xref: /freebsd/sys/dev/sound/pcm/channel.c (revision 5cc34a83e1cc812871fd02a15b7d9f75342faaa0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
5  * Portions Copyright (c) Ryan Beasley <ryan.beasley@gmail.com> - GSoC 2006
6  * Copyright (c) 1999 Cameron Grant <cg@FreeBSD.org>
7  * Portions Copyright (c) Luigi Rizzo <luigi@FreeBSD.org> - 1997-99
8  * All rights reserved.
9  * Copyright (c) 2024-2025 The FreeBSD Foundation
10  *
11  * Portions of this software were developed by Christos Margiolis
12  * <christos@FreeBSD.org> under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 #ifdef HAVE_KERNEL_OPTION_HEADERS
37 #include "opt_snd.h"
38 #endif
39 
40 #include <dev/sound/pcm/sound.h>
41 #include <dev/sound/pcm/vchan.h>
42 
43 #include "feeder_if.h"
44 
45 int report_soft_formats = 1;
46 SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_formats, CTLFLAG_RW,
47 	&report_soft_formats, 0, "report software-emulated formats");
48 
49 int report_soft_matrix = 1;
50 SYSCTL_INT(_hw_snd, OID_AUTO, report_soft_matrix, CTLFLAG_RW,
51 	&report_soft_matrix, 0, "report software-emulated channel matrixing");
52 
53 int chn_latency = CHN_LATENCY_DEFAULT;
54 
55 static int
sysctl_hw_snd_latency(SYSCTL_HANDLER_ARGS)56 sysctl_hw_snd_latency(SYSCTL_HANDLER_ARGS)
57 {
58 	int err, val;
59 
60 	val = chn_latency;
61 	err = sysctl_handle_int(oidp, &val, 0, req);
62 	if (err != 0 || req->newptr == NULL)
63 		return err;
64 	if (val < CHN_LATENCY_MIN || val > CHN_LATENCY_MAX)
65 		err = EINVAL;
66 	else
67 		chn_latency = val;
68 
69 	return err;
70 }
71 SYSCTL_PROC(_hw_snd, OID_AUTO, latency,
72     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int),
73     sysctl_hw_snd_latency, "I",
74     "buffering latency (0=low ... 10=high)");
75 
76 int chn_latency_profile = CHN_LATENCY_PROFILE_DEFAULT;
77 
78 static int
sysctl_hw_snd_latency_profile(SYSCTL_HANDLER_ARGS)79 sysctl_hw_snd_latency_profile(SYSCTL_HANDLER_ARGS)
80 {
81 	int err, val;
82 
83 	val = chn_latency_profile;
84 	err = sysctl_handle_int(oidp, &val, 0, req);
85 	if (err != 0 || req->newptr == NULL)
86 		return err;
87 	if (val < CHN_LATENCY_PROFILE_MIN || val > CHN_LATENCY_PROFILE_MAX)
88 		err = EINVAL;
89 	else
90 		chn_latency_profile = val;
91 
92 	return err;
93 }
94 SYSCTL_PROC(_hw_snd, OID_AUTO, latency_profile,
95     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int),
96     sysctl_hw_snd_latency_profile, "I",
97     "buffering latency profile (0=aggressive 1=safe)");
98 
99 static int chn_timeout = CHN_TIMEOUT;
100 
101 static int
sysctl_hw_snd_timeout(SYSCTL_HANDLER_ARGS)102 sysctl_hw_snd_timeout(SYSCTL_HANDLER_ARGS)
103 {
104 	int err, val;
105 
106 	val = chn_timeout;
107 	err = sysctl_handle_int(oidp, &val, 0, req);
108 	if (err != 0 || req->newptr == NULL)
109 		return err;
110 	if (val < CHN_TIMEOUT_MIN || val > CHN_TIMEOUT_MAX)
111 		err = EINVAL;
112 	else
113 		chn_timeout = val;
114 
115 	return err;
116 }
117 SYSCTL_PROC(_hw_snd, OID_AUTO, timeout,
118     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int),
119     sysctl_hw_snd_timeout, "I",
120     "interrupt timeout (1 - 10) seconds");
121 
122 static int chn_vpc_autoreset = 1;
123 SYSCTL_INT(_hw_snd, OID_AUTO, vpc_autoreset, CTLFLAG_RWTUN,
124 	&chn_vpc_autoreset, 0, "automatically reset channels volume to 0db");
125 
126 static int chn_vol_0db_pcm = SND_VOL_0DB_PCM;
127 
128 static void
chn_vpc_proc(int reset,int db)129 chn_vpc_proc(int reset, int db)
130 {
131 	struct snddev_info *d;
132 	struct pcm_channel *c;
133 	int i;
134 
135 	bus_topo_lock();
136 	for (i = 0; pcm_devclass != NULL &&
137 	    i < devclass_get_maxunit(pcm_devclass); i++) {
138 		d = devclass_get_softc(pcm_devclass, i);
139 		if (!PCM_REGISTERED(d))
140 			continue;
141 		PCM_LOCK(d);
142 		PCM_WAIT(d);
143 		PCM_ACQUIRE(d);
144 		CHN_FOREACH(c, d, channels.pcm) {
145 			CHN_LOCK(c);
146 			CHN_SETVOLUME(c, SND_VOL_C_PCM, SND_CHN_T_VOL_0DB, db);
147 			if (reset != 0)
148 				chn_vpc_reset(c, SND_VOL_C_PCM, 1);
149 			CHN_UNLOCK(c);
150 		}
151 		PCM_RELEASE(d);
152 		PCM_UNLOCK(d);
153 	}
154 	bus_topo_unlock();
155 }
156 
157 static int
sysctl_hw_snd_vpc_0db(SYSCTL_HANDLER_ARGS)158 sysctl_hw_snd_vpc_0db(SYSCTL_HANDLER_ARGS)
159 {
160 	int err, val;
161 
162 	val = chn_vol_0db_pcm;
163 	err = sysctl_handle_int(oidp, &val, 0, req);
164 	if (err != 0 || req->newptr == NULL)
165 		return (err);
166 	if (val < SND_VOL_0DB_MIN || val > SND_VOL_0DB_MAX)
167 		return (EINVAL);
168 
169 	chn_vol_0db_pcm = val;
170 	chn_vpc_proc(0, val);
171 
172 	return (0);
173 }
174 SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_0db,
175     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int),
176     sysctl_hw_snd_vpc_0db, "I",
177     "0db relative level");
178 
179 static int
sysctl_hw_snd_vpc_reset(SYSCTL_HANDLER_ARGS)180 sysctl_hw_snd_vpc_reset(SYSCTL_HANDLER_ARGS)
181 {
182 	int err, val;
183 
184 	val = 0;
185 	err = sysctl_handle_int(oidp, &val, 0, req);
186 	if (err != 0 || req->newptr == NULL || val == 0)
187 		return (err);
188 
189 	chn_vol_0db_pcm = SND_VOL_0DB_PCM;
190 	chn_vpc_proc(1, SND_VOL_0DB_PCM);
191 
192 	return (0);
193 }
194 SYSCTL_PROC(_hw_snd, OID_AUTO, vpc_reset,
195     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int),
196     sysctl_hw_snd_vpc_reset, "I",
197     "reset volume on all channels");
198 
199 static int chn_usefrags = 0;
200 static int chn_syncdelay = -1;
201 
202 SYSCTL_INT(_hw_snd, OID_AUTO, usefrags, CTLFLAG_RWTUN,
203 	&chn_usefrags, 0, "prefer setfragments() over setblocksize()");
204 SYSCTL_INT(_hw_snd, OID_AUTO, syncdelay, CTLFLAG_RWTUN,
205 	&chn_syncdelay, 0,
206 	"append (0-1000) millisecond trailing buffer delay on each sync");
207 
208 /**
209  * @brief Channel sync group lock
210  *
211  * Clients should acquire this lock @b without holding any channel locks
212  * before touching syncgroups or the main syncgroup list.
213  */
214 struct mtx snd_pcm_syncgroups_mtx;
215 MTX_SYSINIT(pcm_syncgroup, &snd_pcm_syncgroups_mtx, "PCM channel sync group lock", MTX_DEF);
216 /**
217  * @brief syncgroups' master list
218  *
219  * Each time a channel syncgroup is created, it's added to this list.  This
220  * list should only be accessed with @sa snd_pcm_syncgroups_mtx held.
221  *
222  * See SNDCTL_DSP_SYNCGROUP for more information.
223  */
224 struct pcm_synclist snd_pcm_syncgroups = SLIST_HEAD_INITIALIZER(snd_pcm_syncgroups);
225 
226 static void
chn_lockinit(struct pcm_channel * c,int dir)227 chn_lockinit(struct pcm_channel *c, int dir)
228 {
229 	switch (dir) {
230 	case PCMDIR_PLAY:
231 		mtx_init(&c->lock, c->name, "pcm play channel", MTX_DEF);
232 		cv_init(&c->intr_cv, "pcmwr");
233 		break;
234 	case PCMDIR_PLAY_VIRTUAL:
235 		mtx_init(&c->lock, c->name, "pcm virtual play channel",
236 		    MTX_DEF);
237 		cv_init(&c->intr_cv, "pcmwrv");
238 		break;
239 	case PCMDIR_REC:
240 		mtx_init(&c->lock, c->name, "pcm record channel", MTX_DEF);
241 		cv_init(&c->intr_cv, "pcmrd");
242 		break;
243 	case PCMDIR_REC_VIRTUAL:
244 		mtx_init(&c->lock, c->name, "pcm virtual record channel",
245 		    MTX_DEF);
246 		cv_init(&c->intr_cv, "pcmrdv");
247 		break;
248 	default:
249 		panic("%s(): Invalid direction=%d", __func__, dir);
250 		break;
251 	}
252 
253 	cv_init(&c->cv, "pcmchn");
254 }
255 
256 static void
chn_lockdestroy(struct pcm_channel * c)257 chn_lockdestroy(struct pcm_channel *c)
258 {
259 	CHN_LOCKASSERT(c);
260 
261 	CHN_BROADCAST(&c->cv);
262 	CHN_BROADCAST(&c->intr_cv);
263 
264 	cv_destroy(&c->cv);
265 	cv_destroy(&c->intr_cv);
266 
267 	mtx_destroy(&c->lock);
268 }
269 
270 /**
271  * @brief Determine channel is ready for I/O
272  *
273  * @retval 1 = ready for I/O
274  * @retval 0 = not ready for I/O
275  */
276 int
chn_polltrigger(struct pcm_channel * c)277 chn_polltrigger(struct pcm_channel *c)
278 {
279 	struct snd_dbuf *bs = c->bufsoft;
280 	u_int delta;
281 
282 	CHN_LOCKASSERT(c);
283 
284 	if (c->flags & CHN_F_MMAP) {
285 		if (bs->prev_total < c->lw)
286 			delta = c->lw;
287 		else
288 			delta = bs->total - bs->prev_total;
289 	} else {
290 		if (c->direction == PCMDIR_PLAY)
291 			delta = sndbuf_getfree(bs);
292 		else
293 			delta = sndbuf_getready(bs);
294 	}
295 
296 	return ((delta < c->lw) ? 0 : 1);
297 }
298 
299 static void
chn_pollreset(struct pcm_channel * c)300 chn_pollreset(struct pcm_channel *c)
301 {
302 
303 	CHN_LOCKASSERT(c);
304 	c->bufsoft->prev_total = c->bufsoft->total;
305 }
306 
307 static void
chn_wakeup(struct pcm_channel * c)308 chn_wakeup(struct pcm_channel *c)
309 {
310 	struct snd_dbuf *bs;
311 	struct pcm_channel *ch;
312 
313 	CHN_LOCKASSERT(c);
314 
315 	bs = c->bufsoft;
316 
317 	if (CHN_EMPTY(c, children.busy)) {
318 		KNOTE_LOCKED(&bs->sel.si_note, 0);
319 		if (SEL_WAITING(&bs->sel) && chn_polltrigger(c))
320 			selwakeuppri(&bs->sel, PRIBIO);
321 		CHN_BROADCAST(&c->intr_cv);
322 	} else {
323 		CHN_FOREACH(ch, c, children.busy) {
324 			CHN_LOCK(ch);
325 			chn_wakeup(ch);
326 			CHN_UNLOCK(ch);
327 		}
328 	}
329 }
330 
331 static int
chn_sleep(struct pcm_channel * c,int timeout)332 chn_sleep(struct pcm_channel *c, int timeout)
333 {
334 	int ret;
335 
336 	CHN_LOCKASSERT(c);
337 
338 	if (c->flags & CHN_F_DEAD)
339 		return (EINVAL);
340 
341 	c->sleeping++;
342 	ret = cv_timedwait_sig(&c->intr_cv, &c->lock, timeout);
343 	c->sleeping--;
344 
345 	return ((c->flags & CHN_F_DEAD) ? EINVAL : ret);
346 }
347 
348 /*
349  * chn_dmaupdate() tracks the status of a dma transfer,
350  * updating pointers.
351  */
352 
353 static unsigned int
chn_dmaupdate(struct pcm_channel * c)354 chn_dmaupdate(struct pcm_channel *c)
355 {
356 	struct snd_dbuf *b = c->bufhard;
357 	unsigned int delta, old, hwptr, amt;
358 
359 	KASSERT(b->bufsize > 0, ("bufsize == 0"));
360 	CHN_LOCKASSERT(c);
361 
362 	old = b->hp;
363 	hwptr = chn_getptr(c);
364 	delta = (b->bufsize + hwptr - old) % b->bufsize;
365 	b->hp = hwptr;
366 
367 	if (c->direction == PCMDIR_PLAY) {
368 		amt = min(delta, sndbuf_getready(b));
369 		amt -= amt % b->align;
370 		if (amt > 0)
371 			sndbuf_dispose(b, NULL, amt);
372 	} else {
373 		amt = min(delta, sndbuf_getfree(b));
374 		amt -= amt % b->align;
375 		if (amt > 0)
376 		       sndbuf_acquire(b, NULL, amt);
377 	}
378 	if (snd_verbose > 3 && CHN_STARTED(c) && delta == 0) {
379 		device_printf(c->dev, "WARNING: %s DMA completion "
380 			"too fast/slow ! hwptr=%u, old=%u "
381 			"delta=%u amt=%u ready=%u free=%u\n",
382 			CHN_DIRSTR(c), hwptr, old, delta, amt,
383 			sndbuf_getready(b), sndbuf_getfree(b));
384 	}
385 
386 	return delta;
387 }
388 
389 static void
chn_wrfeed(struct pcm_channel * c)390 chn_wrfeed(struct pcm_channel *c)
391 {
392     	struct snd_dbuf *b = c->bufhard;
393     	struct snd_dbuf *bs = c->bufsoft;
394 	unsigned int amt, want, wasfree;
395 
396 	CHN_LOCKASSERT(c);
397 
398 	if ((c->flags & CHN_F_MMAP) && !(c->flags & CHN_F_CLOSING))
399 		sndbuf_acquire(bs, NULL, sndbuf_getfree(bs));
400 
401 	wasfree = sndbuf_getfree(b);
402 	want = min(b->bufsize, imax(0, sndbuf_xbytes(bs->bufsize, bs, b) -
403 	     sndbuf_getready(b)));
404 	amt = min(wasfree, want);
405 	if (amt > 0)
406 		sndbuf_feed(bs, b, c, c->feeder, amt);
407 
408 	/*
409 	 * Possible xruns. There should be no empty space left in buffer.
410 	 */
411 	if (sndbuf_getready(b) < want)
412 		c->xruns++;
413 
414 	if (sndbuf_getfree(b) < wasfree)
415 		chn_wakeup(c);
416 }
417 
418 static void
chn_wrintr(struct pcm_channel * c)419 chn_wrintr(struct pcm_channel *c)
420 {
421 
422 	CHN_LOCKASSERT(c);
423 	/* update pointers in primary buffer */
424 	chn_dmaupdate(c);
425 	/* ...and feed from secondary to primary */
426 	chn_wrfeed(c);
427 	/* tell the driver we've updated the primary buffer */
428 	chn_trigger(c, PCMTRIG_EMLDMAWR);
429 }
430 
431 /*
432  * user write routine - uiomove data into secondary buffer, trigger if necessary
433  * if blocking, sleep, rinse and repeat.
434  *
435  * called externally, so must handle locking
436  */
437 
438 int
chn_write(struct pcm_channel * c,struct uio * buf)439 chn_write(struct pcm_channel *c, struct uio *buf)
440 {
441 	struct snd_dbuf *bs = c->bufsoft;
442 	void *off;
443 	int ret, timeout, sz, p;
444 
445 	CHN_LOCKASSERT(c);
446 
447 	ret = 0;
448 	timeout = chn_timeout * hz;
449 
450 	while (ret == 0 && buf->uio_resid > 0) {
451 		p = sndbuf_getfreeptr(bs);
452 		sz = min(buf->uio_resid, sndbuf_getfree(bs));
453 		sz = min(sz, bs->bufsize - p);
454 		if (sz > 0) {
455 			off = sndbuf_getbufofs(bs, p);
456 			sndbuf_acquire(bs, NULL, sz);
457 			CHN_UNLOCK(c);
458 			ret = uiomove(off, sz, buf);
459 			CHN_LOCK(c);
460 			if (ret != 0)
461 				break;
462 			if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) {
463 				ret = chn_start(c, 0);
464 				if (ret != 0)
465 					c->flags |= CHN_F_DEAD;
466 			}
467 		} else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER)) {
468 			/**
469 			 * @todo Evaluate whether EAGAIN is truly desirable.
470 			 * 	 4Front drivers behave like this, but I'm
471 			 * 	 not sure if it at all violates the "write
472 			 * 	 should be allowed to block" model.
473 			 *
474 			 * 	 The idea is that, while set with CHN_F_NOTRIGGER,
475 			 * 	 a channel isn't playing, *but* without this we
476 			 * 	 end up with "interrupt timeout / channel dead".
477 			 */
478 			ret = EAGAIN;
479 		} else {
480    			ret = chn_sleep(c, timeout);
481 			if (ret == ERESTART || ret == EINTR)
482 				c->flags |= CHN_F_ABORTING;
483 		}
484 	}
485 
486 	return (ret);
487 }
488 
489 /*
490  * Feed new data from the read buffer. Can be called in the bottom half.
491  */
492 static void
chn_rdfeed(struct pcm_channel * c)493 chn_rdfeed(struct pcm_channel *c)
494 {
495     	struct snd_dbuf *b = c->bufhard;
496     	struct snd_dbuf *bs = c->bufsoft;
497 	unsigned int amt;
498 
499 	CHN_LOCKASSERT(c);
500 
501 	if (c->flags & CHN_F_MMAP)
502 		sndbuf_dispose(bs, NULL, sndbuf_getready(bs));
503 
504 	amt = sndbuf_getfree(bs);
505 	if (amt > 0)
506 		sndbuf_feed(b, bs, c, c->feeder, amt);
507 
508 	amt = sndbuf_getready(b);
509 	if (amt > 0) {
510 		c->xruns++;
511 		sndbuf_dispose(b, NULL, amt);
512 	}
513 
514 	if (sndbuf_getready(bs) > 0)
515 		chn_wakeup(c);
516 }
517 
518 /* read interrupt routine. Must be called with interrupts blocked. */
519 static void
chn_rdintr(struct pcm_channel * c)520 chn_rdintr(struct pcm_channel *c)
521 {
522 
523 	CHN_LOCKASSERT(c);
524 	/* tell the driver to update the primary buffer if non-dma */
525 	chn_trigger(c, PCMTRIG_EMLDMARD);
526 	/* update pointers in primary buffer */
527 	chn_dmaupdate(c);
528 	/* ...and feed from primary to secondary */
529 	chn_rdfeed(c);
530 }
531 
532 /*
533  * user read routine - trigger if necessary, uiomove data from secondary buffer
534  * if blocking, sleep, rinse and repeat.
535  *
536  * called externally, so must handle locking
537  */
538 
539 int
chn_read(struct pcm_channel * c,struct uio * buf)540 chn_read(struct pcm_channel *c, struct uio *buf)
541 {
542 	struct snd_dbuf *bs = c->bufsoft;
543 	void *off;
544 	int ret, timeout, sz, p;
545 
546 	CHN_LOCKASSERT(c);
547 
548 	if (CHN_STOPPED(c) && !(c->flags & CHN_F_NOTRIGGER)) {
549 		ret = chn_start(c, 0);
550 		if (ret != 0) {
551 			c->flags |= CHN_F_DEAD;
552 			return (ret);
553 		}
554 	}
555 
556 	ret = 0;
557 	timeout = chn_timeout * hz;
558 
559 	while (ret == 0 && buf->uio_resid > 0) {
560 		p = sndbuf_getreadyptr(bs);
561 		sz = min(buf->uio_resid, sndbuf_getready(bs));
562 		sz = min(sz, bs->bufsize - p);
563 		if (sz > 0) {
564 			off = sndbuf_getbufofs(bs, p);
565 			sndbuf_dispose(bs, NULL, sz);
566 			CHN_UNLOCK(c);
567 			ret = uiomove(off, sz, buf);
568 			CHN_LOCK(c);
569 			if (ret != 0)
570 				break;
571 		} else if (c->flags & (CHN_F_NBIO | CHN_F_NOTRIGGER))
572 			ret = EAGAIN;
573 		else {
574    			ret = chn_sleep(c, timeout);
575 			if (ret == ERESTART || ret == EINTR)
576 				c->flags |= CHN_F_ABORTING;
577 		}
578 	}
579 
580 	return (ret);
581 }
582 
583 void
chn_intr_locked(struct pcm_channel * c)584 chn_intr_locked(struct pcm_channel *c)
585 {
586 
587 	CHN_LOCKASSERT(c);
588 
589 	c->interrupts++;
590 
591 	if (c->direction == PCMDIR_PLAY)
592 		chn_wrintr(c);
593 	else
594 		chn_rdintr(c);
595 }
596 
597 void
chn_intr(struct pcm_channel * c)598 chn_intr(struct pcm_channel *c)
599 {
600 
601 	if (CHN_LOCKOWNED(c)) {
602 		chn_intr_locked(c);
603 		return;
604 	}
605 
606 	CHN_LOCK(c);
607 	chn_intr_locked(c);
608 	CHN_UNLOCK(c);
609 }
610 
611 u_int32_t
chn_start(struct pcm_channel * c,int force)612 chn_start(struct pcm_channel *c, int force)
613 {
614 	u_int32_t i, j;
615 	struct snd_dbuf *b = c->bufhard;
616 	struct snd_dbuf *bs = c->bufsoft;
617 	int err;
618 
619 	CHN_LOCKASSERT(c);
620 	/* if we're running, or if we're prevented from triggering, bail */
621 	if (CHN_STARTED(c) || ((c->flags & CHN_F_NOTRIGGER) && !force))
622 		return (EINVAL);
623 
624 	err = 0;
625 
626 	if (force) {
627 		i = 1;
628 		j = 0;
629 	} else {
630 		if (c->direction == PCMDIR_REC) {
631 			i = sndbuf_getfree(bs);
632 			j = (i > 0) ? 1 : sndbuf_getready(b);
633 		} else {
634 			if (sndbuf_getfree(bs) == 0) {
635 				i = 1;
636 				j = 0;
637 			} else {
638 				struct snd_dbuf *pb;
639 
640 				pb = CHN_BUF_PARENT(c, b);
641 				i = sndbuf_xbytes(sndbuf_getready(bs), bs, pb);
642 				j = pb->align;
643 			}
644 		}
645 		if (snd_verbose > 3 && CHN_EMPTY(c, children))
646 			device_printf(c->dev, "%s(): %s (%s) threshold "
647 			    "i=%d j=%d\n", __func__, CHN_DIRSTR(c),
648 			    (c->flags & CHN_F_VIRTUAL) ? "virtual" :
649 			    "hardware", i, j);
650 	}
651 
652 	if (i >= j) {
653 		c->flags |= CHN_F_TRIGGERED;
654 		sndbuf_setrun(b, 1);
655 		if (c->flags & CHN_F_CLOSING)
656 			c->feedcount = 2;
657 		else {
658 			c->feedcount = 0;
659 			c->interrupts = 0;
660 			c->xruns = 0;
661 		}
662 		if (c->parentchannel == NULL) {
663 			if (c->direction == PCMDIR_PLAY)
664 				sndbuf_fillsilence_rl(b,
665 				    sndbuf_xbytes(bs->bufsize, bs, b));
666 			if (snd_verbose > 3)
667 				device_printf(c->dev,
668 				    "%s(): %s starting! (%s/%s) "
669 				    "(ready=%d force=%d i=%d j=%d "
670 				    "intrtimeout=%u latency=%dms)\n",
671 				    __func__,
672 				    (c->flags & CHN_F_HAS_VCHAN) ?
673 				    "VCHAN PARENT" : "HW", CHN_DIRSTR(c),
674 				    (c->flags & CHN_F_CLOSING) ? "closing" :
675 				    "running",
676 				    sndbuf_getready(b),
677 				    force, i, j, c->timeout,
678 				    (b->bufsize * 1000) /
679 				    (b->align * b->spd));
680 		}
681 		err = chn_trigger(c, PCMTRIG_START);
682 	}
683 
684 	return (err);
685 }
686 
687 void
chn_resetbuf(struct pcm_channel * c)688 chn_resetbuf(struct pcm_channel *c)
689 {
690 	struct snd_dbuf *b = c->bufhard;
691 	struct snd_dbuf *bs = c->bufsoft;
692 
693 	c->blocks = 0;
694 	sndbuf_reset(b);
695 	sndbuf_reset(bs);
696 }
697 
698 /*
699  * chn_sync waits until the space in the given channel goes above
700  * a threshold. The threshold is checked against fl or rl respectively.
701  * Assume that the condition can become true, do not check here...
702  */
703 int
chn_sync(struct pcm_channel * c,int threshold)704 chn_sync(struct pcm_channel *c, int threshold)
705 {
706     	struct snd_dbuf *b, *bs;
707 	int ret, count, hcount, minflush, resid, residp, syncdelay, blksz;
708 	u_int32_t cflag;
709 
710 	CHN_LOCKASSERT(c);
711 
712 	if (c->direction != PCMDIR_PLAY)
713 		return (EINVAL);
714 
715 	bs = c->bufsoft;
716 
717 	if ((c->flags & (CHN_F_DEAD | CHN_F_ABORTING)) ||
718 	    (threshold < 1 && sndbuf_getready(bs) < 1))
719 		return (0);
720 
721 	/* if we haven't yet started and nothing is buffered, else start*/
722 	if (CHN_STOPPED(c)) {
723 		if (threshold > 0 || sndbuf_getready(bs) > 0) {
724 			ret = chn_start(c, 1);
725 			if (ret != 0)
726 				return (ret);
727 		} else
728 			return (0);
729 	}
730 
731 	b = CHN_BUF_PARENT(c, c->bufhard);
732 
733 	minflush = threshold + sndbuf_xbytes(sndbuf_getready(b), b, bs);
734 
735 	syncdelay = chn_syncdelay;
736 
737 	if (syncdelay < 0 && (threshold > 0 || sndbuf_getready(bs) > 0))
738 		minflush += sndbuf_xbytes(b->bufsize, b, bs);
739 
740 	/*
741 	 * Append (0-1000) millisecond trailing buffer (if needed)
742 	 * for slower / high latency hardwares (notably USB audio)
743 	 * to avoid audible truncation.
744 	 */
745 	if (syncdelay > 0)
746 		minflush += (bs->align * bs->spd *
747 		    ((syncdelay > 1000) ? 1000 : syncdelay)) / 1000;
748 
749 	minflush -= minflush % bs->align;
750 
751 	if (minflush > 0) {
752 		threshold = min(minflush, sndbuf_getfree(bs));
753 		sndbuf_clear(bs, threshold);
754 		sndbuf_acquire(bs, NULL, threshold);
755 		minflush -= threshold;
756 	}
757 
758 	resid = sndbuf_getready(bs);
759 	residp = resid;
760 	blksz = b->blksz;
761 	if (blksz < 1) {
762 		device_printf(c->dev,
763 		    "%s(): WARNING: blksz < 1 ! maxsize=%d [%d/%d/%d]\n",
764 		    __func__, b->maxsize, b->bufsize,
765 		    b->blksz, b->blkcnt);
766 		if (b->blkcnt > 0)
767 			blksz = b->bufsize / b->blkcnt;
768 		if (blksz < 1)
769 			blksz = 1;
770 	}
771 	count = sndbuf_xbytes(minflush + resid, bs, b) / blksz;
772 	hcount = count;
773 	ret = 0;
774 
775 	if (snd_verbose > 3)
776 		device_printf(c->dev, "%s(): [begin] timeout=%d count=%d "
777 		    "minflush=%d resid=%d\n", __func__, c->timeout, count,
778 		    minflush, resid);
779 
780 	cflag = c->flags & CHN_F_CLOSING;
781 	c->flags |= CHN_F_CLOSING;
782 	while (count > 0 && (resid > 0 || minflush > 0)) {
783 		ret = chn_sleep(c, c->timeout);
784     		if (ret == ERESTART || ret == EINTR) {
785 			c->flags |= CHN_F_ABORTING;
786 			break;
787 		} else if (ret == 0 || ret == EAGAIN) {
788 			resid = sndbuf_getready(bs);
789 			if (resid == residp) {
790 				--count;
791 				if (snd_verbose > 3)
792 					device_printf(c->dev,
793 					    "%s(): [stalled] timeout=%d "
794 					    "count=%d hcount=%d "
795 					    "resid=%d minflush=%d\n",
796 					    __func__, c->timeout, count,
797 					    hcount, resid, minflush);
798 			} else if (resid < residp && count < hcount) {
799 				++count;
800 				if (snd_verbose > 3)
801 					device_printf(c->dev,
802 					    "%s((): [resume] timeout=%d "
803 					    "count=%d hcount=%d "
804 					    "resid=%d minflush=%d\n",
805 					    __func__, c->timeout, count,
806 					    hcount, resid, minflush);
807 			}
808 			if (minflush > 0 && sndbuf_getfree(bs) > 0) {
809 				threshold = min(minflush,
810 				    sndbuf_getfree(bs));
811 				sndbuf_clear(bs, threshold);
812 				sndbuf_acquire(bs, NULL, threshold);
813 				resid = sndbuf_getready(bs);
814 				minflush -= threshold;
815 			}
816 			residp = resid;
817 		} else
818 			break;
819 	}
820 	c->flags &= ~CHN_F_CLOSING;
821 	c->flags |= cflag;
822 
823 	if (snd_verbose > 3)
824 		device_printf(c->dev,
825 		    "%s(): timeout=%d count=%d hcount=%d resid=%d residp=%d "
826 		    "minflush=%d ret=%d\n",
827 		    __func__, c->timeout, count, hcount, resid, residp,
828 		    minflush, ret);
829 
830     	return (0);
831 }
832 
833 /* called externally, handle locking */
834 int
chn_poll(struct pcm_channel * c,int ev,struct thread * td)835 chn_poll(struct pcm_channel *c, int ev, struct thread *td)
836 {
837 	struct snd_dbuf *bs = c->bufsoft;
838 	int ret;
839 
840 	CHN_LOCKASSERT(c);
841 
842     	if (!(c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED))) {
843 		ret = chn_start(c, 1);
844 		if (ret != 0)
845 			return (0);
846 	}
847 
848 	ret = 0;
849 	if (chn_polltrigger(c)) {
850 		chn_pollreset(c);
851 		ret = ev;
852 	} else
853 		selrecord(td, &bs->sel);
854 
855 	return (ret);
856 }
857 
858 /*
859  * chn_abort terminates a running dma transfer.  it may sleep up to 200ms.
860  * it returns the number of bytes that have not been transferred.
861  *
862  * called from: dsp_close, dsp_ioctl, with channel locked
863  */
864 int
chn_abort(struct pcm_channel * c)865 chn_abort(struct pcm_channel *c)
866 {
867     	int missing = 0;
868     	struct snd_dbuf *b = c->bufhard;
869     	struct snd_dbuf *bs = c->bufsoft;
870 
871 	CHN_LOCKASSERT(c);
872 	if (CHN_STOPPED(c))
873 		return 0;
874 	c->flags |= CHN_F_ABORTING;
875 
876 	c->flags &= ~CHN_F_TRIGGERED;
877 	/* kill the channel */
878 	chn_trigger(c, PCMTRIG_ABORT);
879 	sndbuf_setrun(b, 0);
880 	if (!(c->flags & CHN_F_VIRTUAL))
881 		chn_dmaupdate(c);
882     	missing = sndbuf_getready(bs);
883 
884 	c->flags &= ~CHN_F_ABORTING;
885 	return missing;
886 }
887 
888 /*
889  * this routine tries to flush the dma transfer. It is called
890  * on a close of a playback channel.
891  * first, if there is data in the buffer, but the dma has not yet
892  * begun, we need to start it.
893  * next, we wait for the play buffer to drain
894  * finally, we stop the dma.
895  *
896  * called from: dsp_close, not valid for record channels.
897  */
898 
899 int
chn_flush(struct pcm_channel * c)900 chn_flush(struct pcm_channel *c)
901 {
902     	struct snd_dbuf *b = c->bufhard;
903 
904 	CHN_LOCKASSERT(c);
905 	KASSERT(c->direction == PCMDIR_PLAY, ("chn_flush on bad channel"));
906     	DEB(printf("chn_flush: c->flags 0x%08x\n", c->flags));
907 
908 	c->flags |= CHN_F_CLOSING;
909 	chn_sync(c, 0);
910 	c->flags &= ~CHN_F_TRIGGERED;
911 	/* kill the channel */
912 	chn_trigger(c, PCMTRIG_ABORT);
913 	sndbuf_setrun(b, 0);
914 
915     	c->flags &= ~CHN_F_CLOSING;
916     	return 0;
917 }
918 
919 int
snd_fmtvalid(uint32_t fmt,uint32_t * fmtlist)920 snd_fmtvalid(uint32_t fmt, uint32_t *fmtlist)
921 {
922 	int i;
923 
924 	for (i = 0; fmtlist[i] != 0; i++) {
925 		if (fmt == fmtlist[i] ||
926 		    ((fmt & AFMT_PASSTHROUGH) &&
927 		    (AFMT_ENCODING(fmt) & fmtlist[i])))
928 			return (1);
929 	}
930 
931 	return (0);
932 }
933 
934 static const struct {
935 	char *name, *alias1, *alias2;
936 	uint32_t afmt;
937 } afmt_tab[] = {
938 	{  "alaw",  NULL, NULL, AFMT_A_LAW  },
939 	{ "mulaw",  NULL, NULL, AFMT_MU_LAW },
940 	{    "u8",   "8", NULL, AFMT_U8     },
941 	{    "s8",  NULL, NULL, AFMT_S8     },
942 	{   "ac3",  NULL, NULL, AFMT_AC3    },
943 #if BYTE_ORDER == LITTLE_ENDIAN
944 	{ "s16le", "s16", "16", AFMT_S16_LE },
945 	{ "s16be",  NULL, NULL, AFMT_S16_BE },
946 	{ "s24le", "s24", "24", AFMT_S24_LE },
947 	{ "s24be",  NULL, NULL, AFMT_S24_BE },
948 	{ "s32le", "s32", "32", AFMT_S32_LE },
949 	{ "s32be",  NULL, NULL, AFMT_S32_BE },
950 	{ "f32le", "f32", NULL, AFMT_F32_LE },
951 	{ "f32be",  NULL, NULL, AFMT_F32_BE },
952 	{ "u16le", "u16", NULL, AFMT_U16_LE },
953 	{ "u16be",  NULL, NULL, AFMT_U16_BE },
954 	{ "u24le", "u24", NULL, AFMT_U24_LE },
955 	{ "u24be",  NULL, NULL, AFMT_U24_BE },
956 	{ "u32le", "u32", NULL, AFMT_U32_LE },
957 	{ "u32be",  NULL, NULL, AFMT_U32_BE },
958 #else
959 	{ "s16le",  NULL, NULL, AFMT_S16_LE },
960 	{ "s16be", "s16", "16", AFMT_S16_BE },
961 	{ "s24le",  NULL, NULL, AFMT_S24_LE },
962 	{ "s24be", "s24", "24", AFMT_S24_BE },
963 	{ "s32le",  NULL, NULL, AFMT_S32_LE },
964 	{ "s32be", "s32", "32", AFMT_S32_BE },
965 	{ "f32le",  NULL, NULL, AFMT_F32_LE },
966 	{ "f32be", "f32", NULL, AFMT_F32_BE },
967 	{ "u16le",  NULL, NULL, AFMT_U16_LE },
968 	{ "u16be", "u16", NULL, AFMT_U16_BE },
969 	{ "u24le",  NULL, NULL, AFMT_U24_LE },
970 	{ "u24be", "u24", NULL, AFMT_U24_BE },
971 	{ "u32le",  NULL, NULL, AFMT_U32_LE },
972 	{ "u32be", "u32", NULL, AFMT_U32_BE },
973 #endif
974 	{    NULL,  NULL, NULL, 0           }
975 };
976 
977 uint32_t
snd_str2afmt(const char * req)978 snd_str2afmt(const char *req)
979 {
980 	int ext;
981 	int ch;
982 	int i;
983 	char b1[8];
984 	char b2[8];
985 
986 	memset(b1, 0, sizeof(b1));
987 	memset(b2, 0, sizeof(b2));
988 
989 	i = sscanf(req, "%5[^:]:%6s", b1, b2);
990 
991 	if (i == 1) {
992 		if (strlen(req) != strlen(b1))
993 			return (0);
994 		strlcpy(b2, "2.0", sizeof(b2));
995 	} else if (i == 2) {
996 		if (strlen(req) != (strlen(b1) + 1 + strlen(b2)))
997 			return (0);
998 	} else
999 		return (0);
1000 
1001 	i = sscanf(b2, "%d.%d", &ch, &ext);
1002 
1003 	if (i == 0) {
1004 		if (strcasecmp(b2, "mono") == 0) {
1005 			ch = 1;
1006 			ext = 0;
1007 		} else if (strcasecmp(b2, "stereo") == 0) {
1008 			ch = 2;
1009 			ext = 0;
1010 		} else if (strcasecmp(b2, "quad") == 0) {
1011 			ch = 4;
1012 			ext = 0;
1013 		} else
1014 			return (0);
1015 	} else if (i == 1) {
1016 		if (ch < 1 || ch > AFMT_CHANNEL_MAX)
1017 			return (0);
1018 		ext = 0;
1019 	} else if (i == 2) {
1020 		if (ext < 0 || ext > AFMT_EXTCHANNEL_MAX)
1021 			return (0);
1022 		if (ch < 1 || (ch + ext) > AFMT_CHANNEL_MAX)
1023 			return (0);
1024 	} else
1025 		return (0);
1026 
1027 	for (i = 0; afmt_tab[i].name != NULL; i++) {
1028 		if (strcasecmp(afmt_tab[i].name, b1) != 0) {
1029 			if (afmt_tab[i].alias1 == NULL)
1030 				continue;
1031 			if (strcasecmp(afmt_tab[i].alias1, b1) != 0) {
1032 				if (afmt_tab[i].alias2 == NULL)
1033 					continue;
1034 				if (strcasecmp(afmt_tab[i].alias2, b1) != 0)
1035 					continue;
1036 			}
1037 		}
1038 		/* found a match */
1039 		return (SND_FORMAT(afmt_tab[i].afmt, ch + ext, ext));
1040 	}
1041 	/* not a valid format */
1042 	return (0);
1043 }
1044 
1045 uint32_t
snd_afmt2str(uint32_t afmt,char * buf,size_t len)1046 snd_afmt2str(uint32_t afmt, char *buf, size_t len)
1047 {
1048 	uint32_t enc;
1049 	uint32_t ext;
1050 	uint32_t ch;
1051 	int i;
1052 
1053 	if (buf == NULL || len < AFMTSTR_LEN)
1054 		return (0);
1055 
1056 	memset(buf, 0, len);
1057 
1058 	enc = AFMT_ENCODING(afmt);
1059 	ch = AFMT_CHANNEL(afmt);
1060 	ext = AFMT_EXTCHANNEL(afmt);
1061 	/* check there is at least one channel */
1062 	if (ch <= ext)
1063 		return (0);
1064 	for (i = 0; afmt_tab[i].name != NULL; i++) {
1065 		if (enc != afmt_tab[i].afmt)
1066 			continue;
1067 		/* found a match */
1068 		snprintf(buf, len, "%s:%d.%d",
1069 		    afmt_tab[i].name, ch - ext, ext);
1070 		return (SND_FORMAT(enc, ch, ext));
1071 	}
1072 	return (0);
1073 }
1074 
1075 int
chn_reset(struct pcm_channel * c,uint32_t fmt,uint32_t spd)1076 chn_reset(struct pcm_channel *c, uint32_t fmt, uint32_t spd)
1077 {
1078 	int r;
1079 
1080 	CHN_LOCKASSERT(c);
1081 	c->feedcount = 0;
1082 	c->flags &= CHN_F_RESET;
1083 	c->interrupts = 0;
1084 	c->timeout = 1;
1085 	c->xruns = 0;
1086 
1087 	c->flags |= (pcm_getflags(c->dev) & SD_F_BITPERFECT) ?
1088 	    CHN_F_BITPERFECT : 0;
1089 
1090 	r = CHANNEL_RESET(c->methods, c->devinfo);
1091 	if (r == 0 && fmt != 0 && spd != 0) {
1092 		r = chn_setparam(c, fmt, spd);
1093 		fmt = 0;
1094 		spd = 0;
1095 	}
1096 	if (r == 0 && fmt != 0)
1097 		r = chn_setformat(c, fmt);
1098 	if (r == 0 && spd != 0)
1099 		r = chn_setspeed(c, spd);
1100 	if (r == 0)
1101 		r = chn_setlatency(c, chn_latency);
1102 	if (r == 0) {
1103 		chn_resetbuf(c);
1104 		r = CHANNEL_RESETDONE(c->methods, c->devinfo);
1105 	}
1106 	return r;
1107 }
1108 
1109 static struct unrhdr *
chn_getunr(struct snddev_info * d,int type)1110 chn_getunr(struct snddev_info *d, int type)
1111 {
1112 	switch (type) {
1113 	case PCMDIR_PLAY:
1114 		return (d->p_unr);
1115 	case PCMDIR_PLAY_VIRTUAL:
1116 		return (d->vp_unr);
1117 	case PCMDIR_REC:
1118 		return (d->r_unr);
1119 	case PCMDIR_REC_VIRTUAL:
1120 		return (d->vr_unr);
1121 	default:
1122 		__assert_unreachable();
1123 	}
1124 
1125 }
1126 
1127 char *
chn_mkname(char * buf,size_t len,struct pcm_channel * c)1128 chn_mkname(char *buf, size_t len, struct pcm_channel *c)
1129 {
1130 	const char *str;
1131 
1132 	KASSERT(buf != NULL && len != 0,
1133 	    ("%s(): bogus buf=%p len=%zu", __func__, buf, len));
1134 
1135 	switch (c->type) {
1136 	case PCMDIR_PLAY:
1137 		str = "play";
1138 		break;
1139 	case PCMDIR_PLAY_VIRTUAL:
1140 		str = "virtual_play";
1141 		break;
1142 	case PCMDIR_REC:
1143 		str = "record";
1144 		break;
1145 	case PCMDIR_REC_VIRTUAL:
1146 		str = "virtual_record";
1147 		break;
1148 	default:
1149 		__assert_unreachable();
1150 	}
1151 
1152 	snprintf(buf, len, "dsp%d.%s.%d",
1153 	    device_get_unit(c->dev), str, c->unit);
1154 
1155 	return (buf);
1156 }
1157 
1158 struct pcm_channel *
chn_init(struct snddev_info * d,struct pcm_channel * parent,kobj_class_t cls,int dir,void * devinfo)1159 chn_init(struct snddev_info *d, struct pcm_channel *parent, kobj_class_t cls,
1160     int dir, void *devinfo)
1161 {
1162 	struct pcm_channel *c;
1163 	struct feeder_class *fc;
1164 	struct snd_dbuf *b, *bs;
1165 	char buf[CHN_NAMELEN];
1166 	int err, i, direction, *vchanrate, *vchanformat;
1167 
1168 	PCM_BUSYASSERT(d);
1169 	PCM_LOCKASSERT(d);
1170 
1171 	switch (dir) {
1172 	case PCMDIR_PLAY:
1173 		d->playcount++;
1174 		/* FALLTHROUGH */
1175 	case PCMDIR_PLAY_VIRTUAL:
1176 		if (dir == PCMDIR_PLAY_VIRTUAL)
1177 			d->pvchancount++;
1178 		direction = PCMDIR_PLAY;
1179 		vchanrate = &d->pvchanrate;
1180 		vchanformat = &d->pvchanformat;
1181 		break;
1182 	case PCMDIR_REC:
1183 		d->reccount++;
1184 		/* FALLTHROUGH */
1185 	case PCMDIR_REC_VIRTUAL:
1186 		if (dir == PCMDIR_REC_VIRTUAL)
1187 			d->rvchancount++;
1188 		direction = PCMDIR_REC;
1189 		vchanrate = &d->rvchanrate;
1190 		vchanformat = &d->rvchanformat;
1191 		break;
1192 	default:
1193 		device_printf(d->dev,
1194 		    "%s(): invalid channel direction: %d\n",
1195 		    __func__, dir);
1196 		return (NULL);
1197 	}
1198 
1199 	PCM_UNLOCK(d);
1200 	b = NULL;
1201 	bs = NULL;
1202 
1203 	c = malloc(sizeof(*c), M_DEVBUF, M_WAITOK | M_ZERO);
1204 	c->methods = kobj_create(cls, M_DEVBUF, M_WAITOK | M_ZERO);
1205 	chn_lockinit(c, dir);
1206 	CHN_INIT(c, children);
1207 	CHN_INIT(c, children.busy);
1208 	c->direction = direction;
1209 	c->type = dir;
1210 	c->unit = alloc_unr(chn_getunr(d, c->type));
1211 	c->format = SND_FORMAT(AFMT_S16_LE, 2, 0);
1212 	c->speed = 48000;
1213 	c->pid = -1;
1214 	c->latency = -1;
1215 	c->timeout = 1;
1216 	strlcpy(c->comm, CHN_COMM_UNUSED, sizeof(c->comm));
1217 	c->parentsnddev = d;
1218 	c->parentchannel = parent;
1219 	c->dev = d->dev;
1220 	c->trigger = PCMTRIG_STOP;
1221 	strlcpy(c->name, chn_mkname(buf, sizeof(buf), c), sizeof(c->name));
1222 
1223 	c->matrix = *feeder_matrix_id_map(SND_CHN_MATRIX_1_0);
1224 	c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL;
1225 
1226 	for (i = 0; i < SND_CHN_T_MAX; i++)
1227 		c->volume[SND_VOL_C_MASTER][i] = SND_VOL_0DB_MASTER;
1228 
1229 	c->volume[SND_VOL_C_MASTER][SND_CHN_T_VOL_0DB] = SND_VOL_0DB_MASTER;
1230 	c->volume[SND_VOL_C_PCM][SND_CHN_T_VOL_0DB] = chn_vol_0db_pcm;
1231 
1232 	CHN_LOCK(c);
1233 	chn_vpc_reset(c, SND_VOL_C_PCM, 1);
1234 	CHN_UNLOCK(c);
1235 
1236 	fc = feeder_getclass(FEEDER_ROOT);
1237 	if (fc == NULL) {
1238 		device_printf(d->dev, "%s(): failed to get feeder class\n",
1239 		    __func__);
1240 		goto fail;
1241 	}
1242 	if (feeder_add(c, fc, NULL)) {
1243 		device_printf(d->dev, "%s(): failed to add feeder\n", __func__);
1244 		goto fail;
1245 	}
1246 
1247 	b = sndbuf_create(c, "primary");
1248 	bs = sndbuf_create(c, "secondary");
1249 	if (b == NULL || bs == NULL) {
1250 		device_printf(d->dev, "%s(): failed to create %s buffer\n",
1251 		    __func__, b == NULL ? "hardware" : "software");
1252 		goto fail;
1253 	}
1254 	c->bufhard = b;
1255 	c->bufsoft = bs;
1256 	knlist_init_mtx(&bs->sel.si_note, &c->lock);
1257 
1258 	c->devinfo = CHANNEL_INIT(c->methods, devinfo, b, c, direction);
1259 	if (c->devinfo == NULL) {
1260 		device_printf(d->dev, "%s(): CHANNEL_INIT() failed\n", __func__);
1261 		goto fail;
1262 	}
1263 
1264 	if (b->bufsize == 0 && ((c->flags & CHN_F_VIRTUAL) == 0)) {
1265 		device_printf(d->dev, "%s(): hardware buffer's size is 0\n",
1266 		    __func__);
1267 		goto fail;
1268 	}
1269 
1270 	sndbuf_setfmt(b, c->format);
1271 	sndbuf_setspd(b, c->speed);
1272 	sndbuf_setfmt(bs, c->format);
1273 	sndbuf_setspd(bs, c->speed);
1274 	sndbuf_setup(bs, NULL, 0);
1275 
1276 	/**
1277 	 * @todo Should this be moved somewhere else?  The primary buffer
1278 	 * 	 is allocated by the driver or via DMA map setup, and tmpbuf
1279 	 * 	 seems to only come into existence in sndbuf_resize().
1280 	 */
1281 	if (c->direction == PCMDIR_PLAY) {
1282 		bs->sl = bs->maxsize;
1283 		bs->shadbuf = malloc(bs->sl, M_DEVBUF, M_WAITOK);
1284 	}
1285 
1286 	if ((c->flags & CHN_F_VIRTUAL) == 0) {
1287 		CHN_LOCK(c);
1288 		err = chn_reset(c, c->format, c->speed);
1289 		CHN_UNLOCK(c);
1290 		if (err != 0)
1291 			goto fail;
1292 	}
1293 
1294 	PCM_LOCK(d);
1295 	CHN_INSERT_SORT_ASCEND(d, c, channels.pcm);
1296 	if ((c->flags & CHN_F_VIRTUAL) == 0) {
1297 		CHN_INSERT_SORT_ASCEND(d, c, channels.pcm.primary);
1298 		/* Initialize the *vchanrate/vchanformat parameters. */
1299 		*vchanrate = c->bufsoft->spd;
1300 		*vchanformat = c->bufsoft->fmt;
1301 	}
1302 
1303 	return (c);
1304 
1305 fail:
1306 	chn_kill(c);
1307 	PCM_LOCK(d);
1308 
1309 	return (NULL);
1310 }
1311 
1312 void
chn_kill(struct pcm_channel * c)1313 chn_kill(struct pcm_channel *c)
1314 {
1315 	struct snddev_info *d = c->parentsnddev;
1316 	struct snd_dbuf *b = c->bufhard;
1317 	struct snd_dbuf *bs = c->bufsoft;
1318 
1319 	PCM_BUSYASSERT(c->parentsnddev);
1320 
1321 	PCM_LOCK(d);
1322 	CHN_REMOVE(d, c, channels.pcm);
1323 	if ((c->flags & CHN_F_VIRTUAL) == 0)
1324 		CHN_REMOVE(d, c, channels.pcm.primary);
1325 
1326 	switch (c->type) {
1327 	case PCMDIR_PLAY:
1328 		d->playcount--;
1329 		break;
1330 	case PCMDIR_PLAY_VIRTUAL:
1331 		d->pvchancount--;
1332 		break;
1333 	case PCMDIR_REC:
1334 		d->reccount--;
1335 		break;
1336 	case PCMDIR_REC_VIRTUAL:
1337 		d->rvchancount--;
1338 		break;
1339 	default:
1340 		__assert_unreachable();
1341 	}
1342 	PCM_UNLOCK(d);
1343 
1344 	if (CHN_STARTED(c)) {
1345 		CHN_LOCK(c);
1346 		chn_trigger(c, PCMTRIG_ABORT);
1347 		CHN_UNLOCK(c);
1348 	}
1349 	free_unr(chn_getunr(d, c->type), c->unit);
1350 	feeder_remove(c);
1351 	if (c->devinfo)
1352 		CHANNEL_FREE(c->methods, c->devinfo);
1353 	if (bs) {
1354 		knlist_clear(&bs->sel.si_note, 0);
1355 		knlist_destroy(&bs->sel.si_note);
1356 		sndbuf_destroy(bs);
1357 	}
1358 	if (b)
1359 		sndbuf_destroy(b);
1360 	CHN_LOCK(c);
1361 	c->flags |= CHN_F_DEAD;
1362 	chn_lockdestroy(c);
1363 	kobj_delete(c->methods, M_DEVBUF);
1364 	free(c, M_DEVBUF);
1365 }
1366 
1367 void
chn_shutdown(struct pcm_channel * c)1368 chn_shutdown(struct pcm_channel *c)
1369 {
1370 	CHN_LOCKASSERT(c);
1371 
1372 	chn_wakeup(c);
1373 	c->flags |= CHN_F_DEAD;
1374 }
1375 
1376 /* release a locked channel and unlock it */
1377 int
chn_release(struct pcm_channel * c)1378 chn_release(struct pcm_channel *c)
1379 {
1380 	PCM_BUSYASSERT(c->parentsnddev);
1381 	CHN_LOCKASSERT(c);
1382 
1383 	c->flags &= ~CHN_F_BUSY;
1384 	c->pid = -1;
1385 	strlcpy(c->comm, CHN_COMM_UNUSED, sizeof(c->comm));
1386 	CHN_UNLOCK(c);
1387 
1388 	return (0);
1389 }
1390 
1391 int
chn_setvolume_multi(struct pcm_channel * c,int vc,int left,int right,int center)1392 chn_setvolume_multi(struct pcm_channel *c, int vc, int left, int right,
1393     int center)
1394 {
1395 	int i, ret;
1396 
1397 	ret = 0;
1398 
1399 	for (i = 0; i < SND_CHN_T_MAX; i++) {
1400 		if ((1 << i) & SND_CHN_LEFT_MASK)
1401 			ret |= chn_setvolume_matrix(c, vc, i, left);
1402 		else if ((1 << i) & SND_CHN_RIGHT_MASK)
1403 			ret |= chn_setvolume_matrix(c, vc, i, right) << 8;
1404 		else
1405 			ret |= chn_setvolume_matrix(c, vc, i, center) << 16;
1406 	}
1407 
1408 	return (ret);
1409 }
1410 
1411 int
chn_setvolume_matrix(struct pcm_channel * c,int vc,int vt,int val)1412 chn_setvolume_matrix(struct pcm_channel *c, int vc, int vt, int val)
1413 {
1414 	int i;
1415 
1416 	KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX &&
1417 	    (vc == SND_VOL_C_MASTER || (vc & 1)) &&
1418 	    (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN &&
1419 	    vt <= SND_CHN_T_END)) && (vt != SND_CHN_T_VOL_0DB ||
1420 	    (val >= SND_VOL_0DB_MIN && val <= SND_VOL_0DB_MAX)),
1421 	    ("%s(): invalid volume matrix c=%p vc=%d vt=%d val=%d",
1422 	    __func__, c, vc, vt, val));
1423 	CHN_LOCKASSERT(c);
1424 
1425 	if (val < 0)
1426 		val = 0;
1427 	if (val > 100)
1428 		val = 100;
1429 
1430 	c->volume[vc][vt] = val;
1431 
1432 	/*
1433 	 * Do relative calculation here and store it into class + 1
1434 	 * to ease the job of feeder_volume.
1435 	 */
1436 	if (vc == SND_VOL_C_MASTER) {
1437 		for (vc = SND_VOL_C_BEGIN; vc <= SND_VOL_C_END;
1438 		    vc += SND_VOL_C_STEP)
1439 			c->volume[SND_VOL_C_VAL(vc)][vt] =
1440 			    SND_VOL_CALC_VAL(c->volume, vc, vt);
1441 	} else if (vc & 1) {
1442 		if (vt == SND_CHN_T_VOL_0DB)
1443 			for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END;
1444 			    i += SND_CHN_T_STEP) {
1445 				c->volume[SND_VOL_C_VAL(vc)][i] =
1446 				    SND_VOL_CALC_VAL(c->volume, vc, i);
1447 			}
1448 		else
1449 			c->volume[SND_VOL_C_VAL(vc)][vt] =
1450 			    SND_VOL_CALC_VAL(c->volume, vc, vt);
1451 	}
1452 
1453 	return (val);
1454 }
1455 
1456 int
chn_getvolume_matrix(struct pcm_channel * c,int vc,int vt)1457 chn_getvolume_matrix(struct pcm_channel *c, int vc, int vt)
1458 {
1459 	KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX &&
1460 	    (vt == SND_CHN_T_VOL_0DB ||
1461 	    (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)),
1462 	    ("%s(): invalid volume matrix c=%p vc=%d vt=%d",
1463 	    __func__, c, vc, vt));
1464 	CHN_LOCKASSERT(c);
1465 
1466 	return (c->volume[vc][vt]);
1467 }
1468 
1469 int
chn_setmute_multi(struct pcm_channel * c,int vc,int mute)1470 chn_setmute_multi(struct pcm_channel *c, int vc, int mute)
1471 {
1472 	int i, ret;
1473 
1474 	ret = 0;
1475 
1476 	for (i = 0; i < SND_CHN_T_MAX; i++) {
1477 		if ((1 << i) & SND_CHN_LEFT_MASK)
1478 			ret |= chn_setmute_matrix(c, vc, i, mute);
1479 		else if ((1 << i) & SND_CHN_RIGHT_MASK)
1480 			ret |= chn_setmute_matrix(c, vc, i, mute) << 8;
1481 		else
1482 			ret |= chn_setmute_matrix(c, vc, i, mute) << 16;
1483 	}
1484 	return (ret);
1485 }
1486 
1487 int
chn_setmute_matrix(struct pcm_channel * c,int vc,int vt,int mute)1488 chn_setmute_matrix(struct pcm_channel *c, int vc, int vt, int mute)
1489 {
1490 	int i;
1491 
1492 	KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX &&
1493 	    (vc == SND_VOL_C_MASTER || (vc & 1)) &&
1494 	    (vt == SND_CHN_T_VOL_0DB || (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)),
1495 	    ("%s(): invalid mute matrix c=%p vc=%d vt=%d mute=%d",
1496 	    __func__, c, vc, vt, mute));
1497 
1498 	CHN_LOCKASSERT(c);
1499 
1500 	mute = (mute != 0);
1501 
1502 	c->muted[vc][vt] = mute;
1503 
1504 	/*
1505 	 * Do relative calculation here and store it into class + 1
1506 	 * to ease the job of feeder_volume.
1507 	 */
1508 	if (vc == SND_VOL_C_MASTER) {
1509 		for (vc = SND_VOL_C_BEGIN; vc <= SND_VOL_C_END;
1510 		    vc += SND_VOL_C_STEP)
1511 			c->muted[SND_VOL_C_VAL(vc)][vt] = mute;
1512 	} else if (vc & 1) {
1513 		if (vt == SND_CHN_T_VOL_0DB) {
1514 			for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END;
1515 			    i += SND_CHN_T_STEP) {
1516 				c->muted[SND_VOL_C_VAL(vc)][i] = mute;
1517 			}
1518 		} else {
1519 			c->muted[SND_VOL_C_VAL(vc)][vt] = mute;
1520 		}
1521 	}
1522 	return (mute);
1523 }
1524 
1525 int
chn_getmute_matrix(struct pcm_channel * c,int vc,int vt)1526 chn_getmute_matrix(struct pcm_channel *c, int vc, int vt)
1527 {
1528 	KASSERT(c != NULL && vc >= SND_VOL_C_MASTER && vc < SND_VOL_C_MAX &&
1529 	    (vt == SND_CHN_T_VOL_0DB ||
1530 	    (vt >= SND_CHN_T_BEGIN && vt <= SND_CHN_T_END)),
1531 	    ("%s(): invalid mute matrix c=%p vc=%d vt=%d",
1532 	    __func__, c, vc, vt));
1533 	CHN_LOCKASSERT(c);
1534 
1535 	return (c->muted[vc][vt]);
1536 }
1537 
1538 struct pcmchan_matrix *
chn_getmatrix(struct pcm_channel * c)1539 chn_getmatrix(struct pcm_channel *c)
1540 {
1541 
1542 	KASSERT(c != NULL, ("%s(): NULL channel", __func__));
1543 	CHN_LOCKASSERT(c);
1544 
1545 	if (!(c->format & AFMT_CONVERTIBLE))
1546 		return (NULL);
1547 
1548 	return (&c->matrix);
1549 }
1550 
1551 int
chn_setmatrix(struct pcm_channel * c,struct pcmchan_matrix * m)1552 chn_setmatrix(struct pcm_channel *c, struct pcmchan_matrix *m)
1553 {
1554 
1555 	KASSERT(c != NULL && m != NULL,
1556 	    ("%s(): NULL channel or matrix", __func__));
1557 	CHN_LOCKASSERT(c);
1558 
1559 	if (!(c->format & AFMT_CONVERTIBLE))
1560 		return (EINVAL);
1561 
1562 	c->matrix = *m;
1563 	c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL;
1564 
1565 	return (chn_setformat(c, SND_FORMAT(c->format, m->channels, m->ext)));
1566 }
1567 
1568 /*
1569  * XXX chn_oss_* exists for the sake of compatibility.
1570  */
1571 int
chn_oss_getorder(struct pcm_channel * c,unsigned long long * map)1572 chn_oss_getorder(struct pcm_channel *c, unsigned long long *map)
1573 {
1574 
1575 	KASSERT(c != NULL && map != NULL,
1576 	    ("%s(): NULL channel or map", __func__));
1577 	CHN_LOCKASSERT(c);
1578 
1579 	if (!(c->format & AFMT_CONVERTIBLE))
1580 		return (EINVAL);
1581 
1582 	return (feeder_matrix_oss_get_channel_order(&c->matrix, map));
1583 }
1584 
1585 int
chn_oss_setorder(struct pcm_channel * c,unsigned long long * map)1586 chn_oss_setorder(struct pcm_channel *c, unsigned long long *map)
1587 {
1588 	struct pcmchan_matrix m;
1589 	int ret;
1590 
1591 	KASSERT(c != NULL && map != NULL,
1592 	    ("%s(): NULL channel or map", __func__));
1593 	CHN_LOCKASSERT(c);
1594 
1595 	if (!(c->format & AFMT_CONVERTIBLE))
1596 		return (EINVAL);
1597 
1598 	m = c->matrix;
1599 	ret = feeder_matrix_oss_set_channel_order(&m, map);
1600 	if (ret != 0)
1601 		return (ret);
1602 
1603 	return (chn_setmatrix(c, &m));
1604 }
1605 
1606 #define SND_CHN_OSS_FRONT	(SND_CHN_T_MASK_FL | SND_CHN_T_MASK_FR)
1607 #define SND_CHN_OSS_SURR	(SND_CHN_T_MASK_SL | SND_CHN_T_MASK_SR)
1608 #define SND_CHN_OSS_CENTER_LFE	(SND_CHN_T_MASK_FC | SND_CHN_T_MASK_LF)
1609 #define SND_CHN_OSS_REAR	(SND_CHN_T_MASK_BL | SND_CHN_T_MASK_BR)
1610 
1611 int
chn_oss_getmask(struct pcm_channel * c,uint32_t * retmask)1612 chn_oss_getmask(struct pcm_channel *c, uint32_t *retmask)
1613 {
1614 	struct pcmchan_matrix *m;
1615 	struct pcmchan_caps *caps;
1616 	uint32_t i, format;
1617 
1618 	KASSERT(c != NULL && retmask != NULL,
1619 	    ("%s(): NULL channel or retmask", __func__));
1620 	CHN_LOCKASSERT(c);
1621 
1622 	caps = chn_getcaps(c);
1623 	if (caps == NULL || caps->fmtlist == NULL)
1624 		return (ENODEV);
1625 
1626 	for (i = 0; caps->fmtlist[i] != 0; i++) {
1627 		format = caps->fmtlist[i];
1628 		if (!(format & AFMT_CONVERTIBLE)) {
1629 			*retmask |= DSP_BIND_SPDIF;
1630 			continue;
1631 		}
1632 		m = CHANNEL_GETMATRIX(c->methods, c->devinfo, format);
1633 		if (m == NULL)
1634 			continue;
1635 		if (m->mask & SND_CHN_OSS_FRONT)
1636 			*retmask |= DSP_BIND_FRONT;
1637 		if (m->mask & SND_CHN_OSS_SURR)
1638 			*retmask |= DSP_BIND_SURR;
1639 		if (m->mask & SND_CHN_OSS_CENTER_LFE)
1640 			*retmask |= DSP_BIND_CENTER_LFE;
1641 		if (m->mask & SND_CHN_OSS_REAR)
1642 			*retmask |= DSP_BIND_REAR;
1643 	}
1644 
1645 	/* report software-supported binding mask */
1646 	if (!CHN_BITPERFECT(c) && report_soft_matrix)
1647 		*retmask |= DSP_BIND_FRONT | DSP_BIND_SURR |
1648 		    DSP_BIND_CENTER_LFE | DSP_BIND_REAR;
1649 
1650 	return (0);
1651 }
1652 
1653 void
chn_vpc_reset(struct pcm_channel * c,int vc,int force)1654 chn_vpc_reset(struct pcm_channel *c, int vc, int force)
1655 {
1656 	int i;
1657 
1658 	KASSERT(c != NULL && vc >= SND_VOL_C_BEGIN && vc <= SND_VOL_C_END,
1659 	    ("%s(): invalid reset c=%p vc=%d", __func__, c, vc));
1660 	CHN_LOCKASSERT(c);
1661 
1662 	if (force == 0 && chn_vpc_autoreset == 0)
1663 		return;
1664 
1665 	for (i = SND_CHN_T_BEGIN; i <= SND_CHN_T_END; i += SND_CHN_T_STEP)
1666 		CHN_SETVOLUME(c, vc, i, c->volume[vc][SND_CHN_T_VOL_0DB]);
1667 }
1668 
1669 static u_int32_t
round_pow2(u_int32_t v)1670 round_pow2(u_int32_t v)
1671 {
1672 	u_int32_t ret;
1673 
1674 	if (v < 2)
1675 		v = 2;
1676 	ret = 0;
1677 	while (v >> ret)
1678 		ret++;
1679 	ret = 1 << (ret - 1);
1680 	while (ret < v)
1681 		ret <<= 1;
1682 	return ret;
1683 }
1684 
1685 static u_int32_t
round_blksz(u_int32_t v,int round)1686 round_blksz(u_int32_t v, int round)
1687 {
1688 	u_int32_t ret, tmp;
1689 
1690 	if (round < 1)
1691 		round = 1;
1692 
1693 	ret = min(round_pow2(v), CHN_2NDBUFMAXSIZE >> 1);
1694 
1695 	if (ret > v && (ret >> 1) > 0 && (ret >> 1) >= ((v * 3) >> 2))
1696 		ret >>= 1;
1697 
1698 	tmp = ret - (ret % round);
1699 	while (tmp < 16 || tmp < round) {
1700 		ret <<= 1;
1701 		tmp = ret - (ret % round);
1702 	}
1703 
1704 	return ret;
1705 }
1706 
1707 /*
1708  * 4Front call it DSP Policy, while we call it "Latency Profile". The idea
1709  * is to keep 2nd buffer short so that it doesn't cause long queue during
1710  * buffer transfer.
1711  *
1712  *    Latency reference table for 48khz stereo 16bit: (PLAY)
1713  *
1714  *      +---------+------------+-----------+------------+
1715  *      | Latency | Blockcount | Blocksize | Buffersize |
1716  *      +---------+------------+-----------+------------+
1717  *      |     0   |       2    |   64      |    128     |
1718  *      +---------+------------+-----------+------------+
1719  *      |     1   |       4    |   128     |    512     |
1720  *      +---------+------------+-----------+------------+
1721  *      |     2   |       8    |   512     |    4096    |
1722  *      +---------+------------+-----------+------------+
1723  *      |     3   |      16    |   512     |    8192    |
1724  *      +---------+------------+-----------+------------+
1725  *      |     4   |      32    |   512     |    16384   |
1726  *      +---------+------------+-----------+------------+
1727  *      |     5   |      32    |   1024    |    32768   |
1728  *      +---------+------------+-----------+------------+
1729  *      |     6   |      16    |   2048    |    32768   |
1730  *      +---------+------------+-----------+------------+
1731  *      |     7   |       8    |   4096    |    32768   |
1732  *      +---------+------------+-----------+------------+
1733  *      |     8   |       4    |   8192    |    32768   |
1734  *      +---------+------------+-----------+------------+
1735  *      |     9   |       2    |   16384   |    32768   |
1736  *      +---------+------------+-----------+------------+
1737  *      |    10   |       2    |   32768   |    65536   |
1738  *      +---------+------------+-----------+------------+
1739  *
1740  * Recording need a different reference table. All we care is
1741  * gobbling up everything within reasonable buffering threshold.
1742  *
1743  *    Latency reference table for 48khz stereo 16bit: (REC)
1744  *
1745  *      +---------+------------+-----------+------------+
1746  *      | Latency | Blockcount | Blocksize | Buffersize |
1747  *      +---------+------------+-----------+------------+
1748  *      |     0   |     512    |   32      |    16384   |
1749  *      +---------+------------+-----------+------------+
1750  *      |     1   |     256    |   64      |    16384   |
1751  *      +---------+------------+-----------+------------+
1752  *      |     2   |     128    |   128     |    16384   |
1753  *      +---------+------------+-----------+------------+
1754  *      |     3   |      64    |   256     |    16384   |
1755  *      +---------+------------+-----------+------------+
1756  *      |     4   |      32    |   512     |    16384   |
1757  *      +---------+------------+-----------+------------+
1758  *      |     5   |      32    |   1024    |    32768   |
1759  *      +---------+------------+-----------+------------+
1760  *      |     6   |      16    |   2048    |    32768   |
1761  *      +---------+------------+-----------+------------+
1762  *      |     7   |       8    |   4096    |    32768   |
1763  *      +---------+------------+-----------+------------+
1764  *      |     8   |       4    |   8192    |    32768   |
1765  *      +---------+------------+-----------+------------+
1766  *      |     9   |       2    |   16384   |    32768   |
1767  *      +---------+------------+-----------+------------+
1768  *      |    10   |       2    |   32768   |    65536   |
1769  *      +---------+------------+-----------+------------+
1770  *
1771  * Calculations for other data rate are entirely based on these reference
1772  * tables. For normal operation, Latency 5 seems give the best, well
1773  * balanced performance for typical workload. Anything below 5 will
1774  * eat up CPU to keep up with increasing context switches because of
1775  * shorter buffer space and usually require the application to handle it
1776  * aggressively through possibly real time programming technique.
1777  *
1778  */
1779 #define CHN_LATENCY_PBLKCNT_REF				\
1780 	{{1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1},		\
1781 	{1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1}}
1782 #define CHN_LATENCY_PBUFSZ_REF				\
1783 	{{7, 9, 12, 13, 14, 15, 15, 15, 15, 15, 16},	\
1784 	{11, 12, 13, 14, 15, 16, 16, 16, 16, 16, 17}}
1785 
1786 #define CHN_LATENCY_RBLKCNT_REF				\
1787 	{{9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1},		\
1788 	{9, 8, 7, 6, 5, 5, 4, 3, 2, 1, 1}}
1789 #define CHN_LATENCY_RBUFSZ_REF				\
1790 	{{14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16},	\
1791 	{15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17}}
1792 
1793 #define CHN_LATENCY_DATA_REF	192000 /* 48khz stereo 16bit ~ 48000 x 2 x 2 */
1794 
1795 static int
chn_calclatency(int dir,int latency,int bps,u_int32_t datarate,u_int32_t max,int * rblksz,int * rblkcnt)1796 chn_calclatency(int dir, int latency, int bps, u_int32_t datarate,
1797 				u_int32_t max, int *rblksz, int *rblkcnt)
1798 {
1799 	static int pblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] =
1800 	    CHN_LATENCY_PBLKCNT_REF;
1801 	static int  pbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] =
1802 	    CHN_LATENCY_PBUFSZ_REF;
1803 	static int rblkcnts[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] =
1804 	    CHN_LATENCY_RBLKCNT_REF;
1805 	static int  rbufszs[CHN_LATENCY_PROFILE_MAX + 1][CHN_LATENCY_MAX + 1] =
1806 	    CHN_LATENCY_RBUFSZ_REF;
1807 	u_int32_t bufsz;
1808 	int lprofile, blksz, blkcnt;
1809 
1810 	if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX ||
1811 	    bps < 1 || datarate < 1 ||
1812 	    !(dir == PCMDIR_PLAY || dir == PCMDIR_REC)) {
1813 		if (rblksz != NULL)
1814 			*rblksz = CHN_2NDBUFMAXSIZE >> 1;
1815 		if (rblkcnt != NULL)
1816 			*rblkcnt = 2;
1817 		printf("%s(): FAILED dir=%d latency=%d bps=%d "
1818 		    "datarate=%u max=%u\n",
1819 		    __func__, dir, latency, bps, datarate, max);
1820 		return CHN_2NDBUFMAXSIZE;
1821 	}
1822 
1823 	lprofile = chn_latency_profile;
1824 
1825 	if (dir == PCMDIR_PLAY) {
1826 		blkcnt = pblkcnts[lprofile][latency];
1827 		bufsz = pbufszs[lprofile][latency];
1828 	} else {
1829 		blkcnt = rblkcnts[lprofile][latency];
1830 		bufsz = rbufszs[lprofile][latency];
1831 	}
1832 
1833 	bufsz = round_pow2(snd_xbytes(1 << bufsz, CHN_LATENCY_DATA_REF,
1834 	    datarate));
1835 	if (bufsz > max)
1836 		bufsz = max;
1837 	blksz = round_blksz(bufsz >> blkcnt, bps);
1838 
1839 	if (rblksz != NULL)
1840 		*rblksz = blksz;
1841 	if (rblkcnt != NULL)
1842 		*rblkcnt = 1 << blkcnt;
1843 
1844 	return blksz << blkcnt;
1845 }
1846 
1847 static int
chn_resizebuf(struct pcm_channel * c,int latency,int blkcnt,int blksz)1848 chn_resizebuf(struct pcm_channel *c, int latency,
1849 					int blkcnt, int blksz)
1850 {
1851 	struct snd_dbuf *b, *bs, *pb;
1852 	int sblksz, sblkcnt, hblksz, hblkcnt, limit = 0, nsblksz, nsblkcnt;
1853 	int ret;
1854 
1855 	CHN_LOCKASSERT(c);
1856 
1857 	if ((c->flags & (CHN_F_MMAP | CHN_F_TRIGGERED)) ||
1858 	    !(c->direction == PCMDIR_PLAY || c->direction == PCMDIR_REC))
1859 		return EINVAL;
1860 
1861 	if (latency == -1) {
1862 		c->latency = -1;
1863 		latency = chn_latency;
1864 	} else if (latency == -2) {
1865 		latency = c->latency;
1866 		if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX)
1867 			latency = chn_latency;
1868 	} else if (latency < CHN_LATENCY_MIN || latency > CHN_LATENCY_MAX)
1869 		return EINVAL;
1870 	else {
1871 		c->latency = latency;
1872 	}
1873 
1874 	bs = c->bufsoft;
1875 	b = c->bufhard;
1876 
1877 	if (!(blksz == 0 || blkcnt == -1) &&
1878 	    (blksz < 16 || blksz < bs->align || blkcnt < 2 ||
1879 	    (blksz * blkcnt) > CHN_2NDBUFMAXSIZE))
1880 		return EINVAL;
1881 
1882 	chn_calclatency(c->direction, latency, bs->align,
1883 	    bs->align * bs->spd, CHN_2NDBUFMAXSIZE,
1884 	    &sblksz, &sblkcnt);
1885 
1886 	if (blksz == 0 || blkcnt == -1) {
1887 		if (blkcnt == -1)
1888 			c->flags &= ~CHN_F_HAS_SIZE;
1889 		if (c->flags & CHN_F_HAS_SIZE) {
1890 			blksz = bs->blksz;
1891 			blkcnt = bs->blkcnt;
1892 		}
1893 	} else
1894 		c->flags |= CHN_F_HAS_SIZE;
1895 
1896 	if (c->flags & CHN_F_HAS_SIZE) {
1897 		/*
1898 		 * The application has requested their own blksz/blkcnt.
1899 		 * Just obey with it, and let them toast alone. We can
1900 		 * clamp it to the nearest latency profile, but that would
1901 		 * defeat the purpose of having custom control. The least
1902 		 * we can do is round it to the nearest ^2 and align it.
1903 		 */
1904 		sblksz = round_blksz(blksz, bs->align);
1905 		sblkcnt = round_pow2(blkcnt);
1906 	}
1907 
1908 	if (c->parentchannel != NULL) {
1909 		pb = c->parentchannel->bufsoft;
1910 		CHN_UNLOCK(c);
1911 		CHN_LOCK(c->parentchannel);
1912 		chn_notify(c->parentchannel, CHN_N_BLOCKSIZE);
1913 		CHN_UNLOCK(c->parentchannel);
1914 		CHN_LOCK(c);
1915 		if (c->direction == PCMDIR_PLAY) {
1916 			limit = (pb != NULL) ?
1917 			    sndbuf_xbytes(pb->bufsize, pb, bs) : 0;
1918 		} else {
1919 			limit = (pb != NULL) ?
1920 			    sndbuf_xbytes(pb->blksz, pb, bs) * 2 : 0;
1921 		}
1922 	} else {
1923 		hblkcnt = 2;
1924 		if (c->flags & CHN_F_HAS_SIZE) {
1925 			hblksz = round_blksz(sndbuf_xbytes(sblksz, bs, b),
1926 			    b->align);
1927 			hblkcnt = round_pow2(bs->blkcnt);
1928 		} else
1929 			chn_calclatency(c->direction, latency,
1930 			    b->align, b->align * b->spd,
1931 			    CHN_2NDBUFMAXSIZE, &hblksz, &hblkcnt);
1932 
1933 		if ((hblksz << 1) > b->maxsize)
1934 			hblksz = round_blksz(b->maxsize >> 1, b->align);
1935 
1936 		while ((hblksz * hblkcnt) > b->maxsize) {
1937 			if (hblkcnt < 4)
1938 				hblksz >>= 1;
1939 			else
1940 				hblkcnt >>= 1;
1941 		}
1942 
1943 		hblksz -= hblksz % b->align;
1944 
1945 		CHN_UNLOCK(c);
1946 		if (chn_usefrags == 0 ||
1947 		    CHANNEL_SETFRAGMENTS(c->methods, c->devinfo,
1948 		    hblksz, hblkcnt) != 0)
1949 			b->blksz = CHANNEL_SETBLOCKSIZE(c->methods,
1950 			    c->devinfo, hblksz);
1951 		CHN_LOCK(c);
1952 
1953 		if (!CHN_EMPTY(c, children)) {
1954 			nsblksz = round_blksz(
1955 			    sndbuf_xbytes(b->blksz, b, bs), bs->align);
1956 			nsblkcnt = b->blkcnt;
1957 			if (c->direction == PCMDIR_PLAY) {
1958 				do {
1959 					nsblkcnt--;
1960 				} while (nsblkcnt >= 2 &&
1961 				    nsblksz * nsblkcnt >= sblksz * sblkcnt);
1962 				nsblkcnt++;
1963 			}
1964 			sblksz = nsblksz;
1965 			sblkcnt = nsblkcnt;
1966 			limit = 0;
1967 		} else
1968 			limit = sndbuf_xbytes(b->blksz, b, bs) * 2;
1969 	}
1970 
1971 	if (limit > CHN_2NDBUFMAXSIZE)
1972 		limit = CHN_2NDBUFMAXSIZE;
1973 
1974 	while ((sblksz * sblkcnt) < limit)
1975 		sblkcnt <<= 1;
1976 
1977 	while ((sblksz * sblkcnt) > CHN_2NDBUFMAXSIZE) {
1978 		if (sblkcnt < 4)
1979 			sblksz >>= 1;
1980 		else
1981 			sblkcnt >>= 1;
1982 	}
1983 
1984 	sblksz -= sblksz % bs->align;
1985 
1986 	if (bs->blkcnt != sblkcnt || bs->blksz != sblksz ||
1987 	    bs->bufsize != (sblkcnt * sblksz)) {
1988 		ret = sndbuf_remalloc(bs, sblkcnt, sblksz);
1989 		if (ret != 0) {
1990 			device_printf(c->dev, "%s(): Failed: %d %d\n",
1991 			    __func__, sblkcnt, sblksz);
1992 			return ret;
1993 		}
1994 	}
1995 
1996 	/*
1997 	 * Interrupt timeout
1998 	 */
1999 	c->timeout = ((u_int64_t)hz * bs->bufsize) /
2000 	    ((u_int64_t)bs->spd * bs->align);
2001 	if (c->parentchannel != NULL)
2002 		c->timeout = min(c->timeout, c->parentchannel->timeout);
2003 	if (c->timeout < 1)
2004 		c->timeout = 1;
2005 
2006 	/*
2007 	 * OSSv4 docs: "By default OSS will set the low water level equal
2008 	 * to the fragment size which is optimal in most cases."
2009 	 */
2010 	c->lw = bs->blksz;
2011 	chn_resetbuf(c);
2012 
2013 	if (snd_verbose > 3)
2014 		device_printf(c->dev, "%s(): %s (%s) timeout=%u "
2015 		    "b[%d/%d/%d] bs[%d/%d/%d] limit=%d\n",
2016 		    __func__, CHN_DIRSTR(c),
2017 		    (c->flags & CHN_F_VIRTUAL) ? "virtual" : "hardware",
2018 		    c->timeout,
2019 		    b->bufsize, b->blksz,
2020 		    b->blkcnt,
2021 		    bs->bufsize, bs->blksz,
2022 		    bs->blkcnt, limit);
2023 
2024 	return 0;
2025 }
2026 
2027 int
chn_setlatency(struct pcm_channel * c,int latency)2028 chn_setlatency(struct pcm_channel *c, int latency)
2029 {
2030 	CHN_LOCKASSERT(c);
2031 	/* Destroy blksz/blkcnt, enforce latency profile. */
2032 	return chn_resizebuf(c, latency, -1, 0);
2033 }
2034 
2035 int
chn_setblocksize(struct pcm_channel * c,int blkcnt,int blksz)2036 chn_setblocksize(struct pcm_channel *c, int blkcnt, int blksz)
2037 {
2038 	CHN_LOCKASSERT(c);
2039 	/* Destroy latency profile, enforce blksz/blkcnt */
2040 	return chn_resizebuf(c, -1, blkcnt, blksz);
2041 }
2042 
2043 int
chn_setparam(struct pcm_channel * c,uint32_t format,uint32_t speed)2044 chn_setparam(struct pcm_channel *c, uint32_t format, uint32_t speed)
2045 {
2046 	struct pcmchan_caps *caps;
2047 	uint32_t hwspeed, delta;
2048 	int ret;
2049 
2050 	CHN_LOCKASSERT(c);
2051 
2052 	if (speed < 1 || format == 0 || CHN_STARTED(c))
2053 		return (EINVAL);
2054 
2055 	c->format = format;
2056 	c->speed = speed;
2057 
2058 	caps = chn_getcaps(c);
2059 
2060 	hwspeed = speed;
2061 	RANGE(hwspeed, caps->minspeed, caps->maxspeed);
2062 
2063 	sndbuf_setspd(c->bufhard, CHANNEL_SETSPEED(c->methods, c->devinfo,
2064 	    hwspeed));
2065 	hwspeed = c->bufhard->spd;
2066 
2067 	delta = (hwspeed > speed) ? (hwspeed - speed) : (speed - hwspeed);
2068 
2069 	if (delta <= feeder_rate_round)
2070 		c->speed = hwspeed;
2071 
2072 	ret = feeder_chain(c);
2073 
2074 	if (ret == 0)
2075 		ret = CHANNEL_SETFORMAT(c->methods, c->devinfo, c->bufhard->fmt);
2076 
2077 	if (ret == 0)
2078 		ret = chn_resizebuf(c, -2, 0, 0);
2079 
2080 	return (ret);
2081 }
2082 
2083 int
chn_setspeed(struct pcm_channel * c,uint32_t speed)2084 chn_setspeed(struct pcm_channel *c, uint32_t speed)
2085 {
2086 	uint32_t oldformat, oldspeed;
2087 	int ret;
2088 
2089 	oldformat = c->format;
2090 	oldspeed = c->speed;
2091 
2092 	if (c->speed == speed)
2093 		return (0);
2094 
2095 	ret = chn_setparam(c, c->format, speed);
2096 	if (ret != 0) {
2097 		if (snd_verbose > 3)
2098 			device_printf(c->dev,
2099 			    "%s(): Setting speed %d failed, "
2100 			    "falling back to %d\n",
2101 			    __func__, speed, oldspeed);
2102 		chn_setparam(c, oldformat, oldspeed);
2103 	}
2104 
2105 	return (ret);
2106 }
2107 
2108 int
chn_setformat(struct pcm_channel * c,uint32_t format)2109 chn_setformat(struct pcm_channel *c, uint32_t format)
2110 {
2111 	uint32_t oldformat, oldspeed;
2112 	int ret;
2113 
2114 	/* XXX force stereo */
2115 	if ((format & AFMT_PASSTHROUGH) && AFMT_CHANNEL(format) < 2) {
2116 		format = SND_FORMAT(format, AFMT_PASSTHROUGH_CHANNEL,
2117 		    AFMT_PASSTHROUGH_EXTCHANNEL);
2118 	}
2119 
2120 	oldformat = c->format;
2121 	oldspeed = c->speed;
2122 
2123 	if (c->format == format)
2124 		return (0);
2125 
2126 	ret = chn_setparam(c, format, c->speed);
2127 	if (ret != 0) {
2128 		if (snd_verbose > 3)
2129 			device_printf(c->dev,
2130 			    "%s(): Format change 0x%08x failed, "
2131 			    "falling back to 0x%08x\n",
2132 			    __func__, format, oldformat);
2133 		chn_setparam(c, oldformat, oldspeed);
2134 	}
2135 
2136 	return (ret);
2137 }
2138 
2139 void
chn_syncstate(struct pcm_channel * c)2140 chn_syncstate(struct pcm_channel *c)
2141 {
2142 	struct snddev_info *d;
2143 	struct snd_mixer *m;
2144 
2145 	d = (c != NULL) ? c->parentsnddev : NULL;
2146 	m = (d != NULL && d->mixer_dev != NULL) ? d->mixer_dev->si_drv1 :
2147 	    NULL;
2148 
2149 	if (d == NULL || m == NULL)
2150 		return;
2151 
2152 	CHN_LOCKASSERT(c);
2153 
2154 	if (c->feederflags & (1 << FEEDER_VOLUME)) {
2155 		uint32_t parent;
2156 		int vol, pvol, left, right, center;
2157 
2158 		if (c->direction == PCMDIR_PLAY &&
2159 		    (d->flags & SD_F_SOFTPCMVOL)) {
2160 			/* CHN_UNLOCK(c); */
2161 			vol = mix_get(m, SOUND_MIXER_PCM);
2162 			parent = mix_getparent(m, SOUND_MIXER_PCM);
2163 			if (parent != SOUND_MIXER_NONE)
2164 				pvol = mix_get(m, parent);
2165 			else
2166 				pvol = 100 | (100 << 8);
2167 			/* CHN_LOCK(c); */
2168 		} else {
2169 			vol = 100 | (100 << 8);
2170 			pvol = vol;
2171 		}
2172 
2173 		if (vol == -1) {
2174 			device_printf(c->dev,
2175 			    "Soft PCM Volume: Failed to read pcm "
2176 			    "default value\n");
2177 			vol = 100 | (100 << 8);
2178 		}
2179 
2180 		if (pvol == -1) {
2181 			device_printf(c->dev,
2182 			    "Soft PCM Volume: Failed to read parent "
2183 			    "default value\n");
2184 			pvol = 100 | (100 << 8);
2185 		}
2186 
2187 		left = ((vol & 0x7f) * (pvol & 0x7f)) / 100;
2188 		right = (((vol >> 8) & 0x7f) * ((pvol >> 8) & 0x7f)) / 100;
2189 		center = (left + right) >> 1;
2190 
2191 		chn_setvolume_multi(c, SND_VOL_C_MASTER, left, right, center);
2192 	}
2193 
2194 	if (c->feederflags & (1 << FEEDER_EQ)) {
2195 		struct pcm_feeder *f;
2196 		int treble, bass, state;
2197 
2198 		/* CHN_UNLOCK(c); */
2199 		treble = mix_get(m, SOUND_MIXER_TREBLE);
2200 		bass = mix_get(m, SOUND_MIXER_BASS);
2201 		/* CHN_LOCK(c); */
2202 
2203 		if (treble == -1)
2204 			treble = 50;
2205 		else
2206 			treble = ((treble & 0x7f) +
2207 			    ((treble >> 8) & 0x7f)) >> 1;
2208 
2209 		if (bass == -1)
2210 			bass = 50;
2211 		else
2212 			bass = ((bass & 0x7f) + ((bass >> 8) & 0x7f)) >> 1;
2213 
2214 		f = feeder_find(c, FEEDER_EQ);
2215 		if (f != NULL) {
2216 			if (FEEDER_SET(f, FEEDEQ_TREBLE, treble) != 0)
2217 				device_printf(c->dev,
2218 				    "EQ: Failed to set treble -- %d\n",
2219 				    treble);
2220 			if (FEEDER_SET(f, FEEDEQ_BASS, bass) != 0)
2221 				device_printf(c->dev,
2222 				    "EQ: Failed to set bass -- %d\n",
2223 				    bass);
2224 			if (FEEDER_SET(f, FEEDEQ_PREAMP, d->eqpreamp) != 0)
2225 				device_printf(c->dev,
2226 				    "EQ: Failed to set preamp -- %d\n",
2227 				    d->eqpreamp);
2228 			if (d->flags & SD_F_EQ_BYPASSED)
2229 				state = FEEDEQ_BYPASS;
2230 			else if (d->flags & SD_F_EQ_ENABLED)
2231 				state = FEEDEQ_ENABLE;
2232 			else
2233 				state = FEEDEQ_DISABLE;
2234 			if (FEEDER_SET(f, FEEDEQ_STATE, state) != 0)
2235 				device_printf(c->dev,
2236 				    "EQ: Failed to set state -- %d\n", state);
2237 		}
2238 	}
2239 }
2240 
2241 int
chn_trigger(struct pcm_channel * c,int go)2242 chn_trigger(struct pcm_channel *c, int go)
2243 {
2244 	struct snddev_info *d = c->parentsnddev;
2245 	int ret;
2246 
2247 	CHN_LOCKASSERT(c);
2248 	if (!PCMTRIG_COMMON(go))
2249 		return (CHANNEL_TRIGGER(c->methods, c->devinfo, go));
2250 
2251 	if (go == c->trigger)
2252 		return (0);
2253 
2254 	if (snd_verbose > 3) {
2255 		device_printf(c->dev, "%s() %s: calling go=0x%08x , "
2256 		    "prev=0x%08x\n", __func__, c->name, go, c->trigger);
2257 	}
2258 
2259 	c->trigger = go;
2260 	ret = CHANNEL_TRIGGER(c->methods, c->devinfo, go);
2261 	if (ret != 0)
2262 		return (ret);
2263 
2264 	CHN_UNLOCK(c);
2265 	PCM_LOCK(d);
2266 	CHN_LOCK(c);
2267 
2268 	/*
2269 	 * Do nothing if another thread set a different trigger while we had
2270 	 * dropped the mutex.
2271 	 */
2272 	if (go != c->trigger) {
2273 		PCM_UNLOCK(d);
2274 		return (0);
2275 	}
2276 
2277 	/*
2278 	 * Use the SAFE variants to prevent inserting/removing an already
2279 	 * existing/missing element.
2280 	 */
2281 	switch (go) {
2282 	case PCMTRIG_START:
2283 		CHN_INSERT_HEAD_SAFE(d, c, channels.pcm.busy);
2284 		PCM_UNLOCK(d);
2285 		chn_syncstate(c);
2286 		break;
2287 	case PCMTRIG_STOP:
2288 	case PCMTRIG_ABORT:
2289 		CHN_REMOVE(d, c, channels.pcm.busy);
2290 		PCM_UNLOCK(d);
2291 		break;
2292 	default:
2293 		PCM_UNLOCK(d);
2294 		break;
2295 	}
2296 
2297 	return (0);
2298 }
2299 
2300 /**
2301  * @brief Queries sound driver for sample-aligned hardware buffer pointer index
2302  *
2303  * This function obtains the hardware pointer location, then aligns it to
2304  * the current bytes-per-sample value before returning.  (E.g., a channel
2305  * running in 16 bit stereo mode would require 4 bytes per sample, so a
2306  * hwptr value ranging from 32-35 would be returned as 32.)
2307  *
2308  * @param c	PCM channel context
2309  * @returns 	sample-aligned hardware buffer pointer index
2310  */
2311 int
chn_getptr(struct pcm_channel * c)2312 chn_getptr(struct pcm_channel *c)
2313 {
2314 	int hwptr;
2315 
2316 	CHN_LOCKASSERT(c);
2317 	hwptr = (CHN_STARTED(c)) ? CHANNEL_GETPTR(c->methods, c->devinfo) : 0;
2318 	return (hwptr - (hwptr % c->bufhard->align));
2319 }
2320 
2321 struct pcmchan_caps *
chn_getcaps(struct pcm_channel * c)2322 chn_getcaps(struct pcm_channel *c)
2323 {
2324 	CHN_LOCKASSERT(c);
2325 	return CHANNEL_GETCAPS(c->methods, c->devinfo);
2326 }
2327 
2328 u_int32_t
chn_getformats(struct pcm_channel * c)2329 chn_getformats(struct pcm_channel *c)
2330 {
2331 	u_int32_t *fmtlist, fmts;
2332 	int i;
2333 
2334 	fmtlist = chn_getcaps(c)->fmtlist;
2335 	fmts = 0;
2336 	for (i = 0; fmtlist[i]; i++)
2337 		fmts |= fmtlist[i];
2338 
2339 	/* report software-supported formats */
2340 	if (!CHN_BITPERFECT(c) && report_soft_formats)
2341 		fmts |= AFMT_CONVERTIBLE;
2342 
2343 	return (AFMT_ENCODING(fmts));
2344 }
2345 
2346 int
chn_notify(struct pcm_channel * c,u_int32_t flags)2347 chn_notify(struct pcm_channel *c, u_int32_t flags)
2348 {
2349 	struct pcm_channel *ch;
2350 	struct pcmchan_caps *caps;
2351 	uint32_t bestformat, bestspeed, besthwformat, *vchanformat, *vchanrate;
2352 	uint32_t vpflags;
2353 	int dirty, err, run, nrun;
2354 
2355 	CHN_LOCKASSERT(c);
2356 
2357 	if (CHN_EMPTY(c, children))
2358 		return (0);
2359 
2360 	err = 0;
2361 
2362 	/*
2363 	 * If the hwchan is running, we can't change its rate, format or
2364 	 * blocksize
2365 	 */
2366 	run = (CHN_STARTED(c)) ? 1 : 0;
2367 	if (run)
2368 		flags &= CHN_N_VOLUME | CHN_N_TRIGGER;
2369 
2370 	if (flags & CHN_N_RATE) {
2371 		/*
2372 		 * XXX I'll make good use of this someday.
2373 		 *     However this is currently being superseded by
2374 		 *     the availability of CHN_F_VCHAN_DYNAMIC.
2375 		 */
2376 	}
2377 
2378 	if (flags & CHN_N_FORMAT) {
2379 		/*
2380 		 * XXX I'll make good use of this someday.
2381 		 *     However this is currently being superseded by
2382 		 *     the availability of CHN_F_VCHAN_DYNAMIC.
2383 		 */
2384 	}
2385 
2386 	if (flags & CHN_N_VOLUME) {
2387 		/*
2388 		 * XXX I'll make good use of this someday, though
2389 		 *     soft volume control is currently pretty much
2390 		 *     integrated.
2391 		 */
2392 	}
2393 
2394 	if (flags & CHN_N_BLOCKSIZE) {
2395 		/*
2396 		 * Set to default latency profile
2397 		 */
2398 		chn_setlatency(c, chn_latency);
2399 	}
2400 
2401 	if ((flags & CHN_N_TRIGGER) && !(c->flags & CHN_F_VCHAN_DYNAMIC)) {
2402 		nrun = CHN_EMPTY(c, children.busy) ? 0 : 1;
2403 		if (nrun && !run)
2404 			err = chn_start(c, 1);
2405 		if (!nrun && run)
2406 			chn_abort(c);
2407 		flags &= ~CHN_N_TRIGGER;
2408 	}
2409 
2410 	if (flags & CHN_N_TRIGGER) {
2411 		if (c->direction == PCMDIR_PLAY) {
2412 			vchanformat = &c->parentsnddev->pvchanformat;
2413 			vchanrate = &c->parentsnddev->pvchanrate;
2414 		} else {
2415 			vchanformat = &c->parentsnddev->rvchanformat;
2416 			vchanrate = &c->parentsnddev->rvchanrate;
2417 		}
2418 
2419 		/* Dynamic Virtual Channel */
2420 		if (!(c->flags & CHN_F_VCHAN_ADAPTIVE)) {
2421 			bestformat = *vchanformat;
2422 			bestspeed = *vchanrate;
2423 		} else {
2424 			bestformat = 0;
2425 			bestspeed = 0;
2426 		}
2427 
2428 		besthwformat = 0;
2429 		nrun = 0;
2430 		caps = chn_getcaps(c);
2431 		dirty = 0;
2432 		vpflags = 0;
2433 
2434 		CHN_FOREACH(ch, c, children.busy) {
2435 			CHN_LOCK(ch);
2436 			if ((ch->format & AFMT_PASSTHROUGH) &&
2437 			    snd_fmtvalid(ch->format, caps->fmtlist)) {
2438 				bestformat = ch->format;
2439 				bestspeed = ch->speed;
2440 				CHN_UNLOCK(ch);
2441 				vpflags = CHN_F_PASSTHROUGH;
2442 				nrun++;
2443 				break;
2444 			}
2445 			if ((ch->flags & CHN_F_EXCLUSIVE) && vpflags == 0) {
2446 				if (c->flags & CHN_F_VCHAN_ADAPTIVE) {
2447 					bestspeed = ch->speed;
2448 					RANGE(bestspeed, caps->minspeed,
2449 					    caps->maxspeed);
2450 					besthwformat = snd_fmtbest(ch->format,
2451 					    caps->fmtlist);
2452 					if (besthwformat != 0)
2453 						bestformat = besthwformat;
2454 				}
2455 				CHN_UNLOCK(ch);
2456 				vpflags = CHN_F_EXCLUSIVE;
2457 				nrun++;
2458 				continue;
2459 			}
2460 			if (!(c->flags & CHN_F_VCHAN_ADAPTIVE) ||
2461 			    vpflags != 0) {
2462 				CHN_UNLOCK(ch);
2463 				nrun++;
2464 				continue;
2465 			}
2466 			if (ch->speed > bestspeed) {
2467 				bestspeed = ch->speed;
2468 				RANGE(bestspeed, caps->minspeed,
2469 				    caps->maxspeed);
2470 			}
2471 			besthwformat = snd_fmtbest(ch->format, caps->fmtlist);
2472 			if (!(besthwformat & AFMT_VCHAN)) {
2473 				CHN_UNLOCK(ch);
2474 				nrun++;
2475 				continue;
2476 			}
2477 			if (AFMT_CHANNEL(besthwformat) >
2478 			    AFMT_CHANNEL(bestformat))
2479 				bestformat = besthwformat;
2480 			else if (AFMT_CHANNEL(besthwformat) ==
2481 			    AFMT_CHANNEL(bestformat) &&
2482 			    AFMT_BIT(besthwformat) > AFMT_BIT(bestformat))
2483 				bestformat = besthwformat;
2484 			CHN_UNLOCK(ch);
2485 			nrun++;
2486 		}
2487 
2488 		if (bestformat == 0)
2489 			bestformat = c->format;
2490 		if (bestspeed == 0)
2491 			bestspeed = c->speed;
2492 
2493 		if (bestformat != c->format || bestspeed != c->speed)
2494 			dirty = 1;
2495 
2496 		c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE);
2497 		c->flags |= vpflags;
2498 
2499 		if (nrun && !run) {
2500 			if (dirty) {
2501 				bestspeed = CHANNEL_SETSPEED(c->methods,
2502 				    c->devinfo, bestspeed);
2503 				err = chn_reset(c, bestformat, bestspeed);
2504 			}
2505 			if (err == 0 && dirty) {
2506 				CHN_FOREACH(ch, c, children.busy) {
2507 					CHN_LOCK(ch);
2508 					if (VCHAN_SYNC_REQUIRED(ch))
2509 						vchan_sync(ch);
2510 					CHN_UNLOCK(ch);
2511 				}
2512 			}
2513 			if (err == 0) {
2514 				if (dirty)
2515 					c->flags |= CHN_F_DIRTY;
2516 				err = chn_start(c, 1);
2517 			}
2518 		}
2519 
2520 		if (nrun && run && dirty) {
2521 			chn_abort(c);
2522 			bestspeed = CHANNEL_SETSPEED(c->methods, c->devinfo,
2523 			    bestspeed);
2524 			err = chn_reset(c, bestformat, bestspeed);
2525 			if (err == 0) {
2526 				CHN_FOREACH(ch, c, children.busy) {
2527 					CHN_LOCK(ch);
2528 					if (VCHAN_SYNC_REQUIRED(ch))
2529 						vchan_sync(ch);
2530 					CHN_UNLOCK(ch);
2531 				}
2532 			}
2533 			if (err == 0) {
2534 				c->flags |= CHN_F_DIRTY;
2535 				err = chn_start(c, 1);
2536 			}
2537 		}
2538 
2539 		if (err == 0 && !(bestformat & AFMT_PASSTHROUGH) &&
2540 		    (bestformat & AFMT_VCHAN)) {
2541 			*vchanformat = bestformat;
2542 			*vchanrate = bestspeed;
2543 		}
2544 
2545 		if (!nrun && run) {
2546 			c->flags &= ~(CHN_F_PASSTHROUGH | CHN_F_EXCLUSIVE);
2547 			bestformat = *vchanformat;
2548 			bestspeed = *vchanrate;
2549 			chn_abort(c);
2550 			if (c->format != bestformat || c->speed != bestspeed)
2551 				chn_reset(c, bestformat, bestspeed);
2552 		}
2553 	}
2554 
2555 	return (err);
2556 }
2557 
2558 /**
2559  * @brief Fetch array of supported discrete sample rates
2560  *
2561  * Wrapper for CHANNEL_GETRATES.  Please see channel_if.m:getrates() for
2562  * detailed information.
2563  *
2564  * @note If the operation isn't supported, this function will just return 0
2565  *       (no rates in the array), and *rates will be set to NULL.  Callers
2566  *       should examine rates @b only if this function returns non-zero.
2567  *
2568  * @param c	pcm channel to examine
2569  * @param rates	pointer to array of integers; rate table will be recorded here
2570  *
2571  * @return number of rates in the array pointed to be @c rates
2572  */
2573 int
chn_getrates(struct pcm_channel * c,int ** rates)2574 chn_getrates(struct pcm_channel *c, int **rates)
2575 {
2576 	KASSERT(rates != NULL, ("rates is null"));
2577 	CHN_LOCKASSERT(c);
2578 	return CHANNEL_GETRATES(c->methods, c->devinfo, rates);
2579 }
2580 
2581 /**
2582  * @brief Remove channel from a sync group, if there is one.
2583  *
2584  * This function is initially intended for the following conditions:
2585  *   - Starting a syncgroup (@c SNDCTL_DSP_SYNCSTART ioctl)
2586  *   - Closing a device.  (A channel can't be destroyed if it's still in use.)
2587  *
2588  * @note Before calling this function, the syncgroup list mutex must be
2589  * held.  (Consider pcm_channel::sm protected by the SG list mutex
2590  * whether @c c is locked or not.)
2591  *
2592  * @param c	channel device to be started or closed
2593  * @returns	If this channel was the only member of a group, the group ID
2594  * 		is returned to the caller so that the caller can release it
2595  * 		via free_unr() after giving up the syncgroup lock.  Else it
2596  * 		returns 0.
2597  */
2598 int
chn_syncdestroy(struct pcm_channel * c)2599 chn_syncdestroy(struct pcm_channel *c)
2600 {
2601 	struct pcmchan_syncmember *sm;
2602 	struct pcmchan_syncgroup *sg;
2603 	int sg_id;
2604 
2605 	sg_id = 0;
2606 
2607 	PCM_SG_LOCKASSERT(MA_OWNED);
2608 
2609 	if (c->sm != NULL) {
2610 		sm = c->sm;
2611 		sg = sm->parent;
2612 		c->sm = NULL;
2613 
2614 		KASSERT(sg != NULL, ("syncmember has null parent"));
2615 
2616 		SLIST_REMOVE(&sg->members, sm, pcmchan_syncmember, link);
2617 		free(sm, M_DEVBUF);
2618 
2619 		if (SLIST_EMPTY(&sg->members)) {
2620 			SLIST_REMOVE(&snd_pcm_syncgroups, sg, pcmchan_syncgroup, link);
2621 			sg_id = sg->id;
2622 			free(sg, M_DEVBUF);
2623 		}
2624 	}
2625 
2626 	return sg_id;
2627 }
2628 
2629 #ifdef OSSV4_EXPERIMENT
2630 int
chn_getpeaks(struct pcm_channel * c,int * lpeak,int * rpeak)2631 chn_getpeaks(struct pcm_channel *c, int *lpeak, int *rpeak)
2632 {
2633 	CHN_LOCKASSERT(c);
2634 	return CHANNEL_GETPEAKS(c->methods, c->devinfo, lpeak, rpeak);
2635 }
2636 #endif
2637