xref: /linux/net/core/skbuff.c (revision 5c8013ae2e86ec36b07500ba4cacb14ab4d6f728)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/skbuff_ref.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 #include <linux/errqueue.h>
61 #include <linux/prefetch.h>
62 #include <linux/bitfield.h>
63 #include <linux/if_vlan.h>
64 #include <linux/mpls.h>
65 #include <linux/kcov.h>
66 #include <linux/iov_iter.h>
67 #include <linux/crc32.h>
68 
69 #include <net/protocol.h>
70 #include <net/dst.h>
71 #include <net/sock.h>
72 #include <net/checksum.h>
73 #include <net/gro.h>
74 #include <net/gso.h>
75 #include <net/hotdata.h>
76 #include <net/ip6_checksum.h>
77 #include <net/xfrm.h>
78 #include <net/mpls.h>
79 #include <net/mptcp.h>
80 #include <net/mctp.h>
81 #include <net/page_pool/helpers.h>
82 #include <net/dropreason.h>
83 
84 #include <linux/uaccess.h>
85 #include <trace/events/skb.h>
86 #include <linux/highmem.h>
87 #include <linux/capability.h>
88 #include <linux/user_namespace.h>
89 #include <linux/indirect_call_wrapper.h>
90 #include <linux/textsearch.h>
91 
92 #include "dev.h"
93 #include "devmem.h"
94 #include "netmem_priv.h"
95 #include "sock_destructor.h"
96 
97 #ifdef CONFIG_SKB_EXTENSIONS
98 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
99 #endif
100 
101 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN)
102 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \
103 					       GRO_MAX_HEAD_PAD))
104 
105 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
106  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
107  * size, and we can differentiate heads from skb_small_head_cache
108  * vs system slabs by looking at their size (skb_end_offset()).
109  */
110 #define SKB_SMALL_HEAD_CACHE_SIZE					\
111 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
112 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
113 		SKB_SMALL_HEAD_SIZE)
114 
115 #define SKB_SMALL_HEAD_HEADROOM						\
116 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
117 
118 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
119  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
120  * netmem is a page.
121  */
122 static_assert(offsetof(struct bio_vec, bv_page) ==
123 	      offsetof(skb_frag_t, netmem));
124 static_assert(sizeof_field(struct bio_vec, bv_page) ==
125 	      sizeof_field(skb_frag_t, netmem));
126 
127 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
128 static_assert(sizeof_field(struct bio_vec, bv_len) ==
129 	      sizeof_field(skb_frag_t, len));
130 
131 static_assert(offsetof(struct bio_vec, bv_offset) ==
132 	      offsetof(skb_frag_t, offset));
133 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
134 	      sizeof_field(skb_frag_t, offset));
135 
136 #undef FN
137 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
138 static const char * const drop_reasons[] = {
139 	[SKB_CONSUMED] = "CONSUMED",
140 	DEFINE_DROP_REASON(FN, FN)
141 };
142 
143 static const struct drop_reason_list drop_reasons_core = {
144 	.reasons = drop_reasons,
145 	.n_reasons = ARRAY_SIZE(drop_reasons),
146 };
147 
148 const struct drop_reason_list __rcu *
149 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
150 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
151 };
152 EXPORT_SYMBOL(drop_reasons_by_subsys);
153 
154 /**
155  * drop_reasons_register_subsys - register another drop reason subsystem
156  * @subsys: the subsystem to register, must not be the core
157  * @list: the list of drop reasons within the subsystem, must point to
158  *	a statically initialized list
159  */
drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,const struct drop_reason_list * list)160 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
161 				  const struct drop_reason_list *list)
162 {
163 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
164 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
165 		 "invalid subsystem %d\n", subsys))
166 		return;
167 
168 	/* must point to statically allocated memory, so INIT is OK */
169 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
170 }
171 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
172 
173 /**
174  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
175  * @subsys: the subsystem to remove, must not be the core
176  *
177  * Note: This will synchronize_rcu() to ensure no users when it returns.
178  */
drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)179 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
180 {
181 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
182 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
183 		 "invalid subsystem %d\n", subsys))
184 		return;
185 
186 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
187 
188 	synchronize_rcu();
189 }
190 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
191 
192 /**
193  *	skb_panic - private function for out-of-line support
194  *	@skb:	buffer
195  *	@sz:	size
196  *	@addr:	address
197  *	@msg:	skb_over_panic or skb_under_panic
198  *
199  *	Out-of-line support for skb_put() and skb_push().
200  *	Called via the wrapper skb_over_panic() or skb_under_panic().
201  *	Keep out of line to prevent kernel bloat.
202  *	__builtin_return_address is not used because it is not always reliable.
203  */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])204 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
205 		      const char msg[])
206 {
207 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
208 		 msg, addr, skb->len, sz, skb->head, skb->data,
209 		 (unsigned long)skb->tail, (unsigned long)skb->end,
210 		 skb->dev ? skb->dev->name : "<NULL>");
211 	BUG();
212 }
213 
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)214 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
215 {
216 	skb_panic(skb, sz, addr, __func__);
217 }
218 
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)219 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
220 {
221 	skb_panic(skb, sz, addr, __func__);
222 }
223 
224 #define NAPI_SKB_CACHE_SIZE	64
225 #define NAPI_SKB_CACHE_BULK	16
226 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
227 
228 struct napi_alloc_cache {
229 	local_lock_t bh_lock;
230 	struct page_frag_cache page;
231 	unsigned int skb_count;
232 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
233 };
234 
235 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
236 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = {
237 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
238 };
239 
__napi_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)240 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
241 {
242 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
243 	void *data;
244 
245 	fragsz = SKB_DATA_ALIGN(fragsz);
246 
247 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
248 	data = __page_frag_alloc_align(&nc->page, fragsz,
249 				       GFP_ATOMIC | __GFP_NOWARN, align_mask);
250 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
251 	return data;
252 
253 }
254 EXPORT_SYMBOL(__napi_alloc_frag_align);
255 
__netdev_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)256 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
257 {
258 	void *data;
259 
260 	if (in_hardirq() || irqs_disabled()) {
261 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
262 
263 		fragsz = SKB_DATA_ALIGN(fragsz);
264 		data = __page_frag_alloc_align(nc, fragsz,
265 					       GFP_ATOMIC | __GFP_NOWARN,
266 					       align_mask);
267 	} else {
268 		local_bh_disable();
269 		data = __napi_alloc_frag_align(fragsz, align_mask);
270 		local_bh_enable();
271 	}
272 	return data;
273 }
274 EXPORT_SYMBOL(__netdev_alloc_frag_align);
275 
napi_skb_cache_get(void)276 static struct sk_buff *napi_skb_cache_get(void)
277 {
278 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
279 	struct sk_buff *skb;
280 
281 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
282 	if (unlikely(!nc->skb_count)) {
283 		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
284 						      GFP_ATOMIC | __GFP_NOWARN,
285 						      NAPI_SKB_CACHE_BULK,
286 						      nc->skb_cache);
287 		if (unlikely(!nc->skb_count)) {
288 			local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
289 			return NULL;
290 		}
291 	}
292 
293 	skb = nc->skb_cache[--nc->skb_count];
294 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
295 	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
296 
297 	return skb;
298 }
299 
300 /**
301  * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache
302  * @skbs: pointer to an at least @n-sized array to fill with skb pointers
303  * @n: number of entries to provide
304  *
305  * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes
306  * the pointers into the provided array @skbs. If there are less entries
307  * available, tries to replenish the cache and bulk-allocates the diff from
308  * the MM layer if needed.
309  * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are
310  * ready for {,__}build_skb_around() and don't have any data buffers attached.
311  * Must be called *only* from the BH context.
312  *
313  * Return: number of successfully allocated skbs (@n if no actual allocation
314  *	   needed or kmem_cache_alloc_bulk() didn't fail).
315  */
napi_skb_cache_get_bulk(void ** skbs,u32 n)316 u32 napi_skb_cache_get_bulk(void **skbs, u32 n)
317 {
318 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
319 	u32 bulk, total = n;
320 
321 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
322 
323 	if (nc->skb_count >= n)
324 		goto get;
325 
326 	/* No enough cached skbs. Try refilling the cache first */
327 	bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK);
328 	nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
329 					       GFP_ATOMIC | __GFP_NOWARN, bulk,
330 					       &nc->skb_cache[nc->skb_count]);
331 	if (likely(nc->skb_count >= n))
332 		goto get;
333 
334 	/* Still not enough. Bulk-allocate the missing part directly, zeroed */
335 	n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
336 				   GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN,
337 				   n - nc->skb_count, &skbs[nc->skb_count]);
338 	if (likely(nc->skb_count >= n))
339 		goto get;
340 
341 	/* kmem_cache didn't allocate the number we need, limit the output */
342 	total -= n - nc->skb_count;
343 	n = nc->skb_count;
344 
345 get:
346 	for (u32 base = nc->skb_count - n, i = 0; i < n; i++) {
347 		u32 cache_size = kmem_cache_size(net_hotdata.skbuff_cache);
348 
349 		skbs[i] = nc->skb_cache[base + i];
350 
351 		kasan_mempool_unpoison_object(skbs[i], cache_size);
352 		memset(skbs[i], 0, offsetof(struct sk_buff, tail));
353 	}
354 
355 	nc->skb_count -= n;
356 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
357 
358 	return total;
359 }
360 EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk);
361 
__finalize_skb_around(struct sk_buff * skb,void * data,unsigned int size)362 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
363 					 unsigned int size)
364 {
365 	struct skb_shared_info *shinfo;
366 
367 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
368 
369 	/* Assumes caller memset cleared SKB */
370 	skb->truesize = SKB_TRUESIZE(size);
371 	refcount_set(&skb->users, 1);
372 	skb->head = data;
373 	skb->data = data;
374 	skb_reset_tail_pointer(skb);
375 	skb_set_end_offset(skb, size);
376 	skb->mac_header = (typeof(skb->mac_header))~0U;
377 	skb->transport_header = (typeof(skb->transport_header))~0U;
378 	skb->alloc_cpu = raw_smp_processor_id();
379 	/* make sure we initialize shinfo sequentially */
380 	shinfo = skb_shinfo(skb);
381 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
382 	atomic_set(&shinfo->dataref, 1);
383 
384 	skb_set_kcov_handle(skb, kcov_common_handle());
385 }
386 
__slab_build_skb(struct sk_buff * skb,void * data,unsigned int * size)387 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
388 				     unsigned int *size)
389 {
390 	void *resized;
391 
392 	/* Must find the allocation size (and grow it to match). */
393 	*size = ksize(data);
394 	/* krealloc() will immediately return "data" when
395 	 * "ksize(data)" is requested: it is the existing upper
396 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
397 	 * that this "new" pointer needs to be passed back to the
398 	 * caller for use so the __alloc_size hinting will be
399 	 * tracked correctly.
400 	 */
401 	resized = krealloc(data, *size, GFP_ATOMIC);
402 	WARN_ON_ONCE(resized != data);
403 	return resized;
404 }
405 
406 /* build_skb() variant which can operate on slab buffers.
407  * Note that this should be used sparingly as slab buffers
408  * cannot be combined efficiently by GRO!
409  */
slab_build_skb(void * data)410 struct sk_buff *slab_build_skb(void *data)
411 {
412 	struct sk_buff *skb;
413 	unsigned int size;
414 
415 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
416 			       GFP_ATOMIC | __GFP_NOWARN);
417 	if (unlikely(!skb))
418 		return NULL;
419 
420 	memset(skb, 0, offsetof(struct sk_buff, tail));
421 	data = __slab_build_skb(skb, data, &size);
422 	__finalize_skb_around(skb, data, size);
423 
424 	return skb;
425 }
426 EXPORT_SYMBOL(slab_build_skb);
427 
428 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)429 static void __build_skb_around(struct sk_buff *skb, void *data,
430 			       unsigned int frag_size)
431 {
432 	unsigned int size = frag_size;
433 
434 	/* frag_size == 0 is considered deprecated now. Callers
435 	 * using slab buffer should use slab_build_skb() instead.
436 	 */
437 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
438 		data = __slab_build_skb(skb, data, &size);
439 
440 	__finalize_skb_around(skb, data, size);
441 }
442 
443 /**
444  * __build_skb - build a network buffer
445  * @data: data buffer provided by caller
446  * @frag_size: size of data (must not be 0)
447  *
448  * Allocate a new &sk_buff. Caller provides space holding head and
449  * skb_shared_info. @data must have been allocated from the page
450  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
451  * allocation is deprecated, and callers should use slab_build_skb()
452  * instead.)
453  * The return is the new skb buffer.
454  * On a failure the return is %NULL, and @data is not freed.
455  * Notes :
456  *  Before IO, driver allocates only data buffer where NIC put incoming frame
457  *  Driver should add room at head (NET_SKB_PAD) and
458  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
459  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
460  *  before giving packet to stack.
461  *  RX rings only contains data buffers, not full skbs.
462  */
__build_skb(void * data,unsigned int frag_size)463 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
464 {
465 	struct sk_buff *skb;
466 
467 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
468 			       GFP_ATOMIC | __GFP_NOWARN);
469 	if (unlikely(!skb))
470 		return NULL;
471 
472 	memset(skb, 0, offsetof(struct sk_buff, tail));
473 	__build_skb_around(skb, data, frag_size);
474 
475 	return skb;
476 }
477 
478 /* build_skb() is wrapper over __build_skb(), that specifically
479  * takes care of skb->head and skb->pfmemalloc
480  */
build_skb(void * data,unsigned int frag_size)481 struct sk_buff *build_skb(void *data, unsigned int frag_size)
482 {
483 	struct sk_buff *skb = __build_skb(data, frag_size);
484 
485 	if (likely(skb && frag_size)) {
486 		skb->head_frag = 1;
487 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
488 	}
489 	return skb;
490 }
491 EXPORT_SYMBOL(build_skb);
492 
493 /**
494  * build_skb_around - build a network buffer around provided skb
495  * @skb: sk_buff provide by caller, must be memset cleared
496  * @data: data buffer provided by caller
497  * @frag_size: size of data
498  */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)499 struct sk_buff *build_skb_around(struct sk_buff *skb,
500 				 void *data, unsigned int frag_size)
501 {
502 	if (unlikely(!skb))
503 		return NULL;
504 
505 	__build_skb_around(skb, data, frag_size);
506 
507 	if (frag_size) {
508 		skb->head_frag = 1;
509 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
510 	}
511 	return skb;
512 }
513 EXPORT_SYMBOL(build_skb_around);
514 
515 /**
516  * __napi_build_skb - build a network buffer
517  * @data: data buffer provided by caller
518  * @frag_size: size of data
519  *
520  * Version of __build_skb() that uses NAPI percpu caches to obtain
521  * skbuff_head instead of inplace allocation.
522  *
523  * Returns a new &sk_buff on success, %NULL on allocation failure.
524  */
__napi_build_skb(void * data,unsigned int frag_size)525 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
526 {
527 	struct sk_buff *skb;
528 
529 	skb = napi_skb_cache_get();
530 	if (unlikely(!skb))
531 		return NULL;
532 
533 	memset(skb, 0, offsetof(struct sk_buff, tail));
534 	__build_skb_around(skb, data, frag_size);
535 
536 	return skb;
537 }
538 
539 /**
540  * napi_build_skb - build a network buffer
541  * @data: data buffer provided by caller
542  * @frag_size: size of data
543  *
544  * Version of __napi_build_skb() that takes care of skb->head_frag
545  * and skb->pfmemalloc when the data is a page or page fragment.
546  *
547  * Returns a new &sk_buff on success, %NULL on allocation failure.
548  */
napi_build_skb(void * data,unsigned int frag_size)549 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
550 {
551 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
552 
553 	if (likely(skb) && frag_size) {
554 		skb->head_frag = 1;
555 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
556 	}
557 
558 	return skb;
559 }
560 EXPORT_SYMBOL(napi_build_skb);
561 
562 /*
563  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
564  * the caller if emergency pfmemalloc reserves are being used. If it is and
565  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
566  * may be used. Otherwise, the packet data may be discarded until enough
567  * memory is free
568  */
kmalloc_reserve(unsigned int * size,gfp_t flags,int node,bool * pfmemalloc)569 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
570 			     bool *pfmemalloc)
571 {
572 	bool ret_pfmemalloc = false;
573 	size_t obj_size;
574 	void *obj;
575 
576 	obj_size = SKB_HEAD_ALIGN(*size);
577 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
578 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
579 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
580 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
581 				node);
582 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
583 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
584 			goto out;
585 		/* Try again but now we are using pfmemalloc reserves */
586 		ret_pfmemalloc = true;
587 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
588 		goto out;
589 	}
590 
591 	obj_size = kmalloc_size_roundup(obj_size);
592 	/* The following cast might truncate high-order bits of obj_size, this
593 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
594 	 */
595 	*size = (unsigned int)obj_size;
596 
597 	/*
598 	 * Try a regular allocation, when that fails and we're not entitled
599 	 * to the reserves, fail.
600 	 */
601 	obj = kmalloc_node_track_caller(obj_size,
602 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
603 					node);
604 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
605 		goto out;
606 
607 	/* Try again but now we are using pfmemalloc reserves */
608 	ret_pfmemalloc = true;
609 	obj = kmalloc_node_track_caller(obj_size, flags, node);
610 
611 out:
612 	if (pfmemalloc)
613 		*pfmemalloc = ret_pfmemalloc;
614 
615 	return obj;
616 }
617 
618 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
619  *	'private' fields and also do memory statistics to find all the
620  *	[BEEP] leaks.
621  *
622  */
623 
624 /**
625  *	__alloc_skb	-	allocate a network buffer
626  *	@size: size to allocate
627  *	@gfp_mask: allocation mask
628  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
629  *		instead of head cache and allocate a cloned (child) skb.
630  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
631  *		allocations in case the data is required for writeback
632  *	@node: numa node to allocate memory on
633  *
634  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
635  *	tail room of at least size bytes. The object has a reference count
636  *	of one. The return is the buffer. On a failure the return is %NULL.
637  *
638  *	Buffers may only be allocated from interrupts using a @gfp_mask of
639  *	%GFP_ATOMIC.
640  */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)641 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
642 			    int flags, int node)
643 {
644 	struct kmem_cache *cache;
645 	struct sk_buff *skb;
646 	bool pfmemalloc;
647 	u8 *data;
648 
649 	cache = (flags & SKB_ALLOC_FCLONE)
650 		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
651 
652 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
653 		gfp_mask |= __GFP_MEMALLOC;
654 
655 	/* Get the HEAD */
656 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
657 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
658 		skb = napi_skb_cache_get();
659 	else
660 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
661 	if (unlikely(!skb))
662 		return NULL;
663 	prefetchw(skb);
664 
665 	/* We do our best to align skb_shared_info on a separate cache
666 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
667 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
668 	 * Both skb->head and skb_shared_info are cache line aligned.
669 	 */
670 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
671 	if (unlikely(!data))
672 		goto nodata;
673 	/* kmalloc_size_roundup() might give us more room than requested.
674 	 * Put skb_shared_info exactly at the end of allocated zone,
675 	 * to allow max possible filling before reallocation.
676 	 */
677 	prefetchw(data + SKB_WITH_OVERHEAD(size));
678 
679 	/*
680 	 * Only clear those fields we need to clear, not those that we will
681 	 * actually initialise below. Hence, don't put any more fields after
682 	 * the tail pointer in struct sk_buff!
683 	 */
684 	memset(skb, 0, offsetof(struct sk_buff, tail));
685 	__build_skb_around(skb, data, size);
686 	skb->pfmemalloc = pfmemalloc;
687 
688 	if (flags & SKB_ALLOC_FCLONE) {
689 		struct sk_buff_fclones *fclones;
690 
691 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
692 
693 		skb->fclone = SKB_FCLONE_ORIG;
694 		refcount_set(&fclones->fclone_ref, 1);
695 	}
696 
697 	return skb;
698 
699 nodata:
700 	kmem_cache_free(cache, skb);
701 	return NULL;
702 }
703 EXPORT_SYMBOL(__alloc_skb);
704 
705 /**
706  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
707  *	@dev: network device to receive on
708  *	@len: length to allocate
709  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
710  *
711  *	Allocate a new &sk_buff and assign it a usage count of one. The
712  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
713  *	the headroom they think they need without accounting for the
714  *	built in space. The built in space is used for optimisations.
715  *
716  *	%NULL is returned if there is no free memory.
717  */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)718 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
719 				   gfp_t gfp_mask)
720 {
721 	struct page_frag_cache *nc;
722 	struct sk_buff *skb;
723 	bool pfmemalloc;
724 	void *data;
725 
726 	len += NET_SKB_PAD;
727 
728 	/* If requested length is either too small or too big,
729 	 * we use kmalloc() for skb->head allocation.
730 	 */
731 	if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
732 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
733 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
734 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
735 		if (!skb)
736 			goto skb_fail;
737 		goto skb_success;
738 	}
739 
740 	len = SKB_HEAD_ALIGN(len);
741 
742 	if (sk_memalloc_socks())
743 		gfp_mask |= __GFP_MEMALLOC;
744 
745 	if (in_hardirq() || irqs_disabled()) {
746 		nc = this_cpu_ptr(&netdev_alloc_cache);
747 		data = page_frag_alloc(nc, len, gfp_mask);
748 		pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
749 	} else {
750 		local_bh_disable();
751 		local_lock_nested_bh(&napi_alloc_cache.bh_lock);
752 
753 		nc = this_cpu_ptr(&napi_alloc_cache.page);
754 		data = page_frag_alloc(nc, len, gfp_mask);
755 		pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
756 
757 		local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
758 		local_bh_enable();
759 	}
760 
761 	if (unlikely(!data))
762 		return NULL;
763 
764 	skb = __build_skb(data, len);
765 	if (unlikely(!skb)) {
766 		skb_free_frag(data);
767 		return NULL;
768 	}
769 
770 	if (pfmemalloc)
771 		skb->pfmemalloc = 1;
772 	skb->head_frag = 1;
773 
774 skb_success:
775 	skb_reserve(skb, NET_SKB_PAD);
776 	skb->dev = dev;
777 
778 skb_fail:
779 	return skb;
780 }
781 EXPORT_SYMBOL(__netdev_alloc_skb);
782 
783 /**
784  *	napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
785  *	@napi: napi instance this buffer was allocated for
786  *	@len: length to allocate
787  *
788  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
789  *	attempt to allocate the head from a special reserved region used
790  *	only for NAPI Rx allocation.  By doing this we can save several
791  *	CPU cycles by avoiding having to disable and re-enable IRQs.
792  *
793  *	%NULL is returned if there is no free memory.
794  */
napi_alloc_skb(struct napi_struct * napi,unsigned int len)795 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
796 {
797 	gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
798 	struct napi_alloc_cache *nc;
799 	struct sk_buff *skb;
800 	bool pfmemalloc;
801 	void *data;
802 
803 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
804 	len += NET_SKB_PAD + NET_IP_ALIGN;
805 
806 	/* If requested length is either too small or too big,
807 	 * we use kmalloc() for skb->head allocation.
808 	 */
809 	if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
810 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
811 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
812 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
813 				  NUMA_NO_NODE);
814 		if (!skb)
815 			goto skb_fail;
816 		goto skb_success;
817 	}
818 
819 	len = SKB_HEAD_ALIGN(len);
820 
821 	if (sk_memalloc_socks())
822 		gfp_mask |= __GFP_MEMALLOC;
823 
824 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
825 	nc = this_cpu_ptr(&napi_alloc_cache);
826 
827 	data = page_frag_alloc(&nc->page, len, gfp_mask);
828 	pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page);
829 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
830 
831 	if (unlikely(!data))
832 		return NULL;
833 
834 	skb = __napi_build_skb(data, len);
835 	if (unlikely(!skb)) {
836 		skb_free_frag(data);
837 		return NULL;
838 	}
839 
840 	if (pfmemalloc)
841 		skb->pfmemalloc = 1;
842 	skb->head_frag = 1;
843 
844 skb_success:
845 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
846 	skb->dev = napi->dev;
847 
848 skb_fail:
849 	return skb;
850 }
851 EXPORT_SYMBOL(napi_alloc_skb);
852 
skb_add_rx_frag_netmem(struct sk_buff * skb,int i,netmem_ref netmem,int off,int size,unsigned int truesize)853 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
854 			    int off, int size, unsigned int truesize)
855 {
856 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
857 
858 	skb_fill_netmem_desc(skb, i, netmem, off, size);
859 	skb->len += size;
860 	skb->data_len += size;
861 	skb->truesize += truesize;
862 }
863 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
864 
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)865 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
866 			  unsigned int truesize)
867 {
868 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
869 
870 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
871 
872 	skb_frag_size_add(frag, size);
873 	skb->len += size;
874 	skb->data_len += size;
875 	skb->truesize += truesize;
876 }
877 EXPORT_SYMBOL(skb_coalesce_rx_frag);
878 
skb_drop_list(struct sk_buff ** listp)879 static void skb_drop_list(struct sk_buff **listp)
880 {
881 	kfree_skb_list(*listp);
882 	*listp = NULL;
883 }
884 
skb_drop_fraglist(struct sk_buff * skb)885 static inline void skb_drop_fraglist(struct sk_buff *skb)
886 {
887 	skb_drop_list(&skb_shinfo(skb)->frag_list);
888 }
889 
skb_clone_fraglist(struct sk_buff * skb)890 static void skb_clone_fraglist(struct sk_buff *skb)
891 {
892 	struct sk_buff *list;
893 
894 	skb_walk_frags(skb, list)
895 		skb_get(list);
896 }
897 
skb_pp_cow_data(struct page_pool * pool,struct sk_buff ** pskb,unsigned int headroom)898 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
899 		    unsigned int headroom)
900 {
901 #if IS_ENABLED(CONFIG_PAGE_POOL)
902 	u32 size, truesize, len, max_head_size, off;
903 	struct sk_buff *skb = *pskb, *nskb;
904 	int err, i, head_off;
905 	void *data;
906 
907 	/* XDP does not support fraglist so we need to linearize
908 	 * the skb.
909 	 */
910 	if (skb_has_frag_list(skb))
911 		return -EOPNOTSUPP;
912 
913 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
914 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
915 		return -ENOMEM;
916 
917 	size = min_t(u32, skb->len, max_head_size);
918 	truesize = SKB_HEAD_ALIGN(size) + headroom;
919 	data = page_pool_dev_alloc_va(pool, &truesize);
920 	if (!data)
921 		return -ENOMEM;
922 
923 	nskb = napi_build_skb(data, truesize);
924 	if (!nskb) {
925 		page_pool_free_va(pool, data, true);
926 		return -ENOMEM;
927 	}
928 
929 	skb_reserve(nskb, headroom);
930 	skb_copy_header(nskb, skb);
931 	skb_mark_for_recycle(nskb);
932 
933 	err = skb_copy_bits(skb, 0, nskb->data, size);
934 	if (err) {
935 		consume_skb(nskb);
936 		return err;
937 	}
938 	skb_put(nskb, size);
939 
940 	head_off = skb_headroom(nskb) - skb_headroom(skb);
941 	skb_headers_offset_update(nskb, head_off);
942 
943 	off = size;
944 	len = skb->len - off;
945 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
946 		struct page *page;
947 		u32 page_off;
948 
949 		size = min_t(u32, len, PAGE_SIZE);
950 		truesize = size;
951 
952 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
953 		if (!page) {
954 			consume_skb(nskb);
955 			return -ENOMEM;
956 		}
957 
958 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
959 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
960 				    size);
961 		if (err) {
962 			consume_skb(nskb);
963 			return err;
964 		}
965 
966 		len -= size;
967 		off += size;
968 	}
969 
970 	consume_skb(skb);
971 	*pskb = nskb;
972 
973 	return 0;
974 #else
975 	return -EOPNOTSUPP;
976 #endif
977 }
978 EXPORT_SYMBOL(skb_pp_cow_data);
979 
skb_cow_data_for_xdp(struct page_pool * pool,struct sk_buff ** pskb,const struct bpf_prog * prog)980 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
981 			 const struct bpf_prog *prog)
982 {
983 	if (!prog->aux->xdp_has_frags)
984 		return -EINVAL;
985 
986 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
987 }
988 EXPORT_SYMBOL(skb_cow_data_for_xdp);
989 
990 #if IS_ENABLED(CONFIG_PAGE_POOL)
napi_pp_put_page(netmem_ref netmem)991 bool napi_pp_put_page(netmem_ref netmem)
992 {
993 	netmem = netmem_compound_head(netmem);
994 
995 	if (unlikely(!netmem_is_pp(netmem)))
996 		return false;
997 
998 	page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false);
999 
1000 	return true;
1001 }
1002 EXPORT_SYMBOL(napi_pp_put_page);
1003 #endif
1004 
skb_pp_recycle(struct sk_buff * skb,void * data)1005 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1006 {
1007 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1008 		return false;
1009 	return napi_pp_put_page(page_to_netmem(virt_to_page(data)));
1010 }
1011 
1012 /**
1013  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1014  * @skb:	page pool aware skb
1015  *
1016  * Increase the fragment reference count (pp_ref_count) of a skb. This is
1017  * intended to gain fragment references only for page pool aware skbs,
1018  * i.e. when skb->pp_recycle is true, and not for fragments in a
1019  * non-pp-recycling skb. It has a fallback to increase references on normal
1020  * pages, as page pool aware skbs may also have normal page fragments.
1021  */
skb_pp_frag_ref(struct sk_buff * skb)1022 static int skb_pp_frag_ref(struct sk_buff *skb)
1023 {
1024 	struct skb_shared_info *shinfo;
1025 	netmem_ref head_netmem;
1026 	int i;
1027 
1028 	if (!skb->pp_recycle)
1029 		return -EINVAL;
1030 
1031 	shinfo = skb_shinfo(skb);
1032 
1033 	for (i = 0; i < shinfo->nr_frags; i++) {
1034 		head_netmem = netmem_compound_head(shinfo->frags[i].netmem);
1035 		if (likely(netmem_is_pp(head_netmem)))
1036 			page_pool_ref_netmem(head_netmem);
1037 		else
1038 			page_ref_inc(netmem_to_page(head_netmem));
1039 	}
1040 	return 0;
1041 }
1042 
skb_kfree_head(void * head,unsigned int end_offset)1043 static void skb_kfree_head(void *head, unsigned int end_offset)
1044 {
1045 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1046 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1047 	else
1048 		kfree(head);
1049 }
1050 
skb_free_head(struct sk_buff * skb)1051 static void skb_free_head(struct sk_buff *skb)
1052 {
1053 	unsigned char *head = skb->head;
1054 
1055 	if (skb->head_frag) {
1056 		if (skb_pp_recycle(skb, head))
1057 			return;
1058 		skb_free_frag(head);
1059 	} else {
1060 		skb_kfree_head(head, skb_end_offset(skb));
1061 	}
1062 }
1063 
skb_release_data(struct sk_buff * skb,enum skb_drop_reason reason)1064 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1065 {
1066 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1067 	int i;
1068 
1069 	if (!skb_data_unref(skb, shinfo))
1070 		goto exit;
1071 
1072 	if (skb_zcopy(skb)) {
1073 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1074 
1075 		skb_zcopy_clear(skb, true);
1076 		if (skip_unref)
1077 			goto free_head;
1078 	}
1079 
1080 	for (i = 0; i < shinfo->nr_frags; i++)
1081 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1082 
1083 free_head:
1084 	if (shinfo->frag_list)
1085 		kfree_skb_list_reason(shinfo->frag_list, reason);
1086 
1087 	skb_free_head(skb);
1088 exit:
1089 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1090 	 * bit is only set on the head though, so in order to avoid races
1091 	 * while trying to recycle fragments on __skb_frag_unref() we need
1092 	 * to make one SKB responsible for triggering the recycle path.
1093 	 * So disable the recycling bit if an SKB is cloned and we have
1094 	 * additional references to the fragmented part of the SKB.
1095 	 * Eventually the last SKB will have the recycling bit set and it's
1096 	 * dataref set to 0, which will trigger the recycling
1097 	 */
1098 	skb->pp_recycle = 0;
1099 }
1100 
1101 /*
1102  *	Free an skbuff by memory without cleaning the state.
1103  */
kfree_skbmem(struct sk_buff * skb)1104 static void kfree_skbmem(struct sk_buff *skb)
1105 {
1106 	struct sk_buff_fclones *fclones;
1107 
1108 	switch (skb->fclone) {
1109 	case SKB_FCLONE_UNAVAILABLE:
1110 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1111 		return;
1112 
1113 	case SKB_FCLONE_ORIG:
1114 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1115 
1116 		/* We usually free the clone (TX completion) before original skb
1117 		 * This test would have no chance to be true for the clone,
1118 		 * while here, branch prediction will be good.
1119 		 */
1120 		if (refcount_read(&fclones->fclone_ref) == 1)
1121 			goto fastpath;
1122 		break;
1123 
1124 	default: /* SKB_FCLONE_CLONE */
1125 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1126 		break;
1127 	}
1128 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1129 		return;
1130 fastpath:
1131 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1132 }
1133 
skb_release_head_state(struct sk_buff * skb)1134 void skb_release_head_state(struct sk_buff *skb)
1135 {
1136 	skb_dst_drop(skb);
1137 	if (skb->destructor) {
1138 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1139 		skb->destructor(skb);
1140 	}
1141 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1142 	nf_conntrack_put(skb_nfct(skb));
1143 #endif
1144 	skb_ext_put(skb);
1145 }
1146 
1147 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb,enum skb_drop_reason reason)1148 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1149 {
1150 	skb_release_head_state(skb);
1151 	if (likely(skb->head))
1152 		skb_release_data(skb, reason);
1153 }
1154 
1155 /**
1156  *	__kfree_skb - private function
1157  *	@skb: buffer
1158  *
1159  *	Free an sk_buff. Release anything attached to the buffer.
1160  *	Clean the state. This is an internal helper function. Users should
1161  *	always call kfree_skb
1162  */
1163 
__kfree_skb(struct sk_buff * skb)1164 void __kfree_skb(struct sk_buff *skb)
1165 {
1166 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1167 	kfree_skbmem(skb);
1168 }
1169 EXPORT_SYMBOL(__kfree_skb);
1170 
1171 static __always_inline
__sk_skb_reason_drop(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)1172 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1173 			  enum skb_drop_reason reason)
1174 {
1175 	if (unlikely(!skb_unref(skb)))
1176 		return false;
1177 
1178 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1179 			       u32_get_bits(reason,
1180 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1181 				SKB_DROP_REASON_SUBSYS_NUM);
1182 
1183 	if (reason == SKB_CONSUMED)
1184 		trace_consume_skb(skb, __builtin_return_address(0));
1185 	else
1186 		trace_kfree_skb(skb, __builtin_return_address(0), reason, sk);
1187 	return true;
1188 }
1189 
1190 /**
1191  *	sk_skb_reason_drop - free an sk_buff with special reason
1192  *	@sk: the socket to receive @skb, or NULL if not applicable
1193  *	@skb: buffer to free
1194  *	@reason: reason why this skb is dropped
1195  *
1196  *	Drop a reference to the buffer and free it if the usage count has hit
1197  *	zero. Meanwhile, pass the receiving socket and drop reason to
1198  *	'kfree_skb' tracepoint.
1199  */
1200 void __fix_address
sk_skb_reason_drop(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)1201 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
1202 {
1203 	if (__sk_skb_reason_drop(sk, skb, reason))
1204 		__kfree_skb(skb);
1205 }
1206 EXPORT_SYMBOL(sk_skb_reason_drop);
1207 
1208 #define KFREE_SKB_BULK_SIZE	16
1209 
1210 struct skb_free_array {
1211 	unsigned int skb_count;
1212 	void *skb_array[KFREE_SKB_BULK_SIZE];
1213 };
1214 
kfree_skb_add_bulk(struct sk_buff * skb,struct skb_free_array * sa,enum skb_drop_reason reason)1215 static void kfree_skb_add_bulk(struct sk_buff *skb,
1216 			       struct skb_free_array *sa,
1217 			       enum skb_drop_reason reason)
1218 {
1219 	/* if SKB is a clone, don't handle this case */
1220 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1221 		__kfree_skb(skb);
1222 		return;
1223 	}
1224 
1225 	skb_release_all(skb, reason);
1226 	sa->skb_array[sa->skb_count++] = skb;
1227 
1228 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1229 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1230 				     sa->skb_array);
1231 		sa->skb_count = 0;
1232 	}
1233 }
1234 
1235 void __fix_address
kfree_skb_list_reason(struct sk_buff * segs,enum skb_drop_reason reason)1236 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1237 {
1238 	struct skb_free_array sa;
1239 
1240 	sa.skb_count = 0;
1241 
1242 	while (segs) {
1243 		struct sk_buff *next = segs->next;
1244 
1245 		if (__sk_skb_reason_drop(NULL, segs, reason)) {
1246 			skb_poison_list(segs);
1247 			kfree_skb_add_bulk(segs, &sa, reason);
1248 		}
1249 
1250 		segs = next;
1251 	}
1252 
1253 	if (sa.skb_count)
1254 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1255 }
1256 EXPORT_SYMBOL(kfree_skb_list_reason);
1257 
1258 /* Dump skb information and contents.
1259  *
1260  * Must only be called from net_ratelimit()-ed paths.
1261  *
1262  * Dumps whole packets if full_pkt, only headers otherwise.
1263  */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)1264 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1265 {
1266 	struct skb_shared_info *sh = skb_shinfo(skb);
1267 	struct net_device *dev = skb->dev;
1268 	struct sock *sk = skb->sk;
1269 	struct sk_buff *list_skb;
1270 	bool has_mac, has_trans;
1271 	int headroom, tailroom;
1272 	int i, len, seg_len;
1273 
1274 	if (full_pkt)
1275 		len = skb->len;
1276 	else
1277 		len = min_t(int, skb->len, MAX_HEADER + 128);
1278 
1279 	headroom = skb_headroom(skb);
1280 	tailroom = skb_tailroom(skb);
1281 
1282 	has_mac = skb_mac_header_was_set(skb);
1283 	has_trans = skb_transport_header_was_set(skb);
1284 
1285 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1286 	       "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1287 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1288 	       "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1289 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1290 	       "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1291 	       "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1292 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1293 	       has_mac ? skb->mac_header : -1,
1294 	       has_mac ? skb_mac_header_len(skb) : -1,
1295 	       skb->mac_len,
1296 	       skb->network_header,
1297 	       has_trans ? skb_network_header_len(skb) : -1,
1298 	       has_trans ? skb->transport_header : -1,
1299 	       sh->tx_flags, sh->nr_frags,
1300 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1301 	       skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1302 	       skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1303 	       skb->hash, skb->sw_hash, skb->l4_hash,
1304 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1305 	       skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1306 	       skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1307 	       skb->inner_network_header, skb->inner_transport_header);
1308 
1309 	if (dev)
1310 		printk("%sdev name=%s feat=%pNF\n",
1311 		       level, dev->name, &dev->features);
1312 	if (sk)
1313 		printk("%ssk family=%hu type=%u proto=%u\n",
1314 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1315 
1316 	if (full_pkt && headroom)
1317 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1318 			       16, 1, skb->head, headroom, false);
1319 
1320 	seg_len = min_t(int, skb_headlen(skb), len);
1321 	if (seg_len)
1322 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1323 			       16, 1, skb->data, seg_len, false);
1324 	len -= seg_len;
1325 
1326 	if (full_pkt && tailroom)
1327 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1328 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1329 
1330 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1331 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1332 		u32 p_off, p_len, copied;
1333 		struct page *p;
1334 		u8 *vaddr;
1335 
1336 		if (skb_frag_is_net_iov(frag)) {
1337 			printk("%sskb frag %d: not readable\n", level, i);
1338 			len -= skb_frag_size(frag);
1339 			if (!len)
1340 				break;
1341 			continue;
1342 		}
1343 
1344 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1345 				      skb_frag_size(frag), p, p_off, p_len,
1346 				      copied) {
1347 			seg_len = min_t(int, p_len, len);
1348 			vaddr = kmap_atomic(p);
1349 			print_hex_dump(level, "skb frag:     ",
1350 				       DUMP_PREFIX_OFFSET,
1351 				       16, 1, vaddr + p_off, seg_len, false);
1352 			kunmap_atomic(vaddr);
1353 			len -= seg_len;
1354 			if (!len)
1355 				break;
1356 		}
1357 	}
1358 
1359 	if (full_pkt && skb_has_frag_list(skb)) {
1360 		printk("skb fraglist:\n");
1361 		skb_walk_frags(skb, list_skb)
1362 			skb_dump(level, list_skb, true);
1363 	}
1364 }
1365 EXPORT_SYMBOL(skb_dump);
1366 
1367 /**
1368  *	skb_tx_error - report an sk_buff xmit error
1369  *	@skb: buffer that triggered an error
1370  *
1371  *	Report xmit error if a device callback is tracking this skb.
1372  *	skb must be freed afterwards.
1373  */
skb_tx_error(struct sk_buff * skb)1374 void skb_tx_error(struct sk_buff *skb)
1375 {
1376 	if (skb) {
1377 		skb_zcopy_downgrade_managed(skb);
1378 		skb_zcopy_clear(skb, true);
1379 	}
1380 }
1381 EXPORT_SYMBOL(skb_tx_error);
1382 
1383 #ifdef CONFIG_TRACEPOINTS
1384 /**
1385  *	consume_skb - free an skbuff
1386  *	@skb: buffer to free
1387  *
1388  *	Drop a ref to the buffer and free it if the usage count has hit zero
1389  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1390  *	is being dropped after a failure and notes that
1391  */
consume_skb(struct sk_buff * skb)1392 void consume_skb(struct sk_buff *skb)
1393 {
1394 	if (!skb_unref(skb))
1395 		return;
1396 
1397 	trace_consume_skb(skb, __builtin_return_address(0));
1398 	__kfree_skb(skb);
1399 }
1400 EXPORT_SYMBOL(consume_skb);
1401 #endif
1402 
1403 /**
1404  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1405  *	@skb: buffer to free
1406  *
1407  *	Alike consume_skb(), but this variant assumes that this is the last
1408  *	skb reference and all the head states have been already dropped
1409  */
__consume_stateless_skb(struct sk_buff * skb)1410 void __consume_stateless_skb(struct sk_buff *skb)
1411 {
1412 	trace_consume_skb(skb, __builtin_return_address(0));
1413 	skb_release_data(skb, SKB_CONSUMED);
1414 	kfree_skbmem(skb);
1415 }
1416 
napi_skb_cache_put(struct sk_buff * skb)1417 static void napi_skb_cache_put(struct sk_buff *skb)
1418 {
1419 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1420 	u32 i;
1421 
1422 	if (!kasan_mempool_poison_object(skb))
1423 		return;
1424 
1425 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
1426 	nc->skb_cache[nc->skb_count++] = skb;
1427 
1428 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1429 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1430 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1431 						kmem_cache_size(net_hotdata.skbuff_cache));
1432 
1433 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1434 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1435 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1436 	}
1437 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
1438 }
1439 
__napi_kfree_skb(struct sk_buff * skb,enum skb_drop_reason reason)1440 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1441 {
1442 	skb_release_all(skb, reason);
1443 	napi_skb_cache_put(skb);
1444 }
1445 
napi_skb_free_stolen_head(struct sk_buff * skb)1446 void napi_skb_free_stolen_head(struct sk_buff *skb)
1447 {
1448 	if (unlikely(skb->slow_gro)) {
1449 		nf_reset_ct(skb);
1450 		skb_dst_drop(skb);
1451 		skb_ext_put(skb);
1452 		skb_orphan(skb);
1453 		skb->slow_gro = 0;
1454 	}
1455 	napi_skb_cache_put(skb);
1456 }
1457 
napi_consume_skb(struct sk_buff * skb,int budget)1458 void napi_consume_skb(struct sk_buff *skb, int budget)
1459 {
1460 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1461 	if (unlikely(!budget)) {
1462 		dev_consume_skb_any(skb);
1463 		return;
1464 	}
1465 
1466 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1467 
1468 	if (!skb_unref(skb))
1469 		return;
1470 
1471 	/* if reaching here SKB is ready to free */
1472 	trace_consume_skb(skb, __builtin_return_address(0));
1473 
1474 	/* if SKB is a clone, don't handle this case */
1475 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1476 		__kfree_skb(skb);
1477 		return;
1478 	}
1479 
1480 	skb_release_all(skb, SKB_CONSUMED);
1481 	napi_skb_cache_put(skb);
1482 }
1483 EXPORT_SYMBOL(napi_consume_skb);
1484 
1485 /* Make sure a field is contained by headers group */
1486 #define CHECK_SKB_FIELD(field) \
1487 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1488 		     offsetof(struct sk_buff, headers.field));	\
1489 
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)1490 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1491 {
1492 	new->tstamp		= old->tstamp;
1493 	/* We do not copy old->sk */
1494 	new->dev		= old->dev;
1495 	memcpy(new->cb, old->cb, sizeof(old->cb));
1496 	skb_dst_copy(new, old);
1497 	__skb_ext_copy(new, old);
1498 	__nf_copy(new, old, false);
1499 
1500 	/* Note : this field could be in the headers group.
1501 	 * It is not yet because we do not want to have a 16 bit hole
1502 	 */
1503 	new->queue_mapping = old->queue_mapping;
1504 
1505 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1506 	CHECK_SKB_FIELD(protocol);
1507 	CHECK_SKB_FIELD(csum);
1508 	CHECK_SKB_FIELD(hash);
1509 	CHECK_SKB_FIELD(priority);
1510 	CHECK_SKB_FIELD(skb_iif);
1511 	CHECK_SKB_FIELD(vlan_proto);
1512 	CHECK_SKB_FIELD(vlan_tci);
1513 	CHECK_SKB_FIELD(transport_header);
1514 	CHECK_SKB_FIELD(network_header);
1515 	CHECK_SKB_FIELD(mac_header);
1516 	CHECK_SKB_FIELD(inner_protocol);
1517 	CHECK_SKB_FIELD(inner_transport_header);
1518 	CHECK_SKB_FIELD(inner_network_header);
1519 	CHECK_SKB_FIELD(inner_mac_header);
1520 	CHECK_SKB_FIELD(mark);
1521 #ifdef CONFIG_NETWORK_SECMARK
1522 	CHECK_SKB_FIELD(secmark);
1523 #endif
1524 #ifdef CONFIG_NET_RX_BUSY_POLL
1525 	CHECK_SKB_FIELD(napi_id);
1526 #endif
1527 	CHECK_SKB_FIELD(alloc_cpu);
1528 #ifdef CONFIG_XPS
1529 	CHECK_SKB_FIELD(sender_cpu);
1530 #endif
1531 #ifdef CONFIG_NET_SCHED
1532 	CHECK_SKB_FIELD(tc_index);
1533 #endif
1534 
1535 }
1536 
1537 /*
1538  * You should not add any new code to this function.  Add it to
1539  * __copy_skb_header above instead.
1540  */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)1541 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1542 {
1543 #define C(x) n->x = skb->x
1544 
1545 	n->next = n->prev = NULL;
1546 	n->sk = NULL;
1547 	__copy_skb_header(n, skb);
1548 
1549 	C(len);
1550 	C(data_len);
1551 	C(mac_len);
1552 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1553 	n->cloned = 1;
1554 	n->nohdr = 0;
1555 	n->peeked = 0;
1556 	C(pfmemalloc);
1557 	C(pp_recycle);
1558 	n->destructor = NULL;
1559 	C(tail);
1560 	C(end);
1561 	C(head);
1562 	C(head_frag);
1563 	C(data);
1564 	C(truesize);
1565 	refcount_set(&n->users, 1);
1566 
1567 	atomic_inc(&(skb_shinfo(skb)->dataref));
1568 	skb->cloned = 1;
1569 
1570 	return n;
1571 #undef C
1572 }
1573 
1574 /**
1575  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1576  * @first: first sk_buff of the msg
1577  */
alloc_skb_for_msg(struct sk_buff * first)1578 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1579 {
1580 	struct sk_buff *n;
1581 
1582 	n = alloc_skb(0, GFP_ATOMIC);
1583 	if (!n)
1584 		return NULL;
1585 
1586 	n->len = first->len;
1587 	n->data_len = first->len;
1588 	n->truesize = first->truesize;
1589 
1590 	skb_shinfo(n)->frag_list = first;
1591 
1592 	__copy_skb_header(n, first);
1593 	n->destructor = NULL;
1594 
1595 	return n;
1596 }
1597 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1598 
1599 /**
1600  *	skb_morph	-	morph one skb into another
1601  *	@dst: the skb to receive the contents
1602  *	@src: the skb to supply the contents
1603  *
1604  *	This is identical to skb_clone except that the target skb is
1605  *	supplied by the user.
1606  *
1607  *	The target skb is returned upon exit.
1608  */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1609 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1610 {
1611 	skb_release_all(dst, SKB_CONSUMED);
1612 	return __skb_clone(dst, src);
1613 }
1614 EXPORT_SYMBOL_GPL(skb_morph);
1615 
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1616 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1617 {
1618 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1619 	struct user_struct *user;
1620 
1621 	if (capable(CAP_IPC_LOCK) || !size)
1622 		return 0;
1623 
1624 	rlim = rlimit(RLIMIT_MEMLOCK);
1625 	if (rlim == RLIM_INFINITY)
1626 		return 0;
1627 
1628 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1629 	max_pg = rlim >> PAGE_SHIFT;
1630 	user = mmp->user ? : current_user();
1631 
1632 	old_pg = atomic_long_read(&user->locked_vm);
1633 	do {
1634 		new_pg = old_pg + num_pg;
1635 		if (new_pg > max_pg)
1636 			return -ENOBUFS;
1637 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1638 
1639 	if (!mmp->user) {
1640 		mmp->user = get_uid(user);
1641 		mmp->num_pg = num_pg;
1642 	} else {
1643 		mmp->num_pg += num_pg;
1644 	}
1645 
1646 	return 0;
1647 }
1648 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1649 
mm_unaccount_pinned_pages(struct mmpin * mmp)1650 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1651 {
1652 	if (mmp->user) {
1653 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1654 		free_uid(mmp->user);
1655 	}
1656 }
1657 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1658 
msg_zerocopy_alloc(struct sock * sk,size_t size,bool devmem)1659 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size,
1660 					    bool devmem)
1661 {
1662 	struct ubuf_info_msgzc *uarg;
1663 	struct sk_buff *skb;
1664 
1665 	WARN_ON_ONCE(!in_task());
1666 
1667 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1668 	if (!skb)
1669 		return NULL;
1670 
1671 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1672 	uarg = (void *)skb->cb;
1673 	uarg->mmp.user = NULL;
1674 
1675 	if (likely(!devmem) && mm_account_pinned_pages(&uarg->mmp, size)) {
1676 		kfree_skb(skb);
1677 		return NULL;
1678 	}
1679 
1680 	uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1681 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1682 	uarg->len = 1;
1683 	uarg->bytelen = size;
1684 	uarg->zerocopy = 1;
1685 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1686 	refcount_set(&uarg->ubuf.refcnt, 1);
1687 	sock_hold(sk);
1688 
1689 	return &uarg->ubuf;
1690 }
1691 
skb_from_uarg(struct ubuf_info_msgzc * uarg)1692 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1693 {
1694 	return container_of((void *)uarg, struct sk_buff, cb);
1695 }
1696 
msg_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg,bool devmem)1697 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1698 				       struct ubuf_info *uarg, bool devmem)
1699 {
1700 	if (uarg) {
1701 		struct ubuf_info_msgzc *uarg_zc;
1702 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1703 		u32 bytelen, next;
1704 
1705 		/* there might be non MSG_ZEROCOPY users */
1706 		if (uarg->ops != &msg_zerocopy_ubuf_ops)
1707 			return NULL;
1708 
1709 		/* realloc only when socket is locked (TCP, UDP cork),
1710 		 * so uarg->len and sk_zckey access is serialized
1711 		 */
1712 		if (!sock_owned_by_user(sk)) {
1713 			WARN_ON_ONCE(1);
1714 			return NULL;
1715 		}
1716 
1717 		uarg_zc = uarg_to_msgzc(uarg);
1718 		bytelen = uarg_zc->bytelen + size;
1719 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1720 			/* TCP can create new skb to attach new uarg */
1721 			if (sk->sk_type == SOCK_STREAM)
1722 				goto new_alloc;
1723 			return NULL;
1724 		}
1725 
1726 		next = (u32)atomic_read(&sk->sk_zckey);
1727 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1728 			if (likely(!devmem) &&
1729 			    mm_account_pinned_pages(&uarg_zc->mmp, size))
1730 				return NULL;
1731 			uarg_zc->len++;
1732 			uarg_zc->bytelen = bytelen;
1733 			atomic_set(&sk->sk_zckey, ++next);
1734 
1735 			/* no extra ref when appending to datagram (MSG_MORE) */
1736 			if (sk->sk_type == SOCK_STREAM)
1737 				net_zcopy_get(uarg);
1738 
1739 			return uarg;
1740 		}
1741 	}
1742 
1743 new_alloc:
1744 	return msg_zerocopy_alloc(sk, size, devmem);
1745 }
1746 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1747 
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1748 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1749 {
1750 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1751 	u32 old_lo, old_hi;
1752 	u64 sum_len;
1753 
1754 	old_lo = serr->ee.ee_info;
1755 	old_hi = serr->ee.ee_data;
1756 	sum_len = old_hi - old_lo + 1ULL + len;
1757 
1758 	if (sum_len >= (1ULL << 32))
1759 		return false;
1760 
1761 	if (lo != old_hi + 1)
1762 		return false;
1763 
1764 	serr->ee.ee_data += len;
1765 	return true;
1766 }
1767 
__msg_zerocopy_callback(struct ubuf_info_msgzc * uarg)1768 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1769 {
1770 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1771 	struct sock_exterr_skb *serr;
1772 	struct sock *sk = skb->sk;
1773 	struct sk_buff_head *q;
1774 	unsigned long flags;
1775 	bool is_zerocopy;
1776 	u32 lo, hi;
1777 	u16 len;
1778 
1779 	mm_unaccount_pinned_pages(&uarg->mmp);
1780 
1781 	/* if !len, there was only 1 call, and it was aborted
1782 	 * so do not queue a completion notification
1783 	 */
1784 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1785 		goto release;
1786 
1787 	len = uarg->len;
1788 	lo = uarg->id;
1789 	hi = uarg->id + len - 1;
1790 	is_zerocopy = uarg->zerocopy;
1791 
1792 	serr = SKB_EXT_ERR(skb);
1793 	memset(serr, 0, sizeof(*serr));
1794 	serr->ee.ee_errno = 0;
1795 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1796 	serr->ee.ee_data = hi;
1797 	serr->ee.ee_info = lo;
1798 	if (!is_zerocopy)
1799 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1800 
1801 	q = &sk->sk_error_queue;
1802 	spin_lock_irqsave(&q->lock, flags);
1803 	tail = skb_peek_tail(q);
1804 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1805 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1806 		__skb_queue_tail(q, skb);
1807 		skb = NULL;
1808 	}
1809 	spin_unlock_irqrestore(&q->lock, flags);
1810 
1811 	sk_error_report(sk);
1812 
1813 release:
1814 	consume_skb(skb);
1815 	sock_put(sk);
1816 }
1817 
msg_zerocopy_complete(struct sk_buff * skb,struct ubuf_info * uarg,bool success)1818 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1819 				  bool success)
1820 {
1821 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1822 
1823 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1824 
1825 	if (refcount_dec_and_test(&uarg->refcnt))
1826 		__msg_zerocopy_callback(uarg_zc);
1827 }
1828 
msg_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1829 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1830 {
1831 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1832 
1833 	atomic_dec(&sk->sk_zckey);
1834 	uarg_to_msgzc(uarg)->len--;
1835 
1836 	if (have_uref)
1837 		msg_zerocopy_complete(NULL, uarg, true);
1838 }
1839 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1840 
1841 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1842 	.complete = msg_zerocopy_complete,
1843 };
1844 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1845 
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg,struct net_devmem_dmabuf_binding * binding)1846 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1847 			     struct msghdr *msg, int len,
1848 			     struct ubuf_info *uarg,
1849 			     struct net_devmem_dmabuf_binding *binding)
1850 {
1851 	int err, orig_len = skb->len;
1852 
1853 	if (uarg->ops->link_skb) {
1854 		err = uarg->ops->link_skb(skb, uarg);
1855 		if (err)
1856 			return err;
1857 	} else {
1858 		struct ubuf_info *orig_uarg = skb_zcopy(skb);
1859 
1860 		/* An skb can only point to one uarg. This edge case happens
1861 		 * when TCP appends to an skb, but zerocopy_realloc triggered
1862 		 * a new alloc.
1863 		 */
1864 		if (orig_uarg && uarg != orig_uarg)
1865 			return -EEXIST;
1866 	}
1867 
1868 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len,
1869 				      binding);
1870 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1871 		struct sock *save_sk = skb->sk;
1872 
1873 		/* Streams do not free skb on error. Reset to prev state. */
1874 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1875 		skb->sk = sk;
1876 		___pskb_trim(skb, orig_len);
1877 		skb->sk = save_sk;
1878 		return err;
1879 	}
1880 
1881 	skb_zcopy_set(skb, uarg, NULL);
1882 	return skb->len - orig_len;
1883 }
1884 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1885 
__skb_zcopy_downgrade_managed(struct sk_buff * skb)1886 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1887 {
1888 	int i;
1889 
1890 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1891 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1892 		skb_frag_ref(skb, i);
1893 }
1894 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1895 
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1896 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1897 			      gfp_t gfp_mask)
1898 {
1899 	if (skb_zcopy(orig)) {
1900 		if (skb_zcopy(nskb)) {
1901 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1902 			if (!gfp_mask) {
1903 				WARN_ON_ONCE(1);
1904 				return -ENOMEM;
1905 			}
1906 			if (skb_uarg(nskb) == skb_uarg(orig))
1907 				return 0;
1908 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1909 				return -EIO;
1910 		}
1911 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1912 	}
1913 	return 0;
1914 }
1915 
1916 /**
1917  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1918  *	@skb: the skb to modify
1919  *	@gfp_mask: allocation priority
1920  *
1921  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1922  *	It will copy all frags into kernel and drop the reference
1923  *	to userspace pages.
1924  *
1925  *	If this function is called from an interrupt gfp_mask() must be
1926  *	%GFP_ATOMIC.
1927  *
1928  *	Returns 0 on success or a negative error code on failure
1929  *	to allocate kernel memory to copy to.
1930  */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1931 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1932 {
1933 	int num_frags = skb_shinfo(skb)->nr_frags;
1934 	struct page *page, *head = NULL;
1935 	int i, order, psize, new_frags;
1936 	u32 d_off;
1937 
1938 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1939 		return -EINVAL;
1940 
1941 	if (!skb_frags_readable(skb))
1942 		return -EFAULT;
1943 
1944 	if (!num_frags)
1945 		goto release;
1946 
1947 	/* We might have to allocate high order pages, so compute what minimum
1948 	 * page order is needed.
1949 	 */
1950 	order = 0;
1951 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1952 		order++;
1953 	psize = (PAGE_SIZE << order);
1954 
1955 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1956 	for (i = 0; i < new_frags; i++) {
1957 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1958 		if (!page) {
1959 			while (head) {
1960 				struct page *next = (struct page *)page_private(head);
1961 				put_page(head);
1962 				head = next;
1963 			}
1964 			return -ENOMEM;
1965 		}
1966 		set_page_private(page, (unsigned long)head);
1967 		head = page;
1968 	}
1969 
1970 	page = head;
1971 	d_off = 0;
1972 	for (i = 0; i < num_frags; i++) {
1973 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1974 		u32 p_off, p_len, copied;
1975 		struct page *p;
1976 		u8 *vaddr;
1977 
1978 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1979 				      p, p_off, p_len, copied) {
1980 			u32 copy, done = 0;
1981 			vaddr = kmap_atomic(p);
1982 
1983 			while (done < p_len) {
1984 				if (d_off == psize) {
1985 					d_off = 0;
1986 					page = (struct page *)page_private(page);
1987 				}
1988 				copy = min_t(u32, psize - d_off, p_len - done);
1989 				memcpy(page_address(page) + d_off,
1990 				       vaddr + p_off + done, copy);
1991 				done += copy;
1992 				d_off += copy;
1993 			}
1994 			kunmap_atomic(vaddr);
1995 		}
1996 	}
1997 
1998 	/* skb frags release userspace buffers */
1999 	for (i = 0; i < num_frags; i++)
2000 		skb_frag_unref(skb, i);
2001 
2002 	/* skb frags point to kernel buffers */
2003 	for (i = 0; i < new_frags - 1; i++) {
2004 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2005 		head = (struct page *)page_private(head);
2006 	}
2007 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2008 			       d_off);
2009 	skb_shinfo(skb)->nr_frags = new_frags;
2010 
2011 release:
2012 	skb_zcopy_clear(skb, false);
2013 	return 0;
2014 }
2015 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2016 
2017 /**
2018  *	skb_clone	-	duplicate an sk_buff
2019  *	@skb: buffer to clone
2020  *	@gfp_mask: allocation priority
2021  *
2022  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2023  *	copies share the same packet data but not structure. The new
2024  *	buffer has a reference count of 1. If the allocation fails the
2025  *	function returns %NULL otherwise the new buffer is returned.
2026  *
2027  *	If this function is called from an interrupt gfp_mask() must be
2028  *	%GFP_ATOMIC.
2029  */
2030 
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)2031 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2032 {
2033 	struct sk_buff_fclones *fclones = container_of(skb,
2034 						       struct sk_buff_fclones,
2035 						       skb1);
2036 	struct sk_buff *n;
2037 
2038 	if (skb_orphan_frags(skb, gfp_mask))
2039 		return NULL;
2040 
2041 	if (skb->fclone == SKB_FCLONE_ORIG &&
2042 	    refcount_read(&fclones->fclone_ref) == 1) {
2043 		n = &fclones->skb2;
2044 		refcount_set(&fclones->fclone_ref, 2);
2045 		n->fclone = SKB_FCLONE_CLONE;
2046 	} else {
2047 		if (skb_pfmemalloc(skb))
2048 			gfp_mask |= __GFP_MEMALLOC;
2049 
2050 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2051 		if (!n)
2052 			return NULL;
2053 
2054 		n->fclone = SKB_FCLONE_UNAVAILABLE;
2055 	}
2056 
2057 	return __skb_clone(n, skb);
2058 }
2059 EXPORT_SYMBOL(skb_clone);
2060 
skb_headers_offset_update(struct sk_buff * skb,int off)2061 void skb_headers_offset_update(struct sk_buff *skb, int off)
2062 {
2063 	/* Only adjust this if it actually is csum_start rather than csum */
2064 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2065 		skb->csum_start += off;
2066 	/* {transport,network,mac}_header and tail are relative to skb->head */
2067 	skb->transport_header += off;
2068 	skb->network_header   += off;
2069 	if (skb_mac_header_was_set(skb))
2070 		skb->mac_header += off;
2071 	skb->inner_transport_header += off;
2072 	skb->inner_network_header += off;
2073 	skb->inner_mac_header += off;
2074 }
2075 EXPORT_SYMBOL(skb_headers_offset_update);
2076 
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)2077 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2078 {
2079 	__copy_skb_header(new, old);
2080 
2081 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2082 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2083 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2084 }
2085 EXPORT_SYMBOL(skb_copy_header);
2086 
skb_alloc_rx_flag(const struct sk_buff * skb)2087 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2088 {
2089 	if (skb_pfmemalloc(skb))
2090 		return SKB_ALLOC_RX;
2091 	return 0;
2092 }
2093 
2094 /**
2095  *	skb_copy	-	create private copy of an sk_buff
2096  *	@skb: buffer to copy
2097  *	@gfp_mask: allocation priority
2098  *
2099  *	Make a copy of both an &sk_buff and its data. This is used when the
2100  *	caller wishes to modify the data and needs a private copy of the
2101  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2102  *	on success. The returned buffer has a reference count of 1.
2103  *
2104  *	As by-product this function converts non-linear &sk_buff to linear
2105  *	one, so that &sk_buff becomes completely private and caller is allowed
2106  *	to modify all the data of returned buffer. This means that this
2107  *	function is not recommended for use in circumstances when only
2108  *	header is going to be modified. Use pskb_copy() instead.
2109  */
2110 
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)2111 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2112 {
2113 	struct sk_buff *n;
2114 	unsigned int size;
2115 	int headerlen;
2116 
2117 	if (!skb_frags_readable(skb))
2118 		return NULL;
2119 
2120 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2121 		return NULL;
2122 
2123 	headerlen = skb_headroom(skb);
2124 	size = skb_end_offset(skb) + skb->data_len;
2125 	n = __alloc_skb(size, gfp_mask,
2126 			skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2127 	if (!n)
2128 		return NULL;
2129 
2130 	/* Set the data pointer */
2131 	skb_reserve(n, headerlen);
2132 	/* Set the tail pointer and length */
2133 	skb_put(n, skb->len);
2134 
2135 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2136 
2137 	skb_copy_header(n, skb);
2138 	return n;
2139 }
2140 EXPORT_SYMBOL(skb_copy);
2141 
2142 /**
2143  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2144  *	@skb: buffer to copy
2145  *	@headroom: headroom of new skb
2146  *	@gfp_mask: allocation priority
2147  *	@fclone: if true allocate the copy of the skb from the fclone
2148  *	cache instead of the head cache; it is recommended to set this
2149  *	to true for the cases where the copy will likely be cloned
2150  *
2151  *	Make a copy of both an &sk_buff and part of its data, located
2152  *	in header. Fragmented data remain shared. This is used when
2153  *	the caller wishes to modify only header of &sk_buff and needs
2154  *	private copy of the header to alter. Returns %NULL on failure
2155  *	or the pointer to the buffer on success.
2156  *	The returned buffer has a reference count of 1.
2157  */
2158 
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)2159 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2160 				   gfp_t gfp_mask, bool fclone)
2161 {
2162 	unsigned int size = skb_headlen(skb) + headroom;
2163 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2164 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2165 
2166 	if (!n)
2167 		goto out;
2168 
2169 	/* Set the data pointer */
2170 	skb_reserve(n, headroom);
2171 	/* Set the tail pointer and length */
2172 	skb_put(n, skb_headlen(skb));
2173 	/* Copy the bytes */
2174 	skb_copy_from_linear_data(skb, n->data, n->len);
2175 
2176 	n->truesize += skb->data_len;
2177 	n->data_len  = skb->data_len;
2178 	n->len	     = skb->len;
2179 
2180 	if (skb_shinfo(skb)->nr_frags) {
2181 		int i;
2182 
2183 		if (skb_orphan_frags(skb, gfp_mask) ||
2184 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2185 			kfree_skb(n);
2186 			n = NULL;
2187 			goto out;
2188 		}
2189 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2190 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2191 			skb_frag_ref(skb, i);
2192 		}
2193 		skb_shinfo(n)->nr_frags = i;
2194 	}
2195 
2196 	if (skb_has_frag_list(skb)) {
2197 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2198 		skb_clone_fraglist(n);
2199 	}
2200 
2201 	skb_copy_header(n, skb);
2202 out:
2203 	return n;
2204 }
2205 EXPORT_SYMBOL(__pskb_copy_fclone);
2206 
2207 /**
2208  *	pskb_expand_head - reallocate header of &sk_buff
2209  *	@skb: buffer to reallocate
2210  *	@nhead: room to add at head
2211  *	@ntail: room to add at tail
2212  *	@gfp_mask: allocation priority
2213  *
2214  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2215  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2216  *	reference count of 1. Returns zero in the case of success or error,
2217  *	if expansion failed. In the last case, &sk_buff is not changed.
2218  *
2219  *	All the pointers pointing into skb header may change and must be
2220  *	reloaded after call to this function.
2221  */
2222 
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)2223 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2224 		     gfp_t gfp_mask)
2225 {
2226 	unsigned int osize = skb_end_offset(skb);
2227 	unsigned int size = osize + nhead + ntail;
2228 	long off;
2229 	u8 *data;
2230 	int i;
2231 
2232 	BUG_ON(nhead < 0);
2233 
2234 	BUG_ON(skb_shared(skb));
2235 
2236 	skb_zcopy_downgrade_managed(skb);
2237 
2238 	if (skb_pfmemalloc(skb))
2239 		gfp_mask |= __GFP_MEMALLOC;
2240 
2241 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2242 	if (!data)
2243 		goto nodata;
2244 	size = SKB_WITH_OVERHEAD(size);
2245 
2246 	/* Copy only real data... and, alas, header. This should be
2247 	 * optimized for the cases when header is void.
2248 	 */
2249 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2250 
2251 	memcpy((struct skb_shared_info *)(data + size),
2252 	       skb_shinfo(skb),
2253 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2254 
2255 	/*
2256 	 * if shinfo is shared we must drop the old head gracefully, but if it
2257 	 * is not we can just drop the old head and let the existing refcount
2258 	 * be since all we did is relocate the values
2259 	 */
2260 	if (skb_cloned(skb)) {
2261 		if (skb_orphan_frags(skb, gfp_mask))
2262 			goto nofrags;
2263 		if (skb_zcopy(skb))
2264 			refcount_inc(&skb_uarg(skb)->refcnt);
2265 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2266 			skb_frag_ref(skb, i);
2267 
2268 		if (skb_has_frag_list(skb))
2269 			skb_clone_fraglist(skb);
2270 
2271 		skb_release_data(skb, SKB_CONSUMED);
2272 	} else {
2273 		skb_free_head(skb);
2274 	}
2275 	off = (data + nhead) - skb->head;
2276 
2277 	skb->head     = data;
2278 	skb->head_frag = 0;
2279 	skb->data    += off;
2280 
2281 	skb_set_end_offset(skb, size);
2282 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2283 	off           = nhead;
2284 #endif
2285 	skb->tail	      += off;
2286 	skb_headers_offset_update(skb, nhead);
2287 	skb->cloned   = 0;
2288 	skb->hdr_len  = 0;
2289 	skb->nohdr    = 0;
2290 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2291 
2292 	skb_metadata_clear(skb);
2293 
2294 	/* It is not generally safe to change skb->truesize.
2295 	 * For the moment, we really care of rx path, or
2296 	 * when skb is orphaned (not attached to a socket).
2297 	 */
2298 	if (!skb->sk || skb->destructor == sock_edemux)
2299 		skb->truesize += size - osize;
2300 
2301 	return 0;
2302 
2303 nofrags:
2304 	skb_kfree_head(data, size);
2305 nodata:
2306 	return -ENOMEM;
2307 }
2308 EXPORT_SYMBOL(pskb_expand_head);
2309 
2310 /* Make private copy of skb with writable head and some headroom */
2311 
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)2312 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2313 {
2314 	struct sk_buff *skb2;
2315 	int delta = headroom - skb_headroom(skb);
2316 
2317 	if (delta <= 0)
2318 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2319 	else {
2320 		skb2 = skb_clone(skb, GFP_ATOMIC);
2321 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2322 					     GFP_ATOMIC)) {
2323 			kfree_skb(skb2);
2324 			skb2 = NULL;
2325 		}
2326 	}
2327 	return skb2;
2328 }
2329 EXPORT_SYMBOL(skb_realloc_headroom);
2330 
2331 /* Note: We plan to rework this in linux-6.4 */
__skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)2332 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2333 {
2334 	unsigned int saved_end_offset, saved_truesize;
2335 	struct skb_shared_info *shinfo;
2336 	int res;
2337 
2338 	saved_end_offset = skb_end_offset(skb);
2339 	saved_truesize = skb->truesize;
2340 
2341 	res = pskb_expand_head(skb, 0, 0, pri);
2342 	if (res)
2343 		return res;
2344 
2345 	skb->truesize = saved_truesize;
2346 
2347 	if (likely(skb_end_offset(skb) == saved_end_offset))
2348 		return 0;
2349 
2350 	/* We can not change skb->end if the original or new value
2351 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2352 	 */
2353 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2354 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2355 		/* We think this path should not be taken.
2356 		 * Add a temporary trace to warn us just in case.
2357 		 */
2358 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2359 			    saved_end_offset, skb_end_offset(skb));
2360 		WARN_ON_ONCE(1);
2361 		return 0;
2362 	}
2363 
2364 	shinfo = skb_shinfo(skb);
2365 
2366 	/* We are about to change back skb->end,
2367 	 * we need to move skb_shinfo() to its new location.
2368 	 */
2369 	memmove(skb->head + saved_end_offset,
2370 		shinfo,
2371 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2372 
2373 	skb_set_end_offset(skb, saved_end_offset);
2374 
2375 	return 0;
2376 }
2377 
2378 /**
2379  *	skb_expand_head - reallocate header of &sk_buff
2380  *	@skb: buffer to reallocate
2381  *	@headroom: needed headroom
2382  *
2383  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2384  *	if possible; copies skb->sk to new skb as needed
2385  *	and frees original skb in case of failures.
2386  *
2387  *	It expect increased headroom and generates warning otherwise.
2388  */
2389 
skb_expand_head(struct sk_buff * skb,unsigned int headroom)2390 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2391 {
2392 	int delta = headroom - skb_headroom(skb);
2393 	int osize = skb_end_offset(skb);
2394 	struct sock *sk = skb->sk;
2395 
2396 	if (WARN_ONCE(delta <= 0,
2397 		      "%s is expecting an increase in the headroom", __func__))
2398 		return skb;
2399 
2400 	delta = SKB_DATA_ALIGN(delta);
2401 	/* pskb_expand_head() might crash, if skb is shared. */
2402 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2403 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2404 
2405 		if (unlikely(!nskb))
2406 			goto fail;
2407 
2408 		if (sk)
2409 			skb_set_owner_w(nskb, sk);
2410 		consume_skb(skb);
2411 		skb = nskb;
2412 	}
2413 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2414 		goto fail;
2415 
2416 	if (sk && is_skb_wmem(skb)) {
2417 		delta = skb_end_offset(skb) - osize;
2418 		refcount_add(delta, &sk->sk_wmem_alloc);
2419 		skb->truesize += delta;
2420 	}
2421 	return skb;
2422 
2423 fail:
2424 	kfree_skb(skb);
2425 	return NULL;
2426 }
2427 EXPORT_SYMBOL(skb_expand_head);
2428 
2429 /**
2430  *	skb_copy_expand	-	copy and expand sk_buff
2431  *	@skb: buffer to copy
2432  *	@newheadroom: new free bytes at head
2433  *	@newtailroom: new free bytes at tail
2434  *	@gfp_mask: allocation priority
2435  *
2436  *	Make a copy of both an &sk_buff and its data and while doing so
2437  *	allocate additional space.
2438  *
2439  *	This is used when the caller wishes to modify the data and needs a
2440  *	private copy of the data to alter as well as more space for new fields.
2441  *	Returns %NULL on failure or the pointer to the buffer
2442  *	on success. The returned buffer has a reference count of 1.
2443  *
2444  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2445  *	is called from an interrupt.
2446  */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)2447 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2448 				int newheadroom, int newtailroom,
2449 				gfp_t gfp_mask)
2450 {
2451 	/*
2452 	 *	Allocate the copy buffer
2453 	 */
2454 	int head_copy_len, head_copy_off;
2455 	struct sk_buff *n;
2456 	int oldheadroom;
2457 
2458 	if (!skb_frags_readable(skb))
2459 		return NULL;
2460 
2461 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2462 		return NULL;
2463 
2464 	oldheadroom = skb_headroom(skb);
2465 	n = __alloc_skb(newheadroom + skb->len + newtailroom,
2466 			gfp_mask, skb_alloc_rx_flag(skb),
2467 			NUMA_NO_NODE);
2468 	if (!n)
2469 		return NULL;
2470 
2471 	skb_reserve(n, newheadroom);
2472 
2473 	/* Set the tail pointer and length */
2474 	skb_put(n, skb->len);
2475 
2476 	head_copy_len = oldheadroom;
2477 	head_copy_off = 0;
2478 	if (newheadroom <= head_copy_len)
2479 		head_copy_len = newheadroom;
2480 	else
2481 		head_copy_off = newheadroom - head_copy_len;
2482 
2483 	/* Copy the linear header and data. */
2484 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2485 			     skb->len + head_copy_len));
2486 
2487 	skb_copy_header(n, skb);
2488 
2489 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2490 
2491 	return n;
2492 }
2493 EXPORT_SYMBOL(skb_copy_expand);
2494 
2495 /**
2496  *	__skb_pad		-	zero pad the tail of an skb
2497  *	@skb: buffer to pad
2498  *	@pad: space to pad
2499  *	@free_on_error: free buffer on error
2500  *
2501  *	Ensure that a buffer is followed by a padding area that is zero
2502  *	filled. Used by network drivers which may DMA or transfer data
2503  *	beyond the buffer end onto the wire.
2504  *
2505  *	May return error in out of memory cases. The skb is freed on error
2506  *	if @free_on_error is true.
2507  */
2508 
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)2509 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2510 {
2511 	int err;
2512 	int ntail;
2513 
2514 	/* If the skbuff is non linear tailroom is always zero.. */
2515 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2516 		memset(skb->data+skb->len, 0, pad);
2517 		return 0;
2518 	}
2519 
2520 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2521 	if (likely(skb_cloned(skb) || ntail > 0)) {
2522 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2523 		if (unlikely(err))
2524 			goto free_skb;
2525 	}
2526 
2527 	/* FIXME: The use of this function with non-linear skb's really needs
2528 	 * to be audited.
2529 	 */
2530 	err = skb_linearize(skb);
2531 	if (unlikely(err))
2532 		goto free_skb;
2533 
2534 	memset(skb->data + skb->len, 0, pad);
2535 	return 0;
2536 
2537 free_skb:
2538 	if (free_on_error)
2539 		kfree_skb(skb);
2540 	return err;
2541 }
2542 EXPORT_SYMBOL(__skb_pad);
2543 
2544 /**
2545  *	pskb_put - add data to the tail of a potentially fragmented buffer
2546  *	@skb: start of the buffer to use
2547  *	@tail: tail fragment of the buffer to use
2548  *	@len: amount of data to add
2549  *
2550  *	This function extends the used data area of the potentially
2551  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2552  *	@skb itself. If this would exceed the total buffer size the kernel
2553  *	will panic. A pointer to the first byte of the extra data is
2554  *	returned.
2555  */
2556 
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)2557 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2558 {
2559 	if (tail != skb) {
2560 		skb->data_len += len;
2561 		skb->len += len;
2562 	}
2563 	return skb_put(tail, len);
2564 }
2565 EXPORT_SYMBOL_GPL(pskb_put);
2566 
2567 /**
2568  *	skb_put - add data to a buffer
2569  *	@skb: buffer to use
2570  *	@len: amount of data to add
2571  *
2572  *	This function extends the used data area of the buffer. If this would
2573  *	exceed the total buffer size the kernel will panic. A pointer to the
2574  *	first byte of the extra data is returned.
2575  */
skb_put(struct sk_buff * skb,unsigned int len)2576 void *skb_put(struct sk_buff *skb, unsigned int len)
2577 {
2578 	void *tmp = skb_tail_pointer(skb);
2579 	SKB_LINEAR_ASSERT(skb);
2580 	skb->tail += len;
2581 	skb->len  += len;
2582 	if (unlikely(skb->tail > skb->end))
2583 		skb_over_panic(skb, len, __builtin_return_address(0));
2584 	return tmp;
2585 }
2586 EXPORT_SYMBOL(skb_put);
2587 
2588 /**
2589  *	skb_push - add data to the start of a buffer
2590  *	@skb: buffer to use
2591  *	@len: amount of data to add
2592  *
2593  *	This function extends the used data area of the buffer at the buffer
2594  *	start. If this would exceed the total buffer headroom the kernel will
2595  *	panic. A pointer to the first byte of the extra data is returned.
2596  */
skb_push(struct sk_buff * skb,unsigned int len)2597 void *skb_push(struct sk_buff *skb, unsigned int len)
2598 {
2599 	skb->data -= len;
2600 	skb->len  += len;
2601 	if (unlikely(skb->data < skb->head))
2602 		skb_under_panic(skb, len, __builtin_return_address(0));
2603 	return skb->data;
2604 }
2605 EXPORT_SYMBOL(skb_push);
2606 
2607 /**
2608  *	skb_pull - remove data from the start of a buffer
2609  *	@skb: buffer to use
2610  *	@len: amount of data to remove
2611  *
2612  *	This function removes data from the start of a buffer, returning
2613  *	the memory to the headroom. A pointer to the next data in the buffer
2614  *	is returned. Once the data has been pulled future pushes will overwrite
2615  *	the old data.
2616  */
skb_pull(struct sk_buff * skb,unsigned int len)2617 void *skb_pull(struct sk_buff *skb, unsigned int len)
2618 {
2619 	return skb_pull_inline(skb, len);
2620 }
2621 EXPORT_SYMBOL(skb_pull);
2622 
2623 /**
2624  *	skb_pull_data - remove data from the start of a buffer returning its
2625  *	original position.
2626  *	@skb: buffer to use
2627  *	@len: amount of data to remove
2628  *
2629  *	This function removes data from the start of a buffer, returning
2630  *	the memory to the headroom. A pointer to the original data in the buffer
2631  *	is returned after checking if there is enough data to pull. Once the
2632  *	data has been pulled future pushes will overwrite the old data.
2633  */
skb_pull_data(struct sk_buff * skb,size_t len)2634 void *skb_pull_data(struct sk_buff *skb, size_t len)
2635 {
2636 	void *data = skb->data;
2637 
2638 	if (skb->len < len)
2639 		return NULL;
2640 
2641 	skb_pull(skb, len);
2642 
2643 	return data;
2644 }
2645 EXPORT_SYMBOL(skb_pull_data);
2646 
2647 /**
2648  *	skb_trim - remove end from a buffer
2649  *	@skb: buffer to alter
2650  *	@len: new length
2651  *
2652  *	Cut the length of a buffer down by removing data from the tail. If
2653  *	the buffer is already under the length specified it is not modified.
2654  *	The skb must be linear.
2655  */
skb_trim(struct sk_buff * skb,unsigned int len)2656 void skb_trim(struct sk_buff *skb, unsigned int len)
2657 {
2658 	if (skb->len > len)
2659 		__skb_trim(skb, len);
2660 }
2661 EXPORT_SYMBOL(skb_trim);
2662 
2663 /* Trims skb to length len. It can change skb pointers.
2664  */
2665 
___pskb_trim(struct sk_buff * skb,unsigned int len)2666 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2667 {
2668 	struct sk_buff **fragp;
2669 	struct sk_buff *frag;
2670 	int offset = skb_headlen(skb);
2671 	int nfrags = skb_shinfo(skb)->nr_frags;
2672 	int i;
2673 	int err;
2674 
2675 	if (skb_cloned(skb) &&
2676 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2677 		return err;
2678 
2679 	i = 0;
2680 	if (offset >= len)
2681 		goto drop_pages;
2682 
2683 	for (; i < nfrags; i++) {
2684 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2685 
2686 		if (end < len) {
2687 			offset = end;
2688 			continue;
2689 		}
2690 
2691 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2692 
2693 drop_pages:
2694 		skb_shinfo(skb)->nr_frags = i;
2695 
2696 		for (; i < nfrags; i++)
2697 			skb_frag_unref(skb, i);
2698 
2699 		if (skb_has_frag_list(skb))
2700 			skb_drop_fraglist(skb);
2701 		goto done;
2702 	}
2703 
2704 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2705 	     fragp = &frag->next) {
2706 		int end = offset + frag->len;
2707 
2708 		if (skb_shared(frag)) {
2709 			struct sk_buff *nfrag;
2710 
2711 			nfrag = skb_clone(frag, GFP_ATOMIC);
2712 			if (unlikely(!nfrag))
2713 				return -ENOMEM;
2714 
2715 			nfrag->next = frag->next;
2716 			consume_skb(frag);
2717 			frag = nfrag;
2718 			*fragp = frag;
2719 		}
2720 
2721 		if (end < len) {
2722 			offset = end;
2723 			continue;
2724 		}
2725 
2726 		if (end > len &&
2727 		    unlikely((err = pskb_trim(frag, len - offset))))
2728 			return err;
2729 
2730 		if (frag->next)
2731 			skb_drop_list(&frag->next);
2732 		break;
2733 	}
2734 
2735 done:
2736 	if (len > skb_headlen(skb)) {
2737 		skb->data_len -= skb->len - len;
2738 		skb->len       = len;
2739 	} else {
2740 		skb->len       = len;
2741 		skb->data_len  = 0;
2742 		skb_set_tail_pointer(skb, len);
2743 	}
2744 
2745 	if (!skb->sk || skb->destructor == sock_edemux)
2746 		skb_condense(skb);
2747 	return 0;
2748 }
2749 EXPORT_SYMBOL(___pskb_trim);
2750 
2751 /* Note : use pskb_trim_rcsum() instead of calling this directly
2752  */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2753 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2754 {
2755 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2756 		int delta = skb->len - len;
2757 
2758 		skb->csum = csum_block_sub(skb->csum,
2759 					   skb_checksum(skb, len, delta, 0),
2760 					   len);
2761 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2762 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2763 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2764 
2765 		if (offset + sizeof(__sum16) > hdlen)
2766 			return -EINVAL;
2767 	}
2768 	return __pskb_trim(skb, len);
2769 }
2770 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2771 
2772 /**
2773  *	__pskb_pull_tail - advance tail of skb header
2774  *	@skb: buffer to reallocate
2775  *	@delta: number of bytes to advance tail
2776  *
2777  *	The function makes a sense only on a fragmented &sk_buff,
2778  *	it expands header moving its tail forward and copying necessary
2779  *	data from fragmented part.
2780  *
2781  *	&sk_buff MUST have reference count of 1.
2782  *
2783  *	Returns %NULL (and &sk_buff does not change) if pull failed
2784  *	or value of new tail of skb in the case of success.
2785  *
2786  *	All the pointers pointing into skb header may change and must be
2787  *	reloaded after call to this function.
2788  */
2789 
2790 /* Moves tail of skb head forward, copying data from fragmented part,
2791  * when it is necessary.
2792  * 1. It may fail due to malloc failure.
2793  * 2. It may change skb pointers.
2794  *
2795  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2796  */
__pskb_pull_tail(struct sk_buff * skb,int delta)2797 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2798 {
2799 	/* If skb has not enough free space at tail, get new one
2800 	 * plus 128 bytes for future expansions. If we have enough
2801 	 * room at tail, reallocate without expansion only if skb is cloned.
2802 	 */
2803 	int i, k, eat = (skb->tail + delta) - skb->end;
2804 
2805 	if (!skb_frags_readable(skb))
2806 		return NULL;
2807 
2808 	if (eat > 0 || skb_cloned(skb)) {
2809 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2810 				     GFP_ATOMIC))
2811 			return NULL;
2812 	}
2813 
2814 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2815 			     skb_tail_pointer(skb), delta));
2816 
2817 	/* Optimization: no fragments, no reasons to preestimate
2818 	 * size of pulled pages. Superb.
2819 	 */
2820 	if (!skb_has_frag_list(skb))
2821 		goto pull_pages;
2822 
2823 	/* Estimate size of pulled pages. */
2824 	eat = delta;
2825 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2826 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2827 
2828 		if (size >= eat)
2829 			goto pull_pages;
2830 		eat -= size;
2831 	}
2832 
2833 	/* If we need update frag list, we are in troubles.
2834 	 * Certainly, it is possible to add an offset to skb data,
2835 	 * but taking into account that pulling is expected to
2836 	 * be very rare operation, it is worth to fight against
2837 	 * further bloating skb head and crucify ourselves here instead.
2838 	 * Pure masohism, indeed. 8)8)
2839 	 */
2840 	if (eat) {
2841 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2842 		struct sk_buff *clone = NULL;
2843 		struct sk_buff *insp = NULL;
2844 
2845 		do {
2846 			if (list->len <= eat) {
2847 				/* Eaten as whole. */
2848 				eat -= list->len;
2849 				list = list->next;
2850 				insp = list;
2851 			} else {
2852 				/* Eaten partially. */
2853 				if (skb_is_gso(skb) && !list->head_frag &&
2854 				    skb_headlen(list))
2855 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2856 
2857 				if (skb_shared(list)) {
2858 					/* Sucks! We need to fork list. :-( */
2859 					clone = skb_clone(list, GFP_ATOMIC);
2860 					if (!clone)
2861 						return NULL;
2862 					insp = list->next;
2863 					list = clone;
2864 				} else {
2865 					/* This may be pulled without
2866 					 * problems. */
2867 					insp = list;
2868 				}
2869 				if (!pskb_pull(list, eat)) {
2870 					kfree_skb(clone);
2871 					return NULL;
2872 				}
2873 				break;
2874 			}
2875 		} while (eat);
2876 
2877 		/* Free pulled out fragments. */
2878 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2879 			skb_shinfo(skb)->frag_list = list->next;
2880 			consume_skb(list);
2881 		}
2882 		/* And insert new clone at head. */
2883 		if (clone) {
2884 			clone->next = list;
2885 			skb_shinfo(skb)->frag_list = clone;
2886 		}
2887 	}
2888 	/* Success! Now we may commit changes to skb data. */
2889 
2890 pull_pages:
2891 	eat = delta;
2892 	k = 0;
2893 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2894 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2895 
2896 		if (size <= eat) {
2897 			skb_frag_unref(skb, i);
2898 			eat -= size;
2899 		} else {
2900 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2901 
2902 			*frag = skb_shinfo(skb)->frags[i];
2903 			if (eat) {
2904 				skb_frag_off_add(frag, eat);
2905 				skb_frag_size_sub(frag, eat);
2906 				if (!i)
2907 					goto end;
2908 				eat = 0;
2909 			}
2910 			k++;
2911 		}
2912 	}
2913 	skb_shinfo(skb)->nr_frags = k;
2914 
2915 end:
2916 	skb->tail     += delta;
2917 	skb->data_len -= delta;
2918 
2919 	if (!skb->data_len)
2920 		skb_zcopy_clear(skb, false);
2921 
2922 	return skb_tail_pointer(skb);
2923 }
2924 EXPORT_SYMBOL(__pskb_pull_tail);
2925 
2926 /**
2927  *	skb_copy_bits - copy bits from skb to kernel buffer
2928  *	@skb: source skb
2929  *	@offset: offset in source
2930  *	@to: destination buffer
2931  *	@len: number of bytes to copy
2932  *
2933  *	Copy the specified number of bytes from the source skb to the
2934  *	destination buffer.
2935  *
2936  *	CAUTION ! :
2937  *		If its prototype is ever changed,
2938  *		check arch/{*}/net/{*}.S files,
2939  *		since it is called from BPF assembly code.
2940  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2941 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2942 {
2943 	int start = skb_headlen(skb);
2944 	struct sk_buff *frag_iter;
2945 	int i, copy;
2946 
2947 	if (offset > (int)skb->len - len)
2948 		goto fault;
2949 
2950 	/* Copy header. */
2951 	if ((copy = start - offset) > 0) {
2952 		if (copy > len)
2953 			copy = len;
2954 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2955 		if ((len -= copy) == 0)
2956 			return 0;
2957 		offset += copy;
2958 		to     += copy;
2959 	}
2960 
2961 	if (!skb_frags_readable(skb))
2962 		goto fault;
2963 
2964 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2965 		int end;
2966 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2967 
2968 		WARN_ON(start > offset + len);
2969 
2970 		end = start + skb_frag_size(f);
2971 		if ((copy = end - offset) > 0) {
2972 			u32 p_off, p_len, copied;
2973 			struct page *p;
2974 			u8 *vaddr;
2975 
2976 			if (copy > len)
2977 				copy = len;
2978 
2979 			skb_frag_foreach_page(f,
2980 					      skb_frag_off(f) + offset - start,
2981 					      copy, p, p_off, p_len, copied) {
2982 				vaddr = kmap_atomic(p);
2983 				memcpy(to + copied, vaddr + p_off, p_len);
2984 				kunmap_atomic(vaddr);
2985 			}
2986 
2987 			if ((len -= copy) == 0)
2988 				return 0;
2989 			offset += copy;
2990 			to     += copy;
2991 		}
2992 		start = end;
2993 	}
2994 
2995 	skb_walk_frags(skb, frag_iter) {
2996 		int end;
2997 
2998 		WARN_ON(start > offset + len);
2999 
3000 		end = start + frag_iter->len;
3001 		if ((copy = end - offset) > 0) {
3002 			if (copy > len)
3003 				copy = len;
3004 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
3005 				goto fault;
3006 			if ((len -= copy) == 0)
3007 				return 0;
3008 			offset += copy;
3009 			to     += copy;
3010 		}
3011 		start = end;
3012 	}
3013 
3014 	if (!len)
3015 		return 0;
3016 
3017 fault:
3018 	return -EFAULT;
3019 }
3020 EXPORT_SYMBOL(skb_copy_bits);
3021 
3022 /*
3023  * Callback from splice_to_pipe(), if we need to release some pages
3024  * at the end of the spd in case we error'ed out in filling the pipe.
3025  */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)3026 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3027 {
3028 	put_page(spd->pages[i]);
3029 }
3030 
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)3031 static struct page *linear_to_page(struct page *page, unsigned int *len,
3032 				   unsigned int *offset,
3033 				   struct sock *sk)
3034 {
3035 	struct page_frag *pfrag = sk_page_frag(sk);
3036 
3037 	if (!sk_page_frag_refill(sk, pfrag))
3038 		return NULL;
3039 
3040 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3041 
3042 	memcpy(page_address(pfrag->page) + pfrag->offset,
3043 	       page_address(page) + *offset, *len);
3044 	*offset = pfrag->offset;
3045 	pfrag->offset += *len;
3046 
3047 	return pfrag->page;
3048 }
3049 
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)3050 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3051 			     struct page *page,
3052 			     unsigned int offset)
3053 {
3054 	return	spd->nr_pages &&
3055 		spd->pages[spd->nr_pages - 1] == page &&
3056 		(spd->partial[spd->nr_pages - 1].offset +
3057 		 spd->partial[spd->nr_pages - 1].len == offset);
3058 }
3059 
3060 /*
3061  * Fill page/offset/length into spd, if it can hold more pages.
3062  */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)3063 static bool spd_fill_page(struct splice_pipe_desc *spd,
3064 			  struct pipe_inode_info *pipe, struct page *page,
3065 			  unsigned int *len, unsigned int offset,
3066 			  bool linear,
3067 			  struct sock *sk)
3068 {
3069 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3070 		return true;
3071 
3072 	if (linear) {
3073 		page = linear_to_page(page, len, &offset, sk);
3074 		if (!page)
3075 			return true;
3076 	}
3077 	if (spd_can_coalesce(spd, page, offset)) {
3078 		spd->partial[spd->nr_pages - 1].len += *len;
3079 		return false;
3080 	}
3081 	get_page(page);
3082 	spd->pages[spd->nr_pages] = page;
3083 	spd->partial[spd->nr_pages].len = *len;
3084 	spd->partial[spd->nr_pages].offset = offset;
3085 	spd->nr_pages++;
3086 
3087 	return false;
3088 }
3089 
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)3090 static bool __splice_segment(struct page *page, unsigned int poff,
3091 			     unsigned int plen, unsigned int *off,
3092 			     unsigned int *len,
3093 			     struct splice_pipe_desc *spd, bool linear,
3094 			     struct sock *sk,
3095 			     struct pipe_inode_info *pipe)
3096 {
3097 	if (!*len)
3098 		return true;
3099 
3100 	/* skip this segment if already processed */
3101 	if (*off >= plen) {
3102 		*off -= plen;
3103 		return false;
3104 	}
3105 
3106 	/* ignore any bits we already processed */
3107 	poff += *off;
3108 	plen -= *off;
3109 	*off = 0;
3110 
3111 	do {
3112 		unsigned int flen = min(*len, plen);
3113 
3114 		if (spd_fill_page(spd, pipe, page, &flen, poff,
3115 				  linear, sk))
3116 			return true;
3117 		poff += flen;
3118 		plen -= flen;
3119 		*len -= flen;
3120 	} while (*len && plen);
3121 
3122 	return false;
3123 }
3124 
3125 /*
3126  * Map linear and fragment data from the skb to spd. It reports true if the
3127  * pipe is full or if we already spliced the requested length.
3128  */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)3129 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3130 			      unsigned int *offset, unsigned int *len,
3131 			      struct splice_pipe_desc *spd, struct sock *sk)
3132 {
3133 	int seg;
3134 	struct sk_buff *iter;
3135 
3136 	/* map the linear part :
3137 	 * If skb->head_frag is set, this 'linear' part is backed by a
3138 	 * fragment, and if the head is not shared with any clones then
3139 	 * we can avoid a copy since we own the head portion of this page.
3140 	 */
3141 	if (__splice_segment(virt_to_page(skb->data),
3142 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3143 			     skb_headlen(skb),
3144 			     offset, len, spd,
3145 			     skb_head_is_locked(skb),
3146 			     sk, pipe))
3147 		return true;
3148 
3149 	/*
3150 	 * then map the fragments
3151 	 */
3152 	if (!skb_frags_readable(skb))
3153 		return false;
3154 
3155 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3156 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3157 
3158 		if (WARN_ON_ONCE(!skb_frag_page(f)))
3159 			return false;
3160 
3161 		if (__splice_segment(skb_frag_page(f),
3162 				     skb_frag_off(f), skb_frag_size(f),
3163 				     offset, len, spd, false, sk, pipe))
3164 			return true;
3165 	}
3166 
3167 	skb_walk_frags(skb, iter) {
3168 		if (*offset >= iter->len) {
3169 			*offset -= iter->len;
3170 			continue;
3171 		}
3172 		/* __skb_splice_bits() only fails if the output has no room
3173 		 * left, so no point in going over the frag_list for the error
3174 		 * case.
3175 		 */
3176 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3177 			return true;
3178 	}
3179 
3180 	return false;
3181 }
3182 
3183 /*
3184  * Map data from the skb to a pipe. Should handle both the linear part,
3185  * the fragments, and the frag list.
3186  */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)3187 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3188 		    struct pipe_inode_info *pipe, unsigned int tlen,
3189 		    unsigned int flags)
3190 {
3191 	struct partial_page partial[MAX_SKB_FRAGS];
3192 	struct page *pages[MAX_SKB_FRAGS];
3193 	struct splice_pipe_desc spd = {
3194 		.pages = pages,
3195 		.partial = partial,
3196 		.nr_pages_max = MAX_SKB_FRAGS,
3197 		.ops = &nosteal_pipe_buf_ops,
3198 		.spd_release = sock_spd_release,
3199 	};
3200 	int ret = 0;
3201 
3202 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3203 
3204 	if (spd.nr_pages)
3205 		ret = splice_to_pipe(pipe, &spd);
3206 
3207 	return ret;
3208 }
3209 EXPORT_SYMBOL_GPL(skb_splice_bits);
3210 
sendmsg_locked(struct sock * sk,struct msghdr * msg)3211 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3212 {
3213 	struct socket *sock = sk->sk_socket;
3214 	size_t size = msg_data_left(msg);
3215 
3216 	if (!sock)
3217 		return -EINVAL;
3218 
3219 	if (!sock->ops->sendmsg_locked)
3220 		return sock_no_sendmsg_locked(sk, msg, size);
3221 
3222 	return sock->ops->sendmsg_locked(sk, msg, size);
3223 }
3224 
sendmsg_unlocked(struct sock * sk,struct msghdr * msg)3225 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3226 {
3227 	struct socket *sock = sk->sk_socket;
3228 
3229 	if (!sock)
3230 		return -EINVAL;
3231 	return sock_sendmsg(sock, msg);
3232 }
3233 
3234 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
__skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len,sendmsg_func sendmsg,int flags)3235 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3236 			   int len, sendmsg_func sendmsg, int flags)
3237 {
3238 	unsigned int orig_len = len;
3239 	struct sk_buff *head = skb;
3240 	unsigned short fragidx;
3241 	int slen, ret;
3242 
3243 do_frag_list:
3244 
3245 	/* Deal with head data */
3246 	while (offset < skb_headlen(skb) && len) {
3247 		struct kvec kv;
3248 		struct msghdr msg;
3249 
3250 		slen = min_t(int, len, skb_headlen(skb) - offset);
3251 		kv.iov_base = skb->data + offset;
3252 		kv.iov_len = slen;
3253 		memset(&msg, 0, sizeof(msg));
3254 		msg.msg_flags = MSG_DONTWAIT | flags;
3255 
3256 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3257 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3258 				      sendmsg_unlocked, sk, &msg);
3259 		if (ret <= 0)
3260 			goto error;
3261 
3262 		offset += ret;
3263 		len -= ret;
3264 	}
3265 
3266 	/* All the data was skb head? */
3267 	if (!len)
3268 		goto out;
3269 
3270 	/* Make offset relative to start of frags */
3271 	offset -= skb_headlen(skb);
3272 
3273 	/* Find where we are in frag list */
3274 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3275 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3276 
3277 		if (offset < skb_frag_size(frag))
3278 			break;
3279 
3280 		offset -= skb_frag_size(frag);
3281 	}
3282 
3283 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3284 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3285 
3286 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3287 
3288 		while (slen) {
3289 			struct bio_vec bvec;
3290 			struct msghdr msg = {
3291 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT |
3292 					     flags,
3293 			};
3294 
3295 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3296 				      skb_frag_off(frag) + offset);
3297 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3298 				      slen);
3299 
3300 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3301 					      sendmsg_unlocked, sk, &msg);
3302 			if (ret <= 0)
3303 				goto error;
3304 
3305 			len -= ret;
3306 			offset += ret;
3307 			slen -= ret;
3308 		}
3309 
3310 		offset = 0;
3311 	}
3312 
3313 	if (len) {
3314 		/* Process any frag lists */
3315 
3316 		if (skb == head) {
3317 			if (skb_has_frag_list(skb)) {
3318 				skb = skb_shinfo(skb)->frag_list;
3319 				goto do_frag_list;
3320 			}
3321 		} else if (skb->next) {
3322 			skb = skb->next;
3323 			goto do_frag_list;
3324 		}
3325 	}
3326 
3327 out:
3328 	return orig_len - len;
3329 
3330 error:
3331 	return orig_len == len ? ret : orig_len - len;
3332 }
3333 
3334 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)3335 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3336 			 int len)
3337 {
3338 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, 0);
3339 }
3340 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3341 
skb_send_sock_locked_with_flags(struct sock * sk,struct sk_buff * skb,int offset,int len,int flags)3342 int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb,
3343 				    int offset, int len, int flags)
3344 {
3345 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, flags);
3346 }
3347 EXPORT_SYMBOL_GPL(skb_send_sock_locked_with_flags);
3348 
3349 /* Send skb data on a socket. Socket must be unlocked. */
skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len)3350 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3351 {
3352 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 0);
3353 }
3354 
3355 /**
3356  *	skb_store_bits - store bits from kernel buffer to skb
3357  *	@skb: destination buffer
3358  *	@offset: offset in destination
3359  *	@from: source buffer
3360  *	@len: number of bytes to copy
3361  *
3362  *	Copy the specified number of bytes from the source buffer to the
3363  *	destination skb.  This function handles all the messy bits of
3364  *	traversing fragment lists and such.
3365  */
3366 
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)3367 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3368 {
3369 	int start = skb_headlen(skb);
3370 	struct sk_buff *frag_iter;
3371 	int i, copy;
3372 
3373 	if (offset > (int)skb->len - len)
3374 		goto fault;
3375 
3376 	if ((copy = start - offset) > 0) {
3377 		if (copy > len)
3378 			copy = len;
3379 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3380 		if ((len -= copy) == 0)
3381 			return 0;
3382 		offset += copy;
3383 		from += copy;
3384 	}
3385 
3386 	if (!skb_frags_readable(skb))
3387 		goto fault;
3388 
3389 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3390 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3391 		int end;
3392 
3393 		WARN_ON(start > offset + len);
3394 
3395 		end = start + skb_frag_size(frag);
3396 		if ((copy = end - offset) > 0) {
3397 			u32 p_off, p_len, copied;
3398 			struct page *p;
3399 			u8 *vaddr;
3400 
3401 			if (copy > len)
3402 				copy = len;
3403 
3404 			skb_frag_foreach_page(frag,
3405 					      skb_frag_off(frag) + offset - start,
3406 					      copy, p, p_off, p_len, copied) {
3407 				vaddr = kmap_atomic(p);
3408 				memcpy(vaddr + p_off, from + copied, p_len);
3409 				kunmap_atomic(vaddr);
3410 			}
3411 
3412 			if ((len -= copy) == 0)
3413 				return 0;
3414 			offset += copy;
3415 			from += copy;
3416 		}
3417 		start = end;
3418 	}
3419 
3420 	skb_walk_frags(skb, frag_iter) {
3421 		int end;
3422 
3423 		WARN_ON(start > offset + len);
3424 
3425 		end = start + frag_iter->len;
3426 		if ((copy = end - offset) > 0) {
3427 			if (copy > len)
3428 				copy = len;
3429 			if (skb_store_bits(frag_iter, offset - start,
3430 					   from, copy))
3431 				goto fault;
3432 			if ((len -= copy) == 0)
3433 				return 0;
3434 			offset += copy;
3435 			from += copy;
3436 		}
3437 		start = end;
3438 	}
3439 	if (!len)
3440 		return 0;
3441 
3442 fault:
3443 	return -EFAULT;
3444 }
3445 EXPORT_SYMBOL(skb_store_bits);
3446 
3447 /* Checksum skb data. */
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)3448 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum)
3449 {
3450 	int start = skb_headlen(skb);
3451 	int i, copy = start - offset;
3452 	struct sk_buff *frag_iter;
3453 	int pos = 0;
3454 
3455 	/* Checksum header. */
3456 	if (copy > 0) {
3457 		if (copy > len)
3458 			copy = len;
3459 		csum = csum_partial(skb->data + offset, copy, csum);
3460 		if ((len -= copy) == 0)
3461 			return csum;
3462 		offset += copy;
3463 		pos	= copy;
3464 	}
3465 
3466 	if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3467 		return 0;
3468 
3469 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3470 		int end;
3471 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3472 
3473 		WARN_ON(start > offset + len);
3474 
3475 		end = start + skb_frag_size(frag);
3476 		if ((copy = end - offset) > 0) {
3477 			u32 p_off, p_len, copied;
3478 			struct page *p;
3479 			__wsum csum2;
3480 			u8 *vaddr;
3481 
3482 			if (copy > len)
3483 				copy = len;
3484 
3485 			skb_frag_foreach_page(frag,
3486 					      skb_frag_off(frag) + offset - start,
3487 					      copy, p, p_off, p_len, copied) {
3488 				vaddr = kmap_atomic(p);
3489 				csum2 = csum_partial(vaddr + p_off, p_len, 0);
3490 				kunmap_atomic(vaddr);
3491 				csum = csum_block_add(csum, csum2, pos);
3492 				pos += p_len;
3493 			}
3494 
3495 			if (!(len -= copy))
3496 				return csum;
3497 			offset += copy;
3498 		}
3499 		start = end;
3500 	}
3501 
3502 	skb_walk_frags(skb, frag_iter) {
3503 		int end;
3504 
3505 		WARN_ON(start > offset + len);
3506 
3507 		end = start + frag_iter->len;
3508 		if ((copy = end - offset) > 0) {
3509 			__wsum csum2;
3510 			if (copy > len)
3511 				copy = len;
3512 			csum2 = skb_checksum(frag_iter, offset - start, copy,
3513 					     0);
3514 			csum = csum_block_add(csum, csum2, pos);
3515 			if ((len -= copy) == 0)
3516 				return csum;
3517 			offset += copy;
3518 			pos    += copy;
3519 		}
3520 		start = end;
3521 	}
3522 	BUG_ON(len);
3523 
3524 	return csum;
3525 }
3526 EXPORT_SYMBOL(skb_checksum);
3527 
3528 /* Both of above in one bottle. */
3529 
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)3530 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3531 				    u8 *to, int len)
3532 {
3533 	int start = skb_headlen(skb);
3534 	int i, copy = start - offset;
3535 	struct sk_buff *frag_iter;
3536 	int pos = 0;
3537 	__wsum csum = 0;
3538 
3539 	/* Copy header. */
3540 	if (copy > 0) {
3541 		if (copy > len)
3542 			copy = len;
3543 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3544 						 copy);
3545 		if ((len -= copy) == 0)
3546 			return csum;
3547 		offset += copy;
3548 		to     += copy;
3549 		pos	= copy;
3550 	}
3551 
3552 	if (!skb_frags_readable(skb))
3553 		return 0;
3554 
3555 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3556 		int end;
3557 
3558 		WARN_ON(start > offset + len);
3559 
3560 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3561 		if ((copy = end - offset) > 0) {
3562 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3563 			u32 p_off, p_len, copied;
3564 			struct page *p;
3565 			__wsum csum2;
3566 			u8 *vaddr;
3567 
3568 			if (copy > len)
3569 				copy = len;
3570 
3571 			skb_frag_foreach_page(frag,
3572 					      skb_frag_off(frag) + offset - start,
3573 					      copy, p, p_off, p_len, copied) {
3574 				vaddr = kmap_atomic(p);
3575 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3576 								  to + copied,
3577 								  p_len);
3578 				kunmap_atomic(vaddr);
3579 				csum = csum_block_add(csum, csum2, pos);
3580 				pos += p_len;
3581 			}
3582 
3583 			if (!(len -= copy))
3584 				return csum;
3585 			offset += copy;
3586 			to     += copy;
3587 		}
3588 		start = end;
3589 	}
3590 
3591 	skb_walk_frags(skb, frag_iter) {
3592 		__wsum csum2;
3593 		int end;
3594 
3595 		WARN_ON(start > offset + len);
3596 
3597 		end = start + frag_iter->len;
3598 		if ((copy = end - offset) > 0) {
3599 			if (copy > len)
3600 				copy = len;
3601 			csum2 = skb_copy_and_csum_bits(frag_iter,
3602 						       offset - start,
3603 						       to, copy);
3604 			csum = csum_block_add(csum, csum2, pos);
3605 			if ((len -= copy) == 0)
3606 				return csum;
3607 			offset += copy;
3608 			to     += copy;
3609 			pos    += copy;
3610 		}
3611 		start = end;
3612 	}
3613 	BUG_ON(len);
3614 	return csum;
3615 }
3616 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3617 
3618 #ifdef CONFIG_NET_CRC32C
skb_crc32c(const struct sk_buff * skb,int offset,int len,u32 crc)3619 u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc)
3620 {
3621 	int start = skb_headlen(skb);
3622 	int i, copy = start - offset;
3623 	struct sk_buff *frag_iter;
3624 
3625 	if (copy > 0) {
3626 		copy = min(copy, len);
3627 		crc = crc32c(crc, skb->data + offset, copy);
3628 		len -= copy;
3629 		if (len == 0)
3630 			return crc;
3631 		offset += copy;
3632 	}
3633 
3634 	if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3635 		return 0;
3636 
3637 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3638 		int end;
3639 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3640 
3641 		WARN_ON(start > offset + len);
3642 
3643 		end = start + skb_frag_size(frag);
3644 		copy = end - offset;
3645 		if (copy > 0) {
3646 			u32 p_off, p_len, copied;
3647 			struct page *p;
3648 			u8 *vaddr;
3649 
3650 			copy = min(copy, len);
3651 			skb_frag_foreach_page(frag,
3652 					      skb_frag_off(frag) + offset - start,
3653 					      copy, p, p_off, p_len, copied) {
3654 				vaddr = kmap_atomic(p);
3655 				crc = crc32c(crc, vaddr + p_off, p_len);
3656 				kunmap_atomic(vaddr);
3657 			}
3658 			len -= copy;
3659 			if (len == 0)
3660 				return crc;
3661 			offset += copy;
3662 		}
3663 		start = end;
3664 	}
3665 
3666 	skb_walk_frags(skb, frag_iter) {
3667 		int end;
3668 
3669 		WARN_ON(start > offset + len);
3670 
3671 		end = start + frag_iter->len;
3672 		copy = end - offset;
3673 		if (copy > 0) {
3674 			copy = min(copy, len);
3675 			crc = skb_crc32c(frag_iter, offset - start, copy, crc);
3676 			len -= copy;
3677 			if (len == 0)
3678 				return crc;
3679 			offset += copy;
3680 		}
3681 		start = end;
3682 	}
3683 	BUG_ON(len);
3684 
3685 	return crc;
3686 }
3687 EXPORT_SYMBOL(skb_crc32c);
3688 #endif /* CONFIG_NET_CRC32C */
3689 
__skb_checksum_complete_head(struct sk_buff * skb,int len)3690 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3691 {
3692 	__sum16 sum;
3693 
3694 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3695 	/* See comments in __skb_checksum_complete(). */
3696 	if (likely(!sum)) {
3697 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3698 		    !skb->csum_complete_sw)
3699 			netdev_rx_csum_fault(skb->dev, skb);
3700 	}
3701 	if (!skb_shared(skb))
3702 		skb->csum_valid = !sum;
3703 	return sum;
3704 }
3705 EXPORT_SYMBOL(__skb_checksum_complete_head);
3706 
3707 /* This function assumes skb->csum already holds pseudo header's checksum,
3708  * which has been changed from the hardware checksum, for example, by
3709  * __skb_checksum_validate_complete(). And, the original skb->csum must
3710  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3711  *
3712  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3713  * zero. The new checksum is stored back into skb->csum unless the skb is
3714  * shared.
3715  */
__skb_checksum_complete(struct sk_buff * skb)3716 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3717 {
3718 	__wsum csum;
3719 	__sum16 sum;
3720 
3721 	csum = skb_checksum(skb, 0, skb->len, 0);
3722 
3723 	sum = csum_fold(csum_add(skb->csum, csum));
3724 	/* This check is inverted, because we already knew the hardware
3725 	 * checksum is invalid before calling this function. So, if the
3726 	 * re-computed checksum is valid instead, then we have a mismatch
3727 	 * between the original skb->csum and skb_checksum(). This means either
3728 	 * the original hardware checksum is incorrect or we screw up skb->csum
3729 	 * when moving skb->data around.
3730 	 */
3731 	if (likely(!sum)) {
3732 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3733 		    !skb->csum_complete_sw)
3734 			netdev_rx_csum_fault(skb->dev, skb);
3735 	}
3736 
3737 	if (!skb_shared(skb)) {
3738 		/* Save full packet checksum */
3739 		skb->csum = csum;
3740 		skb->ip_summed = CHECKSUM_COMPLETE;
3741 		skb->csum_complete_sw = 1;
3742 		skb->csum_valid = !sum;
3743 	}
3744 
3745 	return sum;
3746 }
3747 EXPORT_SYMBOL(__skb_checksum_complete);
3748 
3749  /**
3750  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3751  *	@from: source buffer
3752  *
3753  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3754  *	into skb_zerocopy().
3755  */
3756 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)3757 skb_zerocopy_headlen(const struct sk_buff *from)
3758 {
3759 	unsigned int hlen = 0;
3760 
3761 	if (!from->head_frag ||
3762 	    skb_headlen(from) < L1_CACHE_BYTES ||
3763 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3764 		hlen = skb_headlen(from);
3765 		if (!hlen)
3766 			hlen = from->len;
3767 	}
3768 
3769 	if (skb_has_frag_list(from))
3770 		hlen = from->len;
3771 
3772 	return hlen;
3773 }
3774 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3775 
3776 /**
3777  *	skb_zerocopy - Zero copy skb to skb
3778  *	@to: destination buffer
3779  *	@from: source buffer
3780  *	@len: number of bytes to copy from source buffer
3781  *	@hlen: size of linear headroom in destination buffer
3782  *
3783  *	Copies up to `len` bytes from `from` to `to` by creating references
3784  *	to the frags in the source buffer.
3785  *
3786  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3787  *	headroom in the `to` buffer.
3788  *
3789  *	Return value:
3790  *	0: everything is OK
3791  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3792  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3793  */
3794 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)3795 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3796 {
3797 	int i, j = 0;
3798 	int plen = 0; /* length of skb->head fragment */
3799 	int ret;
3800 	struct page *page;
3801 	unsigned int offset;
3802 
3803 	BUG_ON(!from->head_frag && !hlen);
3804 
3805 	/* dont bother with small payloads */
3806 	if (len <= skb_tailroom(to))
3807 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3808 
3809 	if (hlen) {
3810 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3811 		if (unlikely(ret))
3812 			return ret;
3813 		len -= hlen;
3814 	} else {
3815 		plen = min_t(int, skb_headlen(from), len);
3816 		if (plen) {
3817 			page = virt_to_head_page(from->head);
3818 			offset = from->data - (unsigned char *)page_address(page);
3819 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3820 					       offset, plen);
3821 			get_page(page);
3822 			j = 1;
3823 			len -= plen;
3824 		}
3825 	}
3826 
3827 	skb_len_add(to, len + plen);
3828 
3829 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3830 		skb_tx_error(from);
3831 		return -ENOMEM;
3832 	}
3833 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3834 
3835 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3836 		int size;
3837 
3838 		if (!len)
3839 			break;
3840 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3841 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3842 					len);
3843 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3844 		len -= size;
3845 		skb_frag_ref(to, j);
3846 		j++;
3847 	}
3848 	skb_shinfo(to)->nr_frags = j;
3849 
3850 	return 0;
3851 }
3852 EXPORT_SYMBOL_GPL(skb_zerocopy);
3853 
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3854 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3855 {
3856 	__wsum csum;
3857 	long csstart;
3858 
3859 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3860 		csstart = skb_checksum_start_offset(skb);
3861 	else
3862 		csstart = skb_headlen(skb);
3863 
3864 	BUG_ON(csstart > skb_headlen(skb));
3865 
3866 	skb_copy_from_linear_data(skb, to, csstart);
3867 
3868 	csum = 0;
3869 	if (csstart != skb->len)
3870 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3871 					      skb->len - csstart);
3872 
3873 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3874 		long csstuff = csstart + skb->csum_offset;
3875 
3876 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3877 	}
3878 }
3879 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3880 
3881 /**
3882  *	skb_dequeue - remove from the head of the queue
3883  *	@list: list to dequeue from
3884  *
3885  *	Remove the head of the list. The list lock is taken so the function
3886  *	may be used safely with other locking list functions. The head item is
3887  *	returned or %NULL if the list is empty.
3888  */
3889 
skb_dequeue(struct sk_buff_head * list)3890 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3891 {
3892 	unsigned long flags;
3893 	struct sk_buff *result;
3894 
3895 	spin_lock_irqsave(&list->lock, flags);
3896 	result = __skb_dequeue(list);
3897 	spin_unlock_irqrestore(&list->lock, flags);
3898 	return result;
3899 }
3900 EXPORT_SYMBOL(skb_dequeue);
3901 
3902 /**
3903  *	skb_dequeue_tail - remove from the tail of the queue
3904  *	@list: list to dequeue from
3905  *
3906  *	Remove the tail of the list. The list lock is taken so the function
3907  *	may be used safely with other locking list functions. The tail item is
3908  *	returned or %NULL if the list is empty.
3909  */
skb_dequeue_tail(struct sk_buff_head * list)3910 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3911 {
3912 	unsigned long flags;
3913 	struct sk_buff *result;
3914 
3915 	spin_lock_irqsave(&list->lock, flags);
3916 	result = __skb_dequeue_tail(list);
3917 	spin_unlock_irqrestore(&list->lock, flags);
3918 	return result;
3919 }
3920 EXPORT_SYMBOL(skb_dequeue_tail);
3921 
3922 /**
3923  *	skb_queue_purge_reason - empty a list
3924  *	@list: list to empty
3925  *	@reason: drop reason
3926  *
3927  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3928  *	the list and one reference dropped. This function takes the list
3929  *	lock and is atomic with respect to other list locking functions.
3930  */
skb_queue_purge_reason(struct sk_buff_head * list,enum skb_drop_reason reason)3931 void skb_queue_purge_reason(struct sk_buff_head *list,
3932 			    enum skb_drop_reason reason)
3933 {
3934 	struct sk_buff_head tmp;
3935 	unsigned long flags;
3936 
3937 	if (skb_queue_empty_lockless(list))
3938 		return;
3939 
3940 	__skb_queue_head_init(&tmp);
3941 
3942 	spin_lock_irqsave(&list->lock, flags);
3943 	skb_queue_splice_init(list, &tmp);
3944 	spin_unlock_irqrestore(&list->lock, flags);
3945 
3946 	__skb_queue_purge_reason(&tmp, reason);
3947 }
3948 EXPORT_SYMBOL(skb_queue_purge_reason);
3949 
3950 /**
3951  *	skb_rbtree_purge - empty a skb rbtree
3952  *	@root: root of the rbtree to empty
3953  *	Return value: the sum of truesizes of all purged skbs.
3954  *
3955  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3956  *	the list and one reference dropped. This function does not take
3957  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3958  *	out-of-order queue is protected by the socket lock).
3959  */
skb_rbtree_purge(struct rb_root * root)3960 unsigned int skb_rbtree_purge(struct rb_root *root)
3961 {
3962 	struct rb_node *p = rb_first(root);
3963 	unsigned int sum = 0;
3964 
3965 	while (p) {
3966 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3967 
3968 		p = rb_next(p);
3969 		rb_erase(&skb->rbnode, root);
3970 		sum += skb->truesize;
3971 		kfree_skb(skb);
3972 	}
3973 	return sum;
3974 }
3975 
skb_errqueue_purge(struct sk_buff_head * list)3976 void skb_errqueue_purge(struct sk_buff_head *list)
3977 {
3978 	struct sk_buff *skb, *next;
3979 	struct sk_buff_head kill;
3980 	unsigned long flags;
3981 
3982 	__skb_queue_head_init(&kill);
3983 
3984 	spin_lock_irqsave(&list->lock, flags);
3985 	skb_queue_walk_safe(list, skb, next) {
3986 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3987 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3988 			continue;
3989 		__skb_unlink(skb, list);
3990 		__skb_queue_tail(&kill, skb);
3991 	}
3992 	spin_unlock_irqrestore(&list->lock, flags);
3993 	__skb_queue_purge(&kill);
3994 }
3995 EXPORT_SYMBOL(skb_errqueue_purge);
3996 
3997 /**
3998  *	skb_queue_head - queue a buffer at the list head
3999  *	@list: list to use
4000  *	@newsk: buffer to queue
4001  *
4002  *	Queue a buffer at the start of the list. This function takes the
4003  *	list lock and can be used safely with other locking &sk_buff functions
4004  *	safely.
4005  *
4006  *	A buffer cannot be placed on two lists at the same time.
4007  */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)4008 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
4009 {
4010 	unsigned long flags;
4011 
4012 	spin_lock_irqsave(&list->lock, flags);
4013 	__skb_queue_head(list, newsk);
4014 	spin_unlock_irqrestore(&list->lock, flags);
4015 }
4016 EXPORT_SYMBOL(skb_queue_head);
4017 
4018 /**
4019  *	skb_queue_tail - queue a buffer at the list tail
4020  *	@list: list to use
4021  *	@newsk: buffer to queue
4022  *
4023  *	Queue a buffer at the tail of the list. This function takes the
4024  *	list lock and can be used safely with other locking &sk_buff functions
4025  *	safely.
4026  *
4027  *	A buffer cannot be placed on two lists at the same time.
4028  */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)4029 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
4030 {
4031 	unsigned long flags;
4032 
4033 	spin_lock_irqsave(&list->lock, flags);
4034 	__skb_queue_tail(list, newsk);
4035 	spin_unlock_irqrestore(&list->lock, flags);
4036 }
4037 EXPORT_SYMBOL(skb_queue_tail);
4038 
4039 /**
4040  *	skb_unlink	-	remove a buffer from a list
4041  *	@skb: buffer to remove
4042  *	@list: list to use
4043  *
4044  *	Remove a packet from a list. The list locks are taken and this
4045  *	function is atomic with respect to other list locked calls
4046  *
4047  *	You must know what list the SKB is on.
4048  */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)4049 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4050 {
4051 	unsigned long flags;
4052 
4053 	spin_lock_irqsave(&list->lock, flags);
4054 	__skb_unlink(skb, list);
4055 	spin_unlock_irqrestore(&list->lock, flags);
4056 }
4057 EXPORT_SYMBOL(skb_unlink);
4058 
4059 /**
4060  *	skb_append	-	append a buffer
4061  *	@old: buffer to insert after
4062  *	@newsk: buffer to insert
4063  *	@list: list to use
4064  *
4065  *	Place a packet after a given packet in a list. The list locks are taken
4066  *	and this function is atomic with respect to other list locked calls.
4067  *	A buffer cannot be placed on two lists at the same time.
4068  */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)4069 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4070 {
4071 	unsigned long flags;
4072 
4073 	spin_lock_irqsave(&list->lock, flags);
4074 	__skb_queue_after(list, old, newsk);
4075 	spin_unlock_irqrestore(&list->lock, flags);
4076 }
4077 EXPORT_SYMBOL(skb_append);
4078 
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)4079 static inline void skb_split_inside_header(struct sk_buff *skb,
4080 					   struct sk_buff* skb1,
4081 					   const u32 len, const int pos)
4082 {
4083 	int i;
4084 
4085 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4086 					 pos - len);
4087 	/* And move data appendix as is. */
4088 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4089 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4090 
4091 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4092 	skb1->unreadable	   = skb->unreadable;
4093 	skb_shinfo(skb)->nr_frags  = 0;
4094 	skb1->data_len		   = skb->data_len;
4095 	skb1->len		   += skb1->data_len;
4096 	skb->data_len		   = 0;
4097 	skb->len		   = len;
4098 	skb_set_tail_pointer(skb, len);
4099 }
4100 
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)4101 static inline void skb_split_no_header(struct sk_buff *skb,
4102 				       struct sk_buff* skb1,
4103 				       const u32 len, int pos)
4104 {
4105 	int i, k = 0;
4106 	const int nfrags = skb_shinfo(skb)->nr_frags;
4107 
4108 	skb_shinfo(skb)->nr_frags = 0;
4109 	skb1->len		  = skb1->data_len = skb->len - len;
4110 	skb->len		  = len;
4111 	skb->data_len		  = len - pos;
4112 
4113 	for (i = 0; i < nfrags; i++) {
4114 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4115 
4116 		if (pos + size > len) {
4117 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4118 
4119 			if (pos < len) {
4120 				/* Split frag.
4121 				 * We have two variants in this case:
4122 				 * 1. Move all the frag to the second
4123 				 *    part, if it is possible. F.e.
4124 				 *    this approach is mandatory for TUX,
4125 				 *    where splitting is expensive.
4126 				 * 2. Split is accurately. We make this.
4127 				 */
4128 				skb_frag_ref(skb, i);
4129 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4130 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4131 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4132 				skb_shinfo(skb)->nr_frags++;
4133 			}
4134 			k++;
4135 		} else
4136 			skb_shinfo(skb)->nr_frags++;
4137 		pos += size;
4138 	}
4139 	skb_shinfo(skb1)->nr_frags = k;
4140 
4141 	skb1->unreadable = skb->unreadable;
4142 }
4143 
4144 /**
4145  * skb_split - Split fragmented skb to two parts at length len.
4146  * @skb: the buffer to split
4147  * @skb1: the buffer to receive the second part
4148  * @len: new length for skb
4149  */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)4150 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4151 {
4152 	int pos = skb_headlen(skb);
4153 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4154 
4155 	skb_zcopy_downgrade_managed(skb);
4156 
4157 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4158 	skb_zerocopy_clone(skb1, skb, 0);
4159 	if (len < pos)	/* Split line is inside header. */
4160 		skb_split_inside_header(skb, skb1, len, pos);
4161 	else		/* Second chunk has no header, nothing to copy. */
4162 		skb_split_no_header(skb, skb1, len, pos);
4163 }
4164 EXPORT_SYMBOL(skb_split);
4165 
4166 /* Shifting from/to a cloned skb is a no-go.
4167  *
4168  * Caller cannot keep skb_shinfo related pointers past calling here!
4169  */
skb_prepare_for_shift(struct sk_buff * skb)4170 static int skb_prepare_for_shift(struct sk_buff *skb)
4171 {
4172 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4173 }
4174 
4175 /**
4176  * skb_shift - Shifts paged data partially from skb to another
4177  * @tgt: buffer into which tail data gets added
4178  * @skb: buffer from which the paged data comes from
4179  * @shiftlen: shift up to this many bytes
4180  *
4181  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4182  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4183  * It's up to caller to free skb if everything was shifted.
4184  *
4185  * If @tgt runs out of frags, the whole operation is aborted.
4186  *
4187  * Skb cannot include anything else but paged data while tgt is allowed
4188  * to have non-paged data as well.
4189  *
4190  * TODO: full sized shift could be optimized but that would need
4191  * specialized skb free'er to handle frags without up-to-date nr_frags.
4192  */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)4193 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4194 {
4195 	int from, to, merge, todo;
4196 	skb_frag_t *fragfrom, *fragto;
4197 
4198 	BUG_ON(shiftlen > skb->len);
4199 
4200 	if (skb_headlen(skb))
4201 		return 0;
4202 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4203 		return 0;
4204 
4205 	DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle);
4206 	DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb));
4207 
4208 	todo = shiftlen;
4209 	from = 0;
4210 	to = skb_shinfo(tgt)->nr_frags;
4211 	fragfrom = &skb_shinfo(skb)->frags[from];
4212 
4213 	/* Actual merge is delayed until the point when we know we can
4214 	 * commit all, so that we don't have to undo partial changes
4215 	 */
4216 	if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4217 			      skb_frag_off(fragfrom))) {
4218 		merge = -1;
4219 	} else {
4220 		merge = to - 1;
4221 
4222 		todo -= skb_frag_size(fragfrom);
4223 		if (todo < 0) {
4224 			if (skb_prepare_for_shift(skb) ||
4225 			    skb_prepare_for_shift(tgt))
4226 				return 0;
4227 
4228 			/* All previous frag pointers might be stale! */
4229 			fragfrom = &skb_shinfo(skb)->frags[from];
4230 			fragto = &skb_shinfo(tgt)->frags[merge];
4231 
4232 			skb_frag_size_add(fragto, shiftlen);
4233 			skb_frag_size_sub(fragfrom, shiftlen);
4234 			skb_frag_off_add(fragfrom, shiftlen);
4235 
4236 			goto onlymerged;
4237 		}
4238 
4239 		from++;
4240 	}
4241 
4242 	/* Skip full, not-fitting skb to avoid expensive operations */
4243 	if ((shiftlen == skb->len) &&
4244 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4245 		return 0;
4246 
4247 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4248 		return 0;
4249 
4250 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4251 		if (to == MAX_SKB_FRAGS)
4252 			return 0;
4253 
4254 		fragfrom = &skb_shinfo(skb)->frags[from];
4255 		fragto = &skb_shinfo(tgt)->frags[to];
4256 
4257 		if (todo >= skb_frag_size(fragfrom)) {
4258 			*fragto = *fragfrom;
4259 			todo -= skb_frag_size(fragfrom);
4260 			from++;
4261 			to++;
4262 
4263 		} else {
4264 			__skb_frag_ref(fragfrom);
4265 			skb_frag_page_copy(fragto, fragfrom);
4266 			skb_frag_off_copy(fragto, fragfrom);
4267 			skb_frag_size_set(fragto, todo);
4268 
4269 			skb_frag_off_add(fragfrom, todo);
4270 			skb_frag_size_sub(fragfrom, todo);
4271 			todo = 0;
4272 
4273 			to++;
4274 			break;
4275 		}
4276 	}
4277 
4278 	/* Ready to "commit" this state change to tgt */
4279 	skb_shinfo(tgt)->nr_frags = to;
4280 
4281 	if (merge >= 0) {
4282 		fragfrom = &skb_shinfo(skb)->frags[0];
4283 		fragto = &skb_shinfo(tgt)->frags[merge];
4284 
4285 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4286 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4287 	}
4288 
4289 	/* Reposition in the original skb */
4290 	to = 0;
4291 	while (from < skb_shinfo(skb)->nr_frags)
4292 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4293 	skb_shinfo(skb)->nr_frags = to;
4294 
4295 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4296 
4297 onlymerged:
4298 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4299 	 * the other hand might need it if it needs to be resent
4300 	 */
4301 	tgt->ip_summed = CHECKSUM_PARTIAL;
4302 	skb->ip_summed = CHECKSUM_PARTIAL;
4303 
4304 	skb_len_add(skb, -shiftlen);
4305 	skb_len_add(tgt, shiftlen);
4306 
4307 	return shiftlen;
4308 }
4309 
4310 /**
4311  * skb_prepare_seq_read - Prepare a sequential read of skb data
4312  * @skb: the buffer to read
4313  * @from: lower offset of data to be read
4314  * @to: upper offset of data to be read
4315  * @st: state variable
4316  *
4317  * Initializes the specified state variable. Must be called before
4318  * invoking skb_seq_read() for the first time.
4319  */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)4320 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4321 			  unsigned int to, struct skb_seq_state *st)
4322 {
4323 	st->lower_offset = from;
4324 	st->upper_offset = to;
4325 	st->root_skb = st->cur_skb = skb;
4326 	st->frag_idx = st->stepped_offset = 0;
4327 	st->frag_data = NULL;
4328 	st->frag_off = 0;
4329 }
4330 EXPORT_SYMBOL(skb_prepare_seq_read);
4331 
4332 /**
4333  * skb_seq_read - Sequentially read skb data
4334  * @consumed: number of bytes consumed by the caller so far
4335  * @data: destination pointer for data to be returned
4336  * @st: state variable
4337  *
4338  * Reads a block of skb data at @consumed relative to the
4339  * lower offset specified to skb_prepare_seq_read(). Assigns
4340  * the head of the data block to @data and returns the length
4341  * of the block or 0 if the end of the skb data or the upper
4342  * offset has been reached.
4343  *
4344  * The caller is not required to consume all of the data
4345  * returned, i.e. @consumed is typically set to the number
4346  * of bytes already consumed and the next call to
4347  * skb_seq_read() will return the remaining part of the block.
4348  *
4349  * Note 1: The size of each block of data returned can be arbitrary,
4350  *       this limitation is the cost for zerocopy sequential
4351  *       reads of potentially non linear data.
4352  *
4353  * Note 2: Fragment lists within fragments are not implemented
4354  *       at the moment, state->root_skb could be replaced with
4355  *       a stack for this purpose.
4356  */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)4357 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4358 			  struct skb_seq_state *st)
4359 {
4360 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4361 	skb_frag_t *frag;
4362 
4363 	if (unlikely(abs_offset >= st->upper_offset)) {
4364 		if (st->frag_data) {
4365 			kunmap_atomic(st->frag_data);
4366 			st->frag_data = NULL;
4367 		}
4368 		return 0;
4369 	}
4370 
4371 next_skb:
4372 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4373 
4374 	if (abs_offset < block_limit && !st->frag_data) {
4375 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4376 		return block_limit - abs_offset;
4377 	}
4378 
4379 	if (!skb_frags_readable(st->cur_skb))
4380 		return 0;
4381 
4382 	if (st->frag_idx == 0 && !st->frag_data)
4383 		st->stepped_offset += skb_headlen(st->cur_skb);
4384 
4385 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4386 		unsigned int pg_idx, pg_off, pg_sz;
4387 
4388 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4389 
4390 		pg_idx = 0;
4391 		pg_off = skb_frag_off(frag);
4392 		pg_sz = skb_frag_size(frag);
4393 
4394 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4395 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4396 			pg_off = offset_in_page(pg_off + st->frag_off);
4397 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4398 						    PAGE_SIZE - pg_off);
4399 		}
4400 
4401 		block_limit = pg_sz + st->stepped_offset;
4402 		if (abs_offset < block_limit) {
4403 			if (!st->frag_data)
4404 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4405 
4406 			*data = (u8 *)st->frag_data + pg_off +
4407 				(abs_offset - st->stepped_offset);
4408 
4409 			return block_limit - abs_offset;
4410 		}
4411 
4412 		if (st->frag_data) {
4413 			kunmap_atomic(st->frag_data);
4414 			st->frag_data = NULL;
4415 		}
4416 
4417 		st->stepped_offset += pg_sz;
4418 		st->frag_off += pg_sz;
4419 		if (st->frag_off == skb_frag_size(frag)) {
4420 			st->frag_off = 0;
4421 			st->frag_idx++;
4422 		}
4423 	}
4424 
4425 	if (st->frag_data) {
4426 		kunmap_atomic(st->frag_data);
4427 		st->frag_data = NULL;
4428 	}
4429 
4430 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4431 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4432 		st->frag_idx = 0;
4433 		goto next_skb;
4434 	} else if (st->cur_skb->next) {
4435 		st->cur_skb = st->cur_skb->next;
4436 		st->frag_idx = 0;
4437 		goto next_skb;
4438 	}
4439 
4440 	return 0;
4441 }
4442 EXPORT_SYMBOL(skb_seq_read);
4443 
4444 /**
4445  * skb_abort_seq_read - Abort a sequential read of skb data
4446  * @st: state variable
4447  *
4448  * Must be called if skb_seq_read() was not called until it
4449  * returned 0.
4450  */
skb_abort_seq_read(struct skb_seq_state * st)4451 void skb_abort_seq_read(struct skb_seq_state *st)
4452 {
4453 	if (st->frag_data)
4454 		kunmap_atomic(st->frag_data);
4455 }
4456 EXPORT_SYMBOL(skb_abort_seq_read);
4457 
4458 /**
4459  * skb_copy_seq_read() - copy from a skb_seq_state to a buffer
4460  * @st: source skb_seq_state
4461  * @offset: offset in source
4462  * @to: destination buffer
4463  * @len: number of bytes to copy
4464  *
4465  * Copy @len bytes from @offset bytes into the source @st to the destination
4466  * buffer @to. `offset` should increase (or be unchanged) with each subsequent
4467  * call to this function. If offset needs to decrease from the previous use `st`
4468  * should be reset first.
4469  *
4470  * Return: 0 on success or -EINVAL if the copy ended early
4471  */
skb_copy_seq_read(struct skb_seq_state * st,int offset,void * to,int len)4472 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len)
4473 {
4474 	const u8 *data;
4475 	u32 sqlen;
4476 
4477 	for (;;) {
4478 		sqlen = skb_seq_read(offset, &data, st);
4479 		if (sqlen == 0)
4480 			return -EINVAL;
4481 		if (sqlen >= len) {
4482 			memcpy(to, data, len);
4483 			return 0;
4484 		}
4485 		memcpy(to, data, sqlen);
4486 		to += sqlen;
4487 		offset += sqlen;
4488 		len -= sqlen;
4489 	}
4490 }
4491 EXPORT_SYMBOL(skb_copy_seq_read);
4492 
4493 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4494 
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)4495 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4496 					  struct ts_config *conf,
4497 					  struct ts_state *state)
4498 {
4499 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4500 }
4501 
skb_ts_finish(struct ts_config * conf,struct ts_state * state)4502 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4503 {
4504 	skb_abort_seq_read(TS_SKB_CB(state));
4505 }
4506 
4507 /**
4508  * skb_find_text - Find a text pattern in skb data
4509  * @skb: the buffer to look in
4510  * @from: search offset
4511  * @to: search limit
4512  * @config: textsearch configuration
4513  *
4514  * Finds a pattern in the skb data according to the specified
4515  * textsearch configuration. Use textsearch_next() to retrieve
4516  * subsequent occurrences of the pattern. Returns the offset
4517  * to the first occurrence or UINT_MAX if no match was found.
4518  */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)4519 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4520 			   unsigned int to, struct ts_config *config)
4521 {
4522 	unsigned int patlen = config->ops->get_pattern_len(config);
4523 	struct ts_state state;
4524 	unsigned int ret;
4525 
4526 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4527 
4528 	config->get_next_block = skb_ts_get_next_block;
4529 	config->finish = skb_ts_finish;
4530 
4531 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4532 
4533 	ret = textsearch_find(config, &state);
4534 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4535 }
4536 EXPORT_SYMBOL(skb_find_text);
4537 
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size,size_t max_frags)4538 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4539 			 int offset, size_t size, size_t max_frags)
4540 {
4541 	int i = skb_shinfo(skb)->nr_frags;
4542 
4543 	if (skb_can_coalesce(skb, i, page, offset)) {
4544 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4545 	} else if (i < max_frags) {
4546 		skb_zcopy_downgrade_managed(skb);
4547 		get_page(page);
4548 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4549 	} else {
4550 		return -EMSGSIZE;
4551 	}
4552 
4553 	return 0;
4554 }
4555 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4556 
4557 /**
4558  *	skb_pull_rcsum - pull skb and update receive checksum
4559  *	@skb: buffer to update
4560  *	@len: length of data pulled
4561  *
4562  *	This function performs an skb_pull on the packet and updates
4563  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4564  *	receive path processing instead of skb_pull unless you know
4565  *	that the checksum difference is zero (e.g., a valid IP header)
4566  *	or you are setting ip_summed to CHECKSUM_NONE.
4567  */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)4568 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4569 {
4570 	unsigned char *data = skb->data;
4571 
4572 	BUG_ON(len > skb->len);
4573 	__skb_pull(skb, len);
4574 	skb_postpull_rcsum(skb, data, len);
4575 	return skb->data;
4576 }
4577 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4578 
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)4579 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4580 {
4581 	skb_frag_t head_frag;
4582 	struct page *page;
4583 
4584 	page = virt_to_head_page(frag_skb->head);
4585 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4586 				(unsigned char *)page_address(page),
4587 				skb_headlen(frag_skb));
4588 	return head_frag;
4589 }
4590 
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)4591 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4592 				 netdev_features_t features,
4593 				 unsigned int offset)
4594 {
4595 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4596 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4597 	unsigned int delta_truesize = 0;
4598 	unsigned int delta_len = 0;
4599 	struct sk_buff *tail = NULL;
4600 	struct sk_buff *nskb, *tmp;
4601 	int len_diff, err;
4602 
4603 	skb_push(skb, -skb_network_offset(skb) + offset);
4604 
4605 	/* Ensure the head is writeable before touching the shared info */
4606 	err = skb_unclone(skb, GFP_ATOMIC);
4607 	if (err)
4608 		goto err_linearize;
4609 
4610 	skb_shinfo(skb)->frag_list = NULL;
4611 
4612 	while (list_skb) {
4613 		nskb = list_skb;
4614 		list_skb = list_skb->next;
4615 
4616 		err = 0;
4617 		delta_truesize += nskb->truesize;
4618 		if (skb_shared(nskb)) {
4619 			tmp = skb_clone(nskb, GFP_ATOMIC);
4620 			if (tmp) {
4621 				consume_skb(nskb);
4622 				nskb = tmp;
4623 				err = skb_unclone(nskb, GFP_ATOMIC);
4624 			} else {
4625 				err = -ENOMEM;
4626 			}
4627 		}
4628 
4629 		if (!tail)
4630 			skb->next = nskb;
4631 		else
4632 			tail->next = nskb;
4633 
4634 		if (unlikely(err)) {
4635 			nskb->next = list_skb;
4636 			goto err_linearize;
4637 		}
4638 
4639 		tail = nskb;
4640 
4641 		delta_len += nskb->len;
4642 
4643 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4644 
4645 		skb_release_head_state(nskb);
4646 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4647 		__copy_skb_header(nskb, skb);
4648 
4649 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4650 		nskb->transport_header += len_diff;
4651 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4652 						 nskb->data - tnl_hlen,
4653 						 offset + tnl_hlen);
4654 
4655 		if (skb_needs_linearize(nskb, features) &&
4656 		    __skb_linearize(nskb))
4657 			goto err_linearize;
4658 	}
4659 
4660 	skb->truesize = skb->truesize - delta_truesize;
4661 	skb->data_len = skb->data_len - delta_len;
4662 	skb->len = skb->len - delta_len;
4663 
4664 	skb_gso_reset(skb);
4665 
4666 	skb->prev = tail;
4667 
4668 	if (skb_needs_linearize(skb, features) &&
4669 	    __skb_linearize(skb))
4670 		goto err_linearize;
4671 
4672 	skb_get(skb);
4673 
4674 	return skb;
4675 
4676 err_linearize:
4677 	kfree_skb_list(skb->next);
4678 	skb->next = NULL;
4679 	return ERR_PTR(-ENOMEM);
4680 }
4681 EXPORT_SYMBOL_GPL(skb_segment_list);
4682 
4683 /**
4684  *	skb_segment - Perform protocol segmentation on skb.
4685  *	@head_skb: buffer to segment
4686  *	@features: features for the output path (see dev->features)
4687  *
4688  *	This function performs segmentation on the given skb.  It returns
4689  *	a pointer to the first in a list of new skbs for the segments.
4690  *	In case of error it returns ERR_PTR(err).
4691  */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)4692 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4693 			    netdev_features_t features)
4694 {
4695 	struct sk_buff *segs = NULL;
4696 	struct sk_buff *tail = NULL;
4697 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4698 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4699 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4700 	unsigned int offset = doffset;
4701 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4702 	unsigned int partial_segs = 0;
4703 	unsigned int headroom;
4704 	unsigned int len = head_skb->len;
4705 	struct sk_buff *frag_skb;
4706 	skb_frag_t *frag;
4707 	__be16 proto;
4708 	bool csum, sg;
4709 	int err = -ENOMEM;
4710 	int i = 0;
4711 	int nfrags, pos;
4712 
4713 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4714 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4715 		struct sk_buff *check_skb;
4716 
4717 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4718 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4719 				/* gso_size is untrusted, and we have a frag_list with
4720 				 * a linear non head_frag item.
4721 				 *
4722 				 * If head_skb's headlen does not fit requested gso_size,
4723 				 * it means that the frag_list members do NOT terminate
4724 				 * on exact gso_size boundaries. Hence we cannot perform
4725 				 * skb_frag_t page sharing. Therefore we must fallback to
4726 				 * copying the frag_list skbs; we do so by disabling SG.
4727 				 */
4728 				features &= ~NETIF_F_SG;
4729 				break;
4730 			}
4731 		}
4732 	}
4733 
4734 	__skb_push(head_skb, doffset);
4735 	proto = skb_network_protocol(head_skb, NULL);
4736 	if (unlikely(!proto))
4737 		return ERR_PTR(-EINVAL);
4738 
4739 	sg = !!(features & NETIF_F_SG);
4740 	csum = !!can_checksum_protocol(features, proto);
4741 
4742 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4743 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4744 			struct sk_buff *iter;
4745 			unsigned int frag_len;
4746 
4747 			if (!list_skb ||
4748 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4749 				goto normal;
4750 
4751 			/* If we get here then all the required
4752 			 * GSO features except frag_list are supported.
4753 			 * Try to split the SKB to multiple GSO SKBs
4754 			 * with no frag_list.
4755 			 * Currently we can do that only when the buffers don't
4756 			 * have a linear part and all the buffers except
4757 			 * the last are of the same length.
4758 			 */
4759 			frag_len = list_skb->len;
4760 			skb_walk_frags(head_skb, iter) {
4761 				if (frag_len != iter->len && iter->next)
4762 					goto normal;
4763 				if (skb_headlen(iter) && !iter->head_frag)
4764 					goto normal;
4765 
4766 				len -= iter->len;
4767 			}
4768 
4769 			if (len != frag_len)
4770 				goto normal;
4771 		}
4772 
4773 		/* GSO partial only requires that we trim off any excess that
4774 		 * doesn't fit into an MSS sized block, so take care of that
4775 		 * now.
4776 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4777 		 */
4778 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4779 		if (partial_segs > 1)
4780 			mss *= partial_segs;
4781 		else
4782 			partial_segs = 0;
4783 	}
4784 
4785 normal:
4786 	headroom = skb_headroom(head_skb);
4787 	pos = skb_headlen(head_skb);
4788 
4789 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4790 		return ERR_PTR(-ENOMEM);
4791 
4792 	nfrags = skb_shinfo(head_skb)->nr_frags;
4793 	frag = skb_shinfo(head_skb)->frags;
4794 	frag_skb = head_skb;
4795 
4796 	do {
4797 		struct sk_buff *nskb;
4798 		skb_frag_t *nskb_frag;
4799 		int hsize;
4800 		int size;
4801 
4802 		if (unlikely(mss == GSO_BY_FRAGS)) {
4803 			len = list_skb->len;
4804 		} else {
4805 			len = head_skb->len - offset;
4806 			if (len > mss)
4807 				len = mss;
4808 		}
4809 
4810 		hsize = skb_headlen(head_skb) - offset;
4811 
4812 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4813 		    (skb_headlen(list_skb) == len || sg)) {
4814 			BUG_ON(skb_headlen(list_skb) > len);
4815 
4816 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4817 			if (unlikely(!nskb))
4818 				goto err;
4819 
4820 			i = 0;
4821 			nfrags = skb_shinfo(list_skb)->nr_frags;
4822 			frag = skb_shinfo(list_skb)->frags;
4823 			frag_skb = list_skb;
4824 			pos += skb_headlen(list_skb);
4825 
4826 			while (pos < offset + len) {
4827 				BUG_ON(i >= nfrags);
4828 
4829 				size = skb_frag_size(frag);
4830 				if (pos + size > offset + len)
4831 					break;
4832 
4833 				i++;
4834 				pos += size;
4835 				frag++;
4836 			}
4837 
4838 			list_skb = list_skb->next;
4839 
4840 			if (unlikely(pskb_trim(nskb, len))) {
4841 				kfree_skb(nskb);
4842 				goto err;
4843 			}
4844 
4845 			hsize = skb_end_offset(nskb);
4846 			if (skb_cow_head(nskb, doffset + headroom)) {
4847 				kfree_skb(nskb);
4848 				goto err;
4849 			}
4850 
4851 			nskb->truesize += skb_end_offset(nskb) - hsize;
4852 			skb_release_head_state(nskb);
4853 			__skb_push(nskb, doffset);
4854 		} else {
4855 			if (hsize < 0)
4856 				hsize = 0;
4857 			if (hsize > len || !sg)
4858 				hsize = len;
4859 
4860 			nskb = __alloc_skb(hsize + doffset + headroom,
4861 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4862 					   NUMA_NO_NODE);
4863 
4864 			if (unlikely(!nskb))
4865 				goto err;
4866 
4867 			skb_reserve(nskb, headroom);
4868 			__skb_put(nskb, doffset);
4869 		}
4870 
4871 		if (segs)
4872 			tail->next = nskb;
4873 		else
4874 			segs = nskb;
4875 		tail = nskb;
4876 
4877 		__copy_skb_header(nskb, head_skb);
4878 
4879 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4880 		skb_reset_mac_len(nskb);
4881 
4882 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4883 						 nskb->data - tnl_hlen,
4884 						 doffset + tnl_hlen);
4885 
4886 		if (nskb->len == len + doffset)
4887 			goto perform_csum_check;
4888 
4889 		if (!sg) {
4890 			if (!csum) {
4891 				if (!nskb->remcsum_offload)
4892 					nskb->ip_summed = CHECKSUM_NONE;
4893 				SKB_GSO_CB(nskb)->csum =
4894 					skb_copy_and_csum_bits(head_skb, offset,
4895 							       skb_put(nskb,
4896 								       len),
4897 							       len);
4898 				SKB_GSO_CB(nskb)->csum_start =
4899 					skb_headroom(nskb) + doffset;
4900 			} else {
4901 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4902 					goto err;
4903 			}
4904 			continue;
4905 		}
4906 
4907 		nskb_frag = skb_shinfo(nskb)->frags;
4908 
4909 		skb_copy_from_linear_data_offset(head_skb, offset,
4910 						 skb_put(nskb, hsize), hsize);
4911 
4912 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4913 					   SKBFL_SHARED_FRAG;
4914 
4915 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4916 			goto err;
4917 
4918 		while (pos < offset + len) {
4919 			if (i >= nfrags) {
4920 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4921 				    skb_zerocopy_clone(nskb, list_skb,
4922 						       GFP_ATOMIC))
4923 					goto err;
4924 
4925 				i = 0;
4926 				nfrags = skb_shinfo(list_skb)->nr_frags;
4927 				frag = skb_shinfo(list_skb)->frags;
4928 				frag_skb = list_skb;
4929 				if (!skb_headlen(list_skb)) {
4930 					BUG_ON(!nfrags);
4931 				} else {
4932 					BUG_ON(!list_skb->head_frag);
4933 
4934 					/* to make room for head_frag. */
4935 					i--;
4936 					frag--;
4937 				}
4938 
4939 				list_skb = list_skb->next;
4940 			}
4941 
4942 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4943 				     MAX_SKB_FRAGS)) {
4944 				net_warn_ratelimited(
4945 					"skb_segment: too many frags: %u %u\n",
4946 					pos, mss);
4947 				err = -EINVAL;
4948 				goto err;
4949 			}
4950 
4951 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4952 			__skb_frag_ref(nskb_frag);
4953 			size = skb_frag_size(nskb_frag);
4954 
4955 			if (pos < offset) {
4956 				skb_frag_off_add(nskb_frag, offset - pos);
4957 				skb_frag_size_sub(nskb_frag, offset - pos);
4958 			}
4959 
4960 			skb_shinfo(nskb)->nr_frags++;
4961 
4962 			if (pos + size <= offset + len) {
4963 				i++;
4964 				frag++;
4965 				pos += size;
4966 			} else {
4967 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4968 				goto skip_fraglist;
4969 			}
4970 
4971 			nskb_frag++;
4972 		}
4973 
4974 skip_fraglist:
4975 		nskb->data_len = len - hsize;
4976 		nskb->len += nskb->data_len;
4977 		nskb->truesize += nskb->data_len;
4978 
4979 perform_csum_check:
4980 		if (!csum) {
4981 			if (skb_has_shared_frag(nskb) &&
4982 			    __skb_linearize(nskb))
4983 				goto err;
4984 
4985 			if (!nskb->remcsum_offload)
4986 				nskb->ip_summed = CHECKSUM_NONE;
4987 			SKB_GSO_CB(nskb)->csum =
4988 				skb_checksum(nskb, doffset,
4989 					     nskb->len - doffset, 0);
4990 			SKB_GSO_CB(nskb)->csum_start =
4991 				skb_headroom(nskb) + doffset;
4992 		}
4993 	} while ((offset += len) < head_skb->len);
4994 
4995 	/* Some callers want to get the end of the list.
4996 	 * Put it in segs->prev to avoid walking the list.
4997 	 * (see validate_xmit_skb_list() for example)
4998 	 */
4999 	segs->prev = tail;
5000 
5001 	if (partial_segs) {
5002 		struct sk_buff *iter;
5003 		int type = skb_shinfo(head_skb)->gso_type;
5004 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
5005 
5006 		/* Update type to add partial and then remove dodgy if set */
5007 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
5008 		type &= ~SKB_GSO_DODGY;
5009 
5010 		/* Update GSO info and prepare to start updating headers on
5011 		 * our way back down the stack of protocols.
5012 		 */
5013 		for (iter = segs; iter; iter = iter->next) {
5014 			skb_shinfo(iter)->gso_size = gso_size;
5015 			skb_shinfo(iter)->gso_segs = partial_segs;
5016 			skb_shinfo(iter)->gso_type = type;
5017 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
5018 		}
5019 
5020 		if (tail->len - doffset <= gso_size)
5021 			skb_shinfo(tail)->gso_size = 0;
5022 		else if (tail != segs)
5023 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
5024 	}
5025 
5026 	/* Following permits correct backpressure, for protocols
5027 	 * using skb_set_owner_w().
5028 	 * Idea is to tranfert ownership from head_skb to last segment.
5029 	 */
5030 	if (head_skb->destructor == sock_wfree) {
5031 		swap(tail->truesize, head_skb->truesize);
5032 		swap(tail->destructor, head_skb->destructor);
5033 		swap(tail->sk, head_skb->sk);
5034 	}
5035 	return segs;
5036 
5037 err:
5038 	kfree_skb_list(segs);
5039 	return ERR_PTR(err);
5040 }
5041 EXPORT_SYMBOL_GPL(skb_segment);
5042 
5043 #ifdef CONFIG_SKB_EXTENSIONS
5044 #define SKB_EXT_ALIGN_VALUE	8
5045 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
5046 
5047 static const u8 skb_ext_type_len[] = {
5048 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
5049 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
5050 #endif
5051 #ifdef CONFIG_XFRM
5052 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
5053 #endif
5054 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5055 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
5056 #endif
5057 #if IS_ENABLED(CONFIG_MPTCP)
5058 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
5059 #endif
5060 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
5061 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
5062 #endif
5063 };
5064 
skb_ext_total_length(void)5065 static __always_inline unsigned int skb_ext_total_length(void)
5066 {
5067 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
5068 	int i;
5069 
5070 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
5071 		l += skb_ext_type_len[i];
5072 
5073 	return l;
5074 }
5075 
skb_extensions_init(void)5076 static void skb_extensions_init(void)
5077 {
5078 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
5079 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
5080 	BUILD_BUG_ON(skb_ext_total_length() > 255);
5081 #endif
5082 
5083 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
5084 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
5085 					     0,
5086 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5087 					     NULL);
5088 }
5089 #else
skb_extensions_init(void)5090 static void skb_extensions_init(void) {}
5091 #endif
5092 
5093 /* The SKB kmem_cache slab is critical for network performance.  Never
5094  * merge/alias the slab with similar sized objects.  This avoids fragmentation
5095  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5096  */
5097 #ifndef CONFIG_SLUB_TINY
5098 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
5099 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5100 #define FLAG_SKB_NO_MERGE	0
5101 #endif
5102 
skb_init(void)5103 void __init skb_init(void)
5104 {
5105 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5106 					      sizeof(struct sk_buff),
5107 					      0,
5108 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5109 						FLAG_SKB_NO_MERGE,
5110 					      offsetof(struct sk_buff, cb),
5111 					      sizeof_field(struct sk_buff, cb),
5112 					      NULL);
5113 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5114 						sizeof(struct sk_buff_fclones),
5115 						0,
5116 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5117 						NULL);
5118 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5119 	 * struct skb_shared_info is located at the end of skb->head,
5120 	 * and should not be copied to/from user.
5121 	 */
5122 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5123 						SKB_SMALL_HEAD_CACHE_SIZE,
5124 						0,
5125 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5126 						0,
5127 						SKB_SMALL_HEAD_HEADROOM,
5128 						NULL);
5129 	skb_extensions_init();
5130 }
5131 
5132 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)5133 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5134 	       unsigned int recursion_level)
5135 {
5136 	int start = skb_headlen(skb);
5137 	int i, copy = start - offset;
5138 	struct sk_buff *frag_iter;
5139 	int elt = 0;
5140 
5141 	if (unlikely(recursion_level >= 24))
5142 		return -EMSGSIZE;
5143 
5144 	if (copy > 0) {
5145 		if (copy > len)
5146 			copy = len;
5147 		sg_set_buf(sg, skb->data + offset, copy);
5148 		elt++;
5149 		if ((len -= copy) == 0)
5150 			return elt;
5151 		offset += copy;
5152 	}
5153 
5154 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5155 		int end;
5156 
5157 		WARN_ON(start > offset + len);
5158 
5159 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5160 		if ((copy = end - offset) > 0) {
5161 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5162 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5163 				return -EMSGSIZE;
5164 
5165 			if (copy > len)
5166 				copy = len;
5167 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5168 				    skb_frag_off(frag) + offset - start);
5169 			elt++;
5170 			if (!(len -= copy))
5171 				return elt;
5172 			offset += copy;
5173 		}
5174 		start = end;
5175 	}
5176 
5177 	skb_walk_frags(skb, frag_iter) {
5178 		int end, ret;
5179 
5180 		WARN_ON(start > offset + len);
5181 
5182 		end = start + frag_iter->len;
5183 		if ((copy = end - offset) > 0) {
5184 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5185 				return -EMSGSIZE;
5186 
5187 			if (copy > len)
5188 				copy = len;
5189 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5190 					      copy, recursion_level + 1);
5191 			if (unlikely(ret < 0))
5192 				return ret;
5193 			elt += ret;
5194 			if ((len -= copy) == 0)
5195 				return elt;
5196 			offset += copy;
5197 		}
5198 		start = end;
5199 	}
5200 	BUG_ON(len);
5201 	return elt;
5202 }
5203 
5204 /**
5205  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5206  *	@skb: Socket buffer containing the buffers to be mapped
5207  *	@sg: The scatter-gather list to map into
5208  *	@offset: The offset into the buffer's contents to start mapping
5209  *	@len: Length of buffer space to be mapped
5210  *
5211  *	Fill the specified scatter-gather list with mappings/pointers into a
5212  *	region of the buffer space attached to a socket buffer. Returns either
5213  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5214  *	could not fit.
5215  */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)5216 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5217 {
5218 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5219 
5220 	if (nsg <= 0)
5221 		return nsg;
5222 
5223 	sg_mark_end(&sg[nsg - 1]);
5224 
5225 	return nsg;
5226 }
5227 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5228 
5229 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5230  * sglist without mark the sg which contain last skb data as the end.
5231  * So the caller can mannipulate sg list as will when padding new data after
5232  * the first call without calling sg_unmark_end to expend sg list.
5233  *
5234  * Scenario to use skb_to_sgvec_nomark:
5235  * 1. sg_init_table
5236  * 2. skb_to_sgvec_nomark(payload1)
5237  * 3. skb_to_sgvec_nomark(payload2)
5238  *
5239  * This is equivalent to:
5240  * 1. sg_init_table
5241  * 2. skb_to_sgvec(payload1)
5242  * 3. sg_unmark_end
5243  * 4. skb_to_sgvec(payload2)
5244  *
5245  * When mapping multiple payload conditionally, skb_to_sgvec_nomark
5246  * is more preferable.
5247  */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)5248 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5249 			int offset, int len)
5250 {
5251 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5252 }
5253 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5254 
5255 
5256 
5257 /**
5258  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5259  *	@skb: The socket buffer to check.
5260  *	@tailbits: Amount of trailing space to be added
5261  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5262  *
5263  *	Make sure that the data buffers attached to a socket buffer are
5264  *	writable. If they are not, private copies are made of the data buffers
5265  *	and the socket buffer is set to use these instead.
5266  *
5267  *	If @tailbits is given, make sure that there is space to write @tailbits
5268  *	bytes of data beyond current end of socket buffer.  @trailer will be
5269  *	set to point to the skb in which this space begins.
5270  *
5271  *	The number of scatterlist elements required to completely map the
5272  *	COW'd and extended socket buffer will be returned.
5273  */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)5274 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5275 {
5276 	int copyflag;
5277 	int elt;
5278 	struct sk_buff *skb1, **skb_p;
5279 
5280 	/* If skb is cloned or its head is paged, reallocate
5281 	 * head pulling out all the pages (pages are considered not writable
5282 	 * at the moment even if they are anonymous).
5283 	 */
5284 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5285 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5286 		return -ENOMEM;
5287 
5288 	/* Easy case. Most of packets will go this way. */
5289 	if (!skb_has_frag_list(skb)) {
5290 		/* A little of trouble, not enough of space for trailer.
5291 		 * This should not happen, when stack is tuned to generate
5292 		 * good frames. OK, on miss we reallocate and reserve even more
5293 		 * space, 128 bytes is fair. */
5294 
5295 		if (skb_tailroom(skb) < tailbits &&
5296 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5297 			return -ENOMEM;
5298 
5299 		/* Voila! */
5300 		*trailer = skb;
5301 		return 1;
5302 	}
5303 
5304 	/* Misery. We are in troubles, going to mincer fragments... */
5305 
5306 	elt = 1;
5307 	skb_p = &skb_shinfo(skb)->frag_list;
5308 	copyflag = 0;
5309 
5310 	while ((skb1 = *skb_p) != NULL) {
5311 		int ntail = 0;
5312 
5313 		/* The fragment is partially pulled by someone,
5314 		 * this can happen on input. Copy it and everything
5315 		 * after it. */
5316 
5317 		if (skb_shared(skb1))
5318 			copyflag = 1;
5319 
5320 		/* If the skb is the last, worry about trailer. */
5321 
5322 		if (skb1->next == NULL && tailbits) {
5323 			if (skb_shinfo(skb1)->nr_frags ||
5324 			    skb_has_frag_list(skb1) ||
5325 			    skb_tailroom(skb1) < tailbits)
5326 				ntail = tailbits + 128;
5327 		}
5328 
5329 		if (copyflag ||
5330 		    skb_cloned(skb1) ||
5331 		    ntail ||
5332 		    skb_shinfo(skb1)->nr_frags ||
5333 		    skb_has_frag_list(skb1)) {
5334 			struct sk_buff *skb2;
5335 
5336 			/* Fuck, we are miserable poor guys... */
5337 			if (ntail == 0)
5338 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5339 			else
5340 				skb2 = skb_copy_expand(skb1,
5341 						       skb_headroom(skb1),
5342 						       ntail,
5343 						       GFP_ATOMIC);
5344 			if (unlikely(skb2 == NULL))
5345 				return -ENOMEM;
5346 
5347 			if (skb1->sk)
5348 				skb_set_owner_w(skb2, skb1->sk);
5349 
5350 			/* Looking around. Are we still alive?
5351 			 * OK, link new skb, drop old one */
5352 
5353 			skb2->next = skb1->next;
5354 			*skb_p = skb2;
5355 			kfree_skb(skb1);
5356 			skb1 = skb2;
5357 		}
5358 		elt++;
5359 		*trailer = skb1;
5360 		skb_p = &skb1->next;
5361 	}
5362 
5363 	return elt;
5364 }
5365 EXPORT_SYMBOL_GPL(skb_cow_data);
5366 
sock_rmem_free(struct sk_buff * skb)5367 static void sock_rmem_free(struct sk_buff *skb)
5368 {
5369 	struct sock *sk = skb->sk;
5370 
5371 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5372 }
5373 
skb_set_err_queue(struct sk_buff * skb)5374 static void skb_set_err_queue(struct sk_buff *skb)
5375 {
5376 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5377 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5378 	 */
5379 	skb->pkt_type = PACKET_OUTGOING;
5380 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5381 }
5382 
5383 /*
5384  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5385  */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)5386 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5387 {
5388 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5389 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5390 		return -ENOMEM;
5391 
5392 	skb_orphan(skb);
5393 	skb->sk = sk;
5394 	skb->destructor = sock_rmem_free;
5395 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5396 	skb_set_err_queue(skb);
5397 
5398 	/* before exiting rcu section, make sure dst is refcounted */
5399 	skb_dst_force(skb);
5400 
5401 	skb_queue_tail(&sk->sk_error_queue, skb);
5402 	if (!sock_flag(sk, SOCK_DEAD))
5403 		sk_error_report(sk);
5404 	return 0;
5405 }
5406 EXPORT_SYMBOL(sock_queue_err_skb);
5407 
is_icmp_err_skb(const struct sk_buff * skb)5408 static bool is_icmp_err_skb(const struct sk_buff *skb)
5409 {
5410 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5411 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5412 }
5413 
sock_dequeue_err_skb(struct sock * sk)5414 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5415 {
5416 	struct sk_buff_head *q = &sk->sk_error_queue;
5417 	struct sk_buff *skb, *skb_next = NULL;
5418 	bool icmp_next = false;
5419 	unsigned long flags;
5420 
5421 	if (skb_queue_empty_lockless(q))
5422 		return NULL;
5423 
5424 	spin_lock_irqsave(&q->lock, flags);
5425 	skb = __skb_dequeue(q);
5426 	if (skb && (skb_next = skb_peek(q))) {
5427 		icmp_next = is_icmp_err_skb(skb_next);
5428 		if (icmp_next)
5429 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5430 	}
5431 	spin_unlock_irqrestore(&q->lock, flags);
5432 
5433 	if (is_icmp_err_skb(skb) && !icmp_next)
5434 		sk->sk_err = 0;
5435 
5436 	if (skb_next)
5437 		sk_error_report(sk);
5438 
5439 	return skb;
5440 }
5441 EXPORT_SYMBOL(sock_dequeue_err_skb);
5442 
5443 /**
5444  * skb_clone_sk - create clone of skb, and take reference to socket
5445  * @skb: the skb to clone
5446  *
5447  * This function creates a clone of a buffer that holds a reference on
5448  * sk_refcnt.  Buffers created via this function are meant to be
5449  * returned using sock_queue_err_skb, or free via kfree_skb.
5450  *
5451  * When passing buffers allocated with this function to sock_queue_err_skb
5452  * it is necessary to wrap the call with sock_hold/sock_put in order to
5453  * prevent the socket from being released prior to being enqueued on
5454  * the sk_error_queue.
5455  */
skb_clone_sk(struct sk_buff * skb)5456 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5457 {
5458 	struct sock *sk = skb->sk;
5459 	struct sk_buff *clone;
5460 
5461 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5462 		return NULL;
5463 
5464 	clone = skb_clone(skb, GFP_ATOMIC);
5465 	if (!clone) {
5466 		sock_put(sk);
5467 		return NULL;
5468 	}
5469 
5470 	clone->sk = sk;
5471 	clone->destructor = sock_efree;
5472 
5473 	return clone;
5474 }
5475 EXPORT_SYMBOL(skb_clone_sk);
5476 
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)5477 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5478 					struct sock *sk,
5479 					int tstype,
5480 					bool opt_stats)
5481 {
5482 	struct sock_exterr_skb *serr;
5483 	int err;
5484 
5485 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5486 
5487 	serr = SKB_EXT_ERR(skb);
5488 	memset(serr, 0, sizeof(*serr));
5489 	serr->ee.ee_errno = ENOMSG;
5490 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5491 	serr->ee.ee_info = tstype;
5492 	serr->opt_stats = opt_stats;
5493 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5494 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5495 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5496 		if (sk_is_tcp(sk))
5497 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5498 	}
5499 
5500 	err = sock_queue_err_skb(sk, skb);
5501 
5502 	if (err)
5503 		kfree_skb(skb);
5504 }
5505 
skb_may_tx_timestamp(struct sock * sk,bool tsonly)5506 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5507 {
5508 	bool ret;
5509 
5510 	if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data)))
5511 		return true;
5512 
5513 	read_lock_bh(&sk->sk_callback_lock);
5514 	ret = sk->sk_socket && sk->sk_socket->file &&
5515 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5516 	read_unlock_bh(&sk->sk_callback_lock);
5517 	return ret;
5518 }
5519 
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)5520 void skb_complete_tx_timestamp(struct sk_buff *skb,
5521 			       struct skb_shared_hwtstamps *hwtstamps)
5522 {
5523 	struct sock *sk = skb->sk;
5524 
5525 	if (!skb_may_tx_timestamp(sk, false))
5526 		goto err;
5527 
5528 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5529 	 * but only if the socket refcount is not zero.
5530 	 */
5531 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5532 		*skb_hwtstamps(skb) = *hwtstamps;
5533 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5534 		sock_put(sk);
5535 		return;
5536 	}
5537 
5538 err:
5539 	kfree_skb(skb);
5540 }
5541 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5542 
skb_tstamp_tx_report_so_timestamping(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps,int tstype)5543 static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb,
5544 						 struct skb_shared_hwtstamps *hwtstamps,
5545 						 int tstype)
5546 {
5547 	switch (tstype) {
5548 	case SCM_TSTAMP_SCHED:
5549 		return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP;
5550 	case SCM_TSTAMP_SND:
5551 		return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF :
5552 						    SKBTX_SW_TSTAMP);
5553 	case SCM_TSTAMP_ACK:
5554 		return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK;
5555 	case SCM_TSTAMP_COMPLETION:
5556 		return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP;
5557 	}
5558 
5559 	return false;
5560 }
5561 
skb_tstamp_tx_report_bpf_timestamping(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)5562 static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb,
5563 						  struct skb_shared_hwtstamps *hwtstamps,
5564 						  struct sock *sk,
5565 						  int tstype)
5566 {
5567 	int op;
5568 
5569 	switch (tstype) {
5570 	case SCM_TSTAMP_SCHED:
5571 		op = BPF_SOCK_OPS_TSTAMP_SCHED_CB;
5572 		break;
5573 	case SCM_TSTAMP_SND:
5574 		if (hwtstamps) {
5575 			op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB;
5576 			*skb_hwtstamps(skb) = *hwtstamps;
5577 		} else {
5578 			op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB;
5579 		}
5580 		break;
5581 	case SCM_TSTAMP_ACK:
5582 		op = BPF_SOCK_OPS_TSTAMP_ACK_CB;
5583 		break;
5584 	default:
5585 		return;
5586 	}
5587 
5588 	bpf_skops_tx_timestamping(sk, skb, op);
5589 }
5590 
__skb_tstamp_tx(struct sk_buff * orig_skb,const struct sk_buff * ack_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)5591 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5592 		     const struct sk_buff *ack_skb,
5593 		     struct skb_shared_hwtstamps *hwtstamps,
5594 		     struct sock *sk, int tstype)
5595 {
5596 	struct sk_buff *skb;
5597 	bool tsonly, opt_stats = false;
5598 	u32 tsflags;
5599 
5600 	if (!sk)
5601 		return;
5602 
5603 	if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF)
5604 		skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps,
5605 						      sk, tstype);
5606 
5607 	if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype))
5608 		return;
5609 
5610 	tsflags = READ_ONCE(sk->sk_tsflags);
5611 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5612 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5613 		return;
5614 
5615 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5616 	if (!skb_may_tx_timestamp(sk, tsonly))
5617 		return;
5618 
5619 	if (tsonly) {
5620 #ifdef CONFIG_INET
5621 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5622 		    sk_is_tcp(sk)) {
5623 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5624 							     ack_skb);
5625 			opt_stats = true;
5626 		} else
5627 #endif
5628 			skb = alloc_skb(0, GFP_ATOMIC);
5629 	} else {
5630 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5631 
5632 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5633 			kfree_skb(skb);
5634 			return;
5635 		}
5636 	}
5637 	if (!skb)
5638 		return;
5639 
5640 	if (tsonly) {
5641 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5642 					     SKBTX_ANY_TSTAMP;
5643 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5644 	}
5645 
5646 	if (hwtstamps)
5647 		*skb_hwtstamps(skb) = *hwtstamps;
5648 	else
5649 		__net_timestamp(skb);
5650 
5651 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5652 }
5653 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5654 
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)5655 void skb_tstamp_tx(struct sk_buff *orig_skb,
5656 		   struct skb_shared_hwtstamps *hwtstamps)
5657 {
5658 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5659 			       SCM_TSTAMP_SND);
5660 }
5661 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5662 
5663 #ifdef CONFIG_WIRELESS
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)5664 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5665 {
5666 	struct sock *sk = skb->sk;
5667 	struct sock_exterr_skb *serr;
5668 	int err = 1;
5669 
5670 	skb->wifi_acked_valid = 1;
5671 	skb->wifi_acked = acked;
5672 
5673 	serr = SKB_EXT_ERR(skb);
5674 	memset(serr, 0, sizeof(*serr));
5675 	serr->ee.ee_errno = ENOMSG;
5676 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5677 
5678 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5679 	 * but only if the socket refcount is not zero.
5680 	 */
5681 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5682 		err = sock_queue_err_skb(sk, skb);
5683 		sock_put(sk);
5684 	}
5685 	if (err)
5686 		kfree_skb(skb);
5687 }
5688 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5689 #endif /* CONFIG_WIRELESS */
5690 
5691 /**
5692  * skb_partial_csum_set - set up and verify partial csum values for packet
5693  * @skb: the skb to set
5694  * @start: the number of bytes after skb->data to start checksumming.
5695  * @off: the offset from start to place the checksum.
5696  *
5697  * For untrusted partially-checksummed packets, we need to make sure the values
5698  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5699  *
5700  * This function checks and sets those values and skb->ip_summed: if this
5701  * returns false you should drop the packet.
5702  */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)5703 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5704 {
5705 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5706 	u32 csum_start = skb_headroom(skb) + (u32)start;
5707 
5708 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5709 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5710 				     start, off, skb_headroom(skb), skb_headlen(skb));
5711 		return false;
5712 	}
5713 	skb->ip_summed = CHECKSUM_PARTIAL;
5714 	skb->csum_start = csum_start;
5715 	skb->csum_offset = off;
5716 	skb->transport_header = csum_start;
5717 	return true;
5718 }
5719 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5720 
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)5721 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5722 			       unsigned int max)
5723 {
5724 	if (skb_headlen(skb) >= len)
5725 		return 0;
5726 
5727 	/* If we need to pullup then pullup to the max, so we
5728 	 * won't need to do it again.
5729 	 */
5730 	if (max > skb->len)
5731 		max = skb->len;
5732 
5733 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5734 		return -ENOMEM;
5735 
5736 	if (skb_headlen(skb) < len)
5737 		return -EPROTO;
5738 
5739 	return 0;
5740 }
5741 
5742 #define MAX_TCP_HDR_LEN (15 * 4)
5743 
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)5744 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5745 				      typeof(IPPROTO_IP) proto,
5746 				      unsigned int off)
5747 {
5748 	int err;
5749 
5750 	switch (proto) {
5751 	case IPPROTO_TCP:
5752 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5753 					  off + MAX_TCP_HDR_LEN);
5754 		if (!err && !skb_partial_csum_set(skb, off,
5755 						  offsetof(struct tcphdr,
5756 							   check)))
5757 			err = -EPROTO;
5758 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5759 
5760 	case IPPROTO_UDP:
5761 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5762 					  off + sizeof(struct udphdr));
5763 		if (!err && !skb_partial_csum_set(skb, off,
5764 						  offsetof(struct udphdr,
5765 							   check)))
5766 			err = -EPROTO;
5767 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5768 	}
5769 
5770 	return ERR_PTR(-EPROTO);
5771 }
5772 
5773 /* This value should be large enough to cover a tagged ethernet header plus
5774  * maximally sized IP and TCP or UDP headers.
5775  */
5776 #define MAX_IP_HDR_LEN 128
5777 
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)5778 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5779 {
5780 	unsigned int off;
5781 	bool fragment;
5782 	__sum16 *csum;
5783 	int err;
5784 
5785 	fragment = false;
5786 
5787 	err = skb_maybe_pull_tail(skb,
5788 				  sizeof(struct iphdr),
5789 				  MAX_IP_HDR_LEN);
5790 	if (err < 0)
5791 		goto out;
5792 
5793 	if (ip_is_fragment(ip_hdr(skb)))
5794 		fragment = true;
5795 
5796 	off = ip_hdrlen(skb);
5797 
5798 	err = -EPROTO;
5799 
5800 	if (fragment)
5801 		goto out;
5802 
5803 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5804 	if (IS_ERR(csum))
5805 		return PTR_ERR(csum);
5806 
5807 	if (recalculate)
5808 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5809 					   ip_hdr(skb)->daddr,
5810 					   skb->len - off,
5811 					   ip_hdr(skb)->protocol, 0);
5812 	err = 0;
5813 
5814 out:
5815 	return err;
5816 }
5817 
5818 /* This value should be large enough to cover a tagged ethernet header plus
5819  * an IPv6 header, all options, and a maximal TCP or UDP header.
5820  */
5821 #define MAX_IPV6_HDR_LEN 256
5822 
5823 #define OPT_HDR(type, skb, off) \
5824 	(type *)(skb_network_header(skb) + (off))
5825 
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)5826 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5827 {
5828 	int err;
5829 	u8 nexthdr;
5830 	unsigned int off;
5831 	unsigned int len;
5832 	bool fragment;
5833 	bool done;
5834 	__sum16 *csum;
5835 
5836 	fragment = false;
5837 	done = false;
5838 
5839 	off = sizeof(struct ipv6hdr);
5840 
5841 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5842 	if (err < 0)
5843 		goto out;
5844 
5845 	nexthdr = ipv6_hdr(skb)->nexthdr;
5846 
5847 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5848 	while (off <= len && !done) {
5849 		switch (nexthdr) {
5850 		case IPPROTO_DSTOPTS:
5851 		case IPPROTO_HOPOPTS:
5852 		case IPPROTO_ROUTING: {
5853 			struct ipv6_opt_hdr *hp;
5854 
5855 			err = skb_maybe_pull_tail(skb,
5856 						  off +
5857 						  sizeof(struct ipv6_opt_hdr),
5858 						  MAX_IPV6_HDR_LEN);
5859 			if (err < 0)
5860 				goto out;
5861 
5862 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5863 			nexthdr = hp->nexthdr;
5864 			off += ipv6_optlen(hp);
5865 			break;
5866 		}
5867 		case IPPROTO_AH: {
5868 			struct ip_auth_hdr *hp;
5869 
5870 			err = skb_maybe_pull_tail(skb,
5871 						  off +
5872 						  sizeof(struct ip_auth_hdr),
5873 						  MAX_IPV6_HDR_LEN);
5874 			if (err < 0)
5875 				goto out;
5876 
5877 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5878 			nexthdr = hp->nexthdr;
5879 			off += ipv6_authlen(hp);
5880 			break;
5881 		}
5882 		case IPPROTO_FRAGMENT: {
5883 			struct frag_hdr *hp;
5884 
5885 			err = skb_maybe_pull_tail(skb,
5886 						  off +
5887 						  sizeof(struct frag_hdr),
5888 						  MAX_IPV6_HDR_LEN);
5889 			if (err < 0)
5890 				goto out;
5891 
5892 			hp = OPT_HDR(struct frag_hdr, skb, off);
5893 
5894 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5895 				fragment = true;
5896 
5897 			nexthdr = hp->nexthdr;
5898 			off += sizeof(struct frag_hdr);
5899 			break;
5900 		}
5901 		default:
5902 			done = true;
5903 			break;
5904 		}
5905 	}
5906 
5907 	err = -EPROTO;
5908 
5909 	if (!done || fragment)
5910 		goto out;
5911 
5912 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5913 	if (IS_ERR(csum))
5914 		return PTR_ERR(csum);
5915 
5916 	if (recalculate)
5917 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5918 					 &ipv6_hdr(skb)->daddr,
5919 					 skb->len - off, nexthdr, 0);
5920 	err = 0;
5921 
5922 out:
5923 	return err;
5924 }
5925 
5926 /**
5927  * skb_checksum_setup - set up partial checksum offset
5928  * @skb: the skb to set up
5929  * @recalculate: if true the pseudo-header checksum will be recalculated
5930  */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5931 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5932 {
5933 	int err;
5934 
5935 	switch (skb->protocol) {
5936 	case htons(ETH_P_IP):
5937 		err = skb_checksum_setup_ipv4(skb, recalculate);
5938 		break;
5939 
5940 	case htons(ETH_P_IPV6):
5941 		err = skb_checksum_setup_ipv6(skb, recalculate);
5942 		break;
5943 
5944 	default:
5945 		err = -EPROTO;
5946 		break;
5947 	}
5948 
5949 	return err;
5950 }
5951 EXPORT_SYMBOL(skb_checksum_setup);
5952 
5953 /**
5954  * skb_checksum_maybe_trim - maybe trims the given skb
5955  * @skb: the skb to check
5956  * @transport_len: the data length beyond the network header
5957  *
5958  * Checks whether the given skb has data beyond the given transport length.
5959  * If so, returns a cloned skb trimmed to this transport length.
5960  * Otherwise returns the provided skb. Returns NULL in error cases
5961  * (e.g. transport_len exceeds skb length or out-of-memory).
5962  *
5963  * Caller needs to set the skb transport header and free any returned skb if it
5964  * differs from the provided skb.
5965  */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5966 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5967 					       unsigned int transport_len)
5968 {
5969 	struct sk_buff *skb_chk;
5970 	unsigned int len = skb_transport_offset(skb) + transport_len;
5971 	int ret;
5972 
5973 	if (skb->len < len)
5974 		return NULL;
5975 	else if (skb->len == len)
5976 		return skb;
5977 
5978 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5979 	if (!skb_chk)
5980 		return NULL;
5981 
5982 	ret = pskb_trim_rcsum(skb_chk, len);
5983 	if (ret) {
5984 		kfree_skb(skb_chk);
5985 		return NULL;
5986 	}
5987 
5988 	return skb_chk;
5989 }
5990 
5991 /**
5992  * skb_checksum_trimmed - validate checksum of an skb
5993  * @skb: the skb to check
5994  * @transport_len: the data length beyond the network header
5995  * @skb_chkf: checksum function to use
5996  *
5997  * Applies the given checksum function skb_chkf to the provided skb.
5998  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5999  *
6000  * If the skb has data beyond the given transport length, then a
6001  * trimmed & cloned skb is checked and returned.
6002  *
6003  * Caller needs to set the skb transport header and free any returned skb if it
6004  * differs from the provided skb.
6005  */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))6006 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
6007 				     unsigned int transport_len,
6008 				     __sum16(*skb_chkf)(struct sk_buff *skb))
6009 {
6010 	struct sk_buff *skb_chk;
6011 	unsigned int offset = skb_transport_offset(skb);
6012 	__sum16 ret;
6013 
6014 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
6015 	if (!skb_chk)
6016 		goto err;
6017 
6018 	if (!pskb_may_pull(skb_chk, offset))
6019 		goto err;
6020 
6021 	skb_pull_rcsum(skb_chk, offset);
6022 	ret = skb_chkf(skb_chk);
6023 	skb_push_rcsum(skb_chk, offset);
6024 
6025 	if (ret)
6026 		goto err;
6027 
6028 	return skb_chk;
6029 
6030 err:
6031 	if (skb_chk && skb_chk != skb)
6032 		kfree_skb(skb_chk);
6033 
6034 	return NULL;
6035 
6036 }
6037 EXPORT_SYMBOL(skb_checksum_trimmed);
6038 
__skb_warn_lro_forwarding(const struct sk_buff * skb)6039 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
6040 {
6041 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
6042 			     skb->dev->name);
6043 }
6044 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
6045 
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)6046 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
6047 {
6048 	if (head_stolen) {
6049 		skb_release_head_state(skb);
6050 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
6051 	} else {
6052 		__kfree_skb(skb);
6053 	}
6054 }
6055 EXPORT_SYMBOL(kfree_skb_partial);
6056 
6057 /**
6058  * skb_try_coalesce - try to merge skb to prior one
6059  * @to: prior buffer
6060  * @from: buffer to add
6061  * @fragstolen: pointer to boolean
6062  * @delta_truesize: how much more was allocated than was requested
6063  */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)6064 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
6065 		      bool *fragstolen, int *delta_truesize)
6066 {
6067 	struct skb_shared_info *to_shinfo, *from_shinfo;
6068 	int i, delta, len = from->len;
6069 
6070 	*fragstolen = false;
6071 
6072 	if (skb_cloned(to))
6073 		return false;
6074 
6075 	/* In general, avoid mixing page_pool and non-page_pool allocated
6076 	 * pages within the same SKB. In theory we could take full
6077 	 * references if @from is cloned and !@to->pp_recycle but its
6078 	 * tricky (due to potential race with the clone disappearing) and
6079 	 * rare, so not worth dealing with.
6080 	 */
6081 	if (to->pp_recycle != from->pp_recycle)
6082 		return false;
6083 
6084 	if (skb_frags_readable(from) != skb_frags_readable(to))
6085 		return false;
6086 
6087 	if (len <= skb_tailroom(to) && skb_frags_readable(from)) {
6088 		if (len)
6089 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
6090 		*delta_truesize = 0;
6091 		return true;
6092 	}
6093 
6094 	to_shinfo = skb_shinfo(to);
6095 	from_shinfo = skb_shinfo(from);
6096 	if (to_shinfo->frag_list || from_shinfo->frag_list)
6097 		return false;
6098 	if (skb_zcopy(to) || skb_zcopy(from))
6099 		return false;
6100 
6101 	if (skb_headlen(from) != 0) {
6102 		struct page *page;
6103 		unsigned int offset;
6104 
6105 		if (to_shinfo->nr_frags +
6106 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
6107 			return false;
6108 
6109 		if (skb_head_is_locked(from))
6110 			return false;
6111 
6112 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
6113 
6114 		page = virt_to_head_page(from->head);
6115 		offset = from->data - (unsigned char *)page_address(page);
6116 
6117 		skb_fill_page_desc(to, to_shinfo->nr_frags,
6118 				   page, offset, skb_headlen(from));
6119 		*fragstolen = true;
6120 	} else {
6121 		if (to_shinfo->nr_frags +
6122 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
6123 			return false;
6124 
6125 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
6126 	}
6127 
6128 	WARN_ON_ONCE(delta < len);
6129 
6130 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
6131 	       from_shinfo->frags,
6132 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
6133 	to_shinfo->nr_frags += from_shinfo->nr_frags;
6134 
6135 	if (!skb_cloned(from))
6136 		from_shinfo->nr_frags = 0;
6137 
6138 	/* if the skb is not cloned this does nothing
6139 	 * since we set nr_frags to 0.
6140 	 */
6141 	if (skb_pp_frag_ref(from)) {
6142 		for (i = 0; i < from_shinfo->nr_frags; i++)
6143 			__skb_frag_ref(&from_shinfo->frags[i]);
6144 	}
6145 
6146 	to->truesize += delta;
6147 	to->len += len;
6148 	to->data_len += len;
6149 
6150 	*delta_truesize = delta;
6151 	return true;
6152 }
6153 EXPORT_SYMBOL(skb_try_coalesce);
6154 
6155 /**
6156  * skb_scrub_packet - scrub an skb
6157  *
6158  * @skb: buffer to clean
6159  * @xnet: packet is crossing netns
6160  *
6161  * skb_scrub_packet can be used after encapsulating or decapsulating a packet
6162  * into/from a tunnel. Some information have to be cleared during these
6163  * operations.
6164  * skb_scrub_packet can also be used to clean a skb before injecting it in
6165  * another namespace (@xnet == true). We have to clear all information in the
6166  * skb that could impact namespace isolation.
6167  */
skb_scrub_packet(struct sk_buff * skb,bool xnet)6168 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6169 {
6170 	skb->pkt_type = PACKET_HOST;
6171 	skb->skb_iif = 0;
6172 	skb->ignore_df = 0;
6173 	skb_dst_drop(skb);
6174 	skb_ext_reset(skb);
6175 	nf_reset_ct(skb);
6176 	nf_reset_trace(skb);
6177 
6178 #ifdef CONFIG_NET_SWITCHDEV
6179 	skb->offload_fwd_mark = 0;
6180 	skb->offload_l3_fwd_mark = 0;
6181 #endif
6182 	ipvs_reset(skb);
6183 
6184 	if (!xnet)
6185 		return;
6186 
6187 	skb->mark = 0;
6188 	skb_clear_tstamp(skb);
6189 }
6190 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6191 
skb_reorder_vlan_header(struct sk_buff * skb)6192 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6193 {
6194 	int mac_len, meta_len;
6195 	void *meta;
6196 
6197 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6198 		kfree_skb(skb);
6199 		return NULL;
6200 	}
6201 
6202 	mac_len = skb->data - skb_mac_header(skb);
6203 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6204 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6205 			mac_len - VLAN_HLEN - ETH_TLEN);
6206 	}
6207 
6208 	meta_len = skb_metadata_len(skb);
6209 	if (meta_len) {
6210 		meta = skb_metadata_end(skb) - meta_len;
6211 		memmove(meta + VLAN_HLEN, meta, meta_len);
6212 	}
6213 
6214 	skb->mac_header += VLAN_HLEN;
6215 	return skb;
6216 }
6217 
skb_vlan_untag(struct sk_buff * skb)6218 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6219 {
6220 	struct vlan_hdr *vhdr;
6221 	u16 vlan_tci;
6222 
6223 	if (unlikely(skb_vlan_tag_present(skb))) {
6224 		/* vlan_tci is already set-up so leave this for another time */
6225 		return skb;
6226 	}
6227 
6228 	skb = skb_share_check(skb, GFP_ATOMIC);
6229 	if (unlikely(!skb))
6230 		goto err_free;
6231 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6232 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6233 		goto err_free;
6234 
6235 	vhdr = (struct vlan_hdr *)skb->data;
6236 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6237 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6238 
6239 	skb_pull_rcsum(skb, VLAN_HLEN);
6240 	vlan_set_encap_proto(skb, vhdr);
6241 
6242 	skb = skb_reorder_vlan_header(skb);
6243 	if (unlikely(!skb))
6244 		goto err_free;
6245 
6246 	skb_reset_network_header(skb);
6247 	if (!skb_transport_header_was_set(skb))
6248 		skb_reset_transport_header(skb);
6249 	skb_reset_mac_len(skb);
6250 
6251 	return skb;
6252 
6253 err_free:
6254 	kfree_skb(skb);
6255 	return NULL;
6256 }
6257 EXPORT_SYMBOL(skb_vlan_untag);
6258 
skb_ensure_writable(struct sk_buff * skb,unsigned int write_len)6259 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6260 {
6261 	if (!pskb_may_pull(skb, write_len))
6262 		return -ENOMEM;
6263 
6264 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6265 		return 0;
6266 
6267 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6268 }
6269 EXPORT_SYMBOL(skb_ensure_writable);
6270 
skb_ensure_writable_head_tail(struct sk_buff * skb,struct net_device * dev)6271 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6272 {
6273 	int needed_headroom = dev->needed_headroom;
6274 	int needed_tailroom = dev->needed_tailroom;
6275 
6276 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6277 	 * that the tail tag does not fail at its role of being at the end of
6278 	 * the packet, once the conduit interface pads the frame. Account for
6279 	 * that pad length here, and pad later.
6280 	 */
6281 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6282 		needed_tailroom += ETH_ZLEN - skb->len;
6283 	/* skb_headroom() returns unsigned int... */
6284 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6285 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6286 
6287 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6288 		/* No reallocation needed, yay! */
6289 		return 0;
6290 
6291 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6292 				GFP_ATOMIC);
6293 }
6294 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6295 
6296 /* remove VLAN header from packet and update csum accordingly.
6297  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6298  */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)6299 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6300 {
6301 	int offset = skb->data - skb_mac_header(skb);
6302 	int err;
6303 
6304 	if (WARN_ONCE(offset,
6305 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6306 		      offset)) {
6307 		return -EINVAL;
6308 	}
6309 
6310 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6311 	if (unlikely(err))
6312 		return err;
6313 
6314 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6315 
6316 	vlan_remove_tag(skb, vlan_tci);
6317 
6318 	skb->mac_header += VLAN_HLEN;
6319 
6320 	if (skb_network_offset(skb) < ETH_HLEN)
6321 		skb_set_network_header(skb, ETH_HLEN);
6322 
6323 	skb_reset_mac_len(skb);
6324 
6325 	return err;
6326 }
6327 EXPORT_SYMBOL(__skb_vlan_pop);
6328 
6329 /* Pop a vlan tag either from hwaccel or from payload.
6330  * Expects skb->data at mac header.
6331  */
skb_vlan_pop(struct sk_buff * skb)6332 int skb_vlan_pop(struct sk_buff *skb)
6333 {
6334 	u16 vlan_tci;
6335 	__be16 vlan_proto;
6336 	int err;
6337 
6338 	if (likely(skb_vlan_tag_present(skb))) {
6339 		__vlan_hwaccel_clear_tag(skb);
6340 	} else {
6341 		if (unlikely(!eth_type_vlan(skb->protocol)))
6342 			return 0;
6343 
6344 		err = __skb_vlan_pop(skb, &vlan_tci);
6345 		if (err)
6346 			return err;
6347 	}
6348 	/* move next vlan tag to hw accel tag */
6349 	if (likely(!eth_type_vlan(skb->protocol)))
6350 		return 0;
6351 
6352 	vlan_proto = skb->protocol;
6353 	err = __skb_vlan_pop(skb, &vlan_tci);
6354 	if (unlikely(err))
6355 		return err;
6356 
6357 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6358 	return 0;
6359 }
6360 EXPORT_SYMBOL(skb_vlan_pop);
6361 
6362 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6363  * Expects skb->data at mac header.
6364  */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)6365 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6366 {
6367 	if (skb_vlan_tag_present(skb)) {
6368 		int offset = skb->data - skb_mac_header(skb);
6369 		int err;
6370 
6371 		if (WARN_ONCE(offset,
6372 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6373 			      offset)) {
6374 			return -EINVAL;
6375 		}
6376 
6377 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6378 					skb_vlan_tag_get(skb));
6379 		if (err)
6380 			return err;
6381 
6382 		skb->protocol = skb->vlan_proto;
6383 		skb->network_header -= VLAN_HLEN;
6384 
6385 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6386 	}
6387 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6388 	return 0;
6389 }
6390 EXPORT_SYMBOL(skb_vlan_push);
6391 
6392 /**
6393  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6394  *
6395  * @skb: Socket buffer to modify
6396  *
6397  * Drop the Ethernet header of @skb.
6398  *
6399  * Expects that skb->data points to the mac header and that no VLAN tags are
6400  * present.
6401  *
6402  * Returns 0 on success, -errno otherwise.
6403  */
skb_eth_pop(struct sk_buff * skb)6404 int skb_eth_pop(struct sk_buff *skb)
6405 {
6406 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6407 	    skb_network_offset(skb) < ETH_HLEN)
6408 		return -EPROTO;
6409 
6410 	skb_pull_rcsum(skb, ETH_HLEN);
6411 	skb_reset_mac_header(skb);
6412 	skb_reset_mac_len(skb);
6413 
6414 	return 0;
6415 }
6416 EXPORT_SYMBOL(skb_eth_pop);
6417 
6418 /**
6419  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6420  *
6421  * @skb: Socket buffer to modify
6422  * @dst: Destination MAC address of the new header
6423  * @src: Source MAC address of the new header
6424  *
6425  * Prepend @skb with a new Ethernet header.
6426  *
6427  * Expects that skb->data points to the mac header, which must be empty.
6428  *
6429  * Returns 0 on success, -errno otherwise.
6430  */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)6431 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6432 		 const unsigned char *src)
6433 {
6434 	struct ethhdr *eth;
6435 	int err;
6436 
6437 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6438 		return -EPROTO;
6439 
6440 	err = skb_cow_head(skb, sizeof(*eth));
6441 	if (err < 0)
6442 		return err;
6443 
6444 	skb_push(skb, sizeof(*eth));
6445 	skb_reset_mac_header(skb);
6446 	skb_reset_mac_len(skb);
6447 
6448 	eth = eth_hdr(skb);
6449 	ether_addr_copy(eth->h_dest, dst);
6450 	ether_addr_copy(eth->h_source, src);
6451 	eth->h_proto = skb->protocol;
6452 
6453 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6454 
6455 	return 0;
6456 }
6457 EXPORT_SYMBOL(skb_eth_push);
6458 
6459 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)6460 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6461 			     __be16 ethertype)
6462 {
6463 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6464 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6465 
6466 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6467 	}
6468 
6469 	hdr->h_proto = ethertype;
6470 }
6471 
6472 /**
6473  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6474  *                   the packet
6475  *
6476  * @skb: buffer
6477  * @mpls_lse: MPLS label stack entry to push
6478  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6479  * @mac_len: length of the MAC header
6480  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6481  *            ethernet
6482  *
6483  * Expects skb->data at mac header.
6484  *
6485  * Returns 0 on success, -errno otherwise.
6486  */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)6487 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6488 		  int mac_len, bool ethernet)
6489 {
6490 	struct mpls_shim_hdr *lse;
6491 	int err;
6492 
6493 	if (unlikely(!eth_p_mpls(mpls_proto)))
6494 		return -EINVAL;
6495 
6496 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6497 	if (skb->encapsulation)
6498 		return -EINVAL;
6499 
6500 	err = skb_cow_head(skb, MPLS_HLEN);
6501 	if (unlikely(err))
6502 		return err;
6503 
6504 	if (!skb->inner_protocol) {
6505 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6506 		skb_set_inner_protocol(skb, skb->protocol);
6507 	}
6508 
6509 	skb_push(skb, MPLS_HLEN);
6510 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6511 		mac_len);
6512 	skb_reset_mac_header(skb);
6513 	skb_set_network_header(skb, mac_len);
6514 	skb_reset_mac_len(skb);
6515 
6516 	lse = mpls_hdr(skb);
6517 	lse->label_stack_entry = mpls_lse;
6518 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6519 
6520 	if (ethernet && mac_len >= ETH_HLEN)
6521 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6522 	skb->protocol = mpls_proto;
6523 
6524 	return 0;
6525 }
6526 EXPORT_SYMBOL_GPL(skb_mpls_push);
6527 
6528 /**
6529  * skb_mpls_pop() - pop the outermost MPLS header
6530  *
6531  * @skb: buffer
6532  * @next_proto: ethertype of header after popped MPLS header
6533  * @mac_len: length of the MAC header
6534  * @ethernet: flag to indicate if the packet is ethernet
6535  *
6536  * Expects skb->data at mac header.
6537  *
6538  * Returns 0 on success, -errno otherwise.
6539  */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)6540 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6541 		 bool ethernet)
6542 {
6543 	int err;
6544 
6545 	if (unlikely(!eth_p_mpls(skb->protocol)))
6546 		return 0;
6547 
6548 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6549 	if (unlikely(err))
6550 		return err;
6551 
6552 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6553 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6554 		mac_len);
6555 
6556 	__skb_pull(skb, MPLS_HLEN);
6557 	skb_reset_mac_header(skb);
6558 	skb_set_network_header(skb, mac_len);
6559 
6560 	if (ethernet && mac_len >= ETH_HLEN) {
6561 		struct ethhdr *hdr;
6562 
6563 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6564 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6565 		skb_mod_eth_type(skb, hdr, next_proto);
6566 	}
6567 	skb->protocol = next_proto;
6568 
6569 	return 0;
6570 }
6571 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6572 
6573 /**
6574  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6575  *
6576  * @skb: buffer
6577  * @mpls_lse: new MPLS label stack entry to update to
6578  *
6579  * Expects skb->data at mac header.
6580  *
6581  * Returns 0 on success, -errno otherwise.
6582  */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)6583 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6584 {
6585 	int err;
6586 
6587 	if (unlikely(!eth_p_mpls(skb->protocol)))
6588 		return -EINVAL;
6589 
6590 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6591 	if (unlikely(err))
6592 		return err;
6593 
6594 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6595 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6596 
6597 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6598 	}
6599 
6600 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6601 
6602 	return 0;
6603 }
6604 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6605 
6606 /**
6607  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6608  *
6609  * @skb: buffer
6610  *
6611  * Expects skb->data at mac header.
6612  *
6613  * Returns 0 on success, -errno otherwise.
6614  */
skb_mpls_dec_ttl(struct sk_buff * skb)6615 int skb_mpls_dec_ttl(struct sk_buff *skb)
6616 {
6617 	u32 lse;
6618 	u8 ttl;
6619 
6620 	if (unlikely(!eth_p_mpls(skb->protocol)))
6621 		return -EINVAL;
6622 
6623 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6624 		return -ENOMEM;
6625 
6626 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6627 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6628 	if (!--ttl)
6629 		return -EINVAL;
6630 
6631 	lse &= ~MPLS_LS_TTL_MASK;
6632 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6633 
6634 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6635 }
6636 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6637 
6638 /**
6639  * alloc_skb_with_frags - allocate skb with page frags
6640  *
6641  * @header_len: size of linear part
6642  * @data_len: needed length in frags
6643  * @order: max page order desired.
6644  * @errcode: pointer to error code if any
6645  * @gfp_mask: allocation mask
6646  *
6647  * This can be used to allocate a paged skb, given a maximal order for frags.
6648  */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int order,int * errcode,gfp_t gfp_mask)6649 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6650 				     unsigned long data_len,
6651 				     int order,
6652 				     int *errcode,
6653 				     gfp_t gfp_mask)
6654 {
6655 	unsigned long chunk;
6656 	struct sk_buff *skb;
6657 	struct page *page;
6658 	int nr_frags = 0;
6659 
6660 	*errcode = -EMSGSIZE;
6661 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6662 		return NULL;
6663 
6664 	*errcode = -ENOBUFS;
6665 	skb = alloc_skb(header_len, gfp_mask);
6666 	if (!skb)
6667 		return NULL;
6668 
6669 	while (data_len) {
6670 		if (nr_frags == MAX_SKB_FRAGS - 1)
6671 			goto failure;
6672 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6673 			order--;
6674 
6675 		if (order) {
6676 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6677 					   __GFP_COMP |
6678 					   __GFP_NOWARN,
6679 					   order);
6680 			if (!page) {
6681 				order--;
6682 				continue;
6683 			}
6684 		} else {
6685 			page = alloc_page(gfp_mask);
6686 			if (!page)
6687 				goto failure;
6688 		}
6689 		chunk = min_t(unsigned long, data_len,
6690 			      PAGE_SIZE << order);
6691 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6692 		nr_frags++;
6693 		skb->truesize += (PAGE_SIZE << order);
6694 		data_len -= chunk;
6695 	}
6696 	return skb;
6697 
6698 failure:
6699 	kfree_skb(skb);
6700 	return NULL;
6701 }
6702 EXPORT_SYMBOL(alloc_skb_with_frags);
6703 
6704 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)6705 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6706 				    const int headlen, gfp_t gfp_mask)
6707 {
6708 	int i;
6709 	unsigned int size = skb_end_offset(skb);
6710 	int new_hlen = headlen - off;
6711 	u8 *data;
6712 
6713 	if (skb_pfmemalloc(skb))
6714 		gfp_mask |= __GFP_MEMALLOC;
6715 
6716 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6717 	if (!data)
6718 		return -ENOMEM;
6719 	size = SKB_WITH_OVERHEAD(size);
6720 
6721 	/* Copy real data, and all frags */
6722 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6723 	skb->len -= off;
6724 
6725 	memcpy((struct skb_shared_info *)(data + size),
6726 	       skb_shinfo(skb),
6727 	       offsetof(struct skb_shared_info,
6728 			frags[skb_shinfo(skb)->nr_frags]));
6729 	if (skb_cloned(skb)) {
6730 		/* drop the old head gracefully */
6731 		if (skb_orphan_frags(skb, gfp_mask)) {
6732 			skb_kfree_head(data, size);
6733 			return -ENOMEM;
6734 		}
6735 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6736 			skb_frag_ref(skb, i);
6737 		if (skb_has_frag_list(skb))
6738 			skb_clone_fraglist(skb);
6739 		skb_release_data(skb, SKB_CONSUMED);
6740 	} else {
6741 		/* we can reuse existing recount- all we did was
6742 		 * relocate values
6743 		 */
6744 		skb_free_head(skb);
6745 	}
6746 
6747 	skb->head = data;
6748 	skb->data = data;
6749 	skb->head_frag = 0;
6750 	skb_set_end_offset(skb, size);
6751 	skb_set_tail_pointer(skb, skb_headlen(skb));
6752 	skb_headers_offset_update(skb, 0);
6753 	skb->cloned = 0;
6754 	skb->hdr_len = 0;
6755 	skb->nohdr = 0;
6756 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6757 
6758 	return 0;
6759 }
6760 
6761 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6762 
6763 /* carve out the first eat bytes from skb's frag_list. May recurse into
6764  * pskb_carve()
6765  */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6766 static int pskb_carve_frag_list(struct sk_buff *skb,
6767 				struct skb_shared_info *shinfo, int eat,
6768 				gfp_t gfp_mask)
6769 {
6770 	struct sk_buff *list = shinfo->frag_list;
6771 	struct sk_buff *clone = NULL;
6772 	struct sk_buff *insp = NULL;
6773 
6774 	do {
6775 		if (!list) {
6776 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6777 			return -EFAULT;
6778 		}
6779 		if (list->len <= eat) {
6780 			/* Eaten as whole. */
6781 			eat -= list->len;
6782 			list = list->next;
6783 			insp = list;
6784 		} else {
6785 			/* Eaten partially. */
6786 			if (skb_shared(list)) {
6787 				clone = skb_clone(list, gfp_mask);
6788 				if (!clone)
6789 					return -ENOMEM;
6790 				insp = list->next;
6791 				list = clone;
6792 			} else {
6793 				/* This may be pulled without problems. */
6794 				insp = list;
6795 			}
6796 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6797 				kfree_skb(clone);
6798 				return -ENOMEM;
6799 			}
6800 			break;
6801 		}
6802 	} while (eat);
6803 
6804 	/* Free pulled out fragments. */
6805 	while ((list = shinfo->frag_list) != insp) {
6806 		shinfo->frag_list = list->next;
6807 		consume_skb(list);
6808 	}
6809 	/* And insert new clone at head. */
6810 	if (clone) {
6811 		clone->next = list;
6812 		shinfo->frag_list = clone;
6813 	}
6814 	return 0;
6815 }
6816 
6817 /* carve off first len bytes from skb. Split line (off) is in the
6818  * non-linear part of skb
6819  */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6820 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6821 				       int pos, gfp_t gfp_mask)
6822 {
6823 	int i, k = 0;
6824 	unsigned int size = skb_end_offset(skb);
6825 	u8 *data;
6826 	const int nfrags = skb_shinfo(skb)->nr_frags;
6827 	struct skb_shared_info *shinfo;
6828 
6829 	if (skb_pfmemalloc(skb))
6830 		gfp_mask |= __GFP_MEMALLOC;
6831 
6832 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6833 	if (!data)
6834 		return -ENOMEM;
6835 	size = SKB_WITH_OVERHEAD(size);
6836 
6837 	memcpy((struct skb_shared_info *)(data + size),
6838 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6839 	if (skb_orphan_frags(skb, gfp_mask)) {
6840 		skb_kfree_head(data, size);
6841 		return -ENOMEM;
6842 	}
6843 	shinfo = (struct skb_shared_info *)(data + size);
6844 	for (i = 0; i < nfrags; i++) {
6845 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6846 
6847 		if (pos + fsize > off) {
6848 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6849 
6850 			if (pos < off) {
6851 				/* Split frag.
6852 				 * We have two variants in this case:
6853 				 * 1. Move all the frag to the second
6854 				 *    part, if it is possible. F.e.
6855 				 *    this approach is mandatory for TUX,
6856 				 *    where splitting is expensive.
6857 				 * 2. Split is accurately. We make this.
6858 				 */
6859 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6860 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6861 			}
6862 			skb_frag_ref(skb, i);
6863 			k++;
6864 		}
6865 		pos += fsize;
6866 	}
6867 	shinfo->nr_frags = k;
6868 	if (skb_has_frag_list(skb))
6869 		skb_clone_fraglist(skb);
6870 
6871 	/* split line is in frag list */
6872 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6873 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6874 		if (skb_has_frag_list(skb))
6875 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6876 		skb_kfree_head(data, size);
6877 		return -ENOMEM;
6878 	}
6879 	skb_release_data(skb, SKB_CONSUMED);
6880 
6881 	skb->head = data;
6882 	skb->head_frag = 0;
6883 	skb->data = data;
6884 	skb_set_end_offset(skb, size);
6885 	skb_reset_tail_pointer(skb);
6886 	skb_headers_offset_update(skb, 0);
6887 	skb->cloned   = 0;
6888 	skb->hdr_len  = 0;
6889 	skb->nohdr    = 0;
6890 	skb->len -= off;
6891 	skb->data_len = skb->len;
6892 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6893 	return 0;
6894 }
6895 
6896 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6897 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6898 {
6899 	int headlen = skb_headlen(skb);
6900 
6901 	if (len < headlen)
6902 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6903 	else
6904 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6905 }
6906 
6907 /* Extract to_copy bytes starting at off from skb, and return this in
6908  * a new skb
6909  */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6910 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6911 			     int to_copy, gfp_t gfp)
6912 {
6913 	struct sk_buff  *clone = skb_clone(skb, gfp);
6914 
6915 	if (!clone)
6916 		return NULL;
6917 
6918 	if (pskb_carve(clone, off, gfp) < 0 ||
6919 	    pskb_trim(clone, to_copy)) {
6920 		kfree_skb(clone);
6921 		return NULL;
6922 	}
6923 	return clone;
6924 }
6925 EXPORT_SYMBOL(pskb_extract);
6926 
6927 /**
6928  * skb_condense - try to get rid of fragments/frag_list if possible
6929  * @skb: buffer
6930  *
6931  * Can be used to save memory before skb is added to a busy queue.
6932  * If packet has bytes in frags and enough tail room in skb->head,
6933  * pull all of them, so that we can free the frags right now and adjust
6934  * truesize.
6935  * Notes:
6936  *	We do not reallocate skb->head thus can not fail.
6937  *	Caller must re-evaluate skb->truesize if needed.
6938  */
skb_condense(struct sk_buff * skb)6939 void skb_condense(struct sk_buff *skb)
6940 {
6941 	if (skb->data_len) {
6942 		if (skb->data_len > skb->end - skb->tail ||
6943 		    skb_cloned(skb) || !skb_frags_readable(skb))
6944 			return;
6945 
6946 		/* Nice, we can free page frag(s) right now */
6947 		__pskb_pull_tail(skb, skb->data_len);
6948 	}
6949 	/* At this point, skb->truesize might be over estimated,
6950 	 * because skb had a fragment, and fragments do not tell
6951 	 * their truesize.
6952 	 * When we pulled its content into skb->head, fragment
6953 	 * was freed, but __pskb_pull_tail() could not possibly
6954 	 * adjust skb->truesize, not knowing the frag truesize.
6955 	 */
6956 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6957 }
6958 EXPORT_SYMBOL(skb_condense);
6959 
6960 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6961 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6962 {
6963 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6964 }
6965 
6966 /**
6967  * __skb_ext_alloc - allocate a new skb extensions storage
6968  *
6969  * @flags: See kmalloc().
6970  *
6971  * Returns the newly allocated pointer. The pointer can later attached to a
6972  * skb via __skb_ext_set().
6973  * Note: caller must handle the skb_ext as an opaque data.
6974  */
__skb_ext_alloc(gfp_t flags)6975 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6976 {
6977 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6978 
6979 	if (new) {
6980 		memset(new->offset, 0, sizeof(new->offset));
6981 		refcount_set(&new->refcnt, 1);
6982 	}
6983 
6984 	return new;
6985 }
6986 
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6987 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6988 					 unsigned int old_active)
6989 {
6990 	struct skb_ext *new;
6991 
6992 	if (refcount_read(&old->refcnt) == 1)
6993 		return old;
6994 
6995 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6996 	if (!new)
6997 		return NULL;
6998 
6999 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
7000 	refcount_set(&new->refcnt, 1);
7001 
7002 #ifdef CONFIG_XFRM
7003 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
7004 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
7005 		unsigned int i;
7006 
7007 		for (i = 0; i < sp->len; i++)
7008 			xfrm_state_hold(sp->xvec[i]);
7009 	}
7010 #endif
7011 #ifdef CONFIG_MCTP_FLOWS
7012 	if (old_active & (1 << SKB_EXT_MCTP)) {
7013 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
7014 
7015 		if (flow->key)
7016 			refcount_inc(&flow->key->refs);
7017 	}
7018 #endif
7019 	__skb_ext_put(old);
7020 	return new;
7021 }
7022 
7023 /**
7024  * __skb_ext_set - attach the specified extension storage to this skb
7025  * @skb: buffer
7026  * @id: extension id
7027  * @ext: extension storage previously allocated via __skb_ext_alloc()
7028  *
7029  * Existing extensions, if any, are cleared.
7030  *
7031  * Returns the pointer to the extension.
7032  */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)7033 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
7034 		    struct skb_ext *ext)
7035 {
7036 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
7037 
7038 	skb_ext_put(skb);
7039 	newlen = newoff + skb_ext_type_len[id];
7040 	ext->chunks = newlen;
7041 	ext->offset[id] = newoff;
7042 	skb->extensions = ext;
7043 	skb->active_extensions = 1 << id;
7044 	return skb_ext_get_ptr(ext, id);
7045 }
7046 
7047 /**
7048  * skb_ext_add - allocate space for given extension, COW if needed
7049  * @skb: buffer
7050  * @id: extension to allocate space for
7051  *
7052  * Allocates enough space for the given extension.
7053  * If the extension is already present, a pointer to that extension
7054  * is returned.
7055  *
7056  * If the skb was cloned, COW applies and the returned memory can be
7057  * modified without changing the extension space of clones buffers.
7058  *
7059  * Returns pointer to the extension or NULL on allocation failure.
7060  */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)7061 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
7062 {
7063 	struct skb_ext *new, *old = NULL;
7064 	unsigned int newlen, newoff;
7065 
7066 	if (skb->active_extensions) {
7067 		old = skb->extensions;
7068 
7069 		new = skb_ext_maybe_cow(old, skb->active_extensions);
7070 		if (!new)
7071 			return NULL;
7072 
7073 		if (__skb_ext_exist(new, id))
7074 			goto set_active;
7075 
7076 		newoff = new->chunks;
7077 	} else {
7078 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
7079 
7080 		new = __skb_ext_alloc(GFP_ATOMIC);
7081 		if (!new)
7082 			return NULL;
7083 	}
7084 
7085 	newlen = newoff + skb_ext_type_len[id];
7086 	new->chunks = newlen;
7087 	new->offset[id] = newoff;
7088 set_active:
7089 	skb->slow_gro = 1;
7090 	skb->extensions = new;
7091 	skb->active_extensions |= 1 << id;
7092 	return skb_ext_get_ptr(new, id);
7093 }
7094 EXPORT_SYMBOL(skb_ext_add);
7095 
7096 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)7097 static void skb_ext_put_sp(struct sec_path *sp)
7098 {
7099 	unsigned int i;
7100 
7101 	for (i = 0; i < sp->len; i++)
7102 		xfrm_state_put(sp->xvec[i]);
7103 }
7104 #endif
7105 
7106 #ifdef CONFIG_MCTP_FLOWS
skb_ext_put_mctp(struct mctp_flow * flow)7107 static void skb_ext_put_mctp(struct mctp_flow *flow)
7108 {
7109 	if (flow->key)
7110 		mctp_key_unref(flow->key);
7111 }
7112 #endif
7113 
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)7114 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
7115 {
7116 	struct skb_ext *ext = skb->extensions;
7117 
7118 	skb->active_extensions &= ~(1 << id);
7119 	if (skb->active_extensions == 0) {
7120 		skb->extensions = NULL;
7121 		__skb_ext_put(ext);
7122 #ifdef CONFIG_XFRM
7123 	} else if (id == SKB_EXT_SEC_PATH &&
7124 		   refcount_read(&ext->refcnt) == 1) {
7125 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
7126 
7127 		skb_ext_put_sp(sp);
7128 		sp->len = 0;
7129 #endif
7130 	}
7131 }
7132 EXPORT_SYMBOL(__skb_ext_del);
7133 
__skb_ext_put(struct skb_ext * ext)7134 void __skb_ext_put(struct skb_ext *ext)
7135 {
7136 	/* If this is last clone, nothing can increment
7137 	 * it after check passes.  Avoids one atomic op.
7138 	 */
7139 	if (refcount_read(&ext->refcnt) == 1)
7140 		goto free_now;
7141 
7142 	if (!refcount_dec_and_test(&ext->refcnt))
7143 		return;
7144 free_now:
7145 #ifdef CONFIG_XFRM
7146 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
7147 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
7148 #endif
7149 #ifdef CONFIG_MCTP_FLOWS
7150 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7151 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7152 #endif
7153 
7154 	kmem_cache_free(skbuff_ext_cache, ext);
7155 }
7156 EXPORT_SYMBOL(__skb_ext_put);
7157 #endif /* CONFIG_SKB_EXTENSIONS */
7158 
kfree_skb_napi_cache(struct sk_buff * skb)7159 static void kfree_skb_napi_cache(struct sk_buff *skb)
7160 {
7161 	/* if SKB is a clone, don't handle this case */
7162 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
7163 		__kfree_skb(skb);
7164 		return;
7165 	}
7166 
7167 	local_bh_disable();
7168 	__napi_kfree_skb(skb, SKB_CONSUMED);
7169 	local_bh_enable();
7170 }
7171 
7172 /**
7173  * skb_attempt_defer_free - queue skb for remote freeing
7174  * @skb: buffer
7175  *
7176  * Put @skb in a per-cpu list, using the cpu which
7177  * allocated the skb/pages to reduce false sharing
7178  * and memory zone spinlock contention.
7179  */
skb_attempt_defer_free(struct sk_buff * skb)7180 void skb_attempt_defer_free(struct sk_buff *skb)
7181 {
7182 	int cpu = skb->alloc_cpu;
7183 	struct softnet_data *sd;
7184 	unsigned int defer_max;
7185 	bool kick;
7186 
7187 	if (cpu == raw_smp_processor_id() ||
7188 	    WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7189 	    !cpu_online(cpu)) {
7190 nodefer:	kfree_skb_napi_cache(skb);
7191 		return;
7192 	}
7193 
7194 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7195 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7196 
7197 	sd = &per_cpu(softnet_data, cpu);
7198 	defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max);
7199 	if (READ_ONCE(sd->defer_count) >= defer_max)
7200 		goto nodefer;
7201 
7202 	spin_lock_bh(&sd->defer_lock);
7203 	/* Send an IPI every time queue reaches half capacity. */
7204 	kick = sd->defer_count == (defer_max >> 1);
7205 	/* Paired with the READ_ONCE() few lines above */
7206 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7207 
7208 	skb->next = sd->defer_list;
7209 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
7210 	WRITE_ONCE(sd->defer_list, skb);
7211 	spin_unlock_bh(&sd->defer_lock);
7212 
7213 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7214 	 * if we are unlucky enough (this seems very unlikely).
7215 	 */
7216 	if (unlikely(kick))
7217 		kick_defer_list_purge(sd, cpu);
7218 }
7219 
skb_splice_csum_page(struct sk_buff * skb,struct page * page,size_t offset,size_t len)7220 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7221 				 size_t offset, size_t len)
7222 {
7223 	const char *kaddr;
7224 	__wsum csum;
7225 
7226 	kaddr = kmap_local_page(page);
7227 	csum = csum_partial(kaddr + offset, len, 0);
7228 	kunmap_local(kaddr);
7229 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7230 }
7231 
7232 /**
7233  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7234  * @skb: The buffer to add pages to
7235  * @iter: Iterator representing the pages to be added
7236  * @maxsize: Maximum amount of pages to be added
7237  * @gfp: Allocation flags
7238  *
7239  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7240  * extracts pages from an iterator and adds them to the socket buffer if
7241  * possible, copying them to fragments if not possible (such as if they're slab
7242  * pages).
7243  *
7244  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7245  * insufficient space in the buffer to transfer anything.
7246  */
skb_splice_from_iter(struct sk_buff * skb,struct iov_iter * iter,ssize_t maxsize,gfp_t gfp)7247 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7248 			     ssize_t maxsize, gfp_t gfp)
7249 {
7250 	size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags);
7251 	struct page *pages[8], **ppages = pages;
7252 	ssize_t spliced = 0, ret = 0;
7253 	unsigned int i;
7254 
7255 	while (iter->count > 0) {
7256 		ssize_t space, nr, len;
7257 		size_t off;
7258 
7259 		ret = -EMSGSIZE;
7260 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7261 		if (space < 0)
7262 			break;
7263 
7264 		/* We might be able to coalesce without increasing nr_frags */
7265 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7266 
7267 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7268 		if (len <= 0) {
7269 			ret = len ?: -EIO;
7270 			break;
7271 		}
7272 
7273 		i = 0;
7274 		do {
7275 			struct page *page = pages[i++];
7276 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7277 
7278 			ret = -EIO;
7279 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7280 				goto out;
7281 
7282 			ret = skb_append_pagefrags(skb, page, off, part,
7283 						   frag_limit);
7284 			if (ret < 0) {
7285 				iov_iter_revert(iter, len);
7286 				goto out;
7287 			}
7288 
7289 			if (skb->ip_summed == CHECKSUM_NONE)
7290 				skb_splice_csum_page(skb, page, off, part);
7291 
7292 			off = 0;
7293 			spliced += part;
7294 			maxsize -= part;
7295 			len -= part;
7296 		} while (len > 0);
7297 
7298 		if (maxsize <= 0)
7299 			break;
7300 	}
7301 
7302 out:
7303 	skb_len_add(skb, spliced);
7304 	return spliced ?: ret;
7305 }
7306 EXPORT_SYMBOL(skb_splice_from_iter);
7307 
7308 static __always_inline
memcpy_from_iter_csum(void * iter_from,size_t progress,size_t len,void * to,void * priv2)7309 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7310 			     size_t len, void *to, void *priv2)
7311 {
7312 	__wsum *csum = priv2;
7313 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7314 
7315 	*csum = csum_block_add(*csum, next, progress);
7316 	return 0;
7317 }
7318 
7319 static __always_inline
copy_from_user_iter_csum(void __user * iter_from,size_t progress,size_t len,void * to,void * priv2)7320 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7321 				size_t len, void *to, void *priv2)
7322 {
7323 	__wsum next, *csum = priv2;
7324 
7325 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7326 	*csum = csum_block_add(*csum, next, progress);
7327 	return next ? 0 : len;
7328 }
7329 
csum_and_copy_from_iter_full(void * addr,size_t bytes,__wsum * csum,struct iov_iter * i)7330 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7331 				  __wsum *csum, struct iov_iter *i)
7332 {
7333 	size_t copied;
7334 
7335 	if (WARN_ON_ONCE(!i->data_source))
7336 		return false;
7337 	copied = iterate_and_advance2(i, bytes, addr, csum,
7338 				      copy_from_user_iter_csum,
7339 				      memcpy_from_iter_csum);
7340 	if (likely(copied == bytes))
7341 		return true;
7342 	iov_iter_revert(i, copied);
7343 	return false;
7344 }
7345 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7346 
get_netmem(netmem_ref netmem)7347 void get_netmem(netmem_ref netmem)
7348 {
7349 	struct net_iov *niov;
7350 
7351 	if (netmem_is_net_iov(netmem)) {
7352 		niov = netmem_to_net_iov(netmem);
7353 		if (net_is_devmem_iov(niov))
7354 			net_devmem_get_net_iov(netmem_to_net_iov(netmem));
7355 		return;
7356 	}
7357 	get_page(netmem_to_page(netmem));
7358 }
7359 EXPORT_SYMBOL(get_netmem);
7360 
put_netmem(netmem_ref netmem)7361 void put_netmem(netmem_ref netmem)
7362 {
7363 	struct net_iov *niov;
7364 
7365 	if (netmem_is_net_iov(netmem)) {
7366 		niov = netmem_to_net_iov(netmem);
7367 		if (net_is_devmem_iov(niov))
7368 			net_devmem_put_net_iov(netmem_to_net_iov(netmem));
7369 		return;
7370 	}
7371 
7372 	put_page(netmem_to_page(netmem));
7373 }
7374 EXPORT_SYMBOL(put_netmem);
7375