1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California.
6 * Copyright (c) 2004 The FreeBSD Foundation
7 * Copyright (c) 2004-2008 Robert N. M. Watson
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 /*
36 * Comments on the socket life cycle:
37 *
38 * soalloc() sets of socket layer state for a socket, called only by
39 * socreate() and sonewconn(). Socket layer private.
40 *
41 * sodealloc() tears down socket layer state for a socket, called only by
42 * sofree() and sonewconn(). Socket layer private.
43 *
44 * pr_attach() associates protocol layer state with an allocated socket;
45 * called only once, may fail, aborting socket allocation. This is called
46 * from socreate() and sonewconn(). Socket layer private.
47 *
48 * pr_detach() disassociates protocol layer state from an attached socket,
49 * and will be called exactly once for sockets in which pr_attach() has
50 * been successfully called. If pr_attach() returned an error,
51 * pr_detach() will not be called. Socket layer private.
52 *
53 * pr_abort() and pr_close() notify the protocol layer that the last
54 * consumer of a socket is starting to tear down the socket, and that the
55 * protocol should terminate the connection. Historically, pr_abort() also
56 * detached protocol state from the socket state, but this is no longer the
57 * case.
58 *
59 * socreate() creates a socket and attaches protocol state. This is a public
60 * interface that may be used by socket layer consumers to create new
61 * sockets.
62 *
63 * sonewconn() creates a socket and attaches protocol state. This is a
64 * public interface that may be used by protocols to create new sockets when
65 * a new connection is received and will be available for accept() on a
66 * listen socket.
67 *
68 * soclose() destroys a socket after possibly waiting for it to disconnect.
69 * This is a public interface that socket consumers should use to close and
70 * release a socket when done with it.
71 *
72 * soabort() destroys a socket without waiting for it to disconnect (used
73 * only for incoming connections that are already partially or fully
74 * connected). This is used internally by the socket layer when clearing
75 * listen socket queues (due to overflow or close on the listen socket), but
76 * is also a public interface protocols may use to abort connections in
77 * their incomplete listen queues should they no longer be required. Sockets
78 * placed in completed connection listen queues should not be aborted for
79 * reasons described in the comment above the soclose() implementation. This
80 * is not a general purpose close routine, and except in the specific
81 * circumstances described here, should not be used.
82 *
83 * sofree() will free a socket and its protocol state if all references on
84 * the socket have been released, and is the public interface to attempt to
85 * free a socket when a reference is removed. This is a socket layer private
86 * interface.
87 *
88 * NOTE: In addition to socreate() and soclose(), which provide a single
89 * socket reference to the consumer to be managed as required, there are two
90 * calls to explicitly manage socket references, soref(), and sorele().
91 * Currently, these are generally required only when transitioning a socket
92 * from a listen queue to a file descriptor, in order to prevent garbage
93 * collection of the socket at an untimely moment. For a number of reasons,
94 * these interfaces are not preferred, and should be avoided.
95 *
96 * NOTE: With regard to VNETs the general rule is that callers do not set
97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98 * sofree(), sorele(), sonewconn() and sorflush(), which are usually called
99 * from a pre-set VNET context. sopoll_generic() currently does not need a
100 * VNET context to be set.
101 */
102
103 #include <sys/cdefs.h>
104 #include "opt_inet.h"
105 #include "opt_inet6.h"
106 #include "opt_kern_tls.h"
107 #include "opt_ktrace.h"
108 #include "opt_sctp.h"
109
110 #include <sys/param.h>
111 #include <sys/systm.h>
112 #include <sys/capsicum.h>
113 #include <sys/fcntl.h>
114 #include <sys/limits.h>
115 #include <sys/lock.h>
116 #include <sys/mac.h>
117 #include <sys/malloc.h>
118 #include <sys/mbuf.h>
119 #include <sys/mutex.h>
120 #include <sys/domain.h>
121 #include <sys/file.h> /* for struct knote */
122 #include <sys/hhook.h>
123 #include <sys/kernel.h>
124 #include <sys/khelp.h>
125 #include <sys/kthread.h>
126 #include <sys/ktls.h>
127 #include <sys/event.h>
128 #include <sys/eventhandler.h>
129 #include <sys/poll.h>
130 #include <sys/proc.h>
131 #include <sys/protosw.h>
132 #include <sys/sbuf.h>
133 #include <sys/socket.h>
134 #include <sys/socketvar.h>
135 #include <sys/resourcevar.h>
136 #include <net/route.h>
137 #include <sys/sched.h>
138 #include <sys/signalvar.h>
139 #include <sys/smp.h>
140 #include <sys/stat.h>
141 #include <sys/sx.h>
142 #include <sys/sysctl.h>
143 #include <sys/taskqueue.h>
144 #include <sys/uio.h>
145 #include <sys/un.h>
146 #include <sys/unpcb.h>
147 #include <sys/jail.h>
148 #include <sys/syslog.h>
149 #include <netinet/in.h>
150 #include <netinet/in_pcb.h>
151 #include <netinet/tcp.h>
152
153 #include <net/vnet.h>
154
155 #include <security/mac/mac_framework.h>
156 #include <security/mac/mac_internal.h>
157
158 #include <vm/uma.h>
159
160 #ifdef COMPAT_FREEBSD32
161 #include <sys/mount.h>
162 #include <sys/sysent.h>
163 #include <compat/freebsd32/freebsd32.h>
164 #endif
165
166 static int soreceive_generic_locked(struct socket *so,
167 struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
168 struct mbuf **controlp, int *flagsp);
169 static int soreceive_rcvoob(struct socket *so, struct uio *uio,
170 int flags);
171 static int soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
172 struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
173 struct mbuf **controlp, int flags);
174 static int sosend_generic_locked(struct socket *so, struct sockaddr *addr,
175 struct uio *uio, struct mbuf *top, struct mbuf *control,
176 int flags, struct thread *td);
177 static void so_rdknl_lock(void *);
178 static void so_rdknl_unlock(void *);
179 static void so_rdknl_assert_lock(void *, int);
180 static void so_wrknl_lock(void *);
181 static void so_wrknl_unlock(void *);
182 static void so_wrknl_assert_lock(void *, int);
183
184 static void filt_sordetach(struct knote *kn);
185 static int filt_soread(struct knote *kn, long hint);
186 static void filt_sowdetach(struct knote *kn);
187 static int filt_sowrite(struct knote *kn, long hint);
188 static int filt_soempty(struct knote *kn, long hint);
189
190 static const struct filterops soread_filtops = {
191 .f_isfd = 1,
192 .f_detach = filt_sordetach,
193 .f_event = filt_soread,
194 .f_copy = knote_triv_copy,
195 };
196 static const struct filterops sowrite_filtops = {
197 .f_isfd = 1,
198 .f_detach = filt_sowdetach,
199 .f_event = filt_sowrite,
200 .f_copy = knote_triv_copy,
201 };
202 static const struct filterops soempty_filtops = {
203 .f_isfd = 1,
204 .f_detach = filt_sowdetach,
205 .f_event = filt_soempty,
206 .f_copy = knote_triv_copy,
207 };
208
209 so_gen_t so_gencnt; /* generation count for sockets */
210
211 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
212 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
213
214 #define VNET_SO_ASSERT(so) \
215 VNET_ASSERT(curvnet != NULL, \
216 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
217
218 #ifdef SOCKET_HHOOK
219 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
220 #define V_socket_hhh VNET(socket_hhh)
221 static inline int hhook_run_socket(struct socket *, void *, int32_t);
222 #endif
223
224 #ifdef COMPAT_FREEBSD32
225 #ifdef __amd64__
226 /* off_t has 4-byte alignment on i386 but not on other 32-bit platforms. */
227 #define __splice32_packed __packed
228 #else
229 #define __splice32_packed
230 #endif
231 struct splice32 {
232 int32_t sp_fd;
233 int64_t sp_max;
234 struct timeval32 sp_idle;
235 } __splice32_packed;
236 #undef __splice32_packed
237 #endif
238
239 /*
240 * Limit on the number of connections in the listen queue waiting
241 * for accept(2).
242 * NB: The original sysctl somaxconn is still available but hidden
243 * to prevent confusion about the actual purpose of this number.
244 */
245 VNET_DEFINE_STATIC(u_int, somaxconn) = SOMAXCONN;
246 #define V_somaxconn VNET(somaxconn)
247
248 static int
sysctl_somaxconn(SYSCTL_HANDLER_ARGS)249 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
250 {
251 int error;
252 u_int val;
253
254 val = V_somaxconn;
255 error = sysctl_handle_int(oidp, &val, 0, req);
256 if (error || !req->newptr )
257 return (error);
258
259 /*
260 * The purpose of the UINT_MAX / 3 limit, is so that the formula
261 * 3 * sol_qlimit / 2
262 * below, will not overflow.
263 */
264
265 if (val < 1 || val > UINT_MAX / 3)
266 return (EINVAL);
267
268 V_somaxconn = val;
269 return (0);
270 }
271 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
272 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
273 sysctl_somaxconn, "IU",
274 "Maximum listen socket pending connection accept queue size");
275 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
276 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0,
277 sizeof(u_int), sysctl_somaxconn, "IU",
278 "Maximum listen socket pending connection accept queue size (compat)");
279
280 static u_int numopensockets;
281 static int
sysctl_numopensockets(SYSCTL_HANDLER_ARGS)282 sysctl_numopensockets(SYSCTL_HANDLER_ARGS)
283 {
284 u_int val;
285
286 #ifdef VIMAGE
287 if(!IS_DEFAULT_VNET(curvnet))
288 val = curvnet->vnet_sockcnt;
289 else
290 #endif
291 val = numopensockets;
292 return (sysctl_handle_int(oidp, &val, 0, req));
293 }
294 SYSCTL_PROC(_kern_ipc, OID_AUTO, numopensockets,
295 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
296 sysctl_numopensockets, "IU", "Number of open sockets");
297
298 /*
299 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
300 * so_gencnt field.
301 */
302 static struct mtx so_global_mtx;
303 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
304
305 /*
306 * General IPC sysctl name space, used by sockets and a variety of other IPC
307 * types.
308 */
309 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
310 "IPC");
311
312 /*
313 * Initialize the socket subsystem and set up the socket
314 * memory allocator.
315 */
316 static uma_zone_t socket_zone;
317 int maxsockets;
318
319 static void
socket_zone_change(void * tag)320 socket_zone_change(void *tag)
321 {
322
323 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
324 }
325
326 static int splice_init_state;
327 static struct sx splice_init_lock;
328 SX_SYSINIT(splice_init_lock, &splice_init_lock, "splice_init");
329
330 static SYSCTL_NODE(_kern_ipc, OID_AUTO, splice, CTLFLAG_RW, 0,
331 "Settings relating to the SO_SPLICE socket option");
332
333 static bool splice_receive_stream = true;
334 SYSCTL_BOOL(_kern_ipc_splice, OID_AUTO, receive_stream, CTLFLAG_RWTUN,
335 &splice_receive_stream, 0,
336 "Use soreceive_stream() for stream splices");
337
338 static uma_zone_t splice_zone;
339 static struct proc *splice_proc;
340 struct splice_wq {
341 struct mtx mtx;
342 STAILQ_HEAD(, so_splice) head;
343 bool running;
344 } __aligned(CACHE_LINE_SIZE);
345 static struct splice_wq *splice_wq;
346 static uint32_t splice_index = 0;
347
348 static void so_splice_timeout(void *arg, int pending);
349 static void so_splice_xfer(struct so_splice *s);
350 static int so_unsplice(struct socket *so, bool timeout);
351
352 static void
splice_work_thread(void * ctx)353 splice_work_thread(void *ctx)
354 {
355 struct splice_wq *wq = ctx;
356 struct so_splice *s, *s_temp;
357 STAILQ_HEAD(, so_splice) local_head;
358 int cpu;
359
360 cpu = wq - splice_wq;
361 if (bootverbose)
362 printf("starting so_splice worker thread for CPU %d\n", cpu);
363
364 for (;;) {
365 mtx_lock(&wq->mtx);
366 while (STAILQ_EMPTY(&wq->head)) {
367 wq->running = false;
368 mtx_sleep(wq, &wq->mtx, 0, "-", 0);
369 wq->running = true;
370 }
371 STAILQ_INIT(&local_head);
372 STAILQ_CONCAT(&local_head, &wq->head);
373 STAILQ_INIT(&wq->head);
374 mtx_unlock(&wq->mtx);
375 STAILQ_FOREACH_SAFE(s, &local_head, next, s_temp) {
376 mtx_lock(&s->mtx);
377 CURVNET_SET(s->src->so_vnet);
378 so_splice_xfer(s);
379 CURVNET_RESTORE();
380 }
381 }
382 }
383
384 static void
so_splice_dispatch_async(struct so_splice * sp)385 so_splice_dispatch_async(struct so_splice *sp)
386 {
387 struct splice_wq *wq;
388 bool running;
389
390 wq = &splice_wq[sp->wq_index];
391 mtx_lock(&wq->mtx);
392 STAILQ_INSERT_TAIL(&wq->head, sp, next);
393 running = wq->running;
394 mtx_unlock(&wq->mtx);
395 if (!running)
396 wakeup(wq);
397 }
398
399 void
so_splice_dispatch(struct so_splice * sp)400 so_splice_dispatch(struct so_splice *sp)
401 {
402 mtx_assert(&sp->mtx, MA_OWNED);
403
404 if (sp->state != SPLICE_IDLE) {
405 mtx_unlock(&sp->mtx);
406 } else {
407 sp->state = SPLICE_QUEUED;
408 mtx_unlock(&sp->mtx);
409 so_splice_dispatch_async(sp);
410 }
411 }
412
413 static int
splice_zinit(void * mem,int size __unused,int flags __unused)414 splice_zinit(void *mem, int size __unused, int flags __unused)
415 {
416 struct so_splice *s;
417
418 s = (struct so_splice *)mem;
419 mtx_init(&s->mtx, "so_splice", NULL, MTX_DEF);
420 return (0);
421 }
422
423 static void
splice_zfini(void * mem,int size)424 splice_zfini(void *mem, int size)
425 {
426 struct so_splice *s;
427
428 s = (struct so_splice *)mem;
429 mtx_destroy(&s->mtx);
430 }
431
432 static int
splice_init(void)433 splice_init(void)
434 {
435 struct thread *td;
436 int error, i, state;
437
438 state = atomic_load_acq_int(&splice_init_state);
439 if (__predict_true(state > 0))
440 return (0);
441 if (state < 0)
442 return (ENXIO);
443 sx_xlock(&splice_init_lock);
444 if (splice_init_state != 0) {
445 sx_xunlock(&splice_init_lock);
446 return (0);
447 }
448
449 splice_zone = uma_zcreate("splice", sizeof(struct so_splice), NULL,
450 NULL, splice_zinit, splice_zfini, UMA_ALIGN_CACHE, 0);
451
452 splice_wq = mallocarray(mp_maxid + 1, sizeof(*splice_wq), M_TEMP,
453 M_WAITOK | M_ZERO);
454
455 /*
456 * Initialize the workqueues to run the splice work. We create a
457 * work queue for each CPU.
458 */
459 CPU_FOREACH(i) {
460 STAILQ_INIT(&splice_wq[i].head);
461 mtx_init(&splice_wq[i].mtx, "splice work queue", NULL, MTX_DEF);
462 }
463
464 /* Start kthreads for each workqueue. */
465 error = 0;
466 CPU_FOREACH(i) {
467 error = kproc_kthread_add(splice_work_thread, &splice_wq[i],
468 &splice_proc, &td, 0, 0, "so_splice", "thr_%d", i);
469 if (error) {
470 printf("Can't add so_splice thread %d error %d\n",
471 i, error);
472 break;
473 }
474
475 /*
476 * It's possible to create loops with SO_SPLICE; ensure that
477 * worker threads aren't able to starve the system too easily.
478 */
479 thread_lock(td);
480 sched_prio(td, PUSER);
481 thread_unlock(td);
482 }
483
484 splice_init_state = error != 0 ? -1 : 1;
485 sx_xunlock(&splice_init_lock);
486
487 return (error);
488 }
489
490 /*
491 * Lock a pair of socket's I/O locks for splicing. Avoid blocking while holding
492 * one lock in order to avoid potential deadlocks in case there is some other
493 * code path which acquires more than one I/O lock at a time.
494 */
495 static void
splice_lock_pair(struct socket * so_src,struct socket * so_dst)496 splice_lock_pair(struct socket *so_src, struct socket *so_dst)
497 {
498 int error;
499
500 for (;;) {
501 error = SOCK_IO_SEND_LOCK(so_dst, SBL_WAIT | SBL_NOINTR);
502 KASSERT(error == 0,
503 ("%s: failed to lock send I/O lock: %d", __func__, error));
504 error = SOCK_IO_RECV_LOCK(so_src, 0);
505 KASSERT(error == 0 || error == EWOULDBLOCK,
506 ("%s: failed to lock recv I/O lock: %d", __func__, error));
507 if (error == 0)
508 break;
509 SOCK_IO_SEND_UNLOCK(so_dst);
510
511 error = SOCK_IO_RECV_LOCK(so_src, SBL_WAIT | SBL_NOINTR);
512 KASSERT(error == 0,
513 ("%s: failed to lock recv I/O lock: %d", __func__, error));
514 error = SOCK_IO_SEND_LOCK(so_dst, 0);
515 KASSERT(error == 0 || error == EWOULDBLOCK,
516 ("%s: failed to lock send I/O lock: %d", __func__, error));
517 if (error == 0)
518 break;
519 SOCK_IO_RECV_UNLOCK(so_src);
520 }
521 }
522
523 static void
splice_unlock_pair(struct socket * so_src,struct socket * so_dst)524 splice_unlock_pair(struct socket *so_src, struct socket *so_dst)
525 {
526 SOCK_IO_RECV_UNLOCK(so_src);
527 SOCK_IO_SEND_UNLOCK(so_dst);
528 }
529
530 /*
531 * Move data from the source to the sink. Assumes that both of the relevant
532 * socket I/O locks are held.
533 */
534 static int
so_splice_xfer_data(struct socket * so_src,struct socket * so_dst,off_t max,ssize_t * lenp)535 so_splice_xfer_data(struct socket *so_src, struct socket *so_dst, off_t max,
536 ssize_t *lenp)
537 {
538 struct uio uio;
539 struct mbuf *m;
540 struct sockbuf *sb_src, *sb_dst;
541 ssize_t len;
542 long space;
543 int error, flags;
544
545 SOCK_IO_RECV_ASSERT_LOCKED(so_src);
546 SOCK_IO_SEND_ASSERT_LOCKED(so_dst);
547
548 error = 0;
549 m = NULL;
550 memset(&uio, 0, sizeof(uio));
551
552 sb_src = &so_src->so_rcv;
553 sb_dst = &so_dst->so_snd;
554
555 space = sbspace(sb_dst);
556 if (space < 0)
557 space = 0;
558 len = MIN(max, MIN(space, sbavail(sb_src)));
559 if (len == 0) {
560 SOCK_RECVBUF_LOCK(so_src);
561 if ((sb_src->sb_state & SBS_CANTRCVMORE) != 0)
562 error = EPIPE;
563 SOCK_RECVBUF_UNLOCK(so_src);
564 } else {
565 flags = MSG_DONTWAIT;
566 uio.uio_resid = len;
567 if (splice_receive_stream && sb_src->sb_tls_info == NULL) {
568 error = soreceive_stream_locked(so_src, sb_src, NULL,
569 &uio, &m, NULL, flags);
570 } else {
571 error = soreceive_generic_locked(so_src, NULL,
572 &uio, &m, NULL, &flags);
573 }
574 if (error != 0 && m != NULL) {
575 m_freem(m);
576 m = NULL;
577 }
578 }
579 if (m != NULL) {
580 len -= uio.uio_resid;
581 error = sosend_generic_locked(so_dst, NULL, NULL, m, NULL,
582 MSG_DONTWAIT, curthread);
583 } else if (error == 0) {
584 len = 0;
585 SOCK_SENDBUF_LOCK(so_dst);
586 if ((sb_dst->sb_state & SBS_CANTSENDMORE) != 0)
587 error = EPIPE;
588 SOCK_SENDBUF_UNLOCK(so_dst);
589 }
590 if (error == 0)
591 *lenp = len;
592 return (error);
593 }
594
595 /*
596 * Transfer data from the source to the sink.
597 */
598 static void
so_splice_xfer(struct so_splice * sp)599 so_splice_xfer(struct so_splice *sp)
600 {
601 struct socket *so_src, *so_dst;
602 off_t max;
603 ssize_t len;
604 int error;
605
606 mtx_assert(&sp->mtx, MA_OWNED);
607 KASSERT(sp->state == SPLICE_QUEUED || sp->state == SPLICE_CLOSING,
608 ("so_splice_xfer: invalid state %d", sp->state));
609 KASSERT(sp->max != 0, ("so_splice_xfer: max == 0"));
610
611 if (sp->state == SPLICE_CLOSING) {
612 /* Userspace asked us to close the splice. */
613 goto closing;
614 }
615
616 sp->state = SPLICE_RUNNING;
617 so_src = sp->src;
618 so_dst = sp->dst;
619 max = sp->max > 0 ? sp->max - so_src->so_splice_sent : OFF_MAX;
620 if (max < 0)
621 max = 0;
622
623 /*
624 * Lock the sockets in order to block userspace from doing anything
625 * sneaky. If an error occurs or one of the sockets can no longer
626 * transfer data, we will automatically unsplice.
627 */
628 mtx_unlock(&sp->mtx);
629 splice_lock_pair(so_src, so_dst);
630
631 error = so_splice_xfer_data(so_src, so_dst, max, &len);
632
633 mtx_lock(&sp->mtx);
634
635 /*
636 * Update our stats while still holding the socket locks. This
637 * synchronizes with getsockopt(SO_SPLICE), see the comment there.
638 */
639 if (error == 0) {
640 KASSERT(len >= 0, ("%s: len %zd < 0", __func__, len));
641 so_src->so_splice_sent += len;
642 }
643 splice_unlock_pair(so_src, so_dst);
644
645 switch (sp->state) {
646 case SPLICE_CLOSING:
647 closing:
648 sp->state = SPLICE_CLOSED;
649 wakeup(sp);
650 mtx_unlock(&sp->mtx);
651 break;
652 case SPLICE_RUNNING:
653 if (error != 0 ||
654 (sp->max > 0 && so_src->so_splice_sent >= sp->max)) {
655 sp->state = SPLICE_EXCEPTION;
656 soref(so_src);
657 mtx_unlock(&sp->mtx);
658 (void)so_unsplice(so_src, false);
659 sorele(so_src);
660 } else {
661 /*
662 * Locklessly check for additional bytes in the source's
663 * receive buffer and queue more work if possible. We
664 * may end up queuing needless work, but that's ok, and
665 * if we race with a thread inserting more data into the
666 * buffer and observe sbavail() == 0, the splice mutex
667 * ensures that splice_push() will queue more work for
668 * us.
669 */
670 if (sbavail(&so_src->so_rcv) > 0 &&
671 sbspace(&so_dst->so_snd) > 0) {
672 sp->state = SPLICE_QUEUED;
673 mtx_unlock(&sp->mtx);
674 so_splice_dispatch_async(sp);
675 } else {
676 sp->state = SPLICE_IDLE;
677 mtx_unlock(&sp->mtx);
678 }
679 }
680 break;
681 default:
682 __assert_unreachable();
683 }
684 }
685
686 static void
socket_init(void * tag)687 socket_init(void *tag)
688 {
689
690 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
691 NULL, NULL, UMA_ALIGN_PTR, 0);
692 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
693 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
694 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
695 EVENTHANDLER_PRI_FIRST);
696 }
697 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
698
699 #ifdef SOCKET_HHOOK
700 static void
socket_hhook_register(int subtype)701 socket_hhook_register(int subtype)
702 {
703
704 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
705 &V_socket_hhh[subtype],
706 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
707 printf("%s: WARNING: unable to register hook\n", __func__);
708 }
709
710 static void
socket_hhook_deregister(int subtype)711 socket_hhook_deregister(int subtype)
712 {
713
714 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
715 printf("%s: WARNING: unable to deregister hook\n", __func__);
716 }
717
718 static void
socket_vnet_init(const void * unused __unused)719 socket_vnet_init(const void *unused __unused)
720 {
721 int i;
722
723 /* We expect a contiguous range */
724 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
725 socket_hhook_register(i);
726 }
727 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
728 socket_vnet_init, NULL);
729
730 static void
socket_vnet_uninit(const void * unused __unused)731 socket_vnet_uninit(const void *unused __unused)
732 {
733 int i;
734
735 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
736 socket_hhook_deregister(i);
737 }
738 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
739 socket_vnet_uninit, NULL);
740 #endif /* SOCKET_HHOOK */
741
742 /*
743 * Initialise maxsockets. This SYSINIT must be run after
744 * tunable_mbinit().
745 */
746 static void
init_maxsockets(void * ignored)747 init_maxsockets(void *ignored)
748 {
749
750 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
751 maxsockets = imax(maxsockets, maxfiles);
752 }
753 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
754
755 /*
756 * Sysctl to get and set the maximum global sockets limit. Notify protocols
757 * of the change so that they can update their dependent limits as required.
758 */
759 static int
sysctl_maxsockets(SYSCTL_HANDLER_ARGS)760 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
761 {
762 int error, newmaxsockets;
763
764 newmaxsockets = maxsockets;
765 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
766 if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
767 if (newmaxsockets > maxsockets &&
768 newmaxsockets <= maxfiles) {
769 maxsockets = newmaxsockets;
770 EVENTHANDLER_INVOKE(maxsockets_change);
771 } else
772 error = EINVAL;
773 }
774 return (error);
775 }
776 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
777 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
778 &maxsockets, 0, sysctl_maxsockets, "IU",
779 "Maximum number of sockets available");
780
781 /*
782 * Socket operation routines. These routines are called by the routines in
783 * sys_socket.c or from a system process, and implement the semantics of
784 * socket operations by switching out to the protocol specific routines.
785 */
786
787 /*
788 * Get a socket structure from our zone, and initialize it. Note that it
789 * would probably be better to allocate socket and PCB at the same time, but
790 * I'm not convinced that all the protocols can be easily modified to do
791 * this.
792 *
793 * soalloc() returns a socket with a ref count of 0.
794 */
795 static struct socket *
soalloc(struct vnet * vnet)796 soalloc(struct vnet *vnet)
797 {
798 struct socket *so;
799
800 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
801 if (so == NULL)
802 return (NULL);
803 #ifdef MAC
804 if (mac_socket_init(so, M_NOWAIT) != 0) {
805 uma_zfree(socket_zone, so);
806 return (NULL);
807 }
808 #endif
809 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
810 uma_zfree(socket_zone, so);
811 return (NULL);
812 }
813
814 /*
815 * The socket locking protocol allows to lock 2 sockets at a time,
816 * however, the first one must be a listening socket. WITNESS lacks
817 * a feature to change class of an existing lock, so we use DUPOK.
818 */
819 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
820 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
821 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
822 so->so_rcv.sb_sel = &so->so_rdsel;
823 so->so_snd.sb_sel = &so->so_wrsel;
824 sx_init(&so->so_snd_sx, "so_snd_sx");
825 sx_init(&so->so_rcv_sx, "so_rcv_sx");
826 TAILQ_INIT(&so->so_snd.sb_aiojobq);
827 TAILQ_INIT(&so->so_rcv.sb_aiojobq);
828 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
829 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
830 #ifdef VIMAGE
831 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
832 __func__, __LINE__, so));
833 so->so_vnet = vnet;
834 #endif
835 #ifdef SOCKET_HHOOK
836 /* We shouldn't need the so_global_mtx */
837 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
838 /* Do we need more comprehensive error returns? */
839 uma_zfree(socket_zone, so);
840 return (NULL);
841 }
842 #endif
843 mtx_lock(&so_global_mtx);
844 so->so_gencnt = ++so_gencnt;
845 ++numopensockets;
846 #ifdef VIMAGE
847 vnet->vnet_sockcnt++;
848 #endif
849 mtx_unlock(&so_global_mtx);
850
851 return (so);
852 }
853
854 /*
855 * Free the storage associated with a socket at the socket layer, tear down
856 * locks, labels, etc. All protocol state is assumed already to have been
857 * torn down (and possibly never set up) by the caller.
858 */
859 void
sodealloc(struct socket * so)860 sodealloc(struct socket *so)
861 {
862
863 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
864 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
865
866 mtx_lock(&so_global_mtx);
867 so->so_gencnt = ++so_gencnt;
868 --numopensockets; /* Could be below, but faster here. */
869 #ifdef VIMAGE
870 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
871 __func__, __LINE__, so));
872 so->so_vnet->vnet_sockcnt--;
873 #endif
874 mtx_unlock(&so_global_mtx);
875 #ifdef MAC
876 mac_socket_destroy(so);
877 #endif
878 #ifdef SOCKET_HHOOK
879 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
880 #endif
881
882 khelp_destroy_osd(&so->osd);
883 if (SOLISTENING(so)) {
884 if (so->sol_accept_filter != NULL)
885 accept_filt_setopt(so, NULL);
886 } else {
887 if (so->so_rcv.sb_hiwat)
888 (void)chgsbsize(so->so_cred->cr_uidinfo,
889 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
890 if (so->so_snd.sb_hiwat)
891 (void)chgsbsize(so->so_cred->cr_uidinfo,
892 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
893 sx_destroy(&so->so_snd_sx);
894 sx_destroy(&so->so_rcv_sx);
895 mtx_destroy(&so->so_snd_mtx);
896 mtx_destroy(&so->so_rcv_mtx);
897 }
898 crfree(so->so_cred);
899 mtx_destroy(&so->so_lock);
900 uma_zfree(socket_zone, so);
901 }
902
903 /*
904 * socreate returns a socket with a ref count of 1 and a file descriptor
905 * reference. The socket should be closed with soclose().
906 */
907 int
socreate(int dom,struct socket ** aso,int type,int proto,struct ucred * cred,struct thread * td)908 socreate(int dom, struct socket **aso, int type, int proto,
909 struct ucred *cred, struct thread *td)
910 {
911 struct protosw *prp;
912 struct socket *so;
913 int error;
914
915 /*
916 * XXX: divert(4) historically abused PF_INET. Keep this compatibility
917 * shim until all applications have been updated.
918 */
919 if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
920 proto == IPPROTO_DIVERT)) {
921 dom = PF_DIVERT;
922 printf("%s uses obsolete way to create divert(4) socket\n",
923 td->td_proc->p_comm);
924 }
925
926 prp = pffindproto(dom, type, proto);
927 if (prp == NULL) {
928 /* No support for domain. */
929 if (pffinddomain(dom) == NULL)
930 return (EAFNOSUPPORT);
931 /* No support for socket type. */
932 if (proto == 0 && type != 0)
933 return (EPROTOTYPE);
934 return (EPROTONOSUPPORT);
935 }
936
937 MPASS(prp->pr_attach);
938
939 if ((prp->pr_flags & PR_CAPATTACH) == 0) {
940 if (CAP_TRACING(td))
941 ktrcapfail(CAPFAIL_PROTO, &proto);
942 if (IN_CAPABILITY_MODE(td))
943 return (ECAPMODE);
944 }
945
946 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
947 return (EPROTONOSUPPORT);
948
949 so = soalloc(CRED_TO_VNET(cred));
950 if (so == NULL)
951 return (ENOBUFS);
952
953 so->so_type = type;
954 so->so_cred = crhold(cred);
955 if ((prp->pr_domain->dom_family == PF_INET) ||
956 (prp->pr_domain->dom_family == PF_INET6) ||
957 (prp->pr_domain->dom_family == PF_ROUTE))
958 so->so_fibnum = td->td_proc->p_fibnum;
959 else
960 so->so_fibnum = 0;
961 so->so_proto = prp;
962 #ifdef MAC
963 mac_socket_create(cred, so);
964 #endif
965 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
966 so_rdknl_assert_lock);
967 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
968 so_wrknl_assert_lock);
969 if ((prp->pr_flags & PR_SOCKBUF) == 0) {
970 so->so_snd.sb_mtx = &so->so_snd_mtx;
971 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
972 }
973 /*
974 * Auto-sizing of socket buffers is managed by the protocols and
975 * the appropriate flags must be set in the pr_attach() method.
976 */
977 CURVNET_SET(so->so_vnet);
978 error = prp->pr_attach(so, proto, td);
979 CURVNET_RESTORE();
980 if (error) {
981 sodealloc(so);
982 return (error);
983 }
984 soref(so);
985 *aso = so;
986 return (0);
987 }
988
989 #ifdef REGRESSION
990 static int regression_sonewconn_earlytest = 1;
991 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
992 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
993 #endif
994
995 static int sooverprio = LOG_DEBUG;
996 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW,
997 &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable");
998
999 static struct timeval overinterval = { 60, 0 };
1000 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
1001 &overinterval,
1002 "Delay in seconds between warnings for listen socket overflows");
1003
1004 /*
1005 * When an attempt at a new connection is noted on a socket which supports
1006 * accept(2), the protocol has two options:
1007 * 1) Call legacy sonewconn() function, which would call protocol attach
1008 * method, same as used for socket(2).
1009 * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
1010 * and then call solisten_enqueue().
1011 *
1012 * Note: the ref count on the socket is 0 on return.
1013 */
1014 struct socket *
solisten_clone(struct socket * head)1015 solisten_clone(struct socket *head)
1016 {
1017 struct sbuf descrsb;
1018 struct socket *so;
1019 int len, overcount;
1020 u_int qlen;
1021 const char localprefix[] = "local:";
1022 char descrbuf[SUNPATHLEN + sizeof(localprefix)];
1023 #if defined(INET6)
1024 char addrbuf[INET6_ADDRSTRLEN];
1025 #elif defined(INET)
1026 char addrbuf[INET_ADDRSTRLEN];
1027 #endif
1028 bool dolog, over;
1029
1030 SOLISTEN_LOCK(head);
1031 over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
1032 #ifdef REGRESSION
1033 if (regression_sonewconn_earlytest && over) {
1034 #else
1035 if (over) {
1036 #endif
1037 head->sol_overcount++;
1038 dolog = (sooverprio >= 0) &&
1039 !!ratecheck(&head->sol_lastover, &overinterval);
1040
1041 /*
1042 * If we're going to log, copy the overflow count and queue
1043 * length from the listen socket before dropping the lock.
1044 * Also, reset the overflow count.
1045 */
1046 if (dolog) {
1047 overcount = head->sol_overcount;
1048 head->sol_overcount = 0;
1049 qlen = head->sol_qlen;
1050 }
1051 SOLISTEN_UNLOCK(head);
1052
1053 if (dolog) {
1054 /*
1055 * Try to print something descriptive about the
1056 * socket for the error message.
1057 */
1058 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
1059 SBUF_FIXEDLEN);
1060 switch (head->so_proto->pr_domain->dom_family) {
1061 #if defined(INET) || defined(INET6)
1062 #ifdef INET
1063 case AF_INET:
1064 #endif
1065 #ifdef INET6
1066 case AF_INET6:
1067 if (head->so_proto->pr_domain->dom_family ==
1068 AF_INET6 ||
1069 (sotoinpcb(head)->inp_inc.inc_flags &
1070 INC_ISIPV6)) {
1071 ip6_sprintf(addrbuf,
1072 &sotoinpcb(head)->inp_inc.inc6_laddr);
1073 sbuf_printf(&descrsb, "[%s]", addrbuf);
1074 } else
1075 #endif
1076 {
1077 #ifdef INET
1078 inet_ntoa_r(
1079 sotoinpcb(head)->inp_inc.inc_laddr,
1080 addrbuf);
1081 sbuf_cat(&descrsb, addrbuf);
1082 #endif
1083 }
1084 sbuf_printf(&descrsb, ":%hu (proto %u)",
1085 ntohs(sotoinpcb(head)->inp_inc.inc_lport),
1086 head->so_proto->pr_protocol);
1087 break;
1088 #endif /* INET || INET6 */
1089 case AF_UNIX:
1090 sbuf_cat(&descrsb, localprefix);
1091 if (sotounpcb(head)->unp_addr != NULL)
1092 len =
1093 sotounpcb(head)->unp_addr->sun_len -
1094 offsetof(struct sockaddr_un,
1095 sun_path);
1096 else
1097 len = 0;
1098 if (len > 0)
1099 sbuf_bcat(&descrsb,
1100 sotounpcb(head)->unp_addr->sun_path,
1101 len);
1102 else
1103 sbuf_cat(&descrsb, "(unknown)");
1104 break;
1105 }
1106
1107 /*
1108 * If we can't print something more specific, at least
1109 * print the domain name.
1110 */
1111 if (sbuf_finish(&descrsb) != 0 ||
1112 sbuf_len(&descrsb) <= 0) {
1113 sbuf_clear(&descrsb);
1114 sbuf_cat(&descrsb,
1115 head->so_proto->pr_domain->dom_name ?:
1116 "unknown");
1117 sbuf_finish(&descrsb);
1118 }
1119 KASSERT(sbuf_len(&descrsb) > 0,
1120 ("%s: sbuf creation failed", __func__));
1121 /*
1122 * Preserve the historic listen queue overflow log
1123 * message, that starts with "sonewconn:". It has
1124 * been known to sysadmins for years and also test
1125 * sys/kern/sonewconn_overflow checks for it.
1126 */
1127 if (head->so_cred == 0) {
1128 log(LOG_PRI(sooverprio),
1129 "sonewconn: pcb %p (%s): "
1130 "Listen queue overflow: %i already in "
1131 "queue awaiting acceptance (%d "
1132 "occurrences)\n", head->so_pcb,
1133 sbuf_data(&descrsb),
1134 qlen, overcount);
1135 } else {
1136 log(LOG_PRI(sooverprio),
1137 "sonewconn: pcb %p (%s): "
1138 "Listen queue overflow: "
1139 "%i already in queue awaiting acceptance "
1140 "(%d occurrences), euid %d, rgid %d, jail %s\n",
1141 head->so_pcb, sbuf_data(&descrsb), qlen,
1142 overcount, head->so_cred->cr_uid,
1143 head->so_cred->cr_rgid,
1144 head->so_cred->cr_prison ?
1145 head->so_cred->cr_prison->pr_name :
1146 "not_jailed");
1147 }
1148 sbuf_delete(&descrsb);
1149
1150 overcount = 0;
1151 }
1152
1153 return (NULL);
1154 }
1155 SOLISTEN_UNLOCK(head);
1156 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
1157 __func__, head));
1158 so = soalloc(head->so_vnet);
1159 if (so == NULL) {
1160 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1161 "limit reached or out of memory\n",
1162 __func__, head->so_pcb);
1163 return (NULL);
1164 }
1165 so->so_listen = head;
1166 so->so_type = head->so_type;
1167 /*
1168 * POSIX is ambiguous on what options an accept(2)ed socket should
1169 * inherit from the listener. Words "create a new socket" may be
1170 * interpreted as not inheriting anything. Best programming practice
1171 * for application developers is to not rely on such inheritance.
1172 * FreeBSD had historically inherited all so_options excluding
1173 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options,
1174 * including those completely irrelevant to a new born socket. For
1175 * compatibility with older versions we will inherit a list of
1176 * meaningful options.
1177 * The crucial bit to inherit is SO_ACCEPTFILTER. We need it present
1178 * in the child socket for soisconnected() promoting socket from the
1179 * incomplete queue to complete. It will be cleared before the child
1180 * gets available to accept(2).
1181 */
1182 so->so_options = head->so_options & (SO_ACCEPTFILTER | SO_KEEPALIVE |
1183 SO_DONTROUTE | SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE);
1184 so->so_linger = head->so_linger;
1185 so->so_state = head->so_state;
1186 so->so_fibnum = head->so_fibnum;
1187 so->so_proto = head->so_proto;
1188 so->so_cred = crhold(head->so_cred);
1189 #ifdef SOCKET_HHOOK
1190 if (V_socket_hhh[HHOOK_SOCKET_NEWCONN]->hhh_nhooks > 0) {
1191 if (hhook_run_socket(so, head, HHOOK_SOCKET_NEWCONN)) {
1192 sodealloc(so);
1193 log(LOG_DEBUG, "%s: hhook run failed\n", __func__);
1194 return (NULL);
1195 }
1196 }
1197 #endif
1198 #ifdef MAC
1199 mac_socket_newconn(head, so);
1200 #endif
1201 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1202 so_rdknl_assert_lock);
1203 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1204 so_wrknl_assert_lock);
1205 VNET_SO_ASSERT(head);
1206 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
1207 sodealloc(so);
1208 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1209 __func__, head->so_pcb);
1210 return (NULL);
1211 }
1212 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
1213 so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
1214 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
1215 so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
1216 so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
1217 so->so_snd.sb_flags = head->sol_sbsnd_flags &
1218 (SB_AUTOSIZE | SB_AUTOLOWAT);
1219 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1220 so->so_snd.sb_mtx = &so->so_snd_mtx;
1221 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1222 }
1223
1224 return (so);
1225 }
1226
1227 /* Connstatus may be 0 or SS_ISCONNECTED. */
1228 struct socket *
1229 sonewconn(struct socket *head, int connstatus)
1230 {
1231 struct socket *so;
1232
1233 if ((so = solisten_clone(head)) == NULL)
1234 return (NULL);
1235
1236 if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
1237 sodealloc(so);
1238 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1239 __func__, head->so_pcb);
1240 return (NULL);
1241 }
1242
1243 (void)solisten_enqueue(so, connstatus);
1244
1245 return (so);
1246 }
1247
1248 /*
1249 * Enqueue socket cloned by solisten_clone() to the listen queue of the
1250 * listener it has been cloned from.
1251 *
1252 * Return 'true' if socket landed on complete queue, otherwise 'false'.
1253 */
1254 bool
1255 solisten_enqueue(struct socket *so, int connstatus)
1256 {
1257 struct socket *head = so->so_listen;
1258
1259 MPASS(refcount_load(&so->so_count) == 0);
1260 refcount_init(&so->so_count, 1);
1261
1262 SOLISTEN_LOCK(head);
1263 if (head->sol_accept_filter != NULL)
1264 connstatus = 0;
1265 so->so_state |= connstatus;
1266 soref(head); /* A socket on (in)complete queue refs head. */
1267 if (connstatus) {
1268 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
1269 so->so_qstate = SQ_COMP;
1270 head->sol_qlen++;
1271 solisten_wakeup(head); /* unlocks */
1272 return (true);
1273 } else {
1274 /*
1275 * Keep removing sockets from the head until there's room for
1276 * us to insert on the tail. In pre-locking revisions, this
1277 * was a simple if(), but as we could be racing with other
1278 * threads and soabort() requires dropping locks, we must
1279 * loop waiting for the condition to be true.
1280 */
1281 while (head->sol_incqlen > head->sol_qlimit) {
1282 struct socket *sp;
1283
1284 sp = TAILQ_FIRST(&head->sol_incomp);
1285 TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
1286 head->sol_incqlen--;
1287 SOCK_LOCK(sp);
1288 sp->so_qstate = SQ_NONE;
1289 sp->so_listen = NULL;
1290 SOCK_UNLOCK(sp);
1291 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */
1292 soabort(sp);
1293 SOLISTEN_LOCK(head);
1294 }
1295 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
1296 so->so_qstate = SQ_INCOMP;
1297 head->sol_incqlen++;
1298 SOLISTEN_UNLOCK(head);
1299 return (false);
1300 }
1301 }
1302
1303 #if defined(SCTP) || defined(SCTP_SUPPORT)
1304 /*
1305 * Socket part of sctp_peeloff(). Detach a new socket from an
1306 * association. The new socket is returned with a reference.
1307 *
1308 * XXXGL: reduce copy-paste with solisten_clone().
1309 */
1310 struct socket *
1311 sopeeloff(struct socket *head)
1312 {
1313 struct socket *so;
1314
1315 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
1316 __func__, __LINE__, head));
1317 so = soalloc(head->so_vnet);
1318 if (so == NULL) {
1319 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1320 "limit reached or out of memory\n",
1321 __func__, head->so_pcb);
1322 return (NULL);
1323 }
1324 so->so_type = head->so_type;
1325 so->so_options = head->so_options;
1326 so->so_linger = head->so_linger;
1327 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
1328 so->so_fibnum = head->so_fibnum;
1329 so->so_proto = head->so_proto;
1330 so->so_cred = crhold(head->so_cred);
1331 #ifdef MAC
1332 mac_socket_newconn(head, so);
1333 #endif
1334 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1335 so_rdknl_assert_lock);
1336 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1337 so_wrknl_assert_lock);
1338 VNET_SO_ASSERT(head);
1339 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
1340 sodealloc(so);
1341 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1342 __func__, head->so_pcb);
1343 return (NULL);
1344 }
1345 if (so->so_proto->pr_attach(so, 0, NULL)) {
1346 sodealloc(so);
1347 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1348 __func__, head->so_pcb);
1349 return (NULL);
1350 }
1351 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
1352 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
1353 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
1354 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
1355 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
1356 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
1357 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1358 so->so_snd.sb_mtx = &so->so_snd_mtx;
1359 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1360 }
1361
1362 soref(so);
1363
1364 return (so);
1365 }
1366 #endif /* SCTP */
1367
1368 int
1369 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
1370 {
1371 int error;
1372
1373 CURVNET_SET(so->so_vnet);
1374 error = so->so_proto->pr_bind(so, nam, td);
1375 CURVNET_RESTORE();
1376 return (error);
1377 }
1378
1379 int
1380 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1381 {
1382 int error;
1383
1384 CURVNET_SET(so->so_vnet);
1385 error = so->so_proto->pr_bindat(fd, so, nam, td);
1386 CURVNET_RESTORE();
1387 return (error);
1388 }
1389
1390 /*
1391 * solisten() transitions a socket from a non-listening state to a listening
1392 * state, but can also be used to update the listen queue depth on an
1393 * existing listen socket. The protocol will call back into the sockets
1394 * layer using solisten_proto_check() and solisten_proto() to check and set
1395 * socket-layer listen state. Call backs are used so that the protocol can
1396 * acquire both protocol and socket layer locks in whatever order is required
1397 * by the protocol.
1398 *
1399 * Protocol implementors are advised to hold the socket lock across the
1400 * socket-layer test and set to avoid races at the socket layer.
1401 */
1402 int
1403 solisten(struct socket *so, int backlog, struct thread *td)
1404 {
1405 int error;
1406
1407 CURVNET_SET(so->so_vnet);
1408 error = so->so_proto->pr_listen(so, backlog, td);
1409 CURVNET_RESTORE();
1410 return (error);
1411 }
1412
1413 /*
1414 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in
1415 * order to interlock with socket I/O.
1416 */
1417 int
1418 solisten_proto_check(struct socket *so)
1419 {
1420 SOCK_LOCK_ASSERT(so);
1421
1422 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1423 SS_ISDISCONNECTING)) != 0)
1424 return (EINVAL);
1425
1426 /*
1427 * Sleeping is not permitted here, so simply fail if userspace is
1428 * attempting to transmit or receive on the socket. This kind of
1429 * transient failure is not ideal, but it should occur only if userspace
1430 * is misusing the socket interfaces.
1431 */
1432 if (!sx_try_xlock(&so->so_snd_sx))
1433 return (EAGAIN);
1434 if (!sx_try_xlock(&so->so_rcv_sx)) {
1435 sx_xunlock(&so->so_snd_sx);
1436 return (EAGAIN);
1437 }
1438 mtx_lock(&so->so_snd_mtx);
1439 mtx_lock(&so->so_rcv_mtx);
1440
1441 /* Interlock with soo_aio_queue() and KTLS. */
1442 if (!SOLISTENING(so)) {
1443 bool ktls;
1444
1445 #ifdef KERN_TLS
1446 ktls = so->so_snd.sb_tls_info != NULL ||
1447 so->so_rcv.sb_tls_info != NULL;
1448 #else
1449 ktls = false;
1450 #endif
1451 if (ktls ||
1452 (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
1453 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) {
1454 solisten_proto_abort(so);
1455 return (EINVAL);
1456 }
1457 }
1458
1459 return (0);
1460 }
1461
1462 /*
1463 * Undo the setup done by solisten_proto_check().
1464 */
1465 void
1466 solisten_proto_abort(struct socket *so)
1467 {
1468 mtx_unlock(&so->so_snd_mtx);
1469 mtx_unlock(&so->so_rcv_mtx);
1470 sx_xunlock(&so->so_snd_sx);
1471 sx_xunlock(&so->so_rcv_sx);
1472 }
1473
1474 void
1475 solisten_proto(struct socket *so, int backlog)
1476 {
1477 int sbrcv_lowat, sbsnd_lowat;
1478 u_int sbrcv_hiwat, sbsnd_hiwat;
1479 short sbrcv_flags, sbsnd_flags;
1480 sbintime_t sbrcv_timeo, sbsnd_timeo;
1481
1482 SOCK_LOCK_ASSERT(so);
1483 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1484 SS_ISDISCONNECTING)) == 0,
1485 ("%s: bad socket state %p", __func__, so));
1486
1487 if (SOLISTENING(so))
1488 goto listening;
1489
1490 /*
1491 * Change this socket to listening state.
1492 */
1493 sbrcv_lowat = so->so_rcv.sb_lowat;
1494 sbsnd_lowat = so->so_snd.sb_lowat;
1495 sbrcv_hiwat = so->so_rcv.sb_hiwat;
1496 sbsnd_hiwat = so->so_snd.sb_hiwat;
1497 sbrcv_flags = so->so_rcv.sb_flags;
1498 sbsnd_flags = so->so_snd.sb_flags;
1499 sbrcv_timeo = so->so_rcv.sb_timeo;
1500 sbsnd_timeo = so->so_snd.sb_timeo;
1501
1502 #ifdef MAC
1503 mac_socketpeer_label_free(so->so_peerlabel);
1504 #endif
1505
1506 if (!(so->so_proto->pr_flags & PR_SOCKBUF)) {
1507 sbdestroy(so, SO_SND);
1508 sbdestroy(so, SO_RCV);
1509 }
1510
1511 #ifdef INVARIANTS
1512 bzero(&so->so_rcv,
1513 sizeof(struct socket) - offsetof(struct socket, so_rcv));
1514 #endif
1515
1516 so->sol_sbrcv_lowat = sbrcv_lowat;
1517 so->sol_sbsnd_lowat = sbsnd_lowat;
1518 so->sol_sbrcv_hiwat = sbrcv_hiwat;
1519 so->sol_sbsnd_hiwat = sbsnd_hiwat;
1520 so->sol_sbrcv_flags = sbrcv_flags;
1521 so->sol_sbsnd_flags = sbsnd_flags;
1522 so->sol_sbrcv_timeo = sbrcv_timeo;
1523 so->sol_sbsnd_timeo = sbsnd_timeo;
1524
1525 so->sol_qlen = so->sol_incqlen = 0;
1526 TAILQ_INIT(&so->sol_incomp);
1527 TAILQ_INIT(&so->sol_comp);
1528
1529 so->sol_accept_filter = NULL;
1530 so->sol_accept_filter_arg = NULL;
1531 so->sol_accept_filter_str = NULL;
1532
1533 so->sol_upcall = NULL;
1534 so->sol_upcallarg = NULL;
1535
1536 so->so_options |= SO_ACCEPTCONN;
1537
1538 listening:
1539 if (backlog < 0 || backlog > V_somaxconn)
1540 backlog = V_somaxconn;
1541 so->sol_qlimit = backlog;
1542
1543 mtx_unlock(&so->so_snd_mtx);
1544 mtx_unlock(&so->so_rcv_mtx);
1545 sx_xunlock(&so->so_snd_sx);
1546 sx_xunlock(&so->so_rcv_sx);
1547 }
1548
1549 /*
1550 * Wakeup listeners/subsystems once we have a complete connection.
1551 * Enters with lock, returns unlocked.
1552 */
1553 void
1554 solisten_wakeup(struct socket *sol)
1555 {
1556
1557 if (sol->sol_upcall != NULL)
1558 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1559 else {
1560 selwakeuppri(&sol->so_rdsel, PSOCK);
1561 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1562 }
1563 SOLISTEN_UNLOCK(sol);
1564 wakeup_one(&sol->sol_comp);
1565 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1566 pgsigio(&sol->so_sigio, SIGIO, 0);
1567 }
1568
1569 /*
1570 * Return single connection off a listening socket queue. Main consumer of
1571 * the function is kern_accept4(). Some modules, that do their own accept
1572 * management also use the function. The socket reference held by the
1573 * listen queue is handed to the caller.
1574 *
1575 * Listening socket must be locked on entry and is returned unlocked on
1576 * return.
1577 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1578 */
1579 int
1580 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1581 {
1582 struct socket *so;
1583 int error;
1584
1585 SOLISTEN_LOCK_ASSERT(head);
1586
1587 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1588 head->so_error == 0) {
1589 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1590 "accept", 0);
1591 if (error != 0) {
1592 SOLISTEN_UNLOCK(head);
1593 return (error);
1594 }
1595 }
1596 if (head->so_error) {
1597 error = head->so_error;
1598 head->so_error = 0;
1599 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1600 error = EWOULDBLOCK;
1601 else
1602 error = 0;
1603 if (error) {
1604 SOLISTEN_UNLOCK(head);
1605 return (error);
1606 }
1607 so = TAILQ_FIRST(&head->sol_comp);
1608 SOCK_LOCK(so);
1609 KASSERT(so->so_qstate == SQ_COMP,
1610 ("%s: so %p not SQ_COMP", __func__, so));
1611 head->sol_qlen--;
1612 so->so_qstate = SQ_NONE;
1613 so->so_listen = NULL;
1614 TAILQ_REMOVE(&head->sol_comp, so, so_list);
1615 if (flags & ACCEPT4_INHERIT)
1616 so->so_state |= (head->so_state & SS_NBIO);
1617 else
1618 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1619 SOCK_UNLOCK(so);
1620 sorele_locked(head);
1621
1622 *ret = so;
1623 return (0);
1624 }
1625
1626 static struct so_splice *
1627 so_splice_alloc(off_t max)
1628 {
1629 struct so_splice *sp;
1630
1631 sp = uma_zalloc(splice_zone, M_WAITOK);
1632 sp->src = NULL;
1633 sp->dst = NULL;
1634 sp->max = max > 0 ? max : -1;
1635 do {
1636 sp->wq_index = atomic_fetchadd_32(&splice_index, 1) %
1637 (mp_maxid + 1);
1638 } while (CPU_ABSENT(sp->wq_index));
1639 sp->state = SPLICE_INIT;
1640 TIMEOUT_TASK_INIT(taskqueue_thread, &sp->timeout, 0, so_splice_timeout,
1641 sp);
1642 return (sp);
1643 }
1644
1645 static void
1646 so_splice_free(struct so_splice *sp)
1647 {
1648 KASSERT(sp->state == SPLICE_CLOSED,
1649 ("so_splice_free: sp %p not closed", sp));
1650 uma_zfree(splice_zone, sp);
1651 }
1652
1653 static void
1654 so_splice_timeout(void *arg, int pending __unused)
1655 {
1656 struct so_splice *sp;
1657
1658 sp = arg;
1659 (void)so_unsplice(sp->src, true);
1660 }
1661
1662 /*
1663 * Splice the output from so to the input of so2.
1664 */
1665 static int
1666 so_splice(struct socket *so, struct socket *so2, struct splice *splice)
1667 {
1668 struct so_splice *sp;
1669 int error;
1670
1671 if (splice->sp_max < 0)
1672 return (EINVAL);
1673 /* Handle only TCP for now; TODO: other streaming protos */
1674 if (so->so_proto->pr_protocol != IPPROTO_TCP ||
1675 so2->so_proto->pr_protocol != IPPROTO_TCP)
1676 return (EPROTONOSUPPORT);
1677 if (so->so_vnet != so2->so_vnet)
1678 return (EINVAL);
1679
1680 /* so_splice_xfer() assumes that we're using these implementations. */
1681 KASSERT(so->so_proto->pr_sosend == sosend_generic,
1682 ("so_splice: sosend not sosend_generic"));
1683 KASSERT(so2->so_proto->pr_soreceive == soreceive_generic ||
1684 so2->so_proto->pr_soreceive == soreceive_stream,
1685 ("so_splice: soreceive not soreceive_generic/stream"));
1686
1687 sp = so_splice_alloc(splice->sp_max);
1688 so->so_splice_sent = 0;
1689 sp->src = so;
1690 sp->dst = so2;
1691
1692 error = 0;
1693 SOCK_LOCK(so);
1694 if (SOLISTENING(so))
1695 error = EINVAL;
1696 else if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1697 error = ENOTCONN;
1698 else if (so->so_splice != NULL)
1699 error = EBUSY;
1700 if (error != 0) {
1701 SOCK_UNLOCK(so);
1702 uma_zfree(splice_zone, sp);
1703 return (error);
1704 }
1705 SOCK_RECVBUF_LOCK(so);
1706 if (so->so_rcv.sb_tls_info != NULL) {
1707 SOCK_RECVBUF_UNLOCK(so);
1708 SOCK_UNLOCK(so);
1709 uma_zfree(splice_zone, sp);
1710 return (EINVAL);
1711 }
1712 so->so_rcv.sb_flags |= SB_SPLICED;
1713 so->so_splice = sp;
1714 soref(so);
1715 SOCK_RECVBUF_UNLOCK(so);
1716 SOCK_UNLOCK(so);
1717
1718 error = 0;
1719 SOCK_LOCK(so2);
1720 if (SOLISTENING(so2))
1721 error = EINVAL;
1722 else if ((so2->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1723 error = ENOTCONN;
1724 else if (so2->so_splice_back != NULL)
1725 error = EBUSY;
1726 if (error != 0) {
1727 SOCK_UNLOCK(so2);
1728 so_unsplice(so, false);
1729 return (error);
1730 }
1731 SOCK_SENDBUF_LOCK(so2);
1732 if (so->so_snd.sb_tls_info != NULL) {
1733 SOCK_SENDBUF_UNLOCK(so2);
1734 SOCK_UNLOCK(so2);
1735 so_unsplice(so, false);
1736 return (EINVAL);
1737 }
1738 so2->so_snd.sb_flags |= SB_SPLICED;
1739 so2->so_splice_back = sp;
1740 soref(so2);
1741 mtx_lock(&sp->mtx);
1742 SOCK_SENDBUF_UNLOCK(so2);
1743 SOCK_UNLOCK(so2);
1744
1745 if (splice->sp_idle.tv_sec != 0 || splice->sp_idle.tv_usec != 0) {
1746 taskqueue_enqueue_timeout_sbt(taskqueue_thread, &sp->timeout,
1747 tvtosbt(splice->sp_idle), 0, C_PREL(4));
1748 }
1749
1750 /*
1751 * Transfer any data already present in the socket buffer.
1752 */
1753 KASSERT(sp->state == SPLICE_INIT,
1754 ("so_splice: splice %p state %d", sp, sp->state));
1755 sp->state = SPLICE_QUEUED;
1756 so_splice_xfer(sp);
1757 return (0);
1758 }
1759
1760 static int
1761 so_unsplice(struct socket *so, bool timeout)
1762 {
1763 struct socket *so2;
1764 struct so_splice *sp;
1765 bool drain, so2rele;
1766
1767 /*
1768 * First unset SB_SPLICED and hide the splice structure so that
1769 * wakeup routines will stop enqueuing work. This also ensures that
1770 * a only a single thread will proceed with the unsplice.
1771 */
1772 SOCK_LOCK(so);
1773 if (SOLISTENING(so)) {
1774 SOCK_UNLOCK(so);
1775 return (EINVAL);
1776 }
1777 SOCK_RECVBUF_LOCK(so);
1778 if ((so->so_rcv.sb_flags & SB_SPLICED) == 0) {
1779 SOCK_RECVBUF_UNLOCK(so);
1780 SOCK_UNLOCK(so);
1781 return (ENOTCONN);
1782 }
1783 sp = so->so_splice;
1784 mtx_lock(&sp->mtx);
1785 if (sp->state == SPLICE_INIT) {
1786 /*
1787 * A splice is in the middle of being set up.
1788 */
1789 mtx_unlock(&sp->mtx);
1790 SOCK_RECVBUF_UNLOCK(so);
1791 SOCK_UNLOCK(so);
1792 return (ENOTCONN);
1793 }
1794 mtx_unlock(&sp->mtx);
1795 so->so_rcv.sb_flags &= ~SB_SPLICED;
1796 so->so_splice = NULL;
1797 SOCK_RECVBUF_UNLOCK(so);
1798 SOCK_UNLOCK(so);
1799
1800 so2 = sp->dst;
1801 SOCK_LOCK(so2);
1802 KASSERT(!SOLISTENING(so2), ("%s: so2 is listening", __func__));
1803 SOCK_SENDBUF_LOCK(so2);
1804 KASSERT(sp->state == SPLICE_INIT ||
1805 (so2->so_snd.sb_flags & SB_SPLICED) != 0,
1806 ("%s: so2 is not spliced", __func__));
1807 KASSERT(sp->state == SPLICE_INIT ||
1808 so2->so_splice_back == sp,
1809 ("%s: so_splice_back != sp", __func__));
1810 so2->so_snd.sb_flags &= ~SB_SPLICED;
1811 so2rele = so2->so_splice_back != NULL;
1812 so2->so_splice_back = NULL;
1813 SOCK_SENDBUF_UNLOCK(so2);
1814 SOCK_UNLOCK(so2);
1815
1816 /*
1817 * No new work is being enqueued. The worker thread might be
1818 * splicing data right now, in which case we want to wait for it to
1819 * finish before proceeding.
1820 */
1821 mtx_lock(&sp->mtx);
1822 switch (sp->state) {
1823 case SPLICE_QUEUED:
1824 case SPLICE_RUNNING:
1825 sp->state = SPLICE_CLOSING;
1826 while (sp->state == SPLICE_CLOSING)
1827 msleep(sp, &sp->mtx, PSOCK, "unsplice", 0);
1828 break;
1829 case SPLICE_INIT:
1830 case SPLICE_IDLE:
1831 case SPLICE_EXCEPTION:
1832 sp->state = SPLICE_CLOSED;
1833 break;
1834 default:
1835 __assert_unreachable();
1836 }
1837 if (!timeout) {
1838 drain = taskqueue_cancel_timeout(taskqueue_thread, &sp->timeout,
1839 NULL) != 0;
1840 } else {
1841 drain = false;
1842 }
1843 mtx_unlock(&sp->mtx);
1844 if (drain)
1845 taskqueue_drain_timeout(taskqueue_thread, &sp->timeout);
1846
1847 /*
1848 * Now we hold the sole reference to the splice structure.
1849 * Clean up: signal userspace and release socket references.
1850 */
1851 sorwakeup(so);
1852 CURVNET_SET(so->so_vnet);
1853 sorele(so);
1854 sowwakeup(so2);
1855 if (so2rele)
1856 sorele(so2);
1857 CURVNET_RESTORE();
1858 so_splice_free(sp);
1859 return (0);
1860 }
1861
1862 /*
1863 * Free socket upon release of the very last reference.
1864 */
1865 static void
1866 sofree(struct socket *so)
1867 {
1868 struct protosw *pr = so->so_proto;
1869
1870 SOCK_LOCK_ASSERT(so);
1871 KASSERT(refcount_load(&so->so_count) == 0,
1872 ("%s: so %p has references", __func__, so));
1873 KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1874 ("%s: so %p is on listen queue", __func__, so));
1875 KASSERT(SOLISTENING(so) || (so->so_rcv.sb_flags & SB_SPLICED) == 0,
1876 ("%s: so %p rcvbuf is spliced", __func__, so));
1877 KASSERT(SOLISTENING(so) || (so->so_snd.sb_flags & SB_SPLICED) == 0,
1878 ("%s: so %p sndbuf is spliced", __func__, so));
1879 KASSERT(so->so_splice == NULL && so->so_splice_back == NULL,
1880 ("%s: so %p has spliced data", __func__, so));
1881
1882 SOCK_UNLOCK(so);
1883
1884 if (so->so_dtor != NULL)
1885 so->so_dtor(so);
1886
1887 VNET_SO_ASSERT(so);
1888 if (pr->pr_detach != NULL)
1889 pr->pr_detach(so);
1890
1891 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1892 /*
1893 * From this point on, we assume that no other references to
1894 * this socket exist anywhere else in the stack. Therefore,
1895 * no locks need to be acquired or held.
1896 */
1897 #ifdef INVARIANTS
1898 SOCK_SENDBUF_LOCK(so);
1899 SOCK_RECVBUF_LOCK(so);
1900 #endif
1901 sbdestroy(so, SO_SND);
1902 sbdestroy(so, SO_RCV);
1903 #ifdef INVARIANTS
1904 SOCK_SENDBUF_UNLOCK(so);
1905 SOCK_RECVBUF_UNLOCK(so);
1906 #endif
1907 }
1908 seldrain(&so->so_rdsel);
1909 seldrain(&so->so_wrsel);
1910 knlist_destroy(&so->so_rdsel.si_note);
1911 knlist_destroy(&so->so_wrsel.si_note);
1912 sodealloc(so);
1913 }
1914
1915 /*
1916 * Release a reference on a socket while holding the socket lock.
1917 * Unlocks the socket lock before returning.
1918 */
1919 void
1920 sorele_locked(struct socket *so)
1921 {
1922 SOCK_LOCK_ASSERT(so);
1923 if (refcount_release(&so->so_count))
1924 sofree(so);
1925 else
1926 SOCK_UNLOCK(so);
1927 }
1928
1929 /*
1930 * Close a socket on last file table reference removal. Initiate disconnect
1931 * if connected. Free socket when disconnect complete.
1932 *
1933 * This function will sorele() the socket. Note that soclose() may be called
1934 * prior to the ref count reaching zero. The actual socket structure will
1935 * not be freed until the ref count reaches zero.
1936 */
1937 int
1938 soclose(struct socket *so)
1939 {
1940 struct accept_queue lqueue;
1941 int error = 0;
1942 bool listening, last __diagused;
1943
1944 CURVNET_SET(so->so_vnet);
1945 funsetown(&so->so_sigio);
1946 if (so->so_state & SS_ISCONNECTED) {
1947 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1948 error = sodisconnect(so);
1949 if (error) {
1950 if (error == ENOTCONN)
1951 error = 0;
1952 goto drop;
1953 }
1954 }
1955
1956 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1957 if ((so->so_state & SS_ISDISCONNECTING) &&
1958 (so->so_state & SS_NBIO))
1959 goto drop;
1960 while (so->so_state & SS_ISCONNECTED) {
1961 error = tsleep(&so->so_timeo,
1962 PSOCK | PCATCH, "soclos",
1963 so->so_linger * hz);
1964 if (error)
1965 break;
1966 }
1967 }
1968 }
1969
1970 drop:
1971 if (so->so_proto->pr_close != NULL)
1972 so->so_proto->pr_close(so);
1973
1974 SOCK_LOCK(so);
1975 if ((listening = SOLISTENING(so))) {
1976 struct socket *sp;
1977
1978 TAILQ_INIT(&lqueue);
1979 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1980 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1981
1982 so->sol_qlen = so->sol_incqlen = 0;
1983
1984 TAILQ_FOREACH(sp, &lqueue, so_list) {
1985 SOCK_LOCK(sp);
1986 sp->so_qstate = SQ_NONE;
1987 sp->so_listen = NULL;
1988 SOCK_UNLOCK(sp);
1989 last = refcount_release(&so->so_count);
1990 KASSERT(!last, ("%s: released last reference for %p",
1991 __func__, so));
1992 }
1993 }
1994 sorele_locked(so);
1995 if (listening) {
1996 struct socket *sp, *tsp;
1997
1998 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
1999 soabort(sp);
2000 }
2001 CURVNET_RESTORE();
2002 return (error);
2003 }
2004
2005 /*
2006 * soabort() is used to abruptly tear down a connection, such as when a
2007 * resource limit is reached (listen queue depth exceeded), or if a listen
2008 * socket is closed while there are sockets waiting to be accepted.
2009 *
2010 * This interface is tricky, because it is called on an unreferenced socket,
2011 * and must be called only by a thread that has actually removed the socket
2012 * from the listen queue it was on. Likely this thread holds the last
2013 * reference on the socket and soabort() will proceed with sofree(). But
2014 * it might be not the last, as the sockets on the listen queues are seen
2015 * from the protocol side.
2016 *
2017 * This interface will call into the protocol code, so must not be called
2018 * with any socket locks held. Protocols do call it while holding their own
2019 * recursible protocol mutexes, but this is something that should be subject
2020 * to review in the future.
2021 *
2022 * Usually socket should have a single reference left, but this is not a
2023 * requirement. In the past, when we have had named references for file
2024 * descriptor and protocol, we asserted that none of them are being held.
2025 */
2026 void
2027 soabort(struct socket *so)
2028 {
2029
2030 VNET_SO_ASSERT(so);
2031
2032 if (so->so_proto->pr_abort != NULL)
2033 so->so_proto->pr_abort(so);
2034 SOCK_LOCK(so);
2035 sorele_locked(so);
2036 }
2037
2038 int
2039 soaccept(struct socket *so, struct sockaddr *sa)
2040 {
2041 #ifdef INVARIANTS
2042 u_char len = sa->sa_len;
2043 #endif
2044 int error;
2045
2046 CURVNET_SET(so->so_vnet);
2047 error = so->so_proto->pr_accept(so, sa);
2048 KASSERT(sa->sa_len <= len,
2049 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2050 CURVNET_RESTORE();
2051 return (error);
2052 }
2053
2054 int
2055 sopeeraddr(struct socket *so, struct sockaddr *sa)
2056 {
2057 #ifdef INVARIANTS
2058 u_char len = sa->sa_len;
2059 #endif
2060 int error;
2061
2062 CURVNET_ASSERT_SET();
2063
2064 error = so->so_proto->pr_peeraddr(so, sa);
2065 KASSERT(sa->sa_len <= len,
2066 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2067
2068 return (error);
2069 }
2070
2071 int
2072 sosockaddr(struct socket *so, struct sockaddr *sa)
2073 {
2074 #ifdef INVARIANTS
2075 u_char len = sa->sa_len;
2076 #endif
2077 int error;
2078
2079 CURVNET_SET(so->so_vnet);
2080 error = so->so_proto->pr_sockaddr(so, sa);
2081 KASSERT(sa->sa_len <= len,
2082 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2083 CURVNET_RESTORE();
2084
2085 return (error);
2086 }
2087
2088 int
2089 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
2090 {
2091
2092 return (soconnectat(AT_FDCWD, so, nam, td));
2093 }
2094
2095 int
2096 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
2097 {
2098 int error;
2099
2100 CURVNET_SET(so->so_vnet);
2101
2102 /*
2103 * If protocol is connection-based, can only connect once.
2104 * Otherwise, if connected, try to disconnect first. This allows
2105 * user to disconnect by connecting to, e.g., a null address.
2106 *
2107 * Note, this check is racy and may need to be re-evaluated at the
2108 * protocol layer.
2109 */
2110 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
2111 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
2112 (error = sodisconnect(so)))) {
2113 error = EISCONN;
2114 } else {
2115 /*
2116 * Prevent accumulated error from previous connection from
2117 * biting us.
2118 */
2119 so->so_error = 0;
2120 if (fd == AT_FDCWD) {
2121 error = so->so_proto->pr_connect(so, nam, td);
2122 } else {
2123 error = so->so_proto->pr_connectat(fd, so, nam, td);
2124 }
2125 }
2126 CURVNET_RESTORE();
2127
2128 return (error);
2129 }
2130
2131 int
2132 soconnect2(struct socket *so1, struct socket *so2)
2133 {
2134 int error;
2135
2136 CURVNET_SET(so1->so_vnet);
2137 error = so1->so_proto->pr_connect2(so1, so2);
2138 CURVNET_RESTORE();
2139 return (error);
2140 }
2141
2142 int
2143 sodisconnect(struct socket *so)
2144 {
2145 int error;
2146
2147 if ((so->so_state & SS_ISCONNECTED) == 0)
2148 return (ENOTCONN);
2149 if (so->so_state & SS_ISDISCONNECTING)
2150 return (EALREADY);
2151 VNET_SO_ASSERT(so);
2152 error = so->so_proto->pr_disconnect(so);
2153 return (error);
2154 }
2155
2156 int
2157 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
2158 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2159 {
2160 long space;
2161 ssize_t resid;
2162 int clen = 0, error, dontroute;
2163
2164 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
2165 KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
2166 ("sosend_dgram: !PR_ATOMIC"));
2167
2168 if (uio != NULL)
2169 resid = uio->uio_resid;
2170 else
2171 resid = top->m_pkthdr.len;
2172 /*
2173 * In theory resid should be unsigned. However, space must be
2174 * signed, as it might be less than 0 if we over-committed, and we
2175 * must use a signed comparison of space and resid. On the other
2176 * hand, a negative resid causes us to loop sending 0-length
2177 * segments to the protocol.
2178 */
2179 if (resid < 0) {
2180 error = EINVAL;
2181 goto out;
2182 }
2183
2184 dontroute =
2185 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
2186 if (td != NULL)
2187 td->td_ru.ru_msgsnd++;
2188 if (control != NULL)
2189 clen = control->m_len;
2190
2191 SOCKBUF_LOCK(&so->so_snd);
2192 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2193 SOCKBUF_UNLOCK(&so->so_snd);
2194 error = EPIPE;
2195 goto out;
2196 }
2197 if (so->so_error) {
2198 error = so->so_error;
2199 so->so_error = 0;
2200 SOCKBUF_UNLOCK(&so->so_snd);
2201 goto out;
2202 }
2203 if ((so->so_state & SS_ISCONNECTED) == 0) {
2204 /*
2205 * `sendto' and `sendmsg' is allowed on a connection-based
2206 * socket if it supports implied connect. Return ENOTCONN if
2207 * not connected and no address is supplied.
2208 */
2209 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2210 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2211 if (!(resid == 0 && clen != 0)) {
2212 SOCKBUF_UNLOCK(&so->so_snd);
2213 error = ENOTCONN;
2214 goto out;
2215 }
2216 } else if (addr == NULL) {
2217 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2218 error = ENOTCONN;
2219 else
2220 error = EDESTADDRREQ;
2221 SOCKBUF_UNLOCK(&so->so_snd);
2222 goto out;
2223 }
2224 }
2225
2226 /*
2227 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a
2228 * problem and need fixing.
2229 */
2230 space = sbspace(&so->so_snd);
2231 if (flags & MSG_OOB)
2232 space += 1024;
2233 space -= clen;
2234 SOCKBUF_UNLOCK(&so->so_snd);
2235 if (resid > space) {
2236 error = EMSGSIZE;
2237 goto out;
2238 }
2239 if (uio == NULL) {
2240 resid = 0;
2241 if (flags & MSG_EOR)
2242 top->m_flags |= M_EOR;
2243 } else {
2244 /*
2245 * Copy the data from userland into a mbuf chain.
2246 * If no data is to be copied in, a single empty mbuf
2247 * is returned.
2248 */
2249 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
2250 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
2251 if (top == NULL) {
2252 error = EFAULT; /* only possible error */
2253 goto out;
2254 }
2255 space -= resid - uio->uio_resid;
2256 resid = uio->uio_resid;
2257 }
2258 KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
2259 /*
2260 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
2261 * than with.
2262 */
2263 if (dontroute) {
2264 SOCK_LOCK(so);
2265 so->so_options |= SO_DONTROUTE;
2266 SOCK_UNLOCK(so);
2267 }
2268 /*
2269 * XXX all the SBS_CANTSENDMORE checks previously done could be out
2270 * of date. We could have received a reset packet in an interrupt or
2271 * maybe we slept while doing page faults in uiomove() etc. We could
2272 * probably recheck again inside the locking protection here, but
2273 * there are probably other places that this also happens. We must
2274 * rethink this.
2275 */
2276 VNET_SO_ASSERT(so);
2277 error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
2278 /*
2279 * If the user set MSG_EOF, the protocol understands this flag and
2280 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
2281 */
2282 ((flags & MSG_EOF) &&
2283 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2284 (resid <= 0)) ?
2285 PRUS_EOF :
2286 /* If there is more to send set PRUS_MORETOCOME */
2287 (flags & MSG_MORETOCOME) ||
2288 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
2289 top, addr, control, td);
2290 if (dontroute) {
2291 SOCK_LOCK(so);
2292 so->so_options &= ~SO_DONTROUTE;
2293 SOCK_UNLOCK(so);
2294 }
2295 clen = 0;
2296 control = NULL;
2297 top = NULL;
2298 out:
2299 if (top != NULL)
2300 m_freem(top);
2301 if (control != NULL)
2302 m_freem(control);
2303 return (error);
2304 }
2305
2306 /*
2307 * Send on a socket. If send must go all at once and message is larger than
2308 * send buffering, then hard error. Lock against other senders. If must go
2309 * all at once and not enough room now, then inform user that this would
2310 * block and do nothing. Otherwise, if nonblocking, send as much as
2311 * possible. The data to be sent is described by "uio" if nonzero, otherwise
2312 * by the mbuf chain "top" (which must be null if uio is not). Data provided
2313 * in mbuf chain must be small enough to send all at once.
2314 *
2315 * Returns nonzero on error, timeout or signal; callers must check for short
2316 * counts if EINTR/ERESTART are returned. Data and control buffers are freed
2317 * on return.
2318 */
2319 static int
2320 sosend_generic_locked(struct socket *so, struct sockaddr *addr, struct uio *uio,
2321 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2322 {
2323 long space;
2324 ssize_t resid;
2325 int clen = 0, error, dontroute;
2326 int atomic = sosendallatonce(so) || top;
2327 int pr_send_flag;
2328 #ifdef KERN_TLS
2329 struct ktls_session *tls;
2330 int tls_enq_cnt, tls_send_flag;
2331 uint8_t tls_rtype;
2332
2333 tls = NULL;
2334 tls_rtype = TLS_RLTYPE_APP;
2335 #endif
2336
2337 SOCK_IO_SEND_ASSERT_LOCKED(so);
2338
2339 if (uio != NULL)
2340 resid = uio->uio_resid;
2341 else if ((top->m_flags & M_PKTHDR) != 0)
2342 resid = top->m_pkthdr.len;
2343 else
2344 resid = m_length(top, NULL);
2345 /*
2346 * In theory resid should be unsigned. However, space must be
2347 * signed, as it might be less than 0 if we over-committed, and we
2348 * must use a signed comparison of space and resid. On the other
2349 * hand, a negative resid causes us to loop sending 0-length
2350 * segments to the protocol.
2351 *
2352 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
2353 * type sockets since that's an error.
2354 */
2355 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
2356 error = EINVAL;
2357 goto out;
2358 }
2359
2360 dontroute =
2361 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
2362 (so->so_proto->pr_flags & PR_ATOMIC);
2363 if (td != NULL)
2364 td->td_ru.ru_msgsnd++;
2365 if (control != NULL)
2366 clen = control->m_len;
2367
2368 #ifdef KERN_TLS
2369 tls_send_flag = 0;
2370 tls = ktls_hold(so->so_snd.sb_tls_info);
2371 if (tls != NULL) {
2372 if (tls->mode == TCP_TLS_MODE_SW)
2373 tls_send_flag = PRUS_NOTREADY;
2374
2375 if (control != NULL) {
2376 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2377
2378 if (clen >= sizeof(*cm) &&
2379 cm->cmsg_type == TLS_SET_RECORD_TYPE) {
2380 tls_rtype = *((uint8_t *)CMSG_DATA(cm));
2381 clen = 0;
2382 m_freem(control);
2383 control = NULL;
2384 atomic = 1;
2385 }
2386 }
2387
2388 if (resid == 0 && !ktls_permit_empty_frames(tls)) {
2389 error = EINVAL;
2390 goto out;
2391 }
2392 }
2393 #endif
2394
2395 restart:
2396 do {
2397 SOCKBUF_LOCK(&so->so_snd);
2398 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2399 SOCKBUF_UNLOCK(&so->so_snd);
2400 error = EPIPE;
2401 goto out;
2402 }
2403 if (so->so_error) {
2404 error = so->so_error;
2405 so->so_error = 0;
2406 SOCKBUF_UNLOCK(&so->so_snd);
2407 goto out;
2408 }
2409 if ((so->so_state & SS_ISCONNECTED) == 0) {
2410 /*
2411 * `sendto' and `sendmsg' is allowed on a connection-
2412 * based socket if it supports implied connect.
2413 * Return ENOTCONN if not connected and no address is
2414 * supplied.
2415 */
2416 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2417 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2418 if (!(resid == 0 && clen != 0)) {
2419 SOCKBUF_UNLOCK(&so->so_snd);
2420 error = ENOTCONN;
2421 goto out;
2422 }
2423 } else if (addr == NULL) {
2424 SOCKBUF_UNLOCK(&so->so_snd);
2425 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2426 error = ENOTCONN;
2427 else
2428 error = EDESTADDRREQ;
2429 goto out;
2430 }
2431 }
2432 space = sbspace(&so->so_snd);
2433 if (flags & MSG_OOB)
2434 space += 1024;
2435 if ((atomic && resid > so->so_snd.sb_hiwat) ||
2436 clen > so->so_snd.sb_hiwat) {
2437 SOCKBUF_UNLOCK(&so->so_snd);
2438 error = EMSGSIZE;
2439 goto out;
2440 }
2441 if (space < resid + clen &&
2442 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
2443 if ((so->so_state & SS_NBIO) ||
2444 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
2445 SOCKBUF_UNLOCK(&so->so_snd);
2446 error = EWOULDBLOCK;
2447 goto out;
2448 }
2449 error = sbwait(so, SO_SND);
2450 SOCKBUF_UNLOCK(&so->so_snd);
2451 if (error)
2452 goto out;
2453 goto restart;
2454 }
2455 SOCKBUF_UNLOCK(&so->so_snd);
2456 space -= clen;
2457 do {
2458 if (uio == NULL) {
2459 resid = 0;
2460 if (flags & MSG_EOR)
2461 top->m_flags |= M_EOR;
2462 #ifdef KERN_TLS
2463 if (tls != NULL) {
2464 ktls_frame(top, tls, &tls_enq_cnt,
2465 tls_rtype);
2466 tls_rtype = TLS_RLTYPE_APP;
2467 }
2468 #endif
2469 } else {
2470 /*
2471 * Copy the data from userland into a mbuf
2472 * chain. If resid is 0, which can happen
2473 * only if we have control to send, then
2474 * a single empty mbuf is returned. This
2475 * is a workaround to prevent protocol send
2476 * methods to panic.
2477 */
2478 #ifdef KERN_TLS
2479 if (tls != NULL) {
2480 top = m_uiotombuf(uio, M_WAITOK, space,
2481 tls->params.max_frame_len,
2482 M_EXTPG |
2483 ((flags & MSG_EOR) ? M_EOR : 0));
2484 if (top != NULL) {
2485 ktls_frame(top, tls,
2486 &tls_enq_cnt, tls_rtype);
2487 }
2488 tls_rtype = TLS_RLTYPE_APP;
2489 } else
2490 #endif
2491 top = m_uiotombuf(uio, M_WAITOK, space,
2492 (atomic ? max_hdr : 0),
2493 (atomic ? M_PKTHDR : 0) |
2494 ((flags & MSG_EOR) ? M_EOR : 0));
2495 if (top == NULL) {
2496 error = EFAULT; /* only possible error */
2497 goto out;
2498 }
2499 space -= resid - uio->uio_resid;
2500 resid = uio->uio_resid;
2501 }
2502 if (dontroute) {
2503 SOCK_LOCK(so);
2504 so->so_options |= SO_DONTROUTE;
2505 SOCK_UNLOCK(so);
2506 }
2507 /*
2508 * XXX all the SBS_CANTSENDMORE checks previously
2509 * done could be out of date. We could have received
2510 * a reset packet in an interrupt or maybe we slept
2511 * while doing page faults in uiomove() etc. We
2512 * could probably recheck again inside the locking
2513 * protection here, but there are probably other
2514 * places that this also happens. We must rethink
2515 * this.
2516 */
2517 VNET_SO_ASSERT(so);
2518
2519 pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
2520 /*
2521 * If the user set MSG_EOF, the protocol understands
2522 * this flag and nothing left to send then use
2523 * PRU_SEND_EOF instead of PRU_SEND.
2524 */
2525 ((flags & MSG_EOF) &&
2526 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2527 (resid <= 0)) ?
2528 PRUS_EOF :
2529 /* If there is more to send set PRUS_MORETOCOME. */
2530 (flags & MSG_MORETOCOME) ||
2531 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
2532
2533 #ifdef KERN_TLS
2534 pr_send_flag |= tls_send_flag;
2535 #endif
2536
2537 error = so->so_proto->pr_send(so, pr_send_flag, top,
2538 addr, control, td);
2539
2540 if (dontroute) {
2541 SOCK_LOCK(so);
2542 so->so_options &= ~SO_DONTROUTE;
2543 SOCK_UNLOCK(so);
2544 }
2545
2546 #ifdef KERN_TLS
2547 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
2548 if (error != 0) {
2549 m_freem(top);
2550 top = NULL;
2551 } else {
2552 soref(so);
2553 ktls_enqueue(top, so, tls_enq_cnt);
2554 }
2555 }
2556 #endif
2557 clen = 0;
2558 control = NULL;
2559 top = NULL;
2560 if (error)
2561 goto out;
2562 } while (resid && space > 0);
2563 } while (resid);
2564
2565 out:
2566 #ifdef KERN_TLS
2567 if (tls != NULL)
2568 ktls_free(tls);
2569 #endif
2570 if (top != NULL)
2571 m_freem(top);
2572 if (control != NULL)
2573 m_freem(control);
2574 return (error);
2575 }
2576
2577 int
2578 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
2579 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2580 {
2581 int error;
2582
2583 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
2584 if (error)
2585 return (error);
2586 error = sosend_generic_locked(so, addr, uio, top, control, flags, td);
2587 SOCK_IO_SEND_UNLOCK(so);
2588 return (error);
2589 }
2590
2591 /*
2592 * Send to a socket from a kernel thread.
2593 *
2594 * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
2595 * Exception is nfs/bootp_subr.c. It is arguable that the VNET context needs
2596 * to be set at all. This function should just boil down to a static inline
2597 * calling the protocol method.
2598 */
2599 int
2600 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2601 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2602 {
2603 int error;
2604
2605 CURVNET_SET(so->so_vnet);
2606 error = so->so_proto->pr_sosend(so, addr, uio,
2607 top, control, flags, td);
2608 CURVNET_RESTORE();
2609 return (error);
2610 }
2611
2612 /*
2613 * send(2), write(2) or aio_write(2) on a socket.
2614 */
2615 int
2616 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2617 struct mbuf *control, int flags, struct proc *userproc)
2618 {
2619 struct thread *td;
2620 ssize_t len;
2621 int error;
2622
2623 td = uio->uio_td;
2624 len = uio->uio_resid;
2625 CURVNET_SET(so->so_vnet);
2626 error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
2627 td);
2628 CURVNET_RESTORE();
2629 if (error != 0) {
2630 /*
2631 * Clear transient errors for stream protocols if they made
2632 * some progress. Make exclusion for aio(4) that would
2633 * schedule a new write in case of EWOULDBLOCK and clear
2634 * error itself. See soaio_process_job().
2635 */
2636 if (uio->uio_resid != len &&
2637 (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
2638 userproc == NULL &&
2639 (error == ERESTART || error == EINTR ||
2640 error == EWOULDBLOCK))
2641 error = 0;
2642 /* Generation of SIGPIPE can be controlled per socket. */
2643 if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
2644 (flags & MSG_NOSIGNAL) == 0) {
2645 if (userproc != NULL) {
2646 /* aio(4) job */
2647 PROC_LOCK(userproc);
2648 kern_psignal(userproc, SIGPIPE);
2649 PROC_UNLOCK(userproc);
2650 } else {
2651 PROC_LOCK(td->td_proc);
2652 tdsignal(td, SIGPIPE);
2653 PROC_UNLOCK(td->td_proc);
2654 }
2655 }
2656 }
2657 return (error);
2658 }
2659
2660 /*
2661 * The part of soreceive() that implements reading non-inline out-of-band
2662 * data from a socket. For more complete comments, see soreceive(), from
2663 * which this code originated.
2664 *
2665 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
2666 * unable to return an mbuf chain to the caller.
2667 */
2668 static int
2669 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
2670 {
2671 struct protosw *pr = so->so_proto;
2672 struct mbuf *m;
2673 int error;
2674
2675 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
2676 VNET_SO_ASSERT(so);
2677
2678 m = m_get(M_WAITOK, MT_DATA);
2679 error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
2680 if (error)
2681 goto bad;
2682 do {
2683 error = uiomove(mtod(m, void *),
2684 (int) min(uio->uio_resid, m->m_len), uio);
2685 m = m_free(m);
2686 } while (uio->uio_resid && error == 0 && m);
2687 bad:
2688 if (m != NULL)
2689 m_freem(m);
2690 return (error);
2691 }
2692
2693 /*
2694 * Following replacement or removal of the first mbuf on the first mbuf chain
2695 * of a socket buffer, push necessary state changes back into the socket
2696 * buffer so that other consumers see the values consistently. 'nextrecord'
2697 * is the callers locally stored value of the original value of
2698 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
2699 * NOTE: 'nextrecord' may be NULL.
2700 */
2701 static __inline void
2702 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
2703 {
2704
2705 SOCKBUF_LOCK_ASSERT(sb);
2706 /*
2707 * First, update for the new value of nextrecord. If necessary, make
2708 * it the first record.
2709 */
2710 if (sb->sb_mb != NULL)
2711 sb->sb_mb->m_nextpkt = nextrecord;
2712 else
2713 sb->sb_mb = nextrecord;
2714
2715 /*
2716 * Now update any dependent socket buffer fields to reflect the new
2717 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the
2718 * addition of a second clause that takes care of the case where
2719 * sb_mb has been updated, but remains the last record.
2720 */
2721 if (sb->sb_mb == NULL) {
2722 sb->sb_mbtail = NULL;
2723 sb->sb_lastrecord = NULL;
2724 } else if (sb->sb_mb->m_nextpkt == NULL)
2725 sb->sb_lastrecord = sb->sb_mb;
2726 }
2727
2728 /*
2729 * Implement receive operations on a socket. We depend on the way that
2730 * records are added to the sockbuf by sbappend. In particular, each record
2731 * (mbufs linked through m_next) must begin with an address if the protocol
2732 * so specifies, followed by an optional mbuf or mbufs containing ancillary
2733 * data, and then zero or more mbufs of data. In order to allow parallelism
2734 * between network receive and copying to user space, as well as avoid
2735 * sleeping with a mutex held, we release the socket buffer mutex during the
2736 * user space copy. Although the sockbuf is locked, new data may still be
2737 * appended, and thus we must maintain consistency of the sockbuf during that
2738 * time.
2739 *
2740 * The caller may receive the data as a single mbuf chain by supplying an
2741 * mbuf **mp0 for use in returning the chain. The uio is then used only for
2742 * the count in uio_resid.
2743 */
2744 static int
2745 soreceive_generic_locked(struct socket *so, struct sockaddr **psa,
2746 struct uio *uio, struct mbuf **mp, struct mbuf **controlp, int *flagsp)
2747 {
2748 struct mbuf *m;
2749 int flags, error, offset;
2750 ssize_t len;
2751 struct protosw *pr = so->so_proto;
2752 struct mbuf *nextrecord;
2753 int moff, type = 0;
2754 ssize_t orig_resid = uio->uio_resid;
2755 bool report_real_len = false;
2756
2757 SOCK_IO_RECV_ASSERT_LOCKED(so);
2758
2759 error = 0;
2760 if (flagsp != NULL) {
2761 report_real_len = *flagsp & MSG_TRUNC;
2762 *flagsp &= ~MSG_TRUNC;
2763 flags = *flagsp &~ MSG_EOR;
2764 } else
2765 flags = 0;
2766
2767 restart:
2768 SOCKBUF_LOCK(&so->so_rcv);
2769 m = so->so_rcv.sb_mb;
2770 /*
2771 * If we have less data than requested, block awaiting more (subject
2772 * to any timeout) if:
2773 * 1. the current count is less than the low water mark, or
2774 * 2. MSG_DONTWAIT is not set
2775 */
2776 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
2777 sbavail(&so->so_rcv) < uio->uio_resid) &&
2778 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
2779 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
2780 KASSERT(m != NULL || !sbavail(&so->so_rcv),
2781 ("receive: m == %p sbavail == %u",
2782 m, sbavail(&so->so_rcv)));
2783 if (so->so_error || so->so_rerror) {
2784 if (m != NULL)
2785 goto dontblock;
2786 if (so->so_error)
2787 error = so->so_error;
2788 else
2789 error = so->so_rerror;
2790 if ((flags & MSG_PEEK) == 0) {
2791 if (so->so_error)
2792 so->so_error = 0;
2793 else
2794 so->so_rerror = 0;
2795 }
2796 SOCKBUF_UNLOCK(&so->so_rcv);
2797 goto release;
2798 }
2799 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2800 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2801 if (m != NULL)
2802 goto dontblock;
2803 #ifdef KERN_TLS
2804 else if (so->so_rcv.sb_tlsdcc == 0 &&
2805 so->so_rcv.sb_tlscc == 0) {
2806 #else
2807 else {
2808 #endif
2809 SOCKBUF_UNLOCK(&so->so_rcv);
2810 goto release;
2811 }
2812 }
2813 for (; m != NULL; m = m->m_next)
2814 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
2815 m = so->so_rcv.sb_mb;
2816 goto dontblock;
2817 }
2818 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2819 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2820 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2821 SOCKBUF_UNLOCK(&so->so_rcv);
2822 error = ENOTCONN;
2823 goto release;
2824 }
2825 if (uio->uio_resid == 0 && !report_real_len) {
2826 SOCKBUF_UNLOCK(&so->so_rcv);
2827 goto release;
2828 }
2829 if ((so->so_state & SS_NBIO) ||
2830 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2831 SOCKBUF_UNLOCK(&so->so_rcv);
2832 error = EWOULDBLOCK;
2833 goto release;
2834 }
2835 SBLASTRECORDCHK(&so->so_rcv);
2836 SBLASTMBUFCHK(&so->so_rcv);
2837 error = sbwait(so, SO_RCV);
2838 SOCKBUF_UNLOCK(&so->so_rcv);
2839 if (error)
2840 goto release;
2841 goto restart;
2842 }
2843 dontblock:
2844 /*
2845 * From this point onward, we maintain 'nextrecord' as a cache of the
2846 * pointer to the next record in the socket buffer. We must keep the
2847 * various socket buffer pointers and local stack versions of the
2848 * pointers in sync, pushing out modifications before dropping the
2849 * socket buffer mutex, and re-reading them when picking it up.
2850 *
2851 * Otherwise, we will race with the network stack appending new data
2852 * or records onto the socket buffer by using inconsistent/stale
2853 * versions of the field, possibly resulting in socket buffer
2854 * corruption.
2855 *
2856 * By holding the high-level sblock(), we prevent simultaneous
2857 * readers from pulling off the front of the socket buffer.
2858 */
2859 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2860 if (uio->uio_td)
2861 uio->uio_td->td_ru.ru_msgrcv++;
2862 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2863 SBLASTRECORDCHK(&so->so_rcv);
2864 SBLASTMBUFCHK(&so->so_rcv);
2865 nextrecord = m->m_nextpkt;
2866 if (pr->pr_flags & PR_ADDR) {
2867 KASSERT(m->m_type == MT_SONAME,
2868 ("m->m_type == %d", m->m_type));
2869 orig_resid = 0;
2870 if (psa != NULL)
2871 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
2872 M_NOWAIT);
2873 if (flags & MSG_PEEK) {
2874 m = m->m_next;
2875 } else {
2876 sbfree(&so->so_rcv, m);
2877 so->so_rcv.sb_mb = m_free(m);
2878 m = so->so_rcv.sb_mb;
2879 sockbuf_pushsync(&so->so_rcv, nextrecord);
2880 }
2881 }
2882
2883 /*
2884 * Process one or more MT_CONTROL mbufs present before any data mbufs
2885 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
2886 * just copy the data; if !MSG_PEEK, we call into the protocol to
2887 * perform externalization (or freeing if controlp == NULL).
2888 */
2889 if (m != NULL && m->m_type == MT_CONTROL) {
2890 struct mbuf *cm = NULL, *cmn;
2891 struct mbuf **cme = &cm;
2892 #ifdef KERN_TLS
2893 struct cmsghdr *cmsg;
2894 struct tls_get_record tgr;
2895
2896 /*
2897 * For MSG_TLSAPPDATA, check for an alert record.
2898 * If found, return ENXIO without removing
2899 * it from the receive queue. This allows a subsequent
2900 * call without MSG_TLSAPPDATA to receive it.
2901 * Note that, for TLS, there should only be a single
2902 * control mbuf with the TLS_GET_RECORD message in it.
2903 */
2904 if (flags & MSG_TLSAPPDATA) {
2905 cmsg = mtod(m, struct cmsghdr *);
2906 if (cmsg->cmsg_type == TLS_GET_RECORD &&
2907 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2908 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2909 if (__predict_false(tgr.tls_type ==
2910 TLS_RLTYPE_ALERT)) {
2911 SOCKBUF_UNLOCK(&so->so_rcv);
2912 error = ENXIO;
2913 goto release;
2914 }
2915 }
2916 }
2917 #endif
2918
2919 do {
2920 if (flags & MSG_PEEK) {
2921 if (controlp != NULL) {
2922 *controlp = m_copym(m, 0, m->m_len,
2923 M_NOWAIT);
2924 controlp = &(*controlp)->m_next;
2925 }
2926 m = m->m_next;
2927 } else {
2928 sbfree(&so->so_rcv, m);
2929 so->so_rcv.sb_mb = m->m_next;
2930 m->m_next = NULL;
2931 *cme = m;
2932 cme = &(*cme)->m_next;
2933 m = so->so_rcv.sb_mb;
2934 }
2935 } while (m != NULL && m->m_type == MT_CONTROL);
2936 if ((flags & MSG_PEEK) == 0)
2937 sockbuf_pushsync(&so->so_rcv, nextrecord);
2938 while (cm != NULL) {
2939 cmn = cm->m_next;
2940 cm->m_next = NULL;
2941 if (controlp != NULL)
2942 *controlp = cm;
2943 else
2944 m_freem(cm);
2945 if (controlp != NULL) {
2946 while (*controlp != NULL)
2947 controlp = &(*controlp)->m_next;
2948 }
2949 cm = cmn;
2950 }
2951 if (m != NULL)
2952 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2953 else
2954 nextrecord = so->so_rcv.sb_mb;
2955 orig_resid = 0;
2956 }
2957 if (m != NULL) {
2958 if ((flags & MSG_PEEK) == 0) {
2959 KASSERT(m->m_nextpkt == nextrecord,
2960 ("soreceive: post-control, nextrecord !sync"));
2961 if (nextrecord == NULL) {
2962 KASSERT(so->so_rcv.sb_mb == m,
2963 ("soreceive: post-control, sb_mb!=m"));
2964 KASSERT(so->so_rcv.sb_lastrecord == m,
2965 ("soreceive: post-control, lastrecord!=m"));
2966 }
2967 }
2968 type = m->m_type;
2969 if (type == MT_OOBDATA)
2970 flags |= MSG_OOB;
2971 } else {
2972 if ((flags & MSG_PEEK) == 0) {
2973 KASSERT(so->so_rcv.sb_mb == nextrecord,
2974 ("soreceive: sb_mb != nextrecord"));
2975 if (so->so_rcv.sb_mb == NULL) {
2976 KASSERT(so->so_rcv.sb_lastrecord == NULL,
2977 ("soreceive: sb_lastercord != NULL"));
2978 }
2979 }
2980 }
2981 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2982 SBLASTRECORDCHK(&so->so_rcv);
2983 SBLASTMBUFCHK(&so->so_rcv);
2984
2985 /*
2986 * Now continue to read any data mbufs off of the head of the socket
2987 * buffer until the read request is satisfied. Note that 'type' is
2988 * used to store the type of any mbuf reads that have happened so far
2989 * such that soreceive() can stop reading if the type changes, which
2990 * causes soreceive() to return only one of regular data and inline
2991 * out-of-band data in a single socket receive operation.
2992 */
2993 moff = 0;
2994 offset = 0;
2995 while (m != NULL && !(m->m_flags & M_NOTREADY) && uio->uio_resid > 0 &&
2996 error == 0) {
2997 /*
2998 * If the type of mbuf has changed since the last mbuf
2999 * examined ('type'), end the receive operation.
3000 */
3001 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3002 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
3003 if (type != m->m_type)
3004 break;
3005 } else if (type == MT_OOBDATA)
3006 break;
3007 else
3008 KASSERT(m->m_type == MT_DATA,
3009 ("m->m_type == %d", m->m_type));
3010 so->so_rcv.sb_state &= ~SBS_RCVATMARK;
3011 len = uio->uio_resid;
3012 if (so->so_oobmark && len > so->so_oobmark - offset)
3013 len = so->so_oobmark - offset;
3014 if (len > m->m_len - moff)
3015 len = m->m_len - moff;
3016 /*
3017 * If mp is set, just pass back the mbufs. Otherwise copy
3018 * them out via the uio, then free. Sockbuf must be
3019 * consistent here (points to current mbuf, it points to next
3020 * record) when we drop priority; we must note any additions
3021 * to the sockbuf when we block interrupts again.
3022 */
3023 if (mp == NULL) {
3024 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3025 SBLASTRECORDCHK(&so->so_rcv);
3026 SBLASTMBUFCHK(&so->so_rcv);
3027 SOCKBUF_UNLOCK(&so->so_rcv);
3028 if ((m->m_flags & M_EXTPG) != 0)
3029 error = m_unmapped_uiomove(m, moff, uio,
3030 (int)len);
3031 else
3032 error = uiomove(mtod(m, char *) + moff,
3033 (int)len, uio);
3034 SOCKBUF_LOCK(&so->so_rcv);
3035 if (error) {
3036 /*
3037 * The MT_SONAME mbuf has already been removed
3038 * from the record, so it is necessary to
3039 * remove the data mbufs, if any, to preserve
3040 * the invariant in the case of PR_ADDR that
3041 * requires MT_SONAME mbufs at the head of
3042 * each record.
3043 */
3044 if (pr->pr_flags & PR_ATOMIC &&
3045 ((flags & MSG_PEEK) == 0))
3046 (void)sbdroprecord_locked(&so->so_rcv);
3047 SOCKBUF_UNLOCK(&so->so_rcv);
3048 goto release;
3049 }
3050 } else
3051 uio->uio_resid -= len;
3052 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3053 if (len == m->m_len - moff) {
3054 if (m->m_flags & M_EOR)
3055 flags |= MSG_EOR;
3056 if (flags & MSG_PEEK) {
3057 m = m->m_next;
3058 moff = 0;
3059 } else {
3060 nextrecord = m->m_nextpkt;
3061 sbfree(&so->so_rcv, m);
3062 if (mp != NULL) {
3063 m->m_nextpkt = NULL;
3064 *mp = m;
3065 mp = &m->m_next;
3066 so->so_rcv.sb_mb = m = m->m_next;
3067 *mp = NULL;
3068 } else {
3069 so->so_rcv.sb_mb = m_free(m);
3070 m = so->so_rcv.sb_mb;
3071 }
3072 sockbuf_pushsync(&so->so_rcv, nextrecord);
3073 SBLASTRECORDCHK(&so->so_rcv);
3074 SBLASTMBUFCHK(&so->so_rcv);
3075 }
3076 } else {
3077 if (flags & MSG_PEEK)
3078 moff += len;
3079 else {
3080 if (mp != NULL) {
3081 if (flags & MSG_DONTWAIT) {
3082 *mp = m_copym(m, 0, len,
3083 M_NOWAIT);
3084 if (*mp == NULL) {
3085 /*
3086 * m_copym() couldn't
3087 * allocate an mbuf.
3088 * Adjust uio_resid back
3089 * (it was adjusted
3090 * down by len bytes,
3091 * which we didn't end
3092 * up "copying" over).
3093 */
3094 uio->uio_resid += len;
3095 break;
3096 }
3097 } else {
3098 SOCKBUF_UNLOCK(&so->so_rcv);
3099 *mp = m_copym(m, 0, len,
3100 M_WAITOK);
3101 SOCKBUF_LOCK(&so->so_rcv);
3102 }
3103 }
3104 sbcut_locked(&so->so_rcv, len);
3105 }
3106 }
3107 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3108 if (so->so_oobmark) {
3109 if ((flags & MSG_PEEK) == 0) {
3110 so->so_oobmark -= len;
3111 if (so->so_oobmark == 0) {
3112 so->so_rcv.sb_state |= SBS_RCVATMARK;
3113 break;
3114 }
3115 } else {
3116 offset += len;
3117 if (offset == so->so_oobmark)
3118 break;
3119 }
3120 }
3121 if (flags & MSG_EOR)
3122 break;
3123 /*
3124 * If the MSG_WAITALL flag is set (for non-atomic socket), we
3125 * must not quit until "uio->uio_resid == 0" or an error
3126 * termination. If a signal/timeout occurs, return with a
3127 * short count but without error. Keep sockbuf locked
3128 * against other readers.
3129 */
3130 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
3131 !sosendallatonce(so) && nextrecord == NULL) {
3132 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3133 if (so->so_error || so->so_rerror ||
3134 so->so_rcv.sb_state & SBS_CANTRCVMORE)
3135 break;
3136 /*
3137 * Notify the protocol that some data has been
3138 * drained before blocking.
3139 */
3140 if (pr->pr_flags & PR_WANTRCVD) {
3141 SOCKBUF_UNLOCK(&so->so_rcv);
3142 VNET_SO_ASSERT(so);
3143 pr->pr_rcvd(so, flags);
3144 SOCKBUF_LOCK(&so->so_rcv);
3145 if (__predict_false(so->so_rcv.sb_mb == NULL &&
3146 (so->so_error || so->so_rerror ||
3147 so->so_rcv.sb_state & SBS_CANTRCVMORE)))
3148 break;
3149 }
3150 SBLASTRECORDCHK(&so->so_rcv);
3151 SBLASTMBUFCHK(&so->so_rcv);
3152 /*
3153 * We could receive some data while was notifying
3154 * the protocol. Skip blocking in this case.
3155 */
3156 if (so->so_rcv.sb_mb == NULL) {
3157 error = sbwait(so, SO_RCV);
3158 if (error) {
3159 SOCKBUF_UNLOCK(&so->so_rcv);
3160 goto release;
3161 }
3162 }
3163 m = so->so_rcv.sb_mb;
3164 if (m != NULL)
3165 nextrecord = m->m_nextpkt;
3166 }
3167 }
3168
3169 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3170 if (m != NULL && pr->pr_flags & PR_ATOMIC) {
3171 if (report_real_len)
3172 uio->uio_resid -= m_length(m, NULL) - moff;
3173 flags |= MSG_TRUNC;
3174 if ((flags & MSG_PEEK) == 0)
3175 (void) sbdroprecord_locked(&so->so_rcv);
3176 }
3177 if ((flags & MSG_PEEK) == 0) {
3178 if (m == NULL) {
3179 /*
3180 * First part is an inline SB_EMPTY_FIXUP(). Second
3181 * part makes sure sb_lastrecord is up-to-date if
3182 * there is still data in the socket buffer.
3183 */
3184 so->so_rcv.sb_mb = nextrecord;
3185 if (so->so_rcv.sb_mb == NULL) {
3186 so->so_rcv.sb_mbtail = NULL;
3187 so->so_rcv.sb_lastrecord = NULL;
3188 } else if (nextrecord->m_nextpkt == NULL)
3189 so->so_rcv.sb_lastrecord = nextrecord;
3190 }
3191 SBLASTRECORDCHK(&so->so_rcv);
3192 SBLASTMBUFCHK(&so->so_rcv);
3193 /*
3194 * If soreceive() is being done from the socket callback,
3195 * then don't need to generate ACK to peer to update window,
3196 * since ACK will be generated on return to TCP.
3197 */
3198 if (!(flags & MSG_SOCALLBCK) &&
3199 (pr->pr_flags & PR_WANTRCVD)) {
3200 SOCKBUF_UNLOCK(&so->so_rcv);
3201 VNET_SO_ASSERT(so);
3202 pr->pr_rcvd(so, flags);
3203 SOCKBUF_LOCK(&so->so_rcv);
3204 }
3205 }
3206 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3207 if (orig_resid == uio->uio_resid && orig_resid &&
3208 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
3209 SOCKBUF_UNLOCK(&so->so_rcv);
3210 goto restart;
3211 }
3212 SOCKBUF_UNLOCK(&so->so_rcv);
3213
3214 if (flagsp != NULL)
3215 *flagsp |= flags;
3216 release:
3217 return (error);
3218 }
3219
3220 int
3221 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
3222 struct mbuf **mp, struct mbuf **controlp, int *flagsp)
3223 {
3224 int error, flags;
3225
3226 if (psa != NULL)
3227 *psa = NULL;
3228 if (controlp != NULL)
3229 *controlp = NULL;
3230 if (flagsp != NULL) {
3231 flags = *flagsp;
3232 if ((flags & MSG_OOB) != 0)
3233 return (soreceive_rcvoob(so, uio, flags));
3234 } else {
3235 flags = 0;
3236 }
3237 if (mp != NULL)
3238 *mp = NULL;
3239
3240 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3241 if (error)
3242 return (error);
3243 error = soreceive_generic_locked(so, psa, uio, mp, controlp, flagsp);
3244 SOCK_IO_RECV_UNLOCK(so);
3245 return (error);
3246 }
3247
3248 /*
3249 * Optimized version of soreceive() for stream (TCP) sockets.
3250 */
3251 static int
3252 soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
3253 struct sockaddr **psa, struct uio *uio, struct mbuf **mp0,
3254 struct mbuf **controlp, int flags)
3255 {
3256 int len = 0, error = 0, oresid;
3257 struct mbuf *m, *n = NULL;
3258
3259 SOCK_IO_RECV_ASSERT_LOCKED(so);
3260
3261 /* Easy one, no space to copyout anything. */
3262 if (uio->uio_resid == 0)
3263 return (EINVAL);
3264 oresid = uio->uio_resid;
3265
3266 SOCKBUF_LOCK(sb);
3267 /* We will never ever get anything unless we are or were connected. */
3268 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
3269 error = ENOTCONN;
3270 goto out;
3271 }
3272
3273 restart:
3274 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3275
3276 /* Abort if socket has reported problems. */
3277 if (so->so_error) {
3278 if (sbavail(sb) > 0)
3279 goto deliver;
3280 if (oresid > uio->uio_resid)
3281 goto out;
3282 error = so->so_error;
3283 if (!(flags & MSG_PEEK))
3284 so->so_error = 0;
3285 goto out;
3286 }
3287
3288 /* Door is closed. Deliver what is left, if any. */
3289 if (sb->sb_state & SBS_CANTRCVMORE) {
3290 if (sbavail(sb) > 0)
3291 goto deliver;
3292 else
3293 goto out;
3294 }
3295
3296 /* Socket buffer is empty and we shall not block. */
3297 if (sbavail(sb) == 0 &&
3298 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
3299 error = EAGAIN;
3300 goto out;
3301 }
3302
3303 /* Socket buffer got some data that we shall deliver now. */
3304 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
3305 ((so->so_state & SS_NBIO) ||
3306 (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
3307 sbavail(sb) >= sb->sb_lowat ||
3308 sbavail(sb) >= uio->uio_resid ||
3309 sbavail(sb) >= sb->sb_hiwat) ) {
3310 goto deliver;
3311 }
3312
3313 /* On MSG_WAITALL we must wait until all data or error arrives. */
3314 if ((flags & MSG_WAITALL) &&
3315 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
3316 goto deliver;
3317
3318 /*
3319 * Wait and block until (more) data comes in.
3320 * NB: Drops the sockbuf lock during wait.
3321 */
3322 error = sbwait(so, SO_RCV);
3323 if (error)
3324 goto out;
3325 goto restart;
3326
3327 deliver:
3328 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3329 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
3330 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
3331
3332 /* Statistics. */
3333 if (uio->uio_td)
3334 uio->uio_td->td_ru.ru_msgrcv++;
3335
3336 /* Fill uio until full or current end of socket buffer is reached. */
3337 len = min(uio->uio_resid, sbavail(sb));
3338 if (mp0 != NULL) {
3339 /* Dequeue as many mbufs as possible. */
3340 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
3341 if (*mp0 == NULL)
3342 *mp0 = sb->sb_mb;
3343 else
3344 m_cat(*mp0, sb->sb_mb);
3345 for (m = sb->sb_mb;
3346 m != NULL && m->m_len <= len;
3347 m = m->m_next) {
3348 KASSERT(!(m->m_flags & M_NOTREADY),
3349 ("%s: m %p not available", __func__, m));
3350 len -= m->m_len;
3351 uio->uio_resid -= m->m_len;
3352 sbfree(sb, m);
3353 n = m;
3354 }
3355 n->m_next = NULL;
3356 sb->sb_mb = m;
3357 sb->sb_lastrecord = sb->sb_mb;
3358 if (sb->sb_mb == NULL)
3359 SB_EMPTY_FIXUP(sb);
3360 }
3361 /* Copy the remainder. */
3362 if (len > 0) {
3363 KASSERT(sb->sb_mb != NULL,
3364 ("%s: len > 0 && sb->sb_mb empty", __func__));
3365
3366 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
3367 if (m == NULL)
3368 len = 0; /* Don't flush data from sockbuf. */
3369 else
3370 uio->uio_resid -= len;
3371 if (*mp0 != NULL)
3372 m_cat(*mp0, m);
3373 else
3374 *mp0 = m;
3375 if (*mp0 == NULL) {
3376 error = ENOBUFS;
3377 goto out;
3378 }
3379 }
3380 } else {
3381 /* NB: Must unlock socket buffer as uiomove may sleep. */
3382 SOCKBUF_UNLOCK(sb);
3383 error = m_mbuftouio(uio, sb->sb_mb, len);
3384 SOCKBUF_LOCK(sb);
3385 if (error)
3386 goto out;
3387 }
3388 SBLASTRECORDCHK(sb);
3389 SBLASTMBUFCHK(sb);
3390
3391 /*
3392 * Remove the delivered data from the socket buffer unless we
3393 * were only peeking.
3394 */
3395 if (!(flags & MSG_PEEK)) {
3396 if (len > 0)
3397 sbdrop_locked(sb, len);
3398
3399 /* Notify protocol that we drained some data. */
3400 if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
3401 (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
3402 !(flags & MSG_SOCALLBCK))) {
3403 SOCKBUF_UNLOCK(sb);
3404 VNET_SO_ASSERT(so);
3405 so->so_proto->pr_rcvd(so, flags);
3406 SOCKBUF_LOCK(sb);
3407 }
3408 }
3409
3410 /*
3411 * For MSG_WAITALL we may have to loop again and wait for
3412 * more data to come in.
3413 */
3414 if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
3415 goto restart;
3416 out:
3417 SBLASTRECORDCHK(sb);
3418 SBLASTMBUFCHK(sb);
3419 SOCKBUF_UNLOCK(sb);
3420 return (error);
3421 }
3422
3423 int
3424 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
3425 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3426 {
3427 struct sockbuf *sb;
3428 int error, flags;
3429
3430 sb = &so->so_rcv;
3431
3432 /* We only do stream sockets. */
3433 if (so->so_type != SOCK_STREAM)
3434 return (EINVAL);
3435 if (psa != NULL)
3436 *psa = NULL;
3437 if (flagsp != NULL)
3438 flags = *flagsp & ~MSG_EOR;
3439 else
3440 flags = 0;
3441 if (controlp != NULL)
3442 *controlp = NULL;
3443 if (flags & MSG_OOB)
3444 return (soreceive_rcvoob(so, uio, flags));
3445 if (mp0 != NULL)
3446 *mp0 = NULL;
3447
3448 #ifdef KERN_TLS
3449 /*
3450 * KTLS store TLS records as records with a control message to
3451 * describe the framing.
3452 *
3453 * We check once here before acquiring locks to optimize the
3454 * common case.
3455 */
3456 if (sb->sb_tls_info != NULL)
3457 return (soreceive_generic(so, psa, uio, mp0, controlp,
3458 flagsp));
3459 #endif
3460
3461 /*
3462 * Prevent other threads from reading from the socket. This lock may be
3463 * dropped in order to sleep waiting for data to arrive.
3464 */
3465 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3466 if (error)
3467 return (error);
3468 #ifdef KERN_TLS
3469 if (__predict_false(sb->sb_tls_info != NULL)) {
3470 SOCK_IO_RECV_UNLOCK(so);
3471 return (soreceive_generic(so, psa, uio, mp0, controlp,
3472 flagsp));
3473 }
3474 #endif
3475 error = soreceive_stream_locked(so, sb, psa, uio, mp0, controlp, flags);
3476 SOCK_IO_RECV_UNLOCK(so);
3477 return (error);
3478 }
3479
3480 /*
3481 * Optimized version of soreceive() for simple datagram cases from userspace.
3482 * Unlike in the stream case, we're able to drop a datagram if copyout()
3483 * fails, and because we handle datagrams atomically, we don't need to use a
3484 * sleep lock to prevent I/O interlacing.
3485 */
3486 int
3487 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
3488 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3489 {
3490 struct mbuf *m, *m2;
3491 int flags, error;
3492 ssize_t len;
3493 struct protosw *pr = so->so_proto;
3494 struct mbuf *nextrecord;
3495
3496 if (psa != NULL)
3497 *psa = NULL;
3498 if (controlp != NULL)
3499 *controlp = NULL;
3500 if (flagsp != NULL)
3501 flags = *flagsp &~ MSG_EOR;
3502 else
3503 flags = 0;
3504
3505 /*
3506 * For any complicated cases, fall back to the full
3507 * soreceive_generic().
3508 */
3509 if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
3510 return (soreceive_generic(so, psa, uio, mp0, controlp,
3511 flagsp));
3512
3513 /*
3514 * Enforce restrictions on use.
3515 */
3516 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
3517 ("soreceive_dgram: wantrcvd"));
3518 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
3519 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
3520 ("soreceive_dgram: SBS_RCVATMARK"));
3521 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
3522 ("soreceive_dgram: P_CONNREQUIRED"));
3523
3524 /*
3525 * Loop blocking while waiting for a datagram.
3526 */
3527 SOCKBUF_LOCK(&so->so_rcv);
3528 while ((m = so->so_rcv.sb_mb) == NULL) {
3529 KASSERT(sbavail(&so->so_rcv) == 0,
3530 ("soreceive_dgram: sb_mb NULL but sbavail %u",
3531 sbavail(&so->so_rcv)));
3532 if (so->so_error) {
3533 error = so->so_error;
3534 so->so_error = 0;
3535 SOCKBUF_UNLOCK(&so->so_rcv);
3536 return (error);
3537 }
3538 if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
3539 uio->uio_resid == 0) {
3540 SOCKBUF_UNLOCK(&so->so_rcv);
3541 return (0);
3542 }
3543 if ((so->so_state & SS_NBIO) ||
3544 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
3545 SOCKBUF_UNLOCK(&so->so_rcv);
3546 return (EWOULDBLOCK);
3547 }
3548 SBLASTRECORDCHK(&so->so_rcv);
3549 SBLASTMBUFCHK(&so->so_rcv);
3550 error = sbwait(so, SO_RCV);
3551 if (error) {
3552 SOCKBUF_UNLOCK(&so->so_rcv);
3553 return (error);
3554 }
3555 }
3556 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3557
3558 if (uio->uio_td)
3559 uio->uio_td->td_ru.ru_msgrcv++;
3560 SBLASTRECORDCHK(&so->so_rcv);
3561 SBLASTMBUFCHK(&so->so_rcv);
3562 nextrecord = m->m_nextpkt;
3563 if (nextrecord == NULL) {
3564 KASSERT(so->so_rcv.sb_lastrecord == m,
3565 ("soreceive_dgram: lastrecord != m"));
3566 }
3567
3568 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
3569 ("soreceive_dgram: m_nextpkt != nextrecord"));
3570
3571 /*
3572 * Pull 'm' and its chain off the front of the packet queue.
3573 */
3574 so->so_rcv.sb_mb = NULL;
3575 sockbuf_pushsync(&so->so_rcv, nextrecord);
3576
3577 /*
3578 * Walk 'm's chain and free that many bytes from the socket buffer.
3579 */
3580 for (m2 = m; m2 != NULL; m2 = m2->m_next)
3581 sbfree(&so->so_rcv, m2);
3582
3583 /*
3584 * Do a few last checks before we let go of the lock.
3585 */
3586 SBLASTRECORDCHK(&so->so_rcv);
3587 SBLASTMBUFCHK(&so->so_rcv);
3588 SOCKBUF_UNLOCK(&so->so_rcv);
3589
3590 if (pr->pr_flags & PR_ADDR) {
3591 KASSERT(m->m_type == MT_SONAME,
3592 ("m->m_type == %d", m->m_type));
3593 if (psa != NULL)
3594 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
3595 M_WAITOK);
3596 m = m_free(m);
3597 }
3598 KASSERT(m, ("%s: no data or control after soname", __func__));
3599
3600 /*
3601 * Packet to copyout() is now in 'm' and it is disconnected from the
3602 * queue.
3603 *
3604 * Process one or more MT_CONTROL mbufs present before any data mbufs
3605 * in the first mbuf chain on the socket buffer. We call into the
3606 * protocol to perform externalization (or freeing if controlp ==
3607 * NULL). In some cases there can be only MT_CONTROL mbufs without
3608 * MT_DATA mbufs.
3609 */
3610 if (m->m_type == MT_CONTROL) {
3611 struct mbuf *cm = NULL, *cmn;
3612 struct mbuf **cme = &cm;
3613
3614 do {
3615 m2 = m->m_next;
3616 m->m_next = NULL;
3617 *cme = m;
3618 cme = &(*cme)->m_next;
3619 m = m2;
3620 } while (m != NULL && m->m_type == MT_CONTROL);
3621 while (cm != NULL) {
3622 cmn = cm->m_next;
3623 cm->m_next = NULL;
3624 if (controlp != NULL)
3625 *controlp = cm;
3626 else
3627 m_freem(cm);
3628 if (controlp != NULL) {
3629 while (*controlp != NULL)
3630 controlp = &(*controlp)->m_next;
3631 }
3632 cm = cmn;
3633 }
3634 }
3635 KASSERT(m == NULL || m->m_type == MT_DATA,
3636 ("soreceive_dgram: !data"));
3637 while (m != NULL && uio->uio_resid > 0) {
3638 len = uio->uio_resid;
3639 if (len > m->m_len)
3640 len = m->m_len;
3641 error = uiomove(mtod(m, char *), (int)len, uio);
3642 if (error) {
3643 m_freem(m);
3644 return (error);
3645 }
3646 if (len == m->m_len)
3647 m = m_free(m);
3648 else {
3649 m->m_data += len;
3650 m->m_len -= len;
3651 }
3652 }
3653 if (m != NULL) {
3654 flags |= MSG_TRUNC;
3655 m_freem(m);
3656 }
3657 if (flagsp != NULL)
3658 *flagsp |= flags;
3659 return (0);
3660 }
3661
3662 int
3663 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
3664 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3665 {
3666 int error;
3667
3668 CURVNET_SET(so->so_vnet);
3669 error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
3670 CURVNET_RESTORE();
3671 return (error);
3672 }
3673
3674 int
3675 soshutdown(struct socket *so, enum shutdown_how how)
3676 {
3677 int error;
3678
3679 CURVNET_SET(so->so_vnet);
3680 error = so->so_proto->pr_shutdown(so, how);
3681 CURVNET_RESTORE();
3682
3683 return (error);
3684 }
3685
3686 /*
3687 * Used by several pr_shutdown implementations that use generic socket buffers.
3688 */
3689 void
3690 sorflush(struct socket *so)
3691 {
3692 int error;
3693
3694 VNET_SO_ASSERT(so);
3695
3696 /*
3697 * Dislodge threads currently blocked in receive and wait to acquire
3698 * a lock against other simultaneous readers before clearing the
3699 * socket buffer. Don't let our acquire be interrupted by a signal
3700 * despite any existing socket disposition on interruptable waiting.
3701 *
3702 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive
3703 * methods that read the top of the socket buffer without acquisition
3704 * of the socket buffer mutex, assuming that top of the buffer
3705 * exclusively belongs to the read(2) syscall. This is handy when
3706 * performing MSG_PEEK.
3707 */
3708 socantrcvmore(so);
3709
3710 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
3711 if (error != 0) {
3712 KASSERT(SOLISTENING(so),
3713 ("%s: soiolock(%p) failed", __func__, so));
3714 return;
3715 }
3716
3717 sbrelease(so, SO_RCV);
3718 SOCK_IO_RECV_UNLOCK(so);
3719
3720 }
3721
3722 int
3723 sosetfib(struct socket *so, int fibnum)
3724 {
3725 if (fibnum < 0 || fibnum >= rt_numfibs)
3726 return (EINVAL);
3727
3728 SOCK_LOCK(so);
3729 so->so_fibnum = fibnum;
3730 SOCK_UNLOCK(so);
3731
3732 return (0);
3733 }
3734
3735 #ifdef SOCKET_HHOOK
3736 /*
3737 * Wrapper for Socket established helper hook.
3738 * Parameters: socket, context of the hook point, hook id.
3739 */
3740 static inline int
3741 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
3742 {
3743 struct socket_hhook_data hhook_data = {
3744 .so = so,
3745 .hctx = hctx,
3746 .m = NULL,
3747 .status = 0
3748 };
3749
3750 CURVNET_SET(so->so_vnet);
3751 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
3752 CURVNET_RESTORE();
3753
3754 /* Ugly but needed, since hhooks return void for now */
3755 return (hhook_data.status);
3756 }
3757 #endif
3758
3759 /*
3760 * Perhaps this routine, and sooptcopyout(), below, ought to come in an
3761 * additional variant to handle the case where the option value needs to be
3762 * some kind of integer, but not a specific size. In addition to their use
3763 * here, these functions are also called by the protocol-level pr_ctloutput()
3764 * routines.
3765 */
3766 int
3767 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
3768 {
3769 size_t valsize;
3770
3771 /*
3772 * If the user gives us more than we wanted, we ignore it, but if we
3773 * don't get the minimum length the caller wants, we return EINVAL.
3774 * On success, sopt->sopt_valsize is set to however much we actually
3775 * retrieved.
3776 */
3777 if ((valsize = sopt->sopt_valsize) < minlen)
3778 return EINVAL;
3779 if (valsize > len)
3780 sopt->sopt_valsize = valsize = len;
3781
3782 if (sopt->sopt_td != NULL)
3783 return (copyin(sopt->sopt_val, buf, valsize));
3784
3785 bcopy(sopt->sopt_val, buf, valsize);
3786 return (0);
3787 }
3788
3789 /*
3790 * Kernel version of setsockopt(2).
3791 *
3792 * XXX: optlen is size_t, not socklen_t
3793 */
3794 int
3795 so_setsockopt(struct socket *so, int level, int optname, void *optval,
3796 size_t optlen)
3797 {
3798 struct sockopt sopt;
3799
3800 sopt.sopt_level = level;
3801 sopt.sopt_name = optname;
3802 sopt.sopt_dir = SOPT_SET;
3803 sopt.sopt_val = optval;
3804 sopt.sopt_valsize = optlen;
3805 sopt.sopt_td = NULL;
3806 return (sosetopt(so, &sopt));
3807 }
3808
3809 int
3810 sosetopt(struct socket *so, struct sockopt *sopt)
3811 {
3812 int error, optval;
3813 struct linger l;
3814 struct timeval tv;
3815 sbintime_t val, *valp;
3816 uint32_t val32;
3817 #ifdef MAC
3818 struct mac extmac;
3819 #endif
3820
3821 CURVNET_SET(so->so_vnet);
3822 error = 0;
3823 if (sopt->sopt_level != SOL_SOCKET) {
3824 error = so->so_proto->pr_ctloutput(so, sopt);
3825 } else {
3826 switch (sopt->sopt_name) {
3827 case SO_ACCEPTFILTER:
3828 error = accept_filt_setopt(so, sopt);
3829 if (error)
3830 goto bad;
3831 break;
3832
3833 case SO_LINGER:
3834 error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3835 if (error)
3836 goto bad;
3837 if (l.l_linger < 0 ||
3838 l.l_linger > USHRT_MAX ||
3839 l.l_linger > (INT_MAX / hz)) {
3840 error = EDOM;
3841 goto bad;
3842 }
3843 SOCK_LOCK(so);
3844 so->so_linger = l.l_linger;
3845 if (l.l_onoff)
3846 so->so_options |= SO_LINGER;
3847 else
3848 so->so_options &= ~SO_LINGER;
3849 SOCK_UNLOCK(so);
3850 break;
3851
3852 case SO_DEBUG:
3853 case SO_KEEPALIVE:
3854 case SO_DONTROUTE:
3855 case SO_USELOOPBACK:
3856 case SO_BROADCAST:
3857 case SO_REUSEADDR:
3858 case SO_REUSEPORT:
3859 case SO_REUSEPORT_LB:
3860 case SO_OOBINLINE:
3861 case SO_TIMESTAMP:
3862 case SO_BINTIME:
3863 case SO_NOSIGPIPE:
3864 case SO_NO_DDP:
3865 case SO_NO_OFFLOAD:
3866 case SO_RERROR:
3867 error = sooptcopyin(sopt, &optval, sizeof optval,
3868 sizeof optval);
3869 if (error)
3870 goto bad;
3871 SOCK_LOCK(so);
3872 if (optval)
3873 so->so_options |= sopt->sopt_name;
3874 else
3875 so->so_options &= ~sopt->sopt_name;
3876 SOCK_UNLOCK(so);
3877 break;
3878
3879 case SO_SETFIB:
3880 error = so->so_proto->pr_ctloutput(so, sopt);
3881 break;
3882
3883 case SO_USER_COOKIE:
3884 error = sooptcopyin(sopt, &val32, sizeof val32,
3885 sizeof val32);
3886 if (error)
3887 goto bad;
3888 so->so_user_cookie = val32;
3889 break;
3890
3891 case SO_SNDBUF:
3892 case SO_RCVBUF:
3893 case SO_SNDLOWAT:
3894 case SO_RCVLOWAT:
3895 error = so->so_proto->pr_setsbopt(so, sopt);
3896 if (error)
3897 goto bad;
3898 break;
3899
3900 case SO_SNDTIMEO:
3901 case SO_RCVTIMEO:
3902 #ifdef COMPAT_FREEBSD32
3903 if (SV_CURPROC_FLAG(SV_ILP32)) {
3904 struct timeval32 tv32;
3905
3906 error = sooptcopyin(sopt, &tv32, sizeof tv32,
3907 sizeof tv32);
3908 CP(tv32, tv, tv_sec);
3909 CP(tv32, tv, tv_usec);
3910 } else
3911 #endif
3912 error = sooptcopyin(sopt, &tv, sizeof tv,
3913 sizeof tv);
3914 if (error)
3915 goto bad;
3916 if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3917 tv.tv_usec >= 1000000) {
3918 error = EDOM;
3919 goto bad;
3920 }
3921 if (tv.tv_sec > INT32_MAX)
3922 val = SBT_MAX;
3923 else
3924 val = tvtosbt(tv);
3925 SOCK_LOCK(so);
3926 valp = sopt->sopt_name == SO_SNDTIMEO ?
3927 (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3928 &so->so_snd.sb_timeo) :
3929 (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3930 &so->so_rcv.sb_timeo);
3931 *valp = val;
3932 SOCK_UNLOCK(so);
3933 break;
3934
3935 case SO_LABEL:
3936 #ifdef MAC
3937 error = sooptcopyin(sopt, &extmac, sizeof extmac,
3938 sizeof extmac);
3939 if (error)
3940 goto bad;
3941 error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3942 so, &extmac);
3943 #else
3944 error = EOPNOTSUPP;
3945 #endif
3946 break;
3947
3948 case SO_TS_CLOCK:
3949 error = sooptcopyin(sopt, &optval, sizeof optval,
3950 sizeof optval);
3951 if (error)
3952 goto bad;
3953 if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3954 error = EINVAL;
3955 goto bad;
3956 }
3957 so->so_ts_clock = optval;
3958 break;
3959
3960 case SO_MAX_PACING_RATE:
3961 error = sooptcopyin(sopt, &val32, sizeof(val32),
3962 sizeof(val32));
3963 if (error)
3964 goto bad;
3965 so->so_max_pacing_rate = val32;
3966 break;
3967
3968 case SO_SPLICE: {
3969 struct splice splice;
3970
3971 #ifdef COMPAT_FREEBSD32
3972 if (SV_CURPROC_FLAG(SV_ILP32)) {
3973 struct splice32 splice32;
3974
3975 error = sooptcopyin(sopt, &splice32,
3976 sizeof(splice32), sizeof(splice32));
3977 if (error == 0) {
3978 splice.sp_fd = splice32.sp_fd;
3979 splice.sp_max = splice32.sp_max;
3980 CP(splice32.sp_idle, splice.sp_idle,
3981 tv_sec);
3982 CP(splice32.sp_idle, splice.sp_idle,
3983 tv_usec);
3984 }
3985 } else
3986 #endif
3987 {
3988 error = sooptcopyin(sopt, &splice,
3989 sizeof(splice), sizeof(splice));
3990 }
3991 if (error)
3992 goto bad;
3993 #ifdef KTRACE
3994 if (KTRPOINT(curthread, KTR_STRUCT))
3995 ktrsplice(&splice);
3996 #endif
3997
3998 error = splice_init();
3999 if (error != 0)
4000 goto bad;
4001
4002 if (splice.sp_fd >= 0) {
4003 struct file *fp;
4004 struct socket *so2;
4005
4006 if (!cap_rights_contains(sopt->sopt_rights,
4007 &cap_recv_rights)) {
4008 error = ENOTCAPABLE;
4009 goto bad;
4010 }
4011 error = getsock(sopt->sopt_td, splice.sp_fd,
4012 &cap_send_rights, &fp);
4013 if (error != 0)
4014 goto bad;
4015 so2 = fp->f_data;
4016
4017 error = so_splice(so, so2, &splice);
4018 fdrop(fp, sopt->sopt_td);
4019 } else {
4020 error = so_unsplice(so, false);
4021 }
4022 break;
4023 }
4024 default:
4025 #ifdef SOCKET_HHOOK
4026 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4027 error = hhook_run_socket(so, sopt,
4028 HHOOK_SOCKET_OPT);
4029 else
4030 #endif
4031 error = ENOPROTOOPT;
4032 break;
4033 }
4034 if (error == 0)
4035 (void)so->so_proto->pr_ctloutput(so, sopt);
4036 }
4037 bad:
4038 CURVNET_RESTORE();
4039 return (error);
4040 }
4041
4042 /*
4043 * Helper routine for getsockopt.
4044 */
4045 int
4046 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
4047 {
4048 int error;
4049 size_t valsize;
4050
4051 error = 0;
4052
4053 /*
4054 * Documented get behavior is that we always return a value, possibly
4055 * truncated to fit in the user's buffer. Traditional behavior is
4056 * that we always tell the user precisely how much we copied, rather
4057 * than something useful like the total amount we had available for
4058 * her. Note that this interface is not idempotent; the entire
4059 * answer must be generated ahead of time.
4060 */
4061 valsize = min(len, sopt->sopt_valsize);
4062 sopt->sopt_valsize = valsize;
4063 if (sopt->sopt_val != NULL) {
4064 if (sopt->sopt_td != NULL)
4065 error = copyout(buf, sopt->sopt_val, valsize);
4066 else
4067 bcopy(buf, sopt->sopt_val, valsize);
4068 }
4069 return (error);
4070 }
4071
4072 int
4073 sogetopt(struct socket *so, struct sockopt *sopt)
4074 {
4075 int error, optval;
4076 struct linger l;
4077 struct timeval tv;
4078 #ifdef MAC
4079 struct mac extmac;
4080 #endif
4081
4082 CURVNET_SET(so->so_vnet);
4083 error = 0;
4084 if (sopt->sopt_level != SOL_SOCKET) {
4085 error = so->so_proto->pr_ctloutput(so, sopt);
4086 CURVNET_RESTORE();
4087 return (error);
4088 } else {
4089 switch (sopt->sopt_name) {
4090 case SO_ACCEPTFILTER:
4091 error = accept_filt_getopt(so, sopt);
4092 break;
4093
4094 case SO_LINGER:
4095 SOCK_LOCK(so);
4096 l.l_onoff = so->so_options & SO_LINGER;
4097 l.l_linger = so->so_linger;
4098 SOCK_UNLOCK(so);
4099 error = sooptcopyout(sopt, &l, sizeof l);
4100 break;
4101
4102 case SO_USELOOPBACK:
4103 case SO_DONTROUTE:
4104 case SO_DEBUG:
4105 case SO_KEEPALIVE:
4106 case SO_REUSEADDR:
4107 case SO_REUSEPORT:
4108 case SO_REUSEPORT_LB:
4109 case SO_BROADCAST:
4110 case SO_OOBINLINE:
4111 case SO_ACCEPTCONN:
4112 case SO_TIMESTAMP:
4113 case SO_BINTIME:
4114 case SO_NOSIGPIPE:
4115 case SO_NO_DDP:
4116 case SO_NO_OFFLOAD:
4117 case SO_RERROR:
4118 optval = so->so_options & sopt->sopt_name;
4119 integer:
4120 error = sooptcopyout(sopt, &optval, sizeof optval);
4121 break;
4122
4123 case SO_FIB:
4124 SOCK_LOCK(so);
4125 optval = so->so_fibnum;
4126 SOCK_UNLOCK(so);
4127 goto integer;
4128
4129 case SO_DOMAIN:
4130 optval = so->so_proto->pr_domain->dom_family;
4131 goto integer;
4132
4133 case SO_TYPE:
4134 optval = so->so_type;
4135 goto integer;
4136
4137 case SO_PROTOCOL:
4138 optval = so->so_proto->pr_protocol;
4139 goto integer;
4140
4141 case SO_ERROR:
4142 SOCK_LOCK(so);
4143 if (so->so_error) {
4144 optval = so->so_error;
4145 so->so_error = 0;
4146 } else {
4147 optval = so->so_rerror;
4148 so->so_rerror = 0;
4149 }
4150 SOCK_UNLOCK(so);
4151 goto integer;
4152
4153 case SO_SNDBUF:
4154 SOCK_LOCK(so);
4155 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
4156 so->so_snd.sb_hiwat;
4157 SOCK_UNLOCK(so);
4158 goto integer;
4159
4160 case SO_RCVBUF:
4161 SOCK_LOCK(so);
4162 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
4163 so->so_rcv.sb_hiwat;
4164 SOCK_UNLOCK(so);
4165 goto integer;
4166
4167 case SO_SNDLOWAT:
4168 SOCK_LOCK(so);
4169 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
4170 so->so_snd.sb_lowat;
4171 SOCK_UNLOCK(so);
4172 goto integer;
4173
4174 case SO_RCVLOWAT:
4175 SOCK_LOCK(so);
4176 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
4177 so->so_rcv.sb_lowat;
4178 SOCK_UNLOCK(so);
4179 goto integer;
4180
4181 case SO_SNDTIMEO:
4182 case SO_RCVTIMEO:
4183 SOCK_LOCK(so);
4184 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
4185 (SOLISTENING(so) ? so->sol_sbsnd_timeo :
4186 so->so_snd.sb_timeo) :
4187 (SOLISTENING(so) ? so->sol_sbrcv_timeo :
4188 so->so_rcv.sb_timeo));
4189 SOCK_UNLOCK(so);
4190 #ifdef COMPAT_FREEBSD32
4191 if (SV_CURPROC_FLAG(SV_ILP32)) {
4192 struct timeval32 tv32;
4193
4194 CP(tv, tv32, tv_sec);
4195 CP(tv, tv32, tv_usec);
4196 error = sooptcopyout(sopt, &tv32, sizeof tv32);
4197 } else
4198 #endif
4199 error = sooptcopyout(sopt, &tv, sizeof tv);
4200 break;
4201
4202 case SO_LABEL:
4203 #ifdef MAC
4204 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4205 sizeof(extmac));
4206 if (error)
4207 goto bad;
4208 error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
4209 so, &extmac);
4210 if (error)
4211 goto bad;
4212 /* Don't copy out extmac, it is unchanged. */
4213 #else
4214 error = EOPNOTSUPP;
4215 #endif
4216 break;
4217
4218 case SO_PEERLABEL:
4219 #ifdef MAC
4220 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4221 sizeof(extmac));
4222 if (error)
4223 goto bad;
4224 error = mac_getsockopt_peerlabel(
4225 sopt->sopt_td->td_ucred, so, &extmac);
4226 if (error)
4227 goto bad;
4228 /* Don't copy out extmac, it is unchanged. */
4229 #else
4230 error = EOPNOTSUPP;
4231 #endif
4232 break;
4233
4234 case SO_LISTENQLIMIT:
4235 SOCK_LOCK(so);
4236 optval = SOLISTENING(so) ? so->sol_qlimit : 0;
4237 SOCK_UNLOCK(so);
4238 goto integer;
4239
4240 case SO_LISTENQLEN:
4241 SOCK_LOCK(so);
4242 optval = SOLISTENING(so) ? so->sol_qlen : 0;
4243 SOCK_UNLOCK(so);
4244 goto integer;
4245
4246 case SO_LISTENINCQLEN:
4247 SOCK_LOCK(so);
4248 optval = SOLISTENING(so) ? so->sol_incqlen : 0;
4249 SOCK_UNLOCK(so);
4250 goto integer;
4251
4252 case SO_TS_CLOCK:
4253 optval = so->so_ts_clock;
4254 goto integer;
4255
4256 case SO_MAX_PACING_RATE:
4257 optval = so->so_max_pacing_rate;
4258 goto integer;
4259
4260 case SO_SPLICE: {
4261 off_t n;
4262
4263 /*
4264 * Acquire the I/O lock to serialize with
4265 * so_splice_xfer(). This is not required for
4266 * correctness, but makes testing simpler: once a byte
4267 * has been transmitted to the sink and observed (e.g.,
4268 * by reading from the socket to which the sink is
4269 * connected), a subsequent getsockopt(SO_SPLICE) will
4270 * return an up-to-date value.
4271 */
4272 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT);
4273 if (error != 0)
4274 goto bad;
4275 SOCK_LOCK(so);
4276 if (SOLISTENING(so)) {
4277 n = 0;
4278 } else {
4279 n = so->so_splice_sent;
4280 }
4281 SOCK_UNLOCK(so);
4282 SOCK_IO_RECV_UNLOCK(so);
4283 error = sooptcopyout(sopt, &n, sizeof(n));
4284 break;
4285 }
4286
4287 default:
4288 #ifdef SOCKET_HHOOK
4289 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4290 error = hhook_run_socket(so, sopt,
4291 HHOOK_SOCKET_OPT);
4292 else
4293 #endif
4294 error = ENOPROTOOPT;
4295 break;
4296 }
4297 }
4298 bad:
4299 CURVNET_RESTORE();
4300 return (error);
4301 }
4302
4303 int
4304 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
4305 {
4306 struct mbuf *m, *m_prev;
4307 int sopt_size = sopt->sopt_valsize;
4308
4309 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4310 if (m == NULL)
4311 return ENOBUFS;
4312 if (sopt_size > MLEN) {
4313 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
4314 if ((m->m_flags & M_EXT) == 0) {
4315 m_free(m);
4316 return ENOBUFS;
4317 }
4318 m->m_len = min(MCLBYTES, sopt_size);
4319 } else {
4320 m->m_len = min(MLEN, sopt_size);
4321 }
4322 sopt_size -= m->m_len;
4323 *mp = m;
4324 m_prev = m;
4325
4326 while (sopt_size) {
4327 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4328 if (m == NULL) {
4329 m_freem(*mp);
4330 return ENOBUFS;
4331 }
4332 if (sopt_size > MLEN) {
4333 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
4334 M_NOWAIT);
4335 if ((m->m_flags & M_EXT) == 0) {
4336 m_freem(m);
4337 m_freem(*mp);
4338 return ENOBUFS;
4339 }
4340 m->m_len = min(MCLBYTES, sopt_size);
4341 } else {
4342 m->m_len = min(MLEN, sopt_size);
4343 }
4344 sopt_size -= m->m_len;
4345 m_prev->m_next = m;
4346 m_prev = m;
4347 }
4348 return (0);
4349 }
4350
4351 int
4352 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
4353 {
4354 struct mbuf *m0 = m;
4355
4356 if (sopt->sopt_val == NULL)
4357 return (0);
4358 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4359 if (sopt->sopt_td != NULL) {
4360 int error;
4361
4362 error = copyin(sopt->sopt_val, mtod(m, char *),
4363 m->m_len);
4364 if (error != 0) {
4365 m_freem(m0);
4366 return(error);
4367 }
4368 } else
4369 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
4370 sopt->sopt_valsize -= m->m_len;
4371 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4372 m = m->m_next;
4373 }
4374 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
4375 panic("ip6_sooptmcopyin");
4376 return (0);
4377 }
4378
4379 int
4380 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
4381 {
4382 struct mbuf *m0 = m;
4383 size_t valsize = 0;
4384
4385 if (sopt->sopt_val == NULL)
4386 return (0);
4387 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4388 if (sopt->sopt_td != NULL) {
4389 int error;
4390
4391 error = copyout(mtod(m, char *), sopt->sopt_val,
4392 m->m_len);
4393 if (error != 0) {
4394 m_freem(m0);
4395 return(error);
4396 }
4397 } else
4398 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
4399 sopt->sopt_valsize -= m->m_len;
4400 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4401 valsize += m->m_len;
4402 m = m->m_next;
4403 }
4404 if (m != NULL) {
4405 /* enough soopt buffer should be given from user-land */
4406 m_freem(m0);
4407 return(EINVAL);
4408 }
4409 sopt->sopt_valsize = valsize;
4410 return (0);
4411 }
4412
4413 /*
4414 * sohasoutofband(): protocol notifies socket layer of the arrival of new
4415 * out-of-band data, which will then notify socket consumers.
4416 */
4417 void
4418 sohasoutofband(struct socket *so)
4419 {
4420
4421 if (so->so_sigio != NULL)
4422 pgsigio(&so->so_sigio, SIGURG, 0);
4423 selwakeuppri(&so->so_rdsel, PSOCK);
4424 }
4425
4426 int
4427 sopoll_generic(struct socket *so, int events, struct thread *td)
4428 {
4429 int revents;
4430
4431 SOCK_LOCK(so);
4432 if (SOLISTENING(so)) {
4433 if (!(events & (POLLIN | POLLRDNORM)))
4434 revents = 0;
4435 else if (!TAILQ_EMPTY(&so->sol_comp))
4436 revents = events & (POLLIN | POLLRDNORM);
4437 else if ((events & POLLINIGNEOF) == 0 && so->so_error)
4438 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
4439 else {
4440 selrecord(td, &so->so_rdsel);
4441 revents = 0;
4442 }
4443 } else {
4444 revents = 0;
4445 SOCK_SENDBUF_LOCK(so);
4446 SOCK_RECVBUF_LOCK(so);
4447 if (events & (POLLIN | POLLRDNORM))
4448 if (soreadabledata(so) && !isspliced(so))
4449 revents |= events & (POLLIN | POLLRDNORM);
4450 if (events & (POLLOUT | POLLWRNORM))
4451 if (sowriteable(so) && !issplicedback(so))
4452 revents |= events & (POLLOUT | POLLWRNORM);
4453 if (events & (POLLPRI | POLLRDBAND))
4454 if (so->so_oobmark ||
4455 (so->so_rcv.sb_state & SBS_RCVATMARK))
4456 revents |= events & (POLLPRI | POLLRDBAND);
4457 if ((events & POLLINIGNEOF) == 0) {
4458 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4459 revents |= events & (POLLIN | POLLRDNORM);
4460 if (so->so_snd.sb_state & SBS_CANTSENDMORE)
4461 revents |= POLLHUP;
4462 }
4463 }
4464 if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
4465 revents |= events & POLLRDHUP;
4466 if (revents == 0) {
4467 if (events &
4468 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
4469 selrecord(td, &so->so_rdsel);
4470 so->so_rcv.sb_flags |= SB_SEL;
4471 }
4472 if (events & (POLLOUT | POLLWRNORM)) {
4473 selrecord(td, &so->so_wrsel);
4474 so->so_snd.sb_flags |= SB_SEL;
4475 }
4476 }
4477 SOCK_RECVBUF_UNLOCK(so);
4478 SOCK_SENDBUF_UNLOCK(so);
4479 }
4480 SOCK_UNLOCK(so);
4481 return (revents);
4482 }
4483
4484 int
4485 sokqfilter_generic(struct socket *so, struct knote *kn)
4486 {
4487 struct sockbuf *sb;
4488 sb_which which;
4489 struct knlist *knl;
4490
4491 switch (kn->kn_filter) {
4492 case EVFILT_READ:
4493 kn->kn_fop = &soread_filtops;
4494 knl = &so->so_rdsel.si_note;
4495 sb = &so->so_rcv;
4496 which = SO_RCV;
4497 break;
4498 case EVFILT_WRITE:
4499 kn->kn_fop = &sowrite_filtops;
4500 knl = &so->so_wrsel.si_note;
4501 sb = &so->so_snd;
4502 which = SO_SND;
4503 break;
4504 case EVFILT_EMPTY:
4505 kn->kn_fop = &soempty_filtops;
4506 knl = &so->so_wrsel.si_note;
4507 sb = &so->so_snd;
4508 which = SO_SND;
4509 break;
4510 default:
4511 return (EINVAL);
4512 }
4513
4514 SOCK_LOCK(so);
4515 if (SOLISTENING(so)) {
4516 knlist_add(knl, kn, 1);
4517 } else {
4518 SOCK_BUF_LOCK(so, which);
4519 knlist_add(knl, kn, 1);
4520 sb->sb_flags |= SB_KNOTE;
4521 if ((kn->kn_sfflags & NOTE_LOWAT) &&
4522 (sb->sb_flags & SB_AUTOLOWAT))
4523 sb->sb_flags &= ~SB_AUTOLOWAT;
4524 SOCK_BUF_UNLOCK(so, which);
4525 }
4526 SOCK_UNLOCK(so);
4527 return (0);
4528 }
4529
4530 static void
4531 filt_sordetach(struct knote *kn)
4532 {
4533 struct socket *so = kn->kn_fp->f_data;
4534
4535 so_rdknl_lock(so);
4536 knlist_remove(&so->so_rdsel.si_note, kn, 1);
4537 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
4538 so->so_rcv.sb_flags &= ~SB_KNOTE;
4539 so_rdknl_unlock(so);
4540 }
4541
4542 /*ARGSUSED*/
4543 static int
4544 filt_soread(struct knote *kn, long hint)
4545 {
4546 struct socket *so;
4547
4548 so = kn->kn_fp->f_data;
4549
4550 if (SOLISTENING(so)) {
4551 SOCK_LOCK_ASSERT(so);
4552 kn->kn_data = so->sol_qlen;
4553 if (so->so_error) {
4554 kn->kn_flags |= EV_EOF;
4555 kn->kn_fflags = so->so_error;
4556 return (1);
4557 }
4558 return (!TAILQ_EMPTY(&so->sol_comp));
4559 }
4560
4561 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
4562 return (0);
4563
4564 SOCK_RECVBUF_LOCK_ASSERT(so);
4565
4566 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
4567 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4568 kn->kn_flags |= EV_EOF;
4569 kn->kn_fflags = so->so_error;
4570 return (1);
4571 } else if (so->so_error || so->so_rerror)
4572 return (1);
4573
4574 if (kn->kn_sfflags & NOTE_LOWAT) {
4575 if (kn->kn_data >= kn->kn_sdata)
4576 return (1);
4577 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
4578 return (1);
4579
4580 #ifdef SOCKET_HHOOK
4581 /* This hook returning non-zero indicates an event, not error */
4582 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
4583 #else
4584 return (0);
4585 #endif
4586 }
4587
4588 static void
4589 filt_sowdetach(struct knote *kn)
4590 {
4591 struct socket *so = kn->kn_fp->f_data;
4592
4593 so_wrknl_lock(so);
4594 knlist_remove(&so->so_wrsel.si_note, kn, 1);
4595 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
4596 so->so_snd.sb_flags &= ~SB_KNOTE;
4597 so_wrknl_unlock(so);
4598 }
4599
4600 /*ARGSUSED*/
4601 static int
4602 filt_sowrite(struct knote *kn, long hint)
4603 {
4604 struct socket *so;
4605
4606 so = kn->kn_fp->f_data;
4607
4608 if (SOLISTENING(so))
4609 return (0);
4610
4611 SOCK_SENDBUF_LOCK_ASSERT(so);
4612 kn->kn_data = sbspace(&so->so_snd);
4613
4614 #ifdef SOCKET_HHOOK
4615 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
4616 #endif
4617
4618 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
4619 kn->kn_flags |= EV_EOF;
4620 kn->kn_fflags = so->so_error;
4621 return (1);
4622 } else if (so->so_error) /* temporary udp error */
4623 return (1);
4624 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
4625 (so->so_proto->pr_flags & PR_CONNREQUIRED))
4626 return (0);
4627 else if (kn->kn_sfflags & NOTE_LOWAT)
4628 return (kn->kn_data >= kn->kn_sdata);
4629 else
4630 return (kn->kn_data >= so->so_snd.sb_lowat);
4631 }
4632
4633 static int
4634 filt_soempty(struct knote *kn, long hint)
4635 {
4636 struct socket *so;
4637
4638 so = kn->kn_fp->f_data;
4639
4640 if (SOLISTENING(so))
4641 return (1);
4642
4643 SOCK_SENDBUF_LOCK_ASSERT(so);
4644 kn->kn_data = sbused(&so->so_snd);
4645
4646 if (kn->kn_data == 0)
4647 return (1);
4648 else
4649 return (0);
4650 }
4651
4652 int
4653 socheckuid(struct socket *so, uid_t uid)
4654 {
4655
4656 if (so == NULL)
4657 return (EPERM);
4658 if (so->so_cred->cr_uid != uid)
4659 return (EPERM);
4660 return (0);
4661 }
4662
4663 /*
4664 * These functions are used by protocols to notify the socket layer (and its
4665 * consumers) of state changes in the sockets driven by protocol-side events.
4666 */
4667
4668 /*
4669 * Procedures to manipulate state flags of socket and do appropriate wakeups.
4670 *
4671 * Normal sequence from the active (originating) side is that
4672 * soisconnecting() is called during processing of connect() call, resulting
4673 * in an eventual call to soisconnected() if/when the connection is
4674 * established. When the connection is torn down soisdisconnecting() is
4675 * called during processing of disconnect() call, and soisdisconnected() is
4676 * called when the connection to the peer is totally severed. The semantics
4677 * of these routines are such that connectionless protocols can call
4678 * soisconnected() and soisdisconnected() only, bypassing the in-progress
4679 * calls when setting up a ``connection'' takes no time.
4680 *
4681 * From the passive side, a socket is created with two queues of sockets:
4682 * so_incomp for connections in progress and so_comp for connections already
4683 * made and awaiting user acceptance. As a protocol is preparing incoming
4684 * connections, it creates a socket structure queued on so_incomp by calling
4685 * sonewconn(). When the connection is established, soisconnected() is
4686 * called, and transfers the socket structure to so_comp, making it available
4687 * to accept().
4688 *
4689 * If a socket is closed with sockets on either so_incomp or so_comp, these
4690 * sockets are dropped.
4691 *
4692 * If higher-level protocols are implemented in the kernel, the wakeups done
4693 * here will sometimes cause software-interrupt process scheduling.
4694 */
4695 void
4696 soisconnecting(struct socket *so)
4697 {
4698
4699 SOCK_LOCK(so);
4700 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
4701 so->so_state |= SS_ISCONNECTING;
4702 SOCK_UNLOCK(so);
4703 }
4704
4705 void
4706 soisconnected(struct socket *so)
4707 {
4708 bool last __diagused;
4709
4710 SOCK_LOCK(so);
4711 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING);
4712 so->so_state |= SS_ISCONNECTED;
4713
4714 if (so->so_qstate == SQ_INCOMP) {
4715 struct socket *head = so->so_listen;
4716 int ret;
4717
4718 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
4719 /*
4720 * Promoting a socket from incomplete queue to complete, we
4721 * need to go through reverse order of locking. We first do
4722 * trylock, and if that doesn't succeed, we go the hard way
4723 * leaving a reference and rechecking consistency after proper
4724 * locking.
4725 */
4726 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
4727 soref(head);
4728 SOCK_UNLOCK(so);
4729 SOLISTEN_LOCK(head);
4730 SOCK_LOCK(so);
4731 if (__predict_false(head != so->so_listen)) {
4732 /*
4733 * The socket went off the listen queue,
4734 * should be lost race to close(2) of sol.
4735 * The socket is about to soabort().
4736 */
4737 SOCK_UNLOCK(so);
4738 sorele_locked(head);
4739 return;
4740 }
4741 last = refcount_release(&head->so_count);
4742 KASSERT(!last, ("%s: released last reference for %p",
4743 __func__, head));
4744 }
4745 again:
4746 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
4747 TAILQ_REMOVE(&head->sol_incomp, so, so_list);
4748 head->sol_incqlen--;
4749 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
4750 head->sol_qlen++;
4751 so->so_qstate = SQ_COMP;
4752 SOCK_UNLOCK(so);
4753 solisten_wakeup(head); /* unlocks */
4754 } else {
4755 SOCK_RECVBUF_LOCK(so);
4756 soupcall_set(so, SO_RCV,
4757 head->sol_accept_filter->accf_callback,
4758 head->sol_accept_filter_arg);
4759 so->so_options &= ~SO_ACCEPTFILTER;
4760 ret = head->sol_accept_filter->accf_callback(so,
4761 head->sol_accept_filter_arg, M_NOWAIT);
4762 if (ret == SU_ISCONNECTED) {
4763 soupcall_clear(so, SO_RCV);
4764 SOCK_RECVBUF_UNLOCK(so);
4765 goto again;
4766 }
4767 SOCK_RECVBUF_UNLOCK(so);
4768 SOCK_UNLOCK(so);
4769 SOLISTEN_UNLOCK(head);
4770 }
4771 return;
4772 }
4773 SOCK_UNLOCK(so);
4774 wakeup(&so->so_timeo);
4775 sorwakeup(so);
4776 sowwakeup(so);
4777 }
4778
4779 void
4780 soisdisconnecting(struct socket *so)
4781 {
4782
4783 SOCK_LOCK(so);
4784 so->so_state &= ~SS_ISCONNECTING;
4785 so->so_state |= SS_ISDISCONNECTING;
4786
4787 if (!SOLISTENING(so)) {
4788 SOCK_RECVBUF_LOCK(so);
4789 socantrcvmore_locked(so);
4790 SOCK_SENDBUF_LOCK(so);
4791 socantsendmore_locked(so);
4792 }
4793 SOCK_UNLOCK(so);
4794 wakeup(&so->so_timeo);
4795 }
4796
4797 void
4798 soisdisconnected(struct socket *so)
4799 {
4800
4801 SOCK_LOCK(so);
4802
4803 /*
4804 * There is at least one reader of so_state that does not
4805 * acquire socket lock, namely soreceive_generic(). Ensure
4806 * that it never sees all flags that track connection status
4807 * cleared, by ordering the update with a barrier semantic of
4808 * our release thread fence.
4809 */
4810 so->so_state |= SS_ISDISCONNECTED;
4811 atomic_thread_fence_rel();
4812 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4813
4814 if (!SOLISTENING(so)) {
4815 SOCK_UNLOCK(so);
4816 SOCK_RECVBUF_LOCK(so);
4817 socantrcvmore_locked(so);
4818 SOCK_SENDBUF_LOCK(so);
4819 sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4820 socantsendmore_locked(so);
4821 } else
4822 SOCK_UNLOCK(so);
4823 wakeup(&so->so_timeo);
4824 }
4825
4826 int
4827 soiolock(struct socket *so, struct sx *sx, int flags)
4828 {
4829 int error;
4830
4831 KASSERT((flags & SBL_VALID) == flags,
4832 ("soiolock: invalid flags %#x", flags));
4833
4834 if ((flags & SBL_WAIT) != 0) {
4835 if ((flags & SBL_NOINTR) != 0) {
4836 sx_xlock(sx);
4837 } else {
4838 error = sx_xlock_sig(sx);
4839 if (error != 0)
4840 return (error);
4841 }
4842 } else if (!sx_try_xlock(sx)) {
4843 return (EWOULDBLOCK);
4844 }
4845
4846 if (__predict_false(SOLISTENING(so))) {
4847 sx_xunlock(sx);
4848 return (ENOTCONN);
4849 }
4850 return (0);
4851 }
4852
4853 void
4854 soiounlock(struct sx *sx)
4855 {
4856 sx_xunlock(sx);
4857 }
4858
4859 /*
4860 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4861 */
4862 struct sockaddr *
4863 sodupsockaddr(const struct sockaddr *sa, int mflags)
4864 {
4865 struct sockaddr *sa2;
4866
4867 sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4868 if (sa2)
4869 bcopy(sa, sa2, sa->sa_len);
4870 return sa2;
4871 }
4872
4873 /*
4874 * Register per-socket destructor.
4875 */
4876 void
4877 sodtor_set(struct socket *so, so_dtor_t *func)
4878 {
4879
4880 SOCK_LOCK_ASSERT(so);
4881 so->so_dtor = func;
4882 }
4883
4884 /*
4885 * Register per-socket buffer upcalls.
4886 */
4887 void
4888 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4889 {
4890 struct sockbuf *sb;
4891
4892 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4893
4894 switch (which) {
4895 case SO_RCV:
4896 sb = &so->so_rcv;
4897 break;
4898 case SO_SND:
4899 sb = &so->so_snd;
4900 break;
4901 }
4902 SOCK_BUF_LOCK_ASSERT(so, which);
4903 sb->sb_upcall = func;
4904 sb->sb_upcallarg = arg;
4905 sb->sb_flags |= SB_UPCALL;
4906 }
4907
4908 void
4909 soupcall_clear(struct socket *so, sb_which which)
4910 {
4911 struct sockbuf *sb;
4912
4913 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4914
4915 switch (which) {
4916 case SO_RCV:
4917 sb = &so->so_rcv;
4918 break;
4919 case SO_SND:
4920 sb = &so->so_snd;
4921 break;
4922 }
4923 SOCK_BUF_LOCK_ASSERT(so, which);
4924 KASSERT(sb->sb_upcall != NULL,
4925 ("%s: so %p no upcall to clear", __func__, so));
4926 sb->sb_upcall = NULL;
4927 sb->sb_upcallarg = NULL;
4928 sb->sb_flags &= ~SB_UPCALL;
4929 }
4930
4931 void
4932 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4933 {
4934
4935 SOLISTEN_LOCK_ASSERT(so);
4936 so->sol_upcall = func;
4937 so->sol_upcallarg = arg;
4938 }
4939
4940 static void
4941 so_rdknl_lock(void *arg)
4942 {
4943 struct socket *so = arg;
4944
4945 retry:
4946 if (SOLISTENING(so)) {
4947 SOLISTEN_LOCK(so);
4948 } else {
4949 SOCK_RECVBUF_LOCK(so);
4950 if (__predict_false(SOLISTENING(so))) {
4951 SOCK_RECVBUF_UNLOCK(so);
4952 goto retry;
4953 }
4954 }
4955 }
4956
4957 static void
4958 so_rdknl_unlock(void *arg)
4959 {
4960 struct socket *so = arg;
4961
4962 if (SOLISTENING(so))
4963 SOLISTEN_UNLOCK(so);
4964 else
4965 SOCK_RECVBUF_UNLOCK(so);
4966 }
4967
4968 static void
4969 so_rdknl_assert_lock(void *arg, int what)
4970 {
4971 struct socket *so = arg;
4972
4973 if (what == LA_LOCKED) {
4974 if (SOLISTENING(so))
4975 SOLISTEN_LOCK_ASSERT(so);
4976 else
4977 SOCK_RECVBUF_LOCK_ASSERT(so);
4978 } else {
4979 if (SOLISTENING(so))
4980 SOLISTEN_UNLOCK_ASSERT(so);
4981 else
4982 SOCK_RECVBUF_UNLOCK_ASSERT(so);
4983 }
4984 }
4985
4986 static void
4987 so_wrknl_lock(void *arg)
4988 {
4989 struct socket *so = arg;
4990
4991 retry:
4992 if (SOLISTENING(so)) {
4993 SOLISTEN_LOCK(so);
4994 } else {
4995 SOCK_SENDBUF_LOCK(so);
4996 if (__predict_false(SOLISTENING(so))) {
4997 SOCK_SENDBUF_UNLOCK(so);
4998 goto retry;
4999 }
5000 }
5001 }
5002
5003 static void
5004 so_wrknl_unlock(void *arg)
5005 {
5006 struct socket *so = arg;
5007
5008 if (SOLISTENING(so))
5009 SOLISTEN_UNLOCK(so);
5010 else
5011 SOCK_SENDBUF_UNLOCK(so);
5012 }
5013
5014 static void
5015 so_wrknl_assert_lock(void *arg, int what)
5016 {
5017 struct socket *so = arg;
5018
5019 if (what == LA_LOCKED) {
5020 if (SOLISTENING(so))
5021 SOLISTEN_LOCK_ASSERT(so);
5022 else
5023 SOCK_SENDBUF_LOCK_ASSERT(so);
5024 } else {
5025 if (SOLISTENING(so))
5026 SOLISTEN_UNLOCK_ASSERT(so);
5027 else
5028 SOCK_SENDBUF_UNLOCK_ASSERT(so);
5029 }
5030 }
5031
5032 /*
5033 * Create an external-format (``xsocket'') structure using the information in
5034 * the kernel-format socket structure pointed to by so. This is done to
5035 * reduce the spew of irrelevant information over this interface, to isolate
5036 * user code from changes in the kernel structure, and potentially to provide
5037 * information-hiding if we decide that some of this information should be
5038 * hidden from users.
5039 */
5040 void
5041 sotoxsocket(struct socket *so, struct xsocket *xso)
5042 {
5043
5044 bzero(xso, sizeof(*xso));
5045 xso->xso_len = sizeof *xso;
5046 xso->xso_so = (uintptr_t)so;
5047 xso->so_type = so->so_type;
5048 xso->so_options = so->so_options;
5049 xso->so_linger = so->so_linger;
5050 xso->so_state = so->so_state;
5051 xso->so_pcb = (uintptr_t)so->so_pcb;
5052 xso->xso_protocol = so->so_proto->pr_protocol;
5053 xso->xso_family = so->so_proto->pr_domain->dom_family;
5054 xso->so_timeo = so->so_timeo;
5055 xso->so_error = so->so_error;
5056 xso->so_uid = so->so_cred->cr_uid;
5057 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
5058 SOCK_LOCK(so);
5059 xso->so_fibnum = so->so_fibnum;
5060 if (SOLISTENING(so)) {
5061 xso->so_qlen = so->sol_qlen;
5062 xso->so_incqlen = so->sol_incqlen;
5063 xso->so_qlimit = so->sol_qlimit;
5064 xso->so_oobmark = 0;
5065 } else {
5066 xso->so_state |= so->so_qstate;
5067 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
5068 xso->so_oobmark = so->so_oobmark;
5069 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
5070 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
5071 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
5072 xso->so_splice_so = (uintptr_t)so->so_splice->dst;
5073 }
5074 SOCK_UNLOCK(so);
5075 }
5076
5077 int
5078 so_options_get(const struct socket *so)
5079 {
5080
5081 return (so->so_options);
5082 }
5083
5084 void
5085 so_options_set(struct socket *so, int val)
5086 {
5087
5088 so->so_options = val;
5089 }
5090
5091 int
5092 so_error_get(const struct socket *so)
5093 {
5094
5095 return (so->so_error);
5096 }
5097
5098 void
5099 so_error_set(struct socket *so, int val)
5100 {
5101
5102 so->so_error = val;
5103 }
5104