1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2015, Joyent, Inc. All rights reserved.
25 * Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
27 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
28 * Copyright 2022 Garrett D'Amore
29 * Copyright 2024 Oxide Computer Company
30 */
31
32 #include <sys/types.h>
33 #include <sys/t_lock.h>
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/buf.h>
37 #include <sys/conf.h>
38 #include <sys/cred.h>
39 #include <sys/kmem.h>
40 #include <sys/sysmacros.h>
41 #include <sys/vfs.h>
42 #include <sys/vnode.h>
43 #include <sys/debug.h>
44 #include <sys/errno.h>
45 #include <sys/time.h>
46 #include <sys/file.h>
47 #include <sys/user.h>
48 #include <sys/stream.h>
49 #include <sys/strsubr.h>
50 #include <sys/strsun.h>
51 #include <sys/sunddi.h>
52 #include <sys/esunddi.h>
53 #include <sys/flock.h>
54 #include <sys/modctl.h>
55 #include <sys/cmn_err.h>
56 #include <sys/vmsystm.h>
57 #include <sys/policy.h>
58 #include <sys/limits.h>
59
60 #include <sys/socket.h>
61 #include <sys/socketvar.h>
62
63 #include <sys/isa_defs.h>
64 #include <sys/inttypes.h>
65 #include <sys/systm.h>
66 #include <sys/cpuvar.h>
67 #include <sys/filio.h>
68 #include <sys/sendfile.h>
69 #include <sys/ddi.h>
70 #include <vm/seg.h>
71 #include <vm/seg_map.h>
72 #include <vm/seg_kpm.h>
73
74 #include <fs/sockfs/sockcommon.h>
75 #include <fs/sockfs/sockfilter_impl.h>
76 #include <fs/sockfs/socktpi.h>
77
78 #ifdef SOCK_TEST
79 int do_useracc = 1; /* Controlled by setting SO_DEBUG to 4 */
80 #else
81 #define do_useracc 1
82 #endif /* SOCK_TEST */
83
84 extern int xnet_truncate_print;
85
86 /*
87 * This constitutes the known flags that are allowed to be passed in the upper
88 * bits of a socket type either for socket() or accept4().
89 */
90 #define SOCK_KNOWN_FLAGS (SOCK_CLOEXEC | SOCK_NDELAY | SOCK_NONBLOCK | \
91 SOCK_CLOFORK)
92
93 /*
94 * Kernel component of socket creation.
95 *
96 * The socket library determines which version number to use.
97 * First the library calls this with a NULL devpath. If this fails
98 * to find a transport (using solookup) the library will look in /etc/netconfig
99 * for the appropriate transport. If one is found it will pass in the
100 * devpath for the kernel to use.
101 */
102 int
so_socket(int family,int type_w_flags,int protocol,char * devpath,int version)103 so_socket(int family, int type_w_flags, int protocol, char *devpath,
104 int version)
105 {
106 struct sonode *so;
107 vnode_t *vp;
108 struct file *fp;
109 int fd;
110 int error;
111 int type;
112
113 type = type_w_flags & SOCK_TYPE_MASK;
114 type_w_flags &= ~SOCK_TYPE_MASK;
115 if (type_w_flags & ~SOCK_KNOWN_FLAGS)
116 return (set_errno(EINVAL));
117
118 if (devpath != NULL) {
119 char *buf;
120 size_t kdevpathlen = 0;
121
122 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
123 if ((error = copyinstr(devpath, buf,
124 MAXPATHLEN, &kdevpathlen)) != 0) {
125 kmem_free(buf, MAXPATHLEN);
126 return (set_errno(error));
127 }
128 so = socket_create(family, type, protocol, buf, NULL,
129 SOCKET_SLEEP, version, CRED(), &error);
130 kmem_free(buf, MAXPATHLEN);
131 } else {
132 so = socket_create(family, type, protocol, NULL, NULL,
133 SOCKET_SLEEP, version, CRED(), &error);
134 }
135 if (so == NULL)
136 return (set_errno(error));
137
138 /* Allocate a file descriptor for the socket */
139 vp = SOTOV(so);
140 error = falloc(vp, FWRITE|FREAD, &fp, &fd);
141 if (error != 0) {
142 (void) socket_close(so, 0, CRED());
143 socket_destroy(so);
144 return (set_errno(error));
145 }
146
147 /*
148 * Now fill in the entries that falloc reserved
149 */
150 if (type_w_flags & SOCK_NDELAY) {
151 so->so_state |= SS_NDELAY;
152 fp->f_flag |= FNDELAY;
153 }
154 if (type_w_flags & SOCK_NONBLOCK) {
155 so->so_state |= SS_NONBLOCK;
156 fp->f_flag |= FNONBLOCK;
157 }
158 mutex_exit(&fp->f_tlock);
159 setf(fd, fp);
160 if ((type_w_flags & SOCK_CLOEXEC) != 0) {
161 f_setfd_or(fd, FD_CLOEXEC);
162 }
163 if ((type_w_flags & SOCK_CLOFORK) != 0) {
164 f_setfd_or(fd, FD_CLOFORK);
165 }
166
167 return (fd);
168 }
169
170 /*
171 * Map from a file descriptor to a socket node.
172 * Returns with the file descriptor held i.e. the caller has to
173 * use releasef when done with the file descriptor.
174 */
175 struct sonode *
getsonode(int sock,int * errorp,file_t ** fpp)176 getsonode(int sock, int *errorp, file_t **fpp)
177 {
178 file_t *fp;
179 vnode_t *vp;
180 struct sonode *so;
181
182 if ((fp = getf(sock)) == NULL) {
183 *errorp = EBADF;
184 eprintline(*errorp);
185 return (NULL);
186 }
187 vp = fp->f_vnode;
188 /* Check if it is a socket */
189 if (vp->v_type != VSOCK) {
190 releasef(sock);
191 *errorp = ENOTSOCK;
192 eprintline(*errorp);
193 return (NULL);
194 }
195 /*
196 * Use the stream head to find the real socket vnode.
197 * This is needed when namefs sits above sockfs.
198 */
199 if (vp->v_stream) {
200 ASSERT(vp->v_stream->sd_vnode);
201 vp = vp->v_stream->sd_vnode;
202
203 so = VTOSO(vp);
204 if (so->so_version == SOV_STREAM) {
205 releasef(sock);
206 *errorp = ENOTSOCK;
207 eprintsoline(so, *errorp);
208 return (NULL);
209 }
210 } else {
211 so = VTOSO(vp);
212 }
213 if (fpp)
214 *fpp = fp;
215 return (so);
216 }
217
218 /*
219 * Allocate and copyin a sockaddr.
220 * Ensures NULL termination for AF_UNIX addresses by extending them
221 * with one NULL byte if need be. Verifies that the length is not
222 * excessive to prevent an application from consuming all of kernel
223 * memory. Returns NULL when an error occurred.
224 */
225 static struct sockaddr *
copyin_name(struct sonode * so,struct sockaddr * name,socklen_t * namelenp,int * errorp)226 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp,
227 int *errorp)
228 {
229 char *faddr;
230 size_t namelen = (size_t)*namelenp;
231
232 ASSERT(namelen != 0);
233 if (namelen > SO_MAXARGSIZE) {
234 *errorp = EINVAL;
235 eprintsoline(so, *errorp);
236 return (NULL);
237 }
238
239 faddr = (char *)kmem_alloc(namelen, KM_SLEEP);
240 if (copyin(name, faddr, namelen)) {
241 kmem_free(faddr, namelen);
242 *errorp = EFAULT;
243 eprintsoline(so, *errorp);
244 return (NULL);
245 }
246
247 /*
248 * Add space for NULL termination if needed.
249 * Do a quick check if the last byte is NUL.
250 */
251 if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') {
252 /* Check if there is any NULL termination */
253 size_t i;
254 int foundnull = 0;
255
256 for (i = sizeof (name->sa_family); i < namelen; i++) {
257 if (faddr[i] == '\0') {
258 foundnull = 1;
259 break;
260 }
261 }
262 if (!foundnull) {
263 /* Add extra byte for NUL padding */
264 char *nfaddr;
265
266 nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP);
267 bcopy(faddr, nfaddr, namelen);
268 kmem_free(faddr, namelen);
269
270 /* NUL terminate */
271 nfaddr[namelen] = '\0';
272 namelen++;
273 ASSERT((socklen_t)namelen == namelen);
274 *namelenp = (socklen_t)namelen;
275 faddr = nfaddr;
276 }
277 }
278 return ((struct sockaddr *)faddr);
279 }
280
281 /*
282 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
283 */
284 static int
copyout_arg(void * uaddr,socklen_t ulen,void * ulenp,void * kaddr,socklen_t klen)285 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp, void *kaddr,
286 socklen_t klen)
287 {
288 if (uaddr != NULL) {
289 if (ulen > klen)
290 ulen = klen;
291
292 if (ulen != 0) {
293 if (copyout(kaddr, uaddr, ulen))
294 return (EFAULT);
295 }
296 } else
297 ulen = 0;
298
299 if (ulenp != NULL) {
300 if (copyout(&ulen, ulenp, sizeof (ulen)))
301 return (EFAULT);
302 }
303 return (0);
304 }
305
306 /*
307 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
308 * If klen is greater than ulen it still uses the non-truncated
309 * klen to update ulenp.
310 */
311 static int
copyout_name(void * uaddr,socklen_t ulen,void * ulenp,void * kaddr,socklen_t klen)312 copyout_name(void *uaddr, socklen_t ulen, void *ulenp, void *kaddr,
313 socklen_t klen)
314 {
315 if (uaddr != NULL) {
316 if (ulen >= klen)
317 ulen = klen;
318 else if (ulen != 0 && xnet_truncate_print) {
319 printf("sockfs: truncating copyout of address using "
320 "XNET semantics for pid = %d. Lengths %d, %d\n",
321 curproc->p_pid, klen, ulen);
322 }
323
324 if (ulen != 0) {
325 if (copyout(kaddr, uaddr, ulen))
326 return (EFAULT);
327 } else
328 klen = 0;
329 } else
330 klen = 0;
331
332 if (ulenp != NULL) {
333 if (copyout(&klen, ulenp, sizeof (klen)))
334 return (EFAULT);
335 }
336 return (0);
337 }
338
339 /*
340 * The socketpair() code in libsocket creates two sockets (using
341 * the /etc/netconfig fallback if needed) before calling this routine
342 * to connect the two sockets together.
343 *
344 * For a SOCK_STREAM socketpair a listener is needed - in that case this
345 * routine will create a new file descriptor as part of accepting the
346 * connection. The library socketpair() will check if svs[2] has changed
347 * in which case it will close the changed fd.
348 *
349 * Note that this code could use the TPI feature of accepting the connection
350 * on the listening endpoint. However, that would require significant changes
351 * to soaccept.
352 */
353 int
so_socketpair(int sv[2])354 so_socketpair(int sv[2])
355 {
356 int svs[2];
357 struct sonode *so1, *so2;
358 int error;
359 int orig_flags;
360 struct sockaddr_ux *name;
361 size_t namelen;
362 sotpi_info_t *sti1;
363 sotpi_info_t *sti2;
364
365 dprint(1, ("so_socketpair(%p)\n", (void *)sv));
366
367 error = useracc(sv, sizeof (svs), B_WRITE);
368 if (error && do_useracc)
369 return (set_errno(EFAULT));
370
371 if (copyin(sv, svs, sizeof (svs)))
372 return (set_errno(EFAULT));
373
374 if ((so1 = getsonode(svs[0], &error, NULL)) == NULL)
375 return (set_errno(error));
376
377 if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) {
378 releasef(svs[0]);
379 return (set_errno(error));
380 }
381
382 if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) {
383 error = EOPNOTSUPP;
384 goto done;
385 }
386
387 sti1 = SOTOTPI(so1);
388 sti2 = SOTOTPI(so2);
389
390 /*
391 * The code below makes assumptions about the "sockfs" implementation.
392 * So make sure that the correct implementation is really used.
393 */
394 ASSERT(so1->so_ops == &sotpi_sonodeops);
395 ASSERT(so2->so_ops == &sotpi_sonodeops);
396
397 if (so1->so_type == SOCK_DGRAM) {
398 /*
399 * Bind both sockets and connect them with each other.
400 * Need to allocate name/namelen for soconnect.
401 */
402 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC, CRED());
403 if (error) {
404 eprintsoline(so1, error);
405 goto done;
406 }
407 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
408 if (error) {
409 eprintsoline(so2, error);
410 goto done;
411 }
412 namelen = sizeof (struct sockaddr_ux);
413 name = kmem_alloc(namelen, KM_SLEEP);
414 name->sou_family = AF_UNIX;
415 name->sou_addr = sti2->sti_ux_laddr;
416 error = socket_connect(so1,
417 (struct sockaddr *)name,
418 (socklen_t)namelen,
419 0, _SOCONNECT_NOXLATE, CRED());
420 if (error) {
421 kmem_free(name, namelen);
422 eprintsoline(so1, error);
423 goto done;
424 }
425 name->sou_addr = sti1->sti_ux_laddr;
426 error = socket_connect(so2,
427 (struct sockaddr *)name,
428 (socklen_t)namelen,
429 0, _SOCONNECT_NOXLATE, CRED());
430 kmem_free(name, namelen);
431 if (error) {
432 eprintsoline(so2, error);
433 goto done;
434 }
435 releasef(svs[0]);
436 releasef(svs[1]);
437 } else {
438 /*
439 * Bind both sockets, with so1 being a listener.
440 * Connect so2 to so1 - nonblocking to avoid waiting for
441 * soaccept to complete.
442 * Accept a connection on so1. Pass out the new fd as sv[0].
443 * The library will detect the changed fd and close
444 * the original one.
445 */
446 struct sonode *nso;
447 struct vnode *nvp;
448 struct file *nfp;
449 int nfd;
450
451 /*
452 * We could simply call socket_listen() here (which would do the
453 * binding automatically) if the code didn't rely on passing
454 * _SOBIND_NOXLATE to the TPI implementation of socket_bind().
455 */
456 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC|
457 _SOBIND_NOXLATE|_SOBIND_LISTEN|_SOBIND_SOCKETPAIR,
458 CRED());
459 if (error) {
460 eprintsoline(so1, error);
461 goto done;
462 }
463 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
464 if (error) {
465 eprintsoline(so2, error);
466 goto done;
467 }
468
469 namelen = sizeof (struct sockaddr_ux);
470 name = kmem_alloc(namelen, KM_SLEEP);
471 name->sou_family = AF_UNIX;
472 name->sou_addr = sti1->sti_ux_laddr;
473 error = socket_connect(so2,
474 (struct sockaddr *)name,
475 (socklen_t)namelen,
476 FNONBLOCK, _SOCONNECT_NOXLATE, CRED());
477 kmem_free(name, namelen);
478 if (error) {
479 if (error != EINPROGRESS) {
480 eprintsoline(so2, error); goto done;
481 }
482 }
483
484 error = socket_accept(so1, 0, CRED(), &nso);
485 if (error) {
486 eprintsoline(so1, error);
487 goto done;
488 }
489
490 /* wait for so2 being SS_CONNECTED ignoring signals */
491 mutex_enter(&so2->so_lock);
492 error = sowaitconnected(so2, 0, 1);
493 mutex_exit(&so2->so_lock);
494 if (error != 0) {
495 (void) socket_close(nso, 0, CRED());
496 socket_destroy(nso);
497 eprintsoline(so2, error);
498 goto done;
499 }
500
501 nvp = SOTOV(nso);
502 error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd);
503 if (error != 0) {
504 (void) socket_close(nso, 0, CRED());
505 socket_destroy(nso);
506 eprintsoline(nso, error);
507 goto done;
508 }
509 /*
510 * copy over FNONBLOCK and FNDELAY flags should they exist
511 */
512 if (so1->so_state & SS_NONBLOCK)
513 nfp->f_flag |= FNONBLOCK;
514 if (so1->so_state & SS_NDELAY)
515 nfp->f_flag |= FNDELAY;
516
517 /*
518 * fill in the entries that falloc reserved
519 */
520 mutex_exit(&nfp->f_tlock);
521 setf(nfd, nfp);
522
523 /*
524 * get the original flags before we release
525 */
526 VERIFY(f_getfd_error(svs[0], &orig_flags) == 0);
527
528 releasef(svs[0]);
529 releasef(svs[1]);
530
531 /*
532 * If FD_CLOEXEC or FD_CLOFORK was set on the file descriptor
533 * we're swapping out, we should set it on the new one too.
534 */
535 if (orig_flags & (FD_CLOEXEC | FD_CLOFORK)) {
536 f_setfd_or(nfd, orig_flags & (FD_CLOEXEC | FD_CLOFORK));
537 }
538
539 /*
540 * The socketpair library routine will close the original
541 * svs[0] when this code passes out a different file
542 * descriptor.
543 */
544 svs[0] = nfd;
545
546 if (copyout(svs, sv, sizeof (svs))) {
547 (void) closeandsetf(nfd, NULL);
548 eprintline(EFAULT);
549 return (set_errno(EFAULT));
550 }
551 }
552 return (0);
553
554 done:
555 releasef(svs[0]);
556 releasef(svs[1]);
557 return (set_errno(error));
558 }
559
560 int
bind(int sock,struct sockaddr * name,socklen_t namelen,int version)561 bind(int sock, struct sockaddr *name, socklen_t namelen, int version)
562 {
563 struct sonode *so;
564 int error;
565
566 dprint(1, ("bind(%d, %p, %d)\n",
567 sock, (void *)name, namelen));
568
569 if ((so = getsonode(sock, &error, NULL)) == NULL)
570 return (set_errno(error));
571
572 /* Allocate and copyin name */
573 /*
574 * X/Open test does not expect EFAULT with NULL name and non-zero
575 * namelen.
576 */
577 if (name != NULL && namelen != 0) {
578 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
579 name = copyin_name(so, name, &namelen, &error);
580 if (name == NULL) {
581 releasef(sock);
582 return (set_errno(error));
583 }
584 } else {
585 name = NULL;
586 namelen = 0;
587 }
588
589 switch (version) {
590 default:
591 error = socket_bind(so, name, namelen, 0, CRED());
592 break;
593 case SOV_XPG4_2:
594 error = socket_bind(so, name, namelen, _SOBIND_XPG4_2, CRED());
595 break;
596 case SOV_SOCKBSD:
597 error = socket_bind(so, name, namelen, _SOBIND_SOCKBSD, CRED());
598 break;
599 }
600
601 releasef(sock);
602 if (name != NULL)
603 kmem_free(name, (size_t)namelen);
604
605 if (error)
606 return (set_errno(error));
607 return (0);
608 }
609
610 /* ARGSUSED2 */
611 int
listen(int sock,int backlog,int version)612 listen(int sock, int backlog, int version)
613 {
614 struct sonode *so;
615 int error;
616
617 dprint(1, ("listen(%d, %d)\n",
618 sock, backlog));
619
620 if ((so = getsonode(sock, &error, NULL)) == NULL)
621 return (set_errno(error));
622
623 error = socket_listen(so, backlog, CRED());
624
625 releasef(sock);
626 if (error)
627 return (set_errno(error));
628 return (0);
629 }
630
631 /*ARGSUSED3*/
632 int
accept(int sock,struct sockaddr * name,socklen_t * namelenp,int version,int flags)633 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version,
634 int flags)
635 {
636 struct sonode *so;
637 file_t *fp;
638 int error;
639 socklen_t namelen;
640 struct sonode *nso;
641 struct vnode *nvp;
642 struct file *nfp;
643 int nfd;
644 int ssflags;
645 struct sockaddr *addrp;
646 socklen_t addrlen;
647
648 dprint(1, ("accept(%d, %p, %p)\n",
649 sock, (void *)name, (void *)namelenp));
650
651 if (flags & ~SOCK_KNOWN_FLAGS) {
652 return (set_errno(EINVAL));
653 }
654
655 /* Translate SOCK_ flags to their SS_ variant */
656 ssflags = 0;
657 if (flags & SOCK_NONBLOCK)
658 ssflags |= SS_NONBLOCK;
659 if (flags & SOCK_NDELAY)
660 ssflags |= SS_NDELAY;
661
662 if ((so = getsonode(sock, &error, &fp)) == NULL)
663 return (set_errno(error));
664
665 if (name != NULL) {
666 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
667 if (copyin(namelenp, &namelen, sizeof (namelen))) {
668 releasef(sock);
669 return (set_errno(EFAULT));
670 }
671 if (namelen != 0) {
672 error = useracc(name, (size_t)namelen, B_WRITE);
673 if (error && do_useracc) {
674 releasef(sock);
675 return (set_errno(EFAULT));
676 }
677 } else
678 name = NULL;
679 } else {
680 namelen = 0;
681 }
682
683 /*
684 * Allocate the user fd before socket_accept() in order to
685 * catch EMFILE errors before calling socket_accept().
686 */
687 if ((nfd = ufalloc(0)) == -1) {
688 eprintsoline(so, EMFILE);
689 releasef(sock);
690 return (set_errno(EMFILE));
691 }
692 error = socket_accept(so, fp->f_flag, CRED(), &nso);
693 if (error) {
694 setf(nfd, NULL);
695 releasef(sock);
696 return (set_errno(error));
697 }
698
699 nvp = SOTOV(nso);
700
701 ASSERT(MUTEX_NOT_HELD(&nso->so_lock));
702 if (namelen != 0) {
703 addrlen = so->so_max_addr_len;
704 addrp = (struct sockaddr *)kmem_alloc(addrlen, KM_SLEEP);
705
706 if ((error = socket_getpeername(nso, (struct sockaddr *)addrp,
707 &addrlen, B_TRUE, CRED())) == 0) {
708 error = copyout_name(name, namelen, namelenp,
709 addrp, addrlen);
710 } else {
711 ASSERT(error == EINVAL || error == ENOTCONN);
712 error = ECONNABORTED;
713 }
714 kmem_free(addrp, so->so_max_addr_len);
715 }
716
717 if (error) {
718 setf(nfd, NULL);
719 (void) socket_close(nso, 0, CRED());
720 socket_destroy(nso);
721 releasef(sock);
722 return (set_errno(error));
723 }
724 error = falloc(NULL, FWRITE|FREAD, &nfp, NULL);
725 if (error != 0) {
726 setf(nfd, NULL);
727 (void) socket_close(nso, 0, CRED());
728 socket_destroy(nso);
729 eprintsoline(so, error);
730 releasef(sock);
731 return (set_errno(error));
732 }
733 /*
734 * fill in the entries that falloc reserved
735 */
736 nfp->f_vnode = nvp;
737 mutex_exit(&nfp->f_tlock);
738 setf(nfd, nfp);
739
740 /*
741 * Act on SOCK_CLOEXEC and SOCK_CLOFORK from flags
742 */
743 if (flags & SOCK_CLOEXEC) {
744 f_setfd_or(nfd, FD_CLOEXEC);
745 }
746
747 if (flags & SOCK_CLOFORK) {
748 f_setfd_or(nfd, FD_CLOFORK);
749 }
750
751 /*
752 * Copy FNDELAY and FNONBLOCK from listener to acceptor
753 * and from ssflags
754 */
755 if ((ssflags | so->so_state) & (SS_NDELAY|SS_NONBLOCK)) {
756 uint_t oflag = nfp->f_flag;
757 int arg = 0;
758
759 if ((ssflags | so->so_state) & SS_NONBLOCK)
760 arg |= FNONBLOCK;
761 else if ((ssflags | so->so_state) & SS_NDELAY)
762 arg |= FNDELAY;
763
764 /*
765 * This code is a simplification of the F_SETFL code in fcntl()
766 * Ignore any errors from VOP_SETFL.
767 */
768 if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred, NULL))
769 != 0) {
770 eprintsoline(so, error);
771 error = 0;
772 } else {
773 mutex_enter(&nfp->f_tlock);
774 nfp->f_flag &= ~FMASK | (FREAD|FWRITE);
775 nfp->f_flag |= arg;
776 mutex_exit(&nfp->f_tlock);
777 }
778 }
779 releasef(sock);
780 return (nfd);
781 }
782
783 int
connect(int sock,struct sockaddr * name,socklen_t namelen,int version)784 connect(int sock, struct sockaddr *name, socklen_t namelen, int version)
785 {
786 struct sonode *so;
787 file_t *fp;
788 int error;
789
790 dprint(1, ("connect(%d, %p, %d)\n",
791 sock, (void *)name, namelen));
792
793 if ((so = getsonode(sock, &error, &fp)) == NULL)
794 return (set_errno(error));
795
796 /* Allocate and copyin name */
797 if (namelen != 0) {
798 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
799 name = copyin_name(so, name, &namelen, &error);
800 if (name == NULL) {
801 releasef(sock);
802 return (set_errno(error));
803 }
804 } else
805 name = NULL;
806
807 error = socket_connect(so, name, namelen, fp->f_flag,
808 (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2, CRED());
809 releasef(sock);
810 if (name)
811 kmem_free(name, (size_t)namelen);
812 if (error)
813 return (set_errno(error));
814 return (0);
815 }
816
817 /*ARGSUSED2*/
818 int
shutdown(int sock,int how,int version)819 shutdown(int sock, int how, int version)
820 {
821 struct sonode *so;
822 int error;
823
824 dprint(1, ("shutdown(%d, %d)\n",
825 sock, how));
826
827 if ((so = getsonode(sock, &error, NULL)) == NULL)
828 return (set_errno(error));
829
830 error = socket_shutdown(so, how, CRED());
831
832 releasef(sock);
833 if (error)
834 return (set_errno(error));
835 return (0);
836 }
837
838 /*
839 * Common receive routine.
840 */
841 static ssize_t
recvit(int sock,struct nmsghdr * msg,struct uio * uiop,int flags,socklen_t * namelenp,socklen_t * controllenp,int * flagsp)842 recvit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags,
843 socklen_t *namelenp, socklen_t *controllenp, int *flagsp)
844 {
845 struct sonode *so;
846 file_t *fp;
847 void *name;
848 socklen_t namelen;
849 void *control;
850 socklen_t controllen, free_controllen;
851 ssize_t len;
852 int error;
853
854 if ((so = getsonode(sock, &error, &fp)) == NULL)
855 return (set_errno(error));
856
857 len = uiop->uio_resid;
858 uiop->uio_fmode = fp->f_flag;
859 uiop->uio_extflg = UIO_COPY_CACHED;
860
861 name = msg->msg_name;
862 namelen = msg->msg_namelen;
863 control = msg->msg_control;
864 controllen = msg->msg_controllen;
865
866 msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL |
867 MSG_DONTWAIT | MSG_XPG4_2 | MSG_CMSG_CLOEXEC | MSG_CMSG_CLOFORK);
868
869 error = socket_recvmsg(so, msg, uiop, CRED());
870 if (error) {
871 releasef(sock);
872 return (set_errno(error));
873 }
874 lwp_stat_update(LWP_STAT_MSGRCV, 1);
875 releasef(sock);
876
877 free_controllen = msg->msg_controllen;
878
879 error = copyout_name(name, namelen, namelenp,
880 msg->msg_name, msg->msg_namelen);
881 if (error)
882 goto err;
883
884 if (flagsp != NULL) {
885 /*
886 * Clear internal flag. We also clear the CMSG flags out of
887 * paranoia, though they should have been cleared by our
888 * sop_recvmsg.
889 */
890 msg->msg_flags &= ~(MSG_XPG4_2 | MSG_CMSG_CLOEXEC |
891 MSG_CMSG_CLOFORK);
892
893 /*
894 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only
895 * when controllen is zero and there is control data to
896 * copy out.
897 */
898 if (controllen != 0 &&
899 (msg->msg_controllen > controllen || control == NULL)) {
900 dprint(1, ("recvit: CTRUNC %d %d %p\n",
901 msg->msg_controllen, controllen, control));
902
903 msg->msg_flags |= MSG_CTRUNC;
904 }
905 if (copyout(&msg->msg_flags, flagsp,
906 sizeof (msg->msg_flags))) {
907 error = EFAULT;
908 goto err;
909 }
910 }
911
912 if (controllen != 0) {
913 if (!(flags & MSG_XPG4_2)) {
914 /*
915 * Good old msg_accrights can only return a multiple
916 * of 4 bytes.
917 */
918 controllen &= ~((int)sizeof (uint32_t) - 1);
919 }
920
921 if (msg->msg_controllen > controllen || control == NULL) {
922 /*
923 * If the truncated part contains file descriptors,
924 * then they must be closed in the kernel as they
925 * will not be included in the data returned to
926 * user space. Close them now so that the header size
927 * can be safely adjusted prior to copyout. In case of
928 * an error during copyout, the remaining file
929 * descriptors will be closed in the error handler
930 * below.
931 */
932 so_closefds(msg->msg_control, msg->msg_controllen,
933 !(flags & MSG_XPG4_2),
934 control == NULL ? 0 : controllen);
935
936 /*
937 * In the case of a truncated control message, the last
938 * cmsg header that fits into the available buffer
939 * space must be adjusted to reflect the actual amount
940 * of associated data that will be returned. This only
941 * needs to be done for XPG4 messages as non-XPG4
942 * messages are not structured (they are just a
943 * buffer and a length - msg_accrights(len)).
944 */
945 if (control != NULL && (flags & MSG_XPG4_2)) {
946 so_truncatecmsg(msg->msg_control,
947 msg->msg_controllen, controllen);
948 msg->msg_controllen = controllen;
949 }
950 }
951
952 error = copyout_arg(control, controllen, controllenp,
953 msg->msg_control, msg->msg_controllen);
954
955 if (error)
956 goto err;
957
958 }
959 if (msg->msg_namelen != 0)
960 kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
961 if (free_controllen != 0)
962 kmem_free(msg->msg_control, (size_t)free_controllen);
963 return (len - uiop->uio_resid);
964
965 err:
966 /*
967 * If we fail and the control part contains file descriptors
968 * we have to close them. For a truncated control message, the
969 * descriptors which were cut off have already been closed and the
970 * length adjusted so that they will not be closed again.
971 */
972 if (msg->msg_controllen != 0)
973 so_closefds(msg->msg_control, msg->msg_controllen,
974 !(flags & MSG_XPG4_2), 0);
975 if (msg->msg_namelen != 0)
976 kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
977 if (free_controllen != 0)
978 kmem_free(msg->msg_control, (size_t)free_controllen);
979 return (set_errno(error));
980 }
981
982 /*
983 * Native system call
984 */
985 ssize_t
recv(int sock,void * buffer,size_t len,int flags)986 recv(int sock, void *buffer, size_t len, int flags)
987 {
988 struct nmsghdr lmsg;
989 struct uio auio;
990 struct iovec aiov[1];
991
992 dprint(1, ("recv(%d, %p, %ld, %d)\n",
993 sock, buffer, len, flags));
994
995 if ((ssize_t)len < 0) {
996 return (set_errno(EINVAL));
997 }
998
999 aiov[0].iov_base = buffer;
1000 aiov[0].iov_len = len;
1001 auio.uio_loffset = 0;
1002 auio.uio_iov = aiov;
1003 auio.uio_iovcnt = 1;
1004 auio.uio_resid = len;
1005 auio.uio_segflg = UIO_USERSPACE;
1006 auio.uio_limit = 0;
1007
1008 lmsg.msg_namelen = 0;
1009 lmsg.msg_controllen = 0;
1010 lmsg.msg_flags = 0;
1011 return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL));
1012 }
1013
1014 ssize_t
recvfrom(int sock,void * buffer,size_t len,int flags,struct sockaddr * name,socklen_t * namelenp)1015 recvfrom(int sock, void *buffer, size_t len, int flags, struct sockaddr *name,
1016 socklen_t *namelenp)
1017 {
1018 struct nmsghdr lmsg;
1019 struct uio auio;
1020 struct iovec aiov[1];
1021
1022 dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n",
1023 sock, buffer, len, flags, (void *)name, (void *)namelenp));
1024
1025 if ((ssize_t)len < 0) {
1026 return (set_errno(EINVAL));
1027 }
1028
1029 aiov[0].iov_base = buffer;
1030 aiov[0].iov_len = len;
1031 auio.uio_loffset = 0;
1032 auio.uio_iov = aiov;
1033 auio.uio_iovcnt = 1;
1034 auio.uio_resid = len;
1035 auio.uio_segflg = UIO_USERSPACE;
1036 auio.uio_limit = 0;
1037
1038 lmsg.msg_name = (char *)name;
1039 if (namelenp != NULL) {
1040 if (copyin(namelenp, &lmsg.msg_namelen,
1041 sizeof (lmsg.msg_namelen)))
1042 return (set_errno(EFAULT));
1043 } else {
1044 lmsg.msg_namelen = 0;
1045 }
1046 lmsg.msg_controllen = 0;
1047 lmsg.msg_flags = 0;
1048
1049 return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL));
1050 }
1051
1052 /*
1053 * Uses the MSG_XPG4_2 flag to determine if the caller is using
1054 * struct omsghdr or struct nmsghdr.
1055 */
1056 ssize_t
recvmsg(int sock,struct nmsghdr * msg,int flags)1057 recvmsg(int sock, struct nmsghdr *msg, int flags)
1058 {
1059 STRUCT_DECL(nmsghdr, u_lmsg);
1060 STRUCT_HANDLE(nmsghdr, umsgptr);
1061 struct nmsghdr lmsg;
1062 struct uio auio;
1063 struct iovec buf[IOV_MAX_STACK], *aiov = buf;
1064 ssize_t iovsize = 0;
1065 int iovcnt;
1066 ssize_t len, rval;
1067 int i;
1068 int *flagsp;
1069 model_t model;
1070
1071 dprint(1, ("recvmsg(%d, %p, %d)\n",
1072 sock, (void *)msg, flags));
1073
1074 model = get_udatamodel();
1075 STRUCT_INIT(u_lmsg, model);
1076 STRUCT_SET_HANDLE(umsgptr, model, msg);
1077
1078 if (flags & MSG_XPG4_2) {
1079 if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg)))
1080 return (set_errno(EFAULT));
1081 flagsp = STRUCT_FADDR(umsgptr, msg_flags);
1082 } else {
1083 /*
1084 * Assumes that nmsghdr and omsghdr are identically shaped
1085 * except for the added msg_flags field.
1086 */
1087 if (copyin(msg, STRUCT_BUF(u_lmsg),
1088 SIZEOF_STRUCT(omsghdr, model)))
1089 return (set_errno(EFAULT));
1090 STRUCT_FSET(u_lmsg, msg_flags, 0);
1091 flagsp = NULL;
1092 }
1093
1094 /*
1095 * Code below us will kmem_alloc memory and hang it
1096 * off msg_control and msg_name fields. This forces
1097 * us to copy the structure to its native form.
1098 */
1099 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1100 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1101 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1102 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1103 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1104 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1105 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1106
1107 iovcnt = lmsg.msg_iovlen;
1108
1109 if (iovcnt <= 0 || iovcnt > IOV_MAX) {
1110 return (set_errno(EMSGSIZE));
1111 }
1112
1113 if (iovcnt > IOV_MAX_STACK) {
1114 iovsize = iovcnt * sizeof (struct iovec);
1115 aiov = kmem_alloc(iovsize, KM_SLEEP);
1116 }
1117
1118 #ifdef _SYSCALL32_IMPL
1119 /*
1120 * 32-bit callers need to have their iovec expanded, while ensuring
1121 * that they can't move more than 2Gbytes of data in a single call.
1122 */
1123 if (model == DATAMODEL_ILP32) {
1124 struct iovec32 buf32[IOV_MAX_STACK], *aiov32 = buf32;
1125 ssize_t iov32size;
1126 ssize32_t count32;
1127
1128 iov32size = iovcnt * sizeof (struct iovec32);
1129 if (iovsize != 0)
1130 aiov32 = kmem_alloc(iov32size, KM_SLEEP);
1131
1132 if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32, iov32size)) {
1133 if (iovsize != 0) {
1134 kmem_free(aiov32, iov32size);
1135 kmem_free(aiov, iovsize);
1136 }
1137
1138 return (set_errno(EFAULT));
1139 }
1140
1141 count32 = 0;
1142 for (i = 0; i < iovcnt; i++) {
1143 ssize32_t iovlen32;
1144
1145 iovlen32 = aiov32[i].iov_len;
1146 count32 += iovlen32;
1147 if (iovlen32 < 0 || count32 < 0) {
1148 if (iovsize != 0) {
1149 kmem_free(aiov32, iov32size);
1150 kmem_free(aiov, iovsize);
1151 }
1152
1153 return (set_errno(EINVAL));
1154 }
1155
1156 aiov[i].iov_len = iovlen32;
1157 aiov[i].iov_base =
1158 (caddr_t)(uintptr_t)aiov32[i].iov_base;
1159 }
1160
1161 if (iovsize != 0)
1162 kmem_free(aiov32, iov32size);
1163 } else
1164 #endif /* _SYSCALL32_IMPL */
1165 if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) {
1166 if (iovsize != 0)
1167 kmem_free(aiov, iovsize);
1168
1169 return (set_errno(EFAULT));
1170 }
1171 len = 0;
1172 for (i = 0; i < iovcnt; i++) {
1173 ssize_t iovlen = aiov[i].iov_len;
1174 len += iovlen;
1175 if (iovlen < 0 || len < 0) {
1176 if (iovsize != 0)
1177 kmem_free(aiov, iovsize);
1178
1179 return (set_errno(EINVAL));
1180 }
1181 }
1182 auio.uio_loffset = 0;
1183 auio.uio_iov = aiov;
1184 auio.uio_iovcnt = iovcnt;
1185 auio.uio_resid = len;
1186 auio.uio_segflg = UIO_USERSPACE;
1187 auio.uio_limit = 0;
1188
1189 if (lmsg.msg_control != NULL &&
1190 (do_useracc == 0 ||
1191 useracc(lmsg.msg_control, lmsg.msg_controllen,
1192 B_WRITE) != 0)) {
1193 if (iovsize != 0)
1194 kmem_free(aiov, iovsize);
1195
1196 return (set_errno(EFAULT));
1197 }
1198
1199 rval = recvit(sock, &lmsg, &auio, flags,
1200 STRUCT_FADDR(umsgptr, msg_namelen),
1201 STRUCT_FADDR(umsgptr, msg_controllen), flagsp);
1202
1203 if (iovsize != 0)
1204 kmem_free(aiov, iovsize);
1205
1206 return (rval);
1207 }
1208
1209 /*
1210 * Common send function.
1211 */
1212 static ssize_t
sendit(int sock,struct nmsghdr * msg,struct uio * uiop,int flags)1213 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags)
1214 {
1215 struct sonode *so;
1216 file_t *fp;
1217 void *name;
1218 socklen_t namelen;
1219 void *control;
1220 socklen_t controllen;
1221 ssize_t len;
1222 int error;
1223
1224 if ((so = getsonode(sock, &error, &fp)) == NULL)
1225 return (set_errno(error));
1226
1227 uiop->uio_fmode = fp->f_flag;
1228
1229 if (so->so_family == AF_UNIX)
1230 uiop->uio_extflg = UIO_COPY_CACHED;
1231 else
1232 uiop->uio_extflg = UIO_COPY_DEFAULT;
1233
1234 len = uiop->uio_resid;
1235
1236 /* Allocate and copyin name and control */
1237 name = msg->msg_name;
1238 namelen = msg->msg_namelen;
1239 if (name != NULL && namelen != 0) {
1240 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1241 name = copyin_name(so,
1242 (struct sockaddr *)name,
1243 &namelen, &error);
1244 if (name == NULL)
1245 goto done3;
1246 /* copyin_name null terminates addresses for AF_UNIX */
1247 msg->msg_namelen = namelen;
1248 msg->msg_name = name;
1249 } else {
1250 msg->msg_name = name = NULL;
1251 msg->msg_namelen = namelen = 0;
1252 }
1253
1254 control = msg->msg_control;
1255 controllen = msg->msg_controllen;
1256 if ((control != NULL) && (controllen != 0)) {
1257 /*
1258 * Verify that the length is not excessive to prevent
1259 * an application from consuming all of kernel memory.
1260 */
1261 if (controllen > SO_MAXARGSIZE) {
1262 error = EINVAL;
1263 goto done2;
1264 }
1265 control = kmem_alloc(controllen, KM_SLEEP);
1266
1267 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1268 if (copyin(msg->msg_control, control, controllen)) {
1269 error = EFAULT;
1270 goto done1;
1271 }
1272 msg->msg_control = control;
1273 } else {
1274 msg->msg_control = control = NULL;
1275 msg->msg_controllen = controllen = 0;
1276 }
1277
1278 msg->msg_flags = flags;
1279
1280 error = socket_sendmsg(so, msg, uiop, CRED());
1281 done1:
1282 if (control != NULL)
1283 kmem_free(control, controllen);
1284 done2:
1285 if (name != NULL)
1286 kmem_free(name, namelen);
1287 done3:
1288 if (error != 0) {
1289 releasef(sock);
1290 return (set_errno(error));
1291 }
1292 lwp_stat_update(LWP_STAT_MSGSND, 1);
1293 releasef(sock);
1294 return (len - uiop->uio_resid);
1295 }
1296
1297 /*
1298 * Native system call
1299 */
1300 ssize_t
send(int sock,void * buffer,size_t len,int flags)1301 send(int sock, void *buffer, size_t len, int flags)
1302 {
1303 struct nmsghdr lmsg;
1304 struct uio auio;
1305 struct iovec aiov[1];
1306
1307 dprint(1, ("send(%d, %p, %ld, %d)\n",
1308 sock, buffer, len, flags));
1309
1310 if ((ssize_t)len < 0) {
1311 return (set_errno(EINVAL));
1312 }
1313
1314 aiov[0].iov_base = buffer;
1315 aiov[0].iov_len = len;
1316 auio.uio_loffset = 0;
1317 auio.uio_iov = aiov;
1318 auio.uio_iovcnt = 1;
1319 auio.uio_resid = len;
1320 auio.uio_segflg = UIO_USERSPACE;
1321 auio.uio_limit = 0;
1322
1323 lmsg.msg_name = NULL;
1324 lmsg.msg_control = NULL;
1325 if (!(flags & MSG_XPG4_2)) {
1326 /*
1327 * In order to be compatible with the libsocket/sockmod
1328 * implementation we set EOR for all send* calls.
1329 */
1330 flags |= MSG_EOR;
1331 }
1332 return (sendit(sock, &lmsg, &auio, flags));
1333 }
1334
1335 /*
1336 * Uses the MSG_XPG4_2 flag to determine if the caller is using
1337 * struct omsghdr or struct nmsghdr.
1338 */
1339 ssize_t
sendmsg(int sock,struct nmsghdr * msg,int flags)1340 sendmsg(int sock, struct nmsghdr *msg, int flags)
1341 {
1342 struct nmsghdr lmsg;
1343 STRUCT_DECL(nmsghdr, u_lmsg);
1344 struct uio auio;
1345 struct iovec buf[IOV_MAX_STACK], *aiov = buf;
1346 ssize_t iovsize = 0;
1347 int iovcnt;
1348 ssize_t len, rval;
1349 int i;
1350 model_t model;
1351
1352 dprint(1, ("sendmsg(%d, %p, %d)\n", sock, (void *)msg, flags));
1353
1354 model = get_udatamodel();
1355 STRUCT_INIT(u_lmsg, model);
1356
1357 if (flags & MSG_XPG4_2) {
1358 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1359 STRUCT_SIZE(u_lmsg)))
1360 return (set_errno(EFAULT));
1361 } else {
1362 /*
1363 * Assumes that nmsghdr and omsghdr are identically shaped
1364 * except for the added msg_flags field.
1365 */
1366 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1367 SIZEOF_STRUCT(omsghdr, model)))
1368 return (set_errno(EFAULT));
1369 /*
1370 * In order to be compatible with the libsocket/sockmod
1371 * implementation we set EOR for all send* calls.
1372 */
1373 flags |= MSG_EOR;
1374 }
1375
1376 /*
1377 * Code below us will kmem_alloc memory and hang it
1378 * off msg_control and msg_name fields. This forces
1379 * us to copy the structure to its native form.
1380 */
1381 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1382 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1383 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1384 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1385 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1386 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1387 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1388
1389 iovcnt = lmsg.msg_iovlen;
1390
1391 if (iovcnt <= 0 || iovcnt > IOV_MAX) {
1392 /*
1393 * Unless this is XPG 4.2 we allow iovcnt == 0 to
1394 * be compatible with SunOS 4.X and 4.4BSD.
1395 */
1396 if (iovcnt != 0 || (flags & MSG_XPG4_2))
1397 return (set_errno(EMSGSIZE));
1398 }
1399
1400 if (iovcnt > IOV_MAX_STACK) {
1401 iovsize = iovcnt * sizeof (struct iovec);
1402 aiov = kmem_alloc(iovsize, KM_SLEEP);
1403 }
1404
1405 #ifdef _SYSCALL32_IMPL
1406 /*
1407 * 32-bit callers need to have their iovec expanded, while ensuring
1408 * that they can't move more than 2Gbytes of data in a single call.
1409 */
1410 if (model == DATAMODEL_ILP32) {
1411 struct iovec32 buf32[IOV_MAX_STACK], *aiov32 = buf32;
1412 ssize_t iov32size;
1413 ssize32_t count32;
1414
1415 iov32size = iovcnt * sizeof (struct iovec32);
1416 if (iovsize != 0)
1417 aiov32 = kmem_alloc(iov32size, KM_SLEEP);
1418
1419 if (iovcnt != 0 &&
1420 copyin((struct iovec32 *)lmsg.msg_iov, aiov32, iov32size)) {
1421 if (iovsize != 0) {
1422 kmem_free(aiov32, iov32size);
1423 kmem_free(aiov, iovsize);
1424 }
1425
1426 return (set_errno(EFAULT));
1427 }
1428
1429 count32 = 0;
1430 for (i = 0; i < iovcnt; i++) {
1431 ssize32_t iovlen32;
1432
1433 iovlen32 = aiov32[i].iov_len;
1434 count32 += iovlen32;
1435 if (iovlen32 < 0 || count32 < 0) {
1436 if (iovsize != 0) {
1437 kmem_free(aiov32, iov32size);
1438 kmem_free(aiov, iovsize);
1439 }
1440
1441 return (set_errno(EINVAL));
1442 }
1443
1444 aiov[i].iov_len = iovlen32;
1445 aiov[i].iov_base =
1446 (caddr_t)(uintptr_t)aiov32[i].iov_base;
1447 }
1448
1449 if (iovsize != 0)
1450 kmem_free(aiov32, iov32size);
1451 } else
1452 #endif /* _SYSCALL32_IMPL */
1453 if (iovcnt != 0 &&
1454 copyin(lmsg.msg_iov, aiov,
1455 (unsigned)iovcnt * sizeof (struct iovec))) {
1456 if (iovsize != 0)
1457 kmem_free(aiov, iovsize);
1458
1459 return (set_errno(EFAULT));
1460 }
1461 len = 0;
1462 for (i = 0; i < iovcnt; i++) {
1463 ssize_t iovlen = aiov[i].iov_len;
1464 len += iovlen;
1465 if (iovlen < 0 || len < 0) {
1466 if (iovsize != 0)
1467 kmem_free(aiov, iovsize);
1468
1469 return (set_errno(EINVAL));
1470 }
1471 }
1472 auio.uio_loffset = 0;
1473 auio.uio_iov = aiov;
1474 auio.uio_iovcnt = iovcnt;
1475 auio.uio_resid = len;
1476 auio.uio_segflg = UIO_USERSPACE;
1477 auio.uio_limit = 0;
1478
1479 rval = sendit(sock, &lmsg, &auio, flags);
1480
1481 if (iovsize != 0)
1482 kmem_free(aiov, iovsize);
1483
1484 return (rval);
1485 }
1486
1487 ssize_t
sendto(int sock,void * buffer,size_t len,int flags,struct sockaddr * name,socklen_t namelen)1488 sendto(int sock, void *buffer, size_t len, int flags,
1489 struct sockaddr *name, socklen_t namelen)
1490 {
1491 struct nmsghdr lmsg;
1492 struct uio auio;
1493 struct iovec aiov[1];
1494
1495 dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n",
1496 sock, buffer, len, flags, (void *)name, namelen));
1497
1498 if ((ssize_t)len < 0) {
1499 return (set_errno(EINVAL));
1500 }
1501
1502 aiov[0].iov_base = buffer;
1503 aiov[0].iov_len = len;
1504 auio.uio_loffset = 0;
1505 auio.uio_iov = aiov;
1506 auio.uio_iovcnt = 1;
1507 auio.uio_resid = len;
1508 auio.uio_segflg = UIO_USERSPACE;
1509 auio.uio_limit = 0;
1510
1511 lmsg.msg_name = (char *)name;
1512 lmsg.msg_namelen = namelen;
1513 lmsg.msg_control = NULL;
1514 if (!(flags & MSG_XPG4_2)) {
1515 /*
1516 * In order to be compatible with the libsocket/sockmod
1517 * implementation we set EOR for all send* calls.
1518 */
1519 flags |= MSG_EOR;
1520 }
1521 return (sendit(sock, &lmsg, &auio, flags));
1522 }
1523
1524 /*ARGSUSED3*/
1525 int
getpeername(int sock,struct sockaddr * name,socklen_t * namelenp,int version)1526 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
1527 {
1528 struct sonode *so;
1529 int error;
1530 socklen_t namelen;
1531 socklen_t sock_addrlen;
1532 struct sockaddr *sock_addrp;
1533
1534 dprint(1, ("getpeername(%d, %p, %p)\n",
1535 sock, (void *)name, (void *)namelenp));
1536
1537 if ((so = getsonode(sock, &error, NULL)) == NULL)
1538 goto bad;
1539
1540 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1541 if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1542 (name == NULL && namelen != 0)) {
1543 error = EFAULT;
1544 goto rel_out;
1545 }
1546 sock_addrlen = so->so_max_addr_len;
1547 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1548
1549 if ((error = socket_getpeername(so, sock_addrp, &sock_addrlen,
1550 B_FALSE, CRED())) == 0) {
1551 ASSERT(sock_addrlen <= so->so_max_addr_len);
1552 error = copyout_name(name, namelen, namelenp,
1553 (void *)sock_addrp, sock_addrlen);
1554 }
1555 kmem_free(sock_addrp, so->so_max_addr_len);
1556 rel_out:
1557 releasef(sock);
1558 bad: return (error != 0 ? set_errno(error) : 0);
1559 }
1560
1561 /*ARGSUSED3*/
1562 int
getsockname(int sock,struct sockaddr * name,socklen_t * namelenp,int version)1563 getsockname(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
1564 {
1565 struct sonode *so;
1566 int error;
1567 socklen_t namelen, sock_addrlen;
1568 struct sockaddr *sock_addrp;
1569
1570 dprint(1, ("getsockname(%d, %p, %p)\n",
1571 sock, (void *)name, (void *)namelenp));
1572
1573 if ((so = getsonode(sock, &error, NULL)) == NULL)
1574 goto bad;
1575
1576 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1577 if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1578 (name == NULL && namelen != 0)) {
1579 error = EFAULT;
1580 goto rel_out;
1581 }
1582
1583 sock_addrlen = so->so_max_addr_len;
1584 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1585 if ((error = socket_getsockname(so, sock_addrp, &sock_addrlen,
1586 CRED())) == 0) {
1587 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1588 ASSERT(sock_addrlen <= so->so_max_addr_len);
1589 error = copyout_name(name, namelen, namelenp,
1590 (void *)sock_addrp, sock_addrlen);
1591 }
1592 kmem_free(sock_addrp, so->so_max_addr_len);
1593 rel_out:
1594 releasef(sock);
1595 bad: return (error != 0 ? set_errno(error) : 0);
1596 }
1597
1598 /*ARGSUSED5*/
1599 int
getsockopt(int sock,int level,int option_name,void * option_value,socklen_t * option_lenp,int version)1600 getsockopt(int sock, int level, int option_name, void *option_value,
1601 socklen_t *option_lenp, int version)
1602 {
1603 struct sonode *so;
1604 socklen_t optlen, optlen_res;
1605 void *optval;
1606 int error;
1607
1608 dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n",
1609 sock, level, option_name, option_value, (void *)option_lenp));
1610
1611 if ((so = getsonode(sock, &error, NULL)) == NULL)
1612 return (set_errno(error));
1613
1614 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1615 if (copyin(option_lenp, &optlen, sizeof (optlen))) {
1616 releasef(sock);
1617 return (set_errno(EFAULT));
1618 }
1619 /*
1620 * Verify that the length is not excessive to prevent
1621 * an application from consuming all of kernel memory.
1622 */
1623 if (optlen > SO_MAXARGSIZE) {
1624 error = EINVAL;
1625 releasef(sock);
1626 return (set_errno(error));
1627 }
1628 optval = kmem_alloc(optlen, KM_SLEEP);
1629 optlen_res = optlen;
1630 error = socket_getsockopt(so, level, option_name, optval,
1631 &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2,
1632 CRED());
1633 releasef(sock);
1634 if (error) {
1635 kmem_free(optval, optlen);
1636 return (set_errno(error));
1637 }
1638 error = copyout_arg(option_value, optlen, option_lenp,
1639 optval, optlen_res);
1640 kmem_free(optval, optlen);
1641 if (error)
1642 return (set_errno(error));
1643 return (0);
1644 }
1645
1646 /*ARGSUSED5*/
1647 int
setsockopt(int sock,int level,int option_name,void * option_value,socklen_t option_len,int version)1648 setsockopt(int sock, int level, int option_name, void *option_value,
1649 socklen_t option_len, int version)
1650 {
1651 struct sonode *so;
1652 intptr_t buffer[2];
1653 void *optval = NULL;
1654 int error;
1655
1656 dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n",
1657 sock, level, option_name, option_value, option_len));
1658
1659 if ((so = getsonode(sock, &error, NULL)) == NULL)
1660 return (set_errno(error));
1661
1662 if (option_value != NULL) {
1663 if (option_len != 0) {
1664 /*
1665 * Verify that the length is not excessive to prevent
1666 * an application from consuming all of kernel memory.
1667 */
1668 if (option_len > SO_MAXARGSIZE) {
1669 error = EINVAL;
1670 goto done2;
1671 }
1672 optval = option_len <= sizeof (buffer) ?
1673 &buffer : kmem_alloc((size_t)option_len, KM_SLEEP);
1674 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1675 if (copyin(option_value, optval, (size_t)option_len)) {
1676 error = EFAULT;
1677 goto done1;
1678 }
1679 }
1680 } else
1681 option_len = 0;
1682
1683 error = socket_setsockopt(so, level, option_name, optval,
1684 (t_uscalar_t)option_len, CRED());
1685 done1:
1686 if (optval != buffer)
1687 kmem_free(optval, (size_t)option_len);
1688 done2:
1689 releasef(sock);
1690 if (error)
1691 return (set_errno(error));
1692 return (0);
1693 }
1694
1695 static int
sockconf_add_sock(int family,int type,int protocol,char * name)1696 sockconf_add_sock(int family, int type, int protocol, char *name)
1697 {
1698 int error = 0;
1699 char *kdevpath = NULL;
1700 char *kmodule = NULL;
1701 char *buf = NULL;
1702 size_t pathlen = 0;
1703 struct sockparams *sp;
1704
1705 if (name == NULL)
1706 return (EINVAL);
1707 /*
1708 * Copyin the name.
1709 * This also makes it possible to check for too long pathnames.
1710 * Compress the space needed for the name before passing it
1711 * to soconfig - soconfig will store the string until
1712 * the configuration is removed.
1713 */
1714 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1715 if ((error = copyinstr(name, buf, MAXPATHLEN, &pathlen)) != 0) {
1716 kmem_free(buf, MAXPATHLEN);
1717 return (error);
1718 }
1719 if (strncmp(buf, "/dev", strlen("/dev")) == 0) {
1720 /* For device */
1721 kdevpath = kmem_alloc(pathlen, KM_SLEEP);
1722 bcopy(buf, kdevpath, pathlen);
1723 kdevpath[pathlen - 1] = '\0';
1724 } else {
1725 /* For socket module */
1726 kmodule = kmem_alloc(pathlen, KM_SLEEP);
1727 bcopy(buf, kmodule, pathlen);
1728 kmodule[pathlen - 1] = '\0';
1729 pathlen = 0;
1730 }
1731 kmem_free(buf, MAXPATHLEN);
1732
1733 /* sockparams_create frees mod name and devpath upon failure */
1734 sp = sockparams_create(family, type, protocol, kmodule,
1735 kdevpath, pathlen, 0, KM_SLEEP, &error);
1736 if (sp != NULL) {
1737 error = sockparams_add(sp);
1738 if (error != 0)
1739 sockparams_destroy(sp);
1740 }
1741
1742 return (error);
1743 }
1744
1745 static int
sockconf_remove_sock(int family,int type,int protocol)1746 sockconf_remove_sock(int family, int type, int protocol)
1747 {
1748 return (sockparams_delete(family, type, protocol));
1749 }
1750
1751 static int
sockconfig_remove_filter(const char * uname)1752 sockconfig_remove_filter(const char *uname)
1753 {
1754 char kname[SOF_MAXNAMELEN];
1755 size_t len;
1756 int error;
1757 sof_entry_t *ent;
1758
1759 if ((error = copyinstr(uname, kname, SOF_MAXNAMELEN, &len)) != 0)
1760 return (error);
1761
1762 ent = sof_entry_remove_by_name(kname);
1763 if (ent == NULL)
1764 return (ENXIO);
1765
1766 mutex_enter(&ent->sofe_lock);
1767 ASSERT(!(ent->sofe_flags & SOFEF_CONDEMED));
1768 if (ent->sofe_refcnt == 0) {
1769 mutex_exit(&ent->sofe_lock);
1770 sof_entry_free(ent);
1771 } else {
1772 /* let the last socket free the filter */
1773 ent->sofe_flags |= SOFEF_CONDEMED;
1774 mutex_exit(&ent->sofe_lock);
1775 }
1776
1777 return (0);
1778 }
1779
1780 static int
sockconfig_add_filter(const char * uname,void * ufilpropp)1781 sockconfig_add_filter(const char *uname, void *ufilpropp)
1782 {
1783 struct sockconfig_filter_props filprop;
1784 sof_entry_t *ent;
1785 int error;
1786 size_t tuplesz, len;
1787 char hintbuf[SOF_MAXNAMELEN];
1788
1789 ent = kmem_zalloc(sizeof (sof_entry_t), KM_SLEEP);
1790 mutex_init(&ent->sofe_lock, NULL, MUTEX_DEFAULT, NULL);
1791
1792 if ((error = copyinstr(uname, ent->sofe_name, SOF_MAXNAMELEN,
1793 &len)) != 0) {
1794 sof_entry_free(ent);
1795 return (error);
1796 }
1797
1798 if (get_udatamodel() == DATAMODEL_NATIVE) {
1799 if (copyin(ufilpropp, &filprop, sizeof (filprop)) != 0) {
1800 sof_entry_free(ent);
1801 return (EFAULT);
1802 }
1803 }
1804 #ifdef _SYSCALL32_IMPL
1805 else {
1806 struct sockconfig_filter_props32 filprop32;
1807
1808 if (copyin(ufilpropp, &filprop32, sizeof (filprop32)) != 0) {
1809 sof_entry_free(ent);
1810 return (EFAULT);
1811 }
1812 filprop.sfp_modname = (char *)(uintptr_t)filprop32.sfp_modname;
1813 filprop.sfp_autoattach = filprop32.sfp_autoattach;
1814 filprop.sfp_hint = filprop32.sfp_hint;
1815 filprop.sfp_hintarg = (char *)(uintptr_t)filprop32.sfp_hintarg;
1816 filprop.sfp_socktuple_cnt = filprop32.sfp_socktuple_cnt;
1817 filprop.sfp_socktuple =
1818 (sof_socktuple_t *)(uintptr_t)filprop32.sfp_socktuple;
1819 }
1820 #endif /* _SYSCALL32_IMPL */
1821
1822 if ((error = copyinstr(filprop.sfp_modname, ent->sofe_modname,
1823 sizeof (ent->sofe_modname), &len)) != 0) {
1824 sof_entry_free(ent);
1825 return (error);
1826 }
1827
1828 /*
1829 * A filter must specify at least one socket tuple.
1830 */
1831 if (filprop.sfp_socktuple_cnt == 0 ||
1832 filprop.sfp_socktuple_cnt > SOF_MAXSOCKTUPLECNT) {
1833 sof_entry_free(ent);
1834 return (EINVAL);
1835 }
1836 ent->sofe_flags = filprop.sfp_autoattach ? SOFEF_AUTO : SOFEF_PROG;
1837 ent->sofe_hint = filprop.sfp_hint;
1838
1839 /*
1840 * Verify the hint, and copy in the hint argument, if necessary.
1841 */
1842 switch (ent->sofe_hint) {
1843 case SOF_HINT_BEFORE:
1844 case SOF_HINT_AFTER:
1845 if ((error = copyinstr(filprop.sfp_hintarg, hintbuf,
1846 sizeof (hintbuf), &len)) != 0) {
1847 sof_entry_free(ent);
1848 return (error);
1849 }
1850 ent->sofe_hintarg = kmem_alloc(len, KM_SLEEP);
1851 bcopy(hintbuf, ent->sofe_hintarg, len);
1852 /* FALLTHRU */
1853 case SOF_HINT_TOP:
1854 case SOF_HINT_BOTTOM:
1855 /* hints cannot be used with programmatic filters */
1856 if (ent->sofe_flags & SOFEF_PROG) {
1857 sof_entry_free(ent);
1858 return (EINVAL);
1859 }
1860 break;
1861 case SOF_HINT_NONE:
1862 break;
1863 default:
1864 /* bad hint value */
1865 sof_entry_free(ent);
1866 return (EINVAL);
1867 }
1868
1869 ent->sofe_socktuple_cnt = filprop.sfp_socktuple_cnt;
1870 tuplesz = sizeof (sof_socktuple_t) * ent->sofe_socktuple_cnt;
1871 ent->sofe_socktuple = kmem_alloc(tuplesz, KM_SLEEP);
1872
1873 if (get_udatamodel() == DATAMODEL_NATIVE) {
1874 if (copyin(filprop.sfp_socktuple, ent->sofe_socktuple,
1875 tuplesz)) {
1876 sof_entry_free(ent);
1877 return (EFAULT);
1878 }
1879 }
1880 #ifdef _SYSCALL32_IMPL
1881 else {
1882 int i;
1883 caddr_t data = (caddr_t)filprop.sfp_socktuple;
1884 sof_socktuple_t *tup = ent->sofe_socktuple;
1885 sof_socktuple32_t tup32;
1886
1887 tup = ent->sofe_socktuple;
1888 for (i = 0; i < ent->sofe_socktuple_cnt; i++, tup++) {
1889 ASSERT(tup < ent->sofe_socktuple + tuplesz);
1890
1891 if (copyin(data, &tup32, sizeof (tup32)) != 0) {
1892 sof_entry_free(ent);
1893 return (EFAULT);
1894 }
1895 tup->sofst_family = tup32.sofst_family;
1896 tup->sofst_type = tup32.sofst_type;
1897 tup->sofst_protocol = tup32.sofst_protocol;
1898
1899 data += sizeof (tup32);
1900 }
1901 }
1902 #endif /* _SYSCALL32_IMPL */
1903
1904 /* Sockets can start using the filter as soon as the filter is added */
1905 if ((error = sof_entry_add(ent)) != 0)
1906 sof_entry_free(ent);
1907
1908 return (error);
1909 }
1910
1911 /*
1912 * Socket configuration system call. It is used to add and remove
1913 * socket types.
1914 */
1915 int
sockconfig(int cmd,void * arg1,void * arg2,void * arg3,void * arg4)1916 sockconfig(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
1917 {
1918 int error = 0;
1919
1920 if (secpolicy_net_config(CRED(), B_FALSE) != 0)
1921 return (set_errno(EPERM));
1922
1923 switch (cmd) {
1924 case SOCKCONFIG_ADD_SOCK:
1925 error = sockconf_add_sock((int)(uintptr_t)arg1,
1926 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3, arg4);
1927 break;
1928 case SOCKCONFIG_REMOVE_SOCK:
1929 error = sockconf_remove_sock((int)(uintptr_t)arg1,
1930 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3);
1931 break;
1932 case SOCKCONFIG_ADD_FILTER:
1933 error = sockconfig_add_filter((const char *)arg1, arg2);
1934 break;
1935 case SOCKCONFIG_REMOVE_FILTER:
1936 error = sockconfig_remove_filter((const char *)arg1);
1937 break;
1938 case SOCKCONFIG_GET_SOCKTABLE:
1939 error = sockparams_copyout_socktable((int)(uintptr_t)arg1);
1940 break;
1941 default:
1942 #ifdef DEBUG
1943 cmn_err(CE_NOTE, "sockconfig: unkonwn subcommand %d", cmd);
1944 #endif
1945 error = EINVAL;
1946 break;
1947 }
1948
1949 if (error != 0) {
1950 eprintline(error);
1951 return (set_errno(error));
1952 }
1953 return (0);
1954 }
1955
1956
1957 /*
1958 * Sendfile is implemented through two schemes, direct I/O or by
1959 * caching in the filesystem page cache. We cache the input file by
1960 * default and use direct I/O only if sendfile_max_size is set
1961 * appropriately as explained below. Note that this logic is consistent
1962 * with other filesystems where caching is turned on by default
1963 * unless explicitly turned off by using the DIRECTIO ioctl.
1964 *
1965 * We choose a slightly different scheme here. One can turn off
1966 * caching by setting sendfile_max_size to 0. One can also enable
1967 * caching of files <= sendfile_max_size by setting sendfile_max_size
1968 * to an appropriate value. By default sendfile_max_size is set to the
1969 * maximum value so that all files are cached. In future, we may provide
1970 * better interfaces for caching the file.
1971 *
1972 * Sendfile through Direct I/O (Zero copy)
1973 * --------------------------------------
1974 *
1975 * As disks are normally slower than the network, we can't have a
1976 * single thread that reads the disk and writes to the network. We
1977 * need to have parallelism. This is done by having the sendfile
1978 * thread create another thread that reads from the filesystem
1979 * and queues it for network processing. In this scheme, the data
1980 * is never copied anywhere i.e it is zero copy unlike the other
1981 * scheme.
1982 *
1983 * We have a sendfile queue (snfq) where each sendfile
1984 * request (snf_req_t) is queued for processing by a thread. Number
1985 * of threads is dynamically allocated and they exit if they are idling
1986 * beyond a specified amount of time. When each request (snf_req_t) is
1987 * processed by a thread, it produces a number of mblk_t structures to
1988 * be consumed by the sendfile thread. snf_deque and snf_enque are
1989 * used for consuming and producing mblks. Size of the filesystem
1990 * read is determined by the tunable (sendfile_read_size). A single
1991 * mblk holds sendfile_read_size worth of data (except the last
1992 * read of the file) which is sent down as a whole to the network.
1993 * sendfile_read_size is set to 1 MB as this seems to be the optimal
1994 * value for the UFS filesystem backed by a striped storage array.
1995 *
1996 * Synchronisation between read (producer) and write (consumer) threads.
1997 * --------------------------------------------------------------------
1998 *
1999 * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while
2000 * adding and deleting items in this list. Error can happen anytime
2001 * during read or write. There could be unprocessed mblks in the
2002 * sr_ib_XXX list when a read or write error occurs. Whenever error
2003 * is encountered, we need two things to happen :
2004 *
2005 * a) One of the threads need to clean the mblks.
2006 * b) When one thread encounters an error, the other should stop.
2007 *
2008 * For (a), we don't want to penalize the reader thread as it could do
2009 * some useful work processing other requests. For (b), the error can
2010 * be detected by examining sr_read_error or sr_write_error.
2011 * sr_lock protects sr_read_error and sr_write_error. If both reader and
2012 * writer encounters error, we need to report the write error back to
2013 * the application as that's what would have happened if the operations
2014 * were done sequentially. With this in mind, following should work :
2015 *
2016 * - Check for errors before read or write.
2017 * - If the reader encounters error, set the error in sr_read_error.
2018 * Check sr_write_error, if it is set, send cv_signal as it is
2019 * waiting for reader to complete. If it is not set, the writer
2020 * is either running sinking data to the network or blocked
2021 * because of flow control. For handling the latter case, we
2022 * always send a signal. In any case, it will examine sr_read_error
2023 * and return. sr_read_error is marked with SR_READ_DONE to tell
2024 * the writer that the reader is done in all the cases.
2025 * - If the writer encounters error, set the error in sr_write_error.
2026 * The reader thread is either blocked because of flow control or
2027 * running reading data from the disk. For the former, we need to
2028 * wakeup the thread. Again to keep it simple, we always wake up
2029 * the reader thread. Then, wait for the read thread to complete
2030 * if it is not done yet. Cleanup and return.
2031 *
2032 * High and low water marks for the read thread.
2033 * --------------------------------------------
2034 *
2035 * If sendfile() is used to send data over a slow network, we need to
2036 * make sure that the read thread does not produce data at a faster
2037 * rate than the network. This can happen if the disk is faster than
2038 * the network. In such a case, we don't want to build a very large queue.
2039 * But we would still like to get all of the network throughput possible.
2040 * This implies that network should never block waiting for data.
2041 * As there are lot of disk throughput/network throughput combinations
2042 * possible, it is difficult to come up with an accurate number.
2043 * A typical 10K RPM disk has a max seek latency 17ms and rotational
2044 * latency of 3ms for reading a disk block. Thus, the total latency to
2045 * initiate a new read, transfer data from the disk and queue for
2046 * transmission would take about a max of 25ms. Todays max transfer rate
2047 * for network is 100MB/sec. If the thread is blocked because of flow
2048 * control, it would take 25ms to get new data ready for transmission.
2049 * We have to make sure that network is not idling, while we are initiating
2050 * new transfers. So, at 100MB/sec, to keep network busy we would need
2051 * 2.5MB of data. Rounding off, we keep the low water mark to be 3MB of data.
2052 * We need to pick a high water mark so that the woken up thread would
2053 * do considerable work before blocking again to prevent thrashing. Currently,
2054 * we pick this to be 10 times that of the low water mark.
2055 *
2056 * Sendfile with segmap caching (One copy from page cache to mblks).
2057 * ----------------------------------------------------------------
2058 *
2059 * We use the segmap cache for caching the file, if the size of file
2060 * is <= sendfile_max_size. In this case we don't use threads as VM
2061 * is reasonably fast enough to keep up with the network. If the underlying
2062 * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth
2063 * of data into segmap space, and use the virtual address from segmap
2064 * directly through desballoc() to avoid copy. Once the transport is done
2065 * with the data, the mapping will be released through segmap_release()
2066 * called by the call-back routine.
2067 *
2068 * If zero-copy is not allowed by the transport, we simply call VOP_READ()
2069 * to copy the data from the filesystem into our temporary network buffer.
2070 *
2071 * To disable caching, set sendfile_max_size to 0.
2072 */
2073
2074 uint_t sendfile_read_size = 1024 * 1024;
2075 #define SENDFILE_REQ_LOWAT 3 * 1024 * 1024
2076 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT;
2077 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT;
2078 struct sendfile_stats sf_stats;
2079 struct sendfile_queue *snfq;
2080 clock_t snfq_timeout;
2081 off64_t sendfile_max_size;
2082
2083 static void snf_enque(snf_req_t *, mblk_t *);
2084 static mblk_t *snf_deque(snf_req_t *);
2085
2086 void
sendfile_init(void)2087 sendfile_init(void)
2088 {
2089 snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP);
2090
2091 mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL);
2092 cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL);
2093 snfq->snfq_max_threads = max_ncpus;
2094 snfq_timeout = SNFQ_TIMEOUT;
2095 /* Cache all files by default. */
2096 sendfile_max_size = MAXOFFSET_T;
2097 }
2098
2099 /*
2100 * Queues a mblk_t for network processing.
2101 */
2102 static void
snf_enque(snf_req_t * sr,mblk_t * mp)2103 snf_enque(snf_req_t *sr, mblk_t *mp)
2104 {
2105 mp->b_next = NULL;
2106 mutex_enter(&sr->sr_lock);
2107 if (sr->sr_mp_head == NULL) {
2108 sr->sr_mp_head = sr->sr_mp_tail = mp;
2109 cv_signal(&sr->sr_cv);
2110 } else {
2111 sr->sr_mp_tail->b_next = mp;
2112 sr->sr_mp_tail = mp;
2113 }
2114 sr->sr_qlen += MBLKL(mp);
2115 while ((sr->sr_qlen > sr->sr_hiwat) &&
2116 (sr->sr_write_error == 0)) {
2117 sf_stats.ss_full_waits++;
2118 cv_wait(&sr->sr_cv, &sr->sr_lock);
2119 }
2120 mutex_exit(&sr->sr_lock);
2121 }
2122
2123 /*
2124 * De-queues a mblk_t for network processing.
2125 */
2126 static mblk_t *
snf_deque(snf_req_t * sr)2127 snf_deque(snf_req_t *sr)
2128 {
2129 mblk_t *mp;
2130
2131 mutex_enter(&sr->sr_lock);
2132 /*
2133 * If we have encountered an error on read or read is
2134 * completed and no more mblks, return NULL.
2135 * We need to check for NULL sr_mp_head also as
2136 * the reads could have completed and there is
2137 * nothing more to come.
2138 */
2139 if (((sr->sr_read_error & ~SR_READ_DONE) != 0) ||
2140 ((sr->sr_read_error & SR_READ_DONE) &&
2141 sr->sr_mp_head == NULL)) {
2142 mutex_exit(&sr->sr_lock);
2143 return (NULL);
2144 }
2145 /*
2146 * To start with neither SR_READ_DONE is marked nor
2147 * the error is set. When we wake up from cv_wait,
2148 * following are the possibilities :
2149 *
2150 * a) sr_read_error is zero and mblks are queued.
2151 * b) sr_read_error is set to SR_READ_DONE
2152 * and mblks are queued.
2153 * c) sr_read_error is set to SR_READ_DONE
2154 * and no mblks.
2155 * d) sr_read_error is set to some error other
2156 * than SR_READ_DONE.
2157 */
2158
2159 while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) {
2160 sf_stats.ss_empty_waits++;
2161 cv_wait(&sr->sr_cv, &sr->sr_lock);
2162 }
2163 /* Handle (a) and (b) first - the normal case. */
2164 if (((sr->sr_read_error & ~SR_READ_DONE) == 0) &&
2165 (sr->sr_mp_head != NULL)) {
2166 mp = sr->sr_mp_head;
2167 sr->sr_mp_head = mp->b_next;
2168 sr->sr_qlen -= MBLKL(mp);
2169 if (sr->sr_qlen < sr->sr_lowat)
2170 cv_signal(&sr->sr_cv);
2171 mutex_exit(&sr->sr_lock);
2172 mp->b_next = NULL;
2173 return (mp);
2174 }
2175 /* Handle (c) and (d). */
2176 mutex_exit(&sr->sr_lock);
2177 return (NULL);
2178 }
2179
2180 /*
2181 * Reads data from the filesystem and queues it for network processing.
2182 */
2183 void
snf_async_read(snf_req_t * sr)2184 snf_async_read(snf_req_t *sr)
2185 {
2186 size_t iosize;
2187 u_offset_t fileoff;
2188 u_offset_t size;
2189 int ret_size;
2190 int error;
2191 file_t *fp;
2192 mblk_t *mp;
2193 struct vnode *vp;
2194 int extra = 0;
2195 int maxblk = 0;
2196 int wroff = 0;
2197 struct sonode *so = NULL;
2198
2199 fp = sr->sr_fp;
2200 size = sr->sr_file_size;
2201 fileoff = sr->sr_file_off;
2202
2203 /*
2204 * Ignore the error for filesystems that doesn't support DIRECTIO.
2205 */
2206 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0,
2207 kcred, NULL, NULL);
2208
2209 vp = sr->sr_vp;
2210 if (vp->v_type == VSOCK) {
2211 stdata_t *stp;
2212
2213 /*
2214 * Get the extra space to insert a header and a trailer.
2215 */
2216 so = VTOSO(vp);
2217 stp = vp->v_stream;
2218 if (stp == NULL) {
2219 wroff = so->so_proto_props.sopp_wroff;
2220 maxblk = so->so_proto_props.sopp_maxblk;
2221 extra = wroff + so->so_proto_props.sopp_tail;
2222 } else {
2223 wroff = (int)(stp->sd_wroff);
2224 maxblk = (int)(stp->sd_maxblk);
2225 extra = wroff + (int)(stp->sd_tail);
2226 }
2227 }
2228
2229 while ((size != 0) && (sr->sr_write_error == 0)) {
2230
2231 iosize = (int)MIN(sr->sr_maxpsz, size);
2232
2233 /*
2234 * Socket filters can limit the mblk size,
2235 * so limit reads to maxblk if there are
2236 * filters present.
2237 */
2238 if (vp->v_type == VSOCK &&
2239 so->so_filter_active > 0 && maxblk != INFPSZ)
2240 iosize = (int)MIN(iosize, maxblk);
2241
2242 if (is_system_labeled()) {
2243 mp = allocb_cred(iosize + extra, CRED(),
2244 curproc->p_pid);
2245 } else {
2246 mp = allocb(iosize + extra, BPRI_MED);
2247 }
2248 if (mp == NULL) {
2249 error = EAGAIN;
2250 break;
2251 }
2252
2253 mp->b_rptr += wroff;
2254
2255 ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize);
2256
2257 /* Error or Reached EOF ? */
2258 if ((error != 0) || (ret_size == 0)) {
2259 freeb(mp);
2260 break;
2261 }
2262 mp->b_wptr = mp->b_rptr + ret_size;
2263
2264 snf_enque(sr, mp);
2265 size -= ret_size;
2266 fileoff += ret_size;
2267 }
2268 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0,
2269 kcred, NULL, NULL);
2270 mutex_enter(&sr->sr_lock);
2271 sr->sr_read_error = error;
2272 sr->sr_read_error |= SR_READ_DONE;
2273 cv_signal(&sr->sr_cv);
2274 mutex_exit(&sr->sr_lock);
2275 }
2276
2277 void
snf_async_thread(void)2278 snf_async_thread(void)
2279 {
2280 snf_req_t *sr;
2281 callb_cpr_t cprinfo;
2282 clock_t time_left = 1;
2283
2284 CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq");
2285
2286 mutex_enter(&snfq->snfq_lock);
2287 for (;;) {
2288 /*
2289 * If we didn't find a entry, then block until woken up
2290 * again and then look through the queues again.
2291 */
2292 while ((sr = snfq->snfq_req_head) == NULL) {
2293 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2294 if (time_left <= 0) {
2295 snfq->snfq_svc_threads--;
2296 CALLB_CPR_EXIT(&cprinfo);
2297 thread_exit();
2298 /* NOTREACHED */
2299 }
2300 snfq->snfq_idle_cnt++;
2301
2302 time_left = cv_reltimedwait(&snfq->snfq_cv,
2303 &snfq->snfq_lock, snfq_timeout, TR_CLOCK_TICK);
2304 snfq->snfq_idle_cnt--;
2305
2306 CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock);
2307 }
2308 snfq->snfq_req_head = sr->sr_next;
2309 snfq->snfq_req_cnt--;
2310 mutex_exit(&snfq->snfq_lock);
2311 snf_async_read(sr);
2312 mutex_enter(&snfq->snfq_lock);
2313 }
2314 }
2315
2316
2317 snf_req_t *
create_thread(int operation,struct vnode * vp,file_t * fp,u_offset_t fileoff,u_offset_t size)2318 create_thread(int operation, struct vnode *vp, file_t *fp,
2319 u_offset_t fileoff, u_offset_t size)
2320 {
2321 snf_req_t *sr;
2322 stdata_t *stp;
2323
2324 sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP);
2325
2326 sr->sr_vp = vp;
2327 sr->sr_fp = fp;
2328 stp = vp->v_stream;
2329
2330 /*
2331 * store sd_qn_maxpsz into sr_maxpsz while we have stream head.
2332 * stream might be closed before thread returns from snf_async_read.
2333 */
2334 if (stp != NULL && stp->sd_qn_maxpsz > 0) {
2335 sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz);
2336 } else {
2337 sr->sr_maxpsz = MAXBSIZE;
2338 }
2339
2340 sr->sr_operation = operation;
2341 sr->sr_file_off = fileoff;
2342 sr->sr_file_size = size;
2343 sr->sr_hiwat = sendfile_req_hiwat;
2344 sr->sr_lowat = sendfile_req_lowat;
2345 mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL);
2346 cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL);
2347 /*
2348 * See whether we need another thread for servicing this
2349 * request. If there are already enough requests queued
2350 * for the threads, create one if not exceeding
2351 * snfq_max_threads.
2352 */
2353 mutex_enter(&snfq->snfq_lock);
2354 if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt &&
2355 snfq->snfq_svc_threads < snfq->snfq_max_threads) {
2356 (void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0,
2357 TS_RUN, minclsyspri);
2358 snfq->snfq_svc_threads++;
2359 }
2360 if (snfq->snfq_req_head == NULL) {
2361 snfq->snfq_req_head = snfq->snfq_req_tail = sr;
2362 cv_signal(&snfq->snfq_cv);
2363 } else {
2364 snfq->snfq_req_tail->sr_next = sr;
2365 snfq->snfq_req_tail = sr;
2366 }
2367 snfq->snfq_req_cnt++;
2368 mutex_exit(&snfq->snfq_lock);
2369 return (sr);
2370 }
2371
2372 int
snf_direct_io(file_t * fp,file_t * rfp,u_offset_t fileoff,u_offset_t size,ssize_t * count)2373 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size,
2374 ssize_t *count)
2375 {
2376 snf_req_t *sr;
2377 mblk_t *mp;
2378 int iosize;
2379 int error = 0;
2380 short fflag;
2381 struct vnode *vp;
2382 int ksize;
2383 struct nmsghdr msg;
2384
2385 ksize = 0;
2386 *count = 0;
2387 bzero(&msg, sizeof (msg));
2388
2389 vp = fp->f_vnode;
2390 fflag = fp->f_flag;
2391 if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL)
2392 return (EAGAIN);
2393
2394 /*
2395 * We check for read error in snf_deque. It has to check
2396 * for successful READ_DONE and return NULL, and we might
2397 * as well make an additional check there.
2398 */
2399 while ((mp = snf_deque(sr)) != NULL) {
2400
2401 if (ISSIG(curthread, JUSTLOOKING)) {
2402 freeb(mp);
2403 error = EINTR;
2404 break;
2405 }
2406 iosize = MBLKL(mp);
2407
2408 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2409
2410 if (error != 0) {
2411 if (mp != NULL)
2412 freeb(mp);
2413 break;
2414 }
2415 ksize += iosize;
2416 }
2417 *count = ksize;
2418
2419 mutex_enter(&sr->sr_lock);
2420 sr->sr_write_error = error;
2421 /* Look at the big comments on why we cv_signal here. */
2422 cv_signal(&sr->sr_cv);
2423
2424 /* Wait for the reader to complete always. */
2425 while (!(sr->sr_read_error & SR_READ_DONE)) {
2426 cv_wait(&sr->sr_cv, &sr->sr_lock);
2427 }
2428 /* If there is no write error, check for read error. */
2429 if (error == 0)
2430 error = (sr->sr_read_error & ~SR_READ_DONE);
2431
2432 if (error != 0) {
2433 mblk_t *next_mp;
2434
2435 mp = sr->sr_mp_head;
2436 while (mp != NULL) {
2437 next_mp = mp->b_next;
2438 mp->b_next = NULL;
2439 freeb(mp);
2440 mp = next_mp;
2441 }
2442 }
2443 mutex_exit(&sr->sr_lock);
2444 kmem_free(sr, sizeof (snf_req_t));
2445 return (error);
2446 }
2447
2448 /* Maximum no.of pages allocated by vpm for sendfile at a time */
2449 #define SNF_VPMMAXPGS (VPMMAXPGS/2)
2450
2451 /*
2452 * Maximum no.of elements in the list returned by vpm, including
2453 * NULL for the last entry
2454 */
2455 #define SNF_MAXVMAPS (SNF_VPMMAXPGS + 1)
2456
2457 typedef struct {
2458 unsigned int snfv_ref;
2459 frtn_t snfv_frtn;
2460 vnode_t *snfv_vp;
2461 struct vmap snfv_vml[SNF_MAXVMAPS];
2462 } snf_vmap_desbinfo;
2463
2464 typedef struct {
2465 frtn_t snfi_frtn;
2466 caddr_t snfi_base;
2467 uint_t snfi_mapoff;
2468 size_t snfi_len;
2469 vnode_t *snfi_vp;
2470 } snf_smap_desbinfo;
2471
2472 /*
2473 * The callback function used for vpm mapped mblks called when the last ref of
2474 * the mblk is dropped which normally occurs when TCP receives the ack. But it
2475 * can be the driver too due to lazy reclaim.
2476 */
2477 void
snf_vmap_desbfree(snf_vmap_desbinfo * snfv)2478 snf_vmap_desbfree(snf_vmap_desbinfo *snfv)
2479 {
2480 ASSERT(snfv->snfv_ref != 0);
2481 if (atomic_dec_32_nv(&snfv->snfv_ref) == 0) {
2482 vpm_unmap_pages(snfv->snfv_vml, S_READ);
2483 VN_RELE(snfv->snfv_vp);
2484 kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2485 }
2486 }
2487
2488 /*
2489 * The callback function used for segmap'ped mblks called when the last ref of
2490 * the mblk is dropped which normally occurs when TCP receives the ack. But it
2491 * can be the driver too due to lazy reclaim.
2492 */
2493 void
snf_smap_desbfree(snf_smap_desbinfo * snfi)2494 snf_smap_desbfree(snf_smap_desbinfo *snfi)
2495 {
2496 if (! IS_KPM_ADDR(snfi->snfi_base)) {
2497 /*
2498 * We don't need to call segmap_fault(F_SOFTUNLOCK) for
2499 * segmap_kpm as long as the latter never falls back to
2500 * "use_segmap_range". (See segmap_getmapflt().)
2501 *
2502 * Using S_OTHER saves an redundant hat_setref() in
2503 * segmap_unlock()
2504 */
2505 (void) segmap_fault(kas.a_hat, segkmap,
2506 (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base +
2507 snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len,
2508 F_SOFTUNLOCK, S_OTHER);
2509 }
2510 (void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED);
2511 VN_RELE(snfi->snfi_vp);
2512 kmem_free(snfi, sizeof (*snfi));
2513 }
2514
2515 /*
2516 * Use segmap or vpm instead of bcopy to send down a desballoca'ed, mblk.
2517 * When segmap is used, the mblk contains a segmap slot of no more
2518 * than MAXBSIZE.
2519 *
2520 * With vpm, a maximum of SNF_MAXVMAPS page-sized mappings can be obtained
2521 * in each iteration and sent by socket_sendmblk until an error occurs or
2522 * the requested size has been transferred. An mblk is esballoca'ed from
2523 * each mapped page and a chain of these mblk is sent to the transport layer.
2524 * vpm will be called to unmap the pages when all mblks have been freed by
2525 * free_func.
2526 *
2527 * At the end of the whole sendfile() operation, we wait till the data from
2528 * the last mblk is ack'ed by the transport before returning so that the
2529 * caller of sendfile() can safely modify the file content.
2530 *
2531 * The caller of this function should make sure that total_size does not exceed
2532 * the actual file size of fvp.
2533 */
2534 int
snf_segmap(file_t * fp,vnode_t * fvp,u_offset_t fileoff,u_offset_t total_size,ssize_t * count,boolean_t nowait)2535 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t total_size,
2536 ssize_t *count, boolean_t nowait)
2537 {
2538 caddr_t base;
2539 int mapoff;
2540 vnode_t *vp;
2541 mblk_t *mp = NULL;
2542 int chain_size;
2543 int error;
2544 clock_t deadlk_wait;
2545 short fflag;
2546 int ksize;
2547 struct vattr va;
2548 boolean_t dowait = B_FALSE;
2549 struct nmsghdr msg;
2550
2551 vp = fp->f_vnode;
2552 fflag = fp->f_flag;
2553 ksize = 0;
2554 bzero(&msg, sizeof (msg));
2555
2556 for (;;) {
2557 if (ISSIG(curthread, JUSTLOOKING)) {
2558 error = EINTR;
2559 break;
2560 }
2561
2562 if (vpm_enable) {
2563 snf_vmap_desbinfo *snfv;
2564 mblk_t *nmp;
2565 int mblk_size;
2566 int maxsize;
2567 int i;
2568
2569 mapoff = fileoff & PAGEOFFSET;
2570 maxsize = MIN((SNF_VPMMAXPGS * PAGESIZE), total_size);
2571
2572 snfv = kmem_zalloc(sizeof (snf_vmap_desbinfo),
2573 KM_SLEEP);
2574
2575 /*
2576 * Get vpm mappings for maxsize with read access.
2577 * If the pages aren't available yet, we get
2578 * DEADLK, so wait and try again a little later using
2579 * an increasing wait. We might be here a long time.
2580 *
2581 * If delay_sig returns EINTR, be sure to exit and
2582 * pass it up to the caller.
2583 */
2584 deadlk_wait = 0;
2585 while ((error = vpm_map_pages(fvp, fileoff,
2586 (size_t)maxsize, (VPM_FETCHPAGE), snfv->snfv_vml,
2587 SNF_MAXVMAPS, NULL, S_READ)) == EDEADLK) {
2588 deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2589 if ((error = delay_sig(deadlk_wait)) != 0) {
2590 break;
2591 }
2592 }
2593 if (error != 0) {
2594 kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2595 error = (error == EINTR) ? EINTR : EIO;
2596 goto out;
2597 }
2598 snfv->snfv_frtn.free_func = snf_vmap_desbfree;
2599 snfv->snfv_frtn.free_arg = (caddr_t)snfv;
2600
2601 /* Construct the mblk chain from the page mappings */
2602 chain_size = 0;
2603 for (i = 0; (snfv->snfv_vml[i].vs_addr != NULL) &&
2604 total_size > 0; i++) {
2605 ASSERT(chain_size < maxsize);
2606 mblk_size = MIN(snfv->snfv_vml[i].vs_len -
2607 mapoff, total_size);
2608 nmp = esballoca(
2609 (uchar_t *)snfv->snfv_vml[i].vs_addr +
2610 mapoff, mblk_size, BPRI_HI,
2611 &snfv->snfv_frtn);
2612
2613 /*
2614 * We return EAGAIN after unmapping the pages
2615 * if we cannot allocate the the head of the
2616 * chain. Otherwise, we continue sending the
2617 * mblks constructed so far.
2618 */
2619 if (nmp == NULL) {
2620 if (i == 0) {
2621 vpm_unmap_pages(snfv->snfv_vml,
2622 S_READ);
2623 kmem_free(snfv,
2624 sizeof (snf_vmap_desbinfo));
2625 error = EAGAIN;
2626 goto out;
2627 }
2628 break;
2629 }
2630 /* Mark this dblk with the zero-copy flag */
2631 nmp->b_datap->db_struioflag |= STRUIO_ZC;
2632 nmp->b_wptr += mblk_size;
2633 chain_size += mblk_size;
2634 fileoff += mblk_size;
2635 total_size -= mblk_size;
2636 snfv->snfv_ref++;
2637 mapoff = 0;
2638 if (i > 0)
2639 linkb(mp, nmp);
2640 else
2641 mp = nmp;
2642 }
2643 VN_HOLD(fvp);
2644 snfv->snfv_vp = fvp;
2645 } else {
2646 /* vpm not supported. fallback to segmap */
2647 snf_smap_desbinfo *snfi;
2648
2649 mapoff = fileoff & MAXBOFFSET;
2650 chain_size = MAXBSIZE - mapoff;
2651 if (chain_size > total_size)
2652 chain_size = total_size;
2653 /*
2654 * we don't forcefault because we'll call
2655 * segmap_fault(F_SOFTLOCK) next.
2656 *
2657 * S_READ will get the ref bit set (by either
2658 * segmap_getmapflt() or segmap_fault()) and page
2659 * shared locked.
2660 */
2661 base = segmap_getmapflt(segkmap, fvp, fileoff,
2662 chain_size, segmap_kpm ? SM_FAULT : 0, S_READ);
2663
2664 snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP);
2665 snfi->snfi_len = (size_t)roundup(mapoff+chain_size,
2666 PAGESIZE)- (mapoff & PAGEMASK);
2667 /*
2668 * We must call segmap_fault() even for segmap_kpm
2669 * because that's how error gets returned.
2670 * (segmap_getmapflt() never fails but segmap_fault()
2671 * does.)
2672 *
2673 * If the pages aren't available yet, we get
2674 * DEADLK, so wait and try again a little later using
2675 * an increasing wait. We might be here a long time.
2676 *
2677 * If delay_sig returns EINTR, be sure to exit and
2678 * pass it up to the caller.
2679 */
2680 deadlk_wait = 0;
2681 while ((error = FC_ERRNO(segmap_fault(kas.a_hat,
2682 segkmap, (caddr_t)(uintptr_t)(((uintptr_t)base +
2683 mapoff) & PAGEMASK), snfi->snfi_len, F_SOFTLOCK,
2684 S_READ))) == EDEADLK) {
2685 deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2686 if ((error = delay_sig(deadlk_wait)) != 0) {
2687 break;
2688 }
2689 }
2690 if (error != 0) {
2691 (void) segmap_release(segkmap, base, 0);
2692 kmem_free(snfi, sizeof (*snfi));
2693 error = (error == EINTR) ? EINTR : EIO;
2694 goto out;
2695 }
2696 snfi->snfi_frtn.free_func = snf_smap_desbfree;
2697 snfi->snfi_frtn.free_arg = (caddr_t)snfi;
2698 snfi->snfi_base = base;
2699 snfi->snfi_mapoff = mapoff;
2700 mp = esballoca((uchar_t *)base + mapoff, chain_size,
2701 BPRI_HI, &snfi->snfi_frtn);
2702
2703 if (mp == NULL) {
2704 (void) segmap_fault(kas.a_hat, segkmap,
2705 (caddr_t)(uintptr_t)(((uintptr_t)base +
2706 mapoff) & PAGEMASK), snfi->snfi_len,
2707 F_SOFTUNLOCK, S_OTHER);
2708 (void) segmap_release(segkmap, base, 0);
2709 kmem_free(snfi, sizeof (*snfi));
2710 freemsg(mp);
2711 error = EAGAIN;
2712 goto out;
2713 }
2714 VN_HOLD(fvp);
2715 snfi->snfi_vp = fvp;
2716 mp->b_wptr += chain_size;
2717
2718 /* Mark this dblk with the zero-copy flag */
2719 mp->b_datap->db_struioflag |= STRUIO_ZC;
2720 fileoff += chain_size;
2721 total_size -= chain_size;
2722 }
2723
2724 if (total_size == 0 && !nowait) {
2725 ASSERT(!dowait);
2726 dowait = B_TRUE;
2727 mp->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
2728 }
2729 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2730 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2731 if (error != 0) {
2732 /*
2733 * mp contains the mblks that were not sent by
2734 * socket_sendmblk. Use its size to update *count
2735 */
2736 *count = ksize + (chain_size - msgdsize(mp));
2737 if (mp != NULL)
2738 freemsg(mp);
2739 return (error);
2740 }
2741 ksize += chain_size;
2742 if (total_size == 0)
2743 goto done;
2744
2745 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2746 va.va_mask = AT_SIZE;
2747 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2748 if (error)
2749 break;
2750 /* Read as much as possible. */
2751 if (fileoff >= va.va_size)
2752 break;
2753 if (total_size + fileoff > va.va_size)
2754 total_size = va.va_size - fileoff;
2755 }
2756 out:
2757 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2758 done:
2759 *count = ksize;
2760 if (dowait) {
2761 stdata_t *stp;
2762
2763 stp = vp->v_stream;
2764 if (stp == NULL) {
2765 struct sonode *so;
2766 so = VTOSO(vp);
2767 error = so_zcopy_wait(so);
2768 } else {
2769 mutex_enter(&stp->sd_lock);
2770 while (!(stp->sd_flag & STZCNOTIFY)) {
2771 if (cv_wait_sig(&stp->sd_zcopy_wait,
2772 &stp->sd_lock) == 0) {
2773 error = EINTR;
2774 break;
2775 }
2776 }
2777 stp->sd_flag &= ~STZCNOTIFY;
2778 mutex_exit(&stp->sd_lock);
2779 }
2780 }
2781 return (error);
2782 }
2783
2784 int
snf_cache(file_t * fp,vnode_t * fvp,u_offset_t fileoff,u_offset_t size,uint_t maxpsz,ssize_t * count)2785 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size,
2786 uint_t maxpsz, ssize_t *count)
2787 {
2788 struct vnode *vp;
2789 mblk_t *mp;
2790 int iosize;
2791 int extra = 0;
2792 int error;
2793 short fflag;
2794 int ksize;
2795 int ioflag;
2796 struct uio auio;
2797 struct iovec aiov;
2798 struct vattr va;
2799 int maxblk = 0;
2800 int wroff = 0;
2801 struct sonode *so = NULL;
2802 struct nmsghdr msg;
2803
2804 vp = fp->f_vnode;
2805 if (vp->v_type == VSOCK) {
2806 stdata_t *stp;
2807
2808 /*
2809 * Get the extra space to insert a header and a trailer.
2810 */
2811 so = VTOSO(vp);
2812 stp = vp->v_stream;
2813 if (stp == NULL) {
2814 wroff = so->so_proto_props.sopp_wroff;
2815 maxblk = so->so_proto_props.sopp_maxblk;
2816 extra = wroff + so->so_proto_props.sopp_tail;
2817 } else {
2818 wroff = (int)(stp->sd_wroff);
2819 maxblk = (int)(stp->sd_maxblk);
2820 extra = wroff + (int)(stp->sd_tail);
2821 }
2822 }
2823 bzero(&msg, sizeof (msg));
2824 fflag = fp->f_flag;
2825 ksize = 0;
2826 auio.uio_iov = &aiov;
2827 auio.uio_iovcnt = 1;
2828 auio.uio_segflg = UIO_SYSSPACE;
2829 auio.uio_llimit = MAXOFFSET_T;
2830 auio.uio_fmode = fflag;
2831 auio.uio_extflg = UIO_COPY_CACHED;
2832 ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC);
2833 /* If read sync is not asked for, filter sync flags */
2834 if ((ioflag & FRSYNC) == 0)
2835 ioflag &= ~(FSYNC|FDSYNC);
2836 for (;;) {
2837 if (ISSIG(curthread, JUSTLOOKING)) {
2838 error = EINTR;
2839 break;
2840 }
2841 iosize = (int)MIN(maxpsz, size);
2842
2843 /*
2844 * Socket filters can limit the mblk size,
2845 * so limit reads to maxblk if there are
2846 * filters present.
2847 */
2848 if (vp->v_type == VSOCK &&
2849 so->so_filter_active > 0 && maxblk != INFPSZ)
2850 iosize = (int)MIN(iosize, maxblk);
2851
2852 if (is_system_labeled()) {
2853 mp = allocb_cred(iosize + extra, CRED(),
2854 curproc->p_pid);
2855 } else {
2856 mp = allocb(iosize + extra, BPRI_MED);
2857 }
2858 if (mp == NULL) {
2859 error = EAGAIN;
2860 break;
2861 }
2862
2863 mp->b_rptr += wroff;
2864
2865 aiov.iov_base = (caddr_t)mp->b_rptr;
2866 aiov.iov_len = iosize;
2867 auio.uio_loffset = fileoff;
2868 auio.uio_resid = iosize;
2869
2870 error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL);
2871 iosize -= auio.uio_resid;
2872
2873 if (error == EINTR && iosize != 0)
2874 error = 0;
2875
2876 if (error != 0 || iosize == 0) {
2877 freeb(mp);
2878 break;
2879 }
2880 mp->b_wptr = mp->b_rptr + iosize;
2881
2882 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2883
2884 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2885
2886 if (error != 0) {
2887 *count = ksize;
2888 if (mp != NULL)
2889 freeb(mp);
2890 return (error);
2891 }
2892 ksize += iosize;
2893 size -= iosize;
2894 if (size == 0)
2895 goto done;
2896
2897 fileoff += iosize;
2898 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2899 va.va_mask = AT_SIZE;
2900 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2901 if (error)
2902 break;
2903 /* Read as much as possible. */
2904 if (fileoff >= va.va_size)
2905 size = 0;
2906 else if (size + fileoff > va.va_size)
2907 size = va.va_size - fileoff;
2908 }
2909 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2910 done:
2911 *count = ksize;
2912 return (error);
2913 }
2914
2915 #if defined(_SYSCALL32_IMPL) || defined(_ILP32)
2916 /*
2917 * Largefile support for 32 bit applications only.
2918 */
2919 int
sosendfile64(file_t * fp,file_t * rfp,const struct ksendfilevec64 * sfv,ssize32_t * count32)2920 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv,
2921 ssize32_t *count32)
2922 {
2923 ssize32_t sfv_len;
2924 u_offset_t sfv_off, va_size;
2925 struct vnode *vp, *fvp, *realvp;
2926 struct vattr va;
2927 stdata_t *stp;
2928 ssize_t count = 0;
2929 int error = 0;
2930 boolean_t dozcopy = B_FALSE;
2931 uint_t maxpsz;
2932
2933 sfv_len = (ssize32_t)sfv->sfv_len;
2934 if (sfv_len < 0) {
2935 error = EINVAL;
2936 goto out;
2937 }
2938
2939 if (sfv_len == 0) goto out;
2940
2941 sfv_off = (u_offset_t)sfv->sfv_off;
2942
2943 /* Same checks as in pread */
2944 if (sfv_off > MAXOFFSET_T) {
2945 error = EINVAL;
2946 goto out;
2947 }
2948 if (sfv_off + sfv_len > MAXOFFSET_T)
2949 sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off);
2950
2951 /*
2952 * There are no more checks on sfv_len. So, we cast it to
2953 * u_offset_t and share the snf_direct_io/snf_cache code between
2954 * 32 bit and 64 bit.
2955 *
2956 * TODO: should do nbl_need_check() like read()?
2957 */
2958 if (sfv_len > sendfile_max_size) {
2959 sf_stats.ss_file_not_cached++;
2960 error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len,
2961 &count);
2962 goto out;
2963 }
2964 fvp = rfp->f_vnode;
2965 if (VOP_REALVP(fvp, &realvp, NULL) == 0)
2966 fvp = realvp;
2967 /*
2968 * Grab the lock as a reader to prevent the file size
2969 * from changing underneath.
2970 */
2971 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2972 va.va_mask = AT_SIZE;
2973 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2974 va_size = va.va_size;
2975 if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) {
2976 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2977 goto out;
2978 }
2979 /* Read as much as possible. */
2980 if (sfv_off + sfv_len > va_size)
2981 sfv_len = va_size - sfv_off;
2982
2983 vp = fp->f_vnode;
2984 stp = vp->v_stream;
2985 /*
2986 * When the NOWAIT flag is not set, we enable zero-copy only if the
2987 * transfer size is large enough. This prevents performance loss
2988 * when the caller sends the file piece by piece.
2989 */
2990 if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) ||
2991 (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) &&
2992 !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) {
2993 uint_t copyflag;
2994 copyflag = stp != NULL ? stp->sd_copyflag :
2995 VTOSO(vp)->so_proto_props.sopp_zcopyflag;
2996 if ((copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) {
2997 int on = 1;
2998
2999 if (socket_setsockopt(VTOSO(vp), SOL_SOCKET,
3000 SO_SND_COPYAVOID, &on, sizeof (on), CRED()) == 0)
3001 dozcopy = B_TRUE;
3002 } else {
3003 dozcopy = copyflag & STZCVMSAFE;
3004 }
3005 }
3006 if (dozcopy) {
3007 sf_stats.ss_file_segmap++;
3008 error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len,
3009 &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0));
3010 } else {
3011 if (vp->v_type == VSOCK && stp == NULL) {
3012 sonode_t *so = VTOSO(vp);
3013 maxpsz = so->so_proto_props.sopp_maxpsz;
3014 } else if (stp != NULL) {
3015 maxpsz = stp->sd_qn_maxpsz;
3016 } else {
3017 maxpsz = maxphys;
3018 }
3019
3020 if (maxpsz == INFPSZ)
3021 maxpsz = maxphys;
3022 else
3023 maxpsz = roundup(maxpsz, MAXBSIZE);
3024 sf_stats.ss_file_cached++;
3025 error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len,
3026 maxpsz, &count);
3027 }
3028 out:
3029 releasef(sfv->sfv_fd);
3030 *count32 = (ssize32_t)count;
3031 return (error);
3032 }
3033 #endif
3034
3035 #ifdef _SYSCALL32_IMPL
3036 /*
3037 * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a
3038 * ssize_t rather than ssize32_t; see the comments above read32 for details.
3039 */
3040
3041 ssize_t
recv32(int32_t sock,caddr32_t buffer,size32_t len,int32_t flags)3042 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
3043 {
3044 return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
3045 }
3046
3047 ssize_t
recvfrom32(int32_t sock,caddr32_t buffer,size32_t len,int32_t flags,caddr32_t name,caddr32_t namelenp)3048 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
3049 caddr32_t name, caddr32_t namelenp)
3050 {
3051 return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
3052 (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp));
3053 }
3054
3055 ssize_t
send32(int32_t sock,caddr32_t buffer,size32_t len,int32_t flags)3056 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
3057 {
3058 return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
3059 }
3060
3061 ssize_t
sendto32(int32_t sock,caddr32_t buffer,size32_t len,int32_t flags,caddr32_t name,socklen_t namelen)3062 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
3063 caddr32_t name, socklen_t namelen)
3064 {
3065 return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
3066 (void *)(uintptr_t)name, namelen));
3067 }
3068 #endif /* _SYSCALL32_IMPL */
3069
3070 /*
3071 * Function wrappers (mostly around the sonode switch) for
3072 * backward compatibility.
3073 */
3074
3075 int
soaccept(struct sonode * so,int fflag,struct sonode ** nsop)3076 soaccept(struct sonode *so, int fflag, struct sonode **nsop)
3077 {
3078 return (socket_accept(so, fflag, CRED(), nsop));
3079 }
3080
3081 int
sobind(struct sonode * so,struct sockaddr * name,socklen_t namelen,int backlog,int flags)3082 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen,
3083 int backlog, int flags)
3084 {
3085 int error;
3086
3087 error = socket_bind(so, name, namelen, flags, CRED());
3088 if (error == 0 && backlog != 0)
3089 return (socket_listen(so, backlog, CRED()));
3090
3091 return (error);
3092 }
3093
3094 int
solisten(struct sonode * so,int backlog)3095 solisten(struct sonode *so, int backlog)
3096 {
3097 return (socket_listen(so, backlog, CRED()));
3098 }
3099
3100 int
soconnect(struct sonode * so,struct sockaddr * name,socklen_t namelen,int fflag,int flags)3101 soconnect(struct sonode *so, struct sockaddr *name, socklen_t namelen,
3102 int fflag, int flags)
3103 {
3104 return (socket_connect(so, name, namelen, fflag, flags, CRED()));
3105 }
3106
3107 int
sorecvmsg(struct sonode * so,struct nmsghdr * msg,struct uio * uiop)3108 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
3109 {
3110 return (socket_recvmsg(so, msg, uiop, CRED()));
3111 }
3112
3113 int
sosendmsg(struct sonode * so,struct nmsghdr * msg,struct uio * uiop)3114 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
3115 {
3116 return (socket_sendmsg(so, msg, uiop, CRED()));
3117 }
3118
3119 int
soshutdown(struct sonode * so,int how)3120 soshutdown(struct sonode *so, int how)
3121 {
3122 return (socket_shutdown(so, how, CRED()));
3123 }
3124
3125 int
sogetsockopt(struct sonode * so,int level,int option_name,void * optval,socklen_t * optlenp,int flags)3126 sogetsockopt(struct sonode *so, int level, int option_name, void *optval,
3127 socklen_t *optlenp, int flags)
3128 {
3129 return (socket_getsockopt(so, level, option_name, optval, optlenp,
3130 flags, CRED()));
3131 }
3132
3133 int
sosetsockopt(struct sonode * so,int level,int option_name,const void * optval,t_uscalar_t optlen)3134 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval,
3135 t_uscalar_t optlen)
3136 {
3137 return (socket_setsockopt(so, level, option_name, optval, optlen,
3138 CRED()));
3139 }
3140
3141 /*
3142 * Because this is backward compatibility interface it only needs to be
3143 * able to handle the creation of TPI sockfs sockets.
3144 */
3145 struct sonode *
socreate(struct sockparams * sp,int family,int type,int protocol,int version,int * errorp)3146 socreate(struct sockparams *sp, int family, int type, int protocol, int version,
3147 int *errorp)
3148 {
3149 struct sonode *so;
3150
3151 ASSERT(sp != NULL);
3152
3153 so = sp->sp_smod_info->smod_sock_create_func(sp, family, type, protocol,
3154 version, SOCKET_SLEEP, errorp, CRED());
3155 if (so == NULL) {
3156 SOCKPARAMS_DEC_REF(sp);
3157 } else {
3158 if ((*errorp = SOP_INIT(so, NULL, CRED(), SOCKET_SLEEP)) == 0) {
3159 /* Cannot fail, only bumps so_count */
3160 (void) VOP_OPEN(&SOTOV(so), FREAD|FWRITE, CRED(), NULL);
3161 } else {
3162 socket_destroy(so);
3163 so = NULL;
3164 }
3165 }
3166 return (so);
3167 }
3168