soqa_exdata_mp == NULL) {
2380 arg.soqa_exdata_mp =
2381 allocb_wait(sizeof (struct T_exdata_ind),
2382 BPRI_MED, STR_NOSIG, NULL);
2383 }
2384 if (arg.soqa_urgmark_mp == NULL) {
2385 arg.soqa_urgmark_mp = allocb_wait(0, BPRI_MED,
2386 STR_NOSIG, NULL);
2387 }
2388
2389 DTRACE_PROBE1(proto__fallback__begin, struct sonode *, nso);
2390 rval = (*fbfunc)(nso->so_proto_handle, NULL, direct,
2391 so_quiesced_cb, &arg);
2392 DTRACE_PROBE1(proto__fallback__end, struct sonode *, nso);
2393 if (rval != 0) {
2394 /* Abort the connection */
2395 zcmn_err(getzoneid(), CE_WARN,
2396 "Failed to convert socket in accept queue to TPI. "
2397 "Pid = %d\n", curproc->p_pid);
2398 next = list_next(&so->so_acceptq_list, nso);
2399 list_remove(&so->so_acceptq_list, nso);
2400 so->so_acceptq_len--;
2401
2402 (void) socket_close(nso, 0, CRED());
2403 socket_destroy(nso);
2404 nso = next;
2405 } else {
2406 nso = list_next(&so->so_acceptq_list, nso);
2407 }
2408 }
2409
2410 /*
2411 * Now flush the acceptq, this will destroy all sockets. They will
2412 * be recreated in sotpi_accept().
2413 */
2414 so_acceptq_flush(so, B_FALSE);
2415
2416 mutex_enter(&so->so_lock);
2417 so->so_state |= SS_FALLBACK_COMP;
2418 mutex_exit(&so->so_lock);
2419
2420 /*
2421 * Swap the sonode ops. Socket opertations that come in once this
2422 * is done will proceed without blocking.
2423 */
2424 so->so_ops = &sotpi_sonodeops;
2425
2426 /*
2427 * Wake up any threads stuck in poll. This is needed since the poll
2428 * head changes when the fallback happens (moves from the sonode to
2429 * the STREAMS head).
2430 */
2431 pollwakeup(&so->so_poll_list, POLLERR);
2432
2433 /*
2434 * When this non-STREAM socket was created we placed an extra ref on
2435 * the associated vnode to support asynchronous close. Drop that ref
2436 * here.
2437 */
2438 ASSERT(SOTOV(so)->v_count >= 2);
2439 VN_RELE(SOTOV(so));
2440 out:
2441 so_end_fallback(so);
2442
2443 if (error != 0) {
2444 #ifdef DEBUG
2445 so_integrity_check(so, &origso);
2446 #endif
2447 zcmn_err(getzoneid(), CE_WARN,
2448 "Failed to convert socket to TPI (err=%d). Pid = %d\n",
2449 error, curproc->p_pid);
2450 if (newsp != NULL)
2451 SOCKPARAMS_DEC_REF(newsp);
2452 }
2453 if (arg.soqa_exdata_mp != NULL)
2454 freemsg(arg.soqa_exdata_mp);
2455 if (arg.soqa_urgmark_mp != NULL)
2456 freemsg(arg.soqa_urgmark_mp);
2457
2458 return (error);
2459 }
2460