xref: /freebsd/sys/contrib/openzfs/include/os/linux/spl/sys/kmem_cache.h (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
4  *  Copyright (C) 2007 The Regents of the University of California.
5  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
6  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
7  *  UCRL-CODE-235197
8  *
9  *  This file is part of the SPL, Solaris Porting Layer.
10  *
11  *  The SPL is free software; you can redistribute it and/or modify it
12  *  under the terms of the GNU General Public License as published by the
13  *  Free Software Foundation; either version 2 of the License, or (at your
14  *  option) any later version.
15  *
16  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
17  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
19  *  for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #ifndef _SPL_KMEM_CACHE_H
26 #define	_SPL_KMEM_CACHE_H
27 
28 #include <sys/taskq.h>
29 
30 /*
31  * Slab allocation interfaces.  The SPL slab differs from the standard
32  * Linux SLAB or SLUB primarily in that each cache may be backed by slabs
33  * allocated from the physical or virtual memory address space.  The virtual
34  * slabs allow for good behavior when allocation large objects of identical
35  * size.  This slab implementation also supports both constructors and
36  * destructors which the Linux slab does not.
37  */
38 typedef enum kmc_bit {
39 	KMC_BIT_NODEBUG		= 1,	/* Default behavior */
40 	KMC_BIT_KVMEM		= 7,	/* Use kvmalloc linux allocator  */
41 	KMC_BIT_SLAB		= 8,	/* Use Linux slab cache */
42 	KMC_BIT_DEADLOCKED	= 14,	/* Deadlock detected */
43 	KMC_BIT_GROWING		= 15,	/* Growing in progress */
44 	KMC_BIT_REAPING		= 16,	/* Reaping in progress */
45 	KMC_BIT_DESTROY		= 17,	/* Destroy in progress */
46 	KMC_BIT_TOTAL		= 18,	/* Proc handler helper bit */
47 	KMC_BIT_ALLOC		= 19,	/* Proc handler helper bit */
48 	KMC_BIT_MAX		= 20,	/* Proc handler helper bit */
49 	KMC_BIT_RECLAIMABLE	= 21,	/* Can be freed by shrinker */
50 } kmc_bit_t;
51 
52 /* kmem move callback return values */
53 typedef enum kmem_cbrc {
54 	KMEM_CBRC_YES		= 0,	/* Object moved */
55 	KMEM_CBRC_NO		= 1,	/* Object not moved */
56 	KMEM_CBRC_LATER		= 2,	/* Object not moved, try again later */
57 	KMEM_CBRC_DONT_NEED	= 3,	/* Neither object is needed */
58 	KMEM_CBRC_DONT_KNOW	= 4,	/* Object unknown */
59 } kmem_cbrc_t;
60 
61 #define	KMC_NODEBUG		(1 << KMC_BIT_NODEBUG)
62 #define	KMC_KVMEM		(1 << KMC_BIT_KVMEM)
63 #define	KMC_SLAB		(1 << KMC_BIT_SLAB)
64 #define	KMC_DEADLOCKED		(1 << KMC_BIT_DEADLOCKED)
65 #define	KMC_GROWING		(1 << KMC_BIT_GROWING)
66 #define	KMC_REAPING		(1 << KMC_BIT_REAPING)
67 #define	KMC_DESTROY		(1 << KMC_BIT_DESTROY)
68 #define	KMC_TOTAL		(1 << KMC_BIT_TOTAL)
69 #define	KMC_ALLOC		(1 << KMC_BIT_ALLOC)
70 #define	KMC_MAX			(1 << KMC_BIT_MAX)
71 #define	KMC_RECLAIMABLE		(1 << KMC_BIT_RECLAIMABLE)
72 
73 extern struct list_head spl_kmem_cache_list;
74 extern struct rw_semaphore spl_kmem_cache_sem;
75 
76 #define	SKM_MAGIC			0x2e2e2e2e
77 #define	SKO_MAGIC			0x20202020
78 #define	SKS_MAGIC			0x22222222
79 #define	SKC_MAGIC			0x2c2c2c2c
80 
81 #define	SPL_KMEM_CACHE_OBJ_PER_SLAB	8	/* Target objects per slab */
82 #define	SPL_KMEM_CACHE_ALIGN		8	/* Default object alignment */
83 #ifdef _LP64
84 #define	SPL_KMEM_CACHE_MAX_SIZE		32	/* Max slab size in MB */
85 #else
86 #define	SPL_KMEM_CACHE_MAX_SIZE		4	/* Max slab size in MB */
87 #endif
88 
89 #define	SPL_MAX_ORDER			(MAX_ORDER - 3)
90 #define	SPL_MAX_ORDER_NR_PAGES		(1 << (SPL_MAX_ORDER - 1))
91 
92 #ifdef CONFIG_SLUB
93 #define	SPL_MAX_KMEM_CACHE_ORDER	PAGE_ALLOC_COSTLY_ORDER
94 #define	SPL_MAX_KMEM_ORDER_NR_PAGES	(1 << (SPL_MAX_KMEM_CACHE_ORDER - 1))
95 #else
96 #define	SPL_MAX_KMEM_ORDER_NR_PAGES	(KMALLOC_MAX_SIZE >> PAGE_SHIFT)
97 #endif
98 
99 typedef int (*spl_kmem_ctor_t)(void *, void *, int);
100 typedef void (*spl_kmem_dtor_t)(void *, void *);
101 
102 typedef struct spl_kmem_magazine {
103 	uint32_t		skm_magic;	/* Sanity magic */
104 	uint32_t		skm_avail;	/* Available objects */
105 	uint32_t		skm_size;	/* Magazine size */
106 	uint32_t		skm_refill;	/* Batch refill size */
107 	struct spl_kmem_cache	*skm_cache;	/* Owned by cache */
108 	unsigned int		skm_cpu;	/* Owned by cpu */
109 	void			*skm_objs[];	/* Object pointers */
110 } spl_kmem_magazine_t;
111 
112 typedef struct spl_kmem_obj {
113 	uint32_t		sko_magic;	/* Sanity magic */
114 	void			*sko_addr;	/* Buffer address */
115 	struct spl_kmem_slab	*sko_slab;	/* Owned by slab */
116 	struct list_head	sko_list;	/* Free object list linkage */
117 } spl_kmem_obj_t;
118 
119 typedef struct spl_kmem_slab {
120 	uint32_t		sks_magic;	/* Sanity magic */
121 	uint32_t		sks_objs;	/* Objects per slab */
122 	struct spl_kmem_cache	*sks_cache;	/* Owned by cache */
123 	struct list_head	sks_list;	/* Slab list linkage */
124 	struct list_head	sks_free_list;	/* Free object list */
125 	unsigned long		sks_age;	/* Last modify jiffie */
126 	uint32_t		sks_ref;	/* Ref count used objects */
127 } spl_kmem_slab_t;
128 
129 typedef struct spl_kmem_alloc {
130 	struct spl_kmem_cache	*ska_cache;	/* Owned by cache */
131 	int			ska_flags;	/* Allocation flags */
132 	taskq_ent_t		ska_tqe;	/* Task queue entry */
133 } spl_kmem_alloc_t;
134 
135 typedef struct spl_kmem_emergency {
136 	struct rb_node		ske_node;	/* Emergency tree linkage */
137 	unsigned long		ske_obj;	/* Buffer address */
138 } spl_kmem_emergency_t;
139 
140 typedef struct spl_kmem_cache {
141 	uint32_t		skc_magic;	/* Sanity magic */
142 	uint32_t		skc_name_size;	/* Name length */
143 	char			*skc_name;	/* Name string */
144 	spl_kmem_magazine_t	**skc_mag;	/* Per-CPU warm cache */
145 	uint32_t		skc_mag_size;	/* Magazine size */
146 	uint32_t		skc_mag_refill;	/* Magazine refill count */
147 	spl_kmem_ctor_t		skc_ctor;	/* Constructor */
148 	spl_kmem_dtor_t		skc_dtor;	/* Destructor */
149 	void			*skc_private;	/* Private data */
150 	void			*skc_vmp;	/* Unused */
151 	struct kmem_cache	*skc_linux_cache; /* Linux slab cache if used */
152 	unsigned long		skc_flags;	/* Flags */
153 	uint32_t		skc_obj_size;	/* Object size */
154 	uint32_t		skc_obj_align;	/* Object alignment */
155 	uint32_t		skc_slab_objs;	/* Objects per slab */
156 	uint32_t		skc_slab_size;	/* Slab size */
157 	atomic_t		skc_ref;	/* Ref count callers */
158 	taskqid_t		skc_taskqid;	/* Slab reclaim task */
159 	struct list_head	skc_list;	/* List of caches linkage */
160 	struct list_head	skc_complete_list; /* Completely alloc'ed */
161 	struct list_head	skc_partial_list;  /* Partially alloc'ed */
162 	struct rb_root		skc_emergency_tree; /* Min sized objects */
163 	spinlock_t		skc_lock;	/* Cache lock */
164 	wait_queue_head_t	skc_waitq;	/* Allocation waiters */
165 	uint64_t		skc_slab_fail;	/* Slab alloc failures */
166 	uint64_t		skc_slab_create;  /* Slab creates */
167 	uint64_t		skc_slab_destroy; /* Slab destroys */
168 	uint64_t		skc_slab_total;	/* Slab total current */
169 	uint64_t		skc_slab_alloc;	/* Slab alloc current */
170 	uint64_t		skc_slab_max;	/* Slab max historic  */
171 	uint64_t		skc_obj_total;	/* Obj total current */
172 	uint64_t		skc_obj_alloc;	/* Obj alloc current */
173 	struct percpu_counter	skc_linux_alloc;   /* Linux-backed Obj alloc  */
174 	uint64_t		skc_obj_max;	/* Obj max historic */
175 	uint64_t		skc_obj_deadlock;  /* Obj emergency deadlocks */
176 	uint64_t		skc_obj_emergency; /* Obj emergency current */
177 	uint64_t		skc_obj_emergency_max; /* Obj emergency max */
178 } spl_kmem_cache_t;
179 #define	kmem_cache_t		spl_kmem_cache_t
180 
181 extern spl_kmem_cache_t *spl_kmem_cache_create(const char *name, size_t size,
182     size_t align, spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor,
183     void *reclaim, void *priv, void *vmp, int flags);
184 extern void spl_kmem_cache_set_move(spl_kmem_cache_t *,
185     kmem_cbrc_t (*)(void *, void *, size_t, void *));
186 extern void spl_kmem_cache_destroy(spl_kmem_cache_t *skc);
187 extern void *spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags);
188 extern void spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj);
189 extern void spl_kmem_cache_set_allocflags(spl_kmem_cache_t *skc, gfp_t flags);
190 extern void spl_kmem_cache_reap_now(spl_kmem_cache_t *skc);
191 extern void spl_kmem_reap(void);
192 extern uint64_t spl_kmem_cache_inuse(kmem_cache_t *cache);
193 extern uint64_t spl_kmem_cache_entry_size(kmem_cache_t *cache);
194 
195 #ifndef	SPL_KMEM_CACHE_IMPLEMENTING
196 /*
197  * Macros for the kmem_cache_* API expected by ZFS and SPL clients. We don't
198  * define them inside spl-kmem-cache.c, as that uses the kernel's incompatible
199  * kmem_cache_* facilities to implement ours.
200  */
201 
202 /* Avoid conflicts with kernel names that might be implemented as macros. */
203 #undef	kmem_cache_alloc
204 #undef	kmem_cache_create
205 
206 #define	kmem_cache_create(name, size, align, ctor, dtor, rclm, priv, vmp, fl) \
207     spl_kmem_cache_create(name, size, align, ctor, dtor, rclm, priv, vmp, fl)
208 #define	kmem_cache_set_move(skc, move)	spl_kmem_cache_set_move(skc, move)
209 #define	kmem_cache_destroy(skc)		spl_kmem_cache_destroy(skc)
210 #define	kmem_cache_alloc(skc, flags)	spl_kmem_cache_alloc(skc, flags)
211 #define	kmem_cache_free(skc, obj)	spl_kmem_cache_free(skc, obj)
212 #define	kmem_cache_reap_now(skc)	spl_kmem_cache_reap_now(skc)
213 #define	kmem_reap()			spl_kmem_reap()
214 #endif
215 
216 /*
217  * The following functions are only available for internal use.
218  */
219 extern int spl_kmem_cache_init(void);
220 extern void spl_kmem_cache_fini(void);
221 
222 #endif	/* _SPL_KMEM_CACHE_H */
223