1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 */
5
6 #include <asm/set_memory.h>
7 #include <asm/smp.h>
8 #include <linux/types.h>
9 #include <linux/stop_machine.h>
10
11 #include <drm/drm_managed.h>
12 #include <drm/intel/i915_drm.h>
13 #include <drm/intel/intel-gtt.h>
14
15 #include "gem/i915_gem_lmem.h"
16
17 #include "intel_context.h"
18 #include "intel_ggtt_gmch.h"
19 #include "intel_gpu_commands.h"
20 #include "intel_gt.h"
21 #include "intel_gt_regs.h"
22 #include "intel_pci_config.h"
23 #include "intel_ring.h"
24 #include "i915_drv.h"
25 #include "i915_pci.h"
26 #include "i915_reg.h"
27 #include "i915_request.h"
28 #include "i915_scatterlist.h"
29 #include "i915_utils.h"
30 #include "i915_vgpu.h"
31
32 #include "intel_gtt.h"
33 #include "gen8_ppgtt.h"
34 #include "intel_engine_pm.h"
35
i915_ggtt_color_adjust(const struct drm_mm_node * node,unsigned long color,u64 * start,u64 * end)36 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
37 unsigned long color,
38 u64 *start,
39 u64 *end)
40 {
41 if (i915_node_color_differs(node, color))
42 *start += I915_GTT_PAGE_SIZE;
43
44 /*
45 * Also leave a space between the unallocated reserved node after the
46 * GTT and any objects within the GTT, i.e. we use the color adjustment
47 * to insert a guard page to prevent prefetches crossing over the
48 * GTT boundary.
49 */
50 node = list_next_entry(node, node_list);
51 if (node->color != color)
52 *end -= I915_GTT_PAGE_SIZE;
53 }
54
ggtt_init_hw(struct i915_ggtt * ggtt)55 static int ggtt_init_hw(struct i915_ggtt *ggtt)
56 {
57 struct drm_i915_private *i915 = ggtt->vm.i915;
58
59 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
60
61 ggtt->vm.is_ggtt = true;
62
63 /* Only VLV supports read-only GGTT mappings */
64 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
65
66 if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
67 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
68
69 if (ggtt->mappable_end) {
70 if (!io_mapping_init_wc(&ggtt->iomap,
71 ggtt->gmadr.start,
72 ggtt->mappable_end)) {
73 ggtt->vm.cleanup(&ggtt->vm);
74 return -EIO;
75 }
76
77 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
78 ggtt->mappable_end);
79 }
80
81 intel_ggtt_init_fences(ggtt);
82
83 return 0;
84 }
85
86 /**
87 * i915_ggtt_init_hw - Initialize GGTT hardware
88 * @i915: i915 device
89 */
i915_ggtt_init_hw(struct drm_i915_private * i915)90 int i915_ggtt_init_hw(struct drm_i915_private *i915)
91 {
92 int ret;
93
94 /*
95 * Note that we use page colouring to enforce a guard page at the
96 * end of the address space. This is required as the CS may prefetch
97 * beyond the end of the batch buffer, across the page boundary,
98 * and beyond the end of the GTT if we do not provide a guard.
99 */
100 ret = ggtt_init_hw(to_gt(i915)->ggtt);
101 if (ret)
102 return ret;
103
104 return 0;
105 }
106
107 /**
108 * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM
109 * @vm: The VM to suspend the mappings for
110 *
111 * Suspend the memory mappings for all objects mapped to HW via the GGTT or a
112 * DPT page table.
113 */
i915_ggtt_suspend_vm(struct i915_address_space * vm)114 void i915_ggtt_suspend_vm(struct i915_address_space *vm)
115 {
116 struct i915_vma *vma, *vn;
117 int save_skip_rewrite;
118
119 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
120
121 retry:
122 i915_gem_drain_freed_objects(vm->i915);
123
124 mutex_lock(&vm->mutex);
125
126 /*
127 * Skip rewriting PTE on VMA unbind.
128 * FIXME: Use an argument to i915_vma_unbind() instead?
129 */
130 save_skip_rewrite = vm->skip_pte_rewrite;
131 vm->skip_pte_rewrite = true;
132
133 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
134 struct drm_i915_gem_object *obj = vma->obj;
135
136 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
137
138 if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
139 continue;
140
141 /* unlikely to race when GPU is idle, so no worry about slowpath.. */
142 if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) {
143 /*
144 * No dead objects should appear here, GPU should be
145 * completely idle, and userspace suspended
146 */
147 i915_gem_object_get(obj);
148
149 mutex_unlock(&vm->mutex);
150
151 i915_gem_object_lock(obj, NULL);
152 GEM_WARN_ON(i915_vma_unbind(vma));
153 i915_gem_object_unlock(obj);
154 i915_gem_object_put(obj);
155
156 vm->skip_pte_rewrite = save_skip_rewrite;
157 goto retry;
158 }
159
160 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
161 i915_vma_wait_for_bind(vma);
162
163 __i915_vma_evict(vma, false);
164 drm_mm_remove_node(&vma->node);
165 }
166
167 i915_gem_object_unlock(obj);
168 }
169
170 vm->clear_range(vm, 0, vm->total);
171
172 vm->skip_pte_rewrite = save_skip_rewrite;
173
174 mutex_unlock(&vm->mutex);
175 }
176
i915_ggtt_suspend(struct i915_ggtt * ggtt)177 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
178 {
179 struct intel_gt *gt;
180
181 i915_ggtt_suspend_vm(&ggtt->vm);
182 ggtt->invalidate(ggtt);
183
184 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
185 intel_gt_check_and_clear_faults(gt);
186 }
187
gen6_ggtt_invalidate(struct i915_ggtt * ggtt)188 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
189 {
190 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
191
192 spin_lock_irq(&uncore->lock);
193 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
194 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
195 spin_unlock_irq(&uncore->lock);
196 }
197
needs_wc_ggtt_mapping(struct drm_i915_private * i915)198 static bool needs_wc_ggtt_mapping(struct drm_i915_private *i915)
199 {
200 /*
201 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range
202 * will be dropped. For WC mappings in general we have 64 byte burst
203 * writes when the WC buffer is flushed, so we can't use it, but have to
204 * resort to an uncached mapping. The WC issue is easily caught by the
205 * readback check when writing GTT PTE entries.
206 */
207 if (!IS_GEN9_LP(i915) && GRAPHICS_VER(i915) < 11)
208 return true;
209
210 return false;
211 }
212
gen8_ggtt_invalidate(struct i915_ggtt * ggtt)213 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
214 {
215 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
216
217 /*
218 * Note that as an uncached mmio write, this will flush the
219 * WCB of the writes into the GGTT before it triggers the invalidate.
220 *
221 * Only perform this when GGTT is mapped as WC, see ggtt_probe_common().
222 */
223 if (needs_wc_ggtt_mapping(ggtt->vm.i915))
224 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6,
225 GFX_FLSH_CNTL_EN);
226 }
227
guc_ggtt_ct_invalidate(struct intel_gt * gt)228 static void guc_ggtt_ct_invalidate(struct intel_gt *gt)
229 {
230 struct intel_uncore *uncore = gt->uncore;
231 intel_wakeref_t wakeref;
232
233 with_intel_runtime_pm_if_active(uncore->rpm, wakeref)
234 intel_guc_invalidate_tlb_guc(gt_to_guc(gt));
235 }
236
guc_ggtt_invalidate(struct i915_ggtt * ggtt)237 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
238 {
239 struct drm_i915_private *i915 = ggtt->vm.i915;
240 struct intel_gt *gt;
241
242 gen8_ggtt_invalidate(ggtt);
243
244 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) {
245 if (intel_guc_tlb_invalidation_is_available(gt_to_guc(gt)))
246 guc_ggtt_ct_invalidate(gt);
247 else if (GRAPHICS_VER(i915) >= 12)
248 intel_uncore_write_fw(gt->uncore,
249 GEN12_GUC_TLB_INV_CR,
250 GEN12_GUC_TLB_INV_CR_INVALIDATE);
251 else
252 intel_uncore_write_fw(gt->uncore,
253 GEN8_GTCR, GEN8_GTCR_INVALIDATE);
254 }
255 }
256
mtl_ggtt_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)257 static u64 mtl_ggtt_pte_encode(dma_addr_t addr,
258 unsigned int pat_index,
259 u32 flags)
260 {
261 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
262
263 WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK);
264
265 if (flags & PTE_LM)
266 pte |= GEN12_GGTT_PTE_LM;
267
268 if (pat_index & BIT(0))
269 pte |= MTL_GGTT_PTE_PAT0;
270
271 if (pat_index & BIT(1))
272 pte |= MTL_GGTT_PTE_PAT1;
273
274 return pte;
275 }
276
gen8_ggtt_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)277 u64 gen8_ggtt_pte_encode(dma_addr_t addr,
278 unsigned int pat_index,
279 u32 flags)
280 {
281 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
282
283 if (flags & PTE_LM)
284 pte |= GEN12_GGTT_PTE_LM;
285
286 return pte;
287 }
288
should_update_ggtt_with_bind(struct i915_ggtt * ggtt)289 static bool should_update_ggtt_with_bind(struct i915_ggtt *ggtt)
290 {
291 struct intel_gt *gt = ggtt->vm.gt;
292
293 return intel_gt_is_bind_context_ready(gt);
294 }
295
gen8_ggtt_bind_get_ce(struct i915_ggtt * ggtt,intel_wakeref_t * wakeref)296 static struct intel_context *gen8_ggtt_bind_get_ce(struct i915_ggtt *ggtt, intel_wakeref_t *wakeref)
297 {
298 struct intel_context *ce;
299 struct intel_gt *gt = ggtt->vm.gt;
300
301 if (intel_gt_is_wedged(gt))
302 return NULL;
303
304 ce = gt->engine[BCS0]->bind_context;
305 GEM_BUG_ON(!ce);
306
307 /*
308 * If the GT is not awake already at this stage then fallback
309 * to pci based GGTT update otherwise __intel_wakeref_get_first()
310 * would conflict with fs_reclaim trying to allocate memory while
311 * doing rpm_resume().
312 */
313 *wakeref = intel_gt_pm_get_if_awake(gt);
314 if (!*wakeref)
315 return NULL;
316
317 intel_engine_pm_get(ce->engine);
318
319 return ce;
320 }
321
gen8_ggtt_bind_put_ce(struct intel_context * ce,intel_wakeref_t wakeref)322 static void gen8_ggtt_bind_put_ce(struct intel_context *ce, intel_wakeref_t wakeref)
323 {
324 intel_engine_pm_put(ce->engine);
325 intel_gt_pm_put(ce->engine->gt, wakeref);
326 }
327
gen8_ggtt_bind_ptes(struct i915_ggtt * ggtt,u32 offset,struct sg_table * pages,u32 num_entries,const gen8_pte_t pte)328 static bool gen8_ggtt_bind_ptes(struct i915_ggtt *ggtt, u32 offset,
329 struct sg_table *pages, u32 num_entries,
330 const gen8_pte_t pte)
331 {
332 struct i915_sched_attr attr = {};
333 struct intel_gt *gt = ggtt->vm.gt;
334 const gen8_pte_t scratch_pte = ggtt->vm.scratch[0]->encode;
335 struct sgt_iter iter;
336 struct i915_request *rq;
337 struct intel_context *ce;
338 intel_wakeref_t wakeref;
339 u32 *cs;
340
341 if (!num_entries)
342 return true;
343
344 ce = gen8_ggtt_bind_get_ce(ggtt, &wakeref);
345 if (!ce)
346 return false;
347
348 if (pages)
349 iter = __sgt_iter(pages->sgl, true);
350
351 while (num_entries) {
352 int count = 0;
353 dma_addr_t addr;
354 /*
355 * MI_UPDATE_GTT can update 512 entries in a single command but
356 * that end up with engine reset, 511 works.
357 */
358 u32 n_ptes = min_t(u32, 511, num_entries);
359
360 if (mutex_lock_interruptible(&ce->timeline->mutex))
361 goto put_ce;
362
363 intel_context_enter(ce);
364 rq = __i915_request_create(ce, GFP_NOWAIT | GFP_ATOMIC);
365 intel_context_exit(ce);
366 if (IS_ERR(rq)) {
367 GT_TRACE(gt, "Failed to get bind request\n");
368 mutex_unlock(&ce->timeline->mutex);
369 goto put_ce;
370 }
371
372 cs = intel_ring_begin(rq, 2 * n_ptes + 2);
373 if (IS_ERR(cs)) {
374 GT_TRACE(gt, "Failed to ring space for GGTT bind\n");
375 i915_request_set_error_once(rq, PTR_ERR(cs));
376 /* once a request is created, it must be queued */
377 goto queue_err_rq;
378 }
379
380 *cs++ = MI_UPDATE_GTT | (2 * n_ptes);
381 *cs++ = offset << 12;
382
383 if (pages) {
384 for_each_sgt_daddr_next(addr, iter) {
385 if (count == n_ptes)
386 break;
387 *cs++ = lower_32_bits(pte | addr);
388 *cs++ = upper_32_bits(pte | addr);
389 count++;
390 }
391 /* fill remaining with scratch pte, if any */
392 if (count < n_ptes) {
393 memset64((u64 *)cs, scratch_pte,
394 n_ptes - count);
395 cs += (n_ptes - count) * 2;
396 }
397 } else {
398 memset64((u64 *)cs, pte, n_ptes);
399 cs += n_ptes * 2;
400 }
401
402 intel_ring_advance(rq, cs);
403 queue_err_rq:
404 i915_request_get(rq);
405 __i915_request_commit(rq);
406 __i915_request_queue(rq, &attr);
407
408 mutex_unlock(&ce->timeline->mutex);
409 /* This will break if the request is complete or after engine reset */
410 i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
411 if (rq->fence.error)
412 goto err_rq;
413
414 i915_request_put(rq);
415
416 num_entries -= n_ptes;
417 offset += n_ptes;
418 }
419
420 gen8_ggtt_bind_put_ce(ce, wakeref);
421 return true;
422
423 err_rq:
424 i915_request_put(rq);
425 put_ce:
426 gen8_ggtt_bind_put_ce(ce, wakeref);
427 return false;
428 }
429
gen8_set_pte(void __iomem * addr,gen8_pte_t pte)430 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
431 {
432 writeq(pte, addr);
433 }
434
gen8_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 flags)435 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
436 dma_addr_t addr,
437 u64 offset,
438 unsigned int pat_index,
439 u32 flags)
440 {
441 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
442 gen8_pte_t __iomem *pte =
443 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
444
445 gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags));
446
447 ggtt->invalidate(ggtt);
448 }
449
gen8_ggtt_insert_page_bind(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 flags)450 static void gen8_ggtt_insert_page_bind(struct i915_address_space *vm,
451 dma_addr_t addr, u64 offset,
452 unsigned int pat_index, u32 flags)
453 {
454 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
455 gen8_pte_t pte;
456
457 pte = ggtt->vm.pte_encode(addr, pat_index, flags);
458 if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
459 gen8_ggtt_bind_ptes(ggtt, offset, NULL, 1, pte))
460 return ggtt->invalidate(ggtt);
461
462 gen8_ggtt_insert_page(vm, addr, offset, pat_index, flags);
463 }
464
gen8_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)465 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
466 struct i915_vma_resource *vma_res,
467 unsigned int pat_index,
468 u32 flags)
469 {
470 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
471 const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
472 gen8_pte_t __iomem *gte;
473 gen8_pte_t __iomem *end;
474 struct sgt_iter iter;
475 dma_addr_t addr;
476
477 /*
478 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
479 * not to allow the user to override access to a read only page.
480 */
481
482 gte = (gen8_pte_t __iomem *)ggtt->gsm;
483 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
484 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
485 while (gte < end)
486 gen8_set_pte(gte++, vm->scratch[0]->encode);
487 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
488
489 for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
490 gen8_set_pte(gte++, pte_encode | addr);
491 GEM_BUG_ON(gte > end);
492
493 /* Fill the allocated but "unused" space beyond the end of the buffer */
494 while (gte < end)
495 gen8_set_pte(gte++, vm->scratch[0]->encode);
496
497 /*
498 * We want to flush the TLBs only after we're certain all the PTE
499 * updates have finished.
500 */
501 ggtt->invalidate(ggtt);
502 }
503
__gen8_ggtt_insert_entries_bind(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)504 static bool __gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
505 struct i915_vma_resource *vma_res,
506 unsigned int pat_index, u32 flags)
507 {
508 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
509 gen8_pte_t scratch_pte = vm->scratch[0]->encode;
510 gen8_pte_t pte_encode;
511 u64 start, end;
512
513 pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
514 start = (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
515 end = start + vma_res->guard / I915_GTT_PAGE_SIZE;
516 if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
517 goto err;
518
519 start = end;
520 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
521 if (!gen8_ggtt_bind_ptes(ggtt, start, vma_res->bi.pages,
522 vma_res->node_size / I915_GTT_PAGE_SIZE, pte_encode))
523 goto err;
524
525 start += vma_res->node_size / I915_GTT_PAGE_SIZE;
526 if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
527 goto err;
528
529 return true;
530
531 err:
532 return false;
533 }
534
gen8_ggtt_insert_entries_bind(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)535 static void gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
536 struct i915_vma_resource *vma_res,
537 unsigned int pat_index, u32 flags)
538 {
539 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
540
541 if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
542 __gen8_ggtt_insert_entries_bind(vm, vma_res, pat_index, flags))
543 return ggtt->invalidate(ggtt);
544
545 gen8_ggtt_insert_entries(vm, vma_res, pat_index, flags);
546 }
547
gen8_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)548 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
549 u64 start, u64 length)
550 {
551 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
552 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
553 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
554 const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
555 gen8_pte_t __iomem *gtt_base =
556 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
557 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
558 int i;
559
560 if (WARN(num_entries > max_entries,
561 "First entry = %d; Num entries = %d (max=%d)\n",
562 first_entry, num_entries, max_entries))
563 num_entries = max_entries;
564
565 for (i = 0; i < num_entries; i++)
566 gen8_set_pte(>t_base[i], scratch_pte);
567 }
568
gen8_ggtt_scratch_range_bind(struct i915_address_space * vm,u64 start,u64 length)569 static void gen8_ggtt_scratch_range_bind(struct i915_address_space *vm,
570 u64 start, u64 length)
571 {
572 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
573 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
574 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
575 const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
576 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
577
578 if (WARN(num_entries > max_entries,
579 "First entry = %d; Num entries = %d (max=%d)\n",
580 first_entry, num_entries, max_entries))
581 num_entries = max_entries;
582
583 if (should_update_ggtt_with_bind(ggtt) && gen8_ggtt_bind_ptes(ggtt, first_entry,
584 NULL, num_entries, scratch_pte))
585 return ggtt->invalidate(ggtt);
586
587 gen8_ggtt_clear_range(vm, start, length);
588 }
589
gen6_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 flags)590 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
591 dma_addr_t addr,
592 u64 offset,
593 unsigned int pat_index,
594 u32 flags)
595 {
596 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
597 gen6_pte_t __iomem *pte =
598 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
599
600 iowrite32(vm->pte_encode(addr, pat_index, flags), pte);
601
602 ggtt->invalidate(ggtt);
603 }
604
605 /*
606 * Binds an object into the global gtt with the specified cache level.
607 * The object will be accessible to the GPU via commands whose operands
608 * reference offsets within the global GTT as well as accessible by the GPU
609 * through the GMADR mapped BAR (i915->mm.gtt->gtt).
610 */
gen6_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)611 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
612 struct i915_vma_resource *vma_res,
613 unsigned int pat_index,
614 u32 flags)
615 {
616 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
617 gen6_pte_t __iomem *gte;
618 gen6_pte_t __iomem *end;
619 struct sgt_iter iter;
620 dma_addr_t addr;
621
622 gte = (gen6_pte_t __iomem *)ggtt->gsm;
623 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
624
625 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
626 while (gte < end)
627 iowrite32(vm->scratch[0]->encode, gte++);
628 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
629 for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
630 iowrite32(vm->pte_encode(addr, pat_index, flags), gte++);
631 GEM_BUG_ON(gte > end);
632
633 /* Fill the allocated but "unused" space beyond the end of the buffer */
634 while (gte < end)
635 iowrite32(vm->scratch[0]->encode, gte++);
636
637 /*
638 * We want to flush the TLBs only after we're certain all the PTE
639 * updates have finished.
640 */
641 ggtt->invalidate(ggtt);
642 }
643
nop_clear_range(struct i915_address_space * vm,u64 start,u64 length)644 static void nop_clear_range(struct i915_address_space *vm,
645 u64 start, u64 length)
646 {
647 }
648
bxt_vtd_ggtt_wa(struct i915_address_space * vm)649 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
650 {
651 /*
652 * Make sure the internal GAM fifo has been cleared of all GTT
653 * writes before exiting stop_machine(). This guarantees that
654 * any aperture accesses waiting to start in another process
655 * cannot back up behind the GTT writes causing a hang.
656 * The register can be any arbitrary GAM register.
657 */
658 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
659 }
660
661 struct insert_page {
662 struct i915_address_space *vm;
663 dma_addr_t addr;
664 u64 offset;
665 unsigned int pat_index;
666 };
667
bxt_vtd_ggtt_insert_page__cb(void * _arg)668 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
669 {
670 struct insert_page *arg = _arg;
671
672 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset,
673 arg->pat_index, 0);
674 bxt_vtd_ggtt_wa(arg->vm);
675
676 return 0;
677 }
678
bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 unused)679 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
680 dma_addr_t addr,
681 u64 offset,
682 unsigned int pat_index,
683 u32 unused)
684 {
685 struct insert_page arg = { vm, addr, offset, pat_index };
686
687 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
688 }
689
690 struct insert_entries {
691 struct i915_address_space *vm;
692 struct i915_vma_resource *vma_res;
693 unsigned int pat_index;
694 u32 flags;
695 };
696
bxt_vtd_ggtt_insert_entries__cb(void * _arg)697 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
698 {
699 struct insert_entries *arg = _arg;
700
701 gen8_ggtt_insert_entries(arg->vm, arg->vma_res,
702 arg->pat_index, arg->flags);
703 bxt_vtd_ggtt_wa(arg->vm);
704
705 return 0;
706 }
707
bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)708 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
709 struct i915_vma_resource *vma_res,
710 unsigned int pat_index,
711 u32 flags)
712 {
713 struct insert_entries arg = { vm, vma_res, pat_index, flags };
714
715 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
716 }
717
gen6_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)718 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
719 u64 start, u64 length)
720 {
721 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
722 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
723 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
724 gen6_pte_t scratch_pte, __iomem *gtt_base =
725 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
726 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
727 int i;
728
729 if (WARN(num_entries > max_entries,
730 "First entry = %d; Num entries = %d (max=%d)\n",
731 first_entry, num_entries, max_entries))
732 num_entries = max_entries;
733
734 scratch_pte = vm->scratch[0]->encode;
735 for (i = 0; i < num_entries; i++)
736 iowrite32(scratch_pte, >t_base[i]);
737 }
738
intel_ggtt_bind_vma(struct i915_address_space * vm,struct i915_vm_pt_stash * stash,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)739 void intel_ggtt_bind_vma(struct i915_address_space *vm,
740 struct i915_vm_pt_stash *stash,
741 struct i915_vma_resource *vma_res,
742 unsigned int pat_index,
743 u32 flags)
744 {
745 u32 pte_flags;
746
747 if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK))
748 return;
749
750 vma_res->bound_flags |= flags;
751
752 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
753 pte_flags = 0;
754 if (vma_res->bi.readonly)
755 pte_flags |= PTE_READ_ONLY;
756 if (vma_res->bi.lmem)
757 pte_flags |= PTE_LM;
758
759 vm->insert_entries(vm, vma_res, pat_index, pte_flags);
760 vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE;
761 }
762
intel_ggtt_unbind_vma(struct i915_address_space * vm,struct i915_vma_resource * vma_res)763 void intel_ggtt_unbind_vma(struct i915_address_space *vm,
764 struct i915_vma_resource *vma_res)
765 {
766 vm->clear_range(vm, vma_res->start, vma_res->vma_size);
767 }
768
769 /*
770 * Reserve the top of the GuC address space for firmware images. Addresses
771 * beyond GUC_GGTT_TOP in the GuC address space are inaccessible by GuC,
772 * which makes for a suitable range to hold GuC/HuC firmware images if the
773 * size of the GGTT is 4G. However, on a 32-bit platform the size of the GGTT
774 * is limited to 2G, which is less than GUC_GGTT_TOP, but we reserve a chunk
775 * of the same size anyway, which is far more than needed, to keep the logic
776 * in uc_fw_ggtt_offset() simple.
777 */
778 #define GUC_TOP_RESERVE_SIZE (SZ_4G - GUC_GGTT_TOP)
779
ggtt_reserve_guc_top(struct i915_ggtt * ggtt)780 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
781 {
782 u64 offset;
783 int ret;
784
785 if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
786 return 0;
787
788 GEM_BUG_ON(ggtt->vm.total <= GUC_TOP_RESERVE_SIZE);
789 offset = ggtt->vm.total - GUC_TOP_RESERVE_SIZE;
790
791 ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw,
792 GUC_TOP_RESERVE_SIZE, offset,
793 I915_COLOR_UNEVICTABLE, PIN_NOEVICT);
794 if (ret)
795 drm_dbg(&ggtt->vm.i915->drm,
796 "Failed to reserve top of GGTT for GuC\n");
797
798 return ret;
799 }
800
ggtt_release_guc_top(struct i915_ggtt * ggtt)801 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
802 {
803 if (drm_mm_node_allocated(&ggtt->uc_fw))
804 drm_mm_remove_node(&ggtt->uc_fw);
805 }
806
cleanup_init_ggtt(struct i915_ggtt * ggtt)807 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
808 {
809 ggtt_release_guc_top(ggtt);
810 if (drm_mm_node_allocated(&ggtt->error_capture))
811 drm_mm_remove_node(&ggtt->error_capture);
812 mutex_destroy(&ggtt->error_mutex);
813 }
814
init_ggtt(struct i915_ggtt * ggtt)815 static int init_ggtt(struct i915_ggtt *ggtt)
816 {
817 /*
818 * Let GEM Manage all of the aperture.
819 *
820 * However, leave one page at the end still bound to the scratch page.
821 * There are a number of places where the hardware apparently prefetches
822 * past the end of the object, and we've seen multiple hangs with the
823 * GPU head pointer stuck in a batchbuffer bound at the last page of the
824 * aperture. One page should be enough to keep any prefetching inside
825 * of the aperture.
826 */
827 unsigned long hole_start, hole_end;
828 struct drm_mm_node *entry;
829 int ret;
830
831 /*
832 * GuC requires all resources that we're sharing with it to be placed in
833 * non-WOPCM memory. If GuC is not present or not in use we still need a
834 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
835 * why.
836 */
837 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
838 intel_wopcm_guc_size(&ggtt->vm.gt->wopcm));
839
840 ret = intel_vgt_balloon(ggtt);
841 if (ret)
842 return ret;
843
844 mutex_init(&ggtt->error_mutex);
845 if (ggtt->mappable_end) {
846 /*
847 * Reserve a mappable slot for our lockless error capture.
848 *
849 * We strongly prefer taking address 0x0 in order to protect
850 * other critical buffers against accidental overwrites,
851 * as writing to address 0 is a very common mistake.
852 *
853 * Since 0 may already be in use by the system (e.g. the BIOS
854 * framebuffer), we let the reservation fail quietly and hope
855 * 0 remains reserved always.
856 *
857 * If we fail to reserve 0, and then fail to find any space
858 * for an error-capture, remain silent. We can afford not
859 * to reserve an error_capture node as we have fallback
860 * paths, and we trust that 0 will remain reserved. However,
861 * the only likely reason for failure to insert is a driver
862 * bug, which we expect to cause other failures...
863 *
864 * Since CPU can perform speculative reads on error capture
865 * (write-combining allows it) add scratch page after error
866 * capture to avoid DMAR errors.
867 */
868 ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE;
869 ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
870 if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
871 drm_mm_insert_node_in_range(&ggtt->vm.mm,
872 &ggtt->error_capture,
873 ggtt->error_capture.size, 0,
874 ggtt->error_capture.color,
875 0, ggtt->mappable_end,
876 DRM_MM_INSERT_LOW);
877 }
878 if (drm_mm_node_allocated(&ggtt->error_capture)) {
879 u64 start = ggtt->error_capture.start;
880 u64 size = ggtt->error_capture.size;
881
882 ggtt->vm.scratch_range(&ggtt->vm, start, size);
883 drm_dbg(&ggtt->vm.i915->drm,
884 "Reserved GGTT:[%llx, %llx] for use by error capture\n",
885 start, start + size);
886 }
887
888 /*
889 * The upper portion of the GuC address space has a sizeable hole
890 * (several MB) that is inaccessible by GuC. Reserve this range within
891 * GGTT as it can comfortably hold GuC/HuC firmware images.
892 */
893 ret = ggtt_reserve_guc_top(ggtt);
894 if (ret)
895 goto err;
896
897 /* Clear any non-preallocated blocks */
898 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
899 drm_dbg(&ggtt->vm.i915->drm,
900 "clearing unused GTT space: [%lx, %lx]\n",
901 hole_start, hole_end);
902 ggtt->vm.clear_range(&ggtt->vm, hole_start,
903 hole_end - hole_start);
904 }
905
906 /* And finally clear the reserved guard page */
907 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
908
909 return 0;
910
911 err:
912 cleanup_init_ggtt(ggtt);
913 return ret;
914 }
915
aliasing_gtt_bind_vma(struct i915_address_space * vm,struct i915_vm_pt_stash * stash,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)916 static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
917 struct i915_vm_pt_stash *stash,
918 struct i915_vma_resource *vma_res,
919 unsigned int pat_index,
920 u32 flags)
921 {
922 u32 pte_flags;
923
924 /* Currently applicable only to VLV */
925 pte_flags = 0;
926 if (vma_res->bi.readonly)
927 pte_flags |= PTE_READ_ONLY;
928
929 if (flags & I915_VMA_LOCAL_BIND)
930 ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
931 stash, vma_res, pat_index, flags);
932
933 if (flags & I915_VMA_GLOBAL_BIND)
934 vm->insert_entries(vm, vma_res, pat_index, pte_flags);
935
936 vma_res->bound_flags |= flags;
937 }
938
aliasing_gtt_unbind_vma(struct i915_address_space * vm,struct i915_vma_resource * vma_res)939 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
940 struct i915_vma_resource *vma_res)
941 {
942 if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND)
943 vm->clear_range(vm, vma_res->start, vma_res->vma_size);
944
945 if (vma_res->bound_flags & I915_VMA_LOCAL_BIND)
946 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res);
947 }
948
init_aliasing_ppgtt(struct i915_ggtt * ggtt)949 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
950 {
951 struct i915_vm_pt_stash stash = {};
952 struct i915_ppgtt *ppgtt;
953 int err;
954
955 ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0);
956 if (IS_ERR(ppgtt))
957 return PTR_ERR(ppgtt);
958
959 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
960 err = -ENODEV;
961 goto err_ppgtt;
962 }
963
964 err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
965 if (err)
966 goto err_ppgtt;
967
968 i915_gem_object_lock(ppgtt->vm.scratch[0], NULL);
969 err = i915_vm_map_pt_stash(&ppgtt->vm, &stash);
970 i915_gem_object_unlock(ppgtt->vm.scratch[0]);
971 if (err)
972 goto err_stash;
973
974 /*
975 * Note we only pre-allocate as far as the end of the global
976 * GTT. On 48b / 4-level page-tables, the difference is very,
977 * very significant! We have to preallocate as GVT/vgpu does
978 * not like the page directory disappearing.
979 */
980 ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
981
982 ggtt->alias = ppgtt;
983 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
984
985 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma);
986 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
987
988 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma);
989 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
990
991 i915_vm_free_pt_stash(&ppgtt->vm, &stash);
992 return 0;
993
994 err_stash:
995 i915_vm_free_pt_stash(&ppgtt->vm, &stash);
996 err_ppgtt:
997 i915_vm_put(&ppgtt->vm);
998 return err;
999 }
1000
fini_aliasing_ppgtt(struct i915_ggtt * ggtt)1001 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
1002 {
1003 struct i915_ppgtt *ppgtt;
1004
1005 ppgtt = fetch_and_zero(&ggtt->alias);
1006 if (!ppgtt)
1007 return;
1008
1009 i915_vm_put(&ppgtt->vm);
1010
1011 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma;
1012 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1013 }
1014
i915_init_ggtt(struct drm_i915_private * i915)1015 int i915_init_ggtt(struct drm_i915_private *i915)
1016 {
1017 int ret;
1018
1019 ret = init_ggtt(to_gt(i915)->ggtt);
1020 if (ret)
1021 return ret;
1022
1023 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
1024 ret = init_aliasing_ppgtt(to_gt(i915)->ggtt);
1025 if (ret)
1026 cleanup_init_ggtt(to_gt(i915)->ggtt);
1027 }
1028
1029 return 0;
1030 }
1031
ggtt_cleanup_hw(struct i915_ggtt * ggtt)1032 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
1033 {
1034 struct i915_vma *vma, *vn;
1035
1036 flush_workqueue(ggtt->vm.i915->wq);
1037 i915_gem_drain_freed_objects(ggtt->vm.i915);
1038
1039 mutex_lock(&ggtt->vm.mutex);
1040
1041 ggtt->vm.skip_pte_rewrite = true;
1042
1043 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
1044 struct drm_i915_gem_object *obj = vma->obj;
1045 bool trylock;
1046
1047 trylock = i915_gem_object_trylock(obj, NULL);
1048 WARN_ON(!trylock);
1049
1050 WARN_ON(__i915_vma_unbind(vma));
1051 if (trylock)
1052 i915_gem_object_unlock(obj);
1053 }
1054
1055 if (drm_mm_node_allocated(&ggtt->error_capture))
1056 drm_mm_remove_node(&ggtt->error_capture);
1057 mutex_destroy(&ggtt->error_mutex);
1058
1059 ggtt_release_guc_top(ggtt);
1060 intel_vgt_deballoon(ggtt);
1061
1062 ggtt->vm.cleanup(&ggtt->vm);
1063
1064 mutex_unlock(&ggtt->vm.mutex);
1065 i915_address_space_fini(&ggtt->vm);
1066
1067 arch_phys_wc_del(ggtt->mtrr);
1068
1069 if (ggtt->iomap.size)
1070 io_mapping_fini(&ggtt->iomap);
1071 }
1072
1073 /**
1074 * i915_ggtt_driver_release - Clean up GGTT hardware initialization
1075 * @i915: i915 device
1076 */
i915_ggtt_driver_release(struct drm_i915_private * i915)1077 void i915_ggtt_driver_release(struct drm_i915_private *i915)
1078 {
1079 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1080
1081 fini_aliasing_ppgtt(ggtt);
1082
1083 intel_ggtt_fini_fences(ggtt);
1084 ggtt_cleanup_hw(ggtt);
1085 }
1086
1087 /**
1088 * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after
1089 * all free objects have been drained.
1090 * @i915: i915 device
1091 */
i915_ggtt_driver_late_release(struct drm_i915_private * i915)1092 void i915_ggtt_driver_late_release(struct drm_i915_private *i915)
1093 {
1094 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1095
1096 GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1);
1097 dma_resv_fini(&ggtt->vm._resv);
1098 }
1099
gen6_get_total_gtt_size(u16 snb_gmch_ctl)1100 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1101 {
1102 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1103 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1104 return snb_gmch_ctl << 20;
1105 }
1106
gen8_get_total_gtt_size(u16 bdw_gmch_ctl)1107 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1108 {
1109 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1110 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1111 if (bdw_gmch_ctl)
1112 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1113
1114 #ifdef CONFIG_X86_32
1115 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
1116 if (bdw_gmch_ctl > 4)
1117 bdw_gmch_ctl = 4;
1118 #endif
1119
1120 return bdw_gmch_ctl << 20;
1121 }
1122
chv_get_total_gtt_size(u16 gmch_ctrl)1123 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1124 {
1125 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1126 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1127
1128 if (gmch_ctrl)
1129 return 1 << (20 + gmch_ctrl);
1130
1131 return 0;
1132 }
1133
gen6_gttmmadr_size(struct drm_i915_private * i915)1134 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915)
1135 {
1136 /*
1137 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset
1138 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset
1139 */
1140 GEM_BUG_ON(GRAPHICS_VER(i915) < 6);
1141 return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M;
1142 }
1143
gen6_gttadr_offset(struct drm_i915_private * i915)1144 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915)
1145 {
1146 return gen6_gttmmadr_size(i915) / 2;
1147 }
1148
ggtt_probe_common(struct i915_ggtt * ggtt,u64 size)1149 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
1150 {
1151 struct drm_i915_private *i915 = ggtt->vm.i915;
1152 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
1153 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1154 phys_addr_t phys_addr;
1155 u32 pte_flags;
1156 int ret;
1157
1158 GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915));
1159
1160 if (i915_direct_stolen_access(i915)) {
1161 drm_dbg(&i915->drm, "Using direct GSM access\n");
1162 phys_addr = intel_uncore_read64(uncore, GEN6_GSMBASE) & GEN11_BDSM_MASK;
1163 } else {
1164 phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915);
1165 }
1166
1167 if (needs_wc_ggtt_mapping(i915))
1168 ggtt->gsm = ioremap_wc(phys_addr, size);
1169 else
1170 ggtt->gsm = ioremap(phys_addr, size);
1171
1172 if (!ggtt->gsm) {
1173 drm_err(&i915->drm, "Failed to map the ggtt page table\n");
1174 return -ENOMEM;
1175 }
1176
1177 kref_init(&ggtt->vm.resv_ref);
1178 ret = setup_scratch_page(&ggtt->vm);
1179 if (ret) {
1180 drm_err(&i915->drm, "Scratch setup failed\n");
1181 /* iounmap will also get called at remove, but meh */
1182 iounmap(ggtt->gsm);
1183 return ret;
1184 }
1185
1186 pte_flags = 0;
1187 if (i915_gem_object_is_lmem(ggtt->vm.scratch[0]))
1188 pte_flags |= PTE_LM;
1189
1190 ggtt->vm.scratch[0]->encode =
1191 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
1192 i915_gem_get_pat_index(i915,
1193 I915_CACHE_NONE),
1194 pte_flags);
1195
1196 return 0;
1197 }
1198
gen6_gmch_remove(struct i915_address_space * vm)1199 static void gen6_gmch_remove(struct i915_address_space *vm)
1200 {
1201 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1202
1203 iounmap(ggtt->gsm);
1204 free_scratch(vm);
1205 }
1206
pci_resource(struct pci_dev * pdev,int bar)1207 static struct resource pci_resource(struct pci_dev *pdev, int bar)
1208 {
1209 return DEFINE_RES_MEM(pci_resource_start(pdev, bar),
1210 pci_resource_len(pdev, bar));
1211 }
1212
gen8_gmch_probe(struct i915_ggtt * ggtt)1213 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
1214 {
1215 struct drm_i915_private *i915 = ggtt->vm.i915;
1216 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1217 unsigned int size;
1218 u16 snb_gmch_ctl;
1219
1220 if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) {
1221 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1222 return -ENXIO;
1223
1224 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1225 ggtt->mappable_end = resource_size(&ggtt->gmadr);
1226 }
1227
1228 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1229 if (IS_CHERRYVIEW(i915))
1230 size = chv_get_total_gtt_size(snb_gmch_ctl);
1231 else
1232 size = gen8_get_total_gtt_size(snb_gmch_ctl);
1233
1234 ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1235 ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1236 ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY;
1237
1238 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
1239 ggtt->vm.cleanup = gen6_gmch_remove;
1240 ggtt->vm.insert_page = gen8_ggtt_insert_page;
1241 ggtt->vm.clear_range = nop_clear_range;
1242 ggtt->vm.scratch_range = gen8_ggtt_clear_range;
1243
1244 ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
1245
1246 /*
1247 * Serialize GTT updates with aperture access on BXT if VT-d is on,
1248 * and always on CHV.
1249 */
1250 if (intel_vm_no_concurrent_access_wa(i915)) {
1251 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
1252 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL;
1253
1254 /*
1255 * Calling stop_machine() version of GGTT update function
1256 * at error capture/reset path will raise lockdep warning.
1257 * Allow calling gen8_ggtt_insert_* directly at reset path
1258 * which is safe from parallel GGTT updates.
1259 */
1260 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1261 ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries;
1262
1263 ggtt->vm.bind_async_flags =
1264 I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
1265 }
1266
1267 if (i915_ggtt_require_binder(i915)) {
1268 ggtt->vm.scratch_range = gen8_ggtt_scratch_range_bind;
1269 ggtt->vm.insert_page = gen8_ggtt_insert_page_bind;
1270 ggtt->vm.insert_entries = gen8_ggtt_insert_entries_bind;
1271 /*
1272 * On GPU is hung, we might bind VMAs for error capture.
1273 * Fallback to CPU GGTT updates in that case.
1274 */
1275 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1276 }
1277
1278 if (intel_uc_wants_guc_submission(&ggtt->vm.gt->uc))
1279 ggtt->invalidate = guc_ggtt_invalidate;
1280 else
1281 ggtt->invalidate = gen8_ggtt_invalidate;
1282
1283 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma;
1284 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1285
1286 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1287 ggtt->vm.pte_encode = mtl_ggtt_pte_encode;
1288 else
1289 ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
1290
1291 return ggtt_probe_common(ggtt, size);
1292 }
1293
1294 /*
1295 * For pre-gen8 platforms pat_index is the same as enum i915_cache_level,
1296 * so the switch-case statements in these PTE encode functions are still valid.
1297 * See translation table LEGACY_CACHELEVEL.
1298 */
snb_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1299 static u64 snb_pte_encode(dma_addr_t addr,
1300 unsigned int pat_index,
1301 u32 flags)
1302 {
1303 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1304
1305 switch (pat_index) {
1306 case I915_CACHE_L3_LLC:
1307 case I915_CACHE_LLC:
1308 pte |= GEN6_PTE_CACHE_LLC;
1309 break;
1310 case I915_CACHE_NONE:
1311 pte |= GEN6_PTE_UNCACHED;
1312 break;
1313 default:
1314 MISSING_CASE(pat_index);
1315 }
1316
1317 return pte;
1318 }
1319
ivb_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1320 static u64 ivb_pte_encode(dma_addr_t addr,
1321 unsigned int pat_index,
1322 u32 flags)
1323 {
1324 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1325
1326 switch (pat_index) {
1327 case I915_CACHE_L3_LLC:
1328 pte |= GEN7_PTE_CACHE_L3_LLC;
1329 break;
1330 case I915_CACHE_LLC:
1331 pte |= GEN6_PTE_CACHE_LLC;
1332 break;
1333 case I915_CACHE_NONE:
1334 pte |= GEN6_PTE_UNCACHED;
1335 break;
1336 default:
1337 MISSING_CASE(pat_index);
1338 }
1339
1340 return pte;
1341 }
1342
byt_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1343 static u64 byt_pte_encode(dma_addr_t addr,
1344 unsigned int pat_index,
1345 u32 flags)
1346 {
1347 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1348
1349 if (!(flags & PTE_READ_ONLY))
1350 pte |= BYT_PTE_WRITEABLE;
1351
1352 if (pat_index != I915_CACHE_NONE)
1353 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1354
1355 return pte;
1356 }
1357
hsw_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1358 static u64 hsw_pte_encode(dma_addr_t addr,
1359 unsigned int pat_index,
1360 u32 flags)
1361 {
1362 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1363
1364 if (pat_index != I915_CACHE_NONE)
1365 pte |= HSW_WB_LLC_AGE3;
1366
1367 return pte;
1368 }
1369
iris_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1370 static u64 iris_pte_encode(dma_addr_t addr,
1371 unsigned int pat_index,
1372 u32 flags)
1373 {
1374 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1375
1376 switch (pat_index) {
1377 case I915_CACHE_NONE:
1378 break;
1379 case I915_CACHE_WT:
1380 pte |= HSW_WT_ELLC_LLC_AGE3;
1381 break;
1382 default:
1383 pte |= HSW_WB_ELLC_LLC_AGE3;
1384 break;
1385 }
1386
1387 return pte;
1388 }
1389
gen6_gmch_probe(struct i915_ggtt * ggtt)1390 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1391 {
1392 struct drm_i915_private *i915 = ggtt->vm.i915;
1393 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1394 unsigned int size;
1395 u16 snb_gmch_ctl;
1396
1397 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1398 return -ENXIO;
1399
1400 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1401 ggtt->mappable_end = resource_size(&ggtt->gmadr);
1402
1403 /*
1404 * 64/512MB is the current min/max we actually know of, but this is
1405 * just a coarse sanity check.
1406 */
1407 if (ggtt->mappable_end < (64 << 20) ||
1408 ggtt->mappable_end > (512 << 20)) {
1409 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
1410 &ggtt->mappable_end);
1411 return -ENXIO;
1412 }
1413
1414 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1415
1416 size = gen6_get_total_gtt_size(snb_gmch_ctl);
1417 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1418
1419 ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1420 ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1421
1422 ggtt->vm.clear_range = nop_clear_range;
1423 if (!HAS_FULL_PPGTT(i915))
1424 ggtt->vm.clear_range = gen6_ggtt_clear_range;
1425 ggtt->vm.scratch_range = gen6_ggtt_clear_range;
1426 ggtt->vm.insert_page = gen6_ggtt_insert_page;
1427 ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1428 ggtt->vm.cleanup = gen6_gmch_remove;
1429
1430 ggtt->invalidate = gen6_ggtt_invalidate;
1431
1432 if (HAS_EDRAM(i915))
1433 ggtt->vm.pte_encode = iris_pte_encode;
1434 else if (IS_HASWELL(i915))
1435 ggtt->vm.pte_encode = hsw_pte_encode;
1436 else if (IS_VALLEYVIEW(i915))
1437 ggtt->vm.pte_encode = byt_pte_encode;
1438 else if (GRAPHICS_VER(i915) >= 7)
1439 ggtt->vm.pte_encode = ivb_pte_encode;
1440 else
1441 ggtt->vm.pte_encode = snb_pte_encode;
1442
1443 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma;
1444 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1445
1446 return ggtt_probe_common(ggtt, size);
1447 }
1448
ggtt_probe_hw(struct i915_ggtt * ggtt,struct intel_gt * gt)1449 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1450 {
1451 struct drm_i915_private *i915 = gt->i915;
1452 int ret;
1453
1454 ggtt->vm.gt = gt;
1455 ggtt->vm.i915 = i915;
1456 ggtt->vm.dma = i915->drm.dev;
1457 dma_resv_init(&ggtt->vm._resv);
1458
1459 if (GRAPHICS_VER(i915) >= 8)
1460 ret = gen8_gmch_probe(ggtt);
1461 else if (GRAPHICS_VER(i915) >= 6)
1462 ret = gen6_gmch_probe(ggtt);
1463 else
1464 ret = intel_ggtt_gmch_probe(ggtt);
1465
1466 if (ret) {
1467 dma_resv_fini(&ggtt->vm._resv);
1468 return ret;
1469 }
1470
1471 if ((ggtt->vm.total - 1) >> 32) {
1472 drm_err(&i915->drm,
1473 "We never expected a Global GTT with more than 32bits"
1474 " of address space! Found %lldM!\n",
1475 ggtt->vm.total >> 20);
1476 ggtt->vm.total = 1ULL << 32;
1477 ggtt->mappable_end =
1478 min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1479 }
1480
1481 if (ggtt->mappable_end > ggtt->vm.total) {
1482 drm_err(&i915->drm,
1483 "mappable aperture extends past end of GGTT,"
1484 " aperture=%pa, total=%llx\n",
1485 &ggtt->mappable_end, ggtt->vm.total);
1486 ggtt->mappable_end = ggtt->vm.total;
1487 }
1488
1489 /* GMADR is the PCI mmio aperture into the global GTT. */
1490 drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1491 drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1492 (u64)ggtt->mappable_end >> 20);
1493 drm_dbg(&i915->drm, "DSM size = %lluM\n",
1494 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
1495
1496 return 0;
1497 }
1498
1499 /**
1500 * i915_ggtt_probe_hw - Probe GGTT hardware location
1501 * @i915: i915 device
1502 */
i915_ggtt_probe_hw(struct drm_i915_private * i915)1503 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1504 {
1505 struct intel_gt *gt;
1506 int ret, i;
1507
1508 for_each_gt(gt, i915, i) {
1509 ret = intel_gt_assign_ggtt(gt);
1510 if (ret)
1511 return ret;
1512 }
1513
1514 ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915));
1515 if (ret)
1516 return ret;
1517
1518 if (i915_vtd_active(i915))
1519 drm_info(&i915->drm, "VT-d active for gfx access\n");
1520
1521 return 0;
1522 }
1523
i915_ggtt_create(struct drm_i915_private * i915)1524 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915)
1525 {
1526 struct i915_ggtt *ggtt;
1527
1528 ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL);
1529 if (!ggtt)
1530 return ERR_PTR(-ENOMEM);
1531
1532 INIT_LIST_HEAD(&ggtt->gt_list);
1533
1534 return ggtt;
1535 }
1536
i915_ggtt_enable_hw(struct drm_i915_private * i915)1537 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1538 {
1539 if (GRAPHICS_VER(i915) < 6)
1540 return intel_ggtt_gmch_enable_hw(i915);
1541
1542 return 0;
1543 }
1544
1545 /**
1546 * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM
1547 * @vm: The VM to restore the mappings for
1548 *
1549 * Restore the memory mappings for all objects mapped to HW via the GGTT or a
1550 * DPT page table.
1551 *
1552 * Returns %true if restoring the mapping for any object that was in a write
1553 * domain before suspend.
1554 */
i915_ggtt_resume_vm(struct i915_address_space * vm)1555 bool i915_ggtt_resume_vm(struct i915_address_space *vm)
1556 {
1557 struct i915_vma *vma;
1558 bool write_domain_objs = false;
1559
1560 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
1561
1562 /* First fill our portion of the GTT with scratch pages */
1563 vm->clear_range(vm, 0, vm->total);
1564
1565 /* clflush objects bound into the GGTT and rebind them. */
1566 list_for_each_entry(vma, &vm->bound_list, vm_link) {
1567 struct drm_i915_gem_object *obj = vma->obj;
1568 unsigned int was_bound =
1569 atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
1570
1571 GEM_BUG_ON(!was_bound);
1572
1573 /*
1574 * Clear the bound flags of the vma resource to allow
1575 * ptes to be repopulated.
1576 */
1577 vma->resource->bound_flags = 0;
1578 vma->ops->bind_vma(vm, NULL, vma->resource,
1579 obj ? obj->pat_index :
1580 i915_gem_get_pat_index(vm->i915,
1581 I915_CACHE_NONE),
1582 was_bound);
1583
1584 if (obj) { /* only used during resume => exclusive access */
1585 write_domain_objs |= fetch_and_zero(&obj->write_domain);
1586 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1587 }
1588 }
1589
1590 return write_domain_objs;
1591 }
1592
i915_ggtt_resume(struct i915_ggtt * ggtt)1593 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1594 {
1595 struct intel_gt *gt;
1596 bool flush;
1597
1598 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1599 intel_gt_check_and_clear_faults(gt);
1600
1601 flush = i915_ggtt_resume_vm(&ggtt->vm);
1602
1603 if (drm_mm_node_allocated(&ggtt->error_capture))
1604 ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start,
1605 ggtt->error_capture.size);
1606
1607 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1608 intel_uc_resume_mappings(>->uc);
1609
1610 ggtt->invalidate(ggtt);
1611
1612 if (flush)
1613 wbinvd_on_all_cpus();
1614
1615 intel_ggtt_restore_fences(ggtt);
1616 }
1617