1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include <sys/types.h>
27 #include <sys/t_lock.h>
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/buf.h>
31 #include <sys/conf.h>
32 #include <sys/cred.h>
33 #include <sys/kmem.h>
34 #include <sys/sysmacros.h>
35 #include <sys/vfs.h>
36 #include <sys/vfs_opreg.h>
37 #include <sys/vnode.h>
38 #include <sys/debug.h>
39 #include <sys/errno.h>
40 #include <sys/time.h>
41 #include <sys/file.h>
42 #include <sys/open.h>
43 #include <sys/user.h>
44 #include <sys/termios.h>
45 #include <sys/stream.h>
46 #include <sys/strsubr.h>
47 #include <sys/strsun.h>
48 #include <sys/esunddi.h>
49 #include <sys/flock.h>
50 #include <sys/modctl.h>
51 #include <sys/cmn_err.h>
52 #include <sys/mkdev.h>
53 #include <sys/pathname.h>
54 #include <sys/ddi.h>
55 #include <sys/stat.h>
56 #include <sys/fs/snode.h>
57 #include <sys/fs/dv_node.h>
58 #include <sys/zone.h>
59
60 #include <sys/socket.h>
61 #include <sys/socketvar.h>
62 #include <netinet/in.h>
63 #include <sys/un.h>
64 #include <sys/ucred.h>
65
66 #include <sys/tiuser.h>
67 #define _SUN_TPI_VERSION 2
68 #include <sys/tihdr.h>
69
70 #include <c2/audit.h>
71
72 #include <fs/sockfs/nl7c.h>
73 #include <fs/sockfs/sockcommon.h>
74 #include <fs/sockfs/sockfilter_impl.h>
75 #include <fs/sockfs/socktpi.h>
76 #include <fs/sockfs/socktpi_impl.h>
77 #include <fs/sockfs/sodirect.h>
78
79 /*
80 * Macros that operate on struct cmsghdr.
81 * The CMSG_VALID macro does not assume that the last option buffer is padded.
82 */
83 #define CMSG_CONTENT(cmsg) (&((cmsg)[1]))
84 #define CMSG_CONTENTLEN(cmsg) ((cmsg)->cmsg_len - sizeof (struct cmsghdr))
85 #define CMSG_VALID(cmsg, start, end) \
86 (ISALIGNED_cmsghdr(cmsg) && \
87 ((uintptr_t)(cmsg) >= (uintptr_t)(start)) && \
88 ((uintptr_t)(cmsg) < (uintptr_t)(end)) && \
89 ((ssize_t)(cmsg)->cmsg_len >= sizeof (struct cmsghdr)) && \
90 ((uintptr_t)(cmsg) + (cmsg)->cmsg_len <= (uintptr_t)(end)))
91 #define SO_LOCK_WAKEUP_TIME 3000 /* Wakeup time in milliseconds */
92
93 dev_t sockdev; /* For fsid in getattr */
94 int sockfs_defer_nl7c_init = 0;
95
96 struct socklist socklist;
97
98 struct kmem_cache *socket_cache;
99
100 /*
101 * sockconf_lock protects the socket configuration (socket types and
102 * socket filters) which is changed via the sockconfig system call.
103 */
104 krwlock_t sockconf_lock;
105
106 static int sockfs_update(kstat_t *, int);
107 static int sockfs_snapshot(kstat_t *, void *, int);
108 extern smod_info_t *sotpi_smod_create(void);
109
110 extern void sendfile_init();
111
112 extern void nl7c_init(void);
113
114 extern int modrootloaded;
115
116 #define ADRSTRLEN (2 * sizeof (void *) + 1)
117 /*
118 * kernel structure for passing the sockinfo data back up to the user.
119 * the strings array allows us to convert AF_UNIX addresses into strings
120 * with a common method regardless of which n-bit kernel we're running.
121 */
122 struct k_sockinfo {
123 struct sockinfo ks_si;
124 char ks_straddr[3][ADRSTRLEN];
125 };
126
127 /*
128 * Translate from a device pathname (e.g. "/dev/tcp") to a vnode.
129 * Returns with the vnode held.
130 */
131 int
sogetvp(char * devpath,vnode_t ** vpp,int uioflag)132 sogetvp(char *devpath, vnode_t **vpp, int uioflag)
133 {
134 struct snode *csp;
135 vnode_t *vp, *dvp;
136 major_t maj;
137 int error;
138
139 ASSERT(uioflag == UIO_SYSSPACE || uioflag == UIO_USERSPACE);
140
141 /*
142 * Lookup the underlying filesystem vnode.
143 */
144 error = lookupname(devpath, uioflag, FOLLOW, NULLVPP, &vp);
145 if (error)
146 return (error);
147
148 /* Check that it is the correct vnode */
149 if (vp->v_type != VCHR) {
150 VN_RELE(vp);
151 return (ENOTSOCK);
152 }
153
154 /*
155 * If devpath went through devfs, the device should already
156 * be configured. If devpath is a mknod file, however, we
157 * need to make sure the device is properly configured.
158 * To do this, we do something similar to spec_open()
159 * except that we resolve to the minor/leaf level since
160 * we need to return a vnode.
161 */
162 csp = VTOS(VTOS(vp)->s_commonvp);
163 if (!(csp->s_flag & SDIPSET)) {
164 char *pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
165 error = ddi_dev_pathname(vp->v_rdev, S_IFCHR, pathname);
166 if (error == 0)
167 error = devfs_lookupname(pathname, NULLVPP, &dvp);
168 VN_RELE(vp);
169 kmem_free(pathname, MAXPATHLEN);
170 if (error != 0)
171 return (ENXIO);
172 vp = dvp; /* use the devfs vp */
173 }
174
175 /* device is configured at this point */
176 maj = getmajor(vp->v_rdev);
177 if (!STREAMSTAB(maj)) {
178 VN_RELE(vp);
179 return (ENOSTR);
180 }
181
182 *vpp = vp;
183 return (0);
184 }
185
186 /*
187 * Update the accessed, updated, or changed times in an sonode
188 * with the current time.
189 *
190 * Note that both SunOS 4.X and 4.4BSD sockets do not present reasonable
191 * attributes in a fstat call. (They return the current time and 0 for
192 * all timestamps, respectively.) We maintain the current timestamps
193 * here primarily so that should sockmod be popped the resulting
194 * file descriptor will behave like a stream w.r.t. the timestamps.
195 */
196 void
so_update_attrs(struct sonode * so,int flag)197 so_update_attrs(struct sonode *so, int flag)
198 {
199 time_t now = gethrestime_sec();
200
201 if (SOCK_IS_NONSTR(so))
202 return;
203
204 mutex_enter(&so->so_lock);
205 so->so_flag |= flag;
206 if (flag & SOACC)
207 SOTOTPI(so)->sti_atime = now;
208 if (flag & SOMOD)
209 SOTOTPI(so)->sti_mtime = now;
210 mutex_exit(&so->so_lock);
211 }
212
213 extern so_create_func_t sock_comm_create_function;
214 extern so_destroy_func_t sock_comm_destroy_function;
215 /*
216 * Init function called when sockfs is loaded.
217 */
218 int
sockinit(int fstype,char * name)219 sockinit(int fstype, char *name)
220 {
221 static const fs_operation_def_t sock_vfsops_template[] = {
222 NULL, NULL
223 };
224 int error;
225 major_t dev;
226 char *err_str;
227
228 error = vfs_setfsops(fstype, sock_vfsops_template, NULL);
229 if (error != 0) {
230 zcmn_err(GLOBAL_ZONEID, CE_WARN,
231 "sockinit: bad vfs ops template");
232 return (error);
233 }
234
235 error = vn_make_ops(name, socket_vnodeops_template,
236 &socket_vnodeops);
237 if (error != 0) {
238 err_str = "sockinit: bad socket vnode ops template";
239 /* vn_make_ops() does not reset socktpi_vnodeops on failure. */
240 socket_vnodeops = NULL;
241 goto failure;
242 }
243
244 socket_cache = kmem_cache_create("socket_cache",
245 sizeof (struct sonode), 0, sonode_constructor,
246 sonode_destructor, NULL, NULL, NULL, 0);
247
248 rw_init(&sockconf_lock, NULL, RW_DEFAULT, NULL);
249
250 error = socktpi_init();
251 if (error != 0) {
252 err_str = NULL;
253 goto failure;
254 }
255
256 error = sod_init();
257 if (error != 0) {
258 err_str = NULL;
259 goto failure;
260 }
261
262 /*
263 * Set up the default create and destroy functions
264 */
265 sock_comm_create_function = socket_sonode_create;
266 sock_comm_destroy_function = socket_sonode_destroy;
267
268 /*
269 * Build initial list mapping socket parameters to vnode.
270 */
271 smod_init();
272 smod_add(sotpi_smod_create());
273
274 sockparams_init();
275
276 /*
277 * If sockets are needed before init runs /sbin/soconfig
278 * it is possible to preload the sockparams list here using
279 * calls like:
280 * sockconfig(1,2,3, "/dev/tcp", 0);
281 */
282
283 /*
284 * Create a unique dev_t for use in so_fsid.
285 */
286
287 if ((dev = getudev()) == (major_t)-1)
288 dev = 0;
289 sockdev = makedevice(dev, 0);
290
291 mutex_init(&socklist.sl_lock, NULL, MUTEX_DEFAULT, NULL);
292 sendfile_init();
293 if (!modrootloaded) {
294 sockfs_defer_nl7c_init = 1;
295 } else {
296 nl7c_init();
297 }
298
299 /* Initialize socket filters */
300 sof_init();
301
302 return (0);
303
304 failure:
305 (void) vfs_freevfsops_by_type(fstype);
306 if (socket_vnodeops != NULL)
307 vn_freevnodeops(socket_vnodeops);
308 if (err_str != NULL)
309 zcmn_err(GLOBAL_ZONEID, CE_WARN, err_str);
310 return (error);
311 }
312
313 /*
314 * Caller must hold the mutex. Used to set SOLOCKED.
315 */
316 void
so_lock_single(struct sonode * so)317 so_lock_single(struct sonode *so)
318 {
319 ASSERT(MUTEX_HELD(&so->so_lock));
320
321 while (so->so_flag & (SOLOCKED | SOASYNC_UNBIND)) {
322 cv_wait_stop(&so->so_single_cv, &so->so_lock,
323 SO_LOCK_WAKEUP_TIME);
324 }
325 so->so_flag |= SOLOCKED;
326 }
327
328 /*
329 * Caller must hold the mutex and pass in SOLOCKED or SOASYNC_UNBIND.
330 * Used to clear SOLOCKED or SOASYNC_UNBIND.
331 */
332 void
so_unlock_single(struct sonode * so,int flag)333 so_unlock_single(struct sonode *so, int flag)
334 {
335 ASSERT(MUTEX_HELD(&so->so_lock));
336 ASSERT(flag & (SOLOCKED|SOASYNC_UNBIND));
337 ASSERT((flag & ~(SOLOCKED|SOASYNC_UNBIND)) == 0);
338 ASSERT(so->so_flag & flag);
339 /*
340 * Process the T_DISCON_IND on sti_discon_ind_mp.
341 *
342 * Call to so_drain_discon_ind will result in so_lock
343 * being dropped and re-acquired later.
344 */
345 if (!SOCK_IS_NONSTR(so)) {
346 sotpi_info_t *sti = SOTOTPI(so);
347
348 if (sti->sti_discon_ind_mp != NULL)
349 so_drain_discon_ind(so);
350 }
351
352 cv_signal(&so->so_single_cv);
353 so->so_flag &= ~flag;
354 }
355
356 /*
357 * Caller must hold the mutex. Used to set SOREADLOCKED.
358 * If the caller wants nonblocking behavior it should set fmode.
359 */
360 int
so_lock_read(struct sonode * so,int fmode)361 so_lock_read(struct sonode *so, int fmode)
362 {
363 ASSERT(MUTEX_HELD(&so->so_lock));
364
365 while (so->so_flag & SOREADLOCKED) {
366 if (fmode & (FNDELAY|FNONBLOCK))
367 return (EWOULDBLOCK);
368 cv_wait_stop(&so->so_read_cv, &so->so_lock,
369 SO_LOCK_WAKEUP_TIME);
370 }
371 so->so_flag |= SOREADLOCKED;
372 return (0);
373 }
374
375 /*
376 * Like so_lock_read above but allows signals.
377 */
378 int
so_lock_read_intr(struct sonode * so,int fmode)379 so_lock_read_intr(struct sonode *so, int fmode)
380 {
381 ASSERT(MUTEX_HELD(&so->so_lock));
382
383 while (so->so_flag & SOREADLOCKED) {
384 if (fmode & (FNDELAY|FNONBLOCK))
385 return (EWOULDBLOCK);
386 if (!cv_wait_sig(&so->so_read_cv, &so->so_lock))
387 return (EINTR);
388 }
389 so->so_flag |= SOREADLOCKED;
390 return (0);
391 }
392
393 /*
394 * Caller must hold the mutex. Used to clear SOREADLOCKED,
395 * set in so_lock_read() or so_lock_read_intr().
396 */
397 void
so_unlock_read(struct sonode * so)398 so_unlock_read(struct sonode *so)
399 {
400 ASSERT(MUTEX_HELD(&so->so_lock));
401 ASSERT(so->so_flag & SOREADLOCKED);
402
403 cv_signal(&so->so_read_cv);
404 so->so_flag &= ~SOREADLOCKED;
405 }
406
407 /*
408 * Verify that the specified offset falls within the mblk and
409 * that the resulting pointer is aligned.
410 * Returns NULL if not.
411 */
412 void *
sogetoff(mblk_t * mp,t_uscalar_t offset,t_uscalar_t length,uint_t align_size)413 sogetoff(mblk_t *mp, t_uscalar_t offset,
414 t_uscalar_t length, uint_t align_size)
415 {
416 uintptr_t ptr1, ptr2;
417
418 ASSERT(mp && mp->b_wptr >= mp->b_rptr);
419 ptr1 = (uintptr_t)mp->b_rptr + offset;
420 ptr2 = (uintptr_t)ptr1 + length;
421 if (ptr1 < (uintptr_t)mp->b_rptr || ptr2 > (uintptr_t)mp->b_wptr) {
422 eprintline(0);
423 return (NULL);
424 }
425 if ((ptr1 & (align_size - 1)) != 0) {
426 eprintline(0);
427 return (NULL);
428 }
429 return ((void *)ptr1);
430 }
431
432 /*
433 * Return the AF_UNIX underlying filesystem vnode matching a given name.
434 * Makes sure the sending and the destination sonodes are compatible.
435 * The vnode is returned held.
436 *
437 * The underlying filesystem VSOCK vnode has a v_stream pointer that
438 * references the actual stream head (hence indirectly the actual sonode).
439 */
440 static int
so_ux_lookup(struct sonode * so,struct sockaddr_un * soun,int checkaccess,vnode_t ** vpp)441 so_ux_lookup(struct sonode *so, struct sockaddr_un *soun, int checkaccess,
442 vnode_t **vpp)
443 {
444 vnode_t *vp; /* Underlying filesystem vnode */
445 vnode_t *rvp; /* real vnode */
446 vnode_t *svp; /* sockfs vnode */
447 struct sonode *so2;
448 int error;
449
450 dprintso(so, 1, ("so_ux_lookup(%p) name <%s>\n", (void *)so,
451 soun->sun_path));
452
453 error = lookupname(soun->sun_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
454 if (error) {
455 eprintsoline(so, error);
456 return (error);
457 }
458
459 /*
460 * Traverse lofs mounts get the real vnode
461 */
462 if (VOP_REALVP(vp, &rvp, NULL) == 0) {
463 VN_HOLD(rvp); /* hold the real vnode */
464 VN_RELE(vp); /* release hold from lookup */
465 vp = rvp;
466 }
467
468 if (vp->v_type != VSOCK) {
469 error = ENOTSOCK;
470 eprintsoline(so, error);
471 goto done2;
472 }
473
474 if (checkaccess) {
475 /*
476 * Check that we have permissions to access the destination
477 * vnode. This check is not done in BSD but it is required
478 * by X/Open.
479 */
480 if (error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL)) {
481 eprintsoline(so, error);
482 goto done2;
483 }
484 }
485
486 /*
487 * Check if the remote socket has been closed.
488 *
489 * Synchronize with vn_rele_stream by holding v_lock while traversing
490 * v_stream->sd_vnode.
491 */
492 mutex_enter(&vp->v_lock);
493 if (vp->v_stream == NULL) {
494 mutex_exit(&vp->v_lock);
495 if (so->so_type == SOCK_DGRAM)
496 error = EDESTADDRREQ;
497 else
498 error = ECONNREFUSED;
499
500 eprintsoline(so, error);
501 goto done2;
502 }
503 ASSERT(vp->v_stream->sd_vnode);
504 svp = vp->v_stream->sd_vnode;
505 /*
506 * holding v_lock on underlying filesystem vnode and acquiring
507 * it on sockfs vnode. Assumes that no code ever attempts to
508 * acquire these locks in the reverse order.
509 */
510 VN_HOLD(svp);
511 mutex_exit(&vp->v_lock);
512
513 if (svp->v_type != VSOCK) {
514 error = ENOTSOCK;
515 eprintsoline(so, error);
516 goto done;
517 }
518
519 so2 = VTOSO(svp);
520
521 if (so->so_type != so2->so_type) {
522 error = EPROTOTYPE;
523 eprintsoline(so, error);
524 goto done;
525 }
526
527 VN_RELE(svp);
528 *vpp = vp;
529 return (0);
530
531 done:
532 VN_RELE(svp);
533 done2:
534 VN_RELE(vp);
535 return (error);
536 }
537
538 /*
539 * Verify peer address for connect and sendto/sendmsg.
540 * Since sendto/sendmsg would not get synchronous errors from the transport
541 * provider we have to do these ugly checks in the socket layer to
542 * preserve compatibility with SunOS 4.X.
543 */
544 int
so_addr_verify(struct sonode * so,const struct sockaddr * name,socklen_t namelen)545 so_addr_verify(struct sonode *so, const struct sockaddr *name,
546 socklen_t namelen)
547 {
548 int family;
549
550 dprintso(so, 1, ("so_addr_verify(%p, %p, %d)\n",
551 (void *)so, (void *)name, namelen));
552
553 ASSERT(name != NULL);
554
555 family = so->so_family;
556 switch (family) {
557 case AF_INET:
558 if (name->sa_family != family) {
559 eprintsoline(so, EAFNOSUPPORT);
560 return (EAFNOSUPPORT);
561 }
562 if (namelen != (socklen_t)sizeof (struct sockaddr_in)) {
563 eprintsoline(so, EINVAL);
564 return (EINVAL);
565 }
566 break;
567 case AF_INET6: {
568 #ifdef DEBUG
569 struct sockaddr_in6 *sin6;
570 #endif /* DEBUG */
571
572 if (name->sa_family != family) {
573 eprintsoline(so, EAFNOSUPPORT);
574 return (EAFNOSUPPORT);
575 }
576 if (namelen != (socklen_t)sizeof (struct sockaddr_in6)) {
577 eprintsoline(so, EINVAL);
578 return (EINVAL);
579 }
580 #ifdef DEBUG
581 /* Verify that apps don't forget to clear sin6_scope_id etc */
582 sin6 = (struct sockaddr_in6 *)name;
583 if (sin6->sin6_scope_id != 0 &&
584 !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) {
585 zcmn_err(getzoneid(), CE_WARN,
586 "connect/send* with uninitialized sin6_scope_id "
587 "(%d) on socket. Pid = %d\n",
588 (int)sin6->sin6_scope_id, (int)curproc->p_pid);
589 }
590 #endif /* DEBUG */
591 break;
592 }
593 case AF_UNIX:
594 if (SOTOTPI(so)->sti_faddr_noxlate) {
595 return (0);
596 }
597 if (namelen < (socklen_t)sizeof (short)) {
598 eprintsoline(so, ENOENT);
599 return (ENOENT);
600 }
601 if (name->sa_family != family) {
602 eprintsoline(so, EAFNOSUPPORT);
603 return (EAFNOSUPPORT);
604 }
605 /* MAXPATHLEN + soun_family + nul termination */
606 if (namelen > (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) {
607 eprintsoline(so, ENAMETOOLONG);
608 return (ENAMETOOLONG);
609 }
610
611 break;
612
613 default:
614 /*
615 * Default is don't do any length or sa_family check
616 * to allow non-sockaddr style addresses.
617 */
618 break;
619 }
620
621 return (0);
622 }
623
624
625 /*
626 * Translate an AF_UNIX sockaddr_un to the transport internal name.
627 * Assumes caller has called so_addr_verify first.
628 */
629 /*ARGSUSED*/
630 int
so_ux_addr_xlate(struct sonode * so,struct sockaddr * name,socklen_t namelen,int checkaccess,void ** addrp,socklen_t * addrlenp)631 so_ux_addr_xlate(struct sonode *so, struct sockaddr *name,
632 socklen_t namelen, int checkaccess,
633 void **addrp, socklen_t *addrlenp)
634 {
635 int error;
636 struct sockaddr_un *soun;
637 vnode_t *vp;
638 void *addr;
639 socklen_t addrlen;
640 sotpi_info_t *sti = SOTOTPI(so);
641
642 dprintso(so, 1, ("so_ux_addr_xlate(%p, %p, %d, %d)\n",
643 (void *)so, (void *)name, namelen, checkaccess));
644
645 ASSERT(name != NULL);
646 ASSERT(so->so_family == AF_UNIX);
647 ASSERT(!sti->sti_faddr_noxlate);
648 ASSERT(namelen >= (socklen_t)sizeof (short));
649 ASSERT(name->sa_family == AF_UNIX);
650 soun = (struct sockaddr_un *)name;
651 /*
652 * Lookup vnode for the specified path name and verify that
653 * it is a socket.
654 */
655 error = so_ux_lookup(so, soun, checkaccess, &vp);
656 if (error) {
657 eprintsoline(so, error);
658 return (error);
659 }
660 /*
661 * Use the address of the peer vnode as the address to send
662 * to. We release the peer vnode here. In case it has been
663 * closed by the time the T_CONN_REQ or T_UNIDATA_REQ reaches the
664 * transport the message will get an error or be dropped.
665 */
666 sti->sti_ux_faddr.soua_vp = vp;
667 sti->sti_ux_faddr.soua_magic = SOU_MAGIC_EXPLICIT;
668 addr = &sti->sti_ux_faddr;
669 addrlen = (socklen_t)sizeof (sti->sti_ux_faddr);
670 dprintso(so, 1, ("ux_xlate UNIX: addrlen %d, vp %p\n",
671 addrlen, (void *)vp));
672 VN_RELE(vp);
673 *addrp = addr;
674 *addrlenp = (socklen_t)addrlen;
675 return (0);
676 }
677
678 /*
679 * Esballoc free function for messages that contain SO_FILEP option.
680 * Decrement the reference count on the file pointers using closef.
681 */
682 void
fdbuf_free(struct fdbuf * fdbuf)683 fdbuf_free(struct fdbuf *fdbuf)
684 {
685 int i;
686 struct file *fp;
687
688 dprint(1, ("fdbuf_free: %d fds\n", fdbuf->fd_numfd));
689 for (i = 0; i < fdbuf->fd_numfd; i++) {
690 /*
691 * We need pointer size alignment for fd_fds. On a LP64
692 * kernel, the required alignment is 8 bytes while
693 * the option headers and values are only 4 bytes
694 * aligned. So its safer to do a bcopy compared to
695 * assigning fdbuf->fd_fds[i] to fp.
696 */
697 bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
698 dprint(1, ("fdbuf_free: [%d] = %p\n", i, (void *)fp));
699 (void) closef(fp);
700 }
701 if (fdbuf->fd_ebuf != NULL)
702 kmem_free(fdbuf->fd_ebuf, fdbuf->fd_ebuflen);
703 kmem_free(fdbuf, fdbuf->fd_size);
704 }
705
706 /*
707 * Allocate an esballoc'ed message for AF_UNIX file descriptor passing.
708 * Waits if memory is not available.
709 */
710 mblk_t *
fdbuf_allocmsg(int size,struct fdbuf * fdbuf)711 fdbuf_allocmsg(int size, struct fdbuf *fdbuf)
712 {
713 uchar_t *buf;
714 mblk_t *mp;
715
716 dprint(1, ("fdbuf_allocmsg: size %d, %d fds\n", size, fdbuf->fd_numfd));
717 buf = kmem_alloc(size, KM_SLEEP);
718 fdbuf->fd_ebuf = (caddr_t)buf;
719 fdbuf->fd_ebuflen = size;
720 fdbuf->fd_frtn.free_func = fdbuf_free;
721 fdbuf->fd_frtn.free_arg = (caddr_t)fdbuf;
722
723 mp = esballoc_wait(buf, size, BPRI_MED, &fdbuf->fd_frtn);
724 mp->b_datap->db_type = M_PROTO;
725 return (mp);
726 }
727
728 /*
729 * Extract file descriptors from a fdbuf.
730 * Return list in rights/rightslen.
731 */
732 /*ARGSUSED*/
733 static int
fdbuf_extract(struct fdbuf * fdbuf,void * rights,int rightslen)734 fdbuf_extract(struct fdbuf *fdbuf, void *rights, int rightslen)
735 {
736 int i, fd;
737 int *rp;
738 struct file *fp;
739 int numfd;
740
741 dprint(1, ("fdbuf_extract: %d fds, len %d\n",
742 fdbuf->fd_numfd, rightslen));
743
744 numfd = fdbuf->fd_numfd;
745 ASSERT(rightslen == numfd * (int)sizeof (int));
746
747 /*
748 * Allocate a file descriptor and increment the f_count.
749 * The latter is needed since we always call fdbuf_free
750 * which performs a closef.
751 */
752 rp = (int *)rights;
753 for (i = 0; i < numfd; i++) {
754 if ((fd = ufalloc(0)) == -1)
755 goto cleanup;
756 /*
757 * We need pointer size alignment for fd_fds. On a LP64
758 * kernel, the required alignment is 8 bytes while
759 * the option headers and values are only 4 bytes
760 * aligned. So its safer to do a bcopy compared to
761 * assigning fdbuf->fd_fds[i] to fp.
762 */
763 bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
764 mutex_enter(&fp->f_tlock);
765 fp->f_count++;
766 mutex_exit(&fp->f_tlock);
767 setf(fd, fp);
768 *rp++ = fd;
769 if (AU_AUDITING())
770 audit_fdrecv(fd, fp);
771 dprint(1, ("fdbuf_extract: [%d] = %d, %p refcnt %d\n",
772 i, fd, (void *)fp, fp->f_count));
773 }
774 return (0);
775
776 cleanup:
777 /*
778 * Undo whatever partial work the loop above has done.
779 */
780 {
781 int j;
782
783 rp = (int *)rights;
784 for (j = 0; j < i; j++) {
785 dprint(0,
786 ("fdbuf_extract: cleanup[%d] = %d\n", j, *rp));
787 (void) closeandsetf(*rp++, NULL);
788 }
789 }
790
791 return (EMFILE);
792 }
793
794 /*
795 * Insert file descriptors into an fdbuf.
796 * Returns a kmem_alloc'ed fdbuf. The fdbuf should be freed
797 * by calling fdbuf_free().
798 */
799 int
fdbuf_create(void * rights,int rightslen,struct fdbuf ** fdbufp)800 fdbuf_create(void *rights, int rightslen, struct fdbuf **fdbufp)
801 {
802 int numfd, i;
803 int *fds;
804 struct file *fp;
805 struct fdbuf *fdbuf;
806 int fdbufsize;
807
808 dprint(1, ("fdbuf_create: len %d\n", rightslen));
809
810 numfd = rightslen / (int)sizeof (int);
811
812 fdbufsize = (int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *));
813 fdbuf = kmem_alloc(fdbufsize, KM_SLEEP);
814 fdbuf->fd_size = fdbufsize;
815 fdbuf->fd_numfd = 0;
816 fdbuf->fd_ebuf = NULL;
817 fdbuf->fd_ebuflen = 0;
818 fds = (int *)rights;
819 for (i = 0; i < numfd; i++) {
820 if ((fp = getf(fds[i])) == NULL) {
821 fdbuf_free(fdbuf);
822 return (EBADF);
823 }
824 dprint(1, ("fdbuf_create: [%d] = %d, %p refcnt %d\n",
825 i, fds[i], (void *)fp, fp->f_count));
826 mutex_enter(&fp->f_tlock);
827 fp->f_count++;
828 mutex_exit(&fp->f_tlock);
829 /*
830 * The maximum alignment for fdbuf (or any option header
831 * and its value) it 4 bytes. On a LP64 kernel, the alignment
832 * is not sufficient for pointers (fd_fds in this case). Since
833 * we just did a kmem_alloc (we get a double word alignment),
834 * we don't need to do anything on the send side (we loose
835 * the double word alignment because fdbuf goes after an
836 * option header (eg T_unitdata_req) which is only 4 byte
837 * aligned). We take care of this when we extract the file
838 * descriptor in fdbuf_extract or fdbuf_free.
839 */
840 fdbuf->fd_fds[i] = fp;
841 fdbuf->fd_numfd++;
842 releasef(fds[i]);
843 if (AU_AUDITING())
844 audit_fdsend(fds[i], fp, 0);
845 }
846 *fdbufp = fdbuf;
847 return (0);
848 }
849
850 static int
fdbuf_optlen(int rightslen)851 fdbuf_optlen(int rightslen)
852 {
853 int numfd;
854
855 numfd = rightslen / (int)sizeof (int);
856
857 return ((int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *)));
858 }
859
860 static t_uscalar_t
fdbuf_cmsglen(int fdbuflen)861 fdbuf_cmsglen(int fdbuflen)
862 {
863 return (t_uscalar_t)((fdbuflen - FDBUF_HDRSIZE) /
864 (int)sizeof (struct file *) * (int)sizeof (int));
865 }
866
867
868 /*
869 * Return non-zero if the mblk and fdbuf are consistent.
870 */
871 static int
fdbuf_verify(mblk_t * mp,struct fdbuf * fdbuf,int fdbuflen)872 fdbuf_verify(mblk_t *mp, struct fdbuf *fdbuf, int fdbuflen)
873 {
874 if (fdbuflen >= FDBUF_HDRSIZE &&
875 fdbuflen == fdbuf->fd_size) {
876 frtn_t *frp = mp->b_datap->db_frtnp;
877 /*
878 * Check that the SO_FILEP portion of the
879 * message has not been modified by
880 * the loopback transport. The sending sockfs generates
881 * a message that is esballoc'ed with the free function
882 * being fdbuf_free() and where free_arg contains the
883 * identical information as the SO_FILEP content.
884 *
885 * If any of these constraints are not satisfied we
886 * silently ignore the option.
887 */
888 ASSERT(mp);
889 if (frp != NULL &&
890 frp->free_func == fdbuf_free &&
891 frp->free_arg != NULL &&
892 bcmp(frp->free_arg, fdbuf, fdbuflen) == 0) {
893 dprint(1, ("fdbuf_verify: fdbuf %p len %d\n",
894 (void *)fdbuf, fdbuflen));
895 return (1);
896 } else {
897 zcmn_err(getzoneid(), CE_WARN,
898 "sockfs: mismatched fdbuf content (%p)",
899 (void *)mp);
900 return (0);
901 }
902 } else {
903 zcmn_err(getzoneid(), CE_WARN,
904 "sockfs: mismatched fdbuf len %d, %d\n",
905 fdbuflen, fdbuf->fd_size);
906 return (0);
907 }
908 }
909
910 /*
911 * When the file descriptors returned by sorecvmsg can not be passed
912 * to the application this routine will cleanup the references on
913 * the files. Start at startoff bytes into the buffer.
914 */
915 static void
close_fds(void * fdbuf,int fdbuflen,int startoff)916 close_fds(void *fdbuf, int fdbuflen, int startoff)
917 {
918 int *fds = (int *)fdbuf;
919 int numfd = fdbuflen / (int)sizeof (int);
920 int i;
921
922 dprint(1, ("close_fds(%p, %d, %d)\n", fdbuf, fdbuflen, startoff));
923
924 for (i = 0; i < numfd; i++) {
925 if (startoff < 0)
926 startoff = 0;
927 if (startoff < (int)sizeof (int)) {
928 /*
929 * This file descriptor is partially or fully after
930 * the offset
931 */
932 dprint(0,
933 ("close_fds: cleanup[%d] = %d\n", i, fds[i]));
934 (void) closeandsetf(fds[i], NULL);
935 }
936 startoff -= (int)sizeof (int);
937 }
938 }
939
940 /*
941 * Close all file descriptors contained in the control part starting at
942 * the startoffset.
943 */
944 void
so_closefds(void * control,t_uscalar_t controllen,int oldflg,int startoff)945 so_closefds(void *control, t_uscalar_t controllen, int oldflg,
946 int startoff)
947 {
948 struct cmsghdr *cmsg;
949
950 if (control == NULL)
951 return;
952
953 if (oldflg) {
954 close_fds(control, controllen, startoff);
955 return;
956 }
957 /* Scan control part for file descriptors. */
958 for (cmsg = (struct cmsghdr *)control;
959 CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
960 cmsg = CMSG_NEXT(cmsg)) {
961 if (cmsg->cmsg_level == SOL_SOCKET &&
962 cmsg->cmsg_type == SCM_RIGHTS) {
963 close_fds(CMSG_CONTENT(cmsg),
964 (int)CMSG_CONTENTLEN(cmsg),
965 startoff - (int)sizeof (struct cmsghdr));
966 }
967 startoff -= cmsg->cmsg_len;
968 }
969 }
970
971 /*
972 * Returns a pointer/length for the file descriptors contained
973 * in the control buffer. Returns with *fdlenp == -1 if there are no
974 * file descriptor options present. This is different than there being
975 * a zero-length file descriptor option.
976 * Fail if there are multiple SCM_RIGHT cmsgs.
977 */
978 int
so_getfdopt(void * control,t_uscalar_t controllen,int oldflg,void ** fdsp,int * fdlenp)979 so_getfdopt(void *control, t_uscalar_t controllen, int oldflg,
980 void **fdsp, int *fdlenp)
981 {
982 struct cmsghdr *cmsg;
983 void *fds;
984 int fdlen;
985
986 if (control == NULL) {
987 *fdsp = NULL;
988 *fdlenp = -1;
989 return (0);
990 }
991
992 if (oldflg) {
993 *fdsp = control;
994 if (controllen == 0)
995 *fdlenp = -1;
996 else
997 *fdlenp = controllen;
998 dprint(1, ("so_getfdopt: old %d\n", *fdlenp));
999 return (0);
1000 }
1001
1002 fds = NULL;
1003 fdlen = 0;
1004
1005 for (cmsg = (struct cmsghdr *)control;
1006 CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1007 cmsg = CMSG_NEXT(cmsg)) {
1008 if (cmsg->cmsg_level == SOL_SOCKET &&
1009 cmsg->cmsg_type == SCM_RIGHTS) {
1010 if (fds != NULL)
1011 return (EINVAL);
1012 fds = CMSG_CONTENT(cmsg);
1013 fdlen = (int)CMSG_CONTENTLEN(cmsg);
1014 dprint(1, ("so_getfdopt: new %lu\n",
1015 (size_t)CMSG_CONTENTLEN(cmsg)));
1016 }
1017 }
1018 if (fds == NULL) {
1019 dprint(1, ("so_getfdopt: NONE\n"));
1020 *fdlenp = -1;
1021 } else
1022 *fdlenp = fdlen;
1023 *fdsp = fds;
1024 return (0);
1025 }
1026
1027 /*
1028 * Return the length of the options including any file descriptor options.
1029 */
1030 t_uscalar_t
so_optlen(void * control,t_uscalar_t controllen,int oldflg)1031 so_optlen(void *control, t_uscalar_t controllen, int oldflg)
1032 {
1033 struct cmsghdr *cmsg;
1034 t_uscalar_t optlen = 0;
1035 t_uscalar_t len;
1036
1037 if (control == NULL)
1038 return (0);
1039
1040 if (oldflg)
1041 return ((t_uscalar_t)(sizeof (struct T_opthdr) +
1042 fdbuf_optlen(controllen)));
1043
1044 for (cmsg = (struct cmsghdr *)control;
1045 CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1046 cmsg = CMSG_NEXT(cmsg)) {
1047 if (cmsg->cmsg_level == SOL_SOCKET &&
1048 cmsg->cmsg_type == SCM_RIGHTS) {
1049 len = fdbuf_optlen((int)CMSG_CONTENTLEN(cmsg));
1050 } else {
1051 len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1052 }
1053 optlen += (t_uscalar_t)(_TPI_ALIGN_TOPT(len) +
1054 sizeof (struct T_opthdr));
1055 }
1056 dprint(1, ("so_optlen: controllen %d, flg %d -> optlen %d\n",
1057 controllen, oldflg, optlen));
1058 return (optlen);
1059 }
1060
1061 /*
1062 * Copy options from control to the mblk. Skip any file descriptor options.
1063 */
1064 void
so_cmsg2opt(void * control,t_uscalar_t controllen,int oldflg,mblk_t * mp)1065 so_cmsg2opt(void *control, t_uscalar_t controllen, int oldflg, mblk_t *mp)
1066 {
1067 struct T_opthdr toh;
1068 struct cmsghdr *cmsg;
1069
1070 if (control == NULL)
1071 return;
1072
1073 if (oldflg) {
1074 /* No real options - caller has handled file descriptors */
1075 return;
1076 }
1077 for (cmsg = (struct cmsghdr *)control;
1078 CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1079 cmsg = CMSG_NEXT(cmsg)) {
1080 /*
1081 * Note: The caller handles file descriptors prior
1082 * to calling this function.
1083 */
1084 t_uscalar_t len;
1085
1086 if (cmsg->cmsg_level == SOL_SOCKET &&
1087 cmsg->cmsg_type == SCM_RIGHTS)
1088 continue;
1089
1090 len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1091 toh.level = cmsg->cmsg_level;
1092 toh.name = cmsg->cmsg_type;
1093 toh.len = len + (t_uscalar_t)sizeof (struct T_opthdr);
1094 toh.status = 0;
1095
1096 soappendmsg(mp, &toh, sizeof (toh));
1097 soappendmsg(mp, CMSG_CONTENT(cmsg), len);
1098 mp->b_wptr += _TPI_ALIGN_TOPT(len) - len;
1099 ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
1100 }
1101 }
1102
1103 /*
1104 * Return the length of the control message derived from the options.
1105 * Exclude SO_SRCADDR and SO_UNIX_CLOSE options. Include SO_FILEP.
1106 * When oldflg is set only include SO_FILEP.
1107 * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1108 * allocates the space that so_opt2cmsg fills. If one changes, the other should
1109 * also be checked for any possible impacts.
1110 */
1111 t_uscalar_t
so_cmsglen(mblk_t * mp,void * opt,t_uscalar_t optlen,int oldflg)1112 so_cmsglen(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg)
1113 {
1114 t_uscalar_t cmsglen = 0;
1115 struct T_opthdr *tohp;
1116 t_uscalar_t len;
1117 t_uscalar_t last_roundup = 0;
1118
1119 ASSERT(__TPI_TOPT_ISALIGNED(opt));
1120
1121 for (tohp = (struct T_opthdr *)opt;
1122 tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1123 tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1124 dprint(1, ("so_cmsglen: level 0x%x, name %d, len %d\n",
1125 tohp->level, tohp->name, tohp->len));
1126 if (tohp->level == SOL_SOCKET &&
1127 (tohp->name == SO_SRCADDR ||
1128 tohp->name == SO_UNIX_CLOSE)) {
1129 continue;
1130 }
1131 if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1132 struct fdbuf *fdbuf;
1133 int fdbuflen;
1134
1135 fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1136 fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1137
1138 if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1139 continue;
1140 if (oldflg) {
1141 cmsglen += fdbuf_cmsglen(fdbuflen);
1142 continue;
1143 }
1144 len = fdbuf_cmsglen(fdbuflen);
1145 } else if (tohp->level == SOL_SOCKET &&
1146 tohp->name == SCM_TIMESTAMP) {
1147 if (oldflg)
1148 continue;
1149
1150 if (get_udatamodel() == DATAMODEL_NATIVE) {
1151 len = sizeof (struct timeval);
1152 } else {
1153 len = sizeof (struct timeval32);
1154 }
1155 } else {
1156 if (oldflg)
1157 continue;
1158 len = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1159 }
1160 /*
1161 * Exclude roundup for last option to not set
1162 * MSG_CTRUNC when the cmsg fits but the padding doesn't fit.
1163 */
1164 last_roundup = (t_uscalar_t)
1165 (ROUNDUP_cmsglen(len + (int)sizeof (struct cmsghdr)) -
1166 (len + (int)sizeof (struct cmsghdr)));
1167 cmsglen += (t_uscalar_t)(len + (int)sizeof (struct cmsghdr)) +
1168 last_roundup;
1169 }
1170 cmsglen -= last_roundup;
1171 dprint(1, ("so_cmsglen: optlen %d, flg %d -> cmsglen %d\n",
1172 optlen, oldflg, cmsglen));
1173 return (cmsglen);
1174 }
1175
1176 /*
1177 * Copy options from options to the control. Convert SO_FILEP to
1178 * file descriptors.
1179 * Returns errno or zero.
1180 * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1181 * allocates the space that so_opt2cmsg fills. If one changes, the other should
1182 * also be checked for any possible impacts.
1183 */
1184 int
so_opt2cmsg(mblk_t * mp,void * opt,t_uscalar_t optlen,int oldflg,void * control,t_uscalar_t controllen)1185 so_opt2cmsg(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg,
1186 void *control, t_uscalar_t controllen)
1187 {
1188 struct T_opthdr *tohp;
1189 struct cmsghdr *cmsg;
1190 struct fdbuf *fdbuf;
1191 int fdbuflen;
1192 int error;
1193 #if defined(DEBUG) || defined(__lint)
1194 struct cmsghdr *cend = (struct cmsghdr *)
1195 (((uint8_t *)control) + ROUNDUP_cmsglen(controllen));
1196 #endif
1197 cmsg = (struct cmsghdr *)control;
1198
1199 ASSERT(__TPI_TOPT_ISALIGNED(opt));
1200
1201 for (tohp = (struct T_opthdr *)opt;
1202 tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1203 tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1204 dprint(1, ("so_opt2cmsg: level 0x%x, name %d, len %d\n",
1205 tohp->level, tohp->name, tohp->len));
1206
1207 if (tohp->level == SOL_SOCKET &&
1208 (tohp->name == SO_SRCADDR ||
1209 tohp->name == SO_UNIX_CLOSE)) {
1210 continue;
1211 }
1212 ASSERT((uintptr_t)cmsg <= (uintptr_t)control + controllen);
1213 if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1214 fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1215 fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1216
1217 if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1218 return (EPROTO);
1219 if (oldflg) {
1220 error = fdbuf_extract(fdbuf, control,
1221 (int)controllen);
1222 if (error != 0)
1223 return (error);
1224 continue;
1225 } else {
1226 int fdlen;
1227
1228 fdlen = (int)fdbuf_cmsglen(
1229 (int)_TPI_TOPT_DATALEN(tohp));
1230
1231 cmsg->cmsg_level = tohp->level;
1232 cmsg->cmsg_type = SCM_RIGHTS;
1233 cmsg->cmsg_len = (socklen_t)(fdlen +
1234 sizeof (struct cmsghdr));
1235
1236 error = fdbuf_extract(fdbuf,
1237 CMSG_CONTENT(cmsg), fdlen);
1238 if (error != 0)
1239 return (error);
1240 }
1241 } else if (tohp->level == SOL_SOCKET &&
1242 tohp->name == SCM_TIMESTAMP) {
1243 timestruc_t *timestamp;
1244
1245 if (oldflg)
1246 continue;
1247
1248 cmsg->cmsg_level = tohp->level;
1249 cmsg->cmsg_type = tohp->name;
1250
1251 timestamp =
1252 (timestruc_t *)P2ROUNDUP((intptr_t)&tohp[1],
1253 sizeof (intptr_t));
1254
1255 if (get_udatamodel() == DATAMODEL_NATIVE) {
1256 struct timeval tv;
1257
1258 cmsg->cmsg_len = sizeof (struct timeval) +
1259 sizeof (struct cmsghdr);
1260 tv.tv_sec = timestamp->tv_sec;
1261 tv.tv_usec = timestamp->tv_nsec /
1262 (NANOSEC / MICROSEC);
1263 /*
1264 * on LP64 systems, the struct timeval in
1265 * the destination will not be 8-byte aligned,
1266 * so use bcopy to avoid alignment trouble
1267 */
1268 bcopy(&tv, CMSG_CONTENT(cmsg), sizeof (tv));
1269 } else {
1270 struct timeval32 *time32;
1271
1272 cmsg->cmsg_len = sizeof (struct timeval32) +
1273 sizeof (struct cmsghdr);
1274 time32 = (struct timeval32 *)CMSG_CONTENT(cmsg);
1275 time32->tv_sec = (time32_t)timestamp->tv_sec;
1276 time32->tv_usec =
1277 (int32_t)(timestamp->tv_nsec /
1278 (NANOSEC / MICROSEC));
1279 }
1280
1281 } else {
1282 if (oldflg)
1283 continue;
1284
1285 cmsg->cmsg_level = tohp->level;
1286 cmsg->cmsg_type = tohp->name;
1287 cmsg->cmsg_len = (socklen_t)(_TPI_TOPT_DATALEN(tohp) +
1288 sizeof (struct cmsghdr));
1289
1290 /* copy content to control data part */
1291 bcopy(&tohp[1], CMSG_CONTENT(cmsg),
1292 CMSG_CONTENTLEN(cmsg));
1293 }
1294 /* move to next CMSG structure! */
1295 cmsg = CMSG_NEXT(cmsg);
1296 }
1297 dprint(1, ("so_opt2cmsg: buf %p len %d; cend %p; final cmsg %p\n",
1298 control, controllen, (void *)cend, (void *)cmsg));
1299 ASSERT(cmsg <= cend);
1300 return (0);
1301 }
1302
1303 /*
1304 * Extract the SO_SRCADDR option value if present.
1305 */
1306 void
so_getopt_srcaddr(void * opt,t_uscalar_t optlen,void ** srcp,t_uscalar_t * srclenp)1307 so_getopt_srcaddr(void *opt, t_uscalar_t optlen, void **srcp,
1308 t_uscalar_t *srclenp)
1309 {
1310 struct T_opthdr *tohp;
1311
1312 ASSERT(__TPI_TOPT_ISALIGNED(opt));
1313
1314 ASSERT(srcp != NULL && srclenp != NULL);
1315 *srcp = NULL;
1316 *srclenp = 0;
1317
1318 for (tohp = (struct T_opthdr *)opt;
1319 tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1320 tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1321 dprint(1, ("so_getopt_srcaddr: level 0x%x, name %d, len %d\n",
1322 tohp->level, tohp->name, tohp->len));
1323 if (tohp->level == SOL_SOCKET &&
1324 tohp->name == SO_SRCADDR) {
1325 *srcp = _TPI_TOPT_DATA(tohp);
1326 *srclenp = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1327 }
1328 }
1329 }
1330
1331 /*
1332 * Verify if the SO_UNIX_CLOSE option is present.
1333 */
1334 int
so_getopt_unix_close(void * opt,t_uscalar_t optlen)1335 so_getopt_unix_close(void *opt, t_uscalar_t optlen)
1336 {
1337 struct T_opthdr *tohp;
1338
1339 ASSERT(__TPI_TOPT_ISALIGNED(opt));
1340
1341 for (tohp = (struct T_opthdr *)opt;
1342 tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1343 tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1344 dprint(1,
1345 ("so_getopt_unix_close: level 0x%x, name %d, len %d\n",
1346 tohp->level, tohp->name, tohp->len));
1347 if (tohp->level == SOL_SOCKET &&
1348 tohp->name == SO_UNIX_CLOSE)
1349 return (1);
1350 }
1351 return (0);
1352 }
1353
1354 /*
1355 * Allocate an M_PROTO message.
1356 *
1357 * If allocation fails the behavior depends on sleepflg:
1358 * _ALLOC_NOSLEEP fail immediately
1359 * _ALLOC_INTR sleep for memory until a signal is caught
1360 * _ALLOC_SLEEP sleep forever. Don't return NULL.
1361 */
1362 mblk_t *
soallocproto(size_t size,int sleepflg,cred_t * cr)1363 soallocproto(size_t size, int sleepflg, cred_t *cr)
1364 {
1365 mblk_t *mp;
1366
1367 /* Round up size for reuse */
1368 size = MAX(size, 64);
1369 if (cr != NULL)
1370 mp = allocb_cred(size, cr, curproc->p_pid);
1371 else
1372 mp = allocb(size, BPRI_MED);
1373
1374 if (mp == NULL) {
1375 int error; /* Dummy - error not returned to caller */
1376
1377 switch (sleepflg) {
1378 case _ALLOC_SLEEP:
1379 if (cr != NULL) {
1380 mp = allocb_cred_wait(size, STR_NOSIG, &error,
1381 cr, curproc->p_pid);
1382 } else {
1383 mp = allocb_wait(size, BPRI_MED, STR_NOSIG,
1384 &error);
1385 }
1386 ASSERT(mp);
1387 break;
1388 case _ALLOC_INTR:
1389 if (cr != NULL) {
1390 mp = allocb_cred_wait(size, 0, &error, cr,
1391 curproc->p_pid);
1392 } else {
1393 mp = allocb_wait(size, BPRI_MED, 0, &error);
1394 }
1395 if (mp == NULL) {
1396 /* Caught signal while sleeping for memory */
1397 eprintline(ENOBUFS);
1398 return (NULL);
1399 }
1400 break;
1401 case _ALLOC_NOSLEEP:
1402 default:
1403 eprintline(ENOBUFS);
1404 return (NULL);
1405 }
1406 }
1407 DB_TYPE(mp) = M_PROTO;
1408 return (mp);
1409 }
1410
1411 /*
1412 * Allocate an M_PROTO message with a single component.
1413 * len is the length of buf. size is the amount to allocate.
1414 *
1415 * buf can be NULL with a non-zero len.
1416 * This results in a bzero'ed chunk being placed the message.
1417 */
1418 mblk_t *
soallocproto1(const void * buf,ssize_t len,ssize_t size,int sleepflg,cred_t * cr)1419 soallocproto1(const void *buf, ssize_t len, ssize_t size, int sleepflg,
1420 cred_t *cr)
1421 {
1422 mblk_t *mp;
1423
1424 if (size == 0)
1425 size = len;
1426
1427 ASSERT(size >= len);
1428 /* Round up size for reuse */
1429 size = MAX(size, 64);
1430 mp = soallocproto(size, sleepflg, cr);
1431 if (mp == NULL)
1432 return (NULL);
1433 mp->b_datap->db_type = M_PROTO;
1434 if (len != 0) {
1435 if (buf != NULL)
1436 bcopy(buf, mp->b_wptr, len);
1437 else
1438 bzero(mp->b_wptr, len);
1439 mp->b_wptr += len;
1440 }
1441 return (mp);
1442 }
1443
1444 /*
1445 * Append buf/len to mp.
1446 * The caller has to ensure that there is enough room in the mblk.
1447 *
1448 * buf can be NULL with a non-zero len.
1449 * This results in a bzero'ed chunk being placed the message.
1450 */
1451 void
soappendmsg(mblk_t * mp,const void * buf,ssize_t len)1452 soappendmsg(mblk_t *mp, const void *buf, ssize_t len)
1453 {
1454 ASSERT(mp);
1455
1456 if (len != 0) {
1457 /* Assert for room left */
1458 ASSERT(mp->b_datap->db_lim - mp->b_wptr >= len);
1459 if (buf != NULL)
1460 bcopy(buf, mp->b_wptr, len);
1461 else
1462 bzero(mp->b_wptr, len);
1463 }
1464 mp->b_wptr += len;
1465 }
1466
1467 /*
1468 * Create a message using two kernel buffers.
1469 * If size is set that will determine the allocation size (e.g. for future
1470 * soappendmsg calls). If size is zero it is derived from the buffer
1471 * lengths.
1472 */
1473 mblk_t *
soallocproto2(const void * buf1,ssize_t len1,const void * buf2,ssize_t len2,ssize_t size,int sleepflg,cred_t * cr)1474 soallocproto2(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1475 ssize_t size, int sleepflg, cred_t *cr)
1476 {
1477 mblk_t *mp;
1478
1479 if (size == 0)
1480 size = len1 + len2;
1481 ASSERT(size >= len1 + len2);
1482
1483 mp = soallocproto1(buf1, len1, size, sleepflg, cr);
1484 if (mp)
1485 soappendmsg(mp, buf2, len2);
1486 return (mp);
1487 }
1488
1489 /*
1490 * Create a message using three kernel buffers.
1491 * If size is set that will determine the allocation size (for future
1492 * soappendmsg calls). If size is zero it is derived from the buffer
1493 * lengths.
1494 */
1495 mblk_t *
soallocproto3(const void * buf1,ssize_t len1,const void * buf2,ssize_t len2,const void * buf3,ssize_t len3,ssize_t size,int sleepflg,cred_t * cr)1496 soallocproto3(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1497 const void *buf3, ssize_t len3, ssize_t size, int sleepflg, cred_t *cr)
1498 {
1499 mblk_t *mp;
1500
1501 if (size == 0)
1502 size = len1 + len2 +len3;
1503 ASSERT(size >= len1 + len2 + len3);
1504
1505 mp = soallocproto1(buf1, len1, size, sleepflg, cr);
1506 if (mp != NULL) {
1507 soappendmsg(mp, buf2, len2);
1508 soappendmsg(mp, buf3, len3);
1509 }
1510 return (mp);
1511 }
1512
1513 #ifdef DEBUG
1514 char *
pr_state(uint_t state,uint_t mode)1515 pr_state(uint_t state, uint_t mode)
1516 {
1517 static char buf[1024];
1518
1519 buf[0] = 0;
1520 if (state & SS_ISCONNECTED)
1521 (void) strcat(buf, "ISCONNECTED ");
1522 if (state & SS_ISCONNECTING)
1523 (void) strcat(buf, "ISCONNECTING ");
1524 if (state & SS_ISDISCONNECTING)
1525 (void) strcat(buf, "ISDISCONNECTING ");
1526 if (state & SS_CANTSENDMORE)
1527 (void) strcat(buf, "CANTSENDMORE ");
1528
1529 if (state & SS_CANTRCVMORE)
1530 (void) strcat(buf, "CANTRCVMORE ");
1531 if (state & SS_ISBOUND)
1532 (void) strcat(buf, "ISBOUND ");
1533 if (state & SS_NDELAY)
1534 (void) strcat(buf, "NDELAY ");
1535 if (state & SS_NONBLOCK)
1536 (void) strcat(buf, "NONBLOCK ");
1537
1538 if (state & SS_ASYNC)
1539 (void) strcat(buf, "ASYNC ");
1540 if (state & SS_ACCEPTCONN)
1541 (void) strcat(buf, "ACCEPTCONN ");
1542 if (state & SS_SAVEDEOR)
1543 (void) strcat(buf, "SAVEDEOR ");
1544
1545 if (state & SS_RCVATMARK)
1546 (void) strcat(buf, "RCVATMARK ");
1547 if (state & SS_OOBPEND)
1548 (void) strcat(buf, "OOBPEND ");
1549 if (state & SS_HAVEOOBDATA)
1550 (void) strcat(buf, "HAVEOOBDATA ");
1551 if (state & SS_HADOOBDATA)
1552 (void) strcat(buf, "HADOOBDATA ");
1553
1554 if (mode & SM_PRIV)
1555 (void) strcat(buf, "PRIV ");
1556 if (mode & SM_ATOMIC)
1557 (void) strcat(buf, "ATOMIC ");
1558 if (mode & SM_ADDR)
1559 (void) strcat(buf, "ADDR ");
1560 if (mode & SM_CONNREQUIRED)
1561 (void) strcat(buf, "CONNREQUIRED ");
1562
1563 if (mode & SM_FDPASSING)
1564 (void) strcat(buf, "FDPASSING ");
1565 if (mode & SM_EXDATA)
1566 (void) strcat(buf, "EXDATA ");
1567 if (mode & SM_OPTDATA)
1568 (void) strcat(buf, "OPTDATA ");
1569 if (mode & SM_BYTESTREAM)
1570 (void) strcat(buf, "BYTESTREAM ");
1571 return (buf);
1572 }
1573
1574 char *
pr_addr(int family,struct sockaddr * addr,t_uscalar_t addrlen)1575 pr_addr(int family, struct sockaddr *addr, t_uscalar_t addrlen)
1576 {
1577 static char buf[1024];
1578
1579 if (addr == NULL || addrlen == 0) {
1580 (void) sprintf(buf, "(len %d) %p", addrlen, (void *)addr);
1581 return (buf);
1582 }
1583 switch (family) {
1584 case AF_INET: {
1585 struct sockaddr_in sin;
1586
1587 bcopy(addr, &sin, sizeof (sin));
1588
1589 (void) sprintf(buf, "(len %d) %x/%d",
1590 addrlen, ntohl(sin.sin_addr.s_addr), ntohs(sin.sin_port));
1591 break;
1592 }
1593 case AF_INET6: {
1594 struct sockaddr_in6 sin6;
1595 uint16_t *piece = (uint16_t *)&sin6.sin6_addr;
1596
1597 bcopy((char *)addr, (char *)&sin6, sizeof (sin6));
1598 (void) sprintf(buf, "(len %d) %x:%x:%x:%x:%x:%x:%x:%x/%d",
1599 addrlen,
1600 ntohs(piece[0]), ntohs(piece[1]),
1601 ntohs(piece[2]), ntohs(piece[3]),
1602 ntohs(piece[4]), ntohs(piece[5]),
1603 ntohs(piece[6]), ntohs(piece[7]),
1604 ntohs(sin6.sin6_port));
1605 break;
1606 }
1607 case AF_UNIX: {
1608 struct sockaddr_un *soun = (struct sockaddr_un *)addr;
1609
1610 (void) sprintf(buf, "(len %d) %s", addrlen,
1611 (soun == NULL) ? "(none)" : soun->sun_path);
1612 break;
1613 }
1614 default:
1615 (void) sprintf(buf, "(unknown af %d)", family);
1616 break;
1617 }
1618 return (buf);
1619 }
1620
1621 /* The logical equivalence operator (a if-and-only-if b) */
1622 #define EQUIVALENT(a, b) (((a) && (b)) || (!(a) && (!(b))))
1623
1624 /*
1625 * Verify limitations and invariants on oob state.
1626 * Return 1 if OK, otherwise 0 so that it can be used as
1627 * ASSERT(verify_oobstate(so));
1628 */
1629 int
so_verify_oobstate(struct sonode * so)1630 so_verify_oobstate(struct sonode *so)
1631 {
1632 boolean_t havemark;
1633
1634 ASSERT(MUTEX_HELD(&so->so_lock));
1635
1636 /*
1637 * The possible state combinations are:
1638 * 0
1639 * SS_OOBPEND
1640 * SS_OOBPEND|SS_HAVEOOBDATA
1641 * SS_OOBPEND|SS_HADOOBDATA
1642 * SS_HADOOBDATA
1643 */
1644 switch (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA)) {
1645 case 0:
1646 case SS_OOBPEND:
1647 case SS_OOBPEND|SS_HAVEOOBDATA:
1648 case SS_OOBPEND|SS_HADOOBDATA:
1649 case SS_HADOOBDATA:
1650 break;
1651 default:
1652 printf("Bad oob state 1 (%p): state %s\n",
1653 (void *)so, pr_state(so->so_state, so->so_mode));
1654 return (0);
1655 }
1656
1657 /* SS_RCVATMARK should only be set when SS_OOBPEND is set */
1658 if ((so->so_state & (SS_RCVATMARK|SS_OOBPEND)) == SS_RCVATMARK) {
1659 printf("Bad oob state 2 (%p): state %s\n",
1660 (void *)so, pr_state(so->so_state, so->so_mode));
1661 return (0);
1662 }
1663
1664 /*
1665 * (havemark != 0 or SS_RCVATMARK) iff SS_OOBPEND
1666 * For TPI, the presence of a "mark" is indicated by sti_oobsigcnt.
1667 */
1668 havemark = (SOCK_IS_NONSTR(so)) ? so->so_oobmark > 0 :
1669 SOTOTPI(so)->sti_oobsigcnt > 0;
1670
1671 if (!EQUIVALENT(havemark || (so->so_state & SS_RCVATMARK),
1672 so->so_state & SS_OOBPEND)) {
1673 printf("Bad oob state 3 (%p): state %s\n",
1674 (void *)so, pr_state(so->so_state, so->so_mode));
1675 return (0);
1676 }
1677
1678 /*
1679 * Unless SO_OOBINLINE we have so_oobmsg != NULL iff SS_HAVEOOBDATA
1680 */
1681 if (!(so->so_options & SO_OOBINLINE) &&
1682 !EQUIVALENT(so->so_oobmsg != NULL, so->so_state & SS_HAVEOOBDATA)) {
1683 printf("Bad oob state 4 (%p): state %s\n",
1684 (void *)so, pr_state(so->so_state, so->so_mode));
1685 return (0);
1686 }
1687
1688 if (!SOCK_IS_NONSTR(so) &&
1689 SOTOTPI(so)->sti_oobsigcnt < SOTOTPI(so)->sti_oobcnt) {
1690 printf("Bad oob state 5 (%p): counts %d/%d state %s\n",
1691 (void *)so, SOTOTPI(so)->sti_oobsigcnt,
1692 SOTOTPI(so)->sti_oobcnt,
1693 pr_state(so->so_state, so->so_mode));
1694 return (0);
1695 }
1696
1697 return (1);
1698 }
1699 #undef EQUIVALENT
1700 #endif /* DEBUG */
1701
1702 /* initialize sockfs zone specific kstat related items */
1703 void *
sock_kstat_init(zoneid_t zoneid)1704 sock_kstat_init(zoneid_t zoneid)
1705 {
1706 kstat_t *ksp;
1707
1708 ksp = kstat_create_zone("sockfs", 0, "sock_unix_list", "misc",
1709 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE|KSTAT_FLAG_VIRTUAL, zoneid);
1710
1711 if (ksp != NULL) {
1712 ksp->ks_update = sockfs_update;
1713 ksp->ks_snapshot = sockfs_snapshot;
1714 ksp->ks_lock = &socklist.sl_lock;
1715 ksp->ks_private = (void *)(uintptr_t)zoneid;
1716 kstat_install(ksp);
1717 }
1718
1719 return (ksp);
1720 }
1721
1722 /* tear down sockfs zone specific kstat related items */
1723 /*ARGSUSED*/
1724 void
sock_kstat_fini(zoneid_t zoneid,void * arg)1725 sock_kstat_fini(zoneid_t zoneid, void *arg)
1726 {
1727 kstat_t *ksp = (kstat_t *)arg;
1728
1729 if (ksp != NULL) {
1730 ASSERT(zoneid == (zoneid_t)(uintptr_t)ksp->ks_private);
1731 kstat_delete(ksp);
1732 }
1733 }
1734
1735 /*
1736 * Zones:
1737 * Note that nactive is going to be different for each zone.
1738 * This means we require kstat to call sockfs_update and then sockfs_snapshot
1739 * for the same zone, or sockfs_snapshot will be taken into the wrong size
1740 * buffer. This is safe, but if the buffer is too small, user will not be
1741 * given details of all sockets. However, as this kstat has a ks_lock, kstat
1742 * driver will keep it locked between the update and the snapshot, so no
1743 * other process (zone) can currently get inbetween resulting in a wrong size
1744 * buffer allocation.
1745 */
1746 static int
sockfs_update(kstat_t * ksp,int rw)1747 sockfs_update(kstat_t *ksp, int rw)
1748 {
1749 uint_t nactive = 0; /* # of active AF_UNIX sockets */
1750 struct sonode *so; /* current sonode on socklist */
1751 zoneid_t myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1752
1753 ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1754
1755 if (rw == KSTAT_WRITE) { /* bounce all writes */
1756 return (EACCES);
1757 }
1758
1759 for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1760 if (so->so_count != 0 && so->so_zoneid == myzoneid) {
1761 nactive++;
1762 }
1763 }
1764 ksp->ks_ndata = nactive;
1765 ksp->ks_data_size = nactive * sizeof (struct k_sockinfo);
1766
1767 return (0);
1768 }
1769
1770 static int
sockfs_snapshot(kstat_t * ksp,void * buf,int rw)1771 sockfs_snapshot(kstat_t *ksp, void *buf, int rw)
1772 {
1773 int ns; /* # of sonodes we've copied */
1774 struct sonode *so; /* current sonode on socklist */
1775 struct k_sockinfo *pksi; /* where we put sockinfo data */
1776 t_uscalar_t sn_len; /* soa_len */
1777 zoneid_t myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1778 sotpi_info_t *sti;
1779
1780 ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1781
1782 ksp->ks_snaptime = gethrtime();
1783
1784 if (rw == KSTAT_WRITE) { /* bounce all writes */
1785 return (EACCES);
1786 }
1787
1788 /*
1789 * for each sonode on the socklist, we massage the important
1790 * info into buf, in k_sockinfo format.
1791 */
1792 pksi = (struct k_sockinfo *)buf;
1793 ns = 0;
1794 for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1795 /* only stuff active sonodes and the same zone: */
1796 if (so->so_count == 0 || so->so_zoneid != myzoneid) {
1797 continue;
1798 }
1799
1800 /*
1801 * If the sonode was activated between the update and the
1802 * snapshot, we're done - as this is only a snapshot.
1803 */
1804 if ((caddr_t)(pksi) >= (caddr_t)buf + ksp->ks_data_size) {
1805 break;
1806 }
1807
1808 sti = SOTOTPI(so);
1809 /* copy important info into buf: */
1810 pksi->ks_si.si_size = sizeof (struct k_sockinfo);
1811 pksi->ks_si.si_family = so->so_family;
1812 pksi->ks_si.si_type = so->so_type;
1813 pksi->ks_si.si_flag = so->so_flag;
1814 pksi->ks_si.si_state = so->so_state;
1815 pksi->ks_si.si_serv_type = sti->sti_serv_type;
1816 pksi->ks_si.si_ux_laddr_sou_magic =
1817 sti->sti_ux_laddr.soua_magic;
1818 pksi->ks_si.si_ux_faddr_sou_magic =
1819 sti->sti_ux_faddr.soua_magic;
1820 pksi->ks_si.si_laddr_soa_len = sti->sti_laddr.soa_len;
1821 pksi->ks_si.si_faddr_soa_len = sti->sti_faddr.soa_len;
1822 pksi->ks_si.si_szoneid = so->so_zoneid;
1823 pksi->ks_si.si_faddr_noxlate = sti->sti_faddr_noxlate;
1824
1825 mutex_enter(&so->so_lock);
1826
1827 if (sti->sti_laddr_sa != NULL) {
1828 ASSERT(sti->sti_laddr_sa->sa_data != NULL);
1829 sn_len = sti->sti_laddr_len;
1830 ASSERT(sn_len <= sizeof (short) +
1831 sizeof (pksi->ks_si.si_laddr_sun_path));
1832
1833 pksi->ks_si.si_laddr_family =
1834 sti->sti_laddr_sa->sa_family;
1835 if (sn_len != 0) {
1836 /* AF_UNIX socket names are NULL terminated */
1837 (void) strncpy(pksi->ks_si.si_laddr_sun_path,
1838 sti->sti_laddr_sa->sa_data,
1839 sizeof (pksi->ks_si.si_laddr_sun_path));
1840 sn_len = strlen(pksi->ks_si.si_laddr_sun_path);
1841 }
1842 pksi->ks_si.si_laddr_sun_path[sn_len] = 0;
1843 }
1844
1845 if (sti->sti_faddr_sa != NULL) {
1846 ASSERT(sti->sti_faddr_sa->sa_data != NULL);
1847 sn_len = sti->sti_faddr_len;
1848 ASSERT(sn_len <= sizeof (short) +
1849 sizeof (pksi->ks_si.si_faddr_sun_path));
1850
1851 pksi->ks_si.si_faddr_family =
1852 sti->sti_faddr_sa->sa_family;
1853 if (sn_len != 0) {
1854 (void) strncpy(pksi->ks_si.si_faddr_sun_path,
1855 sti->sti_faddr_sa->sa_data,
1856 sizeof (pksi->ks_si.si_faddr_sun_path));
1857 sn_len = strlen(pksi->ks_si.si_faddr_sun_path);
1858 }
1859 pksi->ks_si.si_faddr_sun_path[sn_len] = 0;
1860 }
1861
1862 mutex_exit(&so->so_lock);
1863
1864 (void) sprintf(pksi->ks_straddr[0], "%p", (void *)so);
1865 (void) sprintf(pksi->ks_straddr[1], "%p",
1866 (void *)sti->sti_ux_laddr.soua_vp);
1867 (void) sprintf(pksi->ks_straddr[2], "%p",
1868 (void *)sti->sti_ux_faddr.soua_vp);
1869
1870 ns++;
1871 pksi++;
1872 }
1873
1874 ksp->ks_ndata = ns;
1875 return (0);
1876 }
1877
1878 ssize_t
soreadfile(file_t * fp,uchar_t * buf,u_offset_t fileoff,int * err,size_t size)1879 soreadfile(file_t *fp, uchar_t *buf, u_offset_t fileoff, int *err, size_t size)
1880 {
1881 struct uio auio;
1882 struct iovec aiov[MSG_MAXIOVLEN];
1883 register vnode_t *vp;
1884 int ioflag, rwflag;
1885 ssize_t cnt;
1886 int error = 0;
1887 int iovcnt = 0;
1888 short fflag;
1889
1890 vp = fp->f_vnode;
1891 fflag = fp->f_flag;
1892
1893 rwflag = 0;
1894 aiov[0].iov_base = (caddr_t)buf;
1895 aiov[0].iov_len = size;
1896 iovcnt = 1;
1897 cnt = (ssize_t)size;
1898 (void) VOP_RWLOCK(vp, rwflag, NULL);
1899
1900 auio.uio_loffset = fileoff;
1901 auio.uio_iov = aiov;
1902 auio.uio_iovcnt = iovcnt;
1903 auio.uio_resid = cnt;
1904 auio.uio_segflg = UIO_SYSSPACE;
1905 auio.uio_llimit = MAXOFFSET_T;
1906 auio.uio_fmode = fflag;
1907 auio.uio_extflg = UIO_COPY_CACHED;
1908
1909 ioflag = auio.uio_fmode & (FAPPEND|FSYNC|FDSYNC|FRSYNC);
1910
1911 /* If read sync is not asked for, filter sync flags */
1912 if ((ioflag & FRSYNC) == 0)
1913 ioflag &= ~(FSYNC|FDSYNC);
1914 error = VOP_READ(vp, &auio, ioflag, fp->f_cred, NULL);
1915 cnt -= auio.uio_resid;
1916
1917 VOP_RWUNLOCK(vp, rwflag, NULL);
1918
1919 if (error == EINTR && cnt != 0)
1920 error = 0;
1921 out:
1922 if (error != 0) {
1923 *err = error;
1924 return (0);
1925 } else {
1926 *err = 0;
1927 return (cnt);
1928 }
1929 }
1930
1931 int
so_copyin(const void * from,void * to,size_t size,int fromkernel)1932 so_copyin(const void *from, void *to, size_t size, int fromkernel)
1933 {
1934 if (fromkernel) {
1935 bcopy(from, to, size);
1936 return (0);
1937 }
1938 return (xcopyin(from, to, size));
1939 }
1940
1941 int
so_copyout(const void * from,void * to,size_t size,int tokernel)1942 so_copyout(const void *from, void *to, size_t size, int tokernel)
1943 {
1944 if (tokernel) {
1945 bcopy(from, to, size);
1946 return (0);
1947 }
1948 return (xcopyout(from, to, size));
1949 }
1950