1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/page_isolation.c 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/page-isolation.h> 8 #include <linux/pageblock-flags.h> 9 #include <linux/memory.h> 10 #include <linux/hugetlb.h> 11 #include <linux/page_owner.h> 12 #include <linux/migrate.h> 13 #include "internal.h" 14 15 #define CREATE_TRACE_POINTS 16 #include <trace/events/page_isolation.h> 17 18 /* 19 * This function checks whether the range [start_pfn, end_pfn) includes 20 * unmovable pages or not. The range must fall into a single pageblock and 21 * consequently belong to a single zone. 22 * 23 * PageLRU check without isolation or lru_lock could race so that 24 * MIGRATE_MOVABLE block might include unmovable pages. Similarly, pages 25 * with movable_ops can only be identified some time after they were 26 * allocated. So you can't expect this function should be exact. 27 * 28 * Returns a page without holding a reference. If the caller wants to 29 * dereference that page (e.g., dumping), it has to make sure that it 30 * cannot get removed (e.g., via memory unplug) concurrently. 31 * 32 */ 33 static struct page *has_unmovable_pages(unsigned long start_pfn, unsigned long end_pfn, 34 enum pb_isolate_mode mode) 35 { 36 struct page *page = pfn_to_page(start_pfn); 37 struct zone *zone = page_zone(page); 38 unsigned long pfn; 39 40 VM_BUG_ON(pageblock_start_pfn(start_pfn) != 41 pageblock_start_pfn(end_pfn - 1)); 42 43 if (is_migrate_cma_page(page)) { 44 /* 45 * CMA allocations (alloc_contig_range) really need to mark 46 * isolate CMA pageblocks even when they are not movable in fact 47 * so consider them movable here. 48 */ 49 if (mode == PB_ISOLATE_MODE_CMA_ALLOC) 50 return NULL; 51 52 return page; 53 } 54 55 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 56 page = pfn_to_page(pfn); 57 58 /* 59 * Both, bootmem allocations and memory holes are marked 60 * PG_reserved and are unmovable. We can even have unmovable 61 * allocations inside ZONE_MOVABLE, for example when 62 * specifying "movablecore". 63 */ 64 if (PageReserved(page)) 65 return page; 66 67 /* 68 * If the zone is movable and we have ruled out all reserved 69 * pages then it should be reasonably safe to assume the rest 70 * is movable. 71 */ 72 if (zone_idx(zone) == ZONE_MOVABLE) 73 continue; 74 75 /* 76 * Hugepages are not in LRU lists, but they're movable. 77 * THPs are on the LRU, but need to be counted as #small pages. 78 * We need not scan over tail pages because we don't 79 * handle each tail page individually in migration. 80 */ 81 if (PageHuge(page) || PageTransCompound(page)) { 82 struct folio *folio = page_folio(page); 83 unsigned int skip_pages; 84 85 if (PageHuge(page)) { 86 struct hstate *h; 87 88 /* 89 * The huge page may be freed so can not 90 * use folio_hstate() directly. 91 */ 92 h = size_to_hstate(folio_size(folio)); 93 if (h && !hugepage_migration_supported(h)) 94 return page; 95 } else if (!folio_test_lru(folio)) { 96 return page; 97 } 98 99 skip_pages = folio_nr_pages(folio) - folio_page_idx(folio, page); 100 pfn += skip_pages - 1; 101 continue; 102 } 103 104 /* 105 * We can't use page_count without pin a page 106 * because another CPU can free compound page. 107 * This check already skips compound tails of THP 108 * because their page->_refcount is zero at all time. 109 */ 110 if (!page_ref_count(page)) { 111 if (PageBuddy(page)) 112 pfn += (1 << buddy_order(page)) - 1; 113 continue; 114 } 115 116 /* 117 * The HWPoisoned page may be not in buddy system, and 118 * page_count() is not 0. 119 */ 120 if ((mode == PB_ISOLATE_MODE_MEM_OFFLINE) && PageHWPoison(page)) 121 continue; 122 123 /* 124 * We treat all PageOffline() pages as movable when offlining 125 * to give drivers a chance to decrement their reference count 126 * in MEM_GOING_OFFLINE in order to indicate that these pages 127 * can be offlined as there are no direct references anymore. 128 * For actually unmovable PageOffline() where the driver does 129 * not support this, we will fail later when trying to actually 130 * move these pages that still have a reference count > 0. 131 * (false negatives in this function only) 132 */ 133 if ((mode == PB_ISOLATE_MODE_MEM_OFFLINE) && PageOffline(page)) 134 continue; 135 136 if (PageLRU(page) || page_has_movable_ops(page)) 137 continue; 138 139 /* 140 * If there are RECLAIMABLE pages, we need to check 141 * it. But now, memory offline itself doesn't call 142 * shrink_node_slabs() and it still to be fixed. 143 */ 144 return page; 145 } 146 return NULL; 147 } 148 149 /* 150 * This function set pageblock migratetype to isolate if no unmovable page is 151 * present in [start_pfn, end_pfn). The pageblock must intersect with 152 * [start_pfn, end_pfn). 153 */ 154 static int set_migratetype_isolate(struct page *page, enum pb_isolate_mode mode, 155 unsigned long start_pfn, unsigned long end_pfn) 156 { 157 struct zone *zone = page_zone(page); 158 struct page *unmovable; 159 unsigned long flags; 160 unsigned long check_unmovable_start, check_unmovable_end; 161 162 if (PageUnaccepted(page)) 163 accept_page(page); 164 165 spin_lock_irqsave(&zone->lock, flags); 166 167 /* 168 * We assume the caller intended to SET migrate type to isolate. 169 * If it is already set, then someone else must have raced and 170 * set it before us. 171 */ 172 if (is_migrate_isolate_page(page)) { 173 spin_unlock_irqrestore(&zone->lock, flags); 174 return -EBUSY; 175 } 176 177 /* 178 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. 179 * We just check MOVABLE pages. 180 * 181 * Pass the intersection of [start_pfn, end_pfn) and the page's pageblock 182 * to avoid redundant checks. 183 */ 184 check_unmovable_start = max(page_to_pfn(page), start_pfn); 185 check_unmovable_end = min(pageblock_end_pfn(page_to_pfn(page)), 186 end_pfn); 187 188 unmovable = has_unmovable_pages(check_unmovable_start, check_unmovable_end, 189 mode); 190 if (!unmovable) { 191 if (!pageblock_isolate_and_move_free_pages(zone, page)) { 192 spin_unlock_irqrestore(&zone->lock, flags); 193 return -EBUSY; 194 } 195 zone->nr_isolate_pageblock++; 196 spin_unlock_irqrestore(&zone->lock, flags); 197 return 0; 198 } 199 200 spin_unlock_irqrestore(&zone->lock, flags); 201 if (mode == PB_ISOLATE_MODE_MEM_OFFLINE) { 202 /* 203 * printk() with zone->lock held will likely trigger a 204 * lockdep splat, so defer it here. 205 */ 206 dump_page(unmovable, "unmovable page"); 207 } 208 209 return -EBUSY; 210 } 211 212 static void unset_migratetype_isolate(struct page *page) 213 { 214 struct zone *zone; 215 unsigned long flags; 216 bool isolated_page = false; 217 unsigned int order; 218 struct page *buddy; 219 220 zone = page_zone(page); 221 spin_lock_irqsave(&zone->lock, flags); 222 if (!is_migrate_isolate_page(page)) 223 goto out; 224 225 /* 226 * Because freepage with more than pageblock_order on isolated 227 * pageblock is restricted to merge due to freepage counting problem, 228 * it is possible that there is free buddy page. 229 * move_freepages_block() doesn't care of merge so we need other 230 * approach in order to merge them. Isolation and free will make 231 * these pages to be merged. 232 */ 233 if (PageBuddy(page)) { 234 order = buddy_order(page); 235 if (order >= pageblock_order && order < MAX_PAGE_ORDER) { 236 buddy = find_buddy_page_pfn(page, page_to_pfn(page), 237 order, NULL); 238 if (buddy && !is_migrate_isolate_page(buddy)) { 239 isolated_page = !!__isolate_free_page(page, order); 240 /* 241 * Isolating a free page in an isolated pageblock 242 * is expected to always work as watermarks don't 243 * apply here. 244 */ 245 VM_WARN_ON(!isolated_page); 246 } 247 } 248 } 249 250 /* 251 * If we isolate freepage with more than pageblock_order, there 252 * should be no freepage in the range, so we could avoid costly 253 * pageblock scanning for freepage moving. 254 * 255 * We didn't actually touch any of the isolated pages, so place them 256 * to the tail of the freelist. This is an optimization for memory 257 * onlining - just onlined memory won't immediately be considered for 258 * allocation. 259 */ 260 if (!isolated_page) { 261 /* 262 * Isolating this block already succeeded, so this 263 * should not fail on zone boundaries. 264 */ 265 WARN_ON_ONCE(!pageblock_unisolate_and_move_free_pages(zone, page)); 266 } else { 267 clear_pageblock_isolate(page); 268 __putback_isolated_page(page, order, get_pageblock_migratetype(page)); 269 } 270 zone->nr_isolate_pageblock--; 271 out: 272 spin_unlock_irqrestore(&zone->lock, flags); 273 } 274 275 static inline struct page * 276 __first_valid_page(unsigned long pfn, unsigned long nr_pages) 277 { 278 int i; 279 280 for (i = 0; i < nr_pages; i++) { 281 struct page *page; 282 283 page = pfn_to_online_page(pfn + i); 284 if (!page) 285 continue; 286 return page; 287 } 288 return NULL; 289 } 290 291 /** 292 * isolate_single_pageblock() -- tries to isolate a pageblock that might be 293 * within a free or in-use page. 294 * @boundary_pfn: pageblock-aligned pfn that a page might cross 295 * @mode: isolation mode 296 * @isolate_before: isolate the pageblock before the boundary_pfn 297 * @skip_isolation: the flag to skip the pageblock isolation in second 298 * isolate_single_pageblock() 299 * 300 * Free and in-use pages can be as big as MAX_PAGE_ORDER and contain more than one 301 * pageblock. When not all pageblocks within a page are isolated at the same 302 * time, free page accounting can go wrong. For example, in the case of 303 * MAX_PAGE_ORDER = pageblock_order + 1, a MAX_PAGE_ORDER page has two 304 * pagelbocks. 305 * [ MAX_PAGE_ORDER ] 306 * [ pageblock0 | pageblock1 ] 307 * When either pageblock is isolated, if it is a free page, the page is not 308 * split into separate migratetype lists, which is supposed to; if it is an 309 * in-use page and freed later, __free_one_page() does not split the free page 310 * either. The function handles this by splitting the free page or migrating 311 * the in-use page then splitting the free page. 312 */ 313 static int isolate_single_pageblock(unsigned long boundary_pfn, 314 enum pb_isolate_mode mode, bool isolate_before, 315 bool skip_isolation) 316 { 317 unsigned long start_pfn; 318 unsigned long isolate_pageblock; 319 unsigned long pfn; 320 struct zone *zone; 321 int ret; 322 323 VM_BUG_ON(!pageblock_aligned(boundary_pfn)); 324 325 if (isolate_before) 326 isolate_pageblock = boundary_pfn - pageblock_nr_pages; 327 else 328 isolate_pageblock = boundary_pfn; 329 330 /* 331 * scan at the beginning of MAX_ORDER_NR_PAGES aligned range to avoid 332 * only isolating a subset of pageblocks from a bigger than pageblock 333 * free or in-use page. Also make sure all to-be-isolated pageblocks 334 * are within the same zone. 335 */ 336 zone = page_zone(pfn_to_page(isolate_pageblock)); 337 start_pfn = max(ALIGN_DOWN(isolate_pageblock, MAX_ORDER_NR_PAGES), 338 zone->zone_start_pfn); 339 340 if (skip_isolation) { 341 VM_BUG_ON(!get_pageblock_isolate(pfn_to_page(isolate_pageblock))); 342 } else { 343 ret = set_migratetype_isolate(pfn_to_page(isolate_pageblock), 344 mode, isolate_pageblock, 345 isolate_pageblock + pageblock_nr_pages); 346 347 if (ret) 348 return ret; 349 } 350 351 /* 352 * Bail out early when the to-be-isolated pageblock does not form 353 * a free or in-use page across boundary_pfn: 354 * 355 * 1. isolate before boundary_pfn: the page after is not online 356 * 2. isolate after boundary_pfn: the page before is not online 357 * 358 * This also ensures correctness. Without it, when isolate after 359 * boundary_pfn and [start_pfn, boundary_pfn) are not online, 360 * __first_valid_page() will return unexpected NULL in the for loop 361 * below. 362 */ 363 if (isolate_before) { 364 if (!pfn_to_online_page(boundary_pfn)) 365 return 0; 366 } else { 367 if (!pfn_to_online_page(boundary_pfn - 1)) 368 return 0; 369 } 370 371 for (pfn = start_pfn; pfn < boundary_pfn;) { 372 struct page *page = __first_valid_page(pfn, boundary_pfn - pfn); 373 374 VM_BUG_ON(!page); 375 pfn = page_to_pfn(page); 376 377 if (PageUnaccepted(page)) { 378 pfn += MAX_ORDER_NR_PAGES; 379 continue; 380 } 381 382 if (PageBuddy(page)) { 383 int order = buddy_order(page); 384 385 /* pageblock_isolate_and_move_free_pages() handled this */ 386 VM_WARN_ON_ONCE(pfn + (1 << order) > boundary_pfn); 387 388 pfn += 1UL << order; 389 continue; 390 } 391 392 /* 393 * If a compound page is straddling our block, attempt 394 * to migrate it out of the way. 395 * 396 * We don't have to worry about this creating a large 397 * free page that straddles into our block: gigantic 398 * pages are freed as order-0 chunks, and LRU pages 399 * (currently) do not exceed pageblock_order. 400 * 401 * The block of interest has already been marked 402 * MIGRATE_ISOLATE above, so when migration is done it 403 * will free its pages onto the correct freelists. 404 */ 405 if (PageCompound(page)) { 406 struct page *head = compound_head(page); 407 unsigned long head_pfn = page_to_pfn(head); 408 unsigned long nr_pages = compound_nr(head); 409 410 if (head_pfn + nr_pages <= boundary_pfn || 411 PageHuge(page)) { 412 pfn = head_pfn + nr_pages; 413 continue; 414 } 415 416 /* 417 * These pages are movable too, but they're 418 * not expected to exceed pageblock_order. 419 * 420 * Let us know when they do, so we can add 421 * proper free and split handling for them. 422 */ 423 VM_WARN_ON_ONCE_PAGE(PageLRU(page), page); 424 VM_WARN_ON_ONCE_PAGE(page_has_movable_ops(page), page); 425 426 goto failed; 427 } 428 429 pfn++; 430 } 431 return 0; 432 failed: 433 /* restore the original migratetype */ 434 if (!skip_isolation) 435 unset_migratetype_isolate(pfn_to_page(isolate_pageblock)); 436 return -EBUSY; 437 } 438 439 /** 440 * start_isolate_page_range() - mark page range MIGRATE_ISOLATE 441 * @start_pfn: The first PFN of the range to be isolated. 442 * @end_pfn: The last PFN of the range to be isolated. 443 * @mode: isolation mode 444 * 445 * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in 446 * the range will never be allocated. Any free pages and pages freed in the 447 * future will not be allocated again. If specified range includes migrate types 448 * other than MOVABLE or CMA, this will fail with -EBUSY. For isolating all 449 * pages in the range finally, the caller have to free all pages in the range. 450 * test_page_isolated() can be used for test it. 451 * 452 * The function first tries to isolate the pageblocks at the beginning and end 453 * of the range, since there might be pages across the range boundaries. 454 * Afterwards, it isolates the rest of the range. 455 * 456 * There is no high level synchronization mechanism that prevents two threads 457 * from trying to isolate overlapping ranges. If this happens, one thread 458 * will notice pageblocks in the overlapping range already set to isolate. 459 * This happens in set_migratetype_isolate, and set_migratetype_isolate 460 * returns an error. We then clean up by restoring the migration type on 461 * pageblocks we may have modified and return -EBUSY to caller. This 462 * prevents two threads from simultaneously working on overlapping ranges. 463 * 464 * Please note that there is no strong synchronization with the page allocator 465 * either. Pages might be freed while their page blocks are marked ISOLATED. 466 * A call to drain_all_pages() after isolation can flush most of them. However 467 * in some cases pages might still end up on pcp lists and that would allow 468 * for their allocation even when they are in fact isolated already. Depending 469 * on how strong of a guarantee the caller needs, zone_pcp_disable/enable() 470 * might be used to flush and disable pcplist before isolation and enable after 471 * unisolation. 472 * 473 * Return: 0 on success and -EBUSY if any part of range cannot be isolated. 474 */ 475 int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn, 476 enum pb_isolate_mode mode) 477 { 478 unsigned long pfn; 479 struct page *page; 480 /* isolation is done at page block granularity */ 481 unsigned long isolate_start = pageblock_start_pfn(start_pfn); 482 unsigned long isolate_end = pageblock_align(end_pfn); 483 int ret; 484 bool skip_isolation = false; 485 486 /* isolate [isolate_start, isolate_start + pageblock_nr_pages) pageblock */ 487 ret = isolate_single_pageblock(isolate_start, mode, false, 488 skip_isolation); 489 if (ret) 490 return ret; 491 492 if (isolate_start == isolate_end - pageblock_nr_pages) 493 skip_isolation = true; 494 495 /* isolate [isolate_end - pageblock_nr_pages, isolate_end) pageblock */ 496 ret = isolate_single_pageblock(isolate_end, mode, true, skip_isolation); 497 if (ret) { 498 unset_migratetype_isolate(pfn_to_page(isolate_start)); 499 return ret; 500 } 501 502 /* skip isolated pageblocks at the beginning and end */ 503 for (pfn = isolate_start + pageblock_nr_pages; 504 pfn < isolate_end - pageblock_nr_pages; 505 pfn += pageblock_nr_pages) { 506 page = __first_valid_page(pfn, pageblock_nr_pages); 507 if (page && set_migratetype_isolate(page, mode, start_pfn, 508 end_pfn)) { 509 undo_isolate_page_range(isolate_start, pfn); 510 unset_migratetype_isolate( 511 pfn_to_page(isolate_end - pageblock_nr_pages)); 512 return -EBUSY; 513 } 514 } 515 return 0; 516 } 517 518 /** 519 * undo_isolate_page_range - undo effects of start_isolate_page_range() 520 * @start_pfn: The first PFN of the isolated range 521 * @end_pfn: The last PFN of the isolated range 522 * 523 * This finds and unsets every MIGRATE_ISOLATE page block in the given range 524 */ 525 void undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn) 526 { 527 unsigned long pfn; 528 struct page *page; 529 unsigned long isolate_start = pageblock_start_pfn(start_pfn); 530 unsigned long isolate_end = pageblock_align(end_pfn); 531 532 for (pfn = isolate_start; 533 pfn < isolate_end; 534 pfn += pageblock_nr_pages) { 535 page = __first_valid_page(pfn, pageblock_nr_pages); 536 if (!page || !is_migrate_isolate_page(page)) 537 continue; 538 unset_migratetype_isolate(page); 539 } 540 } 541 /* 542 * Test all pages in the range is free(means isolated) or not. 543 * all pages in [start_pfn...end_pfn) must be in the same zone. 544 * zone->lock must be held before call this. 545 * 546 * Returns the last tested pfn. 547 */ 548 static unsigned long 549 __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn, 550 enum pb_isolate_mode mode) 551 { 552 struct page *page; 553 554 while (pfn < end_pfn) { 555 page = pfn_to_page(pfn); 556 if (PageBuddy(page)) 557 /* 558 * If the page is on a free list, it has to be on 559 * the correct MIGRATE_ISOLATE freelist. There is no 560 * simple way to verify that as VM_BUG_ON(), though. 561 */ 562 pfn += 1 << buddy_order(page); 563 else if ((mode == PB_ISOLATE_MODE_MEM_OFFLINE) && 564 PageHWPoison(page)) 565 /* A HWPoisoned page cannot be also PageBuddy */ 566 pfn++; 567 else if ((mode == PB_ISOLATE_MODE_MEM_OFFLINE) && 568 PageOffline(page) && !page_count(page)) 569 /* 570 * The responsible driver agreed to skip PageOffline() 571 * pages when offlining memory by dropping its 572 * reference in MEM_GOING_OFFLINE. 573 */ 574 pfn++; 575 else 576 break; 577 } 578 579 return pfn; 580 } 581 582 /** 583 * test_pages_isolated - check if pageblocks in range are isolated 584 * @start_pfn: The first PFN of the isolated range 585 * @end_pfn: The first PFN *after* the isolated range 586 * @mode: Testing mode 587 * 588 * This tests if all in the specified range are free. 589 * 590 * If %PB_ISOLATE_MODE_MEM_OFFLINE specified in @mode, it will consider 591 * poisoned and offlined pages free as well. 592 * 593 * Caller must ensure the requested range doesn't span zones. 594 * 595 * Returns 0 if true, -EBUSY if one or more pages are in use. 596 */ 597 int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn, 598 enum pb_isolate_mode mode) 599 { 600 unsigned long pfn, flags; 601 struct page *page; 602 struct zone *zone; 603 int ret; 604 605 /* 606 * Due to the deferred freeing of hugetlb folios, the hugepage folios may 607 * not immediately release to the buddy system. This can cause PageBuddy() 608 * to fail in __test_page_isolated_in_pageblock(). To ensure that the 609 * hugetlb folios are properly released back to the buddy system, we 610 * invoke the wait_for_freed_hugetlb_folios() function to wait for the 611 * release to complete. 612 */ 613 wait_for_freed_hugetlb_folios(); 614 615 /* 616 * Note: pageblock_nr_pages != MAX_PAGE_ORDER. Then, chunks of free 617 * pages are not aligned to pageblock_nr_pages. 618 * Then we just check migratetype first. 619 */ 620 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 621 page = __first_valid_page(pfn, pageblock_nr_pages); 622 if (page && !is_migrate_isolate_page(page)) 623 break; 624 } 625 page = __first_valid_page(start_pfn, end_pfn - start_pfn); 626 if ((pfn < end_pfn) || !page) { 627 ret = -EBUSY; 628 goto out; 629 } 630 631 /* Check all pages are free or marked as ISOLATED */ 632 zone = page_zone(page); 633 spin_lock_irqsave(&zone->lock, flags); 634 pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn, mode); 635 spin_unlock_irqrestore(&zone->lock, flags); 636 637 ret = pfn < end_pfn ? -EBUSY : 0; 638 639 out: 640 trace_test_pages_isolated(start_pfn, end_pfn, pfn); 641 642 return ret; 643 } 644