xref: /freebsd/sys/kern/subr_smp.c (revision 190d0a96cf5672c6cf0ce86eb91dd1f19d35baac)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * This module holds the global variables and machine independent functions
30  * used for the kernel SMP support.
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/ktr.h>
37 #include <sys/proc.h>
38 #include <sys/bus.h>
39 #include <sys/lock.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/pcpu.h>
43 #include <sys/sched.h>
44 #include <sys/smp.h>
45 #include <sys/sysctl.h>
46 
47 #include <machine/cpu.h>
48 #include <machine/pcb.h>
49 #include <machine/smp.h>
50 
51 #include "opt_sched.h"
52 
53 #ifdef SMP
54 MALLOC_DEFINE(M_TOPO, "toponodes", "SMP topology data");
55 
56 volatile cpuset_t stopped_cpus;
57 volatile cpuset_t started_cpus;
58 volatile cpuset_t suspended_cpus;
59 cpuset_t hlt_cpus_mask;
60 cpuset_t logical_cpus_mask;
61 
62 void (*cpustop_restartfunc)(void);
63 #endif
64 
65 static int sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS);
66 
67 /* This is used in modules that need to work in both SMP and UP. */
68 cpuset_t all_cpus;
69 
70 int mp_ncpus;
71 /* export this for libkvm consumers. */
72 int mp_maxcpus = MAXCPU;
73 
74 volatile int smp_started;
75 u_int mp_maxid;
76 
77 /* Array of CPU contexts saved during a panic. */
78 struct pcb *stoppcbs;
79 
80 static SYSCTL_NODE(_kern, OID_AUTO, smp,
81     CTLFLAG_RD | CTLFLAG_CAPRD | CTLFLAG_MPSAFE, NULL,
82     "Kernel SMP");
83 
84 SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxid, 0,
85     "Max CPU ID.");
86 
87 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxcpus,
88     0, "Max number of CPUs that the system was compiled for.");
89 
90 SYSCTL_PROC(_kern_smp, OID_AUTO, active, CTLFLAG_RD|CTLTYPE_INT|CTLFLAG_MPSAFE,
91     NULL, 0, sysctl_kern_smp_active, "I",
92     "Indicates system is running in SMP mode");
93 
94 int smp_disabled = 0;	/* has smp been disabled? */
95 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN|CTLFLAG_CAPRD,
96     &smp_disabled, 0, "SMP has been disabled from the loader");
97 
98 int smp_cpus = 1;	/* how many cpu's running */
99 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD|CTLFLAG_CAPRD, &smp_cpus, 0,
100     "Number of CPUs online");
101 
102 int smp_threads_per_core = 1;	/* how many SMT threads are running per core */
103 SYSCTL_INT(_kern_smp, OID_AUTO, threads_per_core, CTLFLAG_RD|CTLFLAG_CAPRD,
104     &smp_threads_per_core, 0, "Number of SMT threads online per core");
105 
106 int mp_ncores = -1;	/* how many physical cores running */
107 SYSCTL_INT(_kern_smp, OID_AUTO, cores, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_ncores, 0,
108     "Number of physical cores online");
109 
110 int smp_topology = 0;	/* Which topology we're using. */
111 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RDTUN, &smp_topology, 0,
112     "Topology override setting; 0 is default provided by hardware.");
113 
114 #ifdef SMP
115 /* Variables needed for SMP rendezvous. */
116 static volatile int smp_rv_ncpus;
117 static void (*volatile smp_rv_setup_func)(void *arg);
118 static void (*volatile smp_rv_action_func)(void *arg);
119 static void (*volatile smp_rv_teardown_func)(void *arg);
120 static void *volatile smp_rv_func_arg;
121 static volatile int smp_rv_waiters[4];
122 
123 /*
124  * Shared mutex to restrict busywaits between smp_rendezvous() and
125  * smp(_targeted)_tlb_shootdown().  A deadlock occurs if both of these
126  * functions trigger at once and cause multiple CPUs to busywait with
127  * interrupts disabled.
128  */
129 struct mtx smp_ipi_mtx;
130 
131 /*
132  * Let the MD SMP code initialize mp_maxid very early if it can.
133  */
134 static void
mp_setmaxid(void * dummy)135 mp_setmaxid(void *dummy)
136 {
137 
138 	cpu_mp_setmaxid();
139 
140 	KASSERT(mp_ncpus >= 1, ("%s: CPU count < 1", __func__));
141 	KASSERT(mp_ncpus > 1 || mp_maxid == 0,
142 	    ("%s: one CPU but mp_maxid is not zero", __func__));
143 	KASSERT(mp_maxid >= mp_ncpus - 1,
144 	    ("%s: counters out of sync: max %d, count %d", __func__,
145 		mp_maxid, mp_ncpus));
146 
147 	cpusetsizemin = howmany(mp_maxid + 1, NBBY);
148 }
149 SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
150 
151 /*
152  * Call the MD SMP initialization code.
153  */
154 static void
mp_start(void * dummy)155 mp_start(void *dummy)
156 {
157 
158 	mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
159 
160 	/* Probe for MP hardware. */
161 	if (smp_disabled != 0 || cpu_mp_probe() == 0) {
162 		mp_ncores = 1;
163 		mp_ncpus = 1;
164 		CPU_SETOF(PCPU_GET(cpuid), &all_cpus);
165 		return;
166 	}
167 
168 	cpu_mp_start();
169 	printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
170 	    mp_ncpus);
171 
172 	/* Provide a default for most architectures that don't have SMT/HTT. */
173 	if (mp_ncores < 0)
174 		mp_ncores = mp_ncpus;
175 
176 	stoppcbs = mallocarray(mp_maxid + 1, sizeof(struct pcb), M_DEVBUF,
177 	    M_WAITOK | M_ZERO);
178 
179 	cpu_mp_announce();
180 }
181 SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
182 
183 void
forward_signal(struct thread * td)184 forward_signal(struct thread *td)
185 {
186 	int id;
187 
188 	/*
189 	 * signotify() has already set TDA_AST and TDA_SIG on td_ast for
190 	 * this thread, so all we need to do is poke it if it is currently
191 	 * executing so that it executes ast().
192 	 */
193 	THREAD_LOCK_ASSERT(td, MA_OWNED);
194 	KASSERT(TD_IS_RUNNING(td),
195 	    ("forward_signal: thread is not TDS_RUNNING"));
196 
197 	CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
198 
199 	if (!smp_started || cold || KERNEL_PANICKED())
200 		return;
201 
202 	/* No need to IPI ourself. */
203 	if (td == curthread)
204 		return;
205 
206 	id = td->td_oncpu;
207 	if (id == NOCPU)
208 		return;
209 	ipi_cpu(id, IPI_AST);
210 }
211 
212 /*
213  * When called the executing CPU will send an IPI to all other CPUs
214  *  requesting that they halt execution.
215  *
216  * Usually (but not necessarily) called with 'other_cpus' as its arg.
217  *
218  *  - Signals all CPUs in map to stop.
219  *  - Waits for each to stop.
220  *
221  * Returns:
222  *  -1: error
223  *   0: NA
224  *   1: ok
225  *
226  */
227 #if defined(__amd64__) || defined(__i386__)
228 #define	X86	1
229 #else
230 #define	X86	0
231 #endif
232 static int
generic_stop_cpus(cpuset_t map,u_int type)233 generic_stop_cpus(cpuset_t map, u_int type)
234 {
235 #ifdef KTR
236 	char cpusetbuf[CPUSETBUFSIZ];
237 #endif
238 	static volatile u_int stopping_cpu = NOCPU;
239 	int i;
240 	volatile cpuset_t *cpus;
241 
242 	KASSERT(
243 	    type == IPI_STOP || type == IPI_STOP_HARD
244 #if X86
245 	    || type == IPI_SUSPEND || type == IPI_OFF
246 #endif
247 	    , ("%s: invalid stop type", __func__));
248 
249 	if (!smp_started)
250 		return (0);
251 
252 	CTR2(KTR_SMP, "stop_cpus(%s) with %u type",
253 	    cpusetobj_strprint(cpusetbuf, &map), type);
254 
255 #if X86
256 	/*
257 	 * When suspending, ensure there are are no IPIs in progress.
258 	 * IPIs that have been issued, but not yet delivered (e.g.
259 	 * not pending on a vCPU when running under virtualization)
260 	 * will be lost, violating FreeBSD's assumption of reliable
261 	 * IPI delivery.
262 	 */
263 	if (type == IPI_SUSPEND || type == IPI_OFF)
264 		mtx_lock_spin(&smp_ipi_mtx);
265 #endif
266 
267 #if X86
268 	if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
269 #endif
270 	if (stopping_cpu != PCPU_GET(cpuid))
271 		while (atomic_cmpset_int(&stopping_cpu, NOCPU,
272 		    PCPU_GET(cpuid)) == 0)
273 			while (stopping_cpu != NOCPU)
274 				cpu_spinwait(); /* spin */
275 
276 	/* send the stop IPI to all CPUs in map */
277 	ipi_selected(map, type);
278 #if X86
279 	}
280 #endif
281 
282 #if X86
283 	if (type == IPI_SUSPEND || type == IPI_OFF)
284 		cpus = &suspended_cpus;
285 	else
286 #endif
287 		cpus = &stopped_cpus;
288 
289 	i = 0;
290 	while (!CPU_SUBSET(cpus, &map)) {
291 		/* spin */
292 		cpu_spinwait();
293 		i++;
294 		if (i == 100000000) {
295 			printf("timeout stopping cpus\n");
296 			break;
297 		}
298 	}
299 
300 #if X86
301 	if (type == IPI_SUSPEND || type == IPI_OFF)
302 		mtx_unlock_spin(&smp_ipi_mtx);
303 #endif
304 
305 	stopping_cpu = NOCPU;
306 	return (1);
307 }
308 
309 int
stop_cpus(cpuset_t map)310 stop_cpus(cpuset_t map)
311 {
312 
313 	return (generic_stop_cpus(map, IPI_STOP));
314 }
315 
316 int
stop_cpus_hard(cpuset_t map)317 stop_cpus_hard(cpuset_t map)
318 {
319 
320 	return (generic_stop_cpus(map, IPI_STOP_HARD));
321 }
322 
323 #if X86
324 int
suspend_cpus(cpuset_t map)325 suspend_cpus(cpuset_t map)
326 {
327 
328 	return (generic_stop_cpus(map, IPI_SUSPEND));
329 }
330 
331 int
offline_cpus(cpuset_t map)332 offline_cpus(cpuset_t map)
333 {
334 
335 	return (generic_stop_cpus(map, IPI_OFF));
336 }
337 #endif
338 
339 /*
340  * Called by a CPU to restart stopped CPUs.
341  *
342  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
343  *
344  *  - Signals all CPUs in map to restart.
345  *  - Waits for each to restart.
346  *
347  * Returns:
348  *  -1: error
349  *   0: NA
350  *   1: ok
351  */
352 static int
generic_restart_cpus(cpuset_t map,u_int type)353 generic_restart_cpus(cpuset_t map, u_int type)
354 {
355 #ifdef KTR
356 	char cpusetbuf[CPUSETBUFSIZ];
357 #endif
358 	volatile cpuset_t *cpus;
359 
360 #if X86
361 	KASSERT(type == IPI_STOP || type == IPI_STOP_HARD
362 	    || type == IPI_SUSPEND, ("%s: invalid stop type", __func__));
363 
364 	if (!smp_started)
365 		return (0);
366 
367 	CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
368 
369 	if (type == IPI_SUSPEND)
370 		cpus = &resuming_cpus;
371 	else
372 		cpus = &stopped_cpus;
373 
374 	/* signal other cpus to restart */
375 	if (type == IPI_SUSPEND)
376 		CPU_COPY_STORE_REL(&map, &toresume_cpus);
377 	else
378 		CPU_COPY_STORE_REL(&map, &started_cpus);
379 
380 	/*
381 	 * Wake up any CPUs stopped with MWAIT.  From MI code we can't tell if
382 	 * MONITOR/MWAIT is enabled, but the potentially redundant writes are
383 	 * relatively inexpensive.
384 	 */
385 	if (type == IPI_STOP) {
386 		struct monitorbuf *mb;
387 		u_int id;
388 
389 		CPU_FOREACH(id) {
390 			if (!CPU_ISSET(id, &map))
391 				continue;
392 
393 			mb = &pcpu_find(id)->pc_monitorbuf;
394 			atomic_store_int(&mb->stop_state,
395 			    MONITOR_STOPSTATE_RUNNING);
396 		}
397 	}
398 
399 	if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
400 		/* wait for each to clear its bit */
401 		while (CPU_OVERLAP(cpus, &map))
402 			cpu_spinwait();
403 	}
404 #else /* !X86 */
405 	KASSERT(type == IPI_STOP || type == IPI_STOP_HARD,
406 	    ("%s: invalid stop type", __func__));
407 
408 	if (!smp_started)
409 		return (0);
410 
411 	CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
412 
413 	cpus = &stopped_cpus;
414 
415 	/* signal other cpus to restart */
416 	CPU_COPY_STORE_REL(&map, &started_cpus);
417 
418 	/* wait for each to clear its bit */
419 	while (CPU_OVERLAP(cpus, &map))
420 		cpu_spinwait();
421 #endif
422 	return (1);
423 }
424 
425 int
restart_cpus(cpuset_t map)426 restart_cpus(cpuset_t map)
427 {
428 
429 	return (generic_restart_cpus(map, IPI_STOP));
430 }
431 
432 #if X86
433 int
resume_cpus(cpuset_t map)434 resume_cpus(cpuset_t map)
435 {
436 
437 	return (generic_restart_cpus(map, IPI_SUSPEND));
438 }
439 #endif
440 #undef X86
441 
442 /*
443  * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
444  * (if specified), rendezvous, execute the action function (if specified),
445  * rendezvous again, execute the teardown function (if specified), and then
446  * resume.
447  *
448  * Note that the supplied external functions _must_ be reentrant and aware
449  * that they are running in parallel and in an unknown lock context.
450  */
451 void
smp_rendezvous_action(void)452 smp_rendezvous_action(void)
453 {
454 	struct thread *td;
455 	void *local_func_arg;
456 	void (*local_setup_func)(void*);
457 	void (*local_action_func)(void*);
458 	void (*local_teardown_func)(void*);
459 #ifdef INVARIANTS
460 	int owepreempt;
461 #endif
462 
463 	/* Ensure we have up-to-date values. */
464 	atomic_add_acq_int(&smp_rv_waiters[0], 1);
465 	while (smp_rv_waiters[0] < smp_rv_ncpus)
466 		cpu_spinwait();
467 
468 	/* Fetch rendezvous parameters after acquire barrier. */
469 	local_func_arg = smp_rv_func_arg;
470 	local_setup_func = smp_rv_setup_func;
471 	local_action_func = smp_rv_action_func;
472 	local_teardown_func = smp_rv_teardown_func;
473 
474 	/*
475 	 * Use a nested critical section to prevent any preemptions
476 	 * from occurring during a rendezvous action routine.
477 	 * Specifically, if a rendezvous handler is invoked via an IPI
478 	 * and the interrupted thread was in the critical_exit()
479 	 * function after setting td_critnest to 0 but before
480 	 * performing a deferred preemption, this routine can be
481 	 * invoked with td_critnest set to 0 and td_owepreempt true.
482 	 * In that case, a critical_exit() during the rendezvous
483 	 * action would trigger a preemption which is not permitted in
484 	 * a rendezvous action.  To fix this, wrap all of the
485 	 * rendezvous action handlers in a critical section.  We
486 	 * cannot use a regular critical section however as having
487 	 * critical_exit() preempt from this routine would also be
488 	 * problematic (the preemption must not occur before the IPI
489 	 * has been acknowledged via an EOI).  Instead, we
490 	 * intentionally ignore td_owepreempt when leaving the
491 	 * critical section.  This should be harmless because we do
492 	 * not permit rendezvous action routines to schedule threads,
493 	 * and thus td_owepreempt should never transition from 0 to 1
494 	 * during this routine.
495 	 */
496 	td = curthread;
497 	td->td_critnest++;
498 #ifdef INVARIANTS
499 	owepreempt = td->td_owepreempt;
500 #endif
501 
502 	/*
503 	 * If requested, run a setup function before the main action
504 	 * function.  Ensure all CPUs have completed the setup
505 	 * function before moving on to the action function.
506 	 */
507 	if (local_setup_func != smp_no_rendezvous_barrier) {
508 		if (local_setup_func != NULL)
509 			local_setup_func(local_func_arg);
510 		atomic_add_int(&smp_rv_waiters[1], 1);
511 		while (smp_rv_waiters[1] < smp_rv_ncpus)
512                 	cpu_spinwait();
513 	}
514 
515 	if (local_action_func != NULL)
516 		local_action_func(local_func_arg);
517 
518 	if (local_teardown_func != smp_no_rendezvous_barrier) {
519 		/*
520 		 * Signal that the main action has been completed.  If a
521 		 * full exit rendezvous is requested, then all CPUs will
522 		 * wait here until all CPUs have finished the main action.
523 		 */
524 		atomic_add_int(&smp_rv_waiters[2], 1);
525 		while (smp_rv_waiters[2] < smp_rv_ncpus)
526 			cpu_spinwait();
527 
528 		if (local_teardown_func != NULL)
529 			local_teardown_func(local_func_arg);
530 	}
531 
532 	/*
533 	 * Signal that the rendezvous is fully completed by this CPU.
534 	 * This means that no member of smp_rv_* pseudo-structure will be
535 	 * accessed by this target CPU after this point; in particular,
536 	 * memory pointed by smp_rv_func_arg.
537 	 *
538 	 * The release semantic ensures that all accesses performed by
539 	 * the current CPU are visible when smp_rendezvous_cpus()
540 	 * returns, by synchronizing with the
541 	 * atomic_load_acq_int(&smp_rv_waiters[3]).
542 	 */
543 	atomic_add_rel_int(&smp_rv_waiters[3], 1);
544 
545 	td->td_critnest--;
546 	KASSERT(owepreempt == td->td_owepreempt,
547 	    ("rendezvous action changed td_owepreempt"));
548 }
549 
550 void
smp_rendezvous_cpus(cpuset_t map,void (* setup_func)(void *),void (* action_func)(void *),void (* teardown_func)(void *),void * arg)551 smp_rendezvous_cpus(cpuset_t map,
552 	void (* setup_func)(void *),
553 	void (* action_func)(void *),
554 	void (* teardown_func)(void *),
555 	void *arg)
556 {
557 	int curcpumap, i, ncpus = 0;
558 
559 	/* See comments in the !SMP case. */
560 	if (!smp_started) {
561 		spinlock_enter();
562 		if (setup_func != NULL)
563 			setup_func(arg);
564 		if (action_func != NULL)
565 			action_func(arg);
566 		if (teardown_func != NULL)
567 			teardown_func(arg);
568 		spinlock_exit();
569 		return;
570 	}
571 
572 	/*
573 	 * Make sure we come here with interrupts enabled.  Otherwise we
574 	 * livelock if smp_ipi_mtx is owned by a thread which sent us an IPI.
575 	 */
576 	MPASS(curthread->td_md.md_spinlock_count == 0);
577 
578 	CPU_FOREACH(i) {
579 		if (CPU_ISSET(i, &map))
580 			ncpus++;
581 	}
582 	if (ncpus == 0)
583 		panic("ncpus is 0 with non-zero map");
584 
585 	mtx_lock_spin(&smp_ipi_mtx);
586 
587 	/* Pass rendezvous parameters via global variables. */
588 	smp_rv_ncpus = ncpus;
589 	smp_rv_setup_func = setup_func;
590 	smp_rv_action_func = action_func;
591 	smp_rv_teardown_func = teardown_func;
592 	smp_rv_func_arg = arg;
593 	smp_rv_waiters[1] = 0;
594 	smp_rv_waiters[2] = 0;
595 	smp_rv_waiters[3] = 0;
596 	atomic_store_rel_int(&smp_rv_waiters[0], 0);
597 
598 	/*
599 	 * Signal other processors, which will enter the IPI with
600 	 * interrupts off.
601 	 */
602 	curcpumap = CPU_ISSET(curcpu, &map);
603 	CPU_CLR(curcpu, &map);
604 	ipi_selected(map, IPI_RENDEZVOUS);
605 
606 	/* Check if the current CPU is in the map */
607 	if (curcpumap != 0)
608 		smp_rendezvous_action();
609 
610 	/*
611 	 * Ensure that the master CPU waits for all the other
612 	 * CPUs to finish the rendezvous, so that smp_rv_*
613 	 * pseudo-structure and the arg are guaranteed to not
614 	 * be in use.
615 	 *
616 	 * Load acquire synchronizes with the release add in
617 	 * smp_rendezvous_action(), which ensures that our caller sees
618 	 * all memory actions done by the called functions on other
619 	 * CPUs.
620 	 */
621 	while (atomic_load_acq_int(&smp_rv_waiters[3]) < ncpus)
622 		cpu_spinwait();
623 
624 	mtx_unlock_spin(&smp_ipi_mtx);
625 }
626 
627 void
smp_rendezvous(void (* setup_func)(void *),void (* action_func)(void *),void (* teardown_func)(void *),void * arg)628 smp_rendezvous(void (* setup_func)(void *),
629 	       void (* action_func)(void *),
630 	       void (* teardown_func)(void *),
631 	       void *arg)
632 {
633 	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
634 }
635 
636 static void
smp_topo_fill(struct cpu_group * cg)637 smp_topo_fill(struct cpu_group *cg)
638 {
639 	int c;
640 
641 	for (c = 0; c < cg->cg_children; c++)
642 		smp_topo_fill(&cg->cg_child[c]);
643 	cg->cg_first = CPU_FFS(&cg->cg_mask) - 1;
644 	cg->cg_last = CPU_FLS(&cg->cg_mask) - 1;
645 }
646 
647 struct cpu_group *
smp_topo(void)648 smp_topo(void)
649 {
650 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
651 	static struct cpu_group *top = NULL;
652 
653 	/*
654 	 * The first call to smp_topo() is guaranteed to occur
655 	 * during the kernel boot while we are still single-threaded.
656 	 */
657 	if (top != NULL)
658 		return (top);
659 
660 	/*
661 	 * Check for a fake topology request for debugging purposes.
662 	 */
663 	switch (smp_topology) {
664 	case 1:
665 		/* Dual core with no sharing.  */
666 		top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
667 		break;
668 	case 2:
669 		/* No topology, all cpus are equal. */
670 		top = smp_topo_none();
671 		break;
672 	case 3:
673 		/* Dual core with shared L2.  */
674 		top = smp_topo_1level(CG_SHARE_L2, 2, 0);
675 		break;
676 	case 4:
677 		/* quad core, shared l3 among each package, private l2.  */
678 		top = smp_topo_1level(CG_SHARE_L3, 4, 0);
679 		break;
680 	case 5:
681 		/* quad core,  2 dualcore parts on each package share l2.  */
682 		top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
683 		break;
684 	case 6:
685 		/* Single-core 2xHTT */
686 		top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
687 		break;
688 	case 7:
689 		/* quad core with a shared l3, 8 threads sharing L2.  */
690 		top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
691 		    CG_FLAG_SMT);
692 		break;
693 	default:
694 		/* Default, ask the system what it wants. */
695 		top = cpu_topo();
696 		break;
697 	}
698 	/*
699 	 * Verify the returned topology.
700 	 */
701 	if (top->cg_count != mp_ncpus)
702 		panic("Built bad topology at %p.  CPU count %d != %d",
703 		    top, top->cg_count, mp_ncpus);
704 	if (CPU_CMP(&top->cg_mask, &all_cpus))
705 		panic("Built bad topology at %p.  CPU mask (%s) != (%s)",
706 		    top, cpusetobj_strprint(cpusetbuf, &top->cg_mask),
707 		    cpusetobj_strprint(cpusetbuf2, &all_cpus));
708 
709 	/*
710 	 * Collapse nonsense levels that may be created out of convenience by
711 	 * the MD layers.  They cause extra work in the search functions.
712 	 */
713 	while (top->cg_children == 1) {
714 		top = &top->cg_child[0];
715 		top->cg_parent = NULL;
716 	}
717 	smp_topo_fill(top);
718 	return (top);
719 }
720 
721 struct cpu_group *
smp_topo_alloc(u_int count)722 smp_topo_alloc(u_int count)
723 {
724 	static struct cpu_group *group = NULL;
725 	static u_int index;
726 	u_int curr;
727 
728 	if (group == NULL) {
729 		group = mallocarray((mp_maxid + 1) * MAX_CACHE_LEVELS + 1,
730 		    sizeof(*group), M_DEVBUF, M_WAITOK | M_ZERO);
731 	}
732 	curr = index;
733 	index += count;
734 	return (&group[curr]);
735 }
736 
737 struct cpu_group *
smp_topo_none(void)738 smp_topo_none(void)
739 {
740 	struct cpu_group *top;
741 
742 	top = smp_topo_alloc(1);
743 	top->cg_parent = NULL;
744 	top->cg_child = NULL;
745 	top->cg_mask = all_cpus;
746 	top->cg_count = mp_ncpus;
747 	top->cg_children = 0;
748 	top->cg_level = CG_SHARE_NONE;
749 	top->cg_flags = 0;
750 
751 	return (top);
752 }
753 
754 static int
smp_topo_addleaf(struct cpu_group * parent,struct cpu_group * child,int share,int count,int flags,int start)755 smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
756     int count, int flags, int start)
757 {
758 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
759 	cpuset_t mask;
760 	int i;
761 
762 	CPU_ZERO(&mask);
763 	for (i = 0; i < count; i++, start++)
764 		CPU_SET(start, &mask);
765 	child->cg_parent = parent;
766 	child->cg_child = NULL;
767 	child->cg_children = 0;
768 	child->cg_level = share;
769 	child->cg_count = count;
770 	child->cg_flags = flags;
771 	child->cg_mask = mask;
772 	parent->cg_children++;
773 	for (; parent != NULL; parent = parent->cg_parent) {
774 		if (CPU_OVERLAP(&parent->cg_mask, &child->cg_mask))
775 			panic("Duplicate children in %p.  mask (%s) child (%s)",
776 			    parent,
777 			    cpusetobj_strprint(cpusetbuf, &parent->cg_mask),
778 			    cpusetobj_strprint(cpusetbuf2, &child->cg_mask));
779 		CPU_OR(&parent->cg_mask, &parent->cg_mask, &child->cg_mask);
780 		parent->cg_count += child->cg_count;
781 	}
782 
783 	return (start);
784 }
785 
786 struct cpu_group *
smp_topo_1level(int share,int count,int flags)787 smp_topo_1level(int share, int count, int flags)
788 {
789 	struct cpu_group *child;
790 	struct cpu_group *top;
791 	int packages;
792 	int cpu;
793 	int i;
794 
795 	cpu = 0;
796 	packages = mp_ncpus / count;
797 	top = smp_topo_alloc(1 + packages);
798 	top->cg_child = child = top + 1;
799 	top->cg_level = CG_SHARE_NONE;
800 	for (i = 0; i < packages; i++, child++)
801 		cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
802 	return (top);
803 }
804 
805 struct cpu_group *
smp_topo_2level(int l2share,int l2count,int l1share,int l1count,int l1flags)806 smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
807     int l1flags)
808 {
809 	struct cpu_group *top;
810 	struct cpu_group *l1g;
811 	struct cpu_group *l2g;
812 	int cpu;
813 	int i;
814 	int j;
815 
816 	cpu = 0;
817 	top = smp_topo_alloc(1 + mp_ncpus / (l2count * l1count) +
818 	    mp_ncpus / l1count);
819 	l2g = top + 1;
820 	top->cg_child = l2g;
821 	top->cg_level = CG_SHARE_NONE;
822 	top->cg_children = mp_ncpus / (l2count * l1count);
823 	l1g = l2g + top->cg_children;
824 	for (i = 0; i < top->cg_children; i++, l2g++) {
825 		l2g->cg_parent = top;
826 		l2g->cg_child = l1g;
827 		l2g->cg_level = l2share;
828 		for (j = 0; j < l2count; j++, l1g++)
829 			cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
830 			    l1flags, cpu);
831 	}
832 	return (top);
833 }
834 
835 struct cpu_group *
smp_topo_find(struct cpu_group * top,int cpu)836 smp_topo_find(struct cpu_group *top, int cpu)
837 {
838 	struct cpu_group *cg;
839 	cpuset_t mask;
840 	int children;
841 	int i;
842 
843 	CPU_SETOF(cpu, &mask);
844 	cg = top;
845 	for (;;) {
846 		if (!CPU_OVERLAP(&cg->cg_mask, &mask))
847 			return (NULL);
848 		if (cg->cg_children == 0)
849 			return (cg);
850 		children = cg->cg_children;
851 		for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
852 			if (CPU_OVERLAP(&cg->cg_mask, &mask))
853 				break;
854 	}
855 	return (NULL);
856 }
857 #else /* !SMP */
858 
859 void
smp_rendezvous_cpus(cpuset_t map,void (* setup_func)(void *),void (* action_func)(void *),void (* teardown_func)(void *),void * arg)860 smp_rendezvous_cpus(cpuset_t map,
861 	void (*setup_func)(void *),
862 	void (*action_func)(void *),
863 	void (*teardown_func)(void *),
864 	void *arg)
865 {
866 	/*
867 	 * In the !SMP case we just need to ensure the same initial conditions
868 	 * as the SMP case.
869 	 */
870 	spinlock_enter();
871 	if (setup_func != NULL)
872 		setup_func(arg);
873 	if (action_func != NULL)
874 		action_func(arg);
875 	if (teardown_func != NULL)
876 		teardown_func(arg);
877 	spinlock_exit();
878 }
879 
880 void
smp_rendezvous(void (* setup_func)(void *),void (* action_func)(void *),void (* teardown_func)(void *),void * arg)881 smp_rendezvous(void (*setup_func)(void *),
882 	       void (*action_func)(void *),
883 	       void (*teardown_func)(void *),
884 	       void *arg)
885 {
886 
887 	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func,
888 	    arg);
889 }
890 
891 /*
892  * Provide dummy SMP support for UP kernels.  Modules that need to use SMP
893  * APIs will still work using this dummy support.
894  */
895 static void
mp_setvariables_for_up(void * dummy)896 mp_setvariables_for_up(void *dummy)
897 {
898 	mp_ncpus = 1;
899 	mp_ncores = 1;
900 	mp_maxid = PCPU_GET(cpuid);
901 	CPU_SETOF(mp_maxid, &all_cpus);
902 	KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
903 }
904 SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
905     mp_setvariables_for_up, NULL);
906 #endif /* SMP */
907 
908 void
smp_no_rendezvous_barrier(void * dummy)909 smp_no_rendezvous_barrier(void *dummy)
910 {
911 #ifdef SMP
912 	KASSERT((!smp_started),("smp_no_rendezvous called and smp is started"));
913 #endif
914 }
915 
916 void
smp_rendezvous_cpus_retry(cpuset_t map,void (* setup_func)(void *),void (* action_func)(void *),void (* teardown_func)(void *),void (* wait_func)(void *,int),struct smp_rendezvous_cpus_retry_arg * arg)917 smp_rendezvous_cpus_retry(cpuset_t map,
918 	void (* setup_func)(void *),
919 	void (* action_func)(void *),
920 	void (* teardown_func)(void *),
921 	void (* wait_func)(void *, int),
922 	struct smp_rendezvous_cpus_retry_arg *arg)
923 {
924 	int cpu;
925 
926 	CPU_COPY(&map, &arg->cpus);
927 
928 	/*
929 	 * Only one CPU to execute on.
930 	 */
931 	if (!smp_started) {
932 		spinlock_enter();
933 		if (setup_func != NULL)
934 			setup_func(arg);
935 		if (action_func != NULL)
936 			action_func(arg);
937 		if (teardown_func != NULL)
938 			teardown_func(arg);
939 		spinlock_exit();
940 		return;
941 	}
942 
943 	/*
944 	 * Execute an action on all specified CPUs while retrying until they
945 	 * all acknowledge completion.
946 	 */
947 	for (;;) {
948 		smp_rendezvous_cpus(
949 		    arg->cpus,
950 		    setup_func,
951 		    action_func,
952 		    teardown_func,
953 		    arg);
954 
955 		if (CPU_EMPTY(&arg->cpus))
956 			break;
957 
958 		CPU_FOREACH(cpu) {
959 			if (!CPU_ISSET(cpu, &arg->cpus))
960 				continue;
961 			wait_func(arg, cpu);
962 		}
963 	}
964 }
965 
966 void
smp_rendezvous_cpus_done(struct smp_rendezvous_cpus_retry_arg * arg)967 smp_rendezvous_cpus_done(struct smp_rendezvous_cpus_retry_arg *arg)
968 {
969 
970 	CPU_CLR_ATOMIC(curcpu, &arg->cpus);
971 }
972 
973 /*
974  * If (prio & PDROP) == 0:
975  * Wait for specified idle threads to switch once.  This ensures that even
976  * preempted threads have cycled through the switch function once,
977  * exiting their codepaths.  This allows us to change global pointers
978  * with no other synchronization.
979  * If (prio & PDROP) != 0:
980  * Force the specified CPUs to switch context at least once.
981  */
982 int
quiesce_cpus(cpuset_t map,const char * wmesg,int prio)983 quiesce_cpus(cpuset_t map, const char *wmesg, int prio)
984 {
985 	struct pcpu *pcpu;
986 	u_int *gen;
987 	int error;
988 	int cpu;
989 
990 	error = 0;
991 	if ((prio & PDROP) == 0) {
992 		gen = mallocarray(sizeof(u_int), mp_maxid + 1, M_TEMP,
993 		    M_WAITOK);
994 		for (cpu = 0; cpu <= mp_maxid; cpu++) {
995 			if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
996 				continue;
997 			pcpu = pcpu_find(cpu);
998 			gen[cpu] = pcpu->pc_idlethread->td_generation;
999 		}
1000 	}
1001 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
1002 		if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
1003 			continue;
1004 		pcpu = pcpu_find(cpu);
1005 		thread_lock(curthread);
1006 		sched_bind(curthread, cpu);
1007 		thread_unlock(curthread);
1008 		if ((prio & PDROP) != 0)
1009 			continue;
1010 		while (gen[cpu] == pcpu->pc_idlethread->td_generation) {
1011 			error = tsleep(quiesce_cpus, prio & ~PDROP, wmesg, 1);
1012 			if (error != EWOULDBLOCK)
1013 				goto out;
1014 			error = 0;
1015 		}
1016 	}
1017 out:
1018 	thread_lock(curthread);
1019 	sched_unbind(curthread);
1020 	thread_unlock(curthread);
1021 	if ((prio & PDROP) == 0)
1022 		free(gen, M_TEMP);
1023 
1024 	return (error);
1025 }
1026 
1027 int
quiesce_all_cpus(const char * wmesg,int prio)1028 quiesce_all_cpus(const char *wmesg, int prio)
1029 {
1030 
1031 	return quiesce_cpus(all_cpus, wmesg, prio);
1032 }
1033 
1034 /*
1035  * Observe all CPUs not executing in critical section.
1036  * We are not in one so the check for us is safe. If the found
1037  * thread changes to something else we know the section was
1038  * exited as well.
1039  */
1040 void
quiesce_all_critical(void)1041 quiesce_all_critical(void)
1042 {
1043 	struct thread *td, *newtd;
1044 	struct pcpu *pcpu;
1045 	int cpu;
1046 
1047 	MPASS(curthread->td_critnest == 0);
1048 
1049 	CPU_FOREACH(cpu) {
1050 		pcpu = cpuid_to_pcpu[cpu];
1051 		td = pcpu->pc_curthread;
1052 		for (;;) {
1053 			if (td->td_critnest == 0)
1054 				break;
1055 			cpu_spinwait();
1056 			newtd = (struct thread *)
1057 			    atomic_load_acq_ptr((void *)pcpu->pc_curthread);
1058 			if (td != newtd)
1059 				break;
1060 		}
1061 	}
1062 }
1063 
1064 static void
cpus_fence_seq_cst_issue(void * arg __unused)1065 cpus_fence_seq_cst_issue(void *arg __unused)
1066 {
1067 
1068 	atomic_thread_fence_seq_cst();
1069 }
1070 
1071 /*
1072  * Send an IPI forcing a sequentially consistent fence.
1073  *
1074  * Allows replacement of an explicitly fence with a compiler barrier.
1075  * Trades speed up during normal execution for a significant slowdown when
1076  * the barrier is needed.
1077  */
1078 void
cpus_fence_seq_cst(void)1079 cpus_fence_seq_cst(void)
1080 {
1081 
1082 #ifdef SMP
1083 	smp_rendezvous(
1084 	    smp_no_rendezvous_barrier,
1085 	    cpus_fence_seq_cst_issue,
1086 	    smp_no_rendezvous_barrier,
1087 	    NULL
1088 	);
1089 #else
1090 	cpus_fence_seq_cst_issue(NULL);
1091 #endif
1092 }
1093 
1094 /* Extra care is taken with this sysctl because the data type is volatile */
1095 static int
sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS)1096 sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS)
1097 {
1098 	int error, active;
1099 
1100 	active = smp_started;
1101 	error = SYSCTL_OUT(req, &active, sizeof(active));
1102 	return (error);
1103 }
1104 
1105 #ifdef SMP
1106 void
topo_init_node(struct topo_node * node)1107 topo_init_node(struct topo_node *node)
1108 {
1109 
1110 	bzero(node, sizeof(*node));
1111 	TAILQ_INIT(&node->children);
1112 }
1113 
1114 void
topo_init_root(struct topo_node * root)1115 topo_init_root(struct topo_node *root)
1116 {
1117 
1118 	topo_init_node(root);
1119 	root->type = TOPO_TYPE_SYSTEM;
1120 }
1121 
1122 /*
1123  * Add a child node with the given ID under the given parent.
1124  * Do nothing if there is already a child with that ID.
1125  */
1126 struct topo_node *
topo_add_node_by_hwid(struct topo_node * parent,int hwid,topo_node_type type,uintptr_t subtype)1127 topo_add_node_by_hwid(struct topo_node *parent, int hwid,
1128     topo_node_type type, uintptr_t subtype)
1129 {
1130 	struct topo_node *node;
1131 
1132 	TAILQ_FOREACH_REVERSE(node, &parent->children,
1133 	    topo_children, siblings) {
1134 		if (node->hwid == hwid
1135 		    && node->type == type && node->subtype == subtype) {
1136 			return (node);
1137 		}
1138 	}
1139 
1140 	node = malloc(sizeof(*node), M_TOPO, M_WAITOK);
1141 	topo_init_node(node);
1142 	node->parent = parent;
1143 	node->hwid = hwid;
1144 	node->type = type;
1145 	node->subtype = subtype;
1146 	TAILQ_INSERT_TAIL(&parent->children, node, siblings);
1147 	parent->nchildren++;
1148 
1149 	return (node);
1150 }
1151 
1152 /*
1153  * Find a child node with the given ID under the given parent.
1154  */
1155 struct topo_node *
topo_find_node_by_hwid(struct topo_node * parent,int hwid,topo_node_type type,uintptr_t subtype)1156 topo_find_node_by_hwid(struct topo_node *parent, int hwid,
1157     topo_node_type type, uintptr_t subtype)
1158 {
1159 
1160 	struct topo_node *node;
1161 
1162 	TAILQ_FOREACH(node, &parent->children, siblings) {
1163 		if (node->hwid == hwid
1164 		    && node->type == type && node->subtype == subtype) {
1165 			return (node);
1166 		}
1167 	}
1168 
1169 	return (NULL);
1170 }
1171 
1172 /*
1173  * Given a node change the order of its parent's child nodes such
1174  * that the node becomes the firt child while preserving the cyclic
1175  * order of the children.  In other words, the given node is promoted
1176  * by rotation.
1177  */
1178 void
topo_promote_child(struct topo_node * child)1179 topo_promote_child(struct topo_node *child)
1180 {
1181 	struct topo_node *next;
1182 	struct topo_node *node;
1183 	struct topo_node *parent;
1184 
1185 	parent = child->parent;
1186 	next = TAILQ_NEXT(child, siblings);
1187 	TAILQ_REMOVE(&parent->children, child, siblings);
1188 	TAILQ_INSERT_HEAD(&parent->children, child, siblings);
1189 
1190 	while (next != NULL) {
1191 		node = next;
1192 		next = TAILQ_NEXT(node, siblings);
1193 		TAILQ_REMOVE(&parent->children, node, siblings);
1194 		TAILQ_INSERT_AFTER(&parent->children, child, node, siblings);
1195 		child = node;
1196 	}
1197 }
1198 
1199 /*
1200  * Iterate to the next node in the depth-first search (traversal) of
1201  * the topology tree.
1202  */
1203 struct topo_node *
topo_next_node(struct topo_node * top,struct topo_node * node)1204 topo_next_node(struct topo_node *top, struct topo_node *node)
1205 {
1206 	struct topo_node *next;
1207 
1208 	if ((next = TAILQ_FIRST(&node->children)) != NULL)
1209 		return (next);
1210 
1211 	if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1212 		return (next);
1213 
1214 	while (node != top && (node = node->parent) != top)
1215 		if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1216 			return (next);
1217 
1218 	return (NULL);
1219 }
1220 
1221 /*
1222  * Iterate to the next node in the depth-first search of the topology tree,
1223  * but without descending below the current node.
1224  */
1225 struct topo_node *
topo_next_nonchild_node(struct topo_node * top,struct topo_node * node)1226 topo_next_nonchild_node(struct topo_node *top, struct topo_node *node)
1227 {
1228 	struct topo_node *next;
1229 
1230 	if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1231 		return (next);
1232 
1233 	while (node != top && (node = node->parent) != top)
1234 		if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1235 			return (next);
1236 
1237 	return (NULL);
1238 }
1239 
1240 /*
1241  * Assign the given ID to the given topology node that represents a logical
1242  * processor.
1243  */
1244 void
topo_set_pu_id(struct topo_node * node,cpuid_t id)1245 topo_set_pu_id(struct topo_node *node, cpuid_t id)
1246 {
1247 
1248 	KASSERT(node->type == TOPO_TYPE_PU,
1249 	    ("topo_set_pu_id: wrong node type: %u", node->type));
1250 	KASSERT(CPU_EMPTY(&node->cpuset) && node->cpu_count == 0,
1251 	    ("topo_set_pu_id: cpuset already not empty"));
1252 	node->id = id;
1253 	CPU_SET(id, &node->cpuset);
1254 	node->cpu_count = 1;
1255 	node->subtype = 1;
1256 
1257 	while ((node = node->parent) != NULL) {
1258 		KASSERT(!CPU_ISSET(id, &node->cpuset),
1259 		    ("logical ID %u is already set in node %p", id, node));
1260 		CPU_SET(id, &node->cpuset);
1261 		node->cpu_count++;
1262 	}
1263 }
1264 
1265 static struct topology_spec {
1266 	topo_node_type	type;
1267 	bool		match_subtype;
1268 	uintptr_t	subtype;
1269 } topology_level_table[TOPO_LEVEL_COUNT] = {
1270 	[TOPO_LEVEL_PKG] = { .type = TOPO_TYPE_PKG, },
1271 	[TOPO_LEVEL_GROUP] = { .type = TOPO_TYPE_GROUP, },
1272 	[TOPO_LEVEL_CACHEGROUP] = {
1273 		.type = TOPO_TYPE_CACHE,
1274 		.match_subtype = true,
1275 		.subtype = CG_SHARE_L3,
1276 	},
1277 	[TOPO_LEVEL_CORE] = { .type = TOPO_TYPE_CORE, },
1278 	[TOPO_LEVEL_THREAD] = { .type = TOPO_TYPE_PU, },
1279 };
1280 
1281 static bool
topo_analyze_table(struct topo_node * root,int all,enum topo_level level,struct topo_analysis * results)1282 topo_analyze_table(struct topo_node *root, int all, enum topo_level level,
1283     struct topo_analysis *results)
1284 {
1285 	struct topology_spec *spec;
1286 	struct topo_node *node;
1287 	int count;
1288 
1289 	if (level >= TOPO_LEVEL_COUNT)
1290 		return (true);
1291 
1292 	spec = &topology_level_table[level];
1293 	count = 0;
1294 	node = topo_next_node(root, root);
1295 
1296 	while (node != NULL) {
1297 		if (node->type != spec->type ||
1298 		    (spec->match_subtype && node->subtype != spec->subtype)) {
1299 			node = topo_next_node(root, node);
1300 			continue;
1301 		}
1302 		if (!all && CPU_EMPTY(&node->cpuset)) {
1303 			node = topo_next_nonchild_node(root, node);
1304 			continue;
1305 		}
1306 
1307 		count++;
1308 
1309 		if (!topo_analyze_table(node, all, level + 1, results))
1310 			return (false);
1311 
1312 		node = topo_next_nonchild_node(root, node);
1313 	}
1314 
1315 	/* No explicit subgroups is essentially one subgroup. */
1316 	if (count == 0) {
1317 		count = 1;
1318 
1319 		if (!topo_analyze_table(root, all, level + 1, results))
1320 			return (false);
1321 	}
1322 
1323 	if (results->entities[level] == -1)
1324 		results->entities[level] = count;
1325 	else if (results->entities[level] != count)
1326 		return (false);
1327 
1328 	return (true);
1329 }
1330 
1331 /*
1332  * Check if the topology is uniform, that is, each package has the same number
1333  * of cores in it and each core has the same number of threads (logical
1334  * processors) in it.  If so, calculate the number of packages, the number of
1335  * groups per package, the number of cachegroups per group, and the number of
1336  * logical processors per cachegroup.  'all' parameter tells whether to include
1337  * administratively disabled logical processors into the analysis.
1338  */
1339 int
topo_analyze(struct topo_node * topo_root,int all,struct topo_analysis * results)1340 topo_analyze(struct topo_node *topo_root, int all,
1341     struct topo_analysis *results)
1342 {
1343 
1344 	results->entities[TOPO_LEVEL_PKG] = -1;
1345 	results->entities[TOPO_LEVEL_CORE] = -1;
1346 	results->entities[TOPO_LEVEL_THREAD] = -1;
1347 	results->entities[TOPO_LEVEL_GROUP] = -1;
1348 	results->entities[TOPO_LEVEL_CACHEGROUP] = -1;
1349 
1350 	if (!topo_analyze_table(topo_root, all, TOPO_LEVEL_PKG, results))
1351 		return (0);
1352 
1353 	KASSERT(results->entities[TOPO_LEVEL_PKG] > 0,
1354 		("bug in topology or analysis"));
1355 
1356 	return (1);
1357 }
1358 
1359 #endif /* SMP */
1360