1 /*-
2 * Copyright (c) 2005-2009 Jung-uk Kim <jkim@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27 #include <stand.h>
28 #include <sys/endian.h>
29
30 #define PTOV(x) ptov(x)
31
32 /*
33 * Detect SMBIOS and export information about the SMBIOS into the
34 * environment.
35 *
36 * System Management BIOS Reference Specification, v2.6 Final
37 * http://www.dmtf.org/standards/published_documents/DSP0134_2.6.0.pdf
38 *
39 * System Management BIOS (SMBIOS) Reference Specification, 3.6.0
40 * https://www.dmtf.org/sites/default/files/standards/documents/DSP0134_3.6.0.pdf
41 */
42
43 /*
44 * The first quoted paragraph below can also be found in section 2.1.1 SMBIOS
45 * Structure Table Entry Point of System Management BIOS Reference
46 * Specification, v2.6 Final
47 *
48 * (From System Management BIOS (SMBIOS) Reference Specification, 3.6.0)
49 * 5.2.1 SMBIOS 2.1 (32-bit) Entry Point
50 *
51 * "On non-UEFI systems, the 32-bit SMBIOS Entry Point structure, can be
52 * located by application software by searching for the anchor-string on
53 * paragraph (16-byte) boundaries within the physical memory address
54 * range 000F0000h to 000FFFFFh. This entry point encapsulates an intermediate
55 * anchor string that is used by some existing DMI browsers.
56 *
57 * On UEFI-based systems, the SMBIOS Entry Point structure can be located by
58 * looking in the EFI Configuration Table for the SMBIOS GUID
59 * (SMBIOS_TABLE_GUID, {EB9D2D31-2D88-11D3-9A16-0090273FC14D}) and using the
60 * associated pointer. See section 4.6 of the UEFI Specification for details.
61 * See section 2.3 of the UEFI Specification for how to report the containing
62 * memory type.
63 *
64 * NOTE While the SMBIOS Major and Minor Versions (offsets 06h and 07h)
65 * currently duplicate the information that is present in the SMBIOS BCD
66 * Revision (offset 1Eh), they provide a path for future growth in this
67 * specification. The BCD Revision, for example, provides only a single digit
68 * for each of the major and minor version numbers."
69 *
70 * 5.2.2 SMBIOS 860 3.0 (64-bit) Entry Point
71 *
72 * "On non-UEFI systems, the 64-bit SMBIOS Entry Point structure can be located
73 * by application software by searching for the anchor-string on paragraph
74 * (16-byte) boundaries within the physical memory address range 000F0000h to
75 * 000FFFFFh.
76 *
77 * On UEFI-based systems, the SMBIOS Entry Point structure can be located by
78 * looking in the EFI Configuration Table for the SMBIOS 3.x GUID
79 * (SMBIOS3_TABLE_GUID, {F2FD1544-9794-4A2C-992E-E5BBCF20E394}) and using the
80 * associated pointer. See section 4.6 of the UEFI Specification for details.
81 * See section 2.3 of the UEFI Specification for how to report the containing
82 * memory type."
83 */
84 #define SMBIOS_START 0xf0000
85 #define SMBIOS_LENGTH 0x10000
86 #define SMBIOS_STEP 0x10
87 #define SMBIOS_SIG "_SM_"
88 #define SMBIOS3_SIG "_SM3_"
89 #define SMBIOS_DMI_SIG "_DMI_"
90 #define SMBIOS_EOT_TYPE 0x7f
91
92 /*
93 * 5.1 General
94 *...
95 * NOTE The Entry Point Structure and all SMBIOS structures assume a
96 * little-endian ordering convention...
97 * ...
98 *
99 * We use memcpy to avoid unaligned access to memory. To normal memory, this is
100 * fine, but the memory we are using might be mmap'd /dev/mem which under Linux
101 * on aarch64 doesn't allow unaligned access. leXdec and friends can't be used
102 * because those can optimize to an unaligned load (which often is fine, but not
103 * for mmap'd /dev/mem which has special memory attributes).
104 */
105 static inline uint8_t
SMBIOS_GET8(const caddr_t base,int off)106 SMBIOS_GET8(const caddr_t base, int off)
107 {
108 return (base[off]);
109 }
110
111 static inline uint16_t
SMBIOS_GET16(const caddr_t base,int off)112 SMBIOS_GET16(const caddr_t base, int off)
113 {
114 uint16_t v;
115
116 memcpy(&v, base + off, sizeof(v));
117 return (le16toh(v));
118 }
119
120 static inline uint32_t
SMBIOS_GET32(const caddr_t base,int off)121 SMBIOS_GET32(const caddr_t base, int off)
122 {
123 uint32_t v;
124
125 memcpy(&v, base + off, sizeof(v));
126 return (le32toh(v));
127 }
128
129 static inline uint64_t
SMBIOS_GET64(const caddr_t base,int off)130 SMBIOS_GET64(const caddr_t base, int off)
131 {
132 uint64_t v;
133
134 memcpy(&v, base + off, sizeof(v));
135 return (le64toh(v));
136 }
137
138 #define SMBIOS_GETLEN(base) SMBIOS_GET8(base, 0x01)
139 #define SMBIOS_GETSTR(base) ((base) + SMBIOS_GETLEN(base))
140
141 struct smbios_attr {
142 int is_64bit_ep;
143 caddr_t addr;
144 size_t length;
145 size_t count;
146 int major;
147 int minor;
148 int ver;
149 const char* bios_vendor;
150 const char* maker;
151 const char* product;
152 uint32_t enabled_memory;
153 uint32_t old_enabled_memory;
154 uint8_t enabled_sockets;
155 uint8_t populated_sockets;
156 };
157
158 static struct smbios_attr smbios;
159
160 static uint8_t
smbios_checksum(const caddr_t addr,const uint8_t len)161 smbios_checksum(const caddr_t addr, const uint8_t len)
162 {
163 uint8_t sum;
164 int i;
165
166 for (sum = 0, i = 0; i < len; i++)
167 sum += SMBIOS_GET8(addr, i);
168 return (sum);
169 }
170
171 static caddr_t
smbios_sigsearch(const caddr_t addr,const uint32_t len)172 smbios_sigsearch(const caddr_t addr, const uint32_t len)
173 {
174 caddr_t cp;
175 caddr_t v2_p = NULL;
176
177 /* Search on 16-byte boundaries. */
178 for (cp = addr; cp < addr + len; cp += SMBIOS_STEP) {
179 /* v3.0, 64-bit Entry point */
180 if (strncmp(cp, SMBIOS3_SIG, sizeof(SMBIOS3_SIG) - 1) == 0 &&
181 /*
182 * The specification only guarantees the presence of the
183 * Structure Table Maximum Size and Address Entry fields at
184 * offsets 0x0c and 0x10 if the Entry Point Revision is not
185 * 0.
186 */
187 SMBIOS_GET8(cp, 0x0a) != 0 &&
188 smbios_checksum(cp, SMBIOS_GET8(cp, 0x06)) == 0) {
189 #if __SIZEOF_SIZE_T__ < 8
190 uint64_t end_addr;
191
192 end_addr = SMBIOS_GET64(cp, 0x10) + /* Start address. */
193 SMBIOS_GET32(cp, 0x0c); /* Maximum size. */
194 /*
195 * Is the table (or part of it) located above what we
196 * can address?
197 */
198 if ((size_t)end_addr != end_addr)
199 /* Yes, give it up. */
200 continue;
201 #endif
202 smbios.is_64bit_ep = 1;
203 return (cp);
204 }
205
206 /* v2.1, 32-bit Entry point */
207 if (strncmp(cp, SMBIOS_SIG, sizeof(SMBIOS_SIG) - 1) == 0 &&
208 smbios_checksum(cp, SMBIOS_GET8(cp, 0x05)) == 0 &&
209 strncmp(cp + 0x10, SMBIOS_DMI_SIG, 5) == 0 &&
210 smbios_checksum(cp + 0x10, 0x0f) == 0) {
211 /*
212 * Note that we saw this entry point, but don't return
213 * it right now as we favor the 64-bit one if present.
214 */
215 v2_p = cp;
216 }
217 }
218 return (v2_p);
219 }
220
221 static const char*
smbios_getstring(caddr_t addr,const int offset)222 smbios_getstring(caddr_t addr, const int offset)
223 {
224 caddr_t cp;
225 int i, idx;
226
227 idx = SMBIOS_GET8(addr, offset);
228 if (idx != 0) {
229 cp = SMBIOS_GETSTR(addr);
230 for (i = 1; i < idx; i++)
231 cp += strlen(cp) + 1;
232 return cp;
233 }
234 return (NULL);
235 }
236
237 static void
smbios_setenv(const char * name,caddr_t addr,const int offset)238 smbios_setenv(const char *name, caddr_t addr, const int offset)
239 {
240 const char* val;
241
242 val = smbios_getstring(addr, offset);
243 if (val != NULL)
244 setenv(name, val, 1);
245 }
246
247 #ifdef SMBIOS_SERIAL_NUMBERS
248
249 #define UUID_SIZE 16
250 #define UUID_TYPE uint32_t
251 #define UUID_STEP sizeof(UUID_TYPE)
252 #define UUID_ALL_BITS (UUID_SIZE / UUID_STEP)
253 #define UUID_GET(base, off) SMBIOS_GET32(base, off)
254
255 static void
smbios_setuuid(const char * name,const caddr_t addr,const int ver __unused)256 smbios_setuuid(const char *name, const caddr_t addr, const int ver __unused)
257 {
258 char uuid[37];
259 int byteorder, i, ones, zeros;
260 UUID_TYPE n;
261 uint32_t f1;
262 uint16_t f2, f3;
263
264 for (i = 0, ones = 0, zeros = 0; i < UUID_SIZE; i += UUID_STEP) {
265 n = UUID_GET(addr, i) + 1;
266 if (zeros == 0 && n == 0)
267 ones++;
268 else if (ones == 0 && n == 1)
269 zeros++;
270 else
271 break;
272 }
273
274 if (ones != UUID_ALL_BITS && zeros != UUID_ALL_BITS) {
275 /*
276 * 3.3.2.1 System UUID
277 *
278 * "Although RFC 4122 recommends network byte order for all
279 * fields, the PC industry (including the ACPI, UEFI, and
280 * Microsoft specifications) has consistently used
281 * little-endian byte encoding for the first three fields:
282 * time_low, time_mid, time_hi_and_version. The same encoding,
283 * also known as wire format, should also be used for the
284 * SMBIOS representation of the UUID."
285 *
286 * Note: We use network byte order for backward compatibility
287 * unless SMBIOS version is 2.6+ or little-endian is forced.
288 */
289 #if defined(SMBIOS_LITTLE_ENDIAN_UUID)
290 byteorder = LITTLE_ENDIAN;
291 #elif defined(SMBIOS_NETWORK_ENDIAN_UUID)
292 byteorder = BIG_ENDIAN;
293 #else
294 byteorder = ver < 0x0206 ? BIG_ENDIAN : LITTLE_ENDIAN;
295 #endif
296 if (byteorder != LITTLE_ENDIAN) {
297 f1 = ntohl(SMBIOS_GET32(addr, 0));
298 f2 = ntohs(SMBIOS_GET16(addr, 4));
299 f3 = ntohs(SMBIOS_GET16(addr, 6));
300 } else {
301 f1 = le32toh(SMBIOS_GET32(addr, 0));
302 f2 = le16toh(SMBIOS_GET16(addr, 4));
303 f3 = le16toh(SMBIOS_GET16(addr, 6));
304 }
305 sprintf(uuid,
306 "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",
307 f1, f2, f3, SMBIOS_GET8(addr, 8), SMBIOS_GET8(addr, 9),
308 SMBIOS_GET8(addr, 10), SMBIOS_GET8(addr, 11),
309 SMBIOS_GET8(addr, 12), SMBIOS_GET8(addr, 13),
310 SMBIOS_GET8(addr, 14), SMBIOS_GET8(addr, 15));
311 setenv(name, uuid, 1);
312 }
313 }
314
315 #undef UUID_SIZE
316 #undef UUID_TYPE
317 #undef UUID_STEP
318 #undef UUID_ALL_BITS
319 #undef UUID_GET
320
321 #endif
322
323 static const char *
smbios_parse_chassis_type(caddr_t addr)324 smbios_parse_chassis_type(caddr_t addr)
325 {
326 int type;
327
328 type = SMBIOS_GET8(addr, 0x5);
329 switch (type) {
330 case 0x1:
331 return ("Other");
332 case 0x2:
333 return ("Unknown");
334 case 0x3:
335 return ("Desktop");
336 case 0x4:
337 return ("Low Profile Desktop");
338 case 0x5:
339 return ("Pizza Box");
340 case 0x6:
341 return ("Mini Tower");
342 case 0x7:
343 return ("Tower");
344 case 0x8:
345 return ("Portable");
346 case 0x9:
347 return ("Laptop");
348 case 0xA:
349 return ("Notebook");
350 case 0xB:
351 return ("Hand Held");
352 case 0xC:
353 return ("Docking Station");
354 case 0xD:
355 return ("All in One");
356 case 0xE:
357 return ("Sub Notebook");
358 case 0xF:
359 return ("Lunch Box");
360 case 0x10:
361 return ("Space-saving");
362 case 0x11:
363 return ("Main Server Chassis");
364 case 0x12:
365 return ("Expansion Chassis");
366 case 0x13:
367 return ("SubChassis");
368 case 0x14:
369 return ("Bus Expansion Chassis");
370 case 0x15:
371 return ("Peripheral Chassis");
372 case 0x16:
373 return ("RAID Chassis");
374 case 0x17:
375 return ("Rack Mount Chassis");
376 case 0x18:
377 return ("Sealed-case PC");
378 case 0x19:
379 return ("Multi-system chassis");
380 case 0x1A:
381 return ("Compact PCI");
382 case 0x1B:
383 return ("Advanced TCA");
384 case 0x1C:
385 return ("Blade");
386 case 0x1D:
387 return ("Blade Enclosure");
388 case 0x1E:
389 return ("Tablet");
390 case 0x1F:
391 return ("Convertible");
392 case 0x20:
393 return ("Detachable");
394 case 0x21:
395 return ("IoT Gateway");
396 case 0x22:
397 return ("Embedded PC");
398 case 0x23:
399 return ("Mini PC");
400 case 0x24:
401 return ("Stick PC");
402 }
403
404 return ("Undefined");
405 }
406
407 static caddr_t
smbios_parse_table(const caddr_t addr)408 smbios_parse_table(const caddr_t addr)
409 {
410 caddr_t cp;
411 int proc, size, osize, type;
412 uint8_t bios_minor, bios_major;
413 char buf[16];
414
415 type = SMBIOS_GET8(addr, 0); /* 3.1.2 Structure Header Format */
416 switch(type) {
417 case 0: /* 3.3.1 BIOS Information (Type 0) */
418 smbios_setenv("smbios.bios.vendor", addr, 0x04);
419 smbios_setenv("smbios.bios.version", addr, 0x05);
420 smbios_setenv("smbios.bios.reldate", addr, 0x08);
421 bios_major = SMBIOS_GET8(addr, 0x14);
422 bios_minor = SMBIOS_GET8(addr, 0x15);
423 if (bios_minor != 0xFF && bios_major != 0xFF) {
424 snprintf(buf, sizeof(buf), "%u.%u",
425 bios_major, bios_minor);
426 setenv("smbios.bios.revision", buf, 1);
427 }
428 break;
429
430 case 1: /* 3.3.2 System Information (Type 1) */
431 smbios_setenv("smbios.system.maker", addr, 0x04);
432 smbios_setenv("smbios.system.product", addr, 0x05);
433 smbios_setenv("smbios.system.version", addr, 0x06);
434 #ifdef SMBIOS_SERIAL_NUMBERS
435 smbios_setenv("smbios.system.serial", addr, 0x07);
436 smbios_setuuid("smbios.system.uuid", addr + 0x08, smbios.ver);
437 #endif
438 if (smbios.major > 2 ||
439 (smbios.major == 2 && smbios.minor >= 4)) {
440 smbios_setenv("smbios.system.sku", addr, 0x19);
441 smbios_setenv("smbios.system.family", addr, 0x1a);
442 }
443 break;
444
445 case 2: /* 3.3.3 Base Board (or Module) Information (Type 2) */
446 smbios_setenv("smbios.planar.maker", addr, 0x04);
447 smbios_setenv("smbios.planar.product", addr, 0x05);
448 smbios_setenv("smbios.planar.version", addr, 0x06);
449 #ifdef SMBIOS_SERIAL_NUMBERS
450 smbios_setenv("smbios.planar.serial", addr, 0x07);
451 smbios_setenv("smbios.planar.tag", addr, 0x08);
452 #endif
453 smbios_setenv("smbios.planar.location", addr, 0x0a);
454 break;
455
456 case 3: /* 3.3.4 System Enclosure or Chassis (Type 3) */
457 smbios_setenv("smbios.chassis.maker", addr, 0x04);
458 setenv("smbios.chassis.type", smbios_parse_chassis_type(addr), 1);
459 smbios_setenv("smbios.chassis.version", addr, 0x06);
460 #ifdef SMBIOS_SERIAL_NUMBERS
461 smbios_setenv("smbios.chassis.serial", addr, 0x07);
462 smbios_setenv("smbios.chassis.tag", addr, 0x08);
463 #endif
464 break;
465
466 case 4: /* 3.3.5 Processor Information (Type 4) */
467 smbios_setenv("smbios.processor.version", addr, 0x10);
468 /*
469 * Offset 18h: Processor Status
470 *
471 * Bit 7 Reserved, must be 0
472 * Bit 6 CPU Socket Populated
473 * 1 - CPU Socket Populated
474 * 0 - CPU Socket Unpopulated
475 * Bit 5:3 Reserved, must be zero
476 * Bit 2:0 CPU Status
477 * 0h - Unknown
478 * 1h - CPU Enabled
479 * 2h - CPU Disabled by User via BIOS Setup
480 * 3h - CPU Disabled by BIOS (POST Error)
481 * 4h - CPU is Idle, waiting to be enabled
482 * 5-6h - Reserved
483 * 7h - Other
484 */
485 proc = SMBIOS_GET8(addr, 0x18);
486 if ((proc & 0x07) == 1)
487 smbios.enabled_sockets++;
488 if ((proc & 0x40) != 0)
489 smbios.populated_sockets++;
490 break;
491
492 case 6: /* 3.3.7 Memory Module Information (Type 6, Obsolete) */
493 /*
494 * Offset 0Ah: Enabled Size
495 *
496 * Bit 7 Bank connection
497 * 1 - Double-bank connection
498 * 0 - Single-bank connection
499 * Bit 6:0 Size (n), where 2**n is the size in MB
500 * 7Dh - Not determinable (Installed Size only)
501 * 7Eh - Module is installed, but no memory
502 * has been enabled
503 * 7Fh - Not installed
504 */
505 osize = SMBIOS_GET8(addr, 0x0a) & 0x7f;
506 if (osize > 0 && osize < 22)
507 smbios.old_enabled_memory += 1 << (osize + 10);
508 break;
509
510 case 17: /* 3.3.18 Memory Device (Type 17) */
511 /*
512 * Offset 0Ch: Size
513 *
514 * Bit 15 Granularity
515 * 1 - Value is in kilobytes units
516 * 0 - Value is in megabytes units
517 * Bit 14:0 Size
518 */
519 size = SMBIOS_GET16(addr, 0x0c);
520 if (size != 0 && size != 0xffff)
521 smbios.enabled_memory += (size & 0x8000) != 0 ?
522 (size & 0x7fff) : (size << 10);
523 break;
524
525 case SMBIOS_EOT_TYPE: /* 3.3.42 End-of-Table (Type 127) */
526 return (NULL);
527
528 default: /* skip other types */
529 break;
530 }
531
532 /* Find structure terminator. */
533 cp = SMBIOS_GETSTR(addr);
534 while (SMBIOS_GET16(cp, 0) != 0)
535 cp++;
536
537 return (cp + 2);
538 }
539
540 static caddr_t
smbios_find_struct(int type)541 smbios_find_struct(int type)
542 {
543 caddr_t dmi;
544 size_t i;
545 caddr_t ep;
546
547 if (smbios.addr == NULL)
548 return (NULL);
549
550 ep = smbios.addr + smbios.length;
551 for (dmi = smbios.addr, i = 0;
552 dmi < ep && i < smbios.count; i++) {
553 const uint8_t seen_type = SMBIOS_GET8(dmi, 0);
554
555 if (seen_type == type)
556 return (dmi);
557 if (seen_type == SMBIOS_EOT_TYPE)
558 /* End of table. */
559 break;
560 /* Find structure terminator. */
561 dmi = SMBIOS_GETSTR(dmi);
562 while (SMBIOS_GET16(dmi, 0) != 0 && dmi < ep)
563 dmi++;
564 /* Skip it. */
565 dmi += 2;
566 }
567
568 return (NULL);
569 }
570
571 static void
smbios_probe(const caddr_t addr)572 smbios_probe(const caddr_t addr)
573 {
574 caddr_t saddr, info;
575 uintptr_t paddr;
576 int maj_off;
577 int min_off;
578
579 /* Search signatures and validate checksums. */
580 saddr = addr != NULL ? smbios_sigsearch(addr, 1) :
581 smbios_sigsearch(PTOV(SMBIOS_START), SMBIOS_LENGTH);
582 if (saddr == NULL)
583 return;
584
585 if (smbios.is_64bit_ep) {
586 /* Structure Table Length */
587 smbios.length = SMBIOS_GET32(saddr, 0x0c);
588 /* Structure Table Address */
589 paddr = SMBIOS_GET64(saddr, 0x10);
590 /* Not present in V3, set it to the maximum value (no limit). */
591 smbios.count = -1;
592 /*
593 * No BCD revision in V3, we'll determine the version thanks to
594 * the major and minor fields below.
595 */
596 smbios.ver = 0;
597 maj_off = 0x07;
598 min_off = 0x08;
599 } else {
600 /* Structure Table Length */
601 smbios.length = SMBIOS_GET16(saddr, 0x16);
602 /* Structure Table Address */
603 paddr = SMBIOS_GET32(saddr, 0x18);
604 /* No. of SMBIOS Structures */
605 smbios.count = SMBIOS_GET16(saddr, 0x1c);
606 /* SMBIOS BCD Revision */
607 smbios.ver = SMBIOS_GET8(saddr, 0x1e);
608 if (smbios.ver != 0) {
609 smbios.major = smbios.ver >> 4;
610 smbios.minor = smbios.ver & 0x0f;
611 if (smbios.major > 9 || smbios.minor > 9)
612 smbios.ver = 0;
613 }
614 maj_off = 0x06;
615 min_off = 0x07;
616 }
617
618
619 if (smbios.ver == 0) {
620 /*
621 * v3 table, or v2 with BCD revision being 0 or bad. Use the
622 * major and minor version fields.
623 */
624 smbios.major = SMBIOS_GET8(saddr, maj_off);
625 smbios.minor = SMBIOS_GET8(saddr, min_off);
626 }
627 smbios.ver = (smbios.major << 8) | smbios.minor;
628 smbios.addr = PTOV(paddr);
629
630 /* Get system information from SMBIOS */
631 info = smbios_find_struct(0x00);
632 if (info != NULL) {
633 smbios.bios_vendor = smbios_getstring(info, 0x04);
634 }
635 info = smbios_find_struct(0x01);
636 if (info != NULL) {
637 smbios.maker = smbios_getstring(info, 0x04);
638 smbios.product = smbios_getstring(info, 0x05);
639 }
640 }
641
642 caddr_t
smbios_detect(const caddr_t addr)643 smbios_detect(const caddr_t addr)
644 {
645 char buf[16];
646 caddr_t dmi;
647 size_t i;
648
649 smbios_probe(addr);
650 if (smbios.addr == NULL)
651 return (NULL);
652
653 for (dmi = smbios.addr, i = 0; dmi != NULL &&
654 dmi < smbios.addr + smbios.length && i < smbios.count; i++)
655 dmi = smbios_parse_table(dmi);
656
657 setenv("smbios.entry_point_type", smbios.is_64bit_ep ?
658 "v3 (64-bit)" : "v2.1 (32-bit)", 1);
659 sprintf(buf, "%d.%d", smbios.major, smbios.minor);
660 setenv("smbios.version", buf, 1);
661 if (smbios.enabled_memory > 0 || smbios.old_enabled_memory > 0) {
662 sprintf(buf, "%u", smbios.enabled_memory > 0 ?
663 smbios.enabled_memory : smbios.old_enabled_memory);
664 setenv("smbios.memory.enabled", buf, 1);
665 }
666 if (smbios.enabled_sockets > 0) {
667 sprintf(buf, "%u", smbios.enabled_sockets);
668 setenv("smbios.socket.enabled", buf, 1);
669 }
670 if (smbios.populated_sockets > 0) {
671 sprintf(buf, "%u", smbios.populated_sockets);
672 setenv("smbios.socket.populated", buf, 1);
673 }
674
675 return (smbios.addr);
676 }
677
678 static int
smbios_match_str(const char * s1,const char * s2)679 smbios_match_str(const char* s1, const char* s2)
680 {
681 return (s1 == NULL || (s2 != NULL && !strcmp(s1, s2)));
682 }
683
684 int
smbios_match(const char * bios_vendor,const char * maker,const char * product)685 smbios_match(const char* bios_vendor, const char* maker,
686 const char* product)
687 {
688 static bool probed = false;
689
690 /*
691 * This routine is called only from non-EFI loaders on determining the
692 * amount of usable memory. In particular, it is so before malloc() can
693 * be used, so before smbios_detect() can be called (as it uses
694 * setenv()). Consequently, since smbios_probe() is not exported, we
695 * ensure it has been called beforehand to fetch into the static
696 * 'smbios' structure the metadata that is to be matched.
697 */
698 if (!probed) {
699 probed = true;
700 smbios_probe(NULL);
701 }
702
703 return (smbios_match_str(bios_vendor, smbios.bios_vendor) &&
704 smbios_match_str(maker, smbios.maker) &&
705 smbios_match_str(product, smbios.product));
706 }
707