1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2009 Nathan Whitehorn
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30 #include <sys/param.h>
31 #include <sys/bus.h>
32 #include <sys/eventhandler.h>
33 #include <sys/systm.h>
34 #include <sys/module.h>
35 #include <sys/conf.h>
36 #include <sys/cpu.h>
37 #include <sys/clock.h>
38 #include <sys/ctype.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/reboot.h>
44 #include <sys/rman.h>
45 #include <sys/sysctl.h>
46 #include <sys/unistd.h>
47
48 #include <machine/bus.h>
49 #include <machine/intr_machdep.h>
50 #include <machine/md_var.h>
51
52 #include <dev/iicbus/iicbus.h>
53 #include <dev/iicbus/iiconf.h>
54 #include <dev/led/led.h>
55 #include <dev/ofw/openfirm.h>
56 #include <dev/ofw/ofw_bus.h>
57 #include <dev/ofw/ofw_bus_subr.h>
58 #include <powerpc/powermac/macgpiovar.h>
59 #include <powerpc/powermac/powermac_thermal.h>
60
61 #include "clock_if.h"
62 #include "iicbus_if.h"
63
64 struct smu_cmd {
65 volatile uint8_t cmd;
66 uint8_t len;
67 uint8_t data[254];
68
69 STAILQ_ENTRY(smu_cmd) cmd_q;
70 };
71
72 STAILQ_HEAD(smu_cmdq, smu_cmd);
73
74 struct smu_fan {
75 struct pmac_fan fan;
76 device_t dev;
77 cell_t reg;
78
79 enum {
80 SMU_FAN_RPM,
81 SMU_FAN_PWM
82 } type;
83 int setpoint;
84 int old_style;
85 int rpm;
86 };
87
88 /* We can read the PWM and the RPM from a PWM controlled fan.
89 * Offer both values via sysctl.
90 */
91 enum {
92 SMU_PWM_SYSCTL_PWM = 1 << 8,
93 SMU_PWM_SYSCTL_RPM = 2 << 8
94 };
95
96 struct smu_sensor {
97 struct pmac_therm therm;
98 device_t dev;
99
100 cell_t reg;
101 enum {
102 SMU_CURRENT_SENSOR,
103 SMU_VOLTAGE_SENSOR,
104 SMU_POWER_SENSOR,
105 SMU_TEMP_SENSOR
106 } type;
107 };
108
109 struct smu_softc {
110 device_t sc_dev;
111 struct mtx sc_mtx;
112
113 struct resource *sc_memr;
114 int sc_memrid;
115 int sc_u3;
116
117 bus_dma_tag_t sc_dmatag;
118 bus_space_tag_t sc_bt;
119 bus_space_handle_t sc_mailbox;
120
121 struct smu_cmd *sc_cmd, *sc_cur_cmd;
122 bus_addr_t sc_cmd_phys;
123 bus_dmamap_t sc_cmd_dmamap;
124 struct smu_cmdq sc_cmdq;
125
126 struct smu_fan *sc_fans;
127 int sc_nfans;
128 int old_style_fans;
129 struct smu_sensor *sc_sensors;
130 int sc_nsensors;
131
132 int sc_doorbellirqid;
133 struct resource *sc_doorbellirq;
134 void *sc_doorbellirqcookie;
135
136 struct proc *sc_fanmgt_proc;
137 time_t sc_lastuserchange;
138
139 /* Calibration data */
140 uint16_t sc_cpu_diode_scale;
141 int16_t sc_cpu_diode_offset;
142
143 uint16_t sc_cpu_volt_scale;
144 int16_t sc_cpu_volt_offset;
145 uint16_t sc_cpu_curr_scale;
146 int16_t sc_cpu_curr_offset;
147
148 uint16_t sc_slots_pow_scale;
149 int16_t sc_slots_pow_offset;
150
151 struct cdev *sc_leddev;
152 };
153
154 /* regular bus attachment functions */
155
156 static int smu_probe(device_t);
157 static int smu_attach(device_t);
158 static const struct ofw_bus_devinfo *
159 smu_get_devinfo(device_t bus, device_t dev);
160
161 /* cpufreq notification hooks */
162
163 static void smu_cpufreq_pre_change(device_t, const struct cf_level *level);
164 static void smu_cpufreq_post_change(device_t, const struct cf_level *level);
165
166 /* clock interface */
167 static int smu_gettime(device_t dev, struct timespec *ts);
168 static int smu_settime(device_t dev, struct timespec *ts);
169
170 /* utility functions */
171 static int smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait);
172 static int smu_get_datablock(device_t dev, int8_t id, uint8_t *buf,
173 size_t len);
174 static void smu_attach_i2c(device_t dev, phandle_t i2croot);
175 static void smu_attach_fans(device_t dev, phandle_t fanroot);
176 static void smu_attach_sensors(device_t dev, phandle_t sensroot);
177 static void smu_set_sleepled(void *xdev, int onoff);
178 static int smu_server_mode(SYSCTL_HANDLER_ARGS);
179 static void smu_doorbell_intr(void *xdev);
180 static void smu_shutdown(void *xdev, int howto);
181
182 /* where to find the doorbell GPIO */
183
184 static device_t smu_doorbell = NULL;
185
186 static device_method_t smu_methods[] = {
187 /* Device interface */
188 DEVMETHOD(device_probe, smu_probe),
189 DEVMETHOD(device_attach, smu_attach),
190
191 /* Clock interface */
192 DEVMETHOD(clock_gettime, smu_gettime),
193 DEVMETHOD(clock_settime, smu_settime),
194
195 /* ofw_bus interface */
196 DEVMETHOD(bus_child_pnpinfo, ofw_bus_gen_child_pnpinfo),
197 DEVMETHOD(ofw_bus_get_devinfo, smu_get_devinfo),
198 DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat),
199 DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model),
200 DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name),
201 DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node),
202 DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type),
203
204 { 0, 0 },
205 };
206
207 static driver_t smu_driver = {
208 "smu",
209 smu_methods,
210 sizeof(struct smu_softc)
211 };
212
213 DRIVER_MODULE(smu, ofwbus, smu_driver, 0, 0);
214 static MALLOC_DEFINE(M_SMU, "smu", "SMU Sensor Information");
215
216 #define SMU_MAILBOX 0x8000860c
217 #define SMU_FANMGT_INTERVAL 1000 /* ms */
218
219 /* Command types */
220 #define SMU_ADC 0xd8
221 #define SMU_FAN 0x4a
222 #define SMU_RPM_STATUS 0x01
223 #define SMU_RPM_SETPOINT 0x02
224 #define SMU_PWM_STATUS 0x11
225 #define SMU_PWM_SETPOINT 0x12
226 #define SMU_I2C 0x9a
227 #define SMU_I2C_SIMPLE 0x00
228 #define SMU_I2C_NORMAL 0x01
229 #define SMU_I2C_COMBINED 0x02
230 #define SMU_MISC 0xee
231 #define SMU_MISC_GET_DATA 0x02
232 #define SMU_MISC_LED_CTRL 0x04
233 #define SMU_POWER 0xaa
234 #define SMU_POWER_EVENTS 0x8f
235 #define SMU_PWR_GET_POWERUP 0x00
236 #define SMU_PWR_SET_POWERUP 0x01
237 #define SMU_PWR_CLR_POWERUP 0x02
238 #define SMU_RTC 0x8e
239 #define SMU_RTC_GET 0x81
240 #define SMU_RTC_SET 0x80
241
242 /* Power event types */
243 #define SMU_WAKEUP_KEYPRESS 0x01
244 #define SMU_WAKEUP_AC_INSERT 0x02
245 #define SMU_WAKEUP_AC_CHANGE 0x04
246 #define SMU_WAKEUP_RING 0x10
247
248 /* Data blocks */
249 #define SMU_CPUTEMP_CAL 0x18
250 #define SMU_CPUVOLT_CAL 0x21
251 #define SMU_SLOTPW_CAL 0x78
252
253 /* Partitions */
254 #define SMU_PARTITION 0x3e
255 #define SMU_PARTITION_LATEST 0x01
256 #define SMU_PARTITION_BASE 0x02
257 #define SMU_PARTITION_UPDATE 0x03
258
259 static int
smu_probe(device_t dev)260 smu_probe(device_t dev)
261 {
262 const char *name = ofw_bus_get_name(dev);
263
264 if (strcmp(name, "smu") != 0)
265 return (ENXIO);
266
267 device_set_desc(dev, "Apple System Management Unit");
268 return (0);
269 }
270
271 static void
smu_phys_callback(void * xsc,bus_dma_segment_t * segs,int nsegs,int error)272 smu_phys_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
273 {
274 struct smu_softc *sc = xsc;
275
276 sc->sc_cmd_phys = segs[0].ds_addr;
277 }
278
279 static int
smu_attach(device_t dev)280 smu_attach(device_t dev)
281 {
282 struct smu_softc *sc;
283 phandle_t node, child;
284 uint8_t data[12];
285
286 sc = device_get_softc(dev);
287
288 mtx_init(&sc->sc_mtx, "smu", NULL, MTX_DEF);
289 sc->sc_cur_cmd = NULL;
290 sc->sc_doorbellirqid = -1;
291
292 sc->sc_u3 = 0;
293 if (OF_finddevice("/u3") != -1)
294 sc->sc_u3 = 1;
295
296 /*
297 * Map the mailbox area. This should be determined from firmware,
298 * but I have not found a simple way to do that.
299 */
300 bus_dma_tag_create(NULL, 16, 0, BUS_SPACE_MAXADDR_32BIT,
301 BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE, 1, PAGE_SIZE, 0, NULL,
302 NULL, &(sc->sc_dmatag));
303 sc->sc_bt = &bs_le_tag;
304 bus_space_map(sc->sc_bt, SMU_MAILBOX, 4, 0, &sc->sc_mailbox);
305
306 /*
307 * Allocate the command buffer. This can be anywhere in the low 4 GB
308 * of memory.
309 */
310 bus_dmamem_alloc(sc->sc_dmatag, (void **)&sc->sc_cmd, BUS_DMA_WAITOK |
311 BUS_DMA_ZERO, &sc->sc_cmd_dmamap);
312 bus_dmamap_load(sc->sc_dmatag, sc->sc_cmd_dmamap,
313 sc->sc_cmd, PAGE_SIZE, smu_phys_callback, sc, 0);
314 STAILQ_INIT(&sc->sc_cmdq);
315
316 /*
317 * Set up handlers to change CPU voltage when CPU frequency is changed.
318 */
319 EVENTHANDLER_REGISTER(cpufreq_pre_change, smu_cpufreq_pre_change, dev,
320 EVENTHANDLER_PRI_ANY);
321 EVENTHANDLER_REGISTER(cpufreq_post_change, smu_cpufreq_post_change, dev,
322 EVENTHANDLER_PRI_ANY);
323
324 node = ofw_bus_get_node(dev);
325
326 /* Some SMUs have RPM and PWM controlled fans which do not sit
327 * under the same node. So we have to attach them separately.
328 */
329 smu_attach_fans(dev, node);
330
331 /*
332 * Now detect and attach the other child devices.
333 */
334 for (child = OF_child(node); child != 0; child = OF_peer(child)) {
335 char name[32];
336 memset(name, 0, sizeof(name));
337 OF_getprop(child, "name", name, sizeof(name));
338
339 if (strncmp(name, "sensors", 8) == 0)
340 smu_attach_sensors(dev, child);
341
342 if (strncmp(name, "smu-i2c-control", 15) == 0)
343 smu_attach_i2c(dev, child);
344 }
345
346 /* Some SMUs have the I2C children directly under the bus. */
347 smu_attach_i2c(dev, node);
348
349 /*
350 * Collect calibration constants.
351 */
352 smu_get_datablock(dev, SMU_CPUTEMP_CAL, data, sizeof(data));
353 sc->sc_cpu_diode_scale = (data[4] << 8) + data[5];
354 sc->sc_cpu_diode_offset = (data[6] << 8) + data[7];
355
356 smu_get_datablock(dev, SMU_CPUVOLT_CAL, data, sizeof(data));
357 sc->sc_cpu_volt_scale = (data[4] << 8) + data[5];
358 sc->sc_cpu_volt_offset = (data[6] << 8) + data[7];
359 sc->sc_cpu_curr_scale = (data[8] << 8) + data[9];
360 sc->sc_cpu_curr_offset = (data[10] << 8) + data[11];
361
362 smu_get_datablock(dev, SMU_SLOTPW_CAL, data, sizeof(data));
363 sc->sc_slots_pow_scale = (data[4] << 8) + data[5];
364 sc->sc_slots_pow_offset = (data[6] << 8) + data[7];
365
366 /*
367 * Set up LED interface
368 */
369 sc->sc_leddev = led_create(smu_set_sleepled, dev, "sleepled");
370
371 /*
372 * Reset on power loss behavior
373 */
374
375 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
376 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
377 "server_mode", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, dev,
378 0, smu_server_mode, "I", "Enable reboot after power failure");
379
380 /*
381 * Set up doorbell interrupt.
382 */
383 sc->sc_doorbellirqid = 0;
384 sc->sc_doorbellirq = bus_alloc_resource_any(smu_doorbell, SYS_RES_IRQ,
385 &sc->sc_doorbellirqid, RF_ACTIVE);
386 bus_setup_intr(smu_doorbell, sc->sc_doorbellirq,
387 INTR_TYPE_MISC | INTR_MPSAFE, NULL, smu_doorbell_intr, dev,
388 &sc->sc_doorbellirqcookie);
389 powerpc_config_intr(rman_get_start(sc->sc_doorbellirq),
390 INTR_TRIGGER_EDGE, INTR_POLARITY_LOW);
391
392 /*
393 * Connect RTC interface.
394 */
395 clock_register(dev, 1000);
396
397 /*
398 * Learn about shutdown events
399 */
400 EVENTHANDLER_REGISTER(shutdown_final, smu_shutdown, dev,
401 SHUTDOWN_PRI_LAST);
402
403 bus_attach_children(dev);
404 return (0);
405 }
406
407 static const struct ofw_bus_devinfo *
smu_get_devinfo(device_t bus,device_t dev)408 smu_get_devinfo(device_t bus, device_t dev)
409 {
410
411 return (device_get_ivars(dev));
412 }
413
414 static void
smu_send_cmd(device_t dev,struct smu_cmd * cmd)415 smu_send_cmd(device_t dev, struct smu_cmd *cmd)
416 {
417 struct smu_softc *sc;
418
419 sc = device_get_softc(dev);
420
421 mtx_assert(&sc->sc_mtx, MA_OWNED);
422
423 if (sc->sc_u3)
424 powerpc_pow_enabled = 0; /* SMU cannot work if we go to NAP */
425
426 sc->sc_cur_cmd = cmd;
427
428 /* Copy the command to the mailbox */
429 sc->sc_cmd->cmd = cmd->cmd;
430 sc->sc_cmd->len = cmd->len;
431 memcpy(sc->sc_cmd->data, cmd->data, sizeof(cmd->data));
432 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_PREWRITE);
433 bus_space_write_4(sc->sc_bt, sc->sc_mailbox, 0, sc->sc_cmd_phys);
434
435 /* Flush the cacheline it is in -- SMU bypasses the cache */
436 __asm __volatile("sync; dcbf 0,%0; sync" :: "r"(sc->sc_cmd): "memory");
437
438 /* Ring SMU doorbell */
439 macgpio_write(smu_doorbell, GPIO_DDR_OUTPUT);
440 }
441
442 static void
smu_doorbell_intr(void * xdev)443 smu_doorbell_intr(void *xdev)
444 {
445 device_t smu;
446 struct smu_softc *sc;
447 int doorbell_ack;
448
449 smu = xdev;
450 doorbell_ack = macgpio_read(smu_doorbell);
451 sc = device_get_softc(smu);
452
453 if (doorbell_ack != (GPIO_DDR_OUTPUT | GPIO_LEVEL_RO | GPIO_DATA))
454 return;
455
456 mtx_lock(&sc->sc_mtx);
457
458 if (sc->sc_cur_cmd == NULL) /* spurious */
459 goto done;
460
461 /* Check result. First invalidate the cache again... */
462 __asm __volatile("dcbf 0,%0; sync" :: "r"(sc->sc_cmd) : "memory");
463
464 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_POSTREAD);
465
466 sc->sc_cur_cmd->cmd = sc->sc_cmd->cmd;
467 sc->sc_cur_cmd->len = sc->sc_cmd->len;
468 memcpy(sc->sc_cur_cmd->data, sc->sc_cmd->data,
469 sizeof(sc->sc_cmd->data));
470 wakeup(sc->sc_cur_cmd);
471 sc->sc_cur_cmd = NULL;
472 if (sc->sc_u3)
473 powerpc_pow_enabled = 1;
474
475 done:
476 /* Queue next command if one is pending */
477 if (STAILQ_FIRST(&sc->sc_cmdq) != NULL) {
478 sc->sc_cur_cmd = STAILQ_FIRST(&sc->sc_cmdq);
479 STAILQ_REMOVE_HEAD(&sc->sc_cmdq, cmd_q);
480 smu_send_cmd(smu, sc->sc_cur_cmd);
481 }
482
483 mtx_unlock(&sc->sc_mtx);
484 }
485
486 static int
smu_run_cmd(device_t dev,struct smu_cmd * cmd,int wait)487 smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait)
488 {
489 struct smu_softc *sc;
490 uint8_t cmd_code;
491 int error;
492
493 sc = device_get_softc(dev);
494 cmd_code = cmd->cmd;
495
496 mtx_lock(&sc->sc_mtx);
497 if (sc->sc_cur_cmd != NULL) {
498 STAILQ_INSERT_TAIL(&sc->sc_cmdq, cmd, cmd_q);
499 } else
500 smu_send_cmd(dev, cmd);
501 mtx_unlock(&sc->sc_mtx);
502
503 if (!wait)
504 return (0);
505
506 if (sc->sc_doorbellirqid < 0) {
507 /* Poll if the IRQ has not been set up yet */
508 do {
509 DELAY(50);
510 smu_doorbell_intr(dev);
511 } while (sc->sc_cur_cmd != NULL);
512 } else {
513 /* smu_doorbell_intr will wake us when the command is ACK'ed */
514 error = tsleep(cmd, 0, "smu", 800 * hz / 1000);
515 if (error != 0)
516 smu_doorbell_intr(dev); /* One last chance */
517
518 if (error != 0) {
519 mtx_lock(&sc->sc_mtx);
520 if (cmd->cmd == cmd_code) { /* Never processed */
521 /* Abort this command if we timed out */
522 if (sc->sc_cur_cmd == cmd)
523 sc->sc_cur_cmd = NULL;
524 else
525 STAILQ_REMOVE(&sc->sc_cmdq, cmd, smu_cmd,
526 cmd_q);
527 mtx_unlock(&sc->sc_mtx);
528 return (error);
529 }
530 error = 0;
531 mtx_unlock(&sc->sc_mtx);
532 }
533 }
534
535 /* SMU acks the command by inverting the command bits */
536 if (cmd->cmd == ((~cmd_code) & 0xff))
537 error = 0;
538 else
539 error = EIO;
540
541 return (error);
542 }
543
544 static int
smu_get_datablock(device_t dev,int8_t id,uint8_t * buf,size_t len)545 smu_get_datablock(device_t dev, int8_t id, uint8_t *buf, size_t len)
546 {
547 struct smu_cmd cmd;
548 uint8_t addr[4];
549
550 cmd.cmd = SMU_PARTITION;
551 cmd.len = 2;
552 cmd.data[0] = SMU_PARTITION_LATEST;
553 cmd.data[1] = id;
554
555 smu_run_cmd(dev, &cmd, 1);
556
557 addr[0] = addr[1] = 0;
558 addr[2] = cmd.data[0];
559 addr[3] = cmd.data[1];
560
561 cmd.cmd = SMU_MISC;
562 cmd.len = 7;
563 cmd.data[0] = SMU_MISC_GET_DATA;
564 cmd.data[1] = sizeof(addr);
565 memcpy(&cmd.data[2], addr, sizeof(addr));
566 cmd.data[6] = len;
567
568 smu_run_cmd(dev, &cmd, 1);
569 memcpy(buf, cmd.data, len);
570 return (0);
571 }
572
573 static void
smu_slew_cpu_voltage(device_t dev,int to)574 smu_slew_cpu_voltage(device_t dev, int to)
575 {
576 struct smu_cmd cmd;
577
578 cmd.cmd = SMU_POWER;
579 cmd.len = 8;
580 cmd.data[0] = 'V';
581 cmd.data[1] = 'S';
582 cmd.data[2] = 'L';
583 cmd.data[3] = 'E';
584 cmd.data[4] = 'W';
585 cmd.data[5] = 0xff;
586 cmd.data[6] = 1;
587 cmd.data[7] = to;
588
589 smu_run_cmd(dev, &cmd, 1);
590 }
591
592 static void
smu_cpufreq_pre_change(device_t dev,const struct cf_level * level)593 smu_cpufreq_pre_change(device_t dev, const struct cf_level *level)
594 {
595 /*
596 * Make sure the CPU voltage is raised before we raise
597 * the clock.
598 */
599
600 if (level->rel_set[0].freq == 10000 /* max */)
601 smu_slew_cpu_voltage(dev, 0);
602 }
603
604 static void
smu_cpufreq_post_change(device_t dev,const struct cf_level * level)605 smu_cpufreq_post_change(device_t dev, const struct cf_level *level)
606 {
607 /* We are safe to reduce CPU voltage after a downward transition */
608
609 if (level->rel_set[0].freq < 10000 /* max */)
610 smu_slew_cpu_voltage(dev, 1); /* XXX: 1/4 voltage for 970MP? */
611 }
612
613 /* Routines for probing the SMU doorbell GPIO */
614 static int doorbell_probe(device_t dev);
615 static int doorbell_attach(device_t dev);
616
617 static device_method_t doorbell_methods[] = {
618 /* Device interface */
619 DEVMETHOD(device_probe, doorbell_probe),
620 DEVMETHOD(device_attach, doorbell_attach),
621 { 0, 0 },
622 };
623
624 static driver_t doorbell_driver = {
625 "smudoorbell",
626 doorbell_methods,
627 0
628 };
629
630 EARLY_DRIVER_MODULE(smudoorbell, macgpio, doorbell_driver, 0, 0,
631 BUS_PASS_SUPPORTDEV);
632
633 static int
doorbell_probe(device_t dev)634 doorbell_probe(device_t dev)
635 {
636 const char *name = ofw_bus_get_name(dev);
637
638 if (strcmp(name, "smu-doorbell") != 0)
639 return (ENXIO);
640
641 device_set_desc(dev, "SMU Doorbell GPIO");
642 device_quiet(dev);
643 return (0);
644 }
645
646 static int
doorbell_attach(device_t dev)647 doorbell_attach(device_t dev)
648 {
649 smu_doorbell = dev;
650 return (0);
651 }
652
653 /*
654 * Sensor and fan management
655 */
656
657 static int
smu_fan_check_old_style(struct smu_fan * fan)658 smu_fan_check_old_style(struct smu_fan *fan)
659 {
660 device_t smu = fan->dev;
661 struct smu_softc *sc = device_get_softc(smu);
662 struct smu_cmd cmd;
663 int error;
664
665 if (sc->old_style_fans != -1)
666 return (sc->old_style_fans);
667
668 /*
669 * Apple has two fan control mechanisms. We can't distinguish
670 * them except by seeing if the new one fails. If the new one
671 * fails, use the old one.
672 */
673
674 cmd.cmd = SMU_FAN;
675 cmd.len = 2;
676 cmd.data[0] = 0x31;
677 cmd.data[1] = fan->reg;
678
679 do {
680 error = smu_run_cmd(smu, &cmd, 1);
681 } while (error == EWOULDBLOCK);
682
683 sc->old_style_fans = (error != 0);
684
685 return (sc->old_style_fans);
686 }
687
688 static int
smu_fan_set_rpm(struct smu_fan * fan,int rpm)689 smu_fan_set_rpm(struct smu_fan *fan, int rpm)
690 {
691 device_t smu = fan->dev;
692 struct smu_cmd cmd;
693 int error;
694
695 cmd.cmd = SMU_FAN;
696 error = EIO;
697
698 /* Clamp to allowed range */
699 rpm = max(fan->fan.min_rpm, rpm);
700 rpm = min(fan->fan.max_rpm, rpm);
701
702 smu_fan_check_old_style(fan);
703
704 if (!fan->old_style) {
705 cmd.len = 4;
706 cmd.data[0] = 0x30;
707 cmd.data[1] = fan->reg;
708 cmd.data[2] = (rpm >> 8) & 0xff;
709 cmd.data[3] = rpm & 0xff;
710
711 error = smu_run_cmd(smu, &cmd, 1);
712 if (error && error != EWOULDBLOCK)
713 fan->old_style = 1;
714 } else {
715 cmd.len = 14;
716 cmd.data[0] = 0x00; /* RPM fan. */
717 cmd.data[1] = 1 << fan->reg;
718 cmd.data[2 + 2*fan->reg] = (rpm >> 8) & 0xff;
719 cmd.data[3 + 2*fan->reg] = rpm & 0xff;
720 error = smu_run_cmd(smu, &cmd, 1);
721 }
722
723 if (error == 0)
724 fan->setpoint = rpm;
725
726 return (error);
727 }
728
729 static int
smu_fan_read_rpm(struct smu_fan * fan)730 smu_fan_read_rpm(struct smu_fan *fan)
731 {
732 device_t smu = fan->dev;
733 struct smu_cmd cmd;
734 int rpm, error;
735
736 smu_fan_check_old_style(fan);
737
738 if (!fan->old_style) {
739 cmd.cmd = SMU_FAN;
740 cmd.len = 2;
741 cmd.data[0] = 0x31;
742 cmd.data[1] = fan->reg;
743
744 error = smu_run_cmd(smu, &cmd, 1);
745 if (error && error != EWOULDBLOCK)
746 fan->old_style = 1;
747
748 rpm = (cmd.data[0] << 8) | cmd.data[1];
749 }
750
751 if (fan->old_style) {
752 cmd.cmd = SMU_FAN;
753 cmd.len = 1;
754 cmd.data[0] = SMU_RPM_STATUS;
755
756 error = smu_run_cmd(smu, &cmd, 1);
757 if (error)
758 return (error);
759
760 rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2];
761 }
762
763 return (rpm);
764 }
765 static int
smu_fan_set_pwm(struct smu_fan * fan,int pwm)766 smu_fan_set_pwm(struct smu_fan *fan, int pwm)
767 {
768 device_t smu = fan->dev;
769 struct smu_cmd cmd;
770 int error;
771
772 cmd.cmd = SMU_FAN;
773 error = EIO;
774
775 /* Clamp to allowed range */
776 pwm = max(fan->fan.min_rpm, pwm);
777 pwm = min(fan->fan.max_rpm, pwm);
778
779 /*
780 * Apple has two fan control mechanisms. We can't distinguish
781 * them except by seeing if the new one fails. If the new one
782 * fails, use the old one.
783 */
784
785 if (!fan->old_style) {
786 cmd.len = 4;
787 cmd.data[0] = 0x30;
788 cmd.data[1] = fan->reg;
789 cmd.data[2] = (pwm >> 8) & 0xff;
790 cmd.data[3] = pwm & 0xff;
791
792 error = smu_run_cmd(smu, &cmd, 1);
793 if (error && error != EWOULDBLOCK)
794 fan->old_style = 1;
795 }
796
797 if (fan->old_style) {
798 cmd.len = 14;
799 cmd.data[0] = 0x10; /* PWM fan. */
800 cmd.data[1] = 1 << fan->reg;
801 cmd.data[2 + 2*fan->reg] = (pwm >> 8) & 0xff;
802 cmd.data[3 + 2*fan->reg] = pwm & 0xff;
803 error = smu_run_cmd(smu, &cmd, 1);
804 }
805
806 if (error == 0)
807 fan->setpoint = pwm;
808
809 return (error);
810 }
811
812 static int
smu_fan_read_pwm(struct smu_fan * fan,int * pwm,int * rpm)813 smu_fan_read_pwm(struct smu_fan *fan, int *pwm, int *rpm)
814 {
815 device_t smu = fan->dev;
816 struct smu_cmd cmd;
817 int error;
818
819 if (!fan->old_style) {
820 cmd.cmd = SMU_FAN;
821 cmd.len = 2;
822 cmd.data[0] = 0x31;
823 cmd.data[1] = fan->reg;
824
825 error = smu_run_cmd(smu, &cmd, 1);
826 if (error && error != EWOULDBLOCK)
827 fan->old_style = 1;
828
829 *rpm = (cmd.data[0] << 8) | cmd.data[1];
830 }
831
832 if (fan->old_style) {
833 cmd.cmd = SMU_FAN;
834 cmd.len = 1;
835 cmd.data[0] = SMU_PWM_STATUS;
836
837 error = smu_run_cmd(smu, &cmd, 1);
838 if (error)
839 return (error);
840
841 *rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2];
842 }
843 if (fan->old_style) {
844 cmd.cmd = SMU_FAN;
845 cmd.len = 14;
846 cmd.data[0] = SMU_PWM_SETPOINT;
847 cmd.data[1] = 1 << fan->reg;
848
849 error = smu_run_cmd(smu, &cmd, 1);
850 if (error)
851 return (error);
852
853 *pwm = cmd.data[fan->reg*2+2];
854 }
855 return (0);
856 }
857
858 static int
smu_fanrpm_sysctl(SYSCTL_HANDLER_ARGS)859 smu_fanrpm_sysctl(SYSCTL_HANDLER_ARGS)
860 {
861 device_t smu;
862 struct smu_softc *sc;
863 struct smu_fan *fan;
864 int pwm = 0, rpm, error = 0;
865
866 smu = arg1;
867 sc = device_get_softc(smu);
868 fan = &sc->sc_fans[arg2 & 0xff];
869
870 if (fan->type == SMU_FAN_RPM) {
871 rpm = smu_fan_read_rpm(fan);
872 if (rpm < 0)
873 return (rpm);
874
875 error = sysctl_handle_int(oidp, &rpm, 0, req);
876 } else {
877 error = smu_fan_read_pwm(fan, &pwm, &rpm);
878 if (error < 0)
879 return (EIO);
880
881 switch (arg2 & 0xff00) {
882 case SMU_PWM_SYSCTL_PWM:
883 error = sysctl_handle_int(oidp, &pwm, 0, req);
884 break;
885 case SMU_PWM_SYSCTL_RPM:
886 error = sysctl_handle_int(oidp, &rpm, 0, req);
887 break;
888 default:
889 /* This should never happen */
890 return (EINVAL);
891 }
892 }
893 /* We can only read the RPM from a PWM controlled fan, so return. */
894 if ((arg2 & 0xff00) == SMU_PWM_SYSCTL_RPM)
895 return (0);
896
897 if (error || !req->newptr)
898 return (error);
899
900 sc->sc_lastuserchange = time_uptime;
901
902 if (fan->type == SMU_FAN_RPM)
903 return (smu_fan_set_rpm(fan, rpm));
904 else
905 return (smu_fan_set_pwm(fan, pwm));
906 }
907
908 static void
smu_fill_fan_prop(device_t dev,phandle_t child,int id)909 smu_fill_fan_prop(device_t dev, phandle_t child, int id)
910 {
911 struct smu_fan *fan;
912 struct smu_softc *sc;
913 char type[32];
914
915 sc = device_get_softc(dev);
916 fan = &sc->sc_fans[id];
917
918 OF_getprop(child, "device_type", type, sizeof(type));
919 /* We have either RPM or PWM controlled fans. */
920 if (strcmp(type, "fan-rpm-control") == 0)
921 fan->type = SMU_FAN_RPM;
922 else
923 fan->type = SMU_FAN_PWM;
924
925 fan->dev = dev;
926 fan->old_style = 0;
927 OF_getprop(child, "reg", &fan->reg,
928 sizeof(cell_t));
929 OF_getprop(child, "min-value", &fan->fan.min_rpm,
930 sizeof(int));
931 OF_getprop(child, "max-value", &fan->fan.max_rpm,
932 sizeof(int));
933 OF_getprop(child, "zone", &fan->fan.zone,
934 sizeof(int));
935
936 if (OF_getprop(child, "unmanaged-value",
937 &fan->fan.default_rpm,
938 sizeof(int)) != sizeof(int))
939 fan->fan.default_rpm = fan->fan.max_rpm;
940
941 OF_getprop(child, "location", fan->fan.name,
942 sizeof(fan->fan.name));
943
944 if (fan->type == SMU_FAN_RPM)
945 fan->setpoint = smu_fan_read_rpm(fan);
946 else
947 smu_fan_read_pwm(fan, &fan->setpoint, &fan->rpm);
948 }
949
950 /* On the first call count the number of fans. In the second call,
951 * after allocating the fan struct, fill the properties of the fans.
952 */
953 static int
smu_count_fans(device_t dev)954 smu_count_fans(device_t dev)
955 {
956 struct smu_softc *sc;
957 phandle_t child, node, root;
958 int nfans = 0;
959
960 node = ofw_bus_get_node(dev);
961 sc = device_get_softc(dev);
962
963 /* First find the fanroots and count the number of fans. */
964 for (root = OF_child(node); root != 0; root = OF_peer(root)) {
965 char name[32];
966 memset(name, 0, sizeof(name));
967 OF_getprop(root, "name", name, sizeof(name));
968 if (strncmp(name, "rpm-fans", 9) == 0 ||
969 strncmp(name, "pwm-fans", 9) == 0 ||
970 strncmp(name, "fans", 5) == 0)
971 for (child = OF_child(root); child != 0;
972 child = OF_peer(child)) {
973 nfans++;
974 /* When allocated, fill the fan properties. */
975 if (sc->sc_fans != NULL) {
976 smu_fill_fan_prop(dev, child,
977 nfans - 1);
978 }
979 }
980 }
981 if (nfans == 0) {
982 device_printf(dev, "WARNING: No fans detected!\n");
983 return (0);
984 }
985 return (nfans);
986 }
987
988 static void
smu_attach_fans(device_t dev,phandle_t fanroot)989 smu_attach_fans(device_t dev, phandle_t fanroot)
990 {
991 struct smu_fan *fan;
992 struct smu_softc *sc;
993 struct sysctl_oid *oid, *fanroot_oid;
994 struct sysctl_ctx_list *ctx;
995 char sysctl_name[32];
996 int i, j;
997
998 sc = device_get_softc(dev);
999
1000 /* Get the number of fans. */
1001 sc->sc_nfans = smu_count_fans(dev);
1002 if (sc->sc_nfans == 0)
1003 return;
1004
1005 /* Now we're able to allocate memory for the fans struct. */
1006 sc->sc_fans = malloc(sc->sc_nfans * sizeof(struct smu_fan), M_SMU,
1007 M_WAITOK | M_ZERO);
1008
1009 /* Now fill in the properties. */
1010 smu_count_fans(dev);
1011
1012 /* Register fans with pmac_thermal */
1013 for (i = 0; i < sc->sc_nfans; i++)
1014 pmac_thermal_fan_register(&sc->sc_fans[i].fan);
1015
1016 ctx = device_get_sysctl_ctx(dev);
1017 fanroot_oid = SYSCTL_ADD_NODE(ctx,
1018 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "fans",
1019 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "SMU Fan Information");
1020
1021 /* Add sysctls */
1022 for (i = 0; i < sc->sc_nfans; i++) {
1023 fan = &sc->sc_fans[i];
1024 for (j = 0; j < strlen(fan->fan.name); j++) {
1025 sysctl_name[j] = tolower(fan->fan.name[j]);
1026 if (isspace(sysctl_name[j]))
1027 sysctl_name[j] = '_';
1028 }
1029 sysctl_name[j] = 0;
1030 if (fan->type == SMU_FAN_RPM) {
1031 oid = SYSCTL_ADD_NODE(ctx,
1032 SYSCTL_CHILDREN(fanroot_oid), OID_AUTO,
1033 sysctl_name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1034 "Fan Information");
1035 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1036 "minrpm", CTLFLAG_RD,
1037 &fan->fan.min_rpm, 0,
1038 "Minimum allowed RPM");
1039 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1040 "maxrpm", CTLFLAG_RD,
1041 &fan->fan.max_rpm, 0,
1042 "Maximum allowed RPM");
1043 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1044 "rpm",CTLTYPE_INT | CTLFLAG_RW |
1045 CTLFLAG_MPSAFE, dev, i,
1046 smu_fanrpm_sysctl, "I", "Fan RPM");
1047
1048 fan->fan.read = (int (*)(struct pmac_fan *))smu_fan_read_rpm;
1049 fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_rpm;
1050
1051 } else {
1052 oid = SYSCTL_ADD_NODE(ctx,
1053 SYSCTL_CHILDREN(fanroot_oid), OID_AUTO,
1054 sysctl_name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1055 "Fan Information");
1056 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1057 "minpwm", CTLFLAG_RD,
1058 &fan->fan.min_rpm, 0,
1059 "Minimum allowed PWM in %");
1060 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1061 "maxpwm", CTLFLAG_RD,
1062 &fan->fan.max_rpm, 0,
1063 "Maximum allowed PWM in %");
1064 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1065 "pwm",CTLTYPE_INT | CTLFLAG_RW |
1066 CTLFLAG_MPSAFE, dev,
1067 SMU_PWM_SYSCTL_PWM | i,
1068 smu_fanrpm_sysctl, "I", "Fan PWM in %");
1069 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1070 "rpm",CTLTYPE_INT | CTLFLAG_RD |
1071 CTLFLAG_MPSAFE, dev,
1072 SMU_PWM_SYSCTL_RPM | i,
1073 smu_fanrpm_sysctl, "I", "Fan RPM");
1074 fan->fan.read = NULL;
1075 fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_pwm;
1076 }
1077 if (bootverbose)
1078 device_printf(dev, "Fan: %s type: %d\n",
1079 fan->fan.name, fan->type);
1080 }
1081 }
1082
1083 static int
smu_sensor_read(struct smu_sensor * sens)1084 smu_sensor_read(struct smu_sensor *sens)
1085 {
1086 device_t smu = sens->dev;
1087 struct smu_cmd cmd;
1088 struct smu_softc *sc;
1089 int64_t value;
1090 int error;
1091
1092 cmd.cmd = SMU_ADC;
1093 cmd.len = 1;
1094 cmd.data[0] = sens->reg;
1095 error = 0;
1096
1097 error = smu_run_cmd(smu, &cmd, 1);
1098 if (error != 0)
1099 return (-1);
1100
1101 sc = device_get_softc(smu);
1102 value = (cmd.data[0] << 8) | cmd.data[1];
1103
1104 switch (sens->type) {
1105 case SMU_TEMP_SENSOR:
1106 value *= sc->sc_cpu_diode_scale;
1107 value >>= 3;
1108 value += ((int64_t)sc->sc_cpu_diode_offset) << 9;
1109 value <<= 1;
1110
1111 /* Convert from 16.16 fixed point degC into integer 0.1 K. */
1112 value = 10*(value >> 16) + ((10*(value & 0xffff)) >> 16) + 2731;
1113 break;
1114 case SMU_VOLTAGE_SENSOR:
1115 value *= sc->sc_cpu_volt_scale;
1116 value += sc->sc_cpu_volt_offset;
1117 value <<= 4;
1118
1119 /* Convert from 16.16 fixed point V into mV. */
1120 value *= 15625;
1121 value /= 1024;
1122 value /= 1000;
1123 break;
1124 case SMU_CURRENT_SENSOR:
1125 value *= sc->sc_cpu_curr_scale;
1126 value += sc->sc_cpu_curr_offset;
1127 value <<= 4;
1128
1129 /* Convert from 16.16 fixed point A into mA. */
1130 value *= 15625;
1131 value /= 1024;
1132 value /= 1000;
1133 break;
1134 case SMU_POWER_SENSOR:
1135 value *= sc->sc_slots_pow_scale;
1136 value += sc->sc_slots_pow_offset;
1137 value <<= 4;
1138
1139 /* Convert from 16.16 fixed point W into mW. */
1140 value *= 15625;
1141 value /= 1024;
1142 value /= 1000;
1143 break;
1144 }
1145
1146 return (value);
1147 }
1148
1149 static int
smu_sensor_sysctl(SYSCTL_HANDLER_ARGS)1150 smu_sensor_sysctl(SYSCTL_HANDLER_ARGS)
1151 {
1152 device_t smu;
1153 struct smu_softc *sc;
1154 struct smu_sensor *sens;
1155 int value, error;
1156
1157 smu = arg1;
1158 sc = device_get_softc(smu);
1159 sens = &sc->sc_sensors[arg2];
1160
1161 value = smu_sensor_read(sens);
1162 if (value < 0)
1163 return (EBUSY);
1164
1165 error = sysctl_handle_int(oidp, &value, 0, req);
1166
1167 return (error);
1168 }
1169
1170 static void
smu_attach_sensors(device_t dev,phandle_t sensroot)1171 smu_attach_sensors(device_t dev, phandle_t sensroot)
1172 {
1173 struct smu_sensor *sens;
1174 struct smu_softc *sc;
1175 struct sysctl_oid *sensroot_oid;
1176 struct sysctl_ctx_list *ctx;
1177 phandle_t child;
1178 char type[32];
1179 int i;
1180
1181 sc = device_get_softc(dev);
1182 sc->sc_nsensors = 0;
1183
1184 for (child = OF_child(sensroot); child != 0; child = OF_peer(child))
1185 sc->sc_nsensors++;
1186
1187 if (sc->sc_nsensors == 0) {
1188 device_printf(dev, "WARNING: No sensors detected!\n");
1189 return;
1190 }
1191
1192 sc->sc_sensors = malloc(sc->sc_nsensors * sizeof(struct smu_sensor),
1193 M_SMU, M_WAITOK | M_ZERO);
1194
1195 sens = sc->sc_sensors;
1196 sc->sc_nsensors = 0;
1197
1198 ctx = device_get_sysctl_ctx(dev);
1199 sensroot_oid = SYSCTL_ADD_NODE(ctx,
1200 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "sensors",
1201 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "SMU Sensor Information");
1202
1203 for (child = OF_child(sensroot); child != 0; child = OF_peer(child)) {
1204 char sysctl_name[40], sysctl_desc[40];
1205 const char *units;
1206
1207 sens->dev = dev;
1208 OF_getprop(child, "device_type", type, sizeof(type));
1209
1210 if (strcmp(type, "current-sensor") == 0) {
1211 sens->type = SMU_CURRENT_SENSOR;
1212 units = "mA";
1213 } else if (strcmp(type, "temp-sensor") == 0) {
1214 sens->type = SMU_TEMP_SENSOR;
1215 units = "C";
1216 } else if (strcmp(type, "voltage-sensor") == 0) {
1217 sens->type = SMU_VOLTAGE_SENSOR;
1218 units = "mV";
1219 } else if (strcmp(type, "power-sensor") == 0) {
1220 sens->type = SMU_POWER_SENSOR;
1221 units = "mW";
1222 } else {
1223 continue;
1224 }
1225
1226 OF_getprop(child, "reg", &sens->reg, sizeof(cell_t));
1227 OF_getprop(child, "zone", &sens->therm.zone, sizeof(int));
1228 OF_getprop(child, "location", sens->therm.name,
1229 sizeof(sens->therm.name));
1230
1231 for (i = 0; i < strlen(sens->therm.name); i++) {
1232 sysctl_name[i] = tolower(sens->therm.name[i]);
1233 if (isspace(sysctl_name[i]))
1234 sysctl_name[i] = '_';
1235 }
1236 sysctl_name[i] = 0;
1237
1238 sprintf(sysctl_desc,"%s (%s)", sens->therm.name, units);
1239
1240 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(sensroot_oid), OID_AUTO,
1241 sysctl_name, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE,
1242 dev, sc->sc_nsensors, smu_sensor_sysctl,
1243 (sens->type == SMU_TEMP_SENSOR) ? "IK" : "I", sysctl_desc);
1244
1245 if (sens->type == SMU_TEMP_SENSOR) {
1246 /* Make up some numbers */
1247 sens->therm.target_temp = 500 + 2731; /* 50 C */
1248 sens->therm.max_temp = 900 + 2731; /* 90 C */
1249
1250 sens->therm.read =
1251 (int (*)(struct pmac_therm *))smu_sensor_read;
1252 pmac_thermal_sensor_register(&sens->therm);
1253 }
1254
1255 sens++;
1256 sc->sc_nsensors++;
1257 }
1258 }
1259
1260 static void
smu_set_sleepled(void * xdev,int onoff)1261 smu_set_sleepled(void *xdev, int onoff)
1262 {
1263 static struct smu_cmd cmd;
1264 device_t smu = xdev;
1265
1266 cmd.cmd = SMU_MISC;
1267 cmd.len = 3;
1268 cmd.data[0] = SMU_MISC_LED_CTRL;
1269 cmd.data[1] = 0;
1270 cmd.data[2] = onoff;
1271
1272 smu_run_cmd(smu, &cmd, 0);
1273 }
1274
1275 static int
smu_server_mode(SYSCTL_HANDLER_ARGS)1276 smu_server_mode(SYSCTL_HANDLER_ARGS)
1277 {
1278 struct smu_cmd cmd;
1279 u_int server_mode;
1280 device_t smu = arg1;
1281 int error;
1282
1283 cmd.cmd = SMU_POWER_EVENTS;
1284 cmd.len = 1;
1285 cmd.data[0] = SMU_PWR_GET_POWERUP;
1286
1287 error = smu_run_cmd(smu, &cmd, 1);
1288
1289 if (error)
1290 return (error);
1291
1292 server_mode = (cmd.data[1] & SMU_WAKEUP_AC_INSERT) ? 1 : 0;
1293
1294 error = sysctl_handle_int(oidp, &server_mode, 0, req);
1295
1296 if (error || !req->newptr)
1297 return (error);
1298
1299 if (server_mode == 1)
1300 cmd.data[0] = SMU_PWR_SET_POWERUP;
1301 else if (server_mode == 0)
1302 cmd.data[0] = SMU_PWR_CLR_POWERUP;
1303 else
1304 return (EINVAL);
1305
1306 cmd.len = 3;
1307 cmd.data[1] = 0;
1308 cmd.data[2] = SMU_WAKEUP_AC_INSERT;
1309
1310 return (smu_run_cmd(smu, &cmd, 1));
1311 }
1312
1313 static void
smu_shutdown(void * xdev,int howto)1314 smu_shutdown(void *xdev, int howto)
1315 {
1316 device_t smu = xdev;
1317 struct smu_cmd cmd;
1318
1319 cmd.cmd = SMU_POWER;
1320 if ((howto & RB_POWEROFF) != 0)
1321 strcpy(cmd.data, "SHUTDOWN");
1322 else if ((howto & RB_HALT) == 0)
1323 strcpy(cmd.data, "RESTART");
1324 else
1325 return;
1326
1327 cmd.len = strlen(cmd.data);
1328
1329 smu_run_cmd(smu, &cmd, 1);
1330
1331 for (;;);
1332 }
1333
1334 static int
smu_gettime(device_t dev,struct timespec * ts)1335 smu_gettime(device_t dev, struct timespec *ts)
1336 {
1337 struct smu_cmd cmd;
1338 struct clocktime ct;
1339
1340 cmd.cmd = SMU_RTC;
1341 cmd.len = 1;
1342 cmd.data[0] = SMU_RTC_GET;
1343
1344 if (smu_run_cmd(dev, &cmd, 1) != 0)
1345 return (ENXIO);
1346
1347 ct.nsec = 0;
1348 ct.sec = bcd2bin(cmd.data[0]);
1349 ct.min = bcd2bin(cmd.data[1]);
1350 ct.hour = bcd2bin(cmd.data[2]);
1351 ct.dow = bcd2bin(cmd.data[3]);
1352 ct.day = bcd2bin(cmd.data[4]);
1353 ct.mon = bcd2bin(cmd.data[5]);
1354 ct.year = bcd2bin(cmd.data[6]) + 2000;
1355
1356 return (clock_ct_to_ts(&ct, ts));
1357 }
1358
1359 static int
smu_settime(device_t dev,struct timespec * ts)1360 smu_settime(device_t dev, struct timespec *ts)
1361 {
1362 static struct smu_cmd cmd;
1363 struct clocktime ct;
1364
1365 cmd.cmd = SMU_RTC;
1366 cmd.len = 8;
1367 cmd.data[0] = SMU_RTC_SET;
1368
1369 clock_ts_to_ct(ts, &ct);
1370
1371 cmd.data[1] = bin2bcd(ct.sec);
1372 cmd.data[2] = bin2bcd(ct.min);
1373 cmd.data[3] = bin2bcd(ct.hour);
1374 cmd.data[4] = bin2bcd(ct.dow);
1375 cmd.data[5] = bin2bcd(ct.day);
1376 cmd.data[6] = bin2bcd(ct.mon);
1377 cmd.data[7] = bin2bcd(ct.year - 2000);
1378
1379 return (smu_run_cmd(dev, &cmd, 0));
1380 }
1381
1382 /* SMU I2C Interface */
1383
1384 static int smuiic_probe(device_t dev);
1385 static int smuiic_attach(device_t dev);
1386 static int smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs);
1387 static phandle_t smuiic_get_node(device_t bus, device_t dev);
1388
1389 static device_method_t smuiic_methods[] = {
1390 /* device interface */
1391 DEVMETHOD(device_probe, smuiic_probe),
1392 DEVMETHOD(device_attach, smuiic_attach),
1393
1394 /* iicbus interface */
1395 DEVMETHOD(iicbus_callback, iicbus_null_callback),
1396 DEVMETHOD(iicbus_transfer, smuiic_transfer),
1397
1398 /* ofw_bus interface */
1399 DEVMETHOD(ofw_bus_get_node, smuiic_get_node),
1400 { 0, 0 }
1401 };
1402
1403 struct smuiic_softc {
1404 struct mtx sc_mtx;
1405 volatile int sc_iic_inuse;
1406 int sc_busno;
1407 };
1408
1409 static driver_t smuiic_driver = {
1410 "iichb",
1411 smuiic_methods,
1412 sizeof(struct smuiic_softc)
1413 };
1414
1415 DRIVER_MODULE(smuiic, smu, smuiic_driver, 0, 0);
1416
1417 static void
smu_attach_i2c(device_t smu,phandle_t i2croot)1418 smu_attach_i2c(device_t smu, phandle_t i2croot)
1419 {
1420 phandle_t child;
1421 device_t cdev;
1422 struct ofw_bus_devinfo *dinfo;
1423 char name[32];
1424
1425 for (child = OF_child(i2croot); child != 0; child = OF_peer(child)) {
1426 if (OF_getprop(child, "name", name, sizeof(name)) <= 0)
1427 continue;
1428
1429 if (strcmp(name, "i2c-bus") != 0 && strcmp(name, "i2c") != 0)
1430 continue;
1431
1432 dinfo = malloc(sizeof(struct ofw_bus_devinfo), M_SMU,
1433 M_WAITOK | M_ZERO);
1434 if (ofw_bus_gen_setup_devinfo(dinfo, child) != 0) {
1435 free(dinfo, M_SMU);
1436 continue;
1437 }
1438
1439 cdev = device_add_child(smu, NULL, DEVICE_UNIT_ANY);
1440 if (cdev == NULL) {
1441 device_printf(smu, "<%s>: device_add_child failed\n",
1442 dinfo->obd_name);
1443 ofw_bus_gen_destroy_devinfo(dinfo);
1444 free(dinfo, M_SMU);
1445 continue;
1446 }
1447 device_set_ivars(cdev, dinfo);
1448 }
1449 }
1450
1451 static int
smuiic_probe(device_t dev)1452 smuiic_probe(device_t dev)
1453 {
1454 const char *name;
1455
1456 name = ofw_bus_get_name(dev);
1457 if (name == NULL)
1458 return (ENXIO);
1459
1460 if (strcmp(name, "i2c-bus") == 0 || strcmp(name, "i2c") == 0) {
1461 device_set_desc(dev, "SMU I2C controller");
1462 return (0);
1463 }
1464
1465 return (ENXIO);
1466 }
1467
1468 static int
smuiic_attach(device_t dev)1469 smuiic_attach(device_t dev)
1470 {
1471 struct smuiic_softc *sc = device_get_softc(dev);
1472 mtx_init(&sc->sc_mtx, "smuiic", NULL, MTX_DEF);
1473 sc->sc_iic_inuse = 0;
1474
1475 /* Get our bus number */
1476 OF_getprop(ofw_bus_get_node(dev), "reg", &sc->sc_busno,
1477 sizeof(sc->sc_busno));
1478
1479 /* Add the IIC bus layer */
1480 device_add_child(dev, "iicbus", DEVICE_UNIT_ANY);
1481
1482 bus_attach_children(dev);
1483 return (0);
1484 }
1485
1486 static int
smuiic_transfer(device_t dev,struct iic_msg * msgs,uint32_t nmsgs)1487 smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs)
1488 {
1489 struct smuiic_softc *sc = device_get_softc(dev);
1490 struct smu_cmd cmd;
1491 int i, j, error;
1492
1493 mtx_lock(&sc->sc_mtx);
1494 while (sc->sc_iic_inuse)
1495 mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 100);
1496
1497 sc->sc_iic_inuse = 1;
1498 error = 0;
1499
1500 for (i = 0; i < nmsgs; i++) {
1501 cmd.cmd = SMU_I2C;
1502 cmd.data[0] = sc->sc_busno;
1503 if (msgs[i].flags & IIC_M_NOSTOP)
1504 cmd.data[1] = SMU_I2C_COMBINED;
1505 else
1506 cmd.data[1] = SMU_I2C_SIMPLE;
1507
1508 cmd.data[2] = msgs[i].slave;
1509 if (msgs[i].flags & IIC_M_RD)
1510 cmd.data[2] |= 1;
1511
1512 if (msgs[i].flags & IIC_M_NOSTOP) {
1513 KASSERT(msgs[i].len < 4,
1514 ("oversize I2C combined message"));
1515
1516 cmd.data[3] = min(msgs[i].len, 3);
1517 memcpy(&cmd.data[4], msgs[i].buf, min(msgs[i].len, 3));
1518 i++; /* Advance to next part of message */
1519 } else {
1520 cmd.data[3] = 0;
1521 memset(&cmd.data[4], 0, 3);
1522 }
1523
1524 cmd.data[7] = msgs[i].slave;
1525 if (msgs[i].flags & IIC_M_RD)
1526 cmd.data[7] |= 1;
1527
1528 cmd.data[8] = msgs[i].len;
1529 if (msgs[i].flags & IIC_M_RD) {
1530 memset(&cmd.data[9], 0xff, msgs[i].len);
1531 cmd.len = 9;
1532 } else {
1533 memcpy(&cmd.data[9], msgs[i].buf, msgs[i].len);
1534 cmd.len = 9 + msgs[i].len;
1535 }
1536
1537 mtx_unlock(&sc->sc_mtx);
1538 smu_run_cmd(device_get_parent(dev), &cmd, 1);
1539 mtx_lock(&sc->sc_mtx);
1540
1541 for (j = 0; j < 10; j++) {
1542 cmd.cmd = SMU_I2C;
1543 cmd.len = 1;
1544 cmd.data[0] = 0;
1545 memset(&cmd.data[1], 0xff, msgs[i].len);
1546
1547 mtx_unlock(&sc->sc_mtx);
1548 smu_run_cmd(device_get_parent(dev), &cmd, 1);
1549 mtx_lock(&sc->sc_mtx);
1550
1551 if (!(cmd.data[0] & 0x80))
1552 break;
1553
1554 mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 10);
1555 }
1556
1557 if (cmd.data[0] & 0x80) {
1558 error = EIO;
1559 msgs[i].len = 0;
1560 goto exit;
1561 }
1562 memcpy(msgs[i].buf, &cmd.data[1], msgs[i].len);
1563 msgs[i].len = cmd.len - 1;
1564 }
1565
1566 exit:
1567 sc->sc_iic_inuse = 0;
1568 mtx_unlock(&sc->sc_mtx);
1569 wakeup(sc);
1570 return (error);
1571 }
1572
1573 static phandle_t
smuiic_get_node(device_t bus,device_t dev)1574 smuiic_get_node(device_t bus, device_t dev)
1575 {
1576
1577 return (ofw_bus_get_node(bus));
1578 }
1579