1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program. 12 * 13 * Copyright (c) 1980, 1989, 1993 14 * The Regents of the University of California. All rights reserved. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 */ 40 41 #define _WANT_P_OSREL 42 #include <sys/param.h> 43 #include <sys/disklabel.h> 44 #include <sys/file.h> 45 #include <sys/ioctl.h> 46 #include <sys/mman.h> 47 #include <sys/resource.h> 48 #include <sys/stat.h> 49 #include <sys/wait.h> 50 #include <err.h> 51 #include <grp.h> 52 #include <limits.h> 53 #include <signal.h> 54 #include <stdlib.h> 55 #include <string.h> 56 #include <stdint.h> 57 #include <stdio.h> 58 #include <time.h> 59 #include <unistd.h> 60 #include <ufs/ufs/dinode.h> 61 #include <ufs/ufs/dir.h> 62 #include <ufs/ffs/fs.h> 63 #include "newfs.h" 64 65 /* 66 * make file system for cylinder-group style file systems 67 */ 68 #define UMASK 0755 69 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 70 71 /* 72 * The definition of "struct cg" used to contain an extra field at the end 73 * to represent the variable-length data that followed the fixed structure. 74 * This had the effect of artificially limiting the number of blocks that 75 * newfs would put in a CG, since newfs thought that the fixed-size header 76 * was bigger than it really was. When we started validating that the CG 77 * header data actually fit into one fs block, the placeholder field caused 78 * a problem because it caused struct cg to be a different size depending on 79 * platform. The placeholder field was later removed, but this caused a 80 * backward compatibility problem with older binaries that still thought 81 * struct cg was larger, and a new file system could fail validation if 82 * viewed by the older binaries. To avoid this compatibility problem, we 83 * now artificially reduce the amount of space that the variable-length data 84 * can use such that new file systems will pass validation by older binaries. 85 */ 86 #define CGSIZEFUDGE 8 87 88 static struct csum *fscs; 89 #define sblock disk.d_fs 90 #define acg disk.d_cg 91 92 #define DIP(dp, field) \ 93 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 94 (dp)->dp1.field : (dp)->dp2.field) 95 96 static caddr_t iobuf; 97 static long iobufsize; 98 static ufs2_daddr_t alloc(int size, int mode); 99 static int charsperline(void); 100 static void clrblock(struct fs *, unsigned char *, int); 101 static void fsinit(time_t); 102 static int ilog2(int); 103 static void initcg(int, time_t); 104 static int isblock(struct fs *, unsigned char *, int); 105 static void iput(union dinode *, ino_t); 106 static int makedir(struct direct *, int); 107 static void setblock(struct fs *, unsigned char *, int); 108 static void wtfs(ufs2_daddr_t, int, char *); 109 static u_int32_t newfs_random(void); 110 111 void 112 mkfs(struct partition *pp, char *fsys) 113 { 114 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 115 long i, j, csfrags; 116 uint cg; 117 time_t utime; 118 quad_t sizepb; 119 int width; 120 ino_t maxinum; 121 int minfragsperinode; /* minimum ratio of frags to inodes */ 122 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 123 struct fsrecovery *fsr; 124 char *fsrbuf; 125 union { 126 struct fs fdummy; 127 char cdummy[SBLOCKSIZE]; 128 } dummy; 129 #define fsdummy dummy.fdummy 130 #define chdummy dummy.cdummy 131 132 /* 133 * Our blocks == sector size, and the version of UFS we are using is 134 * specified by Oflag. 135 */ 136 disk.d_bsize = sectorsize; 137 disk.d_ufs = Oflag; 138 if (Rflag) 139 utime = 1000000000; 140 else 141 time(&utime); 142 if ((sblock.fs_si = malloc(sizeof(struct fs_summary_info))) == NULL) { 143 printf("Superblock summary info allocation failed.\n"); 144 exit(18); 145 } 146 sblock.fs_old_flags = FS_FLAGS_UPDATED; 147 sblock.fs_flags = 0; 148 if (Uflag) 149 sblock.fs_flags |= FS_DOSOFTDEP; 150 if (Lflag) 151 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 152 if (Jflag) 153 sblock.fs_flags |= FS_GJOURNAL; 154 if (lflag) 155 sblock.fs_flags |= FS_MULTILABEL; 156 if (tflag) 157 sblock.fs_flags |= FS_TRIM; 158 /* 159 * Validate the given file system size. 160 * Verify that its last block can actually be accessed. 161 * Convert to file system fragment sized units. 162 */ 163 if (fssize <= 0) { 164 printf("preposterous size %jd\n", (intmax_t)fssize); 165 exit(13); 166 } 167 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 168 (char *)&sblock); 169 /* 170 * collect and verify the file system density info 171 */ 172 sblock.fs_avgfilesize = avgfilesize; 173 sblock.fs_avgfpdir = avgfilesperdir; 174 if (sblock.fs_avgfilesize <= 0) 175 printf("illegal expected average file size %d\n", 176 sblock.fs_avgfilesize), exit(14); 177 if (sblock.fs_avgfpdir <= 0) 178 printf("illegal expected number of files per directory %d\n", 179 sblock.fs_avgfpdir), exit(15); 180 181 restart: 182 /* 183 * collect and verify the block and fragment sizes 184 */ 185 sblock.fs_bsize = bsize; 186 sblock.fs_fsize = fsize; 187 if (!POWEROF2(sblock.fs_bsize)) { 188 printf("block size must be a power of 2, not %d\n", 189 sblock.fs_bsize); 190 exit(16); 191 } 192 if (!POWEROF2(sblock.fs_fsize)) { 193 printf("fragment size must be a power of 2, not %d\n", 194 sblock.fs_fsize); 195 exit(17); 196 } 197 if (sblock.fs_fsize < sectorsize) { 198 printf("increasing fragment size from %d to sector size (%d)\n", 199 sblock.fs_fsize, sectorsize); 200 sblock.fs_fsize = sectorsize; 201 } 202 if (sblock.fs_bsize > MAXBSIZE) { 203 printf("decreasing block size from %d to maximum (%d)\n", 204 sblock.fs_bsize, MAXBSIZE); 205 sblock.fs_bsize = MAXBSIZE; 206 } 207 if (sblock.fs_bsize < MINBSIZE) { 208 printf("increasing block size from %d to minimum (%d)\n", 209 sblock.fs_bsize, MINBSIZE); 210 sblock.fs_bsize = MINBSIZE; 211 } 212 if (sblock.fs_fsize > MAXBSIZE) { 213 printf("decreasing fragment size from %d to maximum (%d)\n", 214 sblock.fs_fsize, MAXBSIZE); 215 sblock.fs_fsize = MAXBSIZE; 216 } 217 if (sblock.fs_bsize < sblock.fs_fsize) { 218 printf("increasing block size from %d to fragment size (%d)\n", 219 sblock.fs_bsize, sblock.fs_fsize); 220 sblock.fs_bsize = sblock.fs_fsize; 221 } 222 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 223 printf( 224 "increasing fragment size from %d to block size / %d (%d)\n", 225 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 226 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 227 } 228 if (maxbsize == 0) 229 maxbsize = bsize; 230 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 231 sblock.fs_maxbsize = sblock.fs_bsize; 232 printf("Extent size set to %d\n", sblock.fs_maxbsize); 233 } else if (maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 234 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 235 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 236 } else { 237 sblock.fs_maxbsize = maxbsize; 238 } 239 /* 240 * Maxcontig sets the default for the maximum number of blocks 241 * that may be allocated sequentially. With file system clustering 242 * it is possible to allocate contiguous blocks up to the maximum 243 * transfer size permitted by the controller or buffering. 244 */ 245 if (maxcontig == 0) 246 maxcontig = MAX(1, MAXPHYS / bsize); 247 sblock.fs_maxcontig = maxcontig; 248 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 249 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 250 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 251 } 252 if (sblock.fs_maxcontig > 1) 253 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 254 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 255 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 256 sblock.fs_qbmask = ~sblock.fs_bmask; 257 sblock.fs_qfmask = ~sblock.fs_fmask; 258 sblock.fs_bshift = ilog2(sblock.fs_bsize); 259 sblock.fs_fshift = ilog2(sblock.fs_fsize); 260 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 261 sblock.fs_fragshift = ilog2(sblock.fs_frag); 262 if (sblock.fs_frag > MAXFRAG) { 263 printf("fragment size %d is still too small (can't happen)\n", 264 sblock.fs_bsize / MAXFRAG); 265 exit(21); 266 } 267 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 268 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 269 sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize); 270 271 /* 272 * Before the filesystem is finally initialized, mark it 273 * as incompletely initialized. 274 */ 275 sblock.fs_magic = FS_BAD_MAGIC; 276 277 if (Oflag == 1) { 278 sblock.fs_sblockloc = SBLOCK_UFS1; 279 sblock.fs_sblockactualloc = SBLOCK_UFS1; 280 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 281 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 282 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 283 sizeof(ufs1_daddr_t)); 284 sblock.fs_old_inodefmt = FS_44INODEFMT; 285 sblock.fs_old_cgoffset = 0; 286 sblock.fs_old_cgmask = 0xffffffff; 287 sblock.fs_old_size = sblock.fs_size; 288 sblock.fs_old_rotdelay = 0; 289 sblock.fs_old_rps = 60; 290 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 291 sblock.fs_old_cpg = 1; 292 sblock.fs_old_interleave = 1; 293 sblock.fs_old_trackskew = 0; 294 sblock.fs_old_cpc = 0; 295 sblock.fs_old_postblformat = 1; 296 sblock.fs_old_nrpos = 1; 297 } else { 298 sblock.fs_sblockloc = SBLOCK_UFS2; 299 sblock.fs_sblockactualloc = SBLOCK_UFS2; 300 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 301 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 302 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 303 sizeof(ufs2_daddr_t)); 304 } 305 sblock.fs_sblkno = 306 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 307 sblock.fs_frag); 308 sblock.fs_cblkno = sblock.fs_sblkno + 309 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 310 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 311 sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1; 312 for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) { 313 sizepb *= NINDIR(&sblock); 314 sblock.fs_maxfilesize += sizepb; 315 } 316 317 /* 318 * It's impossible to create a snapshot in case that fs_maxfilesize 319 * is smaller than the fssize. 320 */ 321 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 322 warnx("WARNING: You will be unable to create snapshots on this " 323 "file system. Correct by using a larger blocksize."); 324 } 325 326 /* 327 * Calculate the number of blocks to put into each cylinder group. 328 * 329 * This algorithm selects the number of blocks per cylinder 330 * group. The first goal is to have at least enough data blocks 331 * in each cylinder group to meet the density requirement. Once 332 * this goal is achieved we try to expand to have at least 333 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 334 * pack as many blocks into each cylinder group map as will fit. 335 * 336 * We start by calculating the smallest number of blocks that we 337 * can put into each cylinder group. If this is too big, we reduce 338 * the density until it fits. 339 */ 340 retry: 341 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 342 minfragsperinode = 1 + fssize / maxinum; 343 if (density == 0) { 344 density = MAX(NFPI, minfragsperinode) * fsize; 345 } else if (density < minfragsperinode * fsize) { 346 origdensity = density; 347 density = minfragsperinode * fsize; 348 fprintf(stderr, "density increased from %d to %d\n", 349 origdensity, density); 350 } 351 origdensity = density; 352 for (;;) { 353 fragsperinode = MAX(numfrags(&sblock, density), 1); 354 if (fragsperinode < minfragsperinode) { 355 bsize <<= 1; 356 fsize <<= 1; 357 printf("Block size too small for a file system %s %d\n", 358 "of this size. Increasing blocksize to", bsize); 359 goto restart; 360 } 361 minfpg = fragsperinode * INOPB(&sblock); 362 if (minfpg > sblock.fs_size) 363 minfpg = sblock.fs_size; 364 sblock.fs_ipg = INOPB(&sblock); 365 sblock.fs_fpg = roundup(sblock.fs_iblkno + 366 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 367 if (sblock.fs_fpg < minfpg) 368 sblock.fs_fpg = minfpg; 369 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 370 INOPB(&sblock)); 371 sblock.fs_fpg = roundup(sblock.fs_iblkno + 372 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 373 if (sblock.fs_fpg < minfpg) 374 sblock.fs_fpg = minfpg; 375 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 376 INOPB(&sblock)); 377 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize - 378 CGSIZEFUDGE) 379 break; 380 density -= sblock.fs_fsize; 381 } 382 if (density != origdensity) 383 printf("density reduced from %d to %d\n", origdensity, density); 384 /* 385 * Start packing more blocks into the cylinder group until 386 * it cannot grow any larger, the number of cylinder groups 387 * drops below MINCYLGRPS, or we reach the size requested. 388 * For UFS1 inodes per cylinder group are stored in an int16_t 389 * so fs_ipg is limited to 2^15 - 1. 390 */ 391 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 392 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 393 INOPB(&sblock)); 394 if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) { 395 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 396 break; 397 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize - 398 CGSIZEFUDGE) 399 continue; 400 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize - 401 CGSIZEFUDGE) 402 break; 403 } 404 sblock.fs_fpg -= sblock.fs_frag; 405 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 406 INOPB(&sblock)); 407 break; 408 } 409 /* 410 * Check to be sure that the last cylinder group has enough blocks 411 * to be viable. If it is too small, reduce the number of blocks 412 * per cylinder group which will have the effect of moving more 413 * blocks into the last cylinder group. 414 */ 415 optimalfpg = sblock.fs_fpg; 416 for (;;) { 417 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 418 lastminfpg = roundup(sblock.fs_iblkno + 419 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 420 if (sblock.fs_size < lastminfpg) { 421 printf("Filesystem size %jd < minimum size of %d\n", 422 (intmax_t)sblock.fs_size, lastminfpg); 423 exit(28); 424 } 425 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 426 sblock.fs_size % sblock.fs_fpg == 0) 427 break; 428 sblock.fs_fpg -= sblock.fs_frag; 429 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 430 INOPB(&sblock)); 431 } 432 if (optimalfpg != sblock.fs_fpg) 433 printf("Reduced frags per cylinder group from %d to %d %s\n", 434 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 435 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 436 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 437 if (Oflag == 1) { 438 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 439 sblock.fs_old_nsect = sblock.fs_old_spc; 440 sblock.fs_old_npsect = sblock.fs_old_spc; 441 sblock.fs_old_ncyl = sblock.fs_ncg; 442 } 443 /* 444 * fill in remaining fields of the super block 445 */ 446 sblock.fs_csaddr = cgdmin(&sblock, 0); 447 sblock.fs_cssize = 448 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 449 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 450 if (fscs == NULL) 451 errx(31, "calloc failed"); 452 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 453 if (sblock.fs_sbsize > SBLOCKSIZE) 454 sblock.fs_sbsize = SBLOCKSIZE; 455 if (sblock.fs_sbsize < realsectorsize) 456 sblock.fs_sbsize = realsectorsize; 457 sblock.fs_minfree = minfree; 458 if (metaspace > 0 && metaspace < sblock.fs_fpg / 2) 459 sblock.fs_metaspace = blknum(&sblock, metaspace); 460 else if (metaspace != -1) 461 /* reserve half of minfree for metadata blocks */ 462 sblock.fs_metaspace = blknum(&sblock, 463 (sblock.fs_fpg * minfree) / 200); 464 if (maxbpg == 0) 465 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); 466 else 467 sblock.fs_maxbpg = maxbpg; 468 sblock.fs_optim = opt; 469 sblock.fs_cgrotor = 0; 470 sblock.fs_pendingblocks = 0; 471 sblock.fs_pendinginodes = 0; 472 sblock.fs_fmod = 0; 473 sblock.fs_ronly = 0; 474 sblock.fs_state = 0; 475 sblock.fs_clean = 1; 476 sblock.fs_id[0] = (long)utime; 477 sblock.fs_id[1] = newfs_random(); 478 sblock.fs_fsmnt[0] = '\0'; 479 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 480 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 481 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 482 sblock.fs_cstotal.cs_nbfree = 483 fragstoblks(&sblock, sblock.fs_dsize) - 484 howmany(csfrags, sblock.fs_frag); 485 sblock.fs_cstotal.cs_nffree = 486 fragnum(&sblock, sblock.fs_size) + 487 (fragnum(&sblock, csfrags) > 0 ? 488 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 489 sblock.fs_cstotal.cs_nifree = 490 sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO; 491 sblock.fs_cstotal.cs_ndir = 0; 492 sblock.fs_dsize -= csfrags; 493 sblock.fs_time = utime; 494 if (Oflag == 1) { 495 sblock.fs_old_time = utime; 496 sblock.fs_old_dsize = sblock.fs_dsize; 497 sblock.fs_old_csaddr = sblock.fs_csaddr; 498 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 499 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 500 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 501 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 502 } 503 /* 504 * Set flags for metadata that is being check-hashed. 505 * 506 * Metadata check hashes are not supported in the UFS version 1 507 * filesystem to keep it as small and simple as possible. 508 */ 509 if (Oflag > 1) { 510 sblock.fs_flags |= FS_METACKHASH; 511 if (getosreldate() >= P_OSREL_CK_CYLGRP) 512 sblock.fs_metackhash |= CK_CYLGRP; 513 if (getosreldate() >= P_OSREL_CK_SUPERBLOCK) 514 sblock.fs_metackhash |= CK_SUPERBLOCK; 515 if (getosreldate() >= P_OSREL_CK_INODE) 516 sblock.fs_metackhash |= CK_INODE; 517 } 518 519 /* 520 * Dump out summary information about file system. 521 */ 522 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 523 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 524 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 525 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 526 sblock.fs_fsize); 527 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 528 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 529 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 530 if (sblock.fs_flags & FS_DOSOFTDEP) 531 printf("\twith soft updates\n"); 532 # undef B2MBFACTOR 533 534 if (Eflag && !Nflag) { 535 printf("Erasing sectors [%jd...%jd]\n", 536 sblock.fs_sblockloc / disk.d_bsize, 537 fsbtodb(&sblock, sblock.fs_size) - 1); 538 berase(&disk, sblock.fs_sblockloc / disk.d_bsize, 539 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); 540 } 541 /* 542 * Wipe out old UFS1 superblock(s) if necessary. 543 */ 544 if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) { 545 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, 546 SBLOCKSIZE); 547 if (i == -1) 548 err(1, "can't read old UFS1 superblock: %s", 549 disk.d_error); 550 551 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 552 fsdummy.fs_magic = 0; 553 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, 554 chdummy, SBLOCKSIZE); 555 for (cg = 0; cg < fsdummy.fs_ncg; cg++) { 556 if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > 557 fssize) 558 break; 559 bwrite(&disk, part_ofs + fsbtodb(&fsdummy, 560 cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE); 561 } 562 } 563 } 564 /* 565 * Reference the summary information so it will also be written. 566 */ 567 sblock.fs_csp = fscs; 568 if (!Nflag && sbwrite(&disk, 0) != 0) 569 err(1, "sbwrite: %s", disk.d_error); 570 if (Xflag == 1) { 571 printf("** Exiting on Xflag 1\n"); 572 exit(0); 573 } 574 if (Xflag == 2) 575 printf("** Leaving BAD MAGIC on Xflag 2\n"); 576 else 577 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 578 579 /* 580 * Now build the cylinders group blocks and 581 * then print out indices of cylinder groups. 582 */ 583 printf("super-block backups (for fsck_ffs -b #) at:\n"); 584 i = 0; 585 width = charsperline(); 586 /* 587 * Allocate space for two sets of inode blocks. 588 */ 589 iobufsize = 2 * sblock.fs_bsize; 590 if ((iobuf = calloc(1, iobufsize)) == 0) { 591 printf("Cannot allocate I/O buffer\n"); 592 exit(38); 593 } 594 /* 595 * Write out all the cylinder groups and backup superblocks. 596 */ 597 for (cg = 0; cg < sblock.fs_ncg; cg++) { 598 if (!Nflag) 599 initcg(cg, utime); 600 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 601 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)), 602 cg < (sblock.fs_ncg-1) ? "," : ""); 603 if (j < 0) 604 tmpbuf[j = 0] = '\0'; 605 if (i + j >= width) { 606 printf("\n"); 607 i = 0; 608 } 609 i += j; 610 printf("%s", tmpbuf); 611 fflush(stdout); 612 } 613 printf("\n"); 614 if (Nflag) 615 exit(0); 616 /* 617 * Now construct the initial file system, 618 * then write out the super-block. 619 */ 620 fsinit(utime); 621 if (Oflag == 1) { 622 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 623 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 624 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 625 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 626 } 627 if (Xflag == 3) { 628 printf("** Exiting on Xflag 3\n"); 629 exit(0); 630 } 631 if (sbwrite(&disk, 0) != 0) 632 err(1, "sbwrite: %s", disk.d_error); 633 /* 634 * For UFS1 filesystems with a blocksize of 64K, the first 635 * alternate superblock resides at the location used for 636 * the default UFS2 superblock. As there is a valid 637 * superblock at this location, the boot code will use 638 * it as its first choice. Thus we have to ensure that 639 * all of its statistcs on usage are correct. 640 */ 641 if (Oflag == 1 && sblock.fs_bsize == 65536) 642 wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)), 643 sblock.fs_bsize, (char *)&sblock); 644 /* 645 * Read the last sector of the boot block, replace the last 646 * 20 bytes with the recovery information, then write it back. 647 * The recovery information only works for UFS2 filesystems. 648 * For UFS1, zero out the area to ensure that an old UFS2 649 * recovery block is not accidentally found. 650 */ 651 if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk, 652 part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 653 fsrbuf, realsectorsize) == -1) 654 err(1, "can't read recovery area: %s", disk.d_error); 655 fsr = (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr]; 656 if (sblock.fs_magic != FS_UFS2_MAGIC) { 657 memset(fsr, 0, sizeof *fsr); 658 } else { 659 fsr->fsr_magic = sblock.fs_magic; 660 fsr->fsr_fpg = sblock.fs_fpg; 661 fsr->fsr_fsbtodb = sblock.fs_fsbtodb; 662 fsr->fsr_sblkno = sblock.fs_sblkno; 663 fsr->fsr_ncg = sblock.fs_ncg; 664 } 665 wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 666 realsectorsize, fsrbuf); 667 free(fsrbuf); 668 /* 669 * Update information about this partition in pack 670 * label, to that it may be updated on disk. 671 */ 672 if (pp != NULL) { 673 pp->p_fstype = FS_BSDFFS; 674 pp->p_fsize = sblock.fs_fsize; 675 pp->p_frag = sblock.fs_frag; 676 pp->p_cpg = sblock.fs_fpg; 677 } 678 /* 679 * This should NOT happen. If it does complain loudly and 680 * take evasive action. 681 */ 682 if ((int32_t)CGSIZE(&sblock) > sblock.fs_bsize) { 683 printf("INTERNAL ERROR: ipg %d, fpg %d, contigsumsize %d, ", 684 sblock.fs_ipg, sblock.fs_fpg, sblock.fs_contigsumsize); 685 printf("old_cpg %d, size_cg %zu, CGSIZE %zu\n", 686 sblock.fs_old_cpg, sizeof(struct cg), CGSIZE(&sblock)); 687 printf("Please file a FreeBSD bug report and include this " 688 "output\n"); 689 maxblkspercg = fragstoblks(&sblock, sblock.fs_fpg) - 1; 690 density = 0; 691 goto retry; 692 } 693 } 694 695 /* 696 * Initialize a cylinder group. 697 */ 698 void 699 initcg(int cylno, time_t utime) 700 { 701 long blkno, start; 702 off_t savedactualloc; 703 uint i, j, d, dlower, dupper; 704 ufs2_daddr_t cbase, dmax; 705 struct ufs1_dinode *dp1; 706 struct ufs2_dinode *dp2; 707 struct csum *cs; 708 709 /* 710 * Determine block bounds for cylinder group. 711 * Allow space for super block summary information in first 712 * cylinder group. 713 */ 714 cbase = cgbase(&sblock, cylno); 715 dmax = cbase + sblock.fs_fpg; 716 if (dmax > sblock.fs_size) 717 dmax = sblock.fs_size; 718 dlower = cgsblock(&sblock, cylno) - cbase; 719 dupper = cgdmin(&sblock, cylno) - cbase; 720 if (cylno == 0) 721 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 722 cs = &fscs[cylno]; 723 memset(&acg, 0, sblock.fs_cgsize); 724 acg.cg_time = utime; 725 acg.cg_magic = CG_MAGIC; 726 acg.cg_cgx = cylno; 727 acg.cg_niblk = sblock.fs_ipg; 728 acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock)); 729 acg.cg_ndblk = dmax - cbase; 730 if (sblock.fs_contigsumsize > 0) 731 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 732 start = sizeof(acg); 733 if (Oflag == 2) { 734 acg.cg_iusedoff = start; 735 } else { 736 acg.cg_old_ncyl = sblock.fs_old_cpg; 737 acg.cg_old_time = acg.cg_time; 738 acg.cg_time = 0; 739 acg.cg_old_niblk = acg.cg_niblk; 740 acg.cg_niblk = 0; 741 acg.cg_initediblk = 0; 742 acg.cg_old_btotoff = start; 743 acg.cg_old_boff = acg.cg_old_btotoff + 744 sblock.fs_old_cpg * sizeof(int32_t); 745 acg.cg_iusedoff = acg.cg_old_boff + 746 sblock.fs_old_cpg * sizeof(u_int16_t); 747 } 748 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 749 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 750 if (sblock.fs_contigsumsize > 0) { 751 acg.cg_clustersumoff = 752 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 753 acg.cg_clustersumoff -= sizeof(u_int32_t); 754 acg.cg_clusteroff = acg.cg_clustersumoff + 755 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 756 acg.cg_nextfreeoff = acg.cg_clusteroff + 757 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 758 } 759 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 760 printf("Panic: cylinder group too big by %d bytes\n", 761 acg.cg_nextfreeoff - (unsigned)sblock.fs_cgsize); 762 exit(37); 763 } 764 acg.cg_cs.cs_nifree += sblock.fs_ipg; 765 if (cylno == 0) 766 for (i = 0; i < (long)UFS_ROOTINO; i++) { 767 setbit(cg_inosused(&acg), i); 768 acg.cg_cs.cs_nifree--; 769 } 770 if (cylno > 0) { 771 /* 772 * In cylno 0, beginning space is reserved 773 * for boot and super blocks. 774 */ 775 for (d = 0; d < dlower; d += sblock.fs_frag) { 776 blkno = d / sblock.fs_frag; 777 setblock(&sblock, cg_blksfree(&acg), blkno); 778 if (sblock.fs_contigsumsize > 0) 779 setbit(cg_clustersfree(&acg), blkno); 780 acg.cg_cs.cs_nbfree++; 781 } 782 } 783 if ((i = dupper % sblock.fs_frag)) { 784 acg.cg_frsum[sblock.fs_frag - i]++; 785 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 786 setbit(cg_blksfree(&acg), dupper); 787 acg.cg_cs.cs_nffree++; 788 } 789 } 790 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 791 d += sblock.fs_frag) { 792 blkno = d / sblock.fs_frag; 793 setblock(&sblock, cg_blksfree(&acg), blkno); 794 if (sblock.fs_contigsumsize > 0) 795 setbit(cg_clustersfree(&acg), blkno); 796 acg.cg_cs.cs_nbfree++; 797 } 798 if (d < acg.cg_ndblk) { 799 acg.cg_frsum[acg.cg_ndblk - d]++; 800 for (; d < acg.cg_ndblk; d++) { 801 setbit(cg_blksfree(&acg), d); 802 acg.cg_cs.cs_nffree++; 803 } 804 } 805 if (sblock.fs_contigsumsize > 0) { 806 int32_t *sump = cg_clustersum(&acg); 807 u_char *mapp = cg_clustersfree(&acg); 808 int map = *mapp++; 809 int bit = 1; 810 int run = 0; 811 812 for (i = 0; i < acg.cg_nclusterblks; i++) { 813 if ((map & bit) != 0) 814 run++; 815 else if (run != 0) { 816 if (run > sblock.fs_contigsumsize) 817 run = sblock.fs_contigsumsize; 818 sump[run]++; 819 run = 0; 820 } 821 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 822 bit <<= 1; 823 else { 824 map = *mapp++; 825 bit = 1; 826 } 827 } 828 if (run != 0) { 829 if (run > sblock.fs_contigsumsize) 830 run = sblock.fs_contigsumsize; 831 sump[run]++; 832 } 833 } 834 *cs = acg.cg_cs; 835 /* 836 * Write out the duplicate super block. Then write the cylinder 837 * group map and two blocks worth of inodes in a single write. 838 */ 839 savedactualloc = sblock.fs_sblockactualloc; 840 sblock.fs_sblockactualloc = 841 dbtob(fsbtodb(&sblock, cgsblock(&sblock, cylno))); 842 if (sbwrite(&disk, 0) != 0) 843 err(1, "sbwrite: %s", disk.d_error); 844 sblock.fs_sblockactualloc = savedactualloc; 845 if (cgwrite(&disk) != 0) 846 err(1, "initcg: cgwrite: %s", disk.d_error); 847 start = 0; 848 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 849 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 850 for (i = 0; i < acg.cg_initediblk; i++) { 851 if (sblock.fs_magic == FS_UFS1_MAGIC) { 852 dp1->di_gen = newfs_random(); 853 dp1++; 854 } else { 855 dp2->di_gen = newfs_random(); 856 dp2++; 857 } 858 } 859 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno)), iobufsize, iobuf); 860 /* 861 * For the old file system, we have to initialize all the inodes. 862 */ 863 if (Oflag == 1) { 864 for (i = 2 * sblock.fs_frag; 865 i < sblock.fs_ipg / INOPF(&sblock); 866 i += sblock.fs_frag) { 867 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 868 for (j = 0; j < INOPB(&sblock); j++) { 869 dp1->di_gen = newfs_random(); 870 dp1++; 871 } 872 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 873 sblock.fs_bsize, &iobuf[start]); 874 } 875 } 876 } 877 878 /* 879 * initialize the file system 880 */ 881 #define ROOTLINKCNT 3 882 883 static struct direct root_dir[] = { 884 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 885 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 886 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 887 }; 888 889 #define SNAPLINKCNT 2 890 891 static struct direct snap_dir[] = { 892 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 893 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 894 }; 895 896 void 897 fsinit(time_t utime) 898 { 899 union dinode node; 900 struct group *grp; 901 gid_t gid; 902 int entries; 903 904 memset(&node, 0, sizeof node); 905 if ((grp = getgrnam("operator")) != NULL) { 906 gid = grp->gr_gid; 907 } else { 908 warnx("Cannot retrieve operator gid, using gid 0."); 909 gid = 0; 910 } 911 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 912 if (sblock.fs_magic == FS_UFS1_MAGIC) { 913 /* 914 * initialize the node 915 */ 916 node.dp1.di_atime = utime; 917 node.dp1.di_mtime = utime; 918 node.dp1.di_ctime = utime; 919 /* 920 * create the root directory 921 */ 922 node.dp1.di_mode = IFDIR | UMASK; 923 node.dp1.di_nlink = entries; 924 node.dp1.di_size = makedir(root_dir, entries); 925 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 926 node.dp1.di_blocks = 927 btodb(fragroundup(&sblock, node.dp1.di_size)); 928 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 929 iobuf); 930 iput(&node, UFS_ROOTINO); 931 if (!nflag) { 932 /* 933 * create the .snap directory 934 */ 935 node.dp1.di_mode |= 020; 936 node.dp1.di_gid = gid; 937 node.dp1.di_nlink = SNAPLINKCNT; 938 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 939 node.dp1.di_db[0] = 940 alloc(sblock.fs_fsize, node.dp1.di_mode); 941 node.dp1.di_blocks = 942 btodb(fragroundup(&sblock, node.dp1.di_size)); 943 node.dp1.di_dirdepth = 1; 944 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 945 sblock.fs_fsize, iobuf); 946 iput(&node, UFS_ROOTINO + 1); 947 } 948 } else { 949 /* 950 * initialize the node 951 */ 952 node.dp2.di_atime = utime; 953 node.dp2.di_mtime = utime; 954 node.dp2.di_ctime = utime; 955 node.dp2.di_birthtime = utime; 956 /* 957 * create the root directory 958 */ 959 node.dp2.di_mode = IFDIR | UMASK; 960 node.dp2.di_nlink = entries; 961 node.dp2.di_size = makedir(root_dir, entries); 962 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 963 node.dp2.di_blocks = 964 btodb(fragroundup(&sblock, node.dp2.di_size)); 965 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 966 iobuf); 967 iput(&node, UFS_ROOTINO); 968 if (!nflag) { 969 /* 970 * create the .snap directory 971 */ 972 node.dp2.di_mode |= 020; 973 node.dp2.di_gid = gid; 974 node.dp2.di_nlink = SNAPLINKCNT; 975 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 976 node.dp2.di_db[0] = 977 alloc(sblock.fs_fsize, node.dp2.di_mode); 978 node.dp2.di_blocks = 979 btodb(fragroundup(&sblock, node.dp2.di_size)); 980 node.dp2.di_dirdepth = 1; 981 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 982 sblock.fs_fsize, iobuf); 983 iput(&node, UFS_ROOTINO + 1); 984 } 985 } 986 } 987 988 /* 989 * construct a set of directory entries in "iobuf". 990 * return size of directory. 991 */ 992 int 993 makedir(struct direct *protodir, int entries) 994 { 995 char *cp; 996 int i, spcleft; 997 998 spcleft = DIRBLKSIZ; 999 memset(iobuf, 0, DIRBLKSIZ); 1000 for (cp = iobuf, i = 0; i < entries - 1; i++) { 1001 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 1002 memmove(cp, &protodir[i], protodir[i].d_reclen); 1003 cp += protodir[i].d_reclen; 1004 spcleft -= protodir[i].d_reclen; 1005 } 1006 protodir[i].d_reclen = spcleft; 1007 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 1008 return (DIRBLKSIZ); 1009 } 1010 1011 /* 1012 * allocate a block or frag 1013 */ 1014 ufs2_daddr_t 1015 alloc(int size, int mode) 1016 { 1017 int i, blkno, frag; 1018 uint d; 1019 1020 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 1021 sblock.fs_cgsize); 1022 if (acg.cg_magic != CG_MAGIC) { 1023 printf("cg 0: bad magic number\n"); 1024 exit(38); 1025 } 1026 if (acg.cg_cs.cs_nbfree == 0) { 1027 printf("first cylinder group ran out of space\n"); 1028 exit(39); 1029 } 1030 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 1031 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 1032 goto goth; 1033 printf("internal error: can't find block in cyl 0\n"); 1034 exit(40); 1035 goth: 1036 blkno = fragstoblks(&sblock, d); 1037 clrblock(&sblock, cg_blksfree(&acg), blkno); 1038 if (sblock.fs_contigsumsize > 0) 1039 clrbit(cg_clustersfree(&acg), blkno); 1040 acg.cg_cs.cs_nbfree--; 1041 sblock.fs_cstotal.cs_nbfree--; 1042 fscs[0].cs_nbfree--; 1043 if (mode & IFDIR) { 1044 acg.cg_cs.cs_ndir++; 1045 sblock.fs_cstotal.cs_ndir++; 1046 fscs[0].cs_ndir++; 1047 } 1048 if (size != sblock.fs_bsize) { 1049 frag = howmany(size, sblock.fs_fsize); 1050 fscs[0].cs_nffree += sblock.fs_frag - frag; 1051 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 1052 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 1053 acg.cg_frsum[sblock.fs_frag - frag]++; 1054 for (i = frag; i < sblock.fs_frag; i++) 1055 setbit(cg_blksfree(&acg), d + i); 1056 } 1057 if (cgwrite(&disk) != 0) 1058 err(1, "alloc: cgwrite: %s", disk.d_error); 1059 return ((ufs2_daddr_t)d); 1060 } 1061 1062 /* 1063 * Allocate an inode on the disk 1064 */ 1065 void 1066 iput(union dinode *ip, ino_t ino) 1067 { 1068 union dinodep dp; 1069 1070 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 1071 sblock.fs_cgsize); 1072 if (acg.cg_magic != CG_MAGIC) { 1073 printf("cg 0: bad magic number\n"); 1074 exit(31); 1075 } 1076 acg.cg_cs.cs_nifree--; 1077 setbit(cg_inosused(&acg), ino); 1078 if (cgwrite(&disk) != 0) 1079 err(1, "iput: cgwrite: %s", disk.d_error); 1080 sblock.fs_cstotal.cs_nifree--; 1081 fscs[0].cs_nifree--; 1082 if (getinode(&disk, &dp, ino) == -1) { 1083 printf("iput: %s\n", disk.d_error); 1084 exit(32); 1085 } 1086 if (sblock.fs_magic == FS_UFS1_MAGIC) 1087 *dp.dp1 = ip->dp1; 1088 else 1089 *dp.dp2 = ip->dp2; 1090 putinode(&disk); 1091 } 1092 1093 /* 1094 * possibly write to disk 1095 */ 1096 static void 1097 wtfs(ufs2_daddr_t bno, int size, char *bf) 1098 { 1099 if (Nflag) 1100 return; 1101 if (bwrite(&disk, part_ofs + bno, bf, size) < 0) 1102 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 1103 } 1104 1105 /* 1106 * check if a block is available 1107 */ 1108 static int 1109 isblock(struct fs *fs, unsigned char *cp, int h) 1110 { 1111 unsigned char mask; 1112 1113 switch (fs->fs_frag) { 1114 case 8: 1115 return (cp[h] == 0xff); 1116 case 4: 1117 mask = 0x0f << ((h & 0x1) << 2); 1118 return ((cp[h >> 1] & mask) == mask); 1119 case 2: 1120 mask = 0x03 << ((h & 0x3) << 1); 1121 return ((cp[h >> 2] & mask) == mask); 1122 case 1: 1123 mask = 0x01 << (h & 0x7); 1124 return ((cp[h >> 3] & mask) == mask); 1125 default: 1126 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1127 return (0); 1128 } 1129 } 1130 1131 /* 1132 * take a block out of the map 1133 */ 1134 static void 1135 clrblock(struct fs *fs, unsigned char *cp, int h) 1136 { 1137 switch ((fs)->fs_frag) { 1138 case 8: 1139 cp[h] = 0; 1140 return; 1141 case 4: 1142 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1143 return; 1144 case 2: 1145 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1146 return; 1147 case 1: 1148 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1149 return; 1150 default: 1151 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1152 return; 1153 } 1154 } 1155 1156 /* 1157 * put a block into the map 1158 */ 1159 static void 1160 setblock(struct fs *fs, unsigned char *cp, int h) 1161 { 1162 switch (fs->fs_frag) { 1163 case 8: 1164 cp[h] = 0xff; 1165 return; 1166 case 4: 1167 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1168 return; 1169 case 2: 1170 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1171 return; 1172 case 1: 1173 cp[h >> 3] |= (0x01 << (h & 0x7)); 1174 return; 1175 default: 1176 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1177 return; 1178 } 1179 } 1180 1181 /* 1182 * Determine the number of characters in a 1183 * single line. 1184 */ 1185 1186 static int 1187 charsperline(void) 1188 { 1189 int columns; 1190 char *cp; 1191 struct winsize ws; 1192 1193 columns = 0; 1194 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1195 columns = ws.ws_col; 1196 if (columns == 0 && (cp = getenv("COLUMNS"))) 1197 columns = atoi(cp); 1198 if (columns == 0) 1199 columns = 80; /* last resort */ 1200 return (columns); 1201 } 1202 1203 static int 1204 ilog2(int val) 1205 { 1206 u_int n; 1207 1208 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1209 if (1 << n == val) 1210 return (n); 1211 errx(1, "ilog2: %d is not a power of 2\n", val); 1212 } 1213 1214 /* 1215 * For the regression test, return predictable random values. 1216 * Otherwise use a true random number generator. 1217 */ 1218 static u_int32_t 1219 newfs_random(void) 1220 { 1221 static u_int32_t nextnum = 1; 1222 1223 if (Rflag) 1224 return (nextnum++); 1225 return (arc4random()); 1226 } 1227