1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-integrity.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/kstrtox.h>
17 #include <linux/memremap.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/nodemask.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31
32 #include "trace.h"
33 #include "nvme.h"
34
35 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
37
38 /* Optimisation for I/Os between 4k and 128k */
39 #define NVME_SMALL_POOL_SIZE 256
40
41 /*
42 * These can be higher, but we need to ensure that any command doesn't
43 * require an sg allocation that needs more than a page of data.
44 */
45 #define NVME_MAX_KB_SZ 8192
46 #define NVME_MAX_NR_DESCRIPTORS 5
47
48 /*
49 * For data SGLs we support a single descriptors worth of SGL entries, but for
50 * now we also limit it to avoid an allocation larger than PAGE_SIZE for the
51 * scatterlist.
52 */
53 #define NVME_MAX_SEGS \
54 min(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc), \
55 (PAGE_SIZE / sizeof(struct scatterlist)))
56
57 /*
58 * For metadata SGLs, only the small descriptor is supported, and the first
59 * entry is the segment descriptor, which for the data pointer sits in the SQE.
60 */
61 #define NVME_MAX_META_SEGS \
62 ((NVME_SMALL_POOL_SIZE / sizeof(struct nvme_sgl_desc)) - 1)
63
64 static int use_threaded_interrupts;
65 module_param(use_threaded_interrupts, int, 0444);
66
67 static bool use_cmb_sqes = true;
68 module_param(use_cmb_sqes, bool, 0444);
69 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
70
71 static unsigned int max_host_mem_size_mb = 128;
72 module_param(max_host_mem_size_mb, uint, 0444);
73 MODULE_PARM_DESC(max_host_mem_size_mb,
74 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
75
76 static unsigned int sgl_threshold = SZ_32K;
77 module_param(sgl_threshold, uint, 0644);
78 MODULE_PARM_DESC(sgl_threshold,
79 "Use SGLs when average request segment size is larger or equal to "
80 "this size. Use 0 to disable SGLs.");
81
82 #define NVME_PCI_MIN_QUEUE_SIZE 2
83 #define NVME_PCI_MAX_QUEUE_SIZE 4095
84 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
85 static const struct kernel_param_ops io_queue_depth_ops = {
86 .set = io_queue_depth_set,
87 .get = param_get_uint,
88 };
89
90 static unsigned int io_queue_depth = 1024;
91 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
92 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
93
io_queue_count_set(const char * val,const struct kernel_param * kp)94 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
95 {
96 unsigned int n;
97 int ret;
98
99 ret = kstrtouint(val, 10, &n);
100 if (ret != 0 || n > num_possible_cpus())
101 return -EINVAL;
102 return param_set_uint(val, kp);
103 }
104
105 static const struct kernel_param_ops io_queue_count_ops = {
106 .set = io_queue_count_set,
107 .get = param_get_uint,
108 };
109
110 static unsigned int write_queues;
111 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
112 MODULE_PARM_DESC(write_queues,
113 "Number of queues to use for writes. If not set, reads and writes "
114 "will share a queue set.");
115
116 static unsigned int poll_queues;
117 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
118 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
119
120 static bool noacpi;
121 module_param(noacpi, bool, 0444);
122 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
123
124 struct nvme_dev;
125 struct nvme_queue;
126
127 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
128 static void nvme_delete_io_queues(struct nvme_dev *dev);
129 static void nvme_update_attrs(struct nvme_dev *dev);
130
131 struct nvme_descriptor_pools {
132 struct dma_pool *large;
133 struct dma_pool *small;
134 };
135
136 /*
137 * Represents an NVM Express device. Each nvme_dev is a PCI function.
138 */
139 struct nvme_dev {
140 struct nvme_queue *queues;
141 struct blk_mq_tag_set tagset;
142 struct blk_mq_tag_set admin_tagset;
143 u32 __iomem *dbs;
144 struct device *dev;
145 unsigned online_queues;
146 unsigned max_qid;
147 unsigned io_queues[HCTX_MAX_TYPES];
148 unsigned int num_vecs;
149 u32 q_depth;
150 int io_sqes;
151 u32 db_stride;
152 void __iomem *bar;
153 unsigned long bar_mapped_size;
154 struct mutex shutdown_lock;
155 bool subsystem;
156 u64 cmb_size;
157 bool cmb_use_sqes;
158 u32 cmbsz;
159 u32 cmbloc;
160 struct nvme_ctrl ctrl;
161 u32 last_ps;
162 bool hmb;
163 struct sg_table *hmb_sgt;
164
165 mempool_t *iod_mempool;
166 mempool_t *iod_meta_mempool;
167
168 /* shadow doorbell buffer support: */
169 __le32 *dbbuf_dbs;
170 dma_addr_t dbbuf_dbs_dma_addr;
171 __le32 *dbbuf_eis;
172 dma_addr_t dbbuf_eis_dma_addr;
173
174 /* host memory buffer support: */
175 u64 host_mem_size;
176 u32 nr_host_mem_descs;
177 u32 host_mem_descs_size;
178 dma_addr_t host_mem_descs_dma;
179 struct nvme_host_mem_buf_desc *host_mem_descs;
180 void **host_mem_desc_bufs;
181 unsigned int nr_allocated_queues;
182 unsigned int nr_write_queues;
183 unsigned int nr_poll_queues;
184 struct nvme_descriptor_pools descriptor_pools[];
185 };
186
io_queue_depth_set(const char * val,const struct kernel_param * kp)187 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
188 {
189 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
190 NVME_PCI_MAX_QUEUE_SIZE);
191 }
192
sq_idx(unsigned int qid,u32 stride)193 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
194 {
195 return qid * 2 * stride;
196 }
197
cq_idx(unsigned int qid,u32 stride)198 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
199 {
200 return (qid * 2 + 1) * stride;
201 }
202
to_nvme_dev(struct nvme_ctrl * ctrl)203 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
204 {
205 return container_of(ctrl, struct nvme_dev, ctrl);
206 }
207
208 /*
209 * An NVM Express queue. Each device has at least two (one for admin
210 * commands and one for I/O commands).
211 */
212 struct nvme_queue {
213 struct nvme_dev *dev;
214 struct nvme_descriptor_pools descriptor_pools;
215 spinlock_t sq_lock;
216 void *sq_cmds;
217 /* only used for poll queues: */
218 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
219 struct nvme_completion *cqes;
220 dma_addr_t sq_dma_addr;
221 dma_addr_t cq_dma_addr;
222 u32 __iomem *q_db;
223 u32 q_depth;
224 u16 cq_vector;
225 u16 sq_tail;
226 u16 last_sq_tail;
227 u16 cq_head;
228 u16 qid;
229 u8 cq_phase;
230 u8 sqes;
231 unsigned long flags;
232 #define NVMEQ_ENABLED 0
233 #define NVMEQ_SQ_CMB 1
234 #define NVMEQ_DELETE_ERROR 2
235 #define NVMEQ_POLLED 3
236 __le32 *dbbuf_sq_db;
237 __le32 *dbbuf_cq_db;
238 __le32 *dbbuf_sq_ei;
239 __le32 *dbbuf_cq_ei;
240 struct completion delete_done;
241 };
242
243 /* bits for iod->flags */
244 enum nvme_iod_flags {
245 /* this command has been aborted by the timeout handler */
246 IOD_ABORTED = 1U << 0,
247
248 /* uses the small descriptor pool */
249 IOD_SMALL_DESCRIPTOR = 1U << 1,
250 };
251
252 /*
253 * The nvme_iod describes the data in an I/O.
254 */
255 struct nvme_iod {
256 struct nvme_request req;
257 struct nvme_command cmd;
258 u8 flags;
259 u8 nr_descriptors;
260 unsigned int dma_len; /* length of single DMA segment mapping */
261 dma_addr_t first_dma;
262 dma_addr_t meta_dma;
263 struct sg_table sgt;
264 struct sg_table meta_sgt;
265 struct nvme_sgl_desc *meta_descriptor;
266 void *descriptors[NVME_MAX_NR_DESCRIPTORS];
267 };
268
nvme_dbbuf_size(struct nvme_dev * dev)269 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
270 {
271 return dev->nr_allocated_queues * 8 * dev->db_stride;
272 }
273
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)274 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
275 {
276 unsigned int mem_size = nvme_dbbuf_size(dev);
277
278 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
279 return;
280
281 if (dev->dbbuf_dbs) {
282 /*
283 * Clear the dbbuf memory so the driver doesn't observe stale
284 * values from the previous instantiation.
285 */
286 memset(dev->dbbuf_dbs, 0, mem_size);
287 memset(dev->dbbuf_eis, 0, mem_size);
288 return;
289 }
290
291 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
292 &dev->dbbuf_dbs_dma_addr,
293 GFP_KERNEL);
294 if (!dev->dbbuf_dbs)
295 goto fail;
296 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
297 &dev->dbbuf_eis_dma_addr,
298 GFP_KERNEL);
299 if (!dev->dbbuf_eis)
300 goto fail_free_dbbuf_dbs;
301 return;
302
303 fail_free_dbbuf_dbs:
304 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
305 dev->dbbuf_dbs_dma_addr);
306 dev->dbbuf_dbs = NULL;
307 fail:
308 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
309 }
310
nvme_dbbuf_dma_free(struct nvme_dev * dev)311 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
312 {
313 unsigned int mem_size = nvme_dbbuf_size(dev);
314
315 if (dev->dbbuf_dbs) {
316 dma_free_coherent(dev->dev, mem_size,
317 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
318 dev->dbbuf_dbs = NULL;
319 }
320 if (dev->dbbuf_eis) {
321 dma_free_coherent(dev->dev, mem_size,
322 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
323 dev->dbbuf_eis = NULL;
324 }
325 }
326
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)327 static void nvme_dbbuf_init(struct nvme_dev *dev,
328 struct nvme_queue *nvmeq, int qid)
329 {
330 if (!dev->dbbuf_dbs || !qid)
331 return;
332
333 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
334 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
335 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
336 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
337 }
338
nvme_dbbuf_free(struct nvme_queue * nvmeq)339 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
340 {
341 if (!nvmeq->qid)
342 return;
343
344 nvmeq->dbbuf_sq_db = NULL;
345 nvmeq->dbbuf_cq_db = NULL;
346 nvmeq->dbbuf_sq_ei = NULL;
347 nvmeq->dbbuf_cq_ei = NULL;
348 }
349
nvme_dbbuf_set(struct nvme_dev * dev)350 static void nvme_dbbuf_set(struct nvme_dev *dev)
351 {
352 struct nvme_command c = { };
353 unsigned int i;
354
355 if (!dev->dbbuf_dbs)
356 return;
357
358 c.dbbuf.opcode = nvme_admin_dbbuf;
359 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
360 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
361
362 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
363 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
364 /* Free memory and continue on */
365 nvme_dbbuf_dma_free(dev);
366
367 for (i = 1; i <= dev->online_queues; i++)
368 nvme_dbbuf_free(&dev->queues[i]);
369 }
370 }
371
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)372 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
373 {
374 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
375 }
376
377 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)378 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
379 volatile __le32 *dbbuf_ei)
380 {
381 if (dbbuf_db) {
382 u16 old_value, event_idx;
383
384 /*
385 * Ensure that the queue is written before updating
386 * the doorbell in memory
387 */
388 wmb();
389
390 old_value = le32_to_cpu(*dbbuf_db);
391 *dbbuf_db = cpu_to_le32(value);
392
393 /*
394 * Ensure that the doorbell is updated before reading the event
395 * index from memory. The controller needs to provide similar
396 * ordering to ensure the event index is updated before reading
397 * the doorbell.
398 */
399 mb();
400
401 event_idx = le32_to_cpu(*dbbuf_ei);
402 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
403 return false;
404 }
405
406 return true;
407 }
408
409 /*
410 * Will slightly overestimate the number of pages needed. This is OK
411 * as it only leads to a small amount of wasted memory for the lifetime of
412 * the I/O.
413 */
nvme_pci_npages_prp(void)414 static __always_inline int nvme_pci_npages_prp(void)
415 {
416 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
417 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
418 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
419 }
420
421 static struct nvme_descriptor_pools *
nvme_setup_descriptor_pools(struct nvme_dev * dev,unsigned numa_node)422 nvme_setup_descriptor_pools(struct nvme_dev *dev, unsigned numa_node)
423 {
424 struct nvme_descriptor_pools *pools = &dev->descriptor_pools[numa_node];
425 size_t small_align = NVME_SMALL_POOL_SIZE;
426
427 if (pools->small)
428 return pools; /* already initialized */
429
430 pools->large = dma_pool_create_node("nvme descriptor page", dev->dev,
431 NVME_CTRL_PAGE_SIZE, NVME_CTRL_PAGE_SIZE, 0, numa_node);
432 if (!pools->large)
433 return ERR_PTR(-ENOMEM);
434
435 if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
436 small_align = 512;
437
438 pools->small = dma_pool_create_node("nvme descriptor small", dev->dev,
439 NVME_SMALL_POOL_SIZE, small_align, 0, numa_node);
440 if (!pools->small) {
441 dma_pool_destroy(pools->large);
442 pools->large = NULL;
443 return ERR_PTR(-ENOMEM);
444 }
445
446 return pools;
447 }
448
nvme_release_descriptor_pools(struct nvme_dev * dev)449 static void nvme_release_descriptor_pools(struct nvme_dev *dev)
450 {
451 unsigned i;
452
453 for (i = 0; i < nr_node_ids; i++) {
454 struct nvme_descriptor_pools *pools = &dev->descriptor_pools[i];
455
456 dma_pool_destroy(pools->large);
457 dma_pool_destroy(pools->small);
458 }
459 }
460
nvme_init_hctx_common(struct blk_mq_hw_ctx * hctx,void * data,unsigned qid)461 static int nvme_init_hctx_common(struct blk_mq_hw_ctx *hctx, void *data,
462 unsigned qid)
463 {
464 struct nvme_dev *dev = to_nvme_dev(data);
465 struct nvme_queue *nvmeq = &dev->queues[qid];
466 struct nvme_descriptor_pools *pools;
467 struct blk_mq_tags *tags;
468
469 tags = qid ? dev->tagset.tags[qid - 1] : dev->admin_tagset.tags[0];
470 WARN_ON(tags != hctx->tags);
471 pools = nvme_setup_descriptor_pools(dev, hctx->numa_node);
472 if (IS_ERR(pools))
473 return PTR_ERR(pools);
474
475 nvmeq->descriptor_pools = *pools;
476 hctx->driver_data = nvmeq;
477 return 0;
478 }
479
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)480 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
481 unsigned int hctx_idx)
482 {
483 WARN_ON(hctx_idx != 0);
484 return nvme_init_hctx_common(hctx, data, 0);
485 }
486
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)487 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
488 unsigned int hctx_idx)
489 {
490 return nvme_init_hctx_common(hctx, data, hctx_idx + 1);
491 }
492
nvme_pci_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)493 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
494 struct request *req, unsigned int hctx_idx,
495 unsigned int numa_node)
496 {
497 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
498
499 nvme_req(req)->ctrl = set->driver_data;
500 nvme_req(req)->cmd = &iod->cmd;
501 return 0;
502 }
503
queue_irq_offset(struct nvme_dev * dev)504 static int queue_irq_offset(struct nvme_dev *dev)
505 {
506 /* if we have more than 1 vec, admin queue offsets us by 1 */
507 if (dev->num_vecs > 1)
508 return 1;
509
510 return 0;
511 }
512
nvme_pci_map_queues(struct blk_mq_tag_set * set)513 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
514 {
515 struct nvme_dev *dev = to_nvme_dev(set->driver_data);
516 int i, qoff, offset;
517
518 offset = queue_irq_offset(dev);
519 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
520 struct blk_mq_queue_map *map = &set->map[i];
521
522 map->nr_queues = dev->io_queues[i];
523 if (!map->nr_queues) {
524 BUG_ON(i == HCTX_TYPE_DEFAULT);
525 continue;
526 }
527
528 /*
529 * The poll queue(s) doesn't have an IRQ (and hence IRQ
530 * affinity), so use the regular blk-mq cpu mapping
531 */
532 map->queue_offset = qoff;
533 if (i != HCTX_TYPE_POLL && offset)
534 blk_mq_map_hw_queues(map, dev->dev, offset);
535 else
536 blk_mq_map_queues(map);
537 qoff += map->nr_queues;
538 offset += map->nr_queues;
539 }
540 }
541
542 /*
543 * Write sq tail if we are asked to, or if the next command would wrap.
544 */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)545 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
546 {
547 if (!write_sq) {
548 u16 next_tail = nvmeq->sq_tail + 1;
549
550 if (next_tail == nvmeq->q_depth)
551 next_tail = 0;
552 if (next_tail != nvmeq->last_sq_tail)
553 return;
554 }
555
556 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
557 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
558 writel(nvmeq->sq_tail, nvmeq->q_db);
559 nvmeq->last_sq_tail = nvmeq->sq_tail;
560 }
561
nvme_sq_copy_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)562 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
563 struct nvme_command *cmd)
564 {
565 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
566 absolute_pointer(cmd), sizeof(*cmd));
567 if (++nvmeq->sq_tail == nvmeq->q_depth)
568 nvmeq->sq_tail = 0;
569 }
570
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)571 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
572 {
573 struct nvme_queue *nvmeq = hctx->driver_data;
574
575 spin_lock(&nvmeq->sq_lock);
576 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
577 nvme_write_sq_db(nvmeq, true);
578 spin_unlock(&nvmeq->sq_lock);
579 }
580
nvme_pci_metadata_use_sgls(struct nvme_dev * dev,struct request * req)581 static inline bool nvme_pci_metadata_use_sgls(struct nvme_dev *dev,
582 struct request *req)
583 {
584 if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl))
585 return false;
586 return req->nr_integrity_segments > 1 ||
587 nvme_req(req)->flags & NVME_REQ_USERCMD;
588 }
589
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req,int nseg)590 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
591 int nseg)
592 {
593 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
594 unsigned int avg_seg_size;
595
596 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
597
598 if (!nvme_ctrl_sgl_supported(&dev->ctrl))
599 return false;
600 if (!nvmeq->qid)
601 return false;
602 if (nvme_pci_metadata_use_sgls(dev, req))
603 return true;
604 if (!sgl_threshold || avg_seg_size < sgl_threshold)
605 return nvme_req(req)->flags & NVME_REQ_USERCMD;
606 return true;
607 }
608
nvme_dma_pool(struct nvme_queue * nvmeq,struct nvme_iod * iod)609 static inline struct dma_pool *nvme_dma_pool(struct nvme_queue *nvmeq,
610 struct nvme_iod *iod)
611 {
612 if (iod->flags & IOD_SMALL_DESCRIPTOR)
613 return nvmeq->descriptor_pools.small;
614 return nvmeq->descriptor_pools.large;
615 }
616
nvme_free_descriptors(struct nvme_queue * nvmeq,struct request * req)617 static void nvme_free_descriptors(struct nvme_queue *nvmeq, struct request *req)
618 {
619 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
620 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
621 dma_addr_t dma_addr = iod->first_dma;
622 int i;
623
624 if (iod->nr_descriptors == 1) {
625 dma_pool_free(nvme_dma_pool(nvmeq, iod), iod->descriptors[0],
626 dma_addr);
627 return;
628 }
629
630 for (i = 0; i < iod->nr_descriptors; i++) {
631 __le64 *prp_list = iod->descriptors[i];
632 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
633
634 dma_pool_free(nvmeq->descriptor_pools.large, prp_list,
635 dma_addr);
636 dma_addr = next_dma_addr;
637 }
638 }
639
nvme_unmap_data(struct nvme_dev * dev,struct nvme_queue * nvmeq,struct request * req)640 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_queue *nvmeq,
641 struct request *req)
642 {
643 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
644
645 if (iod->dma_len) {
646 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
647 rq_dma_dir(req));
648 return;
649 }
650
651 WARN_ON_ONCE(!iod->sgt.nents);
652
653 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
654 nvme_free_descriptors(nvmeq, req);
655 mempool_free(iod->sgt.sgl, dev->iod_mempool);
656 }
657
nvme_print_sgl(struct scatterlist * sgl,int nents)658 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
659 {
660 int i;
661 struct scatterlist *sg;
662
663 for_each_sg(sgl, sg, nents, i) {
664 dma_addr_t phys = sg_phys(sg);
665 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
666 "dma_address:%pad dma_length:%d\n",
667 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
668 sg_dma_len(sg));
669 }
670 }
671
nvme_pci_setup_prps(struct nvme_queue * nvmeq,struct request * req,struct nvme_rw_command * cmnd)672 static blk_status_t nvme_pci_setup_prps(struct nvme_queue *nvmeq,
673 struct request *req, struct nvme_rw_command *cmnd)
674 {
675 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
676 int length = blk_rq_payload_bytes(req);
677 struct scatterlist *sg = iod->sgt.sgl;
678 int dma_len = sg_dma_len(sg);
679 u64 dma_addr = sg_dma_address(sg);
680 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
681 __le64 *prp_list;
682 dma_addr_t prp_dma;
683 int i;
684
685 length -= (NVME_CTRL_PAGE_SIZE - offset);
686 if (length <= 0) {
687 iod->first_dma = 0;
688 goto done;
689 }
690
691 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
692 if (dma_len) {
693 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
694 } else {
695 sg = sg_next(sg);
696 dma_addr = sg_dma_address(sg);
697 dma_len = sg_dma_len(sg);
698 }
699
700 if (length <= NVME_CTRL_PAGE_SIZE) {
701 iod->first_dma = dma_addr;
702 goto done;
703 }
704
705 if (DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE) <=
706 NVME_SMALL_POOL_SIZE / sizeof(__le64))
707 iod->flags |= IOD_SMALL_DESCRIPTOR;
708
709 prp_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
710 &prp_dma);
711 if (!prp_list)
712 return BLK_STS_RESOURCE;
713 iod->descriptors[iod->nr_descriptors++] = prp_list;
714 iod->first_dma = prp_dma;
715 i = 0;
716 for (;;) {
717 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
718 __le64 *old_prp_list = prp_list;
719
720 prp_list = dma_pool_alloc(nvmeq->descriptor_pools.large,
721 GFP_ATOMIC, &prp_dma);
722 if (!prp_list)
723 goto free_prps;
724 iod->descriptors[iod->nr_descriptors++] = prp_list;
725 prp_list[0] = old_prp_list[i - 1];
726 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
727 i = 1;
728 }
729 prp_list[i++] = cpu_to_le64(dma_addr);
730 dma_len -= NVME_CTRL_PAGE_SIZE;
731 dma_addr += NVME_CTRL_PAGE_SIZE;
732 length -= NVME_CTRL_PAGE_SIZE;
733 if (length <= 0)
734 break;
735 if (dma_len > 0)
736 continue;
737 if (unlikely(dma_len < 0))
738 goto bad_sgl;
739 sg = sg_next(sg);
740 dma_addr = sg_dma_address(sg);
741 dma_len = sg_dma_len(sg);
742 }
743 done:
744 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
745 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
746 return BLK_STS_OK;
747 free_prps:
748 nvme_free_descriptors(nvmeq, req);
749 return BLK_STS_RESOURCE;
750 bad_sgl:
751 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
752 "Invalid SGL for payload:%d nents:%d\n",
753 blk_rq_payload_bytes(req), iod->sgt.nents);
754 return BLK_STS_IOERR;
755 }
756
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)757 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
758 struct scatterlist *sg)
759 {
760 sge->addr = cpu_to_le64(sg_dma_address(sg));
761 sge->length = cpu_to_le32(sg_dma_len(sg));
762 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
763 }
764
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)765 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
766 dma_addr_t dma_addr, int entries)
767 {
768 sge->addr = cpu_to_le64(dma_addr);
769 sge->length = cpu_to_le32(entries * sizeof(*sge));
770 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
771 }
772
nvme_pci_setup_sgls(struct nvme_queue * nvmeq,struct request * req,struct nvme_rw_command * cmd)773 static blk_status_t nvme_pci_setup_sgls(struct nvme_queue *nvmeq,
774 struct request *req, struct nvme_rw_command *cmd)
775 {
776 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
777 struct nvme_sgl_desc *sg_list;
778 struct scatterlist *sg = iod->sgt.sgl;
779 unsigned int entries = iod->sgt.nents;
780 dma_addr_t sgl_dma;
781 int i = 0;
782
783 /* setting the transfer type as SGL */
784 cmd->flags = NVME_CMD_SGL_METABUF;
785
786 if (entries == 1) {
787 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
788 return BLK_STS_OK;
789 }
790
791 if (entries <= NVME_SMALL_POOL_SIZE / sizeof(*sg_list))
792 iod->flags |= IOD_SMALL_DESCRIPTOR;
793
794 sg_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
795 &sgl_dma);
796 if (!sg_list)
797 return BLK_STS_RESOURCE;
798 iod->descriptors[iod->nr_descriptors++] = sg_list;
799 iod->first_dma = sgl_dma;
800
801 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
802 do {
803 nvme_pci_sgl_set_data(&sg_list[i++], sg);
804 sg = sg_next(sg);
805 } while (--entries > 0);
806
807 return BLK_STS_OK;
808 }
809
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)810 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
811 struct request *req, struct nvme_rw_command *cmnd,
812 struct bio_vec *bv)
813 {
814 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
815 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
816 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
817
818 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
819 if (dma_mapping_error(dev->dev, iod->first_dma))
820 return BLK_STS_RESOURCE;
821 iod->dma_len = bv->bv_len;
822
823 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
824 if (bv->bv_len > first_prp_len)
825 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
826 else
827 cmnd->dptr.prp2 = 0;
828 return BLK_STS_OK;
829 }
830
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)831 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
832 struct request *req, struct nvme_rw_command *cmnd,
833 struct bio_vec *bv)
834 {
835 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
836
837 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
838 if (dma_mapping_error(dev->dev, iod->first_dma))
839 return BLK_STS_RESOURCE;
840 iod->dma_len = bv->bv_len;
841
842 cmnd->flags = NVME_CMD_SGL_METABUF;
843 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
844 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
845 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
846 return BLK_STS_OK;
847 }
848
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)849 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
850 struct nvme_command *cmnd)
851 {
852 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
853 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
854 blk_status_t ret = BLK_STS_RESOURCE;
855 int rc;
856
857 if (blk_rq_nr_phys_segments(req) == 1) {
858 struct bio_vec bv = req_bvec(req);
859
860 if (!is_pci_p2pdma_page(bv.bv_page)) {
861 if (!nvme_pci_metadata_use_sgls(dev, req) &&
862 (bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) +
863 bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
864 return nvme_setup_prp_simple(dev, req,
865 &cmnd->rw, &bv);
866
867 if (nvmeq->qid && sgl_threshold &&
868 nvme_ctrl_sgl_supported(&dev->ctrl))
869 return nvme_setup_sgl_simple(dev, req,
870 &cmnd->rw, &bv);
871 }
872 }
873
874 iod->dma_len = 0;
875 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
876 if (!iod->sgt.sgl)
877 return BLK_STS_RESOURCE;
878 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
879 iod->sgt.orig_nents = blk_rq_map_sg(req, iod->sgt.sgl);
880 if (!iod->sgt.orig_nents)
881 goto out_free_sg;
882
883 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
884 DMA_ATTR_NO_WARN);
885 if (rc) {
886 if (rc == -EREMOTEIO)
887 ret = BLK_STS_TARGET;
888 goto out_free_sg;
889 }
890
891 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
892 ret = nvme_pci_setup_sgls(nvmeq, req, &cmnd->rw);
893 else
894 ret = nvme_pci_setup_prps(nvmeq, req, &cmnd->rw);
895 if (ret != BLK_STS_OK)
896 goto out_unmap_sg;
897 return BLK_STS_OK;
898
899 out_unmap_sg:
900 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
901 out_free_sg:
902 mempool_free(iod->sgt.sgl, dev->iod_mempool);
903 return ret;
904 }
905
nvme_pci_setup_meta_sgls(struct nvme_dev * dev,struct request * req)906 static blk_status_t nvme_pci_setup_meta_sgls(struct nvme_dev *dev,
907 struct request *req)
908 {
909 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
910 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
911 struct nvme_rw_command *cmnd = &iod->cmd.rw;
912 struct nvme_sgl_desc *sg_list;
913 struct scatterlist *sgl, *sg;
914 unsigned int entries;
915 dma_addr_t sgl_dma;
916 int rc, i;
917
918 iod->meta_sgt.sgl = mempool_alloc(dev->iod_meta_mempool, GFP_ATOMIC);
919 if (!iod->meta_sgt.sgl)
920 return BLK_STS_RESOURCE;
921
922 sg_init_table(iod->meta_sgt.sgl, req->nr_integrity_segments);
923 iod->meta_sgt.orig_nents = blk_rq_map_integrity_sg(req,
924 iod->meta_sgt.sgl);
925 if (!iod->meta_sgt.orig_nents)
926 goto out_free_sg;
927
928 rc = dma_map_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req),
929 DMA_ATTR_NO_WARN);
930 if (rc)
931 goto out_free_sg;
932
933 sg_list = dma_pool_alloc(nvmeq->descriptor_pools.small, GFP_ATOMIC,
934 &sgl_dma);
935 if (!sg_list)
936 goto out_unmap_sg;
937
938 entries = iod->meta_sgt.nents;
939 iod->meta_descriptor = sg_list;
940 iod->meta_dma = sgl_dma;
941
942 cmnd->flags = NVME_CMD_SGL_METASEG;
943 cmnd->metadata = cpu_to_le64(sgl_dma);
944
945 sgl = iod->meta_sgt.sgl;
946 if (entries == 1) {
947 nvme_pci_sgl_set_data(sg_list, sgl);
948 return BLK_STS_OK;
949 }
950
951 sgl_dma += sizeof(*sg_list);
952 nvme_pci_sgl_set_seg(sg_list, sgl_dma, entries);
953 for_each_sg(sgl, sg, entries, i)
954 nvme_pci_sgl_set_data(&sg_list[i + 1], sg);
955
956 return BLK_STS_OK;
957
958 out_unmap_sg:
959 dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
960 out_free_sg:
961 mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
962 return BLK_STS_RESOURCE;
963 }
964
nvme_pci_setup_meta_mptr(struct nvme_dev * dev,struct request * req)965 static blk_status_t nvme_pci_setup_meta_mptr(struct nvme_dev *dev,
966 struct request *req)
967 {
968 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
969 struct bio_vec bv = rq_integrity_vec(req);
970 struct nvme_command *cmnd = &iod->cmd;
971
972 iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0);
973 if (dma_mapping_error(dev->dev, iod->meta_dma))
974 return BLK_STS_IOERR;
975 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
976 return BLK_STS_OK;
977 }
978
nvme_map_metadata(struct nvme_dev * dev,struct request * req)979 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req)
980 {
981 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
982
983 if ((iod->cmd.common.flags & NVME_CMD_SGL_METABUF) &&
984 nvme_pci_metadata_use_sgls(dev, req))
985 return nvme_pci_setup_meta_sgls(dev, req);
986 return nvme_pci_setup_meta_mptr(dev, req);
987 }
988
nvme_prep_rq(struct nvme_dev * dev,struct request * req)989 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
990 {
991 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
992 blk_status_t ret;
993
994 iod->flags = 0;
995 iod->nr_descriptors = 0;
996 iod->sgt.nents = 0;
997 iod->meta_sgt.nents = 0;
998
999 ret = nvme_setup_cmd(req->q->queuedata, req);
1000 if (ret)
1001 return ret;
1002
1003 if (blk_rq_nr_phys_segments(req)) {
1004 ret = nvme_map_data(dev, req, &iod->cmd);
1005 if (ret)
1006 goto out_free_cmd;
1007 }
1008
1009 if (blk_integrity_rq(req)) {
1010 ret = nvme_map_metadata(dev, req);
1011 if (ret)
1012 goto out_unmap_data;
1013 }
1014
1015 nvme_start_request(req);
1016 return BLK_STS_OK;
1017 out_unmap_data:
1018 if (blk_rq_nr_phys_segments(req))
1019 nvme_unmap_data(dev, req->mq_hctx->driver_data, req);
1020 out_free_cmd:
1021 nvme_cleanup_cmd(req);
1022 return ret;
1023 }
1024
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1025 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
1026 const struct blk_mq_queue_data *bd)
1027 {
1028 struct nvme_queue *nvmeq = hctx->driver_data;
1029 struct nvme_dev *dev = nvmeq->dev;
1030 struct request *req = bd->rq;
1031 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1032 blk_status_t ret;
1033
1034 /*
1035 * We should not need to do this, but we're still using this to
1036 * ensure we can drain requests on a dying queue.
1037 */
1038 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1039 return BLK_STS_IOERR;
1040
1041 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
1042 return nvme_fail_nonready_command(&dev->ctrl, req);
1043
1044 ret = nvme_prep_rq(dev, req);
1045 if (unlikely(ret))
1046 return ret;
1047 spin_lock(&nvmeq->sq_lock);
1048 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1049 nvme_write_sq_db(nvmeq, bd->last);
1050 spin_unlock(&nvmeq->sq_lock);
1051 return BLK_STS_OK;
1052 }
1053
nvme_submit_cmds(struct nvme_queue * nvmeq,struct rq_list * rqlist)1054 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist)
1055 {
1056 struct request *req;
1057
1058 if (rq_list_empty(rqlist))
1059 return;
1060
1061 spin_lock(&nvmeq->sq_lock);
1062 while ((req = rq_list_pop(rqlist))) {
1063 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1064
1065 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1066 }
1067 nvme_write_sq_db(nvmeq, true);
1068 spin_unlock(&nvmeq->sq_lock);
1069 }
1070
nvme_prep_rq_batch(struct nvme_queue * nvmeq,struct request * req)1071 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
1072 {
1073 /*
1074 * We should not need to do this, but we're still using this to
1075 * ensure we can drain requests on a dying queue.
1076 */
1077 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1078 return false;
1079 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
1080 return false;
1081
1082 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
1083 }
1084
nvme_queue_rqs(struct rq_list * rqlist)1085 static void nvme_queue_rqs(struct rq_list *rqlist)
1086 {
1087 struct rq_list submit_list = { };
1088 struct rq_list requeue_list = { };
1089 struct nvme_queue *nvmeq = NULL;
1090 struct request *req;
1091
1092 while ((req = rq_list_pop(rqlist))) {
1093 if (nvmeq && nvmeq != req->mq_hctx->driver_data)
1094 nvme_submit_cmds(nvmeq, &submit_list);
1095 nvmeq = req->mq_hctx->driver_data;
1096
1097 if (nvme_prep_rq_batch(nvmeq, req))
1098 rq_list_add_tail(&submit_list, req);
1099 else
1100 rq_list_add_tail(&requeue_list, req);
1101 }
1102
1103 if (nvmeq)
1104 nvme_submit_cmds(nvmeq, &submit_list);
1105 *rqlist = requeue_list;
1106 }
1107
nvme_unmap_metadata(struct nvme_dev * dev,struct nvme_queue * nvmeq,struct request * req)1108 static __always_inline void nvme_unmap_metadata(struct nvme_dev *dev,
1109 struct nvme_queue *nvmeq,
1110 struct request *req)
1111 {
1112 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1113
1114 if (!iod->meta_sgt.nents) {
1115 dma_unmap_page(dev->dev, iod->meta_dma,
1116 rq_integrity_vec(req).bv_len,
1117 rq_dma_dir(req));
1118 return;
1119 }
1120
1121 dma_pool_free(nvmeq->descriptor_pools.small, iod->meta_descriptor,
1122 iod->meta_dma);
1123 dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
1124 mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
1125 }
1126
nvme_pci_unmap_rq(struct request * req)1127 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1128 {
1129 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1130 struct nvme_dev *dev = nvmeq->dev;
1131
1132 if (blk_integrity_rq(req))
1133 nvme_unmap_metadata(dev, nvmeq, req);
1134
1135 if (blk_rq_nr_phys_segments(req))
1136 nvme_unmap_data(dev, nvmeq, req);
1137 }
1138
nvme_pci_complete_rq(struct request * req)1139 static void nvme_pci_complete_rq(struct request *req)
1140 {
1141 nvme_pci_unmap_rq(req);
1142 nvme_complete_rq(req);
1143 }
1144
nvme_pci_complete_batch(struct io_comp_batch * iob)1145 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1146 {
1147 nvme_complete_batch(iob, nvme_pci_unmap_rq);
1148 }
1149
1150 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)1151 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1152 {
1153 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1154
1155 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1156 }
1157
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)1158 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1159 {
1160 u16 head = nvmeq->cq_head;
1161
1162 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1163 nvmeq->dbbuf_cq_ei))
1164 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1165 }
1166
nvme_queue_tagset(struct nvme_queue * nvmeq)1167 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1168 {
1169 if (!nvmeq->qid)
1170 return nvmeq->dev->admin_tagset.tags[0];
1171 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1172 }
1173
nvme_handle_cqe(struct nvme_queue * nvmeq,struct io_comp_batch * iob,u16 idx)1174 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1175 struct io_comp_batch *iob, u16 idx)
1176 {
1177 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1178 __u16 command_id = READ_ONCE(cqe->command_id);
1179 struct request *req;
1180
1181 /*
1182 * AEN requests are special as they don't time out and can
1183 * survive any kind of queue freeze and often don't respond to
1184 * aborts. We don't even bother to allocate a struct request
1185 * for them but rather special case them here.
1186 */
1187 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1188 nvme_complete_async_event(&nvmeq->dev->ctrl,
1189 cqe->status, &cqe->result);
1190 return;
1191 }
1192
1193 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1194 if (unlikely(!req)) {
1195 dev_warn(nvmeq->dev->ctrl.device,
1196 "invalid id %d completed on queue %d\n",
1197 command_id, le16_to_cpu(cqe->sq_id));
1198 return;
1199 }
1200
1201 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1202 if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1203 !blk_mq_add_to_batch(req, iob,
1204 nvme_req(req)->status != NVME_SC_SUCCESS,
1205 nvme_pci_complete_batch))
1206 nvme_pci_complete_rq(req);
1207 }
1208
nvme_update_cq_head(struct nvme_queue * nvmeq)1209 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1210 {
1211 u32 tmp = nvmeq->cq_head + 1;
1212
1213 if (tmp == nvmeq->q_depth) {
1214 nvmeq->cq_head = 0;
1215 nvmeq->cq_phase ^= 1;
1216 } else {
1217 nvmeq->cq_head = tmp;
1218 }
1219 }
1220
nvme_poll_cq(struct nvme_queue * nvmeq,struct io_comp_batch * iob)1221 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq,
1222 struct io_comp_batch *iob)
1223 {
1224 bool found = false;
1225
1226 while (nvme_cqe_pending(nvmeq)) {
1227 found = true;
1228 /*
1229 * load-load control dependency between phase and the rest of
1230 * the cqe requires a full read memory barrier
1231 */
1232 dma_rmb();
1233 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1234 nvme_update_cq_head(nvmeq);
1235 }
1236
1237 if (found)
1238 nvme_ring_cq_doorbell(nvmeq);
1239 return found;
1240 }
1241
nvme_irq(int irq,void * data)1242 static irqreturn_t nvme_irq(int irq, void *data)
1243 {
1244 struct nvme_queue *nvmeq = data;
1245 DEFINE_IO_COMP_BATCH(iob);
1246
1247 if (nvme_poll_cq(nvmeq, &iob)) {
1248 if (!rq_list_empty(&iob.req_list))
1249 nvme_pci_complete_batch(&iob);
1250 return IRQ_HANDLED;
1251 }
1252 return IRQ_NONE;
1253 }
1254
nvme_irq_check(int irq,void * data)1255 static irqreturn_t nvme_irq_check(int irq, void *data)
1256 {
1257 struct nvme_queue *nvmeq = data;
1258
1259 if (nvme_cqe_pending(nvmeq))
1260 return IRQ_WAKE_THREAD;
1261 return IRQ_NONE;
1262 }
1263
1264 /*
1265 * Poll for completions for any interrupt driven queue
1266 * Can be called from any context.
1267 */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1268 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1269 {
1270 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1271
1272 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1273
1274 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1275 spin_lock(&nvmeq->cq_poll_lock);
1276 nvme_poll_cq(nvmeq, NULL);
1277 spin_unlock(&nvmeq->cq_poll_lock);
1278 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1279 }
1280
nvme_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1281 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1282 {
1283 struct nvme_queue *nvmeq = hctx->driver_data;
1284 bool found;
1285
1286 if (!nvme_cqe_pending(nvmeq))
1287 return 0;
1288
1289 spin_lock(&nvmeq->cq_poll_lock);
1290 found = nvme_poll_cq(nvmeq, iob);
1291 spin_unlock(&nvmeq->cq_poll_lock);
1292
1293 return found;
1294 }
1295
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1296 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1297 {
1298 struct nvme_dev *dev = to_nvme_dev(ctrl);
1299 struct nvme_queue *nvmeq = &dev->queues[0];
1300 struct nvme_command c = { };
1301
1302 c.common.opcode = nvme_admin_async_event;
1303 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1304
1305 spin_lock(&nvmeq->sq_lock);
1306 nvme_sq_copy_cmd(nvmeq, &c);
1307 nvme_write_sq_db(nvmeq, true);
1308 spin_unlock(&nvmeq->sq_lock);
1309 }
1310
nvme_pci_subsystem_reset(struct nvme_ctrl * ctrl)1311 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1312 {
1313 struct nvme_dev *dev = to_nvme_dev(ctrl);
1314 int ret = 0;
1315
1316 /*
1317 * Taking the shutdown_lock ensures the BAR mapping is not being
1318 * altered by reset_work. Holding this lock before the RESETTING state
1319 * change, if successful, also ensures nvme_remove won't be able to
1320 * proceed to iounmap until we're done.
1321 */
1322 mutex_lock(&dev->shutdown_lock);
1323 if (!dev->bar_mapped_size) {
1324 ret = -ENODEV;
1325 goto unlock;
1326 }
1327
1328 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1329 ret = -EBUSY;
1330 goto unlock;
1331 }
1332
1333 writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1334 nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE);
1335
1336 /*
1337 * Read controller status to flush the previous write and trigger a
1338 * pcie read error.
1339 */
1340 readl(dev->bar + NVME_REG_CSTS);
1341 unlock:
1342 mutex_unlock(&dev->shutdown_lock);
1343 return ret;
1344 }
1345
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1346 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1347 {
1348 struct nvme_command c = { };
1349
1350 c.delete_queue.opcode = opcode;
1351 c.delete_queue.qid = cpu_to_le16(id);
1352
1353 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1354 }
1355
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1356 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1357 struct nvme_queue *nvmeq, s16 vector)
1358 {
1359 struct nvme_command c = { };
1360 int flags = NVME_QUEUE_PHYS_CONTIG;
1361
1362 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1363 flags |= NVME_CQ_IRQ_ENABLED;
1364
1365 /*
1366 * Note: we (ab)use the fact that the prp fields survive if no data
1367 * is attached to the request.
1368 */
1369 c.create_cq.opcode = nvme_admin_create_cq;
1370 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1371 c.create_cq.cqid = cpu_to_le16(qid);
1372 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1373 c.create_cq.cq_flags = cpu_to_le16(flags);
1374 c.create_cq.irq_vector = cpu_to_le16(vector);
1375
1376 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1377 }
1378
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1379 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1380 struct nvme_queue *nvmeq)
1381 {
1382 struct nvme_ctrl *ctrl = &dev->ctrl;
1383 struct nvme_command c = { };
1384 int flags = NVME_QUEUE_PHYS_CONTIG;
1385
1386 /*
1387 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1388 * set. Since URGENT priority is zeroes, it makes all queues
1389 * URGENT.
1390 */
1391 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1392 flags |= NVME_SQ_PRIO_MEDIUM;
1393
1394 /*
1395 * Note: we (ab)use the fact that the prp fields survive if no data
1396 * is attached to the request.
1397 */
1398 c.create_sq.opcode = nvme_admin_create_sq;
1399 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1400 c.create_sq.sqid = cpu_to_le16(qid);
1401 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1402 c.create_sq.sq_flags = cpu_to_le16(flags);
1403 c.create_sq.cqid = cpu_to_le16(qid);
1404
1405 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1406 }
1407
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1408 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1409 {
1410 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1411 }
1412
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1413 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1414 {
1415 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1416 }
1417
abort_endio(struct request * req,blk_status_t error)1418 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1419 {
1420 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1421
1422 dev_warn(nvmeq->dev->ctrl.device,
1423 "Abort status: 0x%x", nvme_req(req)->status);
1424 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1425 blk_mq_free_request(req);
1426 return RQ_END_IO_NONE;
1427 }
1428
nvme_should_reset(struct nvme_dev * dev,u32 csts)1429 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1430 {
1431 /* If true, indicates loss of adapter communication, possibly by a
1432 * NVMe Subsystem reset.
1433 */
1434 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1435
1436 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1437 switch (nvme_ctrl_state(&dev->ctrl)) {
1438 case NVME_CTRL_RESETTING:
1439 case NVME_CTRL_CONNECTING:
1440 return false;
1441 default:
1442 break;
1443 }
1444
1445 /* We shouldn't reset unless the controller is on fatal error state
1446 * _or_ if we lost the communication with it.
1447 */
1448 if (!(csts & NVME_CSTS_CFS) && !nssro)
1449 return false;
1450
1451 return true;
1452 }
1453
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1454 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1455 {
1456 /* Read a config register to help see what died. */
1457 u16 pci_status;
1458 int result;
1459
1460 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1461 &pci_status);
1462 if (result == PCIBIOS_SUCCESSFUL)
1463 dev_warn(dev->ctrl.device,
1464 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1465 csts, pci_status);
1466 else
1467 dev_warn(dev->ctrl.device,
1468 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1469 csts, result);
1470
1471 if (csts != ~0)
1472 return;
1473
1474 dev_warn(dev->ctrl.device,
1475 "Does your device have a faulty power saving mode enabled?\n");
1476 dev_warn(dev->ctrl.device,
1477 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1478 }
1479
nvme_timeout(struct request * req)1480 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1481 {
1482 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1483 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1484 struct nvme_dev *dev = nvmeq->dev;
1485 struct request *abort_req;
1486 struct nvme_command cmd = { };
1487 struct pci_dev *pdev = to_pci_dev(dev->dev);
1488 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1489 u8 opcode;
1490
1491 /*
1492 * Shutdown the device immediately if we see it is disconnected. This
1493 * unblocks PCIe error handling if the nvme driver is waiting in
1494 * error_resume for a device that has been removed. We can't unbind the
1495 * driver while the driver's error callback is waiting to complete, so
1496 * we're relying on a timeout to break that deadlock if a removal
1497 * occurs while reset work is running.
1498 */
1499 if (pci_dev_is_disconnected(pdev))
1500 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1501 if (nvme_state_terminal(&dev->ctrl))
1502 goto disable;
1503
1504 /* If PCI error recovery process is happening, we cannot reset or
1505 * the recovery mechanism will surely fail.
1506 */
1507 mb();
1508 if (pci_channel_offline(pdev))
1509 return BLK_EH_RESET_TIMER;
1510
1511 /*
1512 * Reset immediately if the controller is failed
1513 */
1514 if (nvme_should_reset(dev, csts)) {
1515 nvme_warn_reset(dev, csts);
1516 goto disable;
1517 }
1518
1519 /*
1520 * Did we miss an interrupt?
1521 */
1522 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1523 nvme_poll(req->mq_hctx, NULL);
1524 else
1525 nvme_poll_irqdisable(nvmeq);
1526
1527 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1528 dev_warn(dev->ctrl.device,
1529 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1530 req->tag, nvme_cid(req), nvmeq->qid);
1531 return BLK_EH_DONE;
1532 }
1533
1534 /*
1535 * Shutdown immediately if controller times out while starting. The
1536 * reset work will see the pci device disabled when it gets the forced
1537 * cancellation error. All outstanding requests are completed on
1538 * shutdown, so we return BLK_EH_DONE.
1539 */
1540 switch (nvme_ctrl_state(&dev->ctrl)) {
1541 case NVME_CTRL_CONNECTING:
1542 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1543 fallthrough;
1544 case NVME_CTRL_DELETING:
1545 dev_warn_ratelimited(dev->ctrl.device,
1546 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1547 req->tag, nvme_cid(req), nvmeq->qid);
1548 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1549 nvme_dev_disable(dev, true);
1550 return BLK_EH_DONE;
1551 case NVME_CTRL_RESETTING:
1552 return BLK_EH_RESET_TIMER;
1553 default:
1554 break;
1555 }
1556
1557 /*
1558 * Shutdown the controller immediately and schedule a reset if the
1559 * command was already aborted once before and still hasn't been
1560 * returned to the driver, or if this is the admin queue.
1561 */
1562 opcode = nvme_req(req)->cmd->common.opcode;
1563 if (!nvmeq->qid || (iod->flags & IOD_ABORTED)) {
1564 dev_warn(dev->ctrl.device,
1565 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1566 req->tag, nvme_cid(req), opcode,
1567 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1568 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1569 goto disable;
1570 }
1571
1572 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1573 atomic_inc(&dev->ctrl.abort_limit);
1574 return BLK_EH_RESET_TIMER;
1575 }
1576 iod->flags |= IOD_ABORTED;
1577
1578 cmd.abort.opcode = nvme_admin_abort_cmd;
1579 cmd.abort.cid = nvme_cid(req);
1580 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1581
1582 dev_warn(nvmeq->dev->ctrl.device,
1583 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1584 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1585 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1586 blk_rq_bytes(req));
1587
1588 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1589 BLK_MQ_REQ_NOWAIT);
1590 if (IS_ERR(abort_req)) {
1591 atomic_inc(&dev->ctrl.abort_limit);
1592 return BLK_EH_RESET_TIMER;
1593 }
1594 nvme_init_request(abort_req, &cmd);
1595
1596 abort_req->end_io = abort_endio;
1597 abort_req->end_io_data = NULL;
1598 blk_execute_rq_nowait(abort_req, false);
1599
1600 /*
1601 * The aborted req will be completed on receiving the abort req.
1602 * We enable the timer again. If hit twice, it'll cause a device reset,
1603 * as the device then is in a faulty state.
1604 */
1605 return BLK_EH_RESET_TIMER;
1606
1607 disable:
1608 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1609 if (nvme_state_terminal(&dev->ctrl))
1610 nvme_dev_disable(dev, true);
1611 return BLK_EH_DONE;
1612 }
1613
1614 nvme_dev_disable(dev, false);
1615 if (nvme_try_sched_reset(&dev->ctrl))
1616 nvme_unquiesce_io_queues(&dev->ctrl);
1617 return BLK_EH_DONE;
1618 }
1619
nvme_free_queue(struct nvme_queue * nvmeq)1620 static void nvme_free_queue(struct nvme_queue *nvmeq)
1621 {
1622 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1623 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1624 if (!nvmeq->sq_cmds)
1625 return;
1626
1627 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1628 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1629 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1630 } else {
1631 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1632 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1633 }
1634 }
1635
nvme_free_queues(struct nvme_dev * dev,int lowest)1636 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1637 {
1638 int i;
1639
1640 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1641 dev->ctrl.queue_count--;
1642 nvme_free_queue(&dev->queues[i]);
1643 }
1644 }
1645
nvme_suspend_queue(struct nvme_dev * dev,unsigned int qid)1646 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1647 {
1648 struct nvme_queue *nvmeq = &dev->queues[qid];
1649
1650 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1651 return;
1652
1653 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1654 mb();
1655
1656 nvmeq->dev->online_queues--;
1657 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1658 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1659 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1660 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1661 }
1662
nvme_suspend_io_queues(struct nvme_dev * dev)1663 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1664 {
1665 int i;
1666
1667 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1668 nvme_suspend_queue(dev, i);
1669 }
1670
1671 /*
1672 * Called only on a device that has been disabled and after all other threads
1673 * that can check this device's completion queues have synced, except
1674 * nvme_poll(). This is the last chance for the driver to see a natural
1675 * completion before nvme_cancel_request() terminates all incomplete requests.
1676 */
nvme_reap_pending_cqes(struct nvme_dev * dev)1677 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1678 {
1679 int i;
1680
1681 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1682 spin_lock(&dev->queues[i].cq_poll_lock);
1683 nvme_poll_cq(&dev->queues[i], NULL);
1684 spin_unlock(&dev->queues[i].cq_poll_lock);
1685 }
1686 }
1687
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1688 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1689 int entry_size)
1690 {
1691 int q_depth = dev->q_depth;
1692 unsigned q_size_aligned = roundup(q_depth * entry_size,
1693 NVME_CTRL_PAGE_SIZE);
1694
1695 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1696 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1697
1698 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1699 q_depth = div_u64(mem_per_q, entry_size);
1700
1701 /*
1702 * Ensure the reduced q_depth is above some threshold where it
1703 * would be better to map queues in system memory with the
1704 * original depth
1705 */
1706 if (q_depth < 64)
1707 return -ENOMEM;
1708 }
1709
1710 return q_depth;
1711 }
1712
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1713 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1714 int qid)
1715 {
1716 struct pci_dev *pdev = to_pci_dev(dev->dev);
1717
1718 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1719 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1720 if (nvmeq->sq_cmds) {
1721 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1722 nvmeq->sq_cmds);
1723 if (nvmeq->sq_dma_addr) {
1724 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1725 return 0;
1726 }
1727
1728 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1729 }
1730 }
1731
1732 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1733 &nvmeq->sq_dma_addr, GFP_KERNEL);
1734 if (!nvmeq->sq_cmds)
1735 return -ENOMEM;
1736 return 0;
1737 }
1738
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1739 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1740 {
1741 struct nvme_queue *nvmeq = &dev->queues[qid];
1742
1743 if (dev->ctrl.queue_count > qid)
1744 return 0;
1745
1746 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1747 nvmeq->q_depth = depth;
1748 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1749 &nvmeq->cq_dma_addr, GFP_KERNEL);
1750 if (!nvmeq->cqes)
1751 goto free_nvmeq;
1752
1753 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1754 goto free_cqdma;
1755
1756 nvmeq->dev = dev;
1757 spin_lock_init(&nvmeq->sq_lock);
1758 spin_lock_init(&nvmeq->cq_poll_lock);
1759 nvmeq->cq_head = 0;
1760 nvmeq->cq_phase = 1;
1761 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1762 nvmeq->qid = qid;
1763 dev->ctrl.queue_count++;
1764
1765 return 0;
1766
1767 free_cqdma:
1768 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1769 nvmeq->cq_dma_addr);
1770 free_nvmeq:
1771 return -ENOMEM;
1772 }
1773
queue_request_irq(struct nvme_queue * nvmeq)1774 static int queue_request_irq(struct nvme_queue *nvmeq)
1775 {
1776 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1777 int nr = nvmeq->dev->ctrl.instance;
1778
1779 if (use_threaded_interrupts) {
1780 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1781 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1782 } else {
1783 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1784 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1785 }
1786 }
1787
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1788 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1789 {
1790 struct nvme_dev *dev = nvmeq->dev;
1791
1792 nvmeq->sq_tail = 0;
1793 nvmeq->last_sq_tail = 0;
1794 nvmeq->cq_head = 0;
1795 nvmeq->cq_phase = 1;
1796 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1797 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1798 nvme_dbbuf_init(dev, nvmeq, qid);
1799 dev->online_queues++;
1800 wmb(); /* ensure the first interrupt sees the initialization */
1801 }
1802
1803 /*
1804 * Try getting shutdown_lock while setting up IO queues.
1805 */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)1806 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1807 {
1808 /*
1809 * Give up if the lock is being held by nvme_dev_disable.
1810 */
1811 if (!mutex_trylock(&dev->shutdown_lock))
1812 return -ENODEV;
1813
1814 /*
1815 * Controller is in wrong state, fail early.
1816 */
1817 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1818 mutex_unlock(&dev->shutdown_lock);
1819 return -ENODEV;
1820 }
1821
1822 return 0;
1823 }
1824
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1825 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1826 {
1827 struct nvme_dev *dev = nvmeq->dev;
1828 int result;
1829 u16 vector = 0;
1830
1831 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1832
1833 /*
1834 * A queue's vector matches the queue identifier unless the controller
1835 * has only one vector available.
1836 */
1837 if (!polled)
1838 vector = dev->num_vecs == 1 ? 0 : qid;
1839 else
1840 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1841
1842 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1843 if (result)
1844 return result;
1845
1846 result = adapter_alloc_sq(dev, qid, nvmeq);
1847 if (result < 0)
1848 return result;
1849 if (result)
1850 goto release_cq;
1851
1852 nvmeq->cq_vector = vector;
1853
1854 result = nvme_setup_io_queues_trylock(dev);
1855 if (result)
1856 return result;
1857 nvme_init_queue(nvmeq, qid);
1858 if (!polled) {
1859 result = queue_request_irq(nvmeq);
1860 if (result < 0)
1861 goto release_sq;
1862 }
1863
1864 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1865 mutex_unlock(&dev->shutdown_lock);
1866 return result;
1867
1868 release_sq:
1869 dev->online_queues--;
1870 mutex_unlock(&dev->shutdown_lock);
1871 adapter_delete_sq(dev, qid);
1872 release_cq:
1873 adapter_delete_cq(dev, qid);
1874 return result;
1875 }
1876
1877 static const struct blk_mq_ops nvme_mq_admin_ops = {
1878 .queue_rq = nvme_queue_rq,
1879 .complete = nvme_pci_complete_rq,
1880 .init_hctx = nvme_admin_init_hctx,
1881 .init_request = nvme_pci_init_request,
1882 .timeout = nvme_timeout,
1883 };
1884
1885 static const struct blk_mq_ops nvme_mq_ops = {
1886 .queue_rq = nvme_queue_rq,
1887 .queue_rqs = nvme_queue_rqs,
1888 .complete = nvme_pci_complete_rq,
1889 .commit_rqs = nvme_commit_rqs,
1890 .init_hctx = nvme_init_hctx,
1891 .init_request = nvme_pci_init_request,
1892 .map_queues = nvme_pci_map_queues,
1893 .timeout = nvme_timeout,
1894 .poll = nvme_poll,
1895 };
1896
nvme_dev_remove_admin(struct nvme_dev * dev)1897 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1898 {
1899 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1900 /*
1901 * If the controller was reset during removal, it's possible
1902 * user requests may be waiting on a stopped queue. Start the
1903 * queue to flush these to completion.
1904 */
1905 nvme_unquiesce_admin_queue(&dev->ctrl);
1906 nvme_remove_admin_tag_set(&dev->ctrl);
1907 }
1908 }
1909
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1910 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1911 {
1912 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1913 }
1914
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1915 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1916 {
1917 struct pci_dev *pdev = to_pci_dev(dev->dev);
1918
1919 if (size <= dev->bar_mapped_size)
1920 return 0;
1921 if (size > pci_resource_len(pdev, 0))
1922 return -ENOMEM;
1923 if (dev->bar)
1924 iounmap(dev->bar);
1925 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1926 if (!dev->bar) {
1927 dev->bar_mapped_size = 0;
1928 return -ENOMEM;
1929 }
1930 dev->bar_mapped_size = size;
1931 dev->dbs = dev->bar + NVME_REG_DBS;
1932
1933 return 0;
1934 }
1935
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1936 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1937 {
1938 int result;
1939 u32 aqa;
1940 struct nvme_queue *nvmeq;
1941
1942 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1943 if (result < 0)
1944 return result;
1945
1946 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1947 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1948
1949 if (dev->subsystem &&
1950 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1951 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1952
1953 /*
1954 * If the device has been passed off to us in an enabled state, just
1955 * clear the enabled bit. The spec says we should set the 'shutdown
1956 * notification bits', but doing so may cause the device to complete
1957 * commands to the admin queue ... and we don't know what memory that
1958 * might be pointing at!
1959 */
1960 result = nvme_disable_ctrl(&dev->ctrl, false);
1961 if (result < 0)
1962 return result;
1963
1964 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1965 if (result)
1966 return result;
1967
1968 dev->ctrl.numa_node = dev_to_node(dev->dev);
1969
1970 nvmeq = &dev->queues[0];
1971 aqa = nvmeq->q_depth - 1;
1972 aqa |= aqa << 16;
1973
1974 writel(aqa, dev->bar + NVME_REG_AQA);
1975 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1976 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1977
1978 result = nvme_enable_ctrl(&dev->ctrl);
1979 if (result)
1980 return result;
1981
1982 nvmeq->cq_vector = 0;
1983 nvme_init_queue(nvmeq, 0);
1984 result = queue_request_irq(nvmeq);
1985 if (result) {
1986 dev->online_queues--;
1987 return result;
1988 }
1989
1990 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1991 return result;
1992 }
1993
nvme_create_io_queues(struct nvme_dev * dev)1994 static int nvme_create_io_queues(struct nvme_dev *dev)
1995 {
1996 unsigned i, max, rw_queues;
1997 int ret = 0;
1998
1999 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
2000 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
2001 ret = -ENOMEM;
2002 break;
2003 }
2004 }
2005
2006 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
2007 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
2008 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
2009 dev->io_queues[HCTX_TYPE_READ];
2010 } else {
2011 rw_queues = max;
2012 }
2013
2014 for (i = dev->online_queues; i <= max; i++) {
2015 bool polled = i > rw_queues;
2016
2017 ret = nvme_create_queue(&dev->queues[i], i, polled);
2018 if (ret)
2019 break;
2020 }
2021
2022 /*
2023 * Ignore failing Create SQ/CQ commands, we can continue with less
2024 * than the desired amount of queues, and even a controller without
2025 * I/O queues can still be used to issue admin commands. This might
2026 * be useful to upgrade a buggy firmware for example.
2027 */
2028 return ret >= 0 ? 0 : ret;
2029 }
2030
nvme_cmb_size_unit(struct nvme_dev * dev)2031 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
2032 {
2033 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
2034
2035 return 1ULL << (12 + 4 * szu);
2036 }
2037
nvme_cmb_size(struct nvme_dev * dev)2038 static u32 nvme_cmb_size(struct nvme_dev *dev)
2039 {
2040 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
2041 }
2042
nvme_map_cmb(struct nvme_dev * dev)2043 static void nvme_map_cmb(struct nvme_dev *dev)
2044 {
2045 u64 size, offset;
2046 resource_size_t bar_size;
2047 struct pci_dev *pdev = to_pci_dev(dev->dev);
2048 int bar;
2049
2050 if (dev->cmb_size)
2051 return;
2052
2053 if (NVME_CAP_CMBS(dev->ctrl.cap))
2054 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
2055
2056 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
2057 if (!dev->cmbsz)
2058 return;
2059 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
2060
2061 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
2062 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
2063 bar = NVME_CMB_BIR(dev->cmbloc);
2064 bar_size = pci_resource_len(pdev, bar);
2065
2066 if (offset > bar_size)
2067 return;
2068
2069 /*
2070 * Controllers may support a CMB size larger than their BAR, for
2071 * example, due to being behind a bridge. Reduce the CMB to the
2072 * reported size of the BAR
2073 */
2074 size = min(size, bar_size - offset);
2075
2076 if (!IS_ALIGNED(size, memremap_compat_align()) ||
2077 !IS_ALIGNED(pci_resource_start(pdev, bar),
2078 memremap_compat_align()))
2079 return;
2080
2081 /*
2082 * Tell the controller about the host side address mapping the CMB,
2083 * and enable CMB decoding for the NVMe 1.4+ scheme:
2084 */
2085 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
2086 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
2087 (pci_bus_address(pdev, bar) + offset),
2088 dev->bar + NVME_REG_CMBMSC);
2089 }
2090
2091 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
2092 dev_warn(dev->ctrl.device,
2093 "failed to register the CMB\n");
2094 hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC);
2095 return;
2096 }
2097
2098 dev->cmb_size = size;
2099 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
2100
2101 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
2102 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
2103 pci_p2pmem_publish(pdev, true);
2104
2105 nvme_update_attrs(dev);
2106 }
2107
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)2108 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
2109 {
2110 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
2111 u64 dma_addr = dev->host_mem_descs_dma;
2112 struct nvme_command c = { };
2113 int ret;
2114
2115 c.features.opcode = nvme_admin_set_features;
2116 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
2117 c.features.dword11 = cpu_to_le32(bits);
2118 c.features.dword12 = cpu_to_le32(host_mem_size);
2119 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
2120 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
2121 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
2122
2123 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2124 if (ret) {
2125 dev_warn(dev->ctrl.device,
2126 "failed to set host mem (err %d, flags %#x).\n",
2127 ret, bits);
2128 } else
2129 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2130
2131 return ret;
2132 }
2133
nvme_free_host_mem_multi(struct nvme_dev * dev)2134 static void nvme_free_host_mem_multi(struct nvme_dev *dev)
2135 {
2136 int i;
2137
2138 for (i = 0; i < dev->nr_host_mem_descs; i++) {
2139 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2140 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2141
2142 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2143 le64_to_cpu(desc->addr),
2144 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2145 }
2146
2147 kfree(dev->host_mem_desc_bufs);
2148 dev->host_mem_desc_bufs = NULL;
2149 }
2150
nvme_free_host_mem(struct nvme_dev * dev)2151 static void nvme_free_host_mem(struct nvme_dev *dev)
2152 {
2153 if (dev->hmb_sgt)
2154 dma_free_noncontiguous(dev->dev, dev->host_mem_size,
2155 dev->hmb_sgt, DMA_BIDIRECTIONAL);
2156 else
2157 nvme_free_host_mem_multi(dev);
2158
2159 dma_free_coherent(dev->dev, dev->host_mem_descs_size,
2160 dev->host_mem_descs, dev->host_mem_descs_dma);
2161 dev->host_mem_descs = NULL;
2162 dev->host_mem_descs_size = 0;
2163 dev->nr_host_mem_descs = 0;
2164 }
2165
nvme_alloc_host_mem_single(struct nvme_dev * dev,u64 size)2166 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size)
2167 {
2168 dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size,
2169 DMA_BIDIRECTIONAL, GFP_KERNEL, 0);
2170 if (!dev->hmb_sgt)
2171 return -ENOMEM;
2172
2173 dev->host_mem_descs = dma_alloc_coherent(dev->dev,
2174 sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma,
2175 GFP_KERNEL);
2176 if (!dev->host_mem_descs) {
2177 dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt,
2178 DMA_BIDIRECTIONAL);
2179 dev->hmb_sgt = NULL;
2180 return -ENOMEM;
2181 }
2182 dev->host_mem_size = size;
2183 dev->host_mem_descs_size = sizeof(*dev->host_mem_descs);
2184 dev->nr_host_mem_descs = 1;
2185
2186 dev->host_mem_descs[0].addr =
2187 cpu_to_le64(dev->hmb_sgt->sgl->dma_address);
2188 dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE);
2189 return 0;
2190 }
2191
nvme_alloc_host_mem_multi(struct nvme_dev * dev,u64 preferred,u32 chunk_size)2192 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred,
2193 u32 chunk_size)
2194 {
2195 struct nvme_host_mem_buf_desc *descs;
2196 u32 max_entries, len, descs_size;
2197 dma_addr_t descs_dma;
2198 int i = 0;
2199 void **bufs;
2200 u64 size, tmp;
2201
2202 tmp = (preferred + chunk_size - 1);
2203 do_div(tmp, chunk_size);
2204 max_entries = tmp;
2205
2206 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2207 max_entries = dev->ctrl.hmmaxd;
2208
2209 descs_size = max_entries * sizeof(*descs);
2210 descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
2211 GFP_KERNEL);
2212 if (!descs)
2213 goto out;
2214
2215 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2216 if (!bufs)
2217 goto out_free_descs;
2218
2219 for (size = 0; size < preferred && i < max_entries; size += len) {
2220 dma_addr_t dma_addr;
2221
2222 len = min_t(u64, chunk_size, preferred - size);
2223 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2224 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2225 if (!bufs[i])
2226 break;
2227
2228 descs[i].addr = cpu_to_le64(dma_addr);
2229 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2230 i++;
2231 }
2232
2233 if (!size)
2234 goto out_free_bufs;
2235
2236 dev->nr_host_mem_descs = i;
2237 dev->host_mem_size = size;
2238 dev->host_mem_descs = descs;
2239 dev->host_mem_descs_dma = descs_dma;
2240 dev->host_mem_descs_size = descs_size;
2241 dev->host_mem_desc_bufs = bufs;
2242 return 0;
2243
2244 out_free_bufs:
2245 kfree(bufs);
2246 out_free_descs:
2247 dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2248 out:
2249 dev->host_mem_descs = NULL;
2250 return -ENOMEM;
2251 }
2252
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2253 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2254 {
2255 unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev);
2256 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2257 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2258 u64 chunk_size;
2259
2260 /*
2261 * If there is an IOMMU that can merge pages, try a virtually
2262 * non-contiguous allocation for a single segment first.
2263 */
2264 if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) {
2265 if (!nvme_alloc_host_mem_single(dev, preferred))
2266 return 0;
2267 }
2268
2269 /* start big and work our way down */
2270 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2271 if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) {
2272 if (!min || dev->host_mem_size >= min)
2273 return 0;
2274 nvme_free_host_mem(dev);
2275 }
2276 }
2277
2278 return -ENOMEM;
2279 }
2280
nvme_setup_host_mem(struct nvme_dev * dev)2281 static int nvme_setup_host_mem(struct nvme_dev *dev)
2282 {
2283 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2284 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2285 u64 min = (u64)dev->ctrl.hmmin * 4096;
2286 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2287 int ret;
2288
2289 if (!dev->ctrl.hmpre)
2290 return 0;
2291
2292 preferred = min(preferred, max);
2293 if (min > max) {
2294 dev_warn(dev->ctrl.device,
2295 "min host memory (%lld MiB) above limit (%d MiB).\n",
2296 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2297 nvme_free_host_mem(dev);
2298 return 0;
2299 }
2300
2301 /*
2302 * If we already have a buffer allocated check if we can reuse it.
2303 */
2304 if (dev->host_mem_descs) {
2305 if (dev->host_mem_size >= min)
2306 enable_bits |= NVME_HOST_MEM_RETURN;
2307 else
2308 nvme_free_host_mem(dev);
2309 }
2310
2311 if (!dev->host_mem_descs) {
2312 if (nvme_alloc_host_mem(dev, min, preferred)) {
2313 dev_warn(dev->ctrl.device,
2314 "failed to allocate host memory buffer.\n");
2315 return 0; /* controller must work without HMB */
2316 }
2317
2318 dev_info(dev->ctrl.device,
2319 "allocated %lld MiB host memory buffer (%u segment%s).\n",
2320 dev->host_mem_size >> ilog2(SZ_1M),
2321 dev->nr_host_mem_descs,
2322 str_plural(dev->nr_host_mem_descs));
2323 }
2324
2325 ret = nvme_set_host_mem(dev, enable_bits);
2326 if (ret)
2327 nvme_free_host_mem(dev);
2328 return ret;
2329 }
2330
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2331 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2332 char *buf)
2333 {
2334 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2335
2336 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n",
2337 ndev->cmbloc, ndev->cmbsz);
2338 }
2339 static DEVICE_ATTR_RO(cmb);
2340
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2341 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2342 char *buf)
2343 {
2344 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2345
2346 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2347 }
2348 static DEVICE_ATTR_RO(cmbloc);
2349
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2350 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2351 char *buf)
2352 {
2353 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2354
2355 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2356 }
2357 static DEVICE_ATTR_RO(cmbsz);
2358
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2359 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2360 char *buf)
2361 {
2362 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2363
2364 return sysfs_emit(buf, "%d\n", ndev->hmb);
2365 }
2366
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2367 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2368 const char *buf, size_t count)
2369 {
2370 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2371 bool new;
2372 int ret;
2373
2374 if (kstrtobool(buf, &new) < 0)
2375 return -EINVAL;
2376
2377 if (new == ndev->hmb)
2378 return count;
2379
2380 if (new) {
2381 ret = nvme_setup_host_mem(ndev);
2382 } else {
2383 ret = nvme_set_host_mem(ndev, 0);
2384 if (!ret)
2385 nvme_free_host_mem(ndev);
2386 }
2387
2388 if (ret < 0)
2389 return ret;
2390
2391 return count;
2392 }
2393 static DEVICE_ATTR_RW(hmb);
2394
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2395 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2396 struct attribute *a, int n)
2397 {
2398 struct nvme_ctrl *ctrl =
2399 dev_get_drvdata(container_of(kobj, struct device, kobj));
2400 struct nvme_dev *dev = to_nvme_dev(ctrl);
2401
2402 if (a == &dev_attr_cmb.attr ||
2403 a == &dev_attr_cmbloc.attr ||
2404 a == &dev_attr_cmbsz.attr) {
2405 if (!dev->cmbsz)
2406 return 0;
2407 }
2408 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2409 return 0;
2410
2411 return a->mode;
2412 }
2413
2414 static struct attribute *nvme_pci_attrs[] = {
2415 &dev_attr_cmb.attr,
2416 &dev_attr_cmbloc.attr,
2417 &dev_attr_cmbsz.attr,
2418 &dev_attr_hmb.attr,
2419 NULL,
2420 };
2421
2422 static const struct attribute_group nvme_pci_dev_attrs_group = {
2423 .attrs = nvme_pci_attrs,
2424 .is_visible = nvme_pci_attrs_are_visible,
2425 };
2426
2427 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2428 &nvme_dev_attrs_group,
2429 &nvme_pci_dev_attrs_group,
2430 NULL,
2431 };
2432
nvme_update_attrs(struct nvme_dev * dev)2433 static void nvme_update_attrs(struct nvme_dev *dev)
2434 {
2435 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2436 }
2437
2438 /*
2439 * nirqs is the number of interrupts available for write and read
2440 * queues. The core already reserved an interrupt for the admin queue.
2441 */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2442 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2443 {
2444 struct nvme_dev *dev = affd->priv;
2445 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2446
2447 /*
2448 * If there is no interrupt available for queues, ensure that
2449 * the default queue is set to 1. The affinity set size is
2450 * also set to one, but the irq core ignores it for this case.
2451 *
2452 * If only one interrupt is available or 'write_queue' == 0, combine
2453 * write and read queues.
2454 *
2455 * If 'write_queues' > 0, ensure it leaves room for at least one read
2456 * queue.
2457 */
2458 if (!nrirqs) {
2459 nrirqs = 1;
2460 nr_read_queues = 0;
2461 } else if (nrirqs == 1 || !nr_write_queues) {
2462 nr_read_queues = 0;
2463 } else if (nr_write_queues >= nrirqs) {
2464 nr_read_queues = 1;
2465 } else {
2466 nr_read_queues = nrirqs - nr_write_queues;
2467 }
2468
2469 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2470 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2471 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2472 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2473 affd->nr_sets = nr_read_queues ? 2 : 1;
2474 }
2475
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2476 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2477 {
2478 struct pci_dev *pdev = to_pci_dev(dev->dev);
2479 struct irq_affinity affd = {
2480 .pre_vectors = 1,
2481 .calc_sets = nvme_calc_irq_sets,
2482 .priv = dev,
2483 };
2484 unsigned int irq_queues, poll_queues;
2485 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2486
2487 /*
2488 * Poll queues don't need interrupts, but we need at least one I/O queue
2489 * left over for non-polled I/O.
2490 */
2491 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2492 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2493
2494 /*
2495 * Initialize for the single interrupt case, will be updated in
2496 * nvme_calc_irq_sets().
2497 */
2498 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2499 dev->io_queues[HCTX_TYPE_READ] = 0;
2500
2501 /*
2502 * We need interrupts for the admin queue and each non-polled I/O queue,
2503 * but some Apple controllers require all queues to use the first
2504 * vector.
2505 */
2506 irq_queues = 1;
2507 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2508 irq_queues += (nr_io_queues - poll_queues);
2509 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2510 flags &= ~PCI_IRQ_MSI;
2511 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2512 &affd);
2513 }
2514
nvme_max_io_queues(struct nvme_dev * dev)2515 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2516 {
2517 /*
2518 * If tags are shared with admin queue (Apple bug), then
2519 * make sure we only use one IO queue.
2520 */
2521 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2522 return 1;
2523 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2524 }
2525
nvme_setup_io_queues(struct nvme_dev * dev)2526 static int nvme_setup_io_queues(struct nvme_dev *dev)
2527 {
2528 struct nvme_queue *adminq = &dev->queues[0];
2529 struct pci_dev *pdev = to_pci_dev(dev->dev);
2530 unsigned int nr_io_queues;
2531 unsigned long size;
2532 int result;
2533
2534 /*
2535 * Sample the module parameters once at reset time so that we have
2536 * stable values to work with.
2537 */
2538 dev->nr_write_queues = write_queues;
2539 dev->nr_poll_queues = poll_queues;
2540
2541 nr_io_queues = dev->nr_allocated_queues - 1;
2542 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2543 if (result < 0)
2544 return result;
2545
2546 if (nr_io_queues == 0)
2547 return 0;
2548
2549 /*
2550 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2551 * from set to unset. If there is a window to it is truely freed,
2552 * pci_free_irq_vectors() jumping into this window will crash.
2553 * And take lock to avoid racing with pci_free_irq_vectors() in
2554 * nvme_dev_disable() path.
2555 */
2556 result = nvme_setup_io_queues_trylock(dev);
2557 if (result)
2558 return result;
2559 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2560 pci_free_irq(pdev, 0, adminq);
2561
2562 if (dev->cmb_use_sqes) {
2563 result = nvme_cmb_qdepth(dev, nr_io_queues,
2564 sizeof(struct nvme_command));
2565 if (result > 0) {
2566 dev->q_depth = result;
2567 dev->ctrl.sqsize = result - 1;
2568 } else {
2569 dev->cmb_use_sqes = false;
2570 }
2571 }
2572
2573 do {
2574 size = db_bar_size(dev, nr_io_queues);
2575 result = nvme_remap_bar(dev, size);
2576 if (!result)
2577 break;
2578 if (!--nr_io_queues) {
2579 result = -ENOMEM;
2580 goto out_unlock;
2581 }
2582 } while (1);
2583 adminq->q_db = dev->dbs;
2584
2585 retry:
2586 /* Deregister the admin queue's interrupt */
2587 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2588 pci_free_irq(pdev, 0, adminq);
2589
2590 /*
2591 * If we enable msix early due to not intx, disable it again before
2592 * setting up the full range we need.
2593 */
2594 pci_free_irq_vectors(pdev);
2595
2596 result = nvme_setup_irqs(dev, nr_io_queues);
2597 if (result <= 0) {
2598 result = -EIO;
2599 goto out_unlock;
2600 }
2601
2602 dev->num_vecs = result;
2603 result = max(result - 1, 1);
2604 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2605
2606 /*
2607 * Should investigate if there's a performance win from allocating
2608 * more queues than interrupt vectors; it might allow the submission
2609 * path to scale better, even if the receive path is limited by the
2610 * number of interrupts.
2611 */
2612 result = queue_request_irq(adminq);
2613 if (result)
2614 goto out_unlock;
2615 set_bit(NVMEQ_ENABLED, &adminq->flags);
2616 mutex_unlock(&dev->shutdown_lock);
2617
2618 result = nvme_create_io_queues(dev);
2619 if (result || dev->online_queues < 2)
2620 return result;
2621
2622 if (dev->online_queues - 1 < dev->max_qid) {
2623 nr_io_queues = dev->online_queues - 1;
2624 nvme_delete_io_queues(dev);
2625 result = nvme_setup_io_queues_trylock(dev);
2626 if (result)
2627 return result;
2628 nvme_suspend_io_queues(dev);
2629 goto retry;
2630 }
2631 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2632 dev->io_queues[HCTX_TYPE_DEFAULT],
2633 dev->io_queues[HCTX_TYPE_READ],
2634 dev->io_queues[HCTX_TYPE_POLL]);
2635 return 0;
2636 out_unlock:
2637 mutex_unlock(&dev->shutdown_lock);
2638 return result;
2639 }
2640
nvme_del_queue_end(struct request * req,blk_status_t error)2641 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2642 blk_status_t error)
2643 {
2644 struct nvme_queue *nvmeq = req->end_io_data;
2645
2646 blk_mq_free_request(req);
2647 complete(&nvmeq->delete_done);
2648 return RQ_END_IO_NONE;
2649 }
2650
nvme_del_cq_end(struct request * req,blk_status_t error)2651 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2652 blk_status_t error)
2653 {
2654 struct nvme_queue *nvmeq = req->end_io_data;
2655
2656 if (error)
2657 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2658
2659 return nvme_del_queue_end(req, error);
2660 }
2661
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2662 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2663 {
2664 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2665 struct request *req;
2666 struct nvme_command cmd = { };
2667
2668 cmd.delete_queue.opcode = opcode;
2669 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2670
2671 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2672 if (IS_ERR(req))
2673 return PTR_ERR(req);
2674 nvme_init_request(req, &cmd);
2675
2676 if (opcode == nvme_admin_delete_cq)
2677 req->end_io = nvme_del_cq_end;
2678 else
2679 req->end_io = nvme_del_queue_end;
2680 req->end_io_data = nvmeq;
2681
2682 init_completion(&nvmeq->delete_done);
2683 blk_execute_rq_nowait(req, false);
2684 return 0;
2685 }
2686
__nvme_delete_io_queues(struct nvme_dev * dev,u8 opcode)2687 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2688 {
2689 int nr_queues = dev->online_queues - 1, sent = 0;
2690 unsigned long timeout;
2691
2692 retry:
2693 timeout = NVME_ADMIN_TIMEOUT;
2694 while (nr_queues > 0) {
2695 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2696 break;
2697 nr_queues--;
2698 sent++;
2699 }
2700 while (sent) {
2701 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2702
2703 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2704 timeout);
2705 if (timeout == 0)
2706 return false;
2707
2708 sent--;
2709 if (nr_queues)
2710 goto retry;
2711 }
2712 return true;
2713 }
2714
nvme_delete_io_queues(struct nvme_dev * dev)2715 static void nvme_delete_io_queues(struct nvme_dev *dev)
2716 {
2717 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2718 __nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2719 }
2720
nvme_pci_nr_maps(struct nvme_dev * dev)2721 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2722 {
2723 if (dev->io_queues[HCTX_TYPE_POLL])
2724 return 3;
2725 if (dev->io_queues[HCTX_TYPE_READ])
2726 return 2;
2727 return 1;
2728 }
2729
nvme_pci_update_nr_queues(struct nvme_dev * dev)2730 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2731 {
2732 if (!dev->ctrl.tagset) {
2733 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2734 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2735 return true;
2736 }
2737
2738 /* Give up if we are racing with nvme_dev_disable() */
2739 if (!mutex_trylock(&dev->shutdown_lock))
2740 return false;
2741
2742 /* Check if nvme_dev_disable() has been executed already */
2743 if (!dev->online_queues) {
2744 mutex_unlock(&dev->shutdown_lock);
2745 return false;
2746 }
2747
2748 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2749 /* free previously allocated queues that are no longer usable */
2750 nvme_free_queues(dev, dev->online_queues);
2751 mutex_unlock(&dev->shutdown_lock);
2752 return true;
2753 }
2754
nvme_pci_enable(struct nvme_dev * dev)2755 static int nvme_pci_enable(struct nvme_dev *dev)
2756 {
2757 int result = -ENOMEM;
2758 struct pci_dev *pdev = to_pci_dev(dev->dev);
2759 unsigned int flags = PCI_IRQ_ALL_TYPES;
2760
2761 if (pci_enable_device_mem(pdev))
2762 return result;
2763
2764 pci_set_master(pdev);
2765
2766 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2767 result = -ENODEV;
2768 goto disable;
2769 }
2770
2771 /*
2772 * Some devices and/or platforms don't advertise or work with INTx
2773 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2774 * adjust this later.
2775 */
2776 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2777 flags &= ~PCI_IRQ_MSI;
2778 result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2779 if (result < 0)
2780 goto disable;
2781
2782 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2783
2784 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2785 io_queue_depth);
2786 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2787 dev->dbs = dev->bar + 4096;
2788
2789 /*
2790 * Some Apple controllers require a non-standard SQE size.
2791 * Interestingly they also seem to ignore the CC:IOSQES register
2792 * so we don't bother updating it here.
2793 */
2794 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2795 dev->io_sqes = 7;
2796 else
2797 dev->io_sqes = NVME_NVM_IOSQES;
2798
2799 if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
2800 dev->q_depth = 2;
2801 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2802 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2803 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2804 dev->q_depth = 64;
2805 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2806 "set queue depth=%u\n", dev->q_depth);
2807 }
2808
2809 /*
2810 * Controllers with the shared tags quirk need the IO queue to be
2811 * big enough so that we get 32 tags for the admin queue
2812 */
2813 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2814 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2815 dev->q_depth = NVME_AQ_DEPTH + 2;
2816 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2817 dev->q_depth);
2818 }
2819 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2820
2821 nvme_map_cmb(dev);
2822
2823 pci_save_state(pdev);
2824
2825 result = nvme_pci_configure_admin_queue(dev);
2826 if (result)
2827 goto free_irq;
2828 return result;
2829
2830 free_irq:
2831 pci_free_irq_vectors(pdev);
2832 disable:
2833 pci_disable_device(pdev);
2834 return result;
2835 }
2836
nvme_dev_unmap(struct nvme_dev * dev)2837 static void nvme_dev_unmap(struct nvme_dev *dev)
2838 {
2839 if (dev->bar)
2840 iounmap(dev->bar);
2841 pci_release_mem_regions(to_pci_dev(dev->dev));
2842 }
2843
nvme_pci_ctrl_is_dead(struct nvme_dev * dev)2844 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2845 {
2846 struct pci_dev *pdev = to_pci_dev(dev->dev);
2847 u32 csts;
2848
2849 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2850 return true;
2851 if (pdev->error_state != pci_channel_io_normal)
2852 return true;
2853
2854 csts = readl(dev->bar + NVME_REG_CSTS);
2855 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2856 }
2857
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2858 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2859 {
2860 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2861 struct pci_dev *pdev = to_pci_dev(dev->dev);
2862 bool dead;
2863
2864 mutex_lock(&dev->shutdown_lock);
2865 dead = nvme_pci_ctrl_is_dead(dev);
2866 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2867 if (pci_is_enabled(pdev))
2868 nvme_start_freeze(&dev->ctrl);
2869 /*
2870 * Give the controller a chance to complete all entered requests
2871 * if doing a safe shutdown.
2872 */
2873 if (!dead && shutdown)
2874 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2875 }
2876
2877 nvme_quiesce_io_queues(&dev->ctrl);
2878
2879 if (!dead && dev->ctrl.queue_count > 0) {
2880 nvme_delete_io_queues(dev);
2881 nvme_disable_ctrl(&dev->ctrl, shutdown);
2882 nvme_poll_irqdisable(&dev->queues[0]);
2883 }
2884 nvme_suspend_io_queues(dev);
2885 nvme_suspend_queue(dev, 0);
2886 pci_free_irq_vectors(pdev);
2887 if (pci_is_enabled(pdev))
2888 pci_disable_device(pdev);
2889 nvme_reap_pending_cqes(dev);
2890
2891 nvme_cancel_tagset(&dev->ctrl);
2892 nvme_cancel_admin_tagset(&dev->ctrl);
2893
2894 /*
2895 * The driver will not be starting up queues again if shutting down so
2896 * must flush all entered requests to their failed completion to avoid
2897 * deadlocking blk-mq hot-cpu notifier.
2898 */
2899 if (shutdown) {
2900 nvme_unquiesce_io_queues(&dev->ctrl);
2901 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2902 nvme_unquiesce_admin_queue(&dev->ctrl);
2903 }
2904 mutex_unlock(&dev->shutdown_lock);
2905 }
2906
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2907 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2908 {
2909 if (!nvme_wait_reset(&dev->ctrl))
2910 return -EBUSY;
2911 nvme_dev_disable(dev, shutdown);
2912 return 0;
2913 }
2914
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)2915 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2916 {
2917 size_t meta_size = sizeof(struct scatterlist) * (NVME_MAX_META_SEGS + 1);
2918 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2919
2920 dev->iod_mempool = mempool_create_node(1,
2921 mempool_kmalloc, mempool_kfree,
2922 (void *)alloc_size, GFP_KERNEL,
2923 dev_to_node(dev->dev));
2924 if (!dev->iod_mempool)
2925 return -ENOMEM;
2926
2927 dev->iod_meta_mempool = mempool_create_node(1,
2928 mempool_kmalloc, mempool_kfree,
2929 (void *)meta_size, GFP_KERNEL,
2930 dev_to_node(dev->dev));
2931 if (!dev->iod_meta_mempool)
2932 goto free;
2933
2934 return 0;
2935 free:
2936 mempool_destroy(dev->iod_mempool);
2937 return -ENOMEM;
2938 }
2939
nvme_free_tagset(struct nvme_dev * dev)2940 static void nvme_free_tagset(struct nvme_dev *dev)
2941 {
2942 if (dev->tagset.tags)
2943 nvme_remove_io_tag_set(&dev->ctrl);
2944 dev->ctrl.tagset = NULL;
2945 }
2946
2947 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2948 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2949 {
2950 struct nvme_dev *dev = to_nvme_dev(ctrl);
2951
2952 nvme_free_tagset(dev);
2953 put_device(dev->dev);
2954 kfree(dev->queues);
2955 kfree(dev);
2956 }
2957
nvme_reset_work(struct work_struct * work)2958 static void nvme_reset_work(struct work_struct *work)
2959 {
2960 struct nvme_dev *dev =
2961 container_of(work, struct nvme_dev, ctrl.reset_work);
2962 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2963 int result;
2964
2965 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2966 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2967 dev->ctrl.state);
2968 result = -ENODEV;
2969 goto out;
2970 }
2971
2972 /*
2973 * If we're called to reset a live controller first shut it down before
2974 * moving on.
2975 */
2976 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2977 nvme_dev_disable(dev, false);
2978 nvme_sync_queues(&dev->ctrl);
2979
2980 mutex_lock(&dev->shutdown_lock);
2981 result = nvme_pci_enable(dev);
2982 if (result)
2983 goto out_unlock;
2984 nvme_unquiesce_admin_queue(&dev->ctrl);
2985 mutex_unlock(&dev->shutdown_lock);
2986
2987 /*
2988 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2989 * initializing procedure here.
2990 */
2991 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2992 dev_warn(dev->ctrl.device,
2993 "failed to mark controller CONNECTING\n");
2994 result = -EBUSY;
2995 goto out;
2996 }
2997
2998 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2999 if (result)
3000 goto out;
3001
3002 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3003 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3004 else
3005 dev->ctrl.max_integrity_segments = 1;
3006
3007 nvme_dbbuf_dma_alloc(dev);
3008
3009 result = nvme_setup_host_mem(dev);
3010 if (result < 0)
3011 goto out;
3012
3013 result = nvme_setup_io_queues(dev);
3014 if (result)
3015 goto out;
3016
3017 /*
3018 * Freeze and update the number of I/O queues as those might have
3019 * changed. If there are no I/O queues left after this reset, keep the
3020 * controller around but remove all namespaces.
3021 */
3022 if (dev->online_queues > 1) {
3023 nvme_dbbuf_set(dev);
3024 nvme_unquiesce_io_queues(&dev->ctrl);
3025 nvme_wait_freeze(&dev->ctrl);
3026 if (!nvme_pci_update_nr_queues(dev))
3027 goto out;
3028 nvme_unfreeze(&dev->ctrl);
3029 } else {
3030 dev_warn(dev->ctrl.device, "IO queues lost\n");
3031 nvme_mark_namespaces_dead(&dev->ctrl);
3032 nvme_unquiesce_io_queues(&dev->ctrl);
3033 nvme_remove_namespaces(&dev->ctrl);
3034 nvme_free_tagset(dev);
3035 }
3036
3037 /*
3038 * If only admin queue live, keep it to do further investigation or
3039 * recovery.
3040 */
3041 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3042 dev_warn(dev->ctrl.device,
3043 "failed to mark controller live state\n");
3044 result = -ENODEV;
3045 goto out;
3046 }
3047
3048 nvme_start_ctrl(&dev->ctrl);
3049 return;
3050
3051 out_unlock:
3052 mutex_unlock(&dev->shutdown_lock);
3053 out:
3054 /*
3055 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
3056 * may be holding this pci_dev's device lock.
3057 */
3058 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
3059 result);
3060 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3061 nvme_dev_disable(dev, true);
3062 nvme_sync_queues(&dev->ctrl);
3063 nvme_mark_namespaces_dead(&dev->ctrl);
3064 nvme_unquiesce_io_queues(&dev->ctrl);
3065 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3066 }
3067
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)3068 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3069 {
3070 *val = readl(to_nvme_dev(ctrl)->bar + off);
3071 return 0;
3072 }
3073
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)3074 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
3075 {
3076 writel(val, to_nvme_dev(ctrl)->bar + off);
3077 return 0;
3078 }
3079
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)3080 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
3081 {
3082 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
3083 return 0;
3084 }
3085
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)3086 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
3087 {
3088 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3089
3090 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
3091 }
3092
nvme_pci_print_device_info(struct nvme_ctrl * ctrl)3093 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
3094 {
3095 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3096 struct nvme_subsystem *subsys = ctrl->subsys;
3097
3098 dev_err(ctrl->device,
3099 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3100 pdev->vendor, pdev->device,
3101 nvme_strlen(subsys->model, sizeof(subsys->model)),
3102 subsys->model, nvme_strlen(subsys->firmware_rev,
3103 sizeof(subsys->firmware_rev)),
3104 subsys->firmware_rev);
3105 }
3106
nvme_pci_supports_pci_p2pdma(struct nvme_ctrl * ctrl)3107 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3108 {
3109 struct nvme_dev *dev = to_nvme_dev(ctrl);
3110
3111 return dma_pci_p2pdma_supported(dev->dev);
3112 }
3113
3114 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3115 .name = "pcie",
3116 .module = THIS_MODULE,
3117 .flags = NVME_F_METADATA_SUPPORTED,
3118 .dev_attr_groups = nvme_pci_dev_attr_groups,
3119 .reg_read32 = nvme_pci_reg_read32,
3120 .reg_write32 = nvme_pci_reg_write32,
3121 .reg_read64 = nvme_pci_reg_read64,
3122 .free_ctrl = nvme_pci_free_ctrl,
3123 .submit_async_event = nvme_pci_submit_async_event,
3124 .subsystem_reset = nvme_pci_subsystem_reset,
3125 .get_address = nvme_pci_get_address,
3126 .print_device_info = nvme_pci_print_device_info,
3127 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
3128 };
3129
nvme_dev_map(struct nvme_dev * dev)3130 static int nvme_dev_map(struct nvme_dev *dev)
3131 {
3132 struct pci_dev *pdev = to_pci_dev(dev->dev);
3133
3134 if (pci_request_mem_regions(pdev, "nvme"))
3135 return -ENODEV;
3136
3137 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3138 goto release;
3139
3140 return 0;
3141 release:
3142 pci_release_mem_regions(pdev);
3143 return -ENODEV;
3144 }
3145
check_vendor_combination_bug(struct pci_dev * pdev)3146 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3147 {
3148 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3149 /*
3150 * Several Samsung devices seem to drop off the PCIe bus
3151 * randomly when APST is on and uses the deepest sleep state.
3152 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3153 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3154 * 950 PRO 256GB", but it seems to be restricted to two Dell
3155 * laptops.
3156 */
3157 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3158 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3159 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3160 return NVME_QUIRK_NO_DEEPEST_PS;
3161 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3162 /*
3163 * Samsung SSD 960 EVO drops off the PCIe bus after system
3164 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3165 * within few minutes after bootup on a Coffee Lake board -
3166 * ASUS PRIME Z370-A
3167 */
3168 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3169 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3170 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3171 return NVME_QUIRK_NO_APST;
3172 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3173 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3174 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3175 /*
3176 * Forcing to use host managed nvme power settings for
3177 * lowest idle power with quick resume latency on
3178 * Samsung and Toshiba SSDs based on suspend behavior
3179 * on Coffee Lake board for LENOVO C640
3180 */
3181 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3182 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3183 return NVME_QUIRK_SIMPLE_SUSPEND;
3184 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
3185 pdev->device == 0x500f)) {
3186 /*
3187 * Exclude some Kingston NV1 and A2000 devices from
3188 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
3189 * lot of energy with s2idle sleep on some TUXEDO platforms.
3190 */
3191 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3192 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
3193 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
3194 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
3195 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3196 } else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
3197 /*
3198 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
3199 * because of high power consumption (> 2 Watt) in s2idle
3200 * sleep. Only some boards with Intel CPU are affected.
3201 */
3202 if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") ||
3203 dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
3204 dmi_match(DMI_BOARD_NAME, "GXxMRXx") ||
3205 dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
3206 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
3207 dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
3208 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3209 }
3210
3211 /*
3212 * NVMe SSD drops off the PCIe bus after system idle
3213 * for 10 hours on a Lenovo N60z board.
3214 */
3215 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
3216 return NVME_QUIRK_NO_APST;
3217
3218 return 0;
3219 }
3220
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)3221 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3222 const struct pci_device_id *id)
3223 {
3224 unsigned long quirks = id->driver_data;
3225 int node = dev_to_node(&pdev->dev);
3226 struct nvme_dev *dev;
3227 int ret = -ENOMEM;
3228
3229 dev = kzalloc_node(struct_size(dev, descriptor_pools, nr_node_ids),
3230 GFP_KERNEL, node);
3231 if (!dev)
3232 return ERR_PTR(-ENOMEM);
3233 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3234 mutex_init(&dev->shutdown_lock);
3235
3236 dev->nr_write_queues = write_queues;
3237 dev->nr_poll_queues = poll_queues;
3238 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3239 dev->queues = kcalloc_node(dev->nr_allocated_queues,
3240 sizeof(struct nvme_queue), GFP_KERNEL, node);
3241 if (!dev->queues)
3242 goto out_free_dev;
3243
3244 dev->dev = get_device(&pdev->dev);
3245
3246 quirks |= check_vendor_combination_bug(pdev);
3247 if (!noacpi &&
3248 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3249 acpi_storage_d3(&pdev->dev)) {
3250 /*
3251 * Some systems use a bios work around to ask for D3 on
3252 * platforms that support kernel managed suspend.
3253 */
3254 dev_info(&pdev->dev,
3255 "platform quirk: setting simple suspend\n");
3256 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3257 }
3258 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3259 quirks);
3260 if (ret)
3261 goto out_put_device;
3262
3263 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3264 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3265 else
3266 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3267 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3268 dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3269
3270 /*
3271 * Limit the max command size to prevent iod->sg allocations going
3272 * over a single page.
3273 */
3274 dev->ctrl.max_hw_sectors = min_t(u32,
3275 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
3276 dev->ctrl.max_segments = NVME_MAX_SEGS;
3277 dev->ctrl.max_integrity_segments = 1;
3278 return dev;
3279
3280 out_put_device:
3281 put_device(dev->dev);
3282 kfree(dev->queues);
3283 out_free_dev:
3284 kfree(dev);
3285 return ERR_PTR(ret);
3286 }
3287
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3288 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3289 {
3290 struct nvme_dev *dev;
3291 int result = -ENOMEM;
3292
3293 dev = nvme_pci_alloc_dev(pdev, id);
3294 if (IS_ERR(dev))
3295 return PTR_ERR(dev);
3296
3297 result = nvme_add_ctrl(&dev->ctrl);
3298 if (result)
3299 goto out_put_ctrl;
3300
3301 result = nvme_dev_map(dev);
3302 if (result)
3303 goto out_uninit_ctrl;
3304
3305 result = nvme_pci_alloc_iod_mempool(dev);
3306 if (result)
3307 goto out_dev_unmap;
3308
3309 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3310
3311 result = nvme_pci_enable(dev);
3312 if (result)
3313 goto out_release_iod_mempool;
3314
3315 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3316 &nvme_mq_admin_ops, sizeof(struct nvme_iod));
3317 if (result)
3318 goto out_disable;
3319
3320 /*
3321 * Mark the controller as connecting before sending admin commands to
3322 * allow the timeout handler to do the right thing.
3323 */
3324 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3325 dev_warn(dev->ctrl.device,
3326 "failed to mark controller CONNECTING\n");
3327 result = -EBUSY;
3328 goto out_disable;
3329 }
3330
3331 result = nvme_init_ctrl_finish(&dev->ctrl, false);
3332 if (result)
3333 goto out_disable;
3334
3335 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3336 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3337 else
3338 dev->ctrl.max_integrity_segments = 1;
3339
3340 nvme_dbbuf_dma_alloc(dev);
3341
3342 result = nvme_setup_host_mem(dev);
3343 if (result < 0)
3344 goto out_disable;
3345
3346 result = nvme_setup_io_queues(dev);
3347 if (result)
3348 goto out_disable;
3349
3350 if (dev->online_queues > 1) {
3351 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3352 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3353 nvme_dbbuf_set(dev);
3354 }
3355
3356 if (!dev->ctrl.tagset)
3357 dev_warn(dev->ctrl.device, "IO queues not created\n");
3358
3359 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3360 dev_warn(dev->ctrl.device,
3361 "failed to mark controller live state\n");
3362 result = -ENODEV;
3363 goto out_disable;
3364 }
3365
3366 pci_set_drvdata(pdev, dev);
3367
3368 nvme_start_ctrl(&dev->ctrl);
3369 nvme_put_ctrl(&dev->ctrl);
3370 flush_work(&dev->ctrl.scan_work);
3371 return 0;
3372
3373 out_disable:
3374 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3375 nvme_dev_disable(dev, true);
3376 nvme_free_host_mem(dev);
3377 nvme_dev_remove_admin(dev);
3378 nvme_dbbuf_dma_free(dev);
3379 nvme_free_queues(dev, 0);
3380 out_release_iod_mempool:
3381 mempool_destroy(dev->iod_mempool);
3382 mempool_destroy(dev->iod_meta_mempool);
3383 out_dev_unmap:
3384 nvme_dev_unmap(dev);
3385 out_uninit_ctrl:
3386 nvme_uninit_ctrl(&dev->ctrl);
3387 out_put_ctrl:
3388 nvme_put_ctrl(&dev->ctrl);
3389 return result;
3390 }
3391
nvme_reset_prepare(struct pci_dev * pdev)3392 static void nvme_reset_prepare(struct pci_dev *pdev)
3393 {
3394 struct nvme_dev *dev = pci_get_drvdata(pdev);
3395
3396 /*
3397 * We don't need to check the return value from waiting for the reset
3398 * state as pci_dev device lock is held, making it impossible to race
3399 * with ->remove().
3400 */
3401 nvme_disable_prepare_reset(dev, false);
3402 nvme_sync_queues(&dev->ctrl);
3403 }
3404
nvme_reset_done(struct pci_dev * pdev)3405 static void nvme_reset_done(struct pci_dev *pdev)
3406 {
3407 struct nvme_dev *dev = pci_get_drvdata(pdev);
3408
3409 if (!nvme_try_sched_reset(&dev->ctrl))
3410 flush_work(&dev->ctrl.reset_work);
3411 }
3412
nvme_shutdown(struct pci_dev * pdev)3413 static void nvme_shutdown(struct pci_dev *pdev)
3414 {
3415 struct nvme_dev *dev = pci_get_drvdata(pdev);
3416
3417 nvme_disable_prepare_reset(dev, true);
3418 }
3419
3420 /*
3421 * The driver's remove may be called on a device in a partially initialized
3422 * state. This function must not have any dependencies on the device state in
3423 * order to proceed.
3424 */
nvme_remove(struct pci_dev * pdev)3425 static void nvme_remove(struct pci_dev *pdev)
3426 {
3427 struct nvme_dev *dev = pci_get_drvdata(pdev);
3428
3429 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3430 pci_set_drvdata(pdev, NULL);
3431
3432 if (!pci_device_is_present(pdev)) {
3433 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3434 nvme_dev_disable(dev, true);
3435 }
3436
3437 flush_work(&dev->ctrl.reset_work);
3438 nvme_stop_ctrl(&dev->ctrl);
3439 nvme_remove_namespaces(&dev->ctrl);
3440 nvme_dev_disable(dev, true);
3441 nvme_free_host_mem(dev);
3442 nvme_dev_remove_admin(dev);
3443 nvme_dbbuf_dma_free(dev);
3444 nvme_free_queues(dev, 0);
3445 mempool_destroy(dev->iod_mempool);
3446 mempool_destroy(dev->iod_meta_mempool);
3447 nvme_release_descriptor_pools(dev);
3448 nvme_dev_unmap(dev);
3449 nvme_uninit_ctrl(&dev->ctrl);
3450 }
3451
3452 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3453 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3454 {
3455 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3456 }
3457
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3458 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3459 {
3460 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3461 }
3462
nvme_resume(struct device * dev)3463 static int nvme_resume(struct device *dev)
3464 {
3465 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3466 struct nvme_ctrl *ctrl = &ndev->ctrl;
3467
3468 if (ndev->last_ps == U32_MAX ||
3469 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3470 goto reset;
3471 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3472 goto reset;
3473
3474 return 0;
3475 reset:
3476 return nvme_try_sched_reset(ctrl);
3477 }
3478
nvme_suspend(struct device * dev)3479 static int nvme_suspend(struct device *dev)
3480 {
3481 struct pci_dev *pdev = to_pci_dev(dev);
3482 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3483 struct nvme_ctrl *ctrl = &ndev->ctrl;
3484 int ret = -EBUSY;
3485
3486 ndev->last_ps = U32_MAX;
3487
3488 /*
3489 * The platform does not remove power for a kernel managed suspend so
3490 * use host managed nvme power settings for lowest idle power if
3491 * possible. This should have quicker resume latency than a full device
3492 * shutdown. But if the firmware is involved after the suspend or the
3493 * device does not support any non-default power states, shut down the
3494 * device fully.
3495 *
3496 * If ASPM is not enabled for the device, shut down the device and allow
3497 * the PCI bus layer to put it into D3 in order to take the PCIe link
3498 * down, so as to allow the platform to achieve its minimum low-power
3499 * state (which may not be possible if the link is up).
3500 */
3501 if (pm_suspend_via_firmware() || !ctrl->npss ||
3502 !pcie_aspm_enabled(pdev) ||
3503 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3504 return nvme_disable_prepare_reset(ndev, true);
3505
3506 nvme_start_freeze(ctrl);
3507 nvme_wait_freeze(ctrl);
3508 nvme_sync_queues(ctrl);
3509
3510 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3511 goto unfreeze;
3512
3513 /*
3514 * Host memory access may not be successful in a system suspend state,
3515 * but the specification allows the controller to access memory in a
3516 * non-operational power state.
3517 */
3518 if (ndev->hmb) {
3519 ret = nvme_set_host_mem(ndev, 0);
3520 if (ret < 0)
3521 goto unfreeze;
3522 }
3523
3524 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3525 if (ret < 0)
3526 goto unfreeze;
3527
3528 /*
3529 * A saved state prevents pci pm from generically controlling the
3530 * device's power. If we're using protocol specific settings, we don't
3531 * want pci interfering.
3532 */
3533 pci_save_state(pdev);
3534
3535 ret = nvme_set_power_state(ctrl, ctrl->npss);
3536 if (ret < 0)
3537 goto unfreeze;
3538
3539 if (ret) {
3540 /* discard the saved state */
3541 pci_load_saved_state(pdev, NULL);
3542
3543 /*
3544 * Clearing npss forces a controller reset on resume. The
3545 * correct value will be rediscovered then.
3546 */
3547 ret = nvme_disable_prepare_reset(ndev, true);
3548 ctrl->npss = 0;
3549 }
3550 unfreeze:
3551 nvme_unfreeze(ctrl);
3552 return ret;
3553 }
3554
nvme_simple_suspend(struct device * dev)3555 static int nvme_simple_suspend(struct device *dev)
3556 {
3557 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3558
3559 return nvme_disable_prepare_reset(ndev, true);
3560 }
3561
nvme_simple_resume(struct device * dev)3562 static int nvme_simple_resume(struct device *dev)
3563 {
3564 struct pci_dev *pdev = to_pci_dev(dev);
3565 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3566
3567 return nvme_try_sched_reset(&ndev->ctrl);
3568 }
3569
3570 static const struct dev_pm_ops nvme_dev_pm_ops = {
3571 .suspend = nvme_suspend,
3572 .resume = nvme_resume,
3573 .freeze = nvme_simple_suspend,
3574 .thaw = nvme_simple_resume,
3575 .poweroff = nvme_simple_suspend,
3576 .restore = nvme_simple_resume,
3577 };
3578 #endif /* CONFIG_PM_SLEEP */
3579
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3580 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3581 pci_channel_state_t state)
3582 {
3583 struct nvme_dev *dev = pci_get_drvdata(pdev);
3584
3585 /*
3586 * A frozen channel requires a reset. When detected, this method will
3587 * shutdown the controller to quiesce. The controller will be restarted
3588 * after the slot reset through driver's slot_reset callback.
3589 */
3590 switch (state) {
3591 case pci_channel_io_normal:
3592 return PCI_ERS_RESULT_CAN_RECOVER;
3593 case pci_channel_io_frozen:
3594 dev_warn(dev->ctrl.device,
3595 "frozen state error detected, reset controller\n");
3596 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3597 nvme_dev_disable(dev, true);
3598 return PCI_ERS_RESULT_DISCONNECT;
3599 }
3600 nvme_dev_disable(dev, false);
3601 return PCI_ERS_RESULT_NEED_RESET;
3602 case pci_channel_io_perm_failure:
3603 dev_warn(dev->ctrl.device,
3604 "failure state error detected, request disconnect\n");
3605 return PCI_ERS_RESULT_DISCONNECT;
3606 }
3607 return PCI_ERS_RESULT_NEED_RESET;
3608 }
3609
nvme_slot_reset(struct pci_dev * pdev)3610 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3611 {
3612 struct nvme_dev *dev = pci_get_drvdata(pdev);
3613
3614 dev_info(dev->ctrl.device, "restart after slot reset\n");
3615 pci_restore_state(pdev);
3616 if (nvme_try_sched_reset(&dev->ctrl))
3617 nvme_unquiesce_io_queues(&dev->ctrl);
3618 return PCI_ERS_RESULT_RECOVERED;
3619 }
3620
nvme_error_resume(struct pci_dev * pdev)3621 static void nvme_error_resume(struct pci_dev *pdev)
3622 {
3623 struct nvme_dev *dev = pci_get_drvdata(pdev);
3624
3625 flush_work(&dev->ctrl.reset_work);
3626 }
3627
3628 static const struct pci_error_handlers nvme_err_handler = {
3629 .error_detected = nvme_error_detected,
3630 .slot_reset = nvme_slot_reset,
3631 .resume = nvme_error_resume,
3632 .reset_prepare = nvme_reset_prepare,
3633 .reset_done = nvme_reset_done,
3634 };
3635
3636 static const struct pci_device_id nvme_id_table[] = {
3637 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3638 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3639 NVME_QUIRK_DEALLOCATE_ZEROES, },
3640 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3641 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3642 NVME_QUIRK_DEALLOCATE_ZEROES, },
3643 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3644 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3645 NVME_QUIRK_IGNORE_DEV_SUBNQN |
3646 NVME_QUIRK_BOGUS_NID, },
3647 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3648 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
3649 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3650 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3651 NVME_QUIRK_MEDIUM_PRIO_SQ |
3652 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3653 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3654 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3655 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3656 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3657 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3658 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3659 NVME_QUIRK_BOGUS_NID, },
3660 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3661 .driver_data = NVME_QUIRK_BOGUS_NID, },
3662 { PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3663 .driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3664 { PCI_DEVICE(0x126f, 0x1001), /* Silicon Motion generic */
3665 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3666 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3667 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */
3668 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3669 NVME_QUIRK_BOGUS_NID, },
3670 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3671 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3672 NVME_QUIRK_BOGUS_NID, },
3673 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3674 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3675 NVME_QUIRK_NO_NS_DESC_LIST, },
3676 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3677 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3678 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3679 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3680 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3681 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3682 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3683 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3684 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3685 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3686 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3687 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3688 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */
3689 .driver_data = NVME_QUIRK_BROKEN_MSI },
3690 { PCI_DEVICE(0x15b7, 0x5009), /* Sandisk SN550 */
3691 .driver_data = NVME_QUIRK_BROKEN_MSI |
3692 NVME_QUIRK_NO_DEEPEST_PS },
3693 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3694 .driver_data = NVME_QUIRK_BOGUS_NID, },
3695 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3696 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3697 NVME_QUIRK_BOGUS_NID, },
3698 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
3699 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3700 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
3701 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3702 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3703 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3704 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3705 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3706 .driver_data = NVME_QUIRK_BOGUS_NID, },
3707 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3708 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3709 NVME_QUIRK_BOGUS_NID, },
3710 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */
3711 .driver_data = NVME_QUIRK_BOGUS_NID, },
3712 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3713 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3714 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3715 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3716 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3717 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3718 .driver_data = NVME_QUIRK_BOGUS_NID, },
3719 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3720 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3721 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3722 .driver_data = NVME_QUIRK_BOGUS_NID, },
3723 { PCI_DEVICE(0x1c5c, 0x1D59), /* SK Hynix BC901 */
3724 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3725 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3726 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3727 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3728 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3729 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3730 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3731 NVME_QUIRK_BOGUS_NID, },
3732 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3733 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3734 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */
3735 .driver_data = NVME_QUIRK_BOGUS_NID, },
3736 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3737 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3738 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3739 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3740 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3741 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3742 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3743 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3744 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */
3745 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3746 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3747 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3748 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3749 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3750 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3751 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3752 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3753 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3754 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3755 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3756 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */
3757 .driver_data = NVME_QUIRK_BOGUS_NID, },
3758 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
3759 .driver_data = NVME_QUIRK_BOGUS_NID, },
3760 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3761 .driver_data = NVME_QUIRK_BOGUS_NID, },
3762 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3763 .driver_data = NVME_QUIRK_BOGUS_NID, },
3764 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3765 .driver_data = NVME_QUIRK_BOGUS_NID, },
3766 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */
3767 .driver_data = NVME_QUIRK_BOGUS_NID, },
3768 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3769 .driver_data = NVME_QUIRK_BOGUS_NID, },
3770 { PCI_DEVICE(0x1dbe, 0x5216), /* Acer/INNOGRIT FA100/5216 NVMe SSD */
3771 .driver_data = NVME_QUIRK_BOGUS_NID, },
3772 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
3773 .driver_data = NVME_QUIRK_BOGUS_NID, },
3774 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
3775 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3776 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3777 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3778 { PCI_DEVICE(0x025e, 0xf1ac), /* SOLIDIGM P44 pro SSDPFKKW020X7 */
3779 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3780 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
3781 .driver_data = NVME_QUIRK_BOGUS_NID, },
3782 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3783 .driver_data = NVME_QUIRK_BOGUS_NID, },
3784 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3785 .driver_data = NVME_QUIRK_BOGUS_NID, },
3786 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3787 .driver_data = NVME_QUIRK_BOGUS_NID |
3788 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3789 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3790 .driver_data = NVME_QUIRK_BOGUS_NID, },
3791 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */
3792 .driver_data = NVME_QUIRK_BOGUS_NID, },
3793 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3794 .driver_data = NVME_QUIRK_BOGUS_NID, },
3795 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3796 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3797 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3798 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3799 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3800 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3801 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3802 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3803 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3804 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3805 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3806 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3807 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3808 /*
3809 * Fix for the Apple controller found in the MacBook8,1 and
3810 * some MacBook7,1 to avoid controller resets and data loss.
3811 */
3812 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3813 NVME_QUIRK_QDEPTH_ONE },
3814 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3815 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3816 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3817 NVME_QUIRK_128_BYTES_SQES |
3818 NVME_QUIRK_SHARED_TAGS |
3819 NVME_QUIRK_SKIP_CID_GEN |
3820 NVME_QUIRK_IDENTIFY_CNS },
3821 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3822 { 0, }
3823 };
3824 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3825
3826 static struct pci_driver nvme_driver = {
3827 .name = "nvme",
3828 .id_table = nvme_id_table,
3829 .probe = nvme_probe,
3830 .remove = nvme_remove,
3831 .shutdown = nvme_shutdown,
3832 .driver = {
3833 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
3834 #ifdef CONFIG_PM_SLEEP
3835 .pm = &nvme_dev_pm_ops,
3836 #endif
3837 },
3838 .sriov_configure = pci_sriov_configure_simple,
3839 .err_handler = &nvme_err_handler,
3840 };
3841
nvme_init(void)3842 static int __init nvme_init(void)
3843 {
3844 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3845 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3846 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3847 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3848 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_DESCRIPTORS);
3849
3850 return pci_register_driver(&nvme_driver);
3851 }
3852
nvme_exit(void)3853 static void __exit nvme_exit(void)
3854 {
3855 pci_unregister_driver(&nvme_driver);
3856 flush_workqueue(nvme_wq);
3857 }
3858
3859 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3860 MODULE_LICENSE("GPL");
3861 MODULE_VERSION("1.0");
3862 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
3863 module_init(nvme_init);
3864 module_exit(nvme_exit);
3865