1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California.
6 * Copyright (c) 2004 The FreeBSD Foundation
7 * Copyright (c) 2004-2008 Robert N. M. Watson
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 /*
36 * Comments on the socket life cycle:
37 *
38 * soalloc() sets of socket layer state for a socket, called only by
39 * socreate() and sonewconn(). Socket layer private.
40 *
41 * sodealloc() tears down socket layer state for a socket, called only by
42 * sofree() and sonewconn(). Socket layer private.
43 *
44 * pr_attach() associates protocol layer state with an allocated socket;
45 * called only once, may fail, aborting socket allocation. This is called
46 * from socreate() and sonewconn(). Socket layer private.
47 *
48 * pr_detach() disassociates protocol layer state from an attached socket,
49 * and will be called exactly once for sockets in which pr_attach() has
50 * been successfully called. If pr_attach() returned an error,
51 * pr_detach() will not be called. Socket layer private.
52 *
53 * pr_abort() and pr_close() notify the protocol layer that the last
54 * consumer of a socket is starting to tear down the socket, and that the
55 * protocol should terminate the connection. Historically, pr_abort() also
56 * detached protocol state from the socket state, but this is no longer the
57 * case. pr_fdclose() is called when userspace invokes close(2) on a socket
58 * file descriptor.
59 *
60 * socreate() creates a socket and attaches protocol state. This is a public
61 * interface that may be used by socket layer consumers to create new
62 * sockets.
63 *
64 * sonewconn() creates a socket and attaches protocol state. This is a
65 * public interface that may be used by protocols to create new sockets when
66 * a new connection is received and will be available for accept() on a
67 * listen socket.
68 *
69 * soclose() destroys a socket after possibly waiting for it to disconnect.
70 * This is a public interface that socket consumers should use to close and
71 * release a socket when done with it.
72 *
73 * soabort() destroys a socket without waiting for it to disconnect (used
74 * only for incoming connections that are already partially or fully
75 * connected). This is used internally by the socket layer when clearing
76 * listen socket queues (due to overflow or close on the listen socket), but
77 * is also a public interface protocols may use to abort connections in
78 * their incomplete listen queues should they no longer be required. Sockets
79 * placed in completed connection listen queues should not be aborted for
80 * reasons described in the comment above the soclose() implementation. This
81 * is not a general purpose close routine, and except in the specific
82 * circumstances described here, should not be used.
83 *
84 * sofree() will free a socket and its protocol state if all references on
85 * the socket have been released, and is the public interface to attempt to
86 * free a socket when a reference is removed. This is a socket layer private
87 * interface.
88 *
89 * NOTE: In addition to socreate() and soclose(), which provide a single
90 * socket reference to the consumer to be managed as required, there are two
91 * calls to explicitly manage socket references, soref(), and sorele().
92 * Currently, these are generally required only when transitioning a socket
93 * from a listen queue to a file descriptor, in order to prevent garbage
94 * collection of the socket at an untimely moment. For a number of reasons,
95 * these interfaces are not preferred, and should be avoided.
96 *
97 * NOTE: With regard to VNETs the general rule is that callers do not set
98 * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
99 * sofree(), sorele(), sonewconn() and sorflush(), which are usually called
100 * from a pre-set VNET context. sopoll_generic() currently does not need a
101 * VNET context to be set.
102 */
103
104 #include <sys/cdefs.h>
105 #include "opt_inet.h"
106 #include "opt_inet6.h"
107 #include "opt_kern_tls.h"
108 #include "opt_ktrace.h"
109 #include "opt_sctp.h"
110
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/capsicum.h>
114 #include <sys/fcntl.h>
115 #include <sys/limits.h>
116 #include <sys/lock.h>
117 #include <sys/mac.h>
118 #include <sys/malloc.h>
119 #include <sys/mbuf.h>
120 #include <sys/mutex.h>
121 #include <sys/domain.h>
122 #include <sys/file.h> /* for struct knote */
123 #include <sys/hhook.h>
124 #include <sys/kernel.h>
125 #include <sys/khelp.h>
126 #include <sys/kthread.h>
127 #include <sys/ktls.h>
128 #include <sys/event.h>
129 #include <sys/eventhandler.h>
130 #include <sys/poll.h>
131 #include <sys/proc.h>
132 #include <sys/protosw.h>
133 #include <sys/sbuf.h>
134 #include <sys/socket.h>
135 #include <sys/socketvar.h>
136 #include <sys/resourcevar.h>
137 #include <net/route.h>
138 #include <sys/sched.h>
139 #include <sys/signalvar.h>
140 #include <sys/smp.h>
141 #include <sys/stat.h>
142 #include <sys/sx.h>
143 #include <sys/sysctl.h>
144 #include <sys/taskqueue.h>
145 #include <sys/uio.h>
146 #include <sys/un.h>
147 #include <sys/unpcb.h>
148 #include <sys/jail.h>
149 #include <sys/syslog.h>
150 #include <netinet/in.h>
151 #include <netinet/in_pcb.h>
152 #include <netinet/tcp.h>
153
154 #include <net/vnet.h>
155
156 #include <security/mac/mac_framework.h>
157 #include <security/mac/mac_internal.h>
158
159 #include <vm/uma.h>
160
161 #ifdef COMPAT_FREEBSD32
162 #include <sys/mount.h>
163 #include <sys/sysent.h>
164 #include <compat/freebsd32/freebsd32.h>
165 #endif
166
167 static int soreceive_generic_locked(struct socket *so,
168 struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
169 struct mbuf **controlp, int *flagsp);
170 static int soreceive_rcvoob(struct socket *so, struct uio *uio,
171 int flags);
172 static int soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
173 struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
174 struct mbuf **controlp, int flags);
175 static int sosend_generic_locked(struct socket *so, struct sockaddr *addr,
176 struct uio *uio, struct mbuf *top, struct mbuf *control,
177 int flags, struct thread *td);
178 static void so_rdknl_lock(void *);
179 static void so_rdknl_unlock(void *);
180 static void so_rdknl_assert_lock(void *, int);
181 static void so_wrknl_lock(void *);
182 static void so_wrknl_unlock(void *);
183 static void so_wrknl_assert_lock(void *, int);
184
185 static void filt_sordetach(struct knote *kn);
186 static int filt_soread(struct knote *kn, long hint);
187 static void filt_sowdetach(struct knote *kn);
188 static int filt_sowrite(struct knote *kn, long hint);
189 static int filt_soempty(struct knote *kn, long hint);
190
191 static const struct filterops soread_filtops = {
192 .f_isfd = 1,
193 .f_detach = filt_sordetach,
194 .f_event = filt_soread,
195 .f_copy = knote_triv_copy,
196 };
197 static const struct filterops sowrite_filtops = {
198 .f_isfd = 1,
199 .f_detach = filt_sowdetach,
200 .f_event = filt_sowrite,
201 .f_copy = knote_triv_copy,
202 };
203 static const struct filterops soempty_filtops = {
204 .f_isfd = 1,
205 .f_detach = filt_sowdetach,
206 .f_event = filt_soempty,
207 .f_copy = knote_triv_copy,
208 };
209
210 so_gen_t so_gencnt; /* generation count for sockets */
211
212 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
213 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
214
215 #define VNET_SO_ASSERT(so) \
216 VNET_ASSERT(curvnet != NULL, \
217 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
218
219 #ifdef SOCKET_HHOOK
220 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
221 #define V_socket_hhh VNET(socket_hhh)
222 static inline int hhook_run_socket(struct socket *, void *, int32_t);
223 #endif
224
225 #ifdef COMPAT_FREEBSD32
226 #ifdef __amd64__
227 /* off_t has 4-byte alignment on i386 but not on other 32-bit platforms. */
228 #define __splice32_packed __packed
229 #else
230 #define __splice32_packed
231 #endif
232 struct splice32 {
233 int32_t sp_fd;
234 int64_t sp_max;
235 struct timeval32 sp_idle;
236 } __splice32_packed;
237 #undef __splice32_packed
238 #endif
239
240 /*
241 * Limit on the number of connections in the listen queue waiting
242 * for accept(2).
243 * NB: The original sysctl somaxconn is still available but hidden
244 * to prevent confusion about the actual purpose of this number.
245 */
246 VNET_DEFINE_STATIC(u_int, somaxconn) = SOMAXCONN;
247 #define V_somaxconn VNET(somaxconn)
248
249 static int
sysctl_somaxconn(SYSCTL_HANDLER_ARGS)250 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
251 {
252 int error;
253 u_int val;
254
255 val = V_somaxconn;
256 error = sysctl_handle_int(oidp, &val, 0, req);
257 if (error || !req->newptr )
258 return (error);
259
260 /*
261 * The purpose of the UINT_MAX / 3 limit, is so that the formula
262 * 3 * sol_qlimit / 2
263 * below, will not overflow.
264 */
265
266 if (val < 1 || val > UINT_MAX / 3)
267 return (EINVAL);
268
269 V_somaxconn = val;
270 return (0);
271 }
272 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
273 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
274 sysctl_somaxconn, "IU",
275 "Maximum listen socket pending connection accept queue size");
276 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
277 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0,
278 sizeof(u_int), sysctl_somaxconn, "IU",
279 "Maximum listen socket pending connection accept queue size (compat)");
280
281 static u_int numopensockets;
282 static int
sysctl_numopensockets(SYSCTL_HANDLER_ARGS)283 sysctl_numopensockets(SYSCTL_HANDLER_ARGS)
284 {
285 u_int val;
286
287 #ifdef VIMAGE
288 if(!IS_DEFAULT_VNET(curvnet))
289 val = curvnet->vnet_sockcnt;
290 else
291 #endif
292 val = numopensockets;
293 return (sysctl_handle_int(oidp, &val, 0, req));
294 }
295 SYSCTL_PROC(_kern_ipc, OID_AUTO, numopensockets,
296 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
297 sysctl_numopensockets, "IU", "Number of open sockets");
298
299 /*
300 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
301 * so_gencnt field.
302 */
303 static struct mtx so_global_mtx;
304 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
305
306 /*
307 * General IPC sysctl name space, used by sockets and a variety of other IPC
308 * types.
309 */
310 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
311 "IPC");
312
313 /*
314 * Initialize the socket subsystem and set up the socket
315 * memory allocator.
316 */
317 static uma_zone_t socket_zone;
318 int maxsockets;
319
320 static void
socket_zone_change(void * tag)321 socket_zone_change(void *tag)
322 {
323
324 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
325 }
326
327 static int splice_init_state;
328 static struct sx splice_init_lock;
329 SX_SYSINIT(splice_init_lock, &splice_init_lock, "splice_init");
330
331 static SYSCTL_NODE(_kern_ipc, OID_AUTO, splice, CTLFLAG_RW, 0,
332 "Settings relating to the SO_SPLICE socket option");
333
334 static bool splice_receive_stream = true;
335 SYSCTL_BOOL(_kern_ipc_splice, OID_AUTO, receive_stream, CTLFLAG_RWTUN,
336 &splice_receive_stream, 0,
337 "Use soreceive_stream() for stream splices");
338
339 static uma_zone_t splice_zone;
340 static struct proc *splice_proc;
341 struct splice_wq {
342 struct mtx mtx;
343 STAILQ_HEAD(, so_splice) head;
344 bool running;
345 } __aligned(CACHE_LINE_SIZE);
346 static struct splice_wq *splice_wq;
347 static uint32_t splice_index = 0;
348
349 static void so_splice_timeout(void *arg, int pending);
350 static void so_splice_xfer(struct so_splice *s);
351 static int so_unsplice(struct socket *so, bool timeout);
352
353 static void
splice_work_thread(void * ctx)354 splice_work_thread(void *ctx)
355 {
356 struct splice_wq *wq = ctx;
357 struct so_splice *s, *s_temp;
358 STAILQ_HEAD(, so_splice) local_head;
359 int cpu;
360
361 cpu = wq - splice_wq;
362 if (bootverbose)
363 printf("starting so_splice worker thread for CPU %d\n", cpu);
364
365 for (;;) {
366 mtx_lock(&wq->mtx);
367 while (STAILQ_EMPTY(&wq->head)) {
368 wq->running = false;
369 mtx_sleep(wq, &wq->mtx, 0, "-", 0);
370 wq->running = true;
371 }
372 STAILQ_INIT(&local_head);
373 STAILQ_CONCAT(&local_head, &wq->head);
374 STAILQ_INIT(&wq->head);
375 mtx_unlock(&wq->mtx);
376 STAILQ_FOREACH_SAFE(s, &local_head, next, s_temp) {
377 mtx_lock(&s->mtx);
378 CURVNET_SET(s->src->so_vnet);
379 so_splice_xfer(s);
380 CURVNET_RESTORE();
381 }
382 }
383 }
384
385 static void
so_splice_dispatch_async(struct so_splice * sp)386 so_splice_dispatch_async(struct so_splice *sp)
387 {
388 struct splice_wq *wq;
389 bool running;
390
391 wq = &splice_wq[sp->wq_index];
392 mtx_lock(&wq->mtx);
393 STAILQ_INSERT_TAIL(&wq->head, sp, next);
394 running = wq->running;
395 mtx_unlock(&wq->mtx);
396 if (!running)
397 wakeup(wq);
398 }
399
400 void
so_splice_dispatch(struct so_splice * sp)401 so_splice_dispatch(struct so_splice *sp)
402 {
403 mtx_assert(&sp->mtx, MA_OWNED);
404
405 if (sp->state != SPLICE_IDLE) {
406 mtx_unlock(&sp->mtx);
407 } else {
408 sp->state = SPLICE_QUEUED;
409 mtx_unlock(&sp->mtx);
410 so_splice_dispatch_async(sp);
411 }
412 }
413
414 static int
splice_zinit(void * mem,int size __unused,int flags __unused)415 splice_zinit(void *mem, int size __unused, int flags __unused)
416 {
417 struct so_splice *s;
418
419 s = (struct so_splice *)mem;
420 mtx_init(&s->mtx, "so_splice", NULL, MTX_DEF);
421 return (0);
422 }
423
424 static void
splice_zfini(void * mem,int size)425 splice_zfini(void *mem, int size)
426 {
427 struct so_splice *s;
428
429 s = (struct so_splice *)mem;
430 mtx_destroy(&s->mtx);
431 }
432
433 static int
splice_init(void)434 splice_init(void)
435 {
436 struct thread *td;
437 int error, i, state;
438
439 state = atomic_load_acq_int(&splice_init_state);
440 if (__predict_true(state > 0))
441 return (0);
442 if (state < 0)
443 return (ENXIO);
444 sx_xlock(&splice_init_lock);
445 if (splice_init_state != 0) {
446 sx_xunlock(&splice_init_lock);
447 return (0);
448 }
449
450 splice_zone = uma_zcreate("splice", sizeof(struct so_splice), NULL,
451 NULL, splice_zinit, splice_zfini, UMA_ALIGN_CACHE, 0);
452
453 splice_wq = mallocarray(mp_maxid + 1, sizeof(*splice_wq), M_TEMP,
454 M_WAITOK | M_ZERO);
455
456 /*
457 * Initialize the workqueues to run the splice work. We create a
458 * work queue for each CPU.
459 */
460 CPU_FOREACH(i) {
461 STAILQ_INIT(&splice_wq[i].head);
462 mtx_init(&splice_wq[i].mtx, "splice work queue", NULL, MTX_DEF);
463 }
464
465 /* Start kthreads for each workqueue. */
466 error = 0;
467 CPU_FOREACH(i) {
468 error = kproc_kthread_add(splice_work_thread, &splice_wq[i],
469 &splice_proc, &td, 0, 0, "so_splice", "thr_%d", i);
470 if (error) {
471 printf("Can't add so_splice thread %d error %d\n",
472 i, error);
473 break;
474 }
475
476 /*
477 * It's possible to create loops with SO_SPLICE; ensure that
478 * worker threads aren't able to starve the system too easily.
479 */
480 thread_lock(td);
481 sched_prio(td, PUSER);
482 thread_unlock(td);
483 }
484
485 splice_init_state = error != 0 ? -1 : 1;
486 sx_xunlock(&splice_init_lock);
487
488 return (error);
489 }
490
491 /*
492 * Lock a pair of socket's I/O locks for splicing. Avoid blocking while holding
493 * one lock in order to avoid potential deadlocks in case there is some other
494 * code path which acquires more than one I/O lock at a time.
495 */
496 static void
splice_lock_pair(struct socket * so_src,struct socket * so_dst)497 splice_lock_pair(struct socket *so_src, struct socket *so_dst)
498 {
499 int error;
500
501 for (;;) {
502 error = SOCK_IO_SEND_LOCK(so_dst, SBL_WAIT | SBL_NOINTR);
503 KASSERT(error == 0,
504 ("%s: failed to lock send I/O lock: %d", __func__, error));
505 error = SOCK_IO_RECV_LOCK(so_src, 0);
506 KASSERT(error == 0 || error == EWOULDBLOCK,
507 ("%s: failed to lock recv I/O lock: %d", __func__, error));
508 if (error == 0)
509 break;
510 SOCK_IO_SEND_UNLOCK(so_dst);
511
512 error = SOCK_IO_RECV_LOCK(so_src, SBL_WAIT | SBL_NOINTR);
513 KASSERT(error == 0,
514 ("%s: failed to lock recv I/O lock: %d", __func__, error));
515 error = SOCK_IO_SEND_LOCK(so_dst, 0);
516 KASSERT(error == 0 || error == EWOULDBLOCK,
517 ("%s: failed to lock send I/O lock: %d", __func__, error));
518 if (error == 0)
519 break;
520 SOCK_IO_RECV_UNLOCK(so_src);
521 }
522 }
523
524 static void
splice_unlock_pair(struct socket * so_src,struct socket * so_dst)525 splice_unlock_pair(struct socket *so_src, struct socket *so_dst)
526 {
527 SOCK_IO_RECV_UNLOCK(so_src);
528 SOCK_IO_SEND_UNLOCK(so_dst);
529 }
530
531 /*
532 * Move data from the source to the sink. Assumes that both of the relevant
533 * socket I/O locks are held.
534 */
535 static int
so_splice_xfer_data(struct socket * so_src,struct socket * so_dst,off_t max,ssize_t * lenp)536 so_splice_xfer_data(struct socket *so_src, struct socket *so_dst, off_t max,
537 ssize_t *lenp)
538 {
539 struct uio uio;
540 struct mbuf *m;
541 struct sockbuf *sb_src, *sb_dst;
542 ssize_t len;
543 long space;
544 int error, flags;
545
546 SOCK_IO_RECV_ASSERT_LOCKED(so_src);
547 SOCK_IO_SEND_ASSERT_LOCKED(so_dst);
548
549 error = 0;
550 m = NULL;
551 memset(&uio, 0, sizeof(uio));
552
553 sb_src = &so_src->so_rcv;
554 sb_dst = &so_dst->so_snd;
555
556 space = sbspace(sb_dst);
557 if (space < 0)
558 space = 0;
559 len = MIN(max, MIN(space, sbavail(sb_src)));
560 if (len == 0) {
561 SOCK_RECVBUF_LOCK(so_src);
562 if ((sb_src->sb_state & SBS_CANTRCVMORE) != 0)
563 error = EPIPE;
564 SOCK_RECVBUF_UNLOCK(so_src);
565 } else {
566 flags = MSG_DONTWAIT;
567 uio.uio_resid = len;
568 if (splice_receive_stream && sb_src->sb_tls_info == NULL) {
569 error = soreceive_stream_locked(so_src, sb_src, NULL,
570 &uio, &m, NULL, flags);
571 } else {
572 error = soreceive_generic_locked(so_src, NULL,
573 &uio, &m, NULL, &flags);
574 }
575 if (error != 0 && m != NULL) {
576 m_freem(m);
577 m = NULL;
578 }
579 }
580 if (m != NULL) {
581 len -= uio.uio_resid;
582 error = sosend_generic_locked(so_dst, NULL, NULL, m, NULL,
583 MSG_DONTWAIT, curthread);
584 } else if (error == 0) {
585 len = 0;
586 SOCK_SENDBUF_LOCK(so_dst);
587 if ((sb_dst->sb_state & SBS_CANTSENDMORE) != 0)
588 error = EPIPE;
589 SOCK_SENDBUF_UNLOCK(so_dst);
590 }
591 if (error == 0)
592 *lenp = len;
593 return (error);
594 }
595
596 /*
597 * Transfer data from the source to the sink.
598 */
599 static void
so_splice_xfer(struct so_splice * sp)600 so_splice_xfer(struct so_splice *sp)
601 {
602 struct socket *so_src, *so_dst;
603 off_t max;
604 ssize_t len;
605 int error;
606
607 mtx_assert(&sp->mtx, MA_OWNED);
608 KASSERT(sp->state == SPLICE_QUEUED || sp->state == SPLICE_CLOSING,
609 ("so_splice_xfer: invalid state %d", sp->state));
610 KASSERT(sp->max != 0, ("so_splice_xfer: max == 0"));
611
612 if (sp->state == SPLICE_CLOSING) {
613 /* Userspace asked us to close the splice. */
614 goto closing;
615 }
616
617 sp->state = SPLICE_RUNNING;
618 so_src = sp->src;
619 so_dst = sp->dst;
620 max = sp->max > 0 ? sp->max - so_src->so_splice_sent : OFF_MAX;
621 if (max < 0)
622 max = 0;
623
624 /*
625 * Lock the sockets in order to block userspace from doing anything
626 * sneaky. If an error occurs or one of the sockets can no longer
627 * transfer data, we will automatically unsplice.
628 */
629 mtx_unlock(&sp->mtx);
630 splice_lock_pair(so_src, so_dst);
631
632 error = so_splice_xfer_data(so_src, so_dst, max, &len);
633
634 mtx_lock(&sp->mtx);
635
636 /*
637 * Update our stats while still holding the socket locks. This
638 * synchronizes with getsockopt(SO_SPLICE), see the comment there.
639 */
640 if (error == 0) {
641 KASSERT(len >= 0, ("%s: len %zd < 0", __func__, len));
642 so_src->so_splice_sent += len;
643 }
644 splice_unlock_pair(so_src, so_dst);
645
646 switch (sp->state) {
647 case SPLICE_CLOSING:
648 closing:
649 sp->state = SPLICE_CLOSED;
650 wakeup(sp);
651 mtx_unlock(&sp->mtx);
652 break;
653 case SPLICE_RUNNING:
654 if (error != 0 ||
655 (sp->max > 0 && so_src->so_splice_sent >= sp->max)) {
656 sp->state = SPLICE_EXCEPTION;
657 soref(so_src);
658 mtx_unlock(&sp->mtx);
659 (void)so_unsplice(so_src, false);
660 sorele(so_src);
661 } else {
662 /*
663 * Locklessly check for additional bytes in the source's
664 * receive buffer and queue more work if possible. We
665 * may end up queuing needless work, but that's ok, and
666 * if we race with a thread inserting more data into the
667 * buffer and observe sbavail() == 0, the splice mutex
668 * ensures that splice_push() will queue more work for
669 * us.
670 */
671 if (sbavail(&so_src->so_rcv) > 0 &&
672 sbspace(&so_dst->so_snd) > 0) {
673 sp->state = SPLICE_QUEUED;
674 mtx_unlock(&sp->mtx);
675 so_splice_dispatch_async(sp);
676 } else {
677 sp->state = SPLICE_IDLE;
678 mtx_unlock(&sp->mtx);
679 }
680 }
681 break;
682 default:
683 __assert_unreachable();
684 }
685 }
686
687 static void
socket_init(void * tag)688 socket_init(void *tag)
689 {
690
691 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
692 NULL, NULL, UMA_ALIGN_PTR, 0);
693 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
694 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
695 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
696 EVENTHANDLER_PRI_FIRST);
697 }
698 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
699
700 #ifdef SOCKET_HHOOK
701 static void
socket_hhook_register(int subtype)702 socket_hhook_register(int subtype)
703 {
704
705 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
706 &V_socket_hhh[subtype],
707 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
708 printf("%s: WARNING: unable to register hook\n", __func__);
709 }
710
711 static void
socket_hhook_deregister(int subtype)712 socket_hhook_deregister(int subtype)
713 {
714
715 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
716 printf("%s: WARNING: unable to deregister hook\n", __func__);
717 }
718
719 static void
socket_vnet_init(const void * unused __unused)720 socket_vnet_init(const void *unused __unused)
721 {
722 int i;
723
724 /* We expect a contiguous range */
725 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
726 socket_hhook_register(i);
727 }
728 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
729 socket_vnet_init, NULL);
730
731 static void
socket_vnet_uninit(const void * unused __unused)732 socket_vnet_uninit(const void *unused __unused)
733 {
734 int i;
735
736 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
737 socket_hhook_deregister(i);
738 }
739 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
740 socket_vnet_uninit, NULL);
741 #endif /* SOCKET_HHOOK */
742
743 /*
744 * Initialise maxsockets. This SYSINIT must be run after
745 * tunable_mbinit().
746 */
747 static void
init_maxsockets(void * ignored)748 init_maxsockets(void *ignored)
749 {
750
751 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
752 maxsockets = imax(maxsockets, maxfiles);
753 }
754 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
755
756 /*
757 * Sysctl to get and set the maximum global sockets limit. Notify protocols
758 * of the change so that they can update their dependent limits as required.
759 */
760 static int
sysctl_maxsockets(SYSCTL_HANDLER_ARGS)761 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
762 {
763 int error, newmaxsockets;
764
765 newmaxsockets = maxsockets;
766 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
767 if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
768 if (newmaxsockets > maxsockets &&
769 newmaxsockets <= maxfiles) {
770 maxsockets = newmaxsockets;
771 EVENTHANDLER_INVOKE(maxsockets_change);
772 } else
773 error = EINVAL;
774 }
775 return (error);
776 }
777 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
778 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
779 &maxsockets, 0, sysctl_maxsockets, "IU",
780 "Maximum number of sockets available");
781
782 /*
783 * Socket operation routines. These routines are called by the routines in
784 * sys_socket.c or from a system process, and implement the semantics of
785 * socket operations by switching out to the protocol specific routines.
786 */
787
788 /*
789 * Get a socket structure from our zone, and initialize it. Note that it
790 * would probably be better to allocate socket and PCB at the same time, but
791 * I'm not convinced that all the protocols can be easily modified to do
792 * this.
793 *
794 * soalloc() returns a socket with a ref count of 0.
795 */
796 static struct socket *
soalloc(struct vnet * vnet)797 soalloc(struct vnet *vnet)
798 {
799 struct socket *so;
800
801 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
802 if (so == NULL)
803 return (NULL);
804 #ifdef MAC
805 if (mac_socket_init(so, M_NOWAIT) != 0) {
806 uma_zfree(socket_zone, so);
807 return (NULL);
808 }
809 #endif
810 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
811 uma_zfree(socket_zone, so);
812 return (NULL);
813 }
814
815 /*
816 * The socket locking protocol allows to lock 2 sockets at a time,
817 * however, the first one must be a listening socket. WITNESS lacks
818 * a feature to change class of an existing lock, so we use DUPOK.
819 */
820 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
821 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
822 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
823 so->so_rcv.sb_sel = &so->so_rdsel;
824 so->so_snd.sb_sel = &so->so_wrsel;
825 sx_init(&so->so_snd_sx, "so_snd_sx");
826 sx_init(&so->so_rcv_sx, "so_rcv_sx");
827 TAILQ_INIT(&so->so_snd.sb_aiojobq);
828 TAILQ_INIT(&so->so_rcv.sb_aiojobq);
829 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
830 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
831 #ifdef VIMAGE
832 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
833 __func__, __LINE__, so));
834 so->so_vnet = vnet;
835 #endif
836 #ifdef SOCKET_HHOOK
837 /* We shouldn't need the so_global_mtx */
838 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
839 /* Do we need more comprehensive error returns? */
840 uma_zfree(socket_zone, so);
841 return (NULL);
842 }
843 #endif
844 mtx_lock(&so_global_mtx);
845 so->so_gencnt = ++so_gencnt;
846 ++numopensockets;
847 #ifdef VIMAGE
848 vnet->vnet_sockcnt++;
849 #endif
850 mtx_unlock(&so_global_mtx);
851
852 return (so);
853 }
854
855 /*
856 * Free the storage associated with a socket at the socket layer, tear down
857 * locks, labels, etc. All protocol state is assumed already to have been
858 * torn down (and possibly never set up) by the caller.
859 */
860 void
sodealloc(struct socket * so)861 sodealloc(struct socket *so)
862 {
863
864 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
865 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
866
867 mtx_lock(&so_global_mtx);
868 so->so_gencnt = ++so_gencnt;
869 --numopensockets; /* Could be below, but faster here. */
870 #ifdef VIMAGE
871 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
872 __func__, __LINE__, so));
873 so->so_vnet->vnet_sockcnt--;
874 #endif
875 mtx_unlock(&so_global_mtx);
876 #ifdef MAC
877 mac_socket_destroy(so);
878 #endif
879 #ifdef SOCKET_HHOOK
880 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
881 #endif
882
883 khelp_destroy_osd(&so->osd);
884 if (SOLISTENING(so)) {
885 if (so->sol_accept_filter != NULL)
886 accept_filt_setopt(so, NULL);
887 } else {
888 if (so->so_rcv.sb_hiwat)
889 (void)chgsbsize(so->so_cred->cr_uidinfo,
890 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
891 if (so->so_snd.sb_hiwat)
892 (void)chgsbsize(so->so_cred->cr_uidinfo,
893 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
894 sx_destroy(&so->so_snd_sx);
895 sx_destroy(&so->so_rcv_sx);
896 mtx_destroy(&so->so_snd_mtx);
897 mtx_destroy(&so->so_rcv_mtx);
898 }
899 crfree(so->so_cred);
900 mtx_destroy(&so->so_lock);
901 uma_zfree(socket_zone, so);
902 }
903
904 /*
905 * socreate returns a socket with a ref count of 1 and a file descriptor
906 * reference. The socket should be closed with soclose().
907 */
908 int
socreate(int dom,struct socket ** aso,int type,int proto,struct ucred * cred,struct thread * td)909 socreate(int dom, struct socket **aso, int type, int proto,
910 struct ucred *cred, struct thread *td)
911 {
912 struct protosw *prp;
913 struct socket *so;
914 int error;
915
916 /*
917 * XXX: divert(4) historically abused PF_INET. Keep this compatibility
918 * shim until all applications have been updated.
919 */
920 if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
921 proto == IPPROTO_DIVERT)) {
922 dom = PF_DIVERT;
923 printf("%s uses obsolete way to create divert(4) socket\n",
924 td->td_proc->p_comm);
925 }
926
927 prp = pffindproto(dom, type, proto);
928 if (prp == NULL) {
929 /* No support for domain. */
930 if (pffinddomain(dom) == NULL)
931 return (EAFNOSUPPORT);
932 /* No support for socket type. */
933 if (proto == 0 && type != 0)
934 return (EPROTOTYPE);
935 return (EPROTONOSUPPORT);
936 }
937
938 MPASS(prp->pr_attach);
939
940 if ((prp->pr_flags & PR_CAPATTACH) == 0) {
941 if (CAP_TRACING(td))
942 ktrcapfail(CAPFAIL_PROTO, &proto);
943 if (IN_CAPABILITY_MODE(td))
944 return (ECAPMODE);
945 }
946
947 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
948 return (EPROTONOSUPPORT);
949
950 so = soalloc(CRED_TO_VNET(cred));
951 if (so == NULL)
952 return (ENOBUFS);
953
954 so->so_type = type;
955 so->so_cred = crhold(cred);
956 if ((prp->pr_domain->dom_family == PF_INET) ||
957 (prp->pr_domain->dom_family == PF_INET6) ||
958 (prp->pr_domain->dom_family == PF_ROUTE))
959 so->so_fibnum = td->td_proc->p_fibnum;
960 else
961 so->so_fibnum = 0;
962 so->so_proto = prp;
963 #ifdef MAC
964 mac_socket_create(cred, so);
965 #endif
966 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
967 so_rdknl_assert_lock);
968 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
969 so_wrknl_assert_lock);
970 if ((prp->pr_flags & PR_SOCKBUF) == 0) {
971 so->so_snd.sb_mtx = &so->so_snd_mtx;
972 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
973 }
974 /*
975 * Auto-sizing of socket buffers is managed by the protocols and
976 * the appropriate flags must be set in the pr_attach() method.
977 */
978 CURVNET_SET(so->so_vnet);
979 error = prp->pr_attach(so, proto, td);
980 CURVNET_RESTORE();
981 if (error) {
982 sodealloc(so);
983 return (error);
984 }
985 soref(so);
986 *aso = so;
987 return (0);
988 }
989
990 #ifdef REGRESSION
991 static int regression_sonewconn_earlytest = 1;
992 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
993 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
994 #endif
995
996 static int sooverprio = LOG_DEBUG;
997 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW,
998 &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable");
999
1000 static struct timeval overinterval = { 60, 0 };
1001 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
1002 &overinterval,
1003 "Delay in seconds between warnings for listen socket overflows");
1004
1005 /*
1006 * When an attempt at a new connection is noted on a socket which supports
1007 * accept(2), the protocol has two options:
1008 * 1) Call legacy sonewconn() function, which would call protocol attach
1009 * method, same as used for socket(2).
1010 * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
1011 * and then call solisten_enqueue().
1012 *
1013 * Note: the ref count on the socket is 0 on return.
1014 */
1015 struct socket *
solisten_clone(struct socket * head)1016 solisten_clone(struct socket *head)
1017 {
1018 struct sbuf descrsb;
1019 struct socket *so;
1020 int len, overcount;
1021 u_int qlen;
1022 const char localprefix[] = "local:";
1023 char descrbuf[SUNPATHLEN + sizeof(localprefix)];
1024 #if defined(INET6)
1025 char addrbuf[INET6_ADDRSTRLEN];
1026 #elif defined(INET)
1027 char addrbuf[INET_ADDRSTRLEN];
1028 #endif
1029 bool dolog, over;
1030
1031 SOLISTEN_LOCK(head);
1032 over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
1033 #ifdef REGRESSION
1034 if (regression_sonewconn_earlytest && over) {
1035 #else
1036 if (over) {
1037 #endif
1038 head->sol_overcount++;
1039 dolog = (sooverprio >= 0) &&
1040 !!ratecheck(&head->sol_lastover, &overinterval);
1041
1042 /*
1043 * If we're going to log, copy the overflow count and queue
1044 * length from the listen socket before dropping the lock.
1045 * Also, reset the overflow count.
1046 */
1047 if (dolog) {
1048 overcount = head->sol_overcount;
1049 head->sol_overcount = 0;
1050 qlen = head->sol_qlen;
1051 }
1052 SOLISTEN_UNLOCK(head);
1053
1054 if (dolog) {
1055 /*
1056 * Try to print something descriptive about the
1057 * socket for the error message.
1058 */
1059 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
1060 SBUF_FIXEDLEN);
1061 switch (head->so_proto->pr_domain->dom_family) {
1062 #if defined(INET) || defined(INET6)
1063 #ifdef INET
1064 case AF_INET:
1065 #endif
1066 #ifdef INET6
1067 case AF_INET6:
1068 if (head->so_proto->pr_domain->dom_family ==
1069 AF_INET6 ||
1070 (sotoinpcb(head)->inp_inc.inc_flags &
1071 INC_ISIPV6)) {
1072 ip6_sprintf(addrbuf,
1073 &sotoinpcb(head)->inp_inc.inc6_laddr);
1074 sbuf_printf(&descrsb, "[%s]", addrbuf);
1075 } else
1076 #endif
1077 {
1078 #ifdef INET
1079 inet_ntoa_r(
1080 sotoinpcb(head)->inp_inc.inc_laddr,
1081 addrbuf);
1082 sbuf_cat(&descrsb, addrbuf);
1083 #endif
1084 }
1085 sbuf_printf(&descrsb, ":%hu (proto %u)",
1086 ntohs(sotoinpcb(head)->inp_inc.inc_lport),
1087 head->so_proto->pr_protocol);
1088 break;
1089 #endif /* INET || INET6 */
1090 case AF_UNIX:
1091 sbuf_cat(&descrsb, localprefix);
1092 if (sotounpcb(head)->unp_addr != NULL)
1093 len =
1094 sotounpcb(head)->unp_addr->sun_len -
1095 offsetof(struct sockaddr_un,
1096 sun_path);
1097 else
1098 len = 0;
1099 if (len > 0)
1100 sbuf_bcat(&descrsb,
1101 sotounpcb(head)->unp_addr->sun_path,
1102 len);
1103 else
1104 sbuf_cat(&descrsb, "(unknown)");
1105 break;
1106 }
1107
1108 /*
1109 * If we can't print something more specific, at least
1110 * print the domain name.
1111 */
1112 if (sbuf_finish(&descrsb) != 0 ||
1113 sbuf_len(&descrsb) <= 0) {
1114 sbuf_clear(&descrsb);
1115 sbuf_cat(&descrsb,
1116 head->so_proto->pr_domain->dom_name ?:
1117 "unknown");
1118 sbuf_finish(&descrsb);
1119 }
1120 KASSERT(sbuf_len(&descrsb) > 0,
1121 ("%s: sbuf creation failed", __func__));
1122 /*
1123 * Preserve the historic listen queue overflow log
1124 * message, that starts with "sonewconn:". It has
1125 * been known to sysadmins for years and also test
1126 * sys/kern/sonewconn_overflow checks for it.
1127 */
1128 if (head->so_cred == 0) {
1129 log(LOG_PRI(sooverprio),
1130 "sonewconn: pcb %p (%s): "
1131 "Listen queue overflow: %i already in "
1132 "queue awaiting acceptance (%d "
1133 "occurrences)\n", head->so_pcb,
1134 sbuf_data(&descrsb),
1135 qlen, overcount);
1136 } else {
1137 log(LOG_PRI(sooverprio),
1138 "sonewconn: pcb %p (%s): "
1139 "Listen queue overflow: "
1140 "%i already in queue awaiting acceptance "
1141 "(%d occurrences), euid %d, rgid %d, jail %s\n",
1142 head->so_pcb, sbuf_data(&descrsb), qlen,
1143 overcount, head->so_cred->cr_uid,
1144 head->so_cred->cr_rgid,
1145 head->so_cred->cr_prison ?
1146 head->so_cred->cr_prison->pr_name :
1147 "not_jailed");
1148 }
1149 sbuf_delete(&descrsb);
1150
1151 overcount = 0;
1152 }
1153
1154 return (NULL);
1155 }
1156 SOLISTEN_UNLOCK(head);
1157 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
1158 __func__, head));
1159 so = soalloc(head->so_vnet);
1160 if (so == NULL) {
1161 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1162 "limit reached or out of memory\n",
1163 __func__, head->so_pcb);
1164 return (NULL);
1165 }
1166 so->so_listen = head;
1167 so->so_type = head->so_type;
1168 /*
1169 * POSIX is ambiguous on what options an accept(2)ed socket should
1170 * inherit from the listener. Words "create a new socket" may be
1171 * interpreted as not inheriting anything. Best programming practice
1172 * for application developers is to not rely on such inheritance.
1173 * FreeBSD had historically inherited all so_options excluding
1174 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options,
1175 * including those completely irrelevant to a new born socket. For
1176 * compatibility with older versions we will inherit a list of
1177 * meaningful options.
1178 * The crucial bit to inherit is SO_ACCEPTFILTER. We need it present
1179 * in the child socket for soisconnected() promoting socket from the
1180 * incomplete queue to complete. It will be cleared before the child
1181 * gets available to accept(2).
1182 */
1183 so->so_options = head->so_options & (SO_ACCEPTFILTER | SO_KEEPALIVE |
1184 SO_DONTROUTE | SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE);
1185 so->so_linger = head->so_linger;
1186 so->so_state = head->so_state;
1187 so->so_fibnum = head->so_fibnum;
1188 so->so_proto = head->so_proto;
1189 so->so_cred = crhold(head->so_cred);
1190 #ifdef SOCKET_HHOOK
1191 if (V_socket_hhh[HHOOK_SOCKET_NEWCONN]->hhh_nhooks > 0) {
1192 if (hhook_run_socket(so, head, HHOOK_SOCKET_NEWCONN)) {
1193 sodealloc(so);
1194 log(LOG_DEBUG, "%s: hhook run failed\n", __func__);
1195 return (NULL);
1196 }
1197 }
1198 #endif
1199 #ifdef MAC
1200 mac_socket_newconn(head, so);
1201 #endif
1202 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1203 so_rdknl_assert_lock);
1204 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1205 so_wrknl_assert_lock);
1206 VNET_SO_ASSERT(head);
1207 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
1208 sodealloc(so);
1209 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1210 __func__, head->so_pcb);
1211 return (NULL);
1212 }
1213 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
1214 so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
1215 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
1216 so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
1217 so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
1218 so->so_snd.sb_flags = head->sol_sbsnd_flags &
1219 (SB_AUTOSIZE | SB_AUTOLOWAT);
1220 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1221 so->so_snd.sb_mtx = &so->so_snd_mtx;
1222 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1223 }
1224
1225 return (so);
1226 }
1227
1228 /* Connstatus may be 0 or SS_ISCONNECTED. */
1229 struct socket *
1230 sonewconn(struct socket *head, int connstatus)
1231 {
1232 struct socket *so;
1233
1234 if ((so = solisten_clone(head)) == NULL)
1235 return (NULL);
1236
1237 if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
1238 sodealloc(so);
1239 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1240 __func__, head->so_pcb);
1241 return (NULL);
1242 }
1243
1244 (void)solisten_enqueue(so, connstatus);
1245
1246 return (so);
1247 }
1248
1249 /*
1250 * Enqueue socket cloned by solisten_clone() to the listen queue of the
1251 * listener it has been cloned from.
1252 *
1253 * Return 'true' if socket landed on complete queue, otherwise 'false'.
1254 */
1255 bool
1256 solisten_enqueue(struct socket *so, int connstatus)
1257 {
1258 struct socket *head = so->so_listen;
1259
1260 MPASS(refcount_load(&so->so_count) == 0);
1261 refcount_init(&so->so_count, 1);
1262
1263 SOLISTEN_LOCK(head);
1264 if (head->sol_accept_filter != NULL)
1265 connstatus = 0;
1266 so->so_state |= connstatus;
1267 soref(head); /* A socket on (in)complete queue refs head. */
1268 if (connstatus) {
1269 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
1270 so->so_qstate = SQ_COMP;
1271 head->sol_qlen++;
1272 solisten_wakeup(head); /* unlocks */
1273 return (true);
1274 } else {
1275 /*
1276 * Keep removing sockets from the head until there's room for
1277 * us to insert on the tail. In pre-locking revisions, this
1278 * was a simple if(), but as we could be racing with other
1279 * threads and soabort() requires dropping locks, we must
1280 * loop waiting for the condition to be true.
1281 */
1282 while (head->sol_incqlen > head->sol_qlimit) {
1283 struct socket *sp;
1284
1285 sp = TAILQ_FIRST(&head->sol_incomp);
1286 TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
1287 head->sol_incqlen--;
1288 SOCK_LOCK(sp);
1289 sp->so_qstate = SQ_NONE;
1290 sp->so_listen = NULL;
1291 SOCK_UNLOCK(sp);
1292 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */
1293 soabort(sp);
1294 SOLISTEN_LOCK(head);
1295 }
1296 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
1297 so->so_qstate = SQ_INCOMP;
1298 head->sol_incqlen++;
1299 SOLISTEN_UNLOCK(head);
1300 return (false);
1301 }
1302 }
1303
1304 #if defined(SCTP) || defined(SCTP_SUPPORT)
1305 /*
1306 * Socket part of sctp_peeloff(). Detach a new socket from an
1307 * association. The new socket is returned with a reference.
1308 *
1309 * XXXGL: reduce copy-paste with solisten_clone().
1310 */
1311 struct socket *
1312 sopeeloff(struct socket *head)
1313 {
1314 struct socket *so;
1315
1316 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
1317 __func__, __LINE__, head));
1318 so = soalloc(head->so_vnet);
1319 if (so == NULL) {
1320 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1321 "limit reached or out of memory\n",
1322 __func__, head->so_pcb);
1323 return (NULL);
1324 }
1325 so->so_type = head->so_type;
1326 so->so_options = head->so_options;
1327 so->so_linger = head->so_linger;
1328 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
1329 so->so_fibnum = head->so_fibnum;
1330 so->so_proto = head->so_proto;
1331 so->so_cred = crhold(head->so_cred);
1332 #ifdef MAC
1333 mac_socket_newconn(head, so);
1334 #endif
1335 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1336 so_rdknl_assert_lock);
1337 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1338 so_wrknl_assert_lock);
1339 VNET_SO_ASSERT(head);
1340 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
1341 sodealloc(so);
1342 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1343 __func__, head->so_pcb);
1344 return (NULL);
1345 }
1346 if (so->so_proto->pr_attach(so, 0, NULL)) {
1347 sodealloc(so);
1348 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1349 __func__, head->so_pcb);
1350 return (NULL);
1351 }
1352 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
1353 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
1354 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
1355 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
1356 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
1357 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
1358 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1359 so->so_snd.sb_mtx = &so->so_snd_mtx;
1360 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1361 }
1362
1363 soref(so);
1364
1365 return (so);
1366 }
1367 #endif /* SCTP */
1368
1369 int
1370 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
1371 {
1372 int error;
1373
1374 CURVNET_SET(so->so_vnet);
1375 error = so->so_proto->pr_bind(so, nam, td);
1376 CURVNET_RESTORE();
1377 return (error);
1378 }
1379
1380 int
1381 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1382 {
1383 int error;
1384
1385 CURVNET_SET(so->so_vnet);
1386 error = so->so_proto->pr_bindat(fd, so, nam, td);
1387 CURVNET_RESTORE();
1388 return (error);
1389 }
1390
1391 /*
1392 * solisten() transitions a socket from a non-listening state to a listening
1393 * state, but can also be used to update the listen queue depth on an
1394 * existing listen socket. The protocol will call back into the sockets
1395 * layer using solisten_proto_check() and solisten_proto() to check and set
1396 * socket-layer listen state. Call backs are used so that the protocol can
1397 * acquire both protocol and socket layer locks in whatever order is required
1398 * by the protocol.
1399 *
1400 * Protocol implementors are advised to hold the socket lock across the
1401 * socket-layer test and set to avoid races at the socket layer.
1402 */
1403 int
1404 solisten(struct socket *so, int backlog, struct thread *td)
1405 {
1406 int error;
1407
1408 CURVNET_SET(so->so_vnet);
1409 error = so->so_proto->pr_listen(so, backlog, td);
1410 CURVNET_RESTORE();
1411 return (error);
1412 }
1413
1414 /*
1415 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in
1416 * order to interlock with socket I/O.
1417 */
1418 int
1419 solisten_proto_check(struct socket *so)
1420 {
1421 SOCK_LOCK_ASSERT(so);
1422
1423 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1424 SS_ISDISCONNECTING)) != 0)
1425 return (EINVAL);
1426
1427 /*
1428 * Sleeping is not permitted here, so simply fail if userspace is
1429 * attempting to transmit or receive on the socket. This kind of
1430 * transient failure is not ideal, but it should occur only if userspace
1431 * is misusing the socket interfaces.
1432 */
1433 if (!sx_try_xlock(&so->so_snd_sx))
1434 return (EAGAIN);
1435 if (!sx_try_xlock(&so->so_rcv_sx)) {
1436 sx_xunlock(&so->so_snd_sx);
1437 return (EAGAIN);
1438 }
1439 mtx_lock(&so->so_snd_mtx);
1440 mtx_lock(&so->so_rcv_mtx);
1441
1442 /* Interlock with soo_aio_queue() and KTLS. */
1443 if (!SOLISTENING(so)) {
1444 bool ktls;
1445
1446 #ifdef KERN_TLS
1447 ktls = so->so_snd.sb_tls_info != NULL ||
1448 so->so_rcv.sb_tls_info != NULL;
1449 #else
1450 ktls = false;
1451 #endif
1452 if (ktls ||
1453 (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
1454 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) {
1455 solisten_proto_abort(so);
1456 return (EINVAL);
1457 }
1458 }
1459
1460 return (0);
1461 }
1462
1463 /*
1464 * Undo the setup done by solisten_proto_check().
1465 */
1466 void
1467 solisten_proto_abort(struct socket *so)
1468 {
1469 mtx_unlock(&so->so_snd_mtx);
1470 mtx_unlock(&so->so_rcv_mtx);
1471 sx_xunlock(&so->so_snd_sx);
1472 sx_xunlock(&so->so_rcv_sx);
1473 }
1474
1475 void
1476 solisten_proto(struct socket *so, int backlog)
1477 {
1478 int sbrcv_lowat, sbsnd_lowat;
1479 u_int sbrcv_hiwat, sbsnd_hiwat;
1480 short sbrcv_flags, sbsnd_flags;
1481 sbintime_t sbrcv_timeo, sbsnd_timeo;
1482
1483 SOCK_LOCK_ASSERT(so);
1484 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1485 SS_ISDISCONNECTING)) == 0,
1486 ("%s: bad socket state %p", __func__, so));
1487
1488 if (SOLISTENING(so))
1489 goto listening;
1490
1491 /*
1492 * Change this socket to listening state.
1493 */
1494 sbrcv_lowat = so->so_rcv.sb_lowat;
1495 sbsnd_lowat = so->so_snd.sb_lowat;
1496 sbrcv_hiwat = so->so_rcv.sb_hiwat;
1497 sbsnd_hiwat = so->so_snd.sb_hiwat;
1498 sbrcv_flags = so->so_rcv.sb_flags;
1499 sbsnd_flags = so->so_snd.sb_flags;
1500 sbrcv_timeo = so->so_rcv.sb_timeo;
1501 sbsnd_timeo = so->so_snd.sb_timeo;
1502
1503 #ifdef MAC
1504 mac_socketpeer_label_free(so->so_peerlabel);
1505 #endif
1506
1507 if (!(so->so_proto->pr_flags & PR_SOCKBUF)) {
1508 sbdestroy(so, SO_SND);
1509 sbdestroy(so, SO_RCV);
1510 }
1511
1512 #ifdef INVARIANTS
1513 bzero(&so->so_rcv,
1514 sizeof(struct socket) - offsetof(struct socket, so_rcv));
1515 #endif
1516
1517 so->sol_sbrcv_lowat = sbrcv_lowat;
1518 so->sol_sbsnd_lowat = sbsnd_lowat;
1519 so->sol_sbrcv_hiwat = sbrcv_hiwat;
1520 so->sol_sbsnd_hiwat = sbsnd_hiwat;
1521 so->sol_sbrcv_flags = sbrcv_flags;
1522 so->sol_sbsnd_flags = sbsnd_flags;
1523 so->sol_sbrcv_timeo = sbrcv_timeo;
1524 so->sol_sbsnd_timeo = sbsnd_timeo;
1525
1526 so->sol_qlen = so->sol_incqlen = 0;
1527 TAILQ_INIT(&so->sol_incomp);
1528 TAILQ_INIT(&so->sol_comp);
1529
1530 so->sol_accept_filter = NULL;
1531 so->sol_accept_filter_arg = NULL;
1532 so->sol_accept_filter_str = NULL;
1533
1534 so->sol_upcall = NULL;
1535 so->sol_upcallarg = NULL;
1536
1537 so->so_options |= SO_ACCEPTCONN;
1538
1539 listening:
1540 if (backlog < 0 || backlog > V_somaxconn)
1541 backlog = V_somaxconn;
1542 so->sol_qlimit = backlog;
1543
1544 mtx_unlock(&so->so_snd_mtx);
1545 mtx_unlock(&so->so_rcv_mtx);
1546 sx_xunlock(&so->so_snd_sx);
1547 sx_xunlock(&so->so_rcv_sx);
1548 }
1549
1550 /*
1551 * Wakeup listeners/subsystems once we have a complete connection.
1552 * Enters with lock, returns unlocked.
1553 */
1554 void
1555 solisten_wakeup(struct socket *sol)
1556 {
1557
1558 if (sol->sol_upcall != NULL)
1559 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1560 else {
1561 selwakeuppri(&sol->so_rdsel, PSOCK);
1562 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1563 }
1564 SOLISTEN_UNLOCK(sol);
1565 wakeup_one(&sol->sol_comp);
1566 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1567 pgsigio(&sol->so_sigio, SIGIO, 0);
1568 }
1569
1570 /*
1571 * Return single connection off a listening socket queue. Main consumer of
1572 * the function is kern_accept4(). Some modules, that do their own accept
1573 * management also use the function. The socket reference held by the
1574 * listen queue is handed to the caller.
1575 *
1576 * Listening socket must be locked on entry and is returned unlocked on
1577 * return.
1578 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1579 */
1580 int
1581 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1582 {
1583 struct socket *so;
1584 int error;
1585
1586 SOLISTEN_LOCK_ASSERT(head);
1587
1588 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1589 head->so_error == 0) {
1590 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1591 "accept", 0);
1592 if (error != 0) {
1593 SOLISTEN_UNLOCK(head);
1594 return (error);
1595 }
1596 }
1597 if (head->so_error) {
1598 error = head->so_error;
1599 head->so_error = 0;
1600 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1601 error = EWOULDBLOCK;
1602 else
1603 error = 0;
1604 if (error) {
1605 SOLISTEN_UNLOCK(head);
1606 return (error);
1607 }
1608 so = TAILQ_FIRST(&head->sol_comp);
1609 SOCK_LOCK(so);
1610 KASSERT(so->so_qstate == SQ_COMP,
1611 ("%s: so %p not SQ_COMP", __func__, so));
1612 head->sol_qlen--;
1613 so->so_qstate = SQ_NONE;
1614 so->so_listen = NULL;
1615 TAILQ_REMOVE(&head->sol_comp, so, so_list);
1616 if (flags & ACCEPT4_INHERIT)
1617 so->so_state |= (head->so_state & SS_NBIO);
1618 else
1619 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1620 SOCK_UNLOCK(so);
1621 sorele_locked(head);
1622
1623 *ret = so;
1624 return (0);
1625 }
1626
1627 static struct so_splice *
1628 so_splice_alloc(off_t max)
1629 {
1630 struct so_splice *sp;
1631
1632 sp = uma_zalloc(splice_zone, M_WAITOK);
1633 sp->src = NULL;
1634 sp->dst = NULL;
1635 sp->max = max > 0 ? max : -1;
1636 do {
1637 sp->wq_index = atomic_fetchadd_32(&splice_index, 1) %
1638 (mp_maxid + 1);
1639 } while (CPU_ABSENT(sp->wq_index));
1640 sp->state = SPLICE_INIT;
1641 TIMEOUT_TASK_INIT(taskqueue_thread, &sp->timeout, 0, so_splice_timeout,
1642 sp);
1643 return (sp);
1644 }
1645
1646 static void
1647 so_splice_free(struct so_splice *sp)
1648 {
1649 KASSERT(sp->state == SPLICE_CLOSED,
1650 ("so_splice_free: sp %p not closed", sp));
1651 uma_zfree(splice_zone, sp);
1652 }
1653
1654 static void
1655 so_splice_timeout(void *arg, int pending __unused)
1656 {
1657 struct so_splice *sp;
1658
1659 sp = arg;
1660 (void)so_unsplice(sp->src, true);
1661 }
1662
1663 /*
1664 * Splice the output from so to the input of so2.
1665 */
1666 static int
1667 so_splice(struct socket *so, struct socket *so2, struct splice *splice)
1668 {
1669 struct so_splice *sp;
1670 int error;
1671
1672 if (splice->sp_max < 0)
1673 return (EINVAL);
1674 /* Handle only TCP for now; TODO: other streaming protos */
1675 if (so->so_proto->pr_protocol != IPPROTO_TCP ||
1676 so2->so_proto->pr_protocol != IPPROTO_TCP)
1677 return (EPROTONOSUPPORT);
1678 if (so->so_vnet != so2->so_vnet)
1679 return (EINVAL);
1680
1681 /* so_splice_xfer() assumes that we're using these implementations. */
1682 KASSERT(so->so_proto->pr_sosend == sosend_generic,
1683 ("so_splice: sosend not sosend_generic"));
1684 KASSERT(so2->so_proto->pr_soreceive == soreceive_generic ||
1685 so2->so_proto->pr_soreceive == soreceive_stream,
1686 ("so_splice: soreceive not soreceive_generic/stream"));
1687
1688 sp = so_splice_alloc(splice->sp_max);
1689 so->so_splice_sent = 0;
1690 sp->src = so;
1691 sp->dst = so2;
1692
1693 error = 0;
1694 SOCK_LOCK(so);
1695 if (SOLISTENING(so))
1696 error = EINVAL;
1697 else if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1698 error = ENOTCONN;
1699 else if (so->so_splice != NULL)
1700 error = EBUSY;
1701 if (error != 0) {
1702 SOCK_UNLOCK(so);
1703 uma_zfree(splice_zone, sp);
1704 return (error);
1705 }
1706 SOCK_RECVBUF_LOCK(so);
1707 if (so->so_rcv.sb_tls_info != NULL) {
1708 SOCK_RECVBUF_UNLOCK(so);
1709 SOCK_UNLOCK(so);
1710 uma_zfree(splice_zone, sp);
1711 return (EINVAL);
1712 }
1713 so->so_rcv.sb_flags |= SB_SPLICED;
1714 so->so_splice = sp;
1715 soref(so);
1716 SOCK_RECVBUF_UNLOCK(so);
1717 SOCK_UNLOCK(so);
1718
1719 error = 0;
1720 SOCK_LOCK(so2);
1721 if (SOLISTENING(so2))
1722 error = EINVAL;
1723 else if ((so2->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1724 error = ENOTCONN;
1725 else if (so2->so_splice_back != NULL)
1726 error = EBUSY;
1727 if (error != 0) {
1728 SOCK_UNLOCK(so2);
1729 mtx_lock(&sp->mtx);
1730 sp->dst = NULL;
1731 sp->state = SPLICE_EXCEPTION;
1732 mtx_unlock(&sp->mtx);
1733 so_unsplice(so, false);
1734 return (error);
1735 }
1736 SOCK_SENDBUF_LOCK(so2);
1737 if (so->so_snd.sb_tls_info != NULL) {
1738 SOCK_SENDBUF_UNLOCK(so2);
1739 SOCK_UNLOCK(so2);
1740 mtx_lock(&sp->mtx);
1741 sp->dst = NULL;
1742 sp->state = SPLICE_EXCEPTION;
1743 mtx_unlock(&sp->mtx);
1744 so_unsplice(so, false);
1745 return (EINVAL);
1746 }
1747 so2->so_snd.sb_flags |= SB_SPLICED;
1748 so2->so_splice_back = sp;
1749 soref(so2);
1750 mtx_lock(&sp->mtx);
1751 SOCK_SENDBUF_UNLOCK(so2);
1752 SOCK_UNLOCK(so2);
1753
1754 if (splice->sp_idle.tv_sec != 0 || splice->sp_idle.tv_usec != 0) {
1755 taskqueue_enqueue_timeout_sbt(taskqueue_thread, &sp->timeout,
1756 tvtosbt(splice->sp_idle), 0, C_PREL(4));
1757 }
1758
1759 /*
1760 * Transfer any data already present in the socket buffer.
1761 */
1762 KASSERT(sp->state == SPLICE_INIT,
1763 ("so_splice: splice %p state %d", sp, sp->state));
1764 sp->state = SPLICE_QUEUED;
1765 so_splice_xfer(sp);
1766 return (0);
1767 }
1768
1769 static int
1770 so_unsplice(struct socket *so, bool timeout)
1771 {
1772 struct socket *so2;
1773 struct so_splice *sp;
1774 bool drain, so2rele;
1775
1776 /*
1777 * First unset SB_SPLICED and hide the splice structure so that
1778 * wakeup routines will stop enqueuing work. This also ensures that
1779 * a only a single thread will proceed with the unsplice.
1780 */
1781 SOCK_LOCK(so);
1782 if (SOLISTENING(so)) {
1783 SOCK_UNLOCK(so);
1784 return (EINVAL);
1785 }
1786 SOCK_RECVBUF_LOCK(so);
1787 if ((so->so_rcv.sb_flags & SB_SPLICED) == 0) {
1788 SOCK_RECVBUF_UNLOCK(so);
1789 SOCK_UNLOCK(so);
1790 return (ENOTCONN);
1791 }
1792 sp = so->so_splice;
1793 mtx_lock(&sp->mtx);
1794 if (sp->state == SPLICE_INIT) {
1795 /*
1796 * A splice is in the middle of being set up.
1797 */
1798 mtx_unlock(&sp->mtx);
1799 SOCK_RECVBUF_UNLOCK(so);
1800 SOCK_UNLOCK(so);
1801 return (ENOTCONN);
1802 }
1803 mtx_unlock(&sp->mtx);
1804 so->so_rcv.sb_flags &= ~SB_SPLICED;
1805 so->so_splice = NULL;
1806 SOCK_RECVBUF_UNLOCK(so);
1807 SOCK_UNLOCK(so);
1808
1809 so2 = sp->dst;
1810 if (so2 != NULL) {
1811 SOCK_LOCK(so2);
1812 KASSERT(!SOLISTENING(so2), ("%s: so2 is listening", __func__));
1813 SOCK_SENDBUF_LOCK(so2);
1814 KASSERT((so2->so_snd.sb_flags & SB_SPLICED) != 0,
1815 ("%s: so2 is not spliced", __func__));
1816 KASSERT(so2->so_splice_back == sp,
1817 ("%s: so_splice_back != sp", __func__));
1818 so2->so_snd.sb_flags &= ~SB_SPLICED;
1819 so2rele = so2->so_splice_back != NULL;
1820 so2->so_splice_back = NULL;
1821 SOCK_SENDBUF_UNLOCK(so2);
1822 SOCK_UNLOCK(so2);
1823 }
1824
1825 /*
1826 * No new work is being enqueued. The worker thread might be
1827 * splicing data right now, in which case we want to wait for it to
1828 * finish before proceeding.
1829 */
1830 mtx_lock(&sp->mtx);
1831 switch (sp->state) {
1832 case SPLICE_QUEUED:
1833 case SPLICE_RUNNING:
1834 sp->state = SPLICE_CLOSING;
1835 while (sp->state == SPLICE_CLOSING)
1836 msleep(sp, &sp->mtx, PSOCK, "unsplice", 0);
1837 break;
1838 case SPLICE_INIT:
1839 case SPLICE_IDLE:
1840 case SPLICE_EXCEPTION:
1841 sp->state = SPLICE_CLOSED;
1842 break;
1843 default:
1844 __assert_unreachable();
1845 }
1846 if (!timeout) {
1847 drain = taskqueue_cancel_timeout(taskqueue_thread, &sp->timeout,
1848 NULL) != 0;
1849 } else {
1850 drain = false;
1851 }
1852 mtx_unlock(&sp->mtx);
1853 if (drain)
1854 taskqueue_drain_timeout(taskqueue_thread, &sp->timeout);
1855
1856 /*
1857 * Now we hold the sole reference to the splice structure.
1858 * Clean up: signal userspace and release socket references.
1859 */
1860 sorwakeup(so);
1861 CURVNET_SET(so->so_vnet);
1862 sorele(so);
1863 if (so2 != NULL) {
1864 sowwakeup(so2);
1865 if (so2rele)
1866 sorele(so2);
1867 }
1868 CURVNET_RESTORE();
1869 so_splice_free(sp);
1870 return (0);
1871 }
1872
1873 /*
1874 * Free socket upon release of the very last reference.
1875 */
1876 static void
1877 sofree(struct socket *so)
1878 {
1879 struct protosw *pr = so->so_proto;
1880
1881 SOCK_LOCK_ASSERT(so);
1882 KASSERT(refcount_load(&so->so_count) == 0,
1883 ("%s: so %p has references", __func__, so));
1884 KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1885 ("%s: so %p is on listen queue", __func__, so));
1886 KASSERT(SOLISTENING(so) || (so->so_rcv.sb_flags & SB_SPLICED) == 0,
1887 ("%s: so %p rcvbuf is spliced", __func__, so));
1888 KASSERT(SOLISTENING(so) || (so->so_snd.sb_flags & SB_SPLICED) == 0,
1889 ("%s: so %p sndbuf is spliced", __func__, so));
1890 KASSERT(so->so_splice == NULL && so->so_splice_back == NULL,
1891 ("%s: so %p has spliced data", __func__, so));
1892
1893 SOCK_UNLOCK(so);
1894
1895 if (so->so_dtor != NULL)
1896 so->so_dtor(so);
1897
1898 VNET_SO_ASSERT(so);
1899 if (pr->pr_detach != NULL)
1900 pr->pr_detach(so);
1901
1902 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1903 /*
1904 * From this point on, we assume that no other references to
1905 * this socket exist anywhere else in the stack. Therefore,
1906 * no locks need to be acquired or held.
1907 */
1908 #ifdef INVARIANTS
1909 SOCK_SENDBUF_LOCK(so);
1910 SOCK_RECVBUF_LOCK(so);
1911 #endif
1912 sbdestroy(so, SO_SND);
1913 sbdestroy(so, SO_RCV);
1914 #ifdef INVARIANTS
1915 SOCK_SENDBUF_UNLOCK(so);
1916 SOCK_RECVBUF_UNLOCK(so);
1917 #endif
1918 }
1919 seldrain(&so->so_rdsel);
1920 seldrain(&so->so_wrsel);
1921 knlist_destroy(&so->so_rdsel.si_note);
1922 knlist_destroy(&so->so_wrsel.si_note);
1923 sodealloc(so);
1924 }
1925
1926 /*
1927 * Release a reference on a socket while holding the socket lock.
1928 * Unlocks the socket lock before returning.
1929 */
1930 void
1931 sorele_locked(struct socket *so)
1932 {
1933 SOCK_LOCK_ASSERT(so);
1934 if (refcount_release(&so->so_count))
1935 sofree(so);
1936 else
1937 SOCK_UNLOCK(so);
1938 }
1939
1940 /*
1941 * Close a socket on last file table reference removal. Initiate disconnect
1942 * if connected. Free socket when disconnect complete.
1943 *
1944 * This function will sorele() the socket. Note that soclose() may be called
1945 * prior to the ref count reaching zero. The actual socket structure will
1946 * not be freed until the ref count reaches zero.
1947 */
1948 int
1949 soclose(struct socket *so)
1950 {
1951 struct accept_queue lqueue;
1952 int error = 0;
1953 bool listening, last __diagused;
1954
1955 CURVNET_SET(so->so_vnet);
1956 funsetown(&so->so_sigio);
1957 if (so->so_state & SS_ISCONNECTED) {
1958 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1959 error = sodisconnect(so);
1960 if (error) {
1961 if (error == ENOTCONN)
1962 error = 0;
1963 goto drop;
1964 }
1965 }
1966
1967 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1968 if ((so->so_state & SS_ISDISCONNECTING) &&
1969 (so->so_state & SS_NBIO))
1970 goto drop;
1971 while (so->so_state & SS_ISCONNECTED) {
1972 error = tsleep(&so->so_timeo,
1973 PSOCK | PCATCH, "soclos",
1974 so->so_linger * hz);
1975 if (error)
1976 break;
1977 }
1978 }
1979 }
1980
1981 drop:
1982 if (so->so_proto->pr_close != NULL)
1983 so->so_proto->pr_close(so);
1984
1985 SOCK_LOCK(so);
1986 if ((listening = SOLISTENING(so))) {
1987 struct socket *sp;
1988
1989 TAILQ_INIT(&lqueue);
1990 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1991 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1992
1993 so->sol_qlen = so->sol_incqlen = 0;
1994
1995 TAILQ_FOREACH(sp, &lqueue, so_list) {
1996 SOCK_LOCK(sp);
1997 sp->so_qstate = SQ_NONE;
1998 sp->so_listen = NULL;
1999 SOCK_UNLOCK(sp);
2000 last = refcount_release(&so->so_count);
2001 KASSERT(!last, ("%s: released last reference for %p",
2002 __func__, so));
2003 }
2004 }
2005 sorele_locked(so);
2006 if (listening) {
2007 struct socket *sp, *tsp;
2008
2009 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
2010 soabort(sp);
2011 }
2012 CURVNET_RESTORE();
2013 return (error);
2014 }
2015
2016 /*
2017 * soabort() is used to abruptly tear down a connection, such as when a
2018 * resource limit is reached (listen queue depth exceeded), or if a listen
2019 * socket is closed while there are sockets waiting to be accepted.
2020 *
2021 * This interface is tricky, because it is called on an unreferenced socket,
2022 * and must be called only by a thread that has actually removed the socket
2023 * from the listen queue it was on. Likely this thread holds the last
2024 * reference on the socket and soabort() will proceed with sofree(). But
2025 * it might be not the last, as the sockets on the listen queues are seen
2026 * from the protocol side.
2027 *
2028 * This interface will call into the protocol code, so must not be called
2029 * with any socket locks held. Protocols do call it while holding their own
2030 * recursible protocol mutexes, but this is something that should be subject
2031 * to review in the future.
2032 *
2033 * Usually socket should have a single reference left, but this is not a
2034 * requirement. In the past, when we have had named references for file
2035 * descriptor and protocol, we asserted that none of them are being held.
2036 */
2037 void
2038 soabort(struct socket *so)
2039 {
2040
2041 VNET_SO_ASSERT(so);
2042
2043 if (so->so_proto->pr_abort != NULL)
2044 so->so_proto->pr_abort(so);
2045 SOCK_LOCK(so);
2046 sorele_locked(so);
2047 }
2048
2049 int
2050 soaccept(struct socket *so, struct sockaddr *sa)
2051 {
2052 #ifdef INVARIANTS
2053 u_char len = sa->sa_len;
2054 #endif
2055 int error;
2056
2057 CURVNET_SET(so->so_vnet);
2058 error = so->so_proto->pr_accept(so, sa);
2059 KASSERT(sa->sa_len <= len,
2060 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2061 CURVNET_RESTORE();
2062 return (error);
2063 }
2064
2065 int
2066 sopeeraddr(struct socket *so, struct sockaddr *sa)
2067 {
2068 #ifdef INVARIANTS
2069 u_char len = sa->sa_len;
2070 #endif
2071 int error;
2072
2073 CURVNET_ASSERT_SET();
2074
2075 error = so->so_proto->pr_peeraddr(so, sa);
2076 KASSERT(sa->sa_len <= len,
2077 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2078
2079 return (error);
2080 }
2081
2082 int
2083 sosockaddr(struct socket *so, struct sockaddr *sa)
2084 {
2085 #ifdef INVARIANTS
2086 u_char len = sa->sa_len;
2087 #endif
2088 int error;
2089
2090 CURVNET_SET(so->so_vnet);
2091 error = so->so_proto->pr_sockaddr(so, sa);
2092 KASSERT(sa->sa_len <= len,
2093 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2094 CURVNET_RESTORE();
2095
2096 return (error);
2097 }
2098
2099 int
2100 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
2101 {
2102
2103 return (soconnectat(AT_FDCWD, so, nam, td));
2104 }
2105
2106 int
2107 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
2108 {
2109 int error;
2110
2111 CURVNET_SET(so->so_vnet);
2112
2113 /*
2114 * If protocol is connection-based, can only connect once.
2115 * Otherwise, if connected, try to disconnect first. This allows
2116 * user to disconnect by connecting to, e.g., a null address.
2117 *
2118 * Note, this check is racy and may need to be re-evaluated at the
2119 * protocol layer.
2120 */
2121 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
2122 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
2123 (error = sodisconnect(so)))) {
2124 error = EISCONN;
2125 } else {
2126 /*
2127 * Prevent accumulated error from previous connection from
2128 * biting us.
2129 */
2130 so->so_error = 0;
2131 if (fd == AT_FDCWD) {
2132 error = so->so_proto->pr_connect(so, nam, td);
2133 } else {
2134 error = so->so_proto->pr_connectat(fd, so, nam, td);
2135 }
2136 }
2137 CURVNET_RESTORE();
2138
2139 return (error);
2140 }
2141
2142 int
2143 soconnect2(struct socket *so1, struct socket *so2)
2144 {
2145 int error;
2146
2147 CURVNET_SET(so1->so_vnet);
2148 error = so1->so_proto->pr_connect2(so1, so2);
2149 CURVNET_RESTORE();
2150 return (error);
2151 }
2152
2153 int
2154 sodisconnect(struct socket *so)
2155 {
2156 int error;
2157
2158 if ((so->so_state & SS_ISCONNECTED) == 0)
2159 return (ENOTCONN);
2160 if (so->so_state & SS_ISDISCONNECTING)
2161 return (EALREADY);
2162 VNET_SO_ASSERT(so);
2163 error = so->so_proto->pr_disconnect(so);
2164 return (error);
2165 }
2166
2167 int
2168 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
2169 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2170 {
2171 long space;
2172 ssize_t resid;
2173 int clen = 0, error, dontroute;
2174
2175 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
2176 KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
2177 ("sosend_dgram: !PR_ATOMIC"));
2178
2179 if (uio != NULL)
2180 resid = uio->uio_resid;
2181 else
2182 resid = top->m_pkthdr.len;
2183 /*
2184 * In theory resid should be unsigned. However, space must be
2185 * signed, as it might be less than 0 if we over-committed, and we
2186 * must use a signed comparison of space and resid. On the other
2187 * hand, a negative resid causes us to loop sending 0-length
2188 * segments to the protocol.
2189 */
2190 if (resid < 0) {
2191 error = EINVAL;
2192 goto out;
2193 }
2194
2195 dontroute =
2196 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
2197 if (td != NULL)
2198 td->td_ru.ru_msgsnd++;
2199 if (control != NULL)
2200 clen = control->m_len;
2201
2202 SOCKBUF_LOCK(&so->so_snd);
2203 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2204 SOCKBUF_UNLOCK(&so->so_snd);
2205 error = EPIPE;
2206 goto out;
2207 }
2208 if (so->so_error) {
2209 error = so->so_error;
2210 so->so_error = 0;
2211 SOCKBUF_UNLOCK(&so->so_snd);
2212 goto out;
2213 }
2214 if ((so->so_state & SS_ISCONNECTED) == 0) {
2215 /*
2216 * `sendto' and `sendmsg' is allowed on a connection-based
2217 * socket if it supports implied connect. Return ENOTCONN if
2218 * not connected and no address is supplied.
2219 */
2220 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2221 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2222 if (!(resid == 0 && clen != 0)) {
2223 SOCKBUF_UNLOCK(&so->so_snd);
2224 error = ENOTCONN;
2225 goto out;
2226 }
2227 } else if (addr == NULL) {
2228 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2229 error = ENOTCONN;
2230 else
2231 error = EDESTADDRREQ;
2232 SOCKBUF_UNLOCK(&so->so_snd);
2233 goto out;
2234 }
2235 }
2236
2237 /*
2238 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a
2239 * problem and need fixing.
2240 */
2241 space = sbspace(&so->so_snd);
2242 if (flags & MSG_OOB)
2243 space += 1024;
2244 space -= clen;
2245 SOCKBUF_UNLOCK(&so->so_snd);
2246 if (resid > space) {
2247 error = EMSGSIZE;
2248 goto out;
2249 }
2250 if (uio == NULL) {
2251 resid = 0;
2252 if (flags & MSG_EOR)
2253 top->m_flags |= M_EOR;
2254 } else {
2255 /*
2256 * Copy the data from userland into a mbuf chain.
2257 * If no data is to be copied in, a single empty mbuf
2258 * is returned.
2259 */
2260 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
2261 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
2262 if (top == NULL) {
2263 error = EFAULT; /* only possible error */
2264 goto out;
2265 }
2266 space -= resid - uio->uio_resid;
2267 resid = uio->uio_resid;
2268 }
2269 KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
2270 /*
2271 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
2272 * than with.
2273 */
2274 if (dontroute) {
2275 SOCK_LOCK(so);
2276 so->so_options |= SO_DONTROUTE;
2277 SOCK_UNLOCK(so);
2278 }
2279 /*
2280 * XXX all the SBS_CANTSENDMORE checks previously done could be out
2281 * of date. We could have received a reset packet in an interrupt or
2282 * maybe we slept while doing page faults in uiomove() etc. We could
2283 * probably recheck again inside the locking protection here, but
2284 * there are probably other places that this also happens. We must
2285 * rethink this.
2286 */
2287 VNET_SO_ASSERT(so);
2288 error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
2289 /*
2290 * If the user set MSG_EOF, the protocol understands this flag and
2291 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
2292 */
2293 ((flags & MSG_EOF) &&
2294 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2295 (resid <= 0)) ?
2296 PRUS_EOF :
2297 /* If there is more to send set PRUS_MORETOCOME */
2298 (flags & MSG_MORETOCOME) ||
2299 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
2300 top, addr, control, td);
2301 if (dontroute) {
2302 SOCK_LOCK(so);
2303 so->so_options &= ~SO_DONTROUTE;
2304 SOCK_UNLOCK(so);
2305 }
2306 clen = 0;
2307 control = NULL;
2308 top = NULL;
2309 out:
2310 if (top != NULL)
2311 m_freem(top);
2312 if (control != NULL)
2313 m_freem(control);
2314 return (error);
2315 }
2316
2317 /*
2318 * Send on a socket. If send must go all at once and message is larger than
2319 * send buffering, then hard error. Lock against other senders. If must go
2320 * all at once and not enough room now, then inform user that this would
2321 * block and do nothing. Otherwise, if nonblocking, send as much as
2322 * possible. The data to be sent is described by "uio" if nonzero, otherwise
2323 * by the mbuf chain "top" (which must be null if uio is not). Data provided
2324 * in mbuf chain must be small enough to send all at once.
2325 *
2326 * Returns nonzero on error, timeout or signal; callers must check for short
2327 * counts if EINTR/ERESTART are returned. Data and control buffers are freed
2328 * on return.
2329 */
2330 static int
2331 sosend_generic_locked(struct socket *so, struct sockaddr *addr, struct uio *uio,
2332 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2333 {
2334 long space;
2335 ssize_t resid;
2336 int clen = 0, error, dontroute;
2337 int atomic = sosendallatonce(so) || top;
2338 int pr_send_flag;
2339 #ifdef KERN_TLS
2340 struct ktls_session *tls;
2341 int tls_enq_cnt, tls_send_flag;
2342 uint8_t tls_rtype;
2343
2344 tls = NULL;
2345 tls_rtype = TLS_RLTYPE_APP;
2346 #endif
2347
2348 SOCK_IO_SEND_ASSERT_LOCKED(so);
2349
2350 if (uio != NULL)
2351 resid = uio->uio_resid;
2352 else if ((top->m_flags & M_PKTHDR) != 0)
2353 resid = top->m_pkthdr.len;
2354 else
2355 resid = m_length(top, NULL);
2356 /*
2357 * In theory resid should be unsigned. However, space must be
2358 * signed, as it might be less than 0 if we over-committed, and we
2359 * must use a signed comparison of space and resid. On the other
2360 * hand, a negative resid causes us to loop sending 0-length
2361 * segments to the protocol.
2362 *
2363 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
2364 * type sockets since that's an error.
2365 */
2366 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
2367 error = EINVAL;
2368 goto out;
2369 }
2370
2371 dontroute =
2372 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
2373 (so->so_proto->pr_flags & PR_ATOMIC);
2374 if (td != NULL)
2375 td->td_ru.ru_msgsnd++;
2376 if (control != NULL)
2377 clen = control->m_len;
2378
2379 #ifdef KERN_TLS
2380 tls_send_flag = 0;
2381 tls = ktls_hold(so->so_snd.sb_tls_info);
2382 if (tls != NULL) {
2383 if (tls->mode == TCP_TLS_MODE_SW)
2384 tls_send_flag = PRUS_NOTREADY;
2385
2386 if (control != NULL) {
2387 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2388
2389 if (clen >= sizeof(*cm) &&
2390 cm->cmsg_type == TLS_SET_RECORD_TYPE) {
2391 tls_rtype = *((uint8_t *)CMSG_DATA(cm));
2392 clen = 0;
2393 m_freem(control);
2394 control = NULL;
2395 atomic = 1;
2396 }
2397 }
2398
2399 if (resid == 0 && !ktls_permit_empty_frames(tls)) {
2400 error = EINVAL;
2401 goto out;
2402 }
2403 }
2404 #endif
2405
2406 restart:
2407 do {
2408 SOCKBUF_LOCK(&so->so_snd);
2409 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2410 SOCKBUF_UNLOCK(&so->so_snd);
2411 error = EPIPE;
2412 goto out;
2413 }
2414 if (so->so_error) {
2415 error = so->so_error;
2416 so->so_error = 0;
2417 SOCKBUF_UNLOCK(&so->so_snd);
2418 goto out;
2419 }
2420 if ((so->so_state & SS_ISCONNECTED) == 0) {
2421 /*
2422 * `sendto' and `sendmsg' is allowed on a connection-
2423 * based socket if it supports implied connect.
2424 * Return ENOTCONN if not connected and no address is
2425 * supplied.
2426 */
2427 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2428 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2429 if (!(resid == 0 && clen != 0)) {
2430 SOCKBUF_UNLOCK(&so->so_snd);
2431 error = ENOTCONN;
2432 goto out;
2433 }
2434 } else if (addr == NULL) {
2435 SOCKBUF_UNLOCK(&so->so_snd);
2436 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2437 error = ENOTCONN;
2438 else
2439 error = EDESTADDRREQ;
2440 goto out;
2441 }
2442 }
2443 space = sbspace(&so->so_snd);
2444 if (flags & MSG_OOB)
2445 space += 1024;
2446 if ((atomic && resid > so->so_snd.sb_hiwat) ||
2447 clen > so->so_snd.sb_hiwat) {
2448 SOCKBUF_UNLOCK(&so->so_snd);
2449 error = EMSGSIZE;
2450 goto out;
2451 }
2452 if (space < resid + clen &&
2453 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
2454 if ((so->so_state & SS_NBIO) ||
2455 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
2456 SOCKBUF_UNLOCK(&so->so_snd);
2457 error = EWOULDBLOCK;
2458 goto out;
2459 }
2460 error = sbwait(so, SO_SND);
2461 SOCKBUF_UNLOCK(&so->so_snd);
2462 if (error)
2463 goto out;
2464 goto restart;
2465 }
2466 SOCKBUF_UNLOCK(&so->so_snd);
2467 space -= clen;
2468 do {
2469 if (uio == NULL) {
2470 resid = 0;
2471 if (flags & MSG_EOR)
2472 top->m_flags |= M_EOR;
2473 #ifdef KERN_TLS
2474 if (tls != NULL) {
2475 ktls_frame(top, tls, &tls_enq_cnt,
2476 tls_rtype);
2477 tls_rtype = TLS_RLTYPE_APP;
2478 }
2479 #endif
2480 } else {
2481 /*
2482 * Copy the data from userland into a mbuf
2483 * chain. If resid is 0, which can happen
2484 * only if we have control to send, then
2485 * a single empty mbuf is returned. This
2486 * is a workaround to prevent protocol send
2487 * methods to panic.
2488 */
2489 #ifdef KERN_TLS
2490 if (tls != NULL) {
2491 top = m_uiotombuf(uio, M_WAITOK, space,
2492 tls->params.max_frame_len,
2493 M_EXTPG |
2494 ((flags & MSG_EOR) ? M_EOR : 0));
2495 if (top != NULL) {
2496 ktls_frame(top, tls,
2497 &tls_enq_cnt, tls_rtype);
2498 }
2499 tls_rtype = TLS_RLTYPE_APP;
2500 } else
2501 #endif
2502 top = m_uiotombuf(uio, M_WAITOK, space,
2503 (atomic ? max_hdr : 0),
2504 (atomic ? M_PKTHDR : 0) |
2505 ((flags & MSG_EOR) ? M_EOR : 0));
2506 if (top == NULL) {
2507 error = EFAULT; /* only possible error */
2508 goto out;
2509 }
2510 space -= resid - uio->uio_resid;
2511 resid = uio->uio_resid;
2512 }
2513 if (dontroute) {
2514 SOCK_LOCK(so);
2515 so->so_options |= SO_DONTROUTE;
2516 SOCK_UNLOCK(so);
2517 }
2518 /*
2519 * XXX all the SBS_CANTSENDMORE checks previously
2520 * done could be out of date. We could have received
2521 * a reset packet in an interrupt or maybe we slept
2522 * while doing page faults in uiomove() etc. We
2523 * could probably recheck again inside the locking
2524 * protection here, but there are probably other
2525 * places that this also happens. We must rethink
2526 * this.
2527 */
2528 VNET_SO_ASSERT(so);
2529
2530 pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
2531 /*
2532 * If the user set MSG_EOF, the protocol understands
2533 * this flag and nothing left to send then use
2534 * PRU_SEND_EOF instead of PRU_SEND.
2535 */
2536 ((flags & MSG_EOF) &&
2537 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2538 (resid <= 0)) ?
2539 PRUS_EOF :
2540 /* If there is more to send set PRUS_MORETOCOME. */
2541 (flags & MSG_MORETOCOME) ||
2542 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
2543
2544 #ifdef KERN_TLS
2545 pr_send_flag |= tls_send_flag;
2546 #endif
2547
2548 error = so->so_proto->pr_send(so, pr_send_flag, top,
2549 addr, control, td);
2550
2551 if (dontroute) {
2552 SOCK_LOCK(so);
2553 so->so_options &= ~SO_DONTROUTE;
2554 SOCK_UNLOCK(so);
2555 }
2556
2557 #ifdef KERN_TLS
2558 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
2559 if (error != 0) {
2560 m_freem(top);
2561 top = NULL;
2562 } else {
2563 soref(so);
2564 ktls_enqueue(top, so, tls_enq_cnt);
2565 }
2566 }
2567 #endif
2568 clen = 0;
2569 control = NULL;
2570 top = NULL;
2571 if (error)
2572 goto out;
2573 } while (resid && space > 0);
2574 } while (resid);
2575
2576 out:
2577 #ifdef KERN_TLS
2578 if (tls != NULL)
2579 ktls_free(tls);
2580 #endif
2581 if (top != NULL)
2582 m_freem(top);
2583 if (control != NULL)
2584 m_freem(control);
2585 return (error);
2586 }
2587
2588 int
2589 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
2590 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2591 {
2592 int error;
2593
2594 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
2595 if (error)
2596 return (error);
2597 error = sosend_generic_locked(so, addr, uio, top, control, flags, td);
2598 SOCK_IO_SEND_UNLOCK(so);
2599 return (error);
2600 }
2601
2602 /*
2603 * Send to a socket from a kernel thread.
2604 *
2605 * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
2606 * Exception is nfs/bootp_subr.c. It is arguable that the VNET context needs
2607 * to be set at all. This function should just boil down to a static inline
2608 * calling the protocol method.
2609 */
2610 int
2611 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2612 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2613 {
2614 int error;
2615
2616 CURVNET_SET(so->so_vnet);
2617 error = so->so_proto->pr_sosend(so, addr, uio,
2618 top, control, flags, td);
2619 CURVNET_RESTORE();
2620 return (error);
2621 }
2622
2623 /*
2624 * send(2), write(2) or aio_write(2) on a socket.
2625 */
2626 int
2627 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2628 struct mbuf *control, int flags, struct proc *userproc)
2629 {
2630 struct thread *td;
2631 ssize_t len;
2632 int error;
2633
2634 td = uio->uio_td;
2635 len = uio->uio_resid;
2636 CURVNET_SET(so->so_vnet);
2637 error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
2638 td);
2639 CURVNET_RESTORE();
2640 if (error != 0) {
2641 /*
2642 * Clear transient errors for stream protocols if they made
2643 * some progress. Make exclusion for aio(4) that would
2644 * schedule a new write in case of EWOULDBLOCK and clear
2645 * error itself. See soaio_process_job().
2646 */
2647 if (uio->uio_resid != len &&
2648 (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
2649 userproc == NULL &&
2650 (error == ERESTART || error == EINTR ||
2651 error == EWOULDBLOCK))
2652 error = 0;
2653 /* Generation of SIGPIPE can be controlled per socket. */
2654 if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
2655 (flags & MSG_NOSIGNAL) == 0) {
2656 if (userproc != NULL) {
2657 /* aio(4) job */
2658 PROC_LOCK(userproc);
2659 kern_psignal(userproc, SIGPIPE);
2660 PROC_UNLOCK(userproc);
2661 } else {
2662 PROC_LOCK(td->td_proc);
2663 tdsignal(td, SIGPIPE);
2664 PROC_UNLOCK(td->td_proc);
2665 }
2666 }
2667 }
2668 return (error);
2669 }
2670
2671 /*
2672 * The part of soreceive() that implements reading non-inline out-of-band
2673 * data from a socket. For more complete comments, see soreceive(), from
2674 * which this code originated.
2675 *
2676 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
2677 * unable to return an mbuf chain to the caller.
2678 */
2679 static int
2680 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
2681 {
2682 struct protosw *pr = so->so_proto;
2683 struct mbuf *m;
2684 int error;
2685
2686 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
2687 VNET_SO_ASSERT(so);
2688
2689 m = m_get(M_WAITOK, MT_DATA);
2690 error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
2691 if (error)
2692 goto bad;
2693 do {
2694 error = uiomove(mtod(m, void *),
2695 (int) min(uio->uio_resid, m->m_len), uio);
2696 m = m_free(m);
2697 } while (uio->uio_resid && error == 0 && m);
2698 bad:
2699 if (m != NULL)
2700 m_freem(m);
2701 return (error);
2702 }
2703
2704 /*
2705 * Following replacement or removal of the first mbuf on the first mbuf chain
2706 * of a socket buffer, push necessary state changes back into the socket
2707 * buffer so that other consumers see the values consistently. 'nextrecord'
2708 * is the callers locally stored value of the original value of
2709 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
2710 * NOTE: 'nextrecord' may be NULL.
2711 */
2712 static __inline void
2713 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
2714 {
2715
2716 SOCKBUF_LOCK_ASSERT(sb);
2717 /*
2718 * First, update for the new value of nextrecord. If necessary, make
2719 * it the first record.
2720 */
2721 if (sb->sb_mb != NULL)
2722 sb->sb_mb->m_nextpkt = nextrecord;
2723 else
2724 sb->sb_mb = nextrecord;
2725
2726 /*
2727 * Now update any dependent socket buffer fields to reflect the new
2728 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the
2729 * addition of a second clause that takes care of the case where
2730 * sb_mb has been updated, but remains the last record.
2731 */
2732 if (sb->sb_mb == NULL) {
2733 sb->sb_mbtail = NULL;
2734 sb->sb_lastrecord = NULL;
2735 } else if (sb->sb_mb->m_nextpkt == NULL)
2736 sb->sb_lastrecord = sb->sb_mb;
2737 }
2738
2739 /*
2740 * Implement receive operations on a socket. We depend on the way that
2741 * records are added to the sockbuf by sbappend. In particular, each record
2742 * (mbufs linked through m_next) must begin with an address if the protocol
2743 * so specifies, followed by an optional mbuf or mbufs containing ancillary
2744 * data, and then zero or more mbufs of data. In order to allow parallelism
2745 * between network receive and copying to user space, as well as avoid
2746 * sleeping with a mutex held, we release the socket buffer mutex during the
2747 * user space copy. Although the sockbuf is locked, new data may still be
2748 * appended, and thus we must maintain consistency of the sockbuf during that
2749 * time.
2750 *
2751 * The caller may receive the data as a single mbuf chain by supplying an
2752 * mbuf **mp0 for use in returning the chain. The uio is then used only for
2753 * the count in uio_resid.
2754 */
2755 static int
2756 soreceive_generic_locked(struct socket *so, struct sockaddr **psa,
2757 struct uio *uio, struct mbuf **mp, struct mbuf **controlp, int *flagsp)
2758 {
2759 struct mbuf *m;
2760 int flags, error, offset;
2761 ssize_t len;
2762 struct protosw *pr = so->so_proto;
2763 struct mbuf *nextrecord;
2764 int moff, type = 0;
2765 ssize_t orig_resid = uio->uio_resid;
2766 bool report_real_len = false;
2767
2768 SOCK_IO_RECV_ASSERT_LOCKED(so);
2769
2770 error = 0;
2771 if (flagsp != NULL) {
2772 report_real_len = *flagsp & MSG_TRUNC;
2773 *flagsp &= ~MSG_TRUNC;
2774 flags = *flagsp &~ MSG_EOR;
2775 } else
2776 flags = 0;
2777
2778 restart:
2779 SOCKBUF_LOCK(&so->so_rcv);
2780 m = so->so_rcv.sb_mb;
2781 /*
2782 * If we have less data than requested, block awaiting more (subject
2783 * to any timeout) if:
2784 * 1. the current count is less than the low water mark, or
2785 * 2. MSG_DONTWAIT is not set
2786 */
2787 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
2788 sbavail(&so->so_rcv) < uio->uio_resid) &&
2789 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
2790 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
2791 KASSERT(m != NULL || !sbavail(&so->so_rcv),
2792 ("receive: m == %p sbavail == %u",
2793 m, sbavail(&so->so_rcv)));
2794 if (so->so_error || so->so_rerror) {
2795 if (m != NULL)
2796 goto dontblock;
2797 if (so->so_error)
2798 error = so->so_error;
2799 else
2800 error = so->so_rerror;
2801 if ((flags & MSG_PEEK) == 0) {
2802 if (so->so_error)
2803 so->so_error = 0;
2804 else
2805 so->so_rerror = 0;
2806 }
2807 SOCKBUF_UNLOCK(&so->so_rcv);
2808 goto release;
2809 }
2810 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2811 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2812 if (m != NULL)
2813 goto dontblock;
2814 #ifdef KERN_TLS
2815 else if (so->so_rcv.sb_tlsdcc == 0 &&
2816 so->so_rcv.sb_tlscc == 0) {
2817 #else
2818 else {
2819 #endif
2820 SOCKBUF_UNLOCK(&so->so_rcv);
2821 goto release;
2822 }
2823 }
2824 for (; m != NULL; m = m->m_next)
2825 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
2826 m = so->so_rcv.sb_mb;
2827 goto dontblock;
2828 }
2829 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2830 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2831 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2832 SOCKBUF_UNLOCK(&so->so_rcv);
2833 error = ENOTCONN;
2834 goto release;
2835 }
2836 if (uio->uio_resid == 0 && !report_real_len) {
2837 SOCKBUF_UNLOCK(&so->so_rcv);
2838 goto release;
2839 }
2840 if ((so->so_state & SS_NBIO) ||
2841 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2842 SOCKBUF_UNLOCK(&so->so_rcv);
2843 error = EWOULDBLOCK;
2844 goto release;
2845 }
2846 SBLASTRECORDCHK(&so->so_rcv);
2847 SBLASTMBUFCHK(&so->so_rcv);
2848 error = sbwait(so, SO_RCV);
2849 SOCKBUF_UNLOCK(&so->so_rcv);
2850 if (error)
2851 goto release;
2852 goto restart;
2853 }
2854 dontblock:
2855 /*
2856 * From this point onward, we maintain 'nextrecord' as a cache of the
2857 * pointer to the next record in the socket buffer. We must keep the
2858 * various socket buffer pointers and local stack versions of the
2859 * pointers in sync, pushing out modifications before dropping the
2860 * socket buffer mutex, and re-reading them when picking it up.
2861 *
2862 * Otherwise, we will race with the network stack appending new data
2863 * or records onto the socket buffer by using inconsistent/stale
2864 * versions of the field, possibly resulting in socket buffer
2865 * corruption.
2866 *
2867 * By holding the high-level sblock(), we prevent simultaneous
2868 * readers from pulling off the front of the socket buffer.
2869 */
2870 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2871 if (uio->uio_td)
2872 uio->uio_td->td_ru.ru_msgrcv++;
2873 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2874 SBLASTRECORDCHK(&so->so_rcv);
2875 SBLASTMBUFCHK(&so->so_rcv);
2876 nextrecord = m->m_nextpkt;
2877 if (pr->pr_flags & PR_ADDR) {
2878 KASSERT(m->m_type == MT_SONAME,
2879 ("m->m_type == %d", m->m_type));
2880 orig_resid = 0;
2881 if (psa != NULL)
2882 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
2883 M_NOWAIT);
2884 if (flags & MSG_PEEK) {
2885 m = m->m_next;
2886 } else {
2887 sbfree(&so->so_rcv, m);
2888 so->so_rcv.sb_mb = m_free(m);
2889 m = so->so_rcv.sb_mb;
2890 sockbuf_pushsync(&so->so_rcv, nextrecord);
2891 }
2892 }
2893
2894 /*
2895 * Process one or more MT_CONTROL mbufs present before any data mbufs
2896 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
2897 * just copy the data; if !MSG_PEEK, we call into the protocol to
2898 * perform externalization (or freeing if controlp == NULL).
2899 */
2900 if (m != NULL && m->m_type == MT_CONTROL) {
2901 struct mbuf *cm = NULL, *cmn;
2902 struct mbuf **cme = &cm;
2903 #ifdef KERN_TLS
2904 struct cmsghdr *cmsg;
2905 struct tls_get_record tgr;
2906
2907 /*
2908 * For MSG_TLSAPPDATA, check for an alert record.
2909 * If found, return ENXIO without removing
2910 * it from the receive queue. This allows a subsequent
2911 * call without MSG_TLSAPPDATA to receive it.
2912 * Note that, for TLS, there should only be a single
2913 * control mbuf with the TLS_GET_RECORD message in it.
2914 */
2915 if (flags & MSG_TLSAPPDATA) {
2916 cmsg = mtod(m, struct cmsghdr *);
2917 if (cmsg->cmsg_type == TLS_GET_RECORD &&
2918 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2919 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2920 if (__predict_false(tgr.tls_type ==
2921 TLS_RLTYPE_ALERT)) {
2922 SOCKBUF_UNLOCK(&so->so_rcv);
2923 error = ENXIO;
2924 goto release;
2925 }
2926 }
2927 }
2928 #endif
2929
2930 do {
2931 if (flags & MSG_PEEK) {
2932 if (controlp != NULL) {
2933 *controlp = m_copym(m, 0, m->m_len,
2934 M_NOWAIT);
2935 controlp = &(*controlp)->m_next;
2936 }
2937 m = m->m_next;
2938 } else {
2939 sbfree(&so->so_rcv, m);
2940 so->so_rcv.sb_mb = m->m_next;
2941 m->m_next = NULL;
2942 *cme = m;
2943 cme = &(*cme)->m_next;
2944 m = so->so_rcv.sb_mb;
2945 }
2946 } while (m != NULL && m->m_type == MT_CONTROL);
2947 if ((flags & MSG_PEEK) == 0)
2948 sockbuf_pushsync(&so->so_rcv, nextrecord);
2949 while (cm != NULL) {
2950 cmn = cm->m_next;
2951 cm->m_next = NULL;
2952 if (controlp != NULL)
2953 *controlp = cm;
2954 else
2955 m_freem(cm);
2956 if (controlp != NULL) {
2957 while (*controlp != NULL)
2958 controlp = &(*controlp)->m_next;
2959 }
2960 cm = cmn;
2961 }
2962 if (m != NULL)
2963 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2964 else
2965 nextrecord = so->so_rcv.sb_mb;
2966 orig_resid = 0;
2967 }
2968 if (m != NULL) {
2969 if ((flags & MSG_PEEK) == 0) {
2970 KASSERT(m->m_nextpkt == nextrecord,
2971 ("soreceive: post-control, nextrecord !sync"));
2972 if (nextrecord == NULL) {
2973 KASSERT(so->so_rcv.sb_mb == m,
2974 ("soreceive: post-control, sb_mb!=m"));
2975 KASSERT(so->so_rcv.sb_lastrecord == m,
2976 ("soreceive: post-control, lastrecord!=m"));
2977 }
2978 }
2979 type = m->m_type;
2980 if (type == MT_OOBDATA)
2981 flags |= MSG_OOB;
2982 } else {
2983 if ((flags & MSG_PEEK) == 0) {
2984 KASSERT(so->so_rcv.sb_mb == nextrecord,
2985 ("soreceive: sb_mb != nextrecord"));
2986 if (so->so_rcv.sb_mb == NULL) {
2987 KASSERT(so->so_rcv.sb_lastrecord == NULL,
2988 ("soreceive: sb_lastercord != NULL"));
2989 }
2990 }
2991 }
2992 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2993 SBLASTRECORDCHK(&so->so_rcv);
2994 SBLASTMBUFCHK(&so->so_rcv);
2995
2996 /*
2997 * Now continue to read any data mbufs off of the head of the socket
2998 * buffer until the read request is satisfied. Note that 'type' is
2999 * used to store the type of any mbuf reads that have happened so far
3000 * such that soreceive() can stop reading if the type changes, which
3001 * causes soreceive() to return only one of regular data and inline
3002 * out-of-band data in a single socket receive operation.
3003 */
3004 moff = 0;
3005 offset = 0;
3006 while (m != NULL && !(m->m_flags & M_NOTREADY) && uio->uio_resid > 0 &&
3007 error == 0) {
3008 /*
3009 * If the type of mbuf has changed since the last mbuf
3010 * examined ('type'), end the receive operation.
3011 */
3012 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3013 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
3014 if (type != m->m_type)
3015 break;
3016 } else if (type == MT_OOBDATA)
3017 break;
3018 else
3019 KASSERT(m->m_type == MT_DATA,
3020 ("m->m_type == %d", m->m_type));
3021 so->so_rcv.sb_state &= ~SBS_RCVATMARK;
3022 len = uio->uio_resid;
3023 if (so->so_oobmark && len > so->so_oobmark - offset)
3024 len = so->so_oobmark - offset;
3025 if (len > m->m_len - moff)
3026 len = m->m_len - moff;
3027 /*
3028 * If mp is set, just pass back the mbufs. Otherwise copy
3029 * them out via the uio, then free. Sockbuf must be
3030 * consistent here (points to current mbuf, it points to next
3031 * record) when we drop priority; we must note any additions
3032 * to the sockbuf when we block interrupts again.
3033 */
3034 if (mp == NULL) {
3035 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3036 SBLASTRECORDCHK(&so->so_rcv);
3037 SBLASTMBUFCHK(&so->so_rcv);
3038 SOCKBUF_UNLOCK(&so->so_rcv);
3039 if ((m->m_flags & M_EXTPG) != 0)
3040 error = m_unmapped_uiomove(m, moff, uio,
3041 (int)len);
3042 else
3043 error = uiomove(mtod(m, char *) + moff,
3044 (int)len, uio);
3045 SOCKBUF_LOCK(&so->so_rcv);
3046 if (error) {
3047 /*
3048 * The MT_SONAME mbuf has already been removed
3049 * from the record, so it is necessary to
3050 * remove the data mbufs, if any, to preserve
3051 * the invariant in the case of PR_ADDR that
3052 * requires MT_SONAME mbufs at the head of
3053 * each record.
3054 */
3055 if (pr->pr_flags & PR_ATOMIC &&
3056 ((flags & MSG_PEEK) == 0))
3057 (void)sbdroprecord_locked(&so->so_rcv);
3058 SOCKBUF_UNLOCK(&so->so_rcv);
3059 goto release;
3060 }
3061 } else
3062 uio->uio_resid -= len;
3063 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3064 if (len == m->m_len - moff) {
3065 if (m->m_flags & M_EOR)
3066 flags |= MSG_EOR;
3067 if (flags & MSG_PEEK) {
3068 m = m->m_next;
3069 moff = 0;
3070 } else {
3071 nextrecord = m->m_nextpkt;
3072 sbfree(&so->so_rcv, m);
3073 if (mp != NULL) {
3074 m->m_nextpkt = NULL;
3075 *mp = m;
3076 mp = &m->m_next;
3077 so->so_rcv.sb_mb = m = m->m_next;
3078 *mp = NULL;
3079 } else {
3080 so->so_rcv.sb_mb = m_free(m);
3081 m = so->so_rcv.sb_mb;
3082 }
3083 sockbuf_pushsync(&so->so_rcv, nextrecord);
3084 SBLASTRECORDCHK(&so->so_rcv);
3085 SBLASTMBUFCHK(&so->so_rcv);
3086 }
3087 } else {
3088 if (flags & MSG_PEEK)
3089 moff += len;
3090 else {
3091 if (mp != NULL) {
3092 if (flags & MSG_DONTWAIT) {
3093 *mp = m_copym(m, 0, len,
3094 M_NOWAIT);
3095 if (*mp == NULL) {
3096 /*
3097 * m_copym() couldn't
3098 * allocate an mbuf.
3099 * Adjust uio_resid back
3100 * (it was adjusted
3101 * down by len bytes,
3102 * which we didn't end
3103 * up "copying" over).
3104 */
3105 uio->uio_resid += len;
3106 break;
3107 }
3108 } else {
3109 SOCKBUF_UNLOCK(&so->so_rcv);
3110 *mp = m_copym(m, 0, len,
3111 M_WAITOK);
3112 SOCKBUF_LOCK(&so->so_rcv);
3113 }
3114 }
3115 sbcut_locked(&so->so_rcv, len);
3116 }
3117 }
3118 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3119 if (so->so_oobmark) {
3120 if ((flags & MSG_PEEK) == 0) {
3121 so->so_oobmark -= len;
3122 if (so->so_oobmark == 0) {
3123 so->so_rcv.sb_state |= SBS_RCVATMARK;
3124 break;
3125 }
3126 } else {
3127 offset += len;
3128 if (offset == so->so_oobmark)
3129 break;
3130 }
3131 }
3132 if (flags & MSG_EOR)
3133 break;
3134 /*
3135 * If the MSG_WAITALL flag is set (for non-atomic socket), we
3136 * must not quit until "uio->uio_resid == 0" or an error
3137 * termination. If a signal/timeout occurs, return with a
3138 * short count but without error. Keep sockbuf locked
3139 * against other readers.
3140 */
3141 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
3142 !sosendallatonce(so) && nextrecord == NULL) {
3143 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3144 if (so->so_error || so->so_rerror ||
3145 so->so_rcv.sb_state & SBS_CANTRCVMORE)
3146 break;
3147 /*
3148 * Notify the protocol that some data has been
3149 * drained before blocking.
3150 */
3151 if (pr->pr_flags & PR_WANTRCVD) {
3152 SOCKBUF_UNLOCK(&so->so_rcv);
3153 VNET_SO_ASSERT(so);
3154 pr->pr_rcvd(so, flags);
3155 SOCKBUF_LOCK(&so->so_rcv);
3156 if (__predict_false(so->so_rcv.sb_mb == NULL &&
3157 (so->so_error || so->so_rerror ||
3158 so->so_rcv.sb_state & SBS_CANTRCVMORE)))
3159 break;
3160 }
3161 SBLASTRECORDCHK(&so->so_rcv);
3162 SBLASTMBUFCHK(&so->so_rcv);
3163 /*
3164 * We could receive some data while was notifying
3165 * the protocol. Skip blocking in this case.
3166 */
3167 if (so->so_rcv.sb_mb == NULL) {
3168 error = sbwait(so, SO_RCV);
3169 if (error) {
3170 SOCKBUF_UNLOCK(&so->so_rcv);
3171 goto release;
3172 }
3173 }
3174 m = so->so_rcv.sb_mb;
3175 if (m != NULL)
3176 nextrecord = m->m_nextpkt;
3177 }
3178 }
3179
3180 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3181 if (m != NULL && pr->pr_flags & PR_ATOMIC) {
3182 if (report_real_len)
3183 uio->uio_resid -= m_length(m, NULL) - moff;
3184 flags |= MSG_TRUNC;
3185 if ((flags & MSG_PEEK) == 0)
3186 (void) sbdroprecord_locked(&so->so_rcv);
3187 }
3188 if ((flags & MSG_PEEK) == 0) {
3189 if (m == NULL) {
3190 /*
3191 * First part is an inline SB_EMPTY_FIXUP(). Second
3192 * part makes sure sb_lastrecord is up-to-date if
3193 * there is still data in the socket buffer.
3194 */
3195 so->so_rcv.sb_mb = nextrecord;
3196 if (so->so_rcv.sb_mb == NULL) {
3197 so->so_rcv.sb_mbtail = NULL;
3198 so->so_rcv.sb_lastrecord = NULL;
3199 } else if (nextrecord->m_nextpkt == NULL)
3200 so->so_rcv.sb_lastrecord = nextrecord;
3201 }
3202 SBLASTRECORDCHK(&so->so_rcv);
3203 SBLASTMBUFCHK(&so->so_rcv);
3204 /*
3205 * If soreceive() is being done from the socket callback,
3206 * then don't need to generate ACK to peer to update window,
3207 * since ACK will be generated on return to TCP.
3208 */
3209 if (!(flags & MSG_SOCALLBCK) &&
3210 (pr->pr_flags & PR_WANTRCVD)) {
3211 SOCKBUF_UNLOCK(&so->so_rcv);
3212 VNET_SO_ASSERT(so);
3213 pr->pr_rcvd(so, flags);
3214 SOCKBUF_LOCK(&so->so_rcv);
3215 }
3216 }
3217 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3218 if (orig_resid == uio->uio_resid && orig_resid &&
3219 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
3220 SOCKBUF_UNLOCK(&so->so_rcv);
3221 goto restart;
3222 }
3223 SOCKBUF_UNLOCK(&so->so_rcv);
3224
3225 if (flagsp != NULL)
3226 *flagsp |= flags;
3227 release:
3228 return (error);
3229 }
3230
3231 int
3232 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
3233 struct mbuf **mp, struct mbuf **controlp, int *flagsp)
3234 {
3235 int error, flags;
3236
3237 if (psa != NULL)
3238 *psa = NULL;
3239 if (controlp != NULL)
3240 *controlp = NULL;
3241 if (flagsp != NULL) {
3242 flags = *flagsp;
3243 if ((flags & MSG_OOB) != 0)
3244 return (soreceive_rcvoob(so, uio, flags));
3245 } else {
3246 flags = 0;
3247 }
3248 if (mp != NULL)
3249 *mp = NULL;
3250
3251 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3252 if (error)
3253 return (error);
3254 error = soreceive_generic_locked(so, psa, uio, mp, controlp, flagsp);
3255 SOCK_IO_RECV_UNLOCK(so);
3256 return (error);
3257 }
3258
3259 /*
3260 * Optimized version of soreceive() for stream (TCP) sockets.
3261 */
3262 static int
3263 soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
3264 struct sockaddr **psa, struct uio *uio, struct mbuf **mp0,
3265 struct mbuf **controlp, int flags)
3266 {
3267 int len = 0, error = 0, oresid;
3268 struct mbuf *m, *n = NULL;
3269
3270 SOCK_IO_RECV_ASSERT_LOCKED(so);
3271
3272 /* Easy one, no space to copyout anything. */
3273 if (uio->uio_resid == 0)
3274 return (EINVAL);
3275 oresid = uio->uio_resid;
3276
3277 SOCKBUF_LOCK(sb);
3278 /* We will never ever get anything unless we are or were connected. */
3279 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
3280 error = ENOTCONN;
3281 goto out;
3282 }
3283
3284 restart:
3285 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3286
3287 /* Abort if socket has reported problems. */
3288 if (so->so_error) {
3289 if (sbavail(sb) > 0)
3290 goto deliver;
3291 if (oresid > uio->uio_resid)
3292 goto out;
3293 error = so->so_error;
3294 if (!(flags & MSG_PEEK))
3295 so->so_error = 0;
3296 goto out;
3297 }
3298
3299 /* Door is closed. Deliver what is left, if any. */
3300 if (sb->sb_state & SBS_CANTRCVMORE) {
3301 if (sbavail(sb) > 0)
3302 goto deliver;
3303 else
3304 goto out;
3305 }
3306
3307 /* Socket buffer is empty and we shall not block. */
3308 if (sbavail(sb) == 0 &&
3309 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
3310 error = EAGAIN;
3311 goto out;
3312 }
3313
3314 /* Socket buffer got some data that we shall deliver now. */
3315 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
3316 ((so->so_state & SS_NBIO) ||
3317 (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
3318 sbavail(sb) >= sb->sb_lowat ||
3319 sbavail(sb) >= uio->uio_resid ||
3320 sbavail(sb) >= sb->sb_hiwat) ) {
3321 goto deliver;
3322 }
3323
3324 /* On MSG_WAITALL we must wait until all data or error arrives. */
3325 if ((flags & MSG_WAITALL) &&
3326 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
3327 goto deliver;
3328
3329 /*
3330 * Wait and block until (more) data comes in.
3331 * NB: Drops the sockbuf lock during wait.
3332 */
3333 error = sbwait(so, SO_RCV);
3334 if (error)
3335 goto out;
3336 goto restart;
3337
3338 deliver:
3339 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3340 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
3341 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
3342
3343 /* Statistics. */
3344 if (uio->uio_td)
3345 uio->uio_td->td_ru.ru_msgrcv++;
3346
3347 /* Fill uio until full or current end of socket buffer is reached. */
3348 len = min(uio->uio_resid, sbavail(sb));
3349 if (mp0 != NULL) {
3350 /* Dequeue as many mbufs as possible. */
3351 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
3352 if (*mp0 == NULL)
3353 *mp0 = sb->sb_mb;
3354 else
3355 m_cat(*mp0, sb->sb_mb);
3356 for (m = sb->sb_mb;
3357 m != NULL && m->m_len <= len;
3358 m = m->m_next) {
3359 KASSERT(!(m->m_flags & M_NOTREADY),
3360 ("%s: m %p not available", __func__, m));
3361 len -= m->m_len;
3362 uio->uio_resid -= m->m_len;
3363 sbfree(sb, m);
3364 n = m;
3365 }
3366 n->m_next = NULL;
3367 sb->sb_mb = m;
3368 sb->sb_lastrecord = sb->sb_mb;
3369 if (sb->sb_mb == NULL)
3370 SB_EMPTY_FIXUP(sb);
3371 }
3372 /* Copy the remainder. */
3373 if (len > 0) {
3374 KASSERT(sb->sb_mb != NULL,
3375 ("%s: len > 0 && sb->sb_mb empty", __func__));
3376
3377 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
3378 if (m == NULL)
3379 len = 0; /* Don't flush data from sockbuf. */
3380 else
3381 uio->uio_resid -= len;
3382 if (*mp0 != NULL)
3383 m_cat(*mp0, m);
3384 else
3385 *mp0 = m;
3386 if (*mp0 == NULL) {
3387 error = ENOBUFS;
3388 goto out;
3389 }
3390 }
3391 } else {
3392 /* NB: Must unlock socket buffer as uiomove may sleep. */
3393 SOCKBUF_UNLOCK(sb);
3394 error = m_mbuftouio(uio, sb->sb_mb, len);
3395 SOCKBUF_LOCK(sb);
3396 if (error)
3397 goto out;
3398 }
3399 SBLASTRECORDCHK(sb);
3400 SBLASTMBUFCHK(sb);
3401
3402 /*
3403 * Remove the delivered data from the socket buffer unless we
3404 * were only peeking.
3405 */
3406 if (!(flags & MSG_PEEK)) {
3407 if (len > 0)
3408 sbdrop_locked(sb, len);
3409
3410 /* Notify protocol that we drained some data. */
3411 if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
3412 (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
3413 !(flags & MSG_SOCALLBCK))) {
3414 SOCKBUF_UNLOCK(sb);
3415 VNET_SO_ASSERT(so);
3416 so->so_proto->pr_rcvd(so, flags);
3417 SOCKBUF_LOCK(sb);
3418 }
3419 }
3420
3421 /*
3422 * For MSG_WAITALL we may have to loop again and wait for
3423 * more data to come in.
3424 */
3425 if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
3426 goto restart;
3427 out:
3428 SBLASTRECORDCHK(sb);
3429 SBLASTMBUFCHK(sb);
3430 SOCKBUF_UNLOCK(sb);
3431 return (error);
3432 }
3433
3434 int
3435 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
3436 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3437 {
3438 struct sockbuf *sb;
3439 int error, flags;
3440
3441 sb = &so->so_rcv;
3442
3443 /* We only do stream sockets. */
3444 if (so->so_type != SOCK_STREAM)
3445 return (EINVAL);
3446 if (psa != NULL)
3447 *psa = NULL;
3448 if (flagsp != NULL)
3449 flags = *flagsp & ~MSG_EOR;
3450 else
3451 flags = 0;
3452 if (controlp != NULL)
3453 *controlp = NULL;
3454 if (flags & MSG_OOB)
3455 return (soreceive_rcvoob(so, uio, flags));
3456 if (mp0 != NULL)
3457 *mp0 = NULL;
3458
3459 #ifdef KERN_TLS
3460 /*
3461 * KTLS store TLS records as records with a control message to
3462 * describe the framing.
3463 *
3464 * We check once here before acquiring locks to optimize the
3465 * common case.
3466 */
3467 if (sb->sb_tls_info != NULL)
3468 return (soreceive_generic(so, psa, uio, mp0, controlp,
3469 flagsp));
3470 #endif
3471
3472 /*
3473 * Prevent other threads from reading from the socket. This lock may be
3474 * dropped in order to sleep waiting for data to arrive.
3475 */
3476 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3477 if (error)
3478 return (error);
3479 #ifdef KERN_TLS
3480 if (__predict_false(sb->sb_tls_info != NULL)) {
3481 SOCK_IO_RECV_UNLOCK(so);
3482 return (soreceive_generic(so, psa, uio, mp0, controlp,
3483 flagsp));
3484 }
3485 #endif
3486 error = soreceive_stream_locked(so, sb, psa, uio, mp0, controlp, flags);
3487 SOCK_IO_RECV_UNLOCK(so);
3488 return (error);
3489 }
3490
3491 /*
3492 * Optimized version of soreceive() for simple datagram cases from userspace.
3493 * Unlike in the stream case, we're able to drop a datagram if copyout()
3494 * fails, and because we handle datagrams atomically, we don't need to use a
3495 * sleep lock to prevent I/O interlacing.
3496 */
3497 int
3498 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
3499 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3500 {
3501 struct mbuf *m, *m2;
3502 int flags, error;
3503 ssize_t len;
3504 struct protosw *pr = so->so_proto;
3505 struct mbuf *nextrecord;
3506
3507 if (psa != NULL)
3508 *psa = NULL;
3509 if (controlp != NULL)
3510 *controlp = NULL;
3511 if (flagsp != NULL)
3512 flags = *flagsp &~ MSG_EOR;
3513 else
3514 flags = 0;
3515
3516 /*
3517 * For any complicated cases, fall back to the full
3518 * soreceive_generic().
3519 */
3520 if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
3521 return (soreceive_generic(so, psa, uio, mp0, controlp,
3522 flagsp));
3523
3524 /*
3525 * Enforce restrictions on use.
3526 */
3527 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
3528 ("soreceive_dgram: wantrcvd"));
3529 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
3530 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
3531 ("soreceive_dgram: SBS_RCVATMARK"));
3532 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
3533 ("soreceive_dgram: P_CONNREQUIRED"));
3534
3535 /*
3536 * Loop blocking while waiting for a datagram.
3537 */
3538 SOCKBUF_LOCK(&so->so_rcv);
3539 while ((m = so->so_rcv.sb_mb) == NULL) {
3540 KASSERT(sbavail(&so->so_rcv) == 0,
3541 ("soreceive_dgram: sb_mb NULL but sbavail %u",
3542 sbavail(&so->so_rcv)));
3543 if (so->so_error) {
3544 error = so->so_error;
3545 so->so_error = 0;
3546 SOCKBUF_UNLOCK(&so->so_rcv);
3547 return (error);
3548 }
3549 if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
3550 uio->uio_resid == 0) {
3551 SOCKBUF_UNLOCK(&so->so_rcv);
3552 return (0);
3553 }
3554 if ((so->so_state & SS_NBIO) ||
3555 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
3556 SOCKBUF_UNLOCK(&so->so_rcv);
3557 return (EWOULDBLOCK);
3558 }
3559 SBLASTRECORDCHK(&so->so_rcv);
3560 SBLASTMBUFCHK(&so->so_rcv);
3561 error = sbwait(so, SO_RCV);
3562 if (error) {
3563 SOCKBUF_UNLOCK(&so->so_rcv);
3564 return (error);
3565 }
3566 }
3567 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3568
3569 if (uio->uio_td)
3570 uio->uio_td->td_ru.ru_msgrcv++;
3571 SBLASTRECORDCHK(&so->so_rcv);
3572 SBLASTMBUFCHK(&so->so_rcv);
3573 nextrecord = m->m_nextpkt;
3574 if (nextrecord == NULL) {
3575 KASSERT(so->so_rcv.sb_lastrecord == m,
3576 ("soreceive_dgram: lastrecord != m"));
3577 }
3578
3579 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
3580 ("soreceive_dgram: m_nextpkt != nextrecord"));
3581
3582 /*
3583 * Pull 'm' and its chain off the front of the packet queue.
3584 */
3585 so->so_rcv.sb_mb = NULL;
3586 sockbuf_pushsync(&so->so_rcv, nextrecord);
3587
3588 /*
3589 * Walk 'm's chain and free that many bytes from the socket buffer.
3590 */
3591 for (m2 = m; m2 != NULL; m2 = m2->m_next)
3592 sbfree(&so->so_rcv, m2);
3593
3594 /*
3595 * Do a few last checks before we let go of the lock.
3596 */
3597 SBLASTRECORDCHK(&so->so_rcv);
3598 SBLASTMBUFCHK(&so->so_rcv);
3599 SOCKBUF_UNLOCK(&so->so_rcv);
3600
3601 if (pr->pr_flags & PR_ADDR) {
3602 KASSERT(m->m_type == MT_SONAME,
3603 ("m->m_type == %d", m->m_type));
3604 if (psa != NULL)
3605 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
3606 M_WAITOK);
3607 m = m_free(m);
3608 }
3609 KASSERT(m, ("%s: no data or control after soname", __func__));
3610
3611 /*
3612 * Packet to copyout() is now in 'm' and it is disconnected from the
3613 * queue.
3614 *
3615 * Process one or more MT_CONTROL mbufs present before any data mbufs
3616 * in the first mbuf chain on the socket buffer. We call into the
3617 * protocol to perform externalization (or freeing if controlp ==
3618 * NULL). In some cases there can be only MT_CONTROL mbufs without
3619 * MT_DATA mbufs.
3620 */
3621 if (m->m_type == MT_CONTROL) {
3622 struct mbuf *cm = NULL, *cmn;
3623 struct mbuf **cme = &cm;
3624
3625 do {
3626 m2 = m->m_next;
3627 m->m_next = NULL;
3628 *cme = m;
3629 cme = &(*cme)->m_next;
3630 m = m2;
3631 } while (m != NULL && m->m_type == MT_CONTROL);
3632 while (cm != NULL) {
3633 cmn = cm->m_next;
3634 cm->m_next = NULL;
3635 if (controlp != NULL)
3636 *controlp = cm;
3637 else
3638 m_freem(cm);
3639 if (controlp != NULL) {
3640 while (*controlp != NULL)
3641 controlp = &(*controlp)->m_next;
3642 }
3643 cm = cmn;
3644 }
3645 }
3646 KASSERT(m == NULL || m->m_type == MT_DATA,
3647 ("soreceive_dgram: !data"));
3648 while (m != NULL && uio->uio_resid > 0) {
3649 len = uio->uio_resid;
3650 if (len > m->m_len)
3651 len = m->m_len;
3652 error = uiomove(mtod(m, char *), (int)len, uio);
3653 if (error) {
3654 m_freem(m);
3655 return (error);
3656 }
3657 if (len == m->m_len)
3658 m = m_free(m);
3659 else {
3660 m->m_data += len;
3661 m->m_len -= len;
3662 }
3663 }
3664 if (m != NULL) {
3665 flags |= MSG_TRUNC;
3666 m_freem(m);
3667 }
3668 if (flagsp != NULL)
3669 *flagsp |= flags;
3670 return (0);
3671 }
3672
3673 int
3674 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
3675 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3676 {
3677 int error;
3678
3679 CURVNET_SET(so->so_vnet);
3680 error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
3681 CURVNET_RESTORE();
3682 return (error);
3683 }
3684
3685 int
3686 soshutdown(struct socket *so, enum shutdown_how how)
3687 {
3688 int error;
3689
3690 CURVNET_SET(so->so_vnet);
3691 error = so->so_proto->pr_shutdown(so, how);
3692 CURVNET_RESTORE();
3693
3694 return (error);
3695 }
3696
3697 /*
3698 * Used by several pr_shutdown implementations that use generic socket buffers.
3699 */
3700 void
3701 sorflush(struct socket *so)
3702 {
3703 int error;
3704
3705 VNET_SO_ASSERT(so);
3706
3707 /*
3708 * Dislodge threads currently blocked in receive and wait to acquire
3709 * a lock against other simultaneous readers before clearing the
3710 * socket buffer. Don't let our acquire be interrupted by a signal
3711 * despite any existing socket disposition on interruptable waiting.
3712 *
3713 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive
3714 * methods that read the top of the socket buffer without acquisition
3715 * of the socket buffer mutex, assuming that top of the buffer
3716 * exclusively belongs to the read(2) syscall. This is handy when
3717 * performing MSG_PEEK.
3718 */
3719 socantrcvmore(so);
3720
3721 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
3722 if (error != 0) {
3723 KASSERT(SOLISTENING(so),
3724 ("%s: soiolock(%p) failed", __func__, so));
3725 return;
3726 }
3727
3728 sbrelease(so, SO_RCV);
3729 SOCK_IO_RECV_UNLOCK(so);
3730
3731 }
3732
3733 int
3734 sosetfib(struct socket *so, int fibnum)
3735 {
3736 if (fibnum < 0 || fibnum >= rt_numfibs)
3737 return (EINVAL);
3738
3739 SOCK_LOCK(so);
3740 so->so_fibnum = fibnum;
3741 SOCK_UNLOCK(so);
3742
3743 return (0);
3744 }
3745
3746 #ifdef SOCKET_HHOOK
3747 /*
3748 * Wrapper for Socket established helper hook.
3749 * Parameters: socket, context of the hook point, hook id.
3750 */
3751 static inline int
3752 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
3753 {
3754 struct socket_hhook_data hhook_data = {
3755 .so = so,
3756 .hctx = hctx,
3757 .m = NULL,
3758 .status = 0
3759 };
3760
3761 CURVNET_SET(so->so_vnet);
3762 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
3763 CURVNET_RESTORE();
3764
3765 /* Ugly but needed, since hhooks return void for now */
3766 return (hhook_data.status);
3767 }
3768 #endif
3769
3770 /*
3771 * Perhaps this routine, and sooptcopyout(), below, ought to come in an
3772 * additional variant to handle the case where the option value needs to be
3773 * some kind of integer, but not a specific size. In addition to their use
3774 * here, these functions are also called by the protocol-level pr_ctloutput()
3775 * routines.
3776 */
3777 int
3778 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
3779 {
3780 size_t valsize;
3781
3782 /*
3783 * If the user gives us more than we wanted, we ignore it, but if we
3784 * don't get the minimum length the caller wants, we return EINVAL.
3785 * On success, sopt->sopt_valsize is set to however much we actually
3786 * retrieved.
3787 */
3788 if ((valsize = sopt->sopt_valsize) < minlen)
3789 return EINVAL;
3790 if (valsize > len)
3791 sopt->sopt_valsize = valsize = len;
3792
3793 if (sopt->sopt_td != NULL)
3794 return (copyin(sopt->sopt_val, buf, valsize));
3795
3796 bcopy(sopt->sopt_val, buf, valsize);
3797 return (0);
3798 }
3799
3800 /*
3801 * Kernel version of setsockopt(2).
3802 *
3803 * XXX: optlen is size_t, not socklen_t
3804 */
3805 int
3806 so_setsockopt(struct socket *so, int level, int optname, void *optval,
3807 size_t optlen)
3808 {
3809 struct sockopt sopt;
3810
3811 sopt.sopt_level = level;
3812 sopt.sopt_name = optname;
3813 sopt.sopt_dir = SOPT_SET;
3814 sopt.sopt_val = optval;
3815 sopt.sopt_valsize = optlen;
3816 sopt.sopt_td = NULL;
3817 return (sosetopt(so, &sopt));
3818 }
3819
3820 int
3821 sosetopt(struct socket *so, struct sockopt *sopt)
3822 {
3823 int error, optval;
3824 struct linger l;
3825 struct timeval tv;
3826 sbintime_t val, *valp;
3827 uint32_t val32;
3828 #ifdef MAC
3829 struct mac extmac;
3830 #endif
3831
3832 CURVNET_SET(so->so_vnet);
3833 error = 0;
3834 if (sopt->sopt_level != SOL_SOCKET) {
3835 error = so->so_proto->pr_ctloutput(so, sopt);
3836 } else {
3837 switch (sopt->sopt_name) {
3838 case SO_ACCEPTFILTER:
3839 error = accept_filt_setopt(so, sopt);
3840 if (error)
3841 goto bad;
3842 break;
3843
3844 case SO_LINGER:
3845 error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3846 if (error)
3847 goto bad;
3848 if (l.l_linger < 0 ||
3849 l.l_linger > USHRT_MAX ||
3850 l.l_linger > (INT_MAX / hz)) {
3851 error = EDOM;
3852 goto bad;
3853 }
3854 SOCK_LOCK(so);
3855 so->so_linger = l.l_linger;
3856 if (l.l_onoff)
3857 so->so_options |= SO_LINGER;
3858 else
3859 so->so_options &= ~SO_LINGER;
3860 SOCK_UNLOCK(so);
3861 break;
3862
3863 case SO_DEBUG:
3864 case SO_KEEPALIVE:
3865 case SO_DONTROUTE:
3866 case SO_USELOOPBACK:
3867 case SO_BROADCAST:
3868 case SO_REUSEADDR:
3869 case SO_REUSEPORT:
3870 case SO_REUSEPORT_LB:
3871 case SO_OOBINLINE:
3872 case SO_TIMESTAMP:
3873 case SO_BINTIME:
3874 case SO_NOSIGPIPE:
3875 case SO_NO_DDP:
3876 case SO_NO_OFFLOAD:
3877 case SO_RERROR:
3878 error = sooptcopyin(sopt, &optval, sizeof optval,
3879 sizeof optval);
3880 if (error)
3881 goto bad;
3882 SOCK_LOCK(so);
3883 if (optval)
3884 so->so_options |= sopt->sopt_name;
3885 else
3886 so->so_options &= ~sopt->sopt_name;
3887 SOCK_UNLOCK(so);
3888 break;
3889
3890 case SO_SETFIB:
3891 error = so->so_proto->pr_ctloutput(so, sopt);
3892 break;
3893
3894 case SO_USER_COOKIE:
3895 error = sooptcopyin(sopt, &val32, sizeof val32,
3896 sizeof val32);
3897 if (error)
3898 goto bad;
3899 so->so_user_cookie = val32;
3900 break;
3901
3902 case SO_SNDBUF:
3903 case SO_RCVBUF:
3904 case SO_SNDLOWAT:
3905 case SO_RCVLOWAT:
3906 error = so->so_proto->pr_setsbopt(so, sopt);
3907 if (error)
3908 goto bad;
3909 break;
3910
3911 case SO_SNDTIMEO:
3912 case SO_RCVTIMEO:
3913 #ifdef COMPAT_FREEBSD32
3914 if (SV_CURPROC_FLAG(SV_ILP32)) {
3915 struct timeval32 tv32;
3916
3917 error = sooptcopyin(sopt, &tv32, sizeof tv32,
3918 sizeof tv32);
3919 CP(tv32, tv, tv_sec);
3920 CP(tv32, tv, tv_usec);
3921 } else
3922 #endif
3923 error = sooptcopyin(sopt, &tv, sizeof tv,
3924 sizeof tv);
3925 if (error)
3926 goto bad;
3927 if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3928 tv.tv_usec >= 1000000) {
3929 error = EDOM;
3930 goto bad;
3931 }
3932 if (tv.tv_sec > INT32_MAX)
3933 val = SBT_MAX;
3934 else
3935 val = tvtosbt(tv);
3936 SOCK_LOCK(so);
3937 valp = sopt->sopt_name == SO_SNDTIMEO ?
3938 (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3939 &so->so_snd.sb_timeo) :
3940 (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3941 &so->so_rcv.sb_timeo);
3942 *valp = val;
3943 SOCK_UNLOCK(so);
3944 break;
3945
3946 case SO_LABEL:
3947 #ifdef MAC
3948 error = sooptcopyin(sopt, &extmac, sizeof extmac,
3949 sizeof extmac);
3950 if (error)
3951 goto bad;
3952 error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3953 so, &extmac);
3954 #else
3955 error = EOPNOTSUPP;
3956 #endif
3957 break;
3958
3959 case SO_TS_CLOCK:
3960 error = sooptcopyin(sopt, &optval, sizeof optval,
3961 sizeof optval);
3962 if (error)
3963 goto bad;
3964 if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3965 error = EINVAL;
3966 goto bad;
3967 }
3968 so->so_ts_clock = optval;
3969 break;
3970
3971 case SO_MAX_PACING_RATE:
3972 error = sooptcopyin(sopt, &val32, sizeof(val32),
3973 sizeof(val32));
3974 if (error)
3975 goto bad;
3976 so->so_max_pacing_rate = val32;
3977 break;
3978
3979 case SO_SPLICE: {
3980 struct splice splice;
3981
3982 #ifdef COMPAT_FREEBSD32
3983 if (SV_CURPROC_FLAG(SV_ILP32)) {
3984 struct splice32 splice32;
3985
3986 error = sooptcopyin(sopt, &splice32,
3987 sizeof(splice32), sizeof(splice32));
3988 if (error == 0) {
3989 splice.sp_fd = splice32.sp_fd;
3990 splice.sp_max = splice32.sp_max;
3991 CP(splice32.sp_idle, splice.sp_idle,
3992 tv_sec);
3993 CP(splice32.sp_idle, splice.sp_idle,
3994 tv_usec);
3995 }
3996 } else
3997 #endif
3998 {
3999 error = sooptcopyin(sopt, &splice,
4000 sizeof(splice), sizeof(splice));
4001 }
4002 if (error)
4003 goto bad;
4004 #ifdef KTRACE
4005 if (KTRPOINT(curthread, KTR_STRUCT))
4006 ktrsplice(&splice);
4007 #endif
4008
4009 error = splice_init();
4010 if (error != 0)
4011 goto bad;
4012
4013 if (splice.sp_fd >= 0) {
4014 struct file *fp;
4015 struct socket *so2;
4016
4017 if (!cap_rights_contains(sopt->sopt_rights,
4018 &cap_recv_rights)) {
4019 error = ENOTCAPABLE;
4020 goto bad;
4021 }
4022 error = getsock(sopt->sopt_td, splice.sp_fd,
4023 &cap_send_rights, &fp);
4024 if (error != 0)
4025 goto bad;
4026 so2 = fp->f_data;
4027
4028 error = so_splice(so, so2, &splice);
4029 fdrop(fp, sopt->sopt_td);
4030 } else {
4031 error = so_unsplice(so, false);
4032 }
4033 break;
4034 }
4035 default:
4036 #ifdef SOCKET_HHOOK
4037 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4038 error = hhook_run_socket(so, sopt,
4039 HHOOK_SOCKET_OPT);
4040 else
4041 #endif
4042 error = ENOPROTOOPT;
4043 break;
4044 }
4045 if (error == 0)
4046 (void)so->so_proto->pr_ctloutput(so, sopt);
4047 }
4048 bad:
4049 CURVNET_RESTORE();
4050 return (error);
4051 }
4052
4053 /*
4054 * Helper routine for getsockopt.
4055 */
4056 int
4057 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
4058 {
4059 int error;
4060 size_t valsize;
4061
4062 error = 0;
4063
4064 /*
4065 * Documented get behavior is that we always return a value, possibly
4066 * truncated to fit in the user's buffer. Traditional behavior is
4067 * that we always tell the user precisely how much we copied, rather
4068 * than something useful like the total amount we had available for
4069 * her. Note that this interface is not idempotent; the entire
4070 * answer must be generated ahead of time.
4071 */
4072 valsize = min(len, sopt->sopt_valsize);
4073 sopt->sopt_valsize = valsize;
4074 if (sopt->sopt_val != NULL) {
4075 if (sopt->sopt_td != NULL)
4076 error = copyout(buf, sopt->sopt_val, valsize);
4077 else
4078 bcopy(buf, sopt->sopt_val, valsize);
4079 }
4080 return (error);
4081 }
4082
4083 int
4084 sogetopt(struct socket *so, struct sockopt *sopt)
4085 {
4086 int error, optval;
4087 struct linger l;
4088 struct timeval tv;
4089 #ifdef MAC
4090 struct mac extmac;
4091 #endif
4092
4093 CURVNET_SET(so->so_vnet);
4094 error = 0;
4095 if (sopt->sopt_level != SOL_SOCKET) {
4096 error = so->so_proto->pr_ctloutput(so, sopt);
4097 CURVNET_RESTORE();
4098 return (error);
4099 } else {
4100 switch (sopt->sopt_name) {
4101 case SO_ACCEPTFILTER:
4102 error = accept_filt_getopt(so, sopt);
4103 break;
4104
4105 case SO_LINGER:
4106 SOCK_LOCK(so);
4107 l.l_onoff = so->so_options & SO_LINGER;
4108 l.l_linger = so->so_linger;
4109 SOCK_UNLOCK(so);
4110 error = sooptcopyout(sopt, &l, sizeof l);
4111 break;
4112
4113 case SO_USELOOPBACK:
4114 case SO_DONTROUTE:
4115 case SO_DEBUG:
4116 case SO_KEEPALIVE:
4117 case SO_REUSEADDR:
4118 case SO_REUSEPORT:
4119 case SO_REUSEPORT_LB:
4120 case SO_BROADCAST:
4121 case SO_OOBINLINE:
4122 case SO_ACCEPTCONN:
4123 case SO_TIMESTAMP:
4124 case SO_BINTIME:
4125 case SO_NOSIGPIPE:
4126 case SO_NO_DDP:
4127 case SO_NO_OFFLOAD:
4128 case SO_RERROR:
4129 optval = so->so_options & sopt->sopt_name;
4130 integer:
4131 error = sooptcopyout(sopt, &optval, sizeof optval);
4132 break;
4133
4134 case SO_FIB:
4135 SOCK_LOCK(so);
4136 optval = so->so_fibnum;
4137 SOCK_UNLOCK(so);
4138 goto integer;
4139
4140 case SO_DOMAIN:
4141 optval = so->so_proto->pr_domain->dom_family;
4142 goto integer;
4143
4144 case SO_TYPE:
4145 optval = so->so_type;
4146 goto integer;
4147
4148 case SO_PROTOCOL:
4149 optval = so->so_proto->pr_protocol;
4150 goto integer;
4151
4152 case SO_ERROR:
4153 SOCK_LOCK(so);
4154 if (so->so_error) {
4155 optval = so->so_error;
4156 so->so_error = 0;
4157 } else {
4158 optval = so->so_rerror;
4159 so->so_rerror = 0;
4160 }
4161 SOCK_UNLOCK(so);
4162 goto integer;
4163
4164 case SO_SNDBUF:
4165 SOCK_LOCK(so);
4166 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
4167 so->so_snd.sb_hiwat;
4168 SOCK_UNLOCK(so);
4169 goto integer;
4170
4171 case SO_RCVBUF:
4172 SOCK_LOCK(so);
4173 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
4174 so->so_rcv.sb_hiwat;
4175 SOCK_UNLOCK(so);
4176 goto integer;
4177
4178 case SO_SNDLOWAT:
4179 SOCK_LOCK(so);
4180 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
4181 so->so_snd.sb_lowat;
4182 SOCK_UNLOCK(so);
4183 goto integer;
4184
4185 case SO_RCVLOWAT:
4186 SOCK_LOCK(so);
4187 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
4188 so->so_rcv.sb_lowat;
4189 SOCK_UNLOCK(so);
4190 goto integer;
4191
4192 case SO_SNDTIMEO:
4193 case SO_RCVTIMEO:
4194 SOCK_LOCK(so);
4195 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
4196 (SOLISTENING(so) ? so->sol_sbsnd_timeo :
4197 so->so_snd.sb_timeo) :
4198 (SOLISTENING(so) ? so->sol_sbrcv_timeo :
4199 so->so_rcv.sb_timeo));
4200 SOCK_UNLOCK(so);
4201 #ifdef COMPAT_FREEBSD32
4202 if (SV_CURPROC_FLAG(SV_ILP32)) {
4203 struct timeval32 tv32;
4204
4205 CP(tv, tv32, tv_sec);
4206 CP(tv, tv32, tv_usec);
4207 error = sooptcopyout(sopt, &tv32, sizeof tv32);
4208 } else
4209 #endif
4210 error = sooptcopyout(sopt, &tv, sizeof tv);
4211 break;
4212
4213 case SO_LABEL:
4214 #ifdef MAC
4215 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4216 sizeof(extmac));
4217 if (error)
4218 goto bad;
4219 error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
4220 so, &extmac);
4221 if (error)
4222 goto bad;
4223 /* Don't copy out extmac, it is unchanged. */
4224 #else
4225 error = EOPNOTSUPP;
4226 #endif
4227 break;
4228
4229 case SO_PEERLABEL:
4230 #ifdef MAC
4231 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4232 sizeof(extmac));
4233 if (error)
4234 goto bad;
4235 error = mac_getsockopt_peerlabel(
4236 sopt->sopt_td->td_ucred, so, &extmac);
4237 if (error)
4238 goto bad;
4239 /* Don't copy out extmac, it is unchanged. */
4240 #else
4241 error = EOPNOTSUPP;
4242 #endif
4243 break;
4244
4245 case SO_LISTENQLIMIT:
4246 SOCK_LOCK(so);
4247 optval = SOLISTENING(so) ? so->sol_qlimit : 0;
4248 SOCK_UNLOCK(so);
4249 goto integer;
4250
4251 case SO_LISTENQLEN:
4252 SOCK_LOCK(so);
4253 optval = SOLISTENING(so) ? so->sol_qlen : 0;
4254 SOCK_UNLOCK(so);
4255 goto integer;
4256
4257 case SO_LISTENINCQLEN:
4258 SOCK_LOCK(so);
4259 optval = SOLISTENING(so) ? so->sol_incqlen : 0;
4260 SOCK_UNLOCK(so);
4261 goto integer;
4262
4263 case SO_TS_CLOCK:
4264 optval = so->so_ts_clock;
4265 goto integer;
4266
4267 case SO_MAX_PACING_RATE:
4268 optval = so->so_max_pacing_rate;
4269 goto integer;
4270
4271 case SO_SPLICE: {
4272 off_t n;
4273
4274 /*
4275 * Acquire the I/O lock to serialize with
4276 * so_splice_xfer(). This is not required for
4277 * correctness, but makes testing simpler: once a byte
4278 * has been transmitted to the sink and observed (e.g.,
4279 * by reading from the socket to which the sink is
4280 * connected), a subsequent getsockopt(SO_SPLICE) will
4281 * return an up-to-date value.
4282 */
4283 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT);
4284 if (error != 0)
4285 goto bad;
4286 SOCK_LOCK(so);
4287 if (SOLISTENING(so)) {
4288 n = 0;
4289 } else {
4290 n = so->so_splice_sent;
4291 }
4292 SOCK_UNLOCK(so);
4293 SOCK_IO_RECV_UNLOCK(so);
4294 error = sooptcopyout(sopt, &n, sizeof(n));
4295 break;
4296 }
4297
4298 default:
4299 #ifdef SOCKET_HHOOK
4300 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4301 error = hhook_run_socket(so, sopt,
4302 HHOOK_SOCKET_OPT);
4303 else
4304 #endif
4305 error = ENOPROTOOPT;
4306 break;
4307 }
4308 }
4309 bad:
4310 CURVNET_RESTORE();
4311 return (error);
4312 }
4313
4314 int
4315 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
4316 {
4317 struct mbuf *m, *m_prev;
4318 int sopt_size = sopt->sopt_valsize;
4319
4320 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4321 if (m == NULL)
4322 return ENOBUFS;
4323 if (sopt_size > MLEN) {
4324 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
4325 if ((m->m_flags & M_EXT) == 0) {
4326 m_free(m);
4327 return ENOBUFS;
4328 }
4329 m->m_len = min(MCLBYTES, sopt_size);
4330 } else {
4331 m->m_len = min(MLEN, sopt_size);
4332 }
4333 sopt_size -= m->m_len;
4334 *mp = m;
4335 m_prev = m;
4336
4337 while (sopt_size) {
4338 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4339 if (m == NULL) {
4340 m_freem(*mp);
4341 return ENOBUFS;
4342 }
4343 if (sopt_size > MLEN) {
4344 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
4345 M_NOWAIT);
4346 if ((m->m_flags & M_EXT) == 0) {
4347 m_freem(m);
4348 m_freem(*mp);
4349 return ENOBUFS;
4350 }
4351 m->m_len = min(MCLBYTES, sopt_size);
4352 } else {
4353 m->m_len = min(MLEN, sopt_size);
4354 }
4355 sopt_size -= m->m_len;
4356 m_prev->m_next = m;
4357 m_prev = m;
4358 }
4359 return (0);
4360 }
4361
4362 int
4363 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
4364 {
4365 struct mbuf *m0 = m;
4366
4367 if (sopt->sopt_val == NULL)
4368 return (0);
4369 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4370 if (sopt->sopt_td != NULL) {
4371 int error;
4372
4373 error = copyin(sopt->sopt_val, mtod(m, char *),
4374 m->m_len);
4375 if (error != 0) {
4376 m_freem(m0);
4377 return(error);
4378 }
4379 } else
4380 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
4381 sopt->sopt_valsize -= m->m_len;
4382 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4383 m = m->m_next;
4384 }
4385 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
4386 panic("ip6_sooptmcopyin");
4387 return (0);
4388 }
4389
4390 int
4391 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
4392 {
4393 struct mbuf *m0 = m;
4394 size_t valsize = 0;
4395
4396 if (sopt->sopt_val == NULL)
4397 return (0);
4398 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4399 if (sopt->sopt_td != NULL) {
4400 int error;
4401
4402 error = copyout(mtod(m, char *), sopt->sopt_val,
4403 m->m_len);
4404 if (error != 0) {
4405 m_freem(m0);
4406 return(error);
4407 }
4408 } else
4409 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
4410 sopt->sopt_valsize -= m->m_len;
4411 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4412 valsize += m->m_len;
4413 m = m->m_next;
4414 }
4415 if (m != NULL) {
4416 /* enough soopt buffer should be given from user-land */
4417 m_freem(m0);
4418 return(EINVAL);
4419 }
4420 sopt->sopt_valsize = valsize;
4421 return (0);
4422 }
4423
4424 /*
4425 * sohasoutofband(): protocol notifies socket layer of the arrival of new
4426 * out-of-band data, which will then notify socket consumers.
4427 */
4428 void
4429 sohasoutofband(struct socket *so)
4430 {
4431
4432 if (so->so_sigio != NULL)
4433 pgsigio(&so->so_sigio, SIGURG, 0);
4434 selwakeuppri(&so->so_rdsel, PSOCK);
4435 }
4436
4437 int
4438 sopoll_generic(struct socket *so, int events, struct thread *td)
4439 {
4440 int revents;
4441
4442 SOCK_LOCK(so);
4443 if (SOLISTENING(so)) {
4444 if (!(events & (POLLIN | POLLRDNORM)))
4445 revents = 0;
4446 else if (!TAILQ_EMPTY(&so->sol_comp))
4447 revents = events & (POLLIN | POLLRDNORM);
4448 else if ((events & POLLINIGNEOF) == 0 && so->so_error)
4449 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
4450 else {
4451 selrecord(td, &so->so_rdsel);
4452 revents = 0;
4453 }
4454 } else {
4455 revents = 0;
4456 SOCK_SENDBUF_LOCK(so);
4457 SOCK_RECVBUF_LOCK(so);
4458 if (events & (POLLIN | POLLRDNORM))
4459 if (soreadabledata(so) && !isspliced(so))
4460 revents |= events & (POLLIN | POLLRDNORM);
4461 if (events & (POLLOUT | POLLWRNORM))
4462 if (sowriteable(so) && !issplicedback(so))
4463 revents |= events & (POLLOUT | POLLWRNORM);
4464 if (events & (POLLPRI | POLLRDBAND))
4465 if (so->so_oobmark ||
4466 (so->so_rcv.sb_state & SBS_RCVATMARK))
4467 revents |= events & (POLLPRI | POLLRDBAND);
4468 if ((events & POLLINIGNEOF) == 0) {
4469 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4470 revents |= events & (POLLIN | POLLRDNORM);
4471 if (so->so_snd.sb_state & SBS_CANTSENDMORE)
4472 revents |= POLLHUP;
4473 }
4474 }
4475 if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
4476 revents |= events & POLLRDHUP;
4477 if (revents == 0) {
4478 if (events &
4479 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
4480 selrecord(td, &so->so_rdsel);
4481 so->so_rcv.sb_flags |= SB_SEL;
4482 }
4483 if (events & (POLLOUT | POLLWRNORM)) {
4484 selrecord(td, &so->so_wrsel);
4485 so->so_snd.sb_flags |= SB_SEL;
4486 }
4487 }
4488 SOCK_RECVBUF_UNLOCK(so);
4489 SOCK_SENDBUF_UNLOCK(so);
4490 }
4491 SOCK_UNLOCK(so);
4492 return (revents);
4493 }
4494
4495 int
4496 sokqfilter_generic(struct socket *so, struct knote *kn)
4497 {
4498 struct sockbuf *sb;
4499 sb_which which;
4500 struct knlist *knl;
4501
4502 switch (kn->kn_filter) {
4503 case EVFILT_READ:
4504 kn->kn_fop = &soread_filtops;
4505 knl = &so->so_rdsel.si_note;
4506 sb = &so->so_rcv;
4507 which = SO_RCV;
4508 break;
4509 case EVFILT_WRITE:
4510 kn->kn_fop = &sowrite_filtops;
4511 knl = &so->so_wrsel.si_note;
4512 sb = &so->so_snd;
4513 which = SO_SND;
4514 break;
4515 case EVFILT_EMPTY:
4516 kn->kn_fop = &soempty_filtops;
4517 knl = &so->so_wrsel.si_note;
4518 sb = &so->so_snd;
4519 which = SO_SND;
4520 break;
4521 default:
4522 return (EINVAL);
4523 }
4524
4525 SOCK_LOCK(so);
4526 if (SOLISTENING(so)) {
4527 knlist_add(knl, kn, 1);
4528 } else {
4529 SOCK_BUF_LOCK(so, which);
4530 knlist_add(knl, kn, 1);
4531 sb->sb_flags |= SB_KNOTE;
4532 if ((kn->kn_sfflags & NOTE_LOWAT) &&
4533 (sb->sb_flags & SB_AUTOLOWAT))
4534 sb->sb_flags &= ~SB_AUTOLOWAT;
4535 SOCK_BUF_UNLOCK(so, which);
4536 }
4537 SOCK_UNLOCK(so);
4538 return (0);
4539 }
4540
4541 static void
4542 filt_sordetach(struct knote *kn)
4543 {
4544 struct socket *so = kn->kn_fp->f_data;
4545
4546 so_rdknl_lock(so);
4547 knlist_remove(&so->so_rdsel.si_note, kn, 1);
4548 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
4549 so->so_rcv.sb_flags &= ~SB_KNOTE;
4550 so_rdknl_unlock(so);
4551 }
4552
4553 /*ARGSUSED*/
4554 static int
4555 filt_soread(struct knote *kn, long hint)
4556 {
4557 struct socket *so;
4558
4559 so = kn->kn_fp->f_data;
4560
4561 if (SOLISTENING(so)) {
4562 SOCK_LOCK_ASSERT(so);
4563 kn->kn_data = so->sol_qlen;
4564 if (so->so_error) {
4565 kn->kn_flags |= EV_EOF;
4566 kn->kn_fflags = so->so_error;
4567 return (1);
4568 }
4569 return (!TAILQ_EMPTY(&so->sol_comp));
4570 }
4571
4572 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
4573 return (0);
4574
4575 SOCK_RECVBUF_LOCK_ASSERT(so);
4576
4577 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
4578 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4579 kn->kn_flags |= EV_EOF;
4580 kn->kn_fflags = so->so_error;
4581 return (1);
4582 } else if (so->so_error || so->so_rerror)
4583 return (1);
4584
4585 if (kn->kn_sfflags & NOTE_LOWAT) {
4586 if (kn->kn_data >= kn->kn_sdata)
4587 return (1);
4588 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
4589 return (1);
4590
4591 #ifdef SOCKET_HHOOK
4592 /* This hook returning non-zero indicates an event, not error */
4593 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
4594 #else
4595 return (0);
4596 #endif
4597 }
4598
4599 static void
4600 filt_sowdetach(struct knote *kn)
4601 {
4602 struct socket *so = kn->kn_fp->f_data;
4603
4604 so_wrknl_lock(so);
4605 knlist_remove(&so->so_wrsel.si_note, kn, 1);
4606 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
4607 so->so_snd.sb_flags &= ~SB_KNOTE;
4608 so_wrknl_unlock(so);
4609 }
4610
4611 /*ARGSUSED*/
4612 static int
4613 filt_sowrite(struct knote *kn, long hint)
4614 {
4615 struct socket *so;
4616
4617 so = kn->kn_fp->f_data;
4618
4619 if (SOLISTENING(so))
4620 return (0);
4621
4622 SOCK_SENDBUF_LOCK_ASSERT(so);
4623 kn->kn_data = sbspace(&so->so_snd);
4624
4625 #ifdef SOCKET_HHOOK
4626 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
4627 #endif
4628
4629 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
4630 kn->kn_flags |= EV_EOF;
4631 kn->kn_fflags = so->so_error;
4632 return (1);
4633 } else if (so->so_error) /* temporary udp error */
4634 return (1);
4635 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
4636 (so->so_proto->pr_flags & PR_CONNREQUIRED))
4637 return (0);
4638 else if (kn->kn_sfflags & NOTE_LOWAT)
4639 return (kn->kn_data >= kn->kn_sdata);
4640 else
4641 return (kn->kn_data >= so->so_snd.sb_lowat);
4642 }
4643
4644 static int
4645 filt_soempty(struct knote *kn, long hint)
4646 {
4647 struct socket *so;
4648
4649 so = kn->kn_fp->f_data;
4650
4651 if (SOLISTENING(so))
4652 return (1);
4653
4654 SOCK_SENDBUF_LOCK_ASSERT(so);
4655 kn->kn_data = sbused(&so->so_snd);
4656
4657 if (kn->kn_data == 0)
4658 return (1);
4659 else
4660 return (0);
4661 }
4662
4663 int
4664 socheckuid(struct socket *so, uid_t uid)
4665 {
4666
4667 if (so == NULL)
4668 return (EPERM);
4669 if (so->so_cred->cr_uid != uid)
4670 return (EPERM);
4671 return (0);
4672 }
4673
4674 /*
4675 * These functions are used by protocols to notify the socket layer (and its
4676 * consumers) of state changes in the sockets driven by protocol-side events.
4677 */
4678
4679 /*
4680 * Procedures to manipulate state flags of socket and do appropriate wakeups.
4681 *
4682 * Normal sequence from the active (originating) side is that
4683 * soisconnecting() is called during processing of connect() call, resulting
4684 * in an eventual call to soisconnected() if/when the connection is
4685 * established. When the connection is torn down soisdisconnecting() is
4686 * called during processing of disconnect() call, and soisdisconnected() is
4687 * called when the connection to the peer is totally severed. The semantics
4688 * of these routines are such that connectionless protocols can call
4689 * soisconnected() and soisdisconnected() only, bypassing the in-progress
4690 * calls when setting up a ``connection'' takes no time.
4691 *
4692 * From the passive side, a socket is created with two queues of sockets:
4693 * so_incomp for connections in progress and so_comp for connections already
4694 * made and awaiting user acceptance. As a protocol is preparing incoming
4695 * connections, it creates a socket structure queued on so_incomp by calling
4696 * sonewconn(). When the connection is established, soisconnected() is
4697 * called, and transfers the socket structure to so_comp, making it available
4698 * to accept().
4699 *
4700 * If a socket is closed with sockets on either so_incomp or so_comp, these
4701 * sockets are dropped.
4702 *
4703 * If higher-level protocols are implemented in the kernel, the wakeups done
4704 * here will sometimes cause software-interrupt process scheduling.
4705 */
4706 void
4707 soisconnecting(struct socket *so)
4708 {
4709
4710 SOCK_LOCK(so);
4711 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
4712 so->so_state |= SS_ISCONNECTING;
4713 SOCK_UNLOCK(so);
4714 }
4715
4716 void
4717 soisconnected(struct socket *so)
4718 {
4719 bool last __diagused;
4720
4721 SOCK_LOCK(so);
4722 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING);
4723 so->so_state |= SS_ISCONNECTED;
4724
4725 if (so->so_qstate == SQ_INCOMP) {
4726 struct socket *head = so->so_listen;
4727 int ret;
4728
4729 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
4730 /*
4731 * Promoting a socket from incomplete queue to complete, we
4732 * need to go through reverse order of locking. We first do
4733 * trylock, and if that doesn't succeed, we go the hard way
4734 * leaving a reference and rechecking consistency after proper
4735 * locking.
4736 */
4737 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
4738 soref(head);
4739 SOCK_UNLOCK(so);
4740 SOLISTEN_LOCK(head);
4741 SOCK_LOCK(so);
4742 if (__predict_false(head != so->so_listen)) {
4743 /*
4744 * The socket went off the listen queue,
4745 * should be lost race to close(2) of sol.
4746 * The socket is about to soabort().
4747 */
4748 SOCK_UNLOCK(so);
4749 sorele_locked(head);
4750 return;
4751 }
4752 last = refcount_release(&head->so_count);
4753 KASSERT(!last, ("%s: released last reference for %p",
4754 __func__, head));
4755 }
4756 again:
4757 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
4758 TAILQ_REMOVE(&head->sol_incomp, so, so_list);
4759 head->sol_incqlen--;
4760 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
4761 head->sol_qlen++;
4762 so->so_qstate = SQ_COMP;
4763 SOCK_UNLOCK(so);
4764 solisten_wakeup(head); /* unlocks */
4765 } else {
4766 SOCK_RECVBUF_LOCK(so);
4767 soupcall_set(so, SO_RCV,
4768 head->sol_accept_filter->accf_callback,
4769 head->sol_accept_filter_arg);
4770 so->so_options &= ~SO_ACCEPTFILTER;
4771 ret = head->sol_accept_filter->accf_callback(so,
4772 head->sol_accept_filter_arg, M_NOWAIT);
4773 if (ret == SU_ISCONNECTED) {
4774 soupcall_clear(so, SO_RCV);
4775 SOCK_RECVBUF_UNLOCK(so);
4776 goto again;
4777 }
4778 SOCK_RECVBUF_UNLOCK(so);
4779 SOCK_UNLOCK(so);
4780 SOLISTEN_UNLOCK(head);
4781 }
4782 return;
4783 }
4784 SOCK_UNLOCK(so);
4785 wakeup(&so->so_timeo);
4786 sorwakeup(so);
4787 sowwakeup(so);
4788 }
4789
4790 void
4791 soisdisconnecting(struct socket *so)
4792 {
4793
4794 SOCK_LOCK(so);
4795 so->so_state &= ~SS_ISCONNECTING;
4796 so->so_state |= SS_ISDISCONNECTING;
4797
4798 if (!SOLISTENING(so)) {
4799 SOCK_RECVBUF_LOCK(so);
4800 socantrcvmore_locked(so);
4801 SOCK_SENDBUF_LOCK(so);
4802 socantsendmore_locked(so);
4803 }
4804 SOCK_UNLOCK(so);
4805 wakeup(&so->so_timeo);
4806 }
4807
4808 void
4809 soisdisconnected(struct socket *so)
4810 {
4811
4812 SOCK_LOCK(so);
4813
4814 /*
4815 * There is at least one reader of so_state that does not
4816 * acquire socket lock, namely soreceive_generic(). Ensure
4817 * that it never sees all flags that track connection status
4818 * cleared, by ordering the update with a barrier semantic of
4819 * our release thread fence.
4820 */
4821 so->so_state |= SS_ISDISCONNECTED;
4822 atomic_thread_fence_rel();
4823 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4824
4825 if (!SOLISTENING(so)) {
4826 SOCK_UNLOCK(so);
4827 SOCK_RECVBUF_LOCK(so);
4828 socantrcvmore_locked(so);
4829 SOCK_SENDBUF_LOCK(so);
4830 sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4831 socantsendmore_locked(so);
4832 } else
4833 SOCK_UNLOCK(so);
4834 wakeup(&so->so_timeo);
4835 }
4836
4837 int
4838 soiolock(struct socket *so, struct sx *sx, int flags)
4839 {
4840 int error;
4841
4842 KASSERT((flags & SBL_VALID) == flags,
4843 ("soiolock: invalid flags %#x", flags));
4844
4845 if ((flags & SBL_WAIT) != 0) {
4846 if ((flags & SBL_NOINTR) != 0) {
4847 sx_xlock(sx);
4848 } else {
4849 error = sx_xlock_sig(sx);
4850 if (error != 0)
4851 return (error);
4852 }
4853 } else if (!sx_try_xlock(sx)) {
4854 return (EWOULDBLOCK);
4855 }
4856
4857 if (__predict_false(SOLISTENING(so))) {
4858 sx_xunlock(sx);
4859 return (ENOTCONN);
4860 }
4861 return (0);
4862 }
4863
4864 void
4865 soiounlock(struct sx *sx)
4866 {
4867 sx_xunlock(sx);
4868 }
4869
4870 /*
4871 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4872 */
4873 struct sockaddr *
4874 sodupsockaddr(const struct sockaddr *sa, int mflags)
4875 {
4876 struct sockaddr *sa2;
4877
4878 sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4879 if (sa2)
4880 bcopy(sa, sa2, sa->sa_len);
4881 return sa2;
4882 }
4883
4884 /*
4885 * Register per-socket destructor.
4886 */
4887 void
4888 sodtor_set(struct socket *so, so_dtor_t *func)
4889 {
4890
4891 SOCK_LOCK_ASSERT(so);
4892 so->so_dtor = func;
4893 }
4894
4895 /*
4896 * Register per-socket buffer upcalls.
4897 */
4898 void
4899 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4900 {
4901 struct sockbuf *sb;
4902
4903 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4904
4905 switch (which) {
4906 case SO_RCV:
4907 sb = &so->so_rcv;
4908 break;
4909 case SO_SND:
4910 sb = &so->so_snd;
4911 break;
4912 }
4913 SOCK_BUF_LOCK_ASSERT(so, which);
4914 sb->sb_upcall = func;
4915 sb->sb_upcallarg = arg;
4916 sb->sb_flags |= SB_UPCALL;
4917 }
4918
4919 void
4920 soupcall_clear(struct socket *so, sb_which which)
4921 {
4922 struct sockbuf *sb;
4923
4924 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4925
4926 switch (which) {
4927 case SO_RCV:
4928 sb = &so->so_rcv;
4929 break;
4930 case SO_SND:
4931 sb = &so->so_snd;
4932 break;
4933 }
4934 SOCK_BUF_LOCK_ASSERT(so, which);
4935 KASSERT(sb->sb_upcall != NULL,
4936 ("%s: so %p no upcall to clear", __func__, so));
4937 sb->sb_upcall = NULL;
4938 sb->sb_upcallarg = NULL;
4939 sb->sb_flags &= ~SB_UPCALL;
4940 }
4941
4942 void
4943 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4944 {
4945
4946 SOLISTEN_LOCK_ASSERT(so);
4947 so->sol_upcall = func;
4948 so->sol_upcallarg = arg;
4949 }
4950
4951 static void
4952 so_rdknl_lock(void *arg)
4953 {
4954 struct socket *so = arg;
4955
4956 retry:
4957 if (SOLISTENING(so)) {
4958 SOLISTEN_LOCK(so);
4959 } else {
4960 SOCK_RECVBUF_LOCK(so);
4961 if (__predict_false(SOLISTENING(so))) {
4962 SOCK_RECVBUF_UNLOCK(so);
4963 goto retry;
4964 }
4965 }
4966 }
4967
4968 static void
4969 so_rdknl_unlock(void *arg)
4970 {
4971 struct socket *so = arg;
4972
4973 if (SOLISTENING(so))
4974 SOLISTEN_UNLOCK(so);
4975 else
4976 SOCK_RECVBUF_UNLOCK(so);
4977 }
4978
4979 static void
4980 so_rdknl_assert_lock(void *arg, int what)
4981 {
4982 struct socket *so = arg;
4983
4984 if (what == LA_LOCKED) {
4985 if (SOLISTENING(so))
4986 SOLISTEN_LOCK_ASSERT(so);
4987 else
4988 SOCK_RECVBUF_LOCK_ASSERT(so);
4989 } else {
4990 if (SOLISTENING(so))
4991 SOLISTEN_UNLOCK_ASSERT(so);
4992 else
4993 SOCK_RECVBUF_UNLOCK_ASSERT(so);
4994 }
4995 }
4996
4997 static void
4998 so_wrknl_lock(void *arg)
4999 {
5000 struct socket *so = arg;
5001
5002 retry:
5003 if (SOLISTENING(so)) {
5004 SOLISTEN_LOCK(so);
5005 } else {
5006 SOCK_SENDBUF_LOCK(so);
5007 if (__predict_false(SOLISTENING(so))) {
5008 SOCK_SENDBUF_UNLOCK(so);
5009 goto retry;
5010 }
5011 }
5012 }
5013
5014 static void
5015 so_wrknl_unlock(void *arg)
5016 {
5017 struct socket *so = arg;
5018
5019 if (SOLISTENING(so))
5020 SOLISTEN_UNLOCK(so);
5021 else
5022 SOCK_SENDBUF_UNLOCK(so);
5023 }
5024
5025 static void
5026 so_wrknl_assert_lock(void *arg, int what)
5027 {
5028 struct socket *so = arg;
5029
5030 if (what == LA_LOCKED) {
5031 if (SOLISTENING(so))
5032 SOLISTEN_LOCK_ASSERT(so);
5033 else
5034 SOCK_SENDBUF_LOCK_ASSERT(so);
5035 } else {
5036 if (SOLISTENING(so))
5037 SOLISTEN_UNLOCK_ASSERT(so);
5038 else
5039 SOCK_SENDBUF_UNLOCK_ASSERT(so);
5040 }
5041 }
5042
5043 /*
5044 * Create an external-format (``xsocket'') structure using the information in
5045 * the kernel-format socket structure pointed to by so. This is done to
5046 * reduce the spew of irrelevant information over this interface, to isolate
5047 * user code from changes in the kernel structure, and potentially to provide
5048 * information-hiding if we decide that some of this information should be
5049 * hidden from users.
5050 */
5051 void
5052 sotoxsocket(struct socket *so, struct xsocket *xso)
5053 {
5054
5055 bzero(xso, sizeof(*xso));
5056 xso->xso_len = sizeof *xso;
5057 xso->xso_so = (uintptr_t)so;
5058 xso->so_type = so->so_type;
5059 xso->so_options = so->so_options;
5060 xso->so_linger = so->so_linger;
5061 xso->so_state = so->so_state;
5062 xso->so_pcb = (uintptr_t)so->so_pcb;
5063 xso->xso_protocol = so->so_proto->pr_protocol;
5064 xso->xso_family = so->so_proto->pr_domain->dom_family;
5065 xso->so_timeo = so->so_timeo;
5066 xso->so_error = so->so_error;
5067 xso->so_uid = so->so_cred->cr_uid;
5068 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
5069 SOCK_LOCK(so);
5070 xso->so_fibnum = so->so_fibnum;
5071 if (SOLISTENING(so)) {
5072 xso->so_qlen = so->sol_qlen;
5073 xso->so_incqlen = so->sol_incqlen;
5074 xso->so_qlimit = so->sol_qlimit;
5075 xso->so_oobmark = 0;
5076 } else {
5077 xso->so_state |= so->so_qstate;
5078 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
5079 xso->so_oobmark = so->so_oobmark;
5080 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
5081 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
5082 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
5083 xso->so_splice_so = (uintptr_t)so->so_splice->dst;
5084 }
5085 SOCK_UNLOCK(so);
5086 }
5087
5088 int
5089 so_options_get(const struct socket *so)
5090 {
5091
5092 return (so->so_options);
5093 }
5094
5095 void
5096 so_options_set(struct socket *so, int val)
5097 {
5098
5099 so->so_options = val;
5100 }
5101
5102 int
5103 so_error_get(const struct socket *so)
5104 {
5105
5106 return (so->so_error);
5107 }
5108
5109 void
5110 so_error_set(struct socket *so, int val)
5111 {
5112
5113 so->so_error = val;
5114 }
5115