xref: /linux/net/core/filter.c (revision 27605c8c0f69e319df156b471974e4e223035378)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <linux/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 #include <net/netkit.h>
85 #include <linux/un.h>
86 #include <net/xdp_sock_drv.h>
87 #include <net/inet_dscp.h>
88 
89 #include "dev.h"
90 
91 /* Keep the struct bpf_fib_lookup small so that it fits into a cacheline */
92 static_assert(sizeof(struct bpf_fib_lookup) == 64, "struct bpf_fib_lookup size check");
93 
94 static const struct bpf_func_proto *
95 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
96 
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)97 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
98 {
99 	if (in_compat_syscall()) {
100 		struct compat_sock_fprog f32;
101 
102 		if (len != sizeof(f32))
103 			return -EINVAL;
104 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
105 			return -EFAULT;
106 		memset(dst, 0, sizeof(*dst));
107 		dst->len = f32.len;
108 		dst->filter = compat_ptr(f32.filter);
109 	} else {
110 		if (len != sizeof(*dst))
111 			return -EINVAL;
112 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
113 			return -EFAULT;
114 	}
115 
116 	return 0;
117 }
118 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
119 
120 /**
121  *	sk_filter_trim_cap - run a packet through a socket filter
122  *	@sk: sock associated with &sk_buff
123  *	@skb: buffer to filter
124  *	@cap: limit on how short the eBPF program may trim the packet
125  *
126  * Run the eBPF program and then cut skb->data to correct size returned by
127  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
128  * than pkt_len we keep whole skb->data. This is the socket level
129  * wrapper to bpf_prog_run. It returns 0 if the packet should
130  * be accepted or -EPERM if the packet should be tossed.
131  *
132  */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)133 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
134 {
135 	int err;
136 	struct sk_filter *filter;
137 
138 	/*
139 	 * If the skb was allocated from pfmemalloc reserves, only
140 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
141 	 * helping free memory
142 	 */
143 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
144 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
145 		return -ENOMEM;
146 	}
147 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
148 	if (err)
149 		return err;
150 
151 	err = security_sock_rcv_skb(sk, skb);
152 	if (err)
153 		return err;
154 
155 	rcu_read_lock();
156 	filter = rcu_dereference(sk->sk_filter);
157 	if (filter) {
158 		struct sock *save_sk = skb->sk;
159 		unsigned int pkt_len;
160 
161 		skb->sk = sk;
162 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
163 		skb->sk = save_sk;
164 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
165 	}
166 	rcu_read_unlock();
167 
168 	return err;
169 }
170 EXPORT_SYMBOL(sk_filter_trim_cap);
171 
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)172 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
173 {
174 	return skb_get_poff(skb);
175 }
176 
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)177 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
178 {
179 	struct nlattr *nla;
180 
181 	if (skb_is_nonlinear(skb))
182 		return 0;
183 
184 	if (skb->len < sizeof(struct nlattr))
185 		return 0;
186 
187 	if (a > skb->len - sizeof(struct nlattr))
188 		return 0;
189 
190 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
191 	if (nla)
192 		return (void *) nla - (void *) skb->data;
193 
194 	return 0;
195 }
196 
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)197 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
198 {
199 	struct nlattr *nla;
200 
201 	if (skb_is_nonlinear(skb))
202 		return 0;
203 
204 	if (skb->len < sizeof(struct nlattr))
205 		return 0;
206 
207 	if (a > skb->len - sizeof(struct nlattr))
208 		return 0;
209 
210 	nla = (struct nlattr *) &skb->data[a];
211 	if (!nla_ok(nla, skb->len - a))
212 		return 0;
213 
214 	nla = nla_find_nested(nla, x);
215 	if (nla)
216 		return (void *) nla - (void *) skb->data;
217 
218 	return 0;
219 }
220 
bpf_skb_load_helper_convert_offset(const struct sk_buff * skb,int offset)221 static int bpf_skb_load_helper_convert_offset(const struct sk_buff *skb, int offset)
222 {
223 	if (likely(offset >= 0))
224 		return offset;
225 
226 	if (offset >= SKF_NET_OFF)
227 		return offset - SKF_NET_OFF + skb_network_offset(skb);
228 
229 	if (offset >= SKF_LL_OFF && skb_mac_header_was_set(skb))
230 		return offset - SKF_LL_OFF + skb_mac_offset(skb);
231 
232 	return INT_MIN;
233 }
234 
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)235 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
236 	   data, int, headlen, int, offset)
237 {
238 	u8 tmp;
239 	const int len = sizeof(tmp);
240 
241 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
242 	if (offset == INT_MIN)
243 		return -EFAULT;
244 
245 	if (headlen - offset >= len)
246 		return *(u8 *)(data + offset);
247 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
248 		return tmp;
249 	else
250 		return -EFAULT;
251 }
252 
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)253 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
254 	   int, offset)
255 {
256 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
257 					 offset);
258 }
259 
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)260 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
261 	   data, int, headlen, int, offset)
262 {
263 	__be16 tmp;
264 	const int len = sizeof(tmp);
265 
266 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
267 	if (offset == INT_MIN)
268 		return -EFAULT;
269 
270 	if (headlen - offset >= len)
271 		return get_unaligned_be16(data + offset);
272 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
273 		return be16_to_cpu(tmp);
274 	else
275 		return -EFAULT;
276 }
277 
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)278 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
279 	   int, offset)
280 {
281 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
282 					  offset);
283 }
284 
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)285 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
286 	   data, int, headlen, int, offset)
287 {
288 	__be32 tmp;
289 	const int len = sizeof(tmp);
290 
291 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
292 	if (offset == INT_MIN)
293 		return -EFAULT;
294 
295 	if (headlen - offset >= len)
296 		return get_unaligned_be32(data + offset);
297 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
298 		return be32_to_cpu(tmp);
299 	else
300 		return -EFAULT;
301 }
302 
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)303 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
304 	   int, offset)
305 {
306 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
307 					  offset);
308 }
309 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)310 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
311 			      struct bpf_insn *insn_buf)
312 {
313 	struct bpf_insn *insn = insn_buf;
314 
315 	switch (skb_field) {
316 	case SKF_AD_MARK:
317 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
318 
319 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
320 				      offsetof(struct sk_buff, mark));
321 		break;
322 
323 	case SKF_AD_PKTTYPE:
324 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
325 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
326 #ifdef __BIG_ENDIAN_BITFIELD
327 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
328 #endif
329 		break;
330 
331 	case SKF_AD_QUEUE:
332 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
333 
334 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
335 				      offsetof(struct sk_buff, queue_mapping));
336 		break;
337 
338 	case SKF_AD_VLAN_TAG:
339 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
340 
341 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
342 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
343 				      offsetof(struct sk_buff, vlan_tci));
344 		break;
345 	case SKF_AD_VLAN_TAG_PRESENT:
346 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
347 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
348 				      offsetof(struct sk_buff, vlan_all));
349 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
350 		*insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
351 		break;
352 	}
353 
354 	return insn - insn_buf;
355 }
356 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)357 static bool convert_bpf_extensions(struct sock_filter *fp,
358 				   struct bpf_insn **insnp)
359 {
360 	struct bpf_insn *insn = *insnp;
361 	u32 cnt;
362 
363 	switch (fp->k) {
364 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
365 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
366 
367 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
368 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
369 				      offsetof(struct sk_buff, protocol));
370 		/* A = ntohs(A) [emitting a nop or swap16] */
371 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
372 		break;
373 
374 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
375 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
376 		insn += cnt - 1;
377 		break;
378 
379 	case SKF_AD_OFF + SKF_AD_IFINDEX:
380 	case SKF_AD_OFF + SKF_AD_HATYPE:
381 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
382 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
383 
384 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
385 				      BPF_REG_TMP, BPF_REG_CTX,
386 				      offsetof(struct sk_buff, dev));
387 		/* if (tmp != 0) goto pc + 1 */
388 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
389 		*insn++ = BPF_EXIT_INSN();
390 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
391 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
392 					    offsetof(struct net_device, ifindex));
393 		else
394 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
395 					    offsetof(struct net_device, type));
396 		break;
397 
398 	case SKF_AD_OFF + SKF_AD_MARK:
399 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
400 		insn += cnt - 1;
401 		break;
402 
403 	case SKF_AD_OFF + SKF_AD_RXHASH:
404 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
405 
406 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
407 				    offsetof(struct sk_buff, hash));
408 		break;
409 
410 	case SKF_AD_OFF + SKF_AD_QUEUE:
411 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
412 		insn += cnt - 1;
413 		break;
414 
415 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
416 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
417 					 BPF_REG_A, BPF_REG_CTX, insn);
418 		insn += cnt - 1;
419 		break;
420 
421 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
422 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
423 					 BPF_REG_A, BPF_REG_CTX, insn);
424 		insn += cnt - 1;
425 		break;
426 
427 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
428 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
429 
430 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
431 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
432 				      offsetof(struct sk_buff, vlan_proto));
433 		/* A = ntohs(A) [emitting a nop or swap16] */
434 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
435 		break;
436 
437 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
438 	case SKF_AD_OFF + SKF_AD_NLATTR:
439 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
440 	case SKF_AD_OFF + SKF_AD_CPU:
441 	case SKF_AD_OFF + SKF_AD_RANDOM:
442 		/* arg1 = CTX */
443 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
444 		/* arg2 = A */
445 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
446 		/* arg3 = X */
447 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
448 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
449 		switch (fp->k) {
450 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
451 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
452 			break;
453 		case SKF_AD_OFF + SKF_AD_NLATTR:
454 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
455 			break;
456 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
457 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
458 			break;
459 		case SKF_AD_OFF + SKF_AD_CPU:
460 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
461 			break;
462 		case SKF_AD_OFF + SKF_AD_RANDOM:
463 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
464 			bpf_user_rnd_init_once();
465 			break;
466 		}
467 		break;
468 
469 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
470 		/* A ^= X */
471 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
472 		break;
473 
474 	default:
475 		/* This is just a dummy call to avoid letting the compiler
476 		 * evict __bpf_call_base() as an optimization. Placed here
477 		 * where no-one bothers.
478 		 */
479 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
480 		return false;
481 	}
482 
483 	*insnp = insn;
484 	return true;
485 }
486 
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)487 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
488 {
489 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
490 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
491 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
492 		      BPF_SIZE(fp->code) == BPF_W;
493 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
494 	const int ip_align = NET_IP_ALIGN;
495 	struct bpf_insn *insn = *insnp;
496 	int offset = fp->k;
497 
498 	if (!indirect &&
499 	    ((unaligned_ok && offset >= 0) ||
500 	     (!unaligned_ok && offset >= 0 &&
501 	      offset + ip_align >= 0 &&
502 	      offset + ip_align % size == 0))) {
503 		bool ldx_off_ok = offset <= S16_MAX;
504 
505 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
506 		if (offset)
507 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
508 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
509 				      size, 2 + endian + (!ldx_off_ok * 2));
510 		if (ldx_off_ok) {
511 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
512 					      BPF_REG_D, offset);
513 		} else {
514 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
515 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
516 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
517 					      BPF_REG_TMP, 0);
518 		}
519 		if (endian)
520 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
521 		*insn++ = BPF_JMP_A(8);
522 	}
523 
524 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
525 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
526 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
527 	if (!indirect) {
528 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
529 	} else {
530 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
531 		if (fp->k)
532 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
533 	}
534 
535 	switch (BPF_SIZE(fp->code)) {
536 	case BPF_B:
537 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
538 		break;
539 	case BPF_H:
540 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
541 		break;
542 	case BPF_W:
543 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
544 		break;
545 	default:
546 		return false;
547 	}
548 
549 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
550 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
551 	*insn   = BPF_EXIT_INSN();
552 
553 	*insnp = insn;
554 	return true;
555 }
556 
557 /**
558  *	bpf_convert_filter - convert filter program
559  *	@prog: the user passed filter program
560  *	@len: the length of the user passed filter program
561  *	@new_prog: allocated 'struct bpf_prog' or NULL
562  *	@new_len: pointer to store length of converted program
563  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
564  *
565  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
566  * style extended BPF (eBPF).
567  * Conversion workflow:
568  *
569  * 1) First pass for calculating the new program length:
570  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
571  *
572  * 2) 2nd pass to remap in two passes: 1st pass finds new
573  *    jump offsets, 2nd pass remapping:
574  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
575  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)576 static int bpf_convert_filter(struct sock_filter *prog, int len,
577 			      struct bpf_prog *new_prog, int *new_len,
578 			      bool *seen_ld_abs)
579 {
580 	int new_flen = 0, pass = 0, target, i, stack_off;
581 	struct bpf_insn *new_insn, *first_insn = NULL;
582 	struct sock_filter *fp;
583 	int *addrs = NULL;
584 	u8 bpf_src;
585 
586 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
587 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
588 
589 	if (len <= 0 || len > BPF_MAXINSNS)
590 		return -EINVAL;
591 
592 	if (new_prog) {
593 		first_insn = new_prog->insnsi;
594 		addrs = kcalloc(len, sizeof(*addrs),
595 				GFP_KERNEL | __GFP_NOWARN);
596 		if (!addrs)
597 			return -ENOMEM;
598 	}
599 
600 do_pass:
601 	new_insn = first_insn;
602 	fp = prog;
603 
604 	/* Classic BPF related prologue emission. */
605 	if (new_prog) {
606 		/* Classic BPF expects A and X to be reset first. These need
607 		 * to be guaranteed to be the first two instructions.
608 		 */
609 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
610 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
611 
612 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
613 		 * In eBPF case it's done by the compiler, here we need to
614 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
615 		 */
616 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
617 		if (*seen_ld_abs) {
618 			/* For packet access in classic BPF, cache skb->data
619 			 * in callee-saved BPF R8 and skb->len - skb->data_len
620 			 * (headlen) in BPF R9. Since classic BPF is read-only
621 			 * on CTX, we only need to cache it once.
622 			 */
623 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
624 						  BPF_REG_D, BPF_REG_CTX,
625 						  offsetof(struct sk_buff, data));
626 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
627 						  offsetof(struct sk_buff, len));
628 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
629 						  offsetof(struct sk_buff, data_len));
630 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
631 		}
632 	} else {
633 		new_insn += 3;
634 	}
635 
636 	for (i = 0; i < len; fp++, i++) {
637 		struct bpf_insn tmp_insns[32] = { };
638 		struct bpf_insn *insn = tmp_insns;
639 
640 		if (addrs)
641 			addrs[i] = new_insn - first_insn;
642 
643 		switch (fp->code) {
644 		/* All arithmetic insns and skb loads map as-is. */
645 		case BPF_ALU | BPF_ADD | BPF_X:
646 		case BPF_ALU | BPF_ADD | BPF_K:
647 		case BPF_ALU | BPF_SUB | BPF_X:
648 		case BPF_ALU | BPF_SUB | BPF_K:
649 		case BPF_ALU | BPF_AND | BPF_X:
650 		case BPF_ALU | BPF_AND | BPF_K:
651 		case BPF_ALU | BPF_OR | BPF_X:
652 		case BPF_ALU | BPF_OR | BPF_K:
653 		case BPF_ALU | BPF_LSH | BPF_X:
654 		case BPF_ALU | BPF_LSH | BPF_K:
655 		case BPF_ALU | BPF_RSH | BPF_X:
656 		case BPF_ALU | BPF_RSH | BPF_K:
657 		case BPF_ALU | BPF_XOR | BPF_X:
658 		case BPF_ALU | BPF_XOR | BPF_K:
659 		case BPF_ALU | BPF_MUL | BPF_X:
660 		case BPF_ALU | BPF_MUL | BPF_K:
661 		case BPF_ALU | BPF_DIV | BPF_X:
662 		case BPF_ALU | BPF_DIV | BPF_K:
663 		case BPF_ALU | BPF_MOD | BPF_X:
664 		case BPF_ALU | BPF_MOD | BPF_K:
665 		case BPF_ALU | BPF_NEG:
666 		case BPF_LD | BPF_ABS | BPF_W:
667 		case BPF_LD | BPF_ABS | BPF_H:
668 		case BPF_LD | BPF_ABS | BPF_B:
669 		case BPF_LD | BPF_IND | BPF_W:
670 		case BPF_LD | BPF_IND | BPF_H:
671 		case BPF_LD | BPF_IND | BPF_B:
672 			/* Check for overloaded BPF extension and
673 			 * directly convert it if found, otherwise
674 			 * just move on with mapping.
675 			 */
676 			if (BPF_CLASS(fp->code) == BPF_LD &&
677 			    BPF_MODE(fp->code) == BPF_ABS &&
678 			    convert_bpf_extensions(fp, &insn))
679 				break;
680 			if (BPF_CLASS(fp->code) == BPF_LD &&
681 			    convert_bpf_ld_abs(fp, &insn)) {
682 				*seen_ld_abs = true;
683 				break;
684 			}
685 
686 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
687 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
688 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
689 				/* Error with exception code on div/mod by 0.
690 				 * For cBPF programs, this was always return 0.
691 				 */
692 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
693 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
694 				*insn++ = BPF_EXIT_INSN();
695 			}
696 
697 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
698 			break;
699 
700 		/* Jump transformation cannot use BPF block macros
701 		 * everywhere as offset calculation and target updates
702 		 * require a bit more work than the rest, i.e. jump
703 		 * opcodes map as-is, but offsets need adjustment.
704 		 */
705 
706 #define BPF_EMIT_JMP							\
707 	do {								\
708 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
709 		s32 off;						\
710 									\
711 		if (target >= len || target < 0)			\
712 			goto err;					\
713 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
714 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
715 		off -= insn - tmp_insns;				\
716 		/* Reject anything not fitting into insn->off. */	\
717 		if (off < off_min || off > off_max)			\
718 			goto err;					\
719 		insn->off = off;					\
720 	} while (0)
721 
722 		case BPF_JMP | BPF_JA:
723 			target = i + fp->k + 1;
724 			insn->code = fp->code;
725 			BPF_EMIT_JMP;
726 			break;
727 
728 		case BPF_JMP | BPF_JEQ | BPF_K:
729 		case BPF_JMP | BPF_JEQ | BPF_X:
730 		case BPF_JMP | BPF_JSET | BPF_K:
731 		case BPF_JMP | BPF_JSET | BPF_X:
732 		case BPF_JMP | BPF_JGT | BPF_K:
733 		case BPF_JMP | BPF_JGT | BPF_X:
734 		case BPF_JMP | BPF_JGE | BPF_K:
735 		case BPF_JMP | BPF_JGE | BPF_X:
736 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
737 				/* BPF immediates are signed, zero extend
738 				 * immediate into tmp register and use it
739 				 * in compare insn.
740 				 */
741 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
742 
743 				insn->dst_reg = BPF_REG_A;
744 				insn->src_reg = BPF_REG_TMP;
745 				bpf_src = BPF_X;
746 			} else {
747 				insn->dst_reg = BPF_REG_A;
748 				insn->imm = fp->k;
749 				bpf_src = BPF_SRC(fp->code);
750 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
751 			}
752 
753 			/* Common case where 'jump_false' is next insn. */
754 			if (fp->jf == 0) {
755 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
756 				target = i + fp->jt + 1;
757 				BPF_EMIT_JMP;
758 				break;
759 			}
760 
761 			/* Convert some jumps when 'jump_true' is next insn. */
762 			if (fp->jt == 0) {
763 				switch (BPF_OP(fp->code)) {
764 				case BPF_JEQ:
765 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
766 					break;
767 				case BPF_JGT:
768 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
769 					break;
770 				case BPF_JGE:
771 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
772 					break;
773 				default:
774 					goto jmp_rest;
775 				}
776 
777 				target = i + fp->jf + 1;
778 				BPF_EMIT_JMP;
779 				break;
780 			}
781 jmp_rest:
782 			/* Other jumps are mapped into two insns: Jxx and JA. */
783 			target = i + fp->jt + 1;
784 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
785 			BPF_EMIT_JMP;
786 			insn++;
787 
788 			insn->code = BPF_JMP | BPF_JA;
789 			target = i + fp->jf + 1;
790 			BPF_EMIT_JMP;
791 			break;
792 
793 		/* ldxb 4 * ([14] & 0xf) is remapped into 6 insns. */
794 		case BPF_LDX | BPF_MSH | BPF_B: {
795 			struct sock_filter tmp = {
796 				.code	= BPF_LD | BPF_ABS | BPF_B,
797 				.k	= fp->k,
798 			};
799 
800 			*seen_ld_abs = true;
801 
802 			/* X = A */
803 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
804 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
805 			convert_bpf_ld_abs(&tmp, &insn);
806 			insn++;
807 			/* A &= 0xf */
808 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
809 			/* A <<= 2 */
810 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
811 			/* tmp = X */
812 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
813 			/* X = A */
814 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
815 			/* A = tmp */
816 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
817 			break;
818 		}
819 		/* RET_K is remapped into 2 insns. RET_A case doesn't need an
820 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
821 		 */
822 		case BPF_RET | BPF_A:
823 		case BPF_RET | BPF_K:
824 			if (BPF_RVAL(fp->code) == BPF_K)
825 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
826 							0, fp->k);
827 			*insn = BPF_EXIT_INSN();
828 			break;
829 
830 		/* Store to stack. */
831 		case BPF_ST:
832 		case BPF_STX:
833 			stack_off = fp->k * 4  + 4;
834 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
835 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
836 					    -stack_off);
837 			/* check_load_and_stores() verifies that classic BPF can
838 			 * load from stack only after write, so tracking
839 			 * stack_depth for ST|STX insns is enough
840 			 */
841 			if (new_prog && new_prog->aux->stack_depth < stack_off)
842 				new_prog->aux->stack_depth = stack_off;
843 			break;
844 
845 		/* Load from stack. */
846 		case BPF_LD | BPF_MEM:
847 		case BPF_LDX | BPF_MEM:
848 			stack_off = fp->k * 4  + 4;
849 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
850 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
851 					    -stack_off);
852 			break;
853 
854 		/* A = K or X = K */
855 		case BPF_LD | BPF_IMM:
856 		case BPF_LDX | BPF_IMM:
857 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
858 					      BPF_REG_A : BPF_REG_X, fp->k);
859 			break;
860 
861 		/* X = A */
862 		case BPF_MISC | BPF_TAX:
863 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
864 			break;
865 
866 		/* A = X */
867 		case BPF_MISC | BPF_TXA:
868 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
869 			break;
870 
871 		/* A = skb->len or X = skb->len */
872 		case BPF_LD | BPF_W | BPF_LEN:
873 		case BPF_LDX | BPF_W | BPF_LEN:
874 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
875 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
876 					    offsetof(struct sk_buff, len));
877 			break;
878 
879 		/* Access seccomp_data fields. */
880 		case BPF_LDX | BPF_ABS | BPF_W:
881 			/* A = *(u32 *) (ctx + K) */
882 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
883 			break;
884 
885 		/* Unknown instruction. */
886 		default:
887 			goto err;
888 		}
889 
890 		insn++;
891 		if (new_prog)
892 			memcpy(new_insn, tmp_insns,
893 			       sizeof(*insn) * (insn - tmp_insns));
894 		new_insn += insn - tmp_insns;
895 	}
896 
897 	if (!new_prog) {
898 		/* Only calculating new length. */
899 		*new_len = new_insn - first_insn;
900 		if (*seen_ld_abs)
901 			*new_len += 4; /* Prologue bits. */
902 		return 0;
903 	}
904 
905 	pass++;
906 	if (new_flen != new_insn - first_insn) {
907 		new_flen = new_insn - first_insn;
908 		if (pass > 2)
909 			goto err;
910 		goto do_pass;
911 	}
912 
913 	kfree(addrs);
914 	BUG_ON(*new_len != new_flen);
915 	return 0;
916 err:
917 	kfree(addrs);
918 	return -EINVAL;
919 }
920 
921 /* Security:
922  *
923  * As we dont want to clear mem[] array for each packet going through
924  * __bpf_prog_run(), we check that filter loaded by user never try to read
925  * a cell if not previously written, and we check all branches to be sure
926  * a malicious user doesn't try to abuse us.
927  */
check_load_and_stores(const struct sock_filter * filter,int flen)928 static int check_load_and_stores(const struct sock_filter *filter, int flen)
929 {
930 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
931 	int pc, ret = 0;
932 
933 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
934 
935 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
936 	if (!masks)
937 		return -ENOMEM;
938 
939 	memset(masks, 0xff, flen * sizeof(*masks));
940 
941 	for (pc = 0; pc < flen; pc++) {
942 		memvalid &= masks[pc];
943 
944 		switch (filter[pc].code) {
945 		case BPF_ST:
946 		case BPF_STX:
947 			memvalid |= (1 << filter[pc].k);
948 			break;
949 		case BPF_LD | BPF_MEM:
950 		case BPF_LDX | BPF_MEM:
951 			if (!(memvalid & (1 << filter[pc].k))) {
952 				ret = -EINVAL;
953 				goto error;
954 			}
955 			break;
956 		case BPF_JMP | BPF_JA:
957 			/* A jump must set masks on target */
958 			masks[pc + 1 + filter[pc].k] &= memvalid;
959 			memvalid = ~0;
960 			break;
961 		case BPF_JMP | BPF_JEQ | BPF_K:
962 		case BPF_JMP | BPF_JEQ | BPF_X:
963 		case BPF_JMP | BPF_JGE | BPF_K:
964 		case BPF_JMP | BPF_JGE | BPF_X:
965 		case BPF_JMP | BPF_JGT | BPF_K:
966 		case BPF_JMP | BPF_JGT | BPF_X:
967 		case BPF_JMP | BPF_JSET | BPF_K:
968 		case BPF_JMP | BPF_JSET | BPF_X:
969 			/* A jump must set masks on targets */
970 			masks[pc + 1 + filter[pc].jt] &= memvalid;
971 			masks[pc + 1 + filter[pc].jf] &= memvalid;
972 			memvalid = ~0;
973 			break;
974 		}
975 	}
976 error:
977 	kfree(masks);
978 	return ret;
979 }
980 
chk_code_allowed(u16 code_to_probe)981 static bool chk_code_allowed(u16 code_to_probe)
982 {
983 	static const bool codes[] = {
984 		/* 32 bit ALU operations */
985 		[BPF_ALU | BPF_ADD | BPF_K] = true,
986 		[BPF_ALU | BPF_ADD | BPF_X] = true,
987 		[BPF_ALU | BPF_SUB | BPF_K] = true,
988 		[BPF_ALU | BPF_SUB | BPF_X] = true,
989 		[BPF_ALU | BPF_MUL | BPF_K] = true,
990 		[BPF_ALU | BPF_MUL | BPF_X] = true,
991 		[BPF_ALU | BPF_DIV | BPF_K] = true,
992 		[BPF_ALU | BPF_DIV | BPF_X] = true,
993 		[BPF_ALU | BPF_MOD | BPF_K] = true,
994 		[BPF_ALU | BPF_MOD | BPF_X] = true,
995 		[BPF_ALU | BPF_AND | BPF_K] = true,
996 		[BPF_ALU | BPF_AND | BPF_X] = true,
997 		[BPF_ALU | BPF_OR | BPF_K] = true,
998 		[BPF_ALU | BPF_OR | BPF_X] = true,
999 		[BPF_ALU | BPF_XOR | BPF_K] = true,
1000 		[BPF_ALU | BPF_XOR | BPF_X] = true,
1001 		[BPF_ALU | BPF_LSH | BPF_K] = true,
1002 		[BPF_ALU | BPF_LSH | BPF_X] = true,
1003 		[BPF_ALU | BPF_RSH | BPF_K] = true,
1004 		[BPF_ALU | BPF_RSH | BPF_X] = true,
1005 		[BPF_ALU | BPF_NEG] = true,
1006 		/* Load instructions */
1007 		[BPF_LD | BPF_W | BPF_ABS] = true,
1008 		[BPF_LD | BPF_H | BPF_ABS] = true,
1009 		[BPF_LD | BPF_B | BPF_ABS] = true,
1010 		[BPF_LD | BPF_W | BPF_LEN] = true,
1011 		[BPF_LD | BPF_W | BPF_IND] = true,
1012 		[BPF_LD | BPF_H | BPF_IND] = true,
1013 		[BPF_LD | BPF_B | BPF_IND] = true,
1014 		[BPF_LD | BPF_IMM] = true,
1015 		[BPF_LD | BPF_MEM] = true,
1016 		[BPF_LDX | BPF_W | BPF_LEN] = true,
1017 		[BPF_LDX | BPF_B | BPF_MSH] = true,
1018 		[BPF_LDX | BPF_IMM] = true,
1019 		[BPF_LDX | BPF_MEM] = true,
1020 		/* Store instructions */
1021 		[BPF_ST] = true,
1022 		[BPF_STX] = true,
1023 		/* Misc instructions */
1024 		[BPF_MISC | BPF_TAX] = true,
1025 		[BPF_MISC | BPF_TXA] = true,
1026 		/* Return instructions */
1027 		[BPF_RET | BPF_K] = true,
1028 		[BPF_RET | BPF_A] = true,
1029 		/* Jump instructions */
1030 		[BPF_JMP | BPF_JA] = true,
1031 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1032 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1033 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1034 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1035 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1036 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1037 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1038 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1039 	};
1040 
1041 	if (code_to_probe >= ARRAY_SIZE(codes))
1042 		return false;
1043 
1044 	return codes[code_to_probe];
1045 }
1046 
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1047 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1048 				unsigned int flen)
1049 {
1050 	if (filter == NULL)
1051 		return false;
1052 	if (flen == 0 || flen > BPF_MAXINSNS)
1053 		return false;
1054 
1055 	return true;
1056 }
1057 
1058 /**
1059  *	bpf_check_classic - verify socket filter code
1060  *	@filter: filter to verify
1061  *	@flen: length of filter
1062  *
1063  * Check the user's filter code. If we let some ugly
1064  * filter code slip through kaboom! The filter must contain
1065  * no references or jumps that are out of range, no illegal
1066  * instructions, and must end with a RET instruction.
1067  *
1068  * All jumps are forward as they are not signed.
1069  *
1070  * Returns 0 if the rule set is legal or -EINVAL if not.
1071  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1072 static int bpf_check_classic(const struct sock_filter *filter,
1073 			     unsigned int flen)
1074 {
1075 	bool anc_found;
1076 	int pc;
1077 
1078 	/* Check the filter code now */
1079 	for (pc = 0; pc < flen; pc++) {
1080 		const struct sock_filter *ftest = &filter[pc];
1081 
1082 		/* May we actually operate on this code? */
1083 		if (!chk_code_allowed(ftest->code))
1084 			return -EINVAL;
1085 
1086 		/* Some instructions need special checks */
1087 		switch (ftest->code) {
1088 		case BPF_ALU | BPF_DIV | BPF_K:
1089 		case BPF_ALU | BPF_MOD | BPF_K:
1090 			/* Check for division by zero */
1091 			if (ftest->k == 0)
1092 				return -EINVAL;
1093 			break;
1094 		case BPF_ALU | BPF_LSH | BPF_K:
1095 		case BPF_ALU | BPF_RSH | BPF_K:
1096 			if (ftest->k >= 32)
1097 				return -EINVAL;
1098 			break;
1099 		case BPF_LD | BPF_MEM:
1100 		case BPF_LDX | BPF_MEM:
1101 		case BPF_ST:
1102 		case BPF_STX:
1103 			/* Check for invalid memory addresses */
1104 			if (ftest->k >= BPF_MEMWORDS)
1105 				return -EINVAL;
1106 			break;
1107 		case BPF_JMP | BPF_JA:
1108 			/* Note, the large ftest->k might cause loops.
1109 			 * Compare this with conditional jumps below,
1110 			 * where offsets are limited. --ANK (981016)
1111 			 */
1112 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1113 				return -EINVAL;
1114 			break;
1115 		case BPF_JMP | BPF_JEQ | BPF_K:
1116 		case BPF_JMP | BPF_JEQ | BPF_X:
1117 		case BPF_JMP | BPF_JGE | BPF_K:
1118 		case BPF_JMP | BPF_JGE | BPF_X:
1119 		case BPF_JMP | BPF_JGT | BPF_K:
1120 		case BPF_JMP | BPF_JGT | BPF_X:
1121 		case BPF_JMP | BPF_JSET | BPF_K:
1122 		case BPF_JMP | BPF_JSET | BPF_X:
1123 			/* Both conditionals must be safe */
1124 			if (pc + ftest->jt + 1 >= flen ||
1125 			    pc + ftest->jf + 1 >= flen)
1126 				return -EINVAL;
1127 			break;
1128 		case BPF_LD | BPF_W | BPF_ABS:
1129 		case BPF_LD | BPF_H | BPF_ABS:
1130 		case BPF_LD | BPF_B | BPF_ABS:
1131 			anc_found = false;
1132 			if (bpf_anc_helper(ftest) & BPF_ANC)
1133 				anc_found = true;
1134 			/* Ancillary operation unknown or unsupported */
1135 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1136 				return -EINVAL;
1137 		}
1138 	}
1139 
1140 	/* Last instruction must be a RET code */
1141 	switch (filter[flen - 1].code) {
1142 	case BPF_RET | BPF_K:
1143 	case BPF_RET | BPF_A:
1144 		return check_load_and_stores(filter, flen);
1145 	}
1146 
1147 	return -EINVAL;
1148 }
1149 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1150 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1151 				      const struct sock_fprog *fprog)
1152 {
1153 	unsigned int fsize = bpf_classic_proglen(fprog);
1154 	struct sock_fprog_kern *fkprog;
1155 
1156 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1157 	if (!fp->orig_prog)
1158 		return -ENOMEM;
1159 
1160 	fkprog = fp->orig_prog;
1161 	fkprog->len = fprog->len;
1162 
1163 	fkprog->filter = kmemdup(fp->insns, fsize,
1164 				 GFP_KERNEL | __GFP_NOWARN);
1165 	if (!fkprog->filter) {
1166 		kfree(fp->orig_prog);
1167 		return -ENOMEM;
1168 	}
1169 
1170 	return 0;
1171 }
1172 
bpf_release_orig_filter(struct bpf_prog * fp)1173 static void bpf_release_orig_filter(struct bpf_prog *fp)
1174 {
1175 	struct sock_fprog_kern *fprog = fp->orig_prog;
1176 
1177 	if (fprog) {
1178 		kfree(fprog->filter);
1179 		kfree(fprog);
1180 	}
1181 }
1182 
__bpf_prog_release(struct bpf_prog * prog)1183 static void __bpf_prog_release(struct bpf_prog *prog)
1184 {
1185 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1186 		bpf_prog_put(prog);
1187 	} else {
1188 		bpf_release_orig_filter(prog);
1189 		bpf_prog_free(prog);
1190 	}
1191 }
1192 
__sk_filter_release(struct sk_filter * fp)1193 static void __sk_filter_release(struct sk_filter *fp)
1194 {
1195 	__bpf_prog_release(fp->prog);
1196 	kfree(fp);
1197 }
1198 
1199 /**
1200  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1201  *	@rcu: rcu_head that contains the sk_filter to free
1202  */
sk_filter_release_rcu(struct rcu_head * rcu)1203 static void sk_filter_release_rcu(struct rcu_head *rcu)
1204 {
1205 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1206 
1207 	__sk_filter_release(fp);
1208 }
1209 
1210 /**
1211  *	sk_filter_release - release a socket filter
1212  *	@fp: filter to remove
1213  *
1214  *	Remove a filter from a socket and release its resources.
1215  */
sk_filter_release(struct sk_filter * fp)1216 static void sk_filter_release(struct sk_filter *fp)
1217 {
1218 	if (refcount_dec_and_test(&fp->refcnt))
1219 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1220 }
1221 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1222 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1223 {
1224 	u32 filter_size = bpf_prog_size(fp->prog->len);
1225 
1226 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1227 	sk_filter_release(fp);
1228 }
1229 
1230 /* try to charge the socket memory if there is space available
1231  * return true on success
1232  */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1233 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1234 {
1235 	int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1236 	u32 filter_size = bpf_prog_size(fp->prog->len);
1237 
1238 	/* same check as in sock_kmalloc() */
1239 	if (filter_size <= optmem_max &&
1240 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1241 		atomic_add(filter_size, &sk->sk_omem_alloc);
1242 		return true;
1243 	}
1244 	return false;
1245 }
1246 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1247 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1248 {
1249 	if (!refcount_inc_not_zero(&fp->refcnt))
1250 		return false;
1251 
1252 	if (!__sk_filter_charge(sk, fp)) {
1253 		sk_filter_release(fp);
1254 		return false;
1255 	}
1256 	return true;
1257 }
1258 
bpf_migrate_filter(struct bpf_prog * fp)1259 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1260 {
1261 	struct sock_filter *old_prog;
1262 	struct bpf_prog *old_fp;
1263 	int err, new_len, old_len = fp->len;
1264 	bool seen_ld_abs = false;
1265 
1266 	/* We are free to overwrite insns et al right here as it won't be used at
1267 	 * this point in time anymore internally after the migration to the eBPF
1268 	 * instruction representation.
1269 	 */
1270 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1271 		     sizeof(struct bpf_insn));
1272 
1273 	/* Conversion cannot happen on overlapping memory areas,
1274 	 * so we need to keep the user BPF around until the 2nd
1275 	 * pass. At this time, the user BPF is stored in fp->insns.
1276 	 */
1277 	old_prog = kmemdup_array(fp->insns, old_len, sizeof(struct sock_filter),
1278 				 GFP_KERNEL | __GFP_NOWARN);
1279 	if (!old_prog) {
1280 		err = -ENOMEM;
1281 		goto out_err;
1282 	}
1283 
1284 	/* 1st pass: calculate the new program length. */
1285 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1286 				 &seen_ld_abs);
1287 	if (err)
1288 		goto out_err_free;
1289 
1290 	/* Expand fp for appending the new filter representation. */
1291 	old_fp = fp;
1292 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1293 	if (!fp) {
1294 		/* The old_fp is still around in case we couldn't
1295 		 * allocate new memory, so uncharge on that one.
1296 		 */
1297 		fp = old_fp;
1298 		err = -ENOMEM;
1299 		goto out_err_free;
1300 	}
1301 
1302 	fp->len = new_len;
1303 
1304 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1305 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1306 				 &seen_ld_abs);
1307 	if (err)
1308 		/* 2nd bpf_convert_filter() can fail only if it fails
1309 		 * to allocate memory, remapping must succeed. Note,
1310 		 * that at this time old_fp has already been released
1311 		 * by krealloc().
1312 		 */
1313 		goto out_err_free;
1314 
1315 	fp = bpf_prog_select_runtime(fp, &err);
1316 	if (err)
1317 		goto out_err_free;
1318 
1319 	kfree(old_prog);
1320 	return fp;
1321 
1322 out_err_free:
1323 	kfree(old_prog);
1324 out_err:
1325 	__bpf_prog_release(fp);
1326 	return ERR_PTR(err);
1327 }
1328 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1329 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1330 					   bpf_aux_classic_check_t trans)
1331 {
1332 	int err;
1333 
1334 	fp->bpf_func = NULL;
1335 	fp->jited = 0;
1336 
1337 	err = bpf_check_classic(fp->insns, fp->len);
1338 	if (err) {
1339 		__bpf_prog_release(fp);
1340 		return ERR_PTR(err);
1341 	}
1342 
1343 	/* There might be additional checks and transformations
1344 	 * needed on classic filters, f.e. in case of seccomp.
1345 	 */
1346 	if (trans) {
1347 		err = trans(fp->insns, fp->len);
1348 		if (err) {
1349 			__bpf_prog_release(fp);
1350 			return ERR_PTR(err);
1351 		}
1352 	}
1353 
1354 	/* Probe if we can JIT compile the filter and if so, do
1355 	 * the compilation of the filter.
1356 	 */
1357 	bpf_jit_compile(fp);
1358 
1359 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1360 	 * for the optimized interpreter.
1361 	 */
1362 	if (!fp->jited)
1363 		fp = bpf_migrate_filter(fp);
1364 
1365 	return fp;
1366 }
1367 
1368 /**
1369  *	bpf_prog_create - create an unattached filter
1370  *	@pfp: the unattached filter that is created
1371  *	@fprog: the filter program
1372  *
1373  * Create a filter independent of any socket. We first run some
1374  * sanity checks on it to make sure it does not explode on us later.
1375  * If an error occurs or there is insufficient memory for the filter
1376  * a negative errno code is returned. On success the return is zero.
1377  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1378 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1379 {
1380 	unsigned int fsize = bpf_classic_proglen(fprog);
1381 	struct bpf_prog *fp;
1382 
1383 	/* Make sure new filter is there and in the right amounts. */
1384 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1385 		return -EINVAL;
1386 
1387 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1388 	if (!fp)
1389 		return -ENOMEM;
1390 
1391 	memcpy(fp->insns, fprog->filter, fsize);
1392 
1393 	fp->len = fprog->len;
1394 	/* Since unattached filters are not copied back to user
1395 	 * space through sk_get_filter(), we do not need to hold
1396 	 * a copy here, and can spare us the work.
1397 	 */
1398 	fp->orig_prog = NULL;
1399 
1400 	/* bpf_prepare_filter() already takes care of freeing
1401 	 * memory in case something goes wrong.
1402 	 */
1403 	fp = bpf_prepare_filter(fp, NULL);
1404 	if (IS_ERR(fp))
1405 		return PTR_ERR(fp);
1406 
1407 	*pfp = fp;
1408 	return 0;
1409 }
1410 EXPORT_SYMBOL_GPL(bpf_prog_create);
1411 
1412 /**
1413  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1414  *	@pfp: the unattached filter that is created
1415  *	@fprog: the filter program
1416  *	@trans: post-classic verifier transformation handler
1417  *	@save_orig: save classic BPF program
1418  *
1419  * This function effectively does the same as bpf_prog_create(), only
1420  * that it builds up its insns buffer from user space provided buffer.
1421  * It also allows for passing a bpf_aux_classic_check_t handler.
1422  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1423 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1424 			      bpf_aux_classic_check_t trans, bool save_orig)
1425 {
1426 	unsigned int fsize = bpf_classic_proglen(fprog);
1427 	struct bpf_prog *fp;
1428 	int err;
1429 
1430 	/* Make sure new filter is there and in the right amounts. */
1431 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1432 		return -EINVAL;
1433 
1434 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1435 	if (!fp)
1436 		return -ENOMEM;
1437 
1438 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1439 		__bpf_prog_free(fp);
1440 		return -EFAULT;
1441 	}
1442 
1443 	fp->len = fprog->len;
1444 	fp->orig_prog = NULL;
1445 
1446 	if (save_orig) {
1447 		err = bpf_prog_store_orig_filter(fp, fprog);
1448 		if (err) {
1449 			__bpf_prog_free(fp);
1450 			return -ENOMEM;
1451 		}
1452 	}
1453 
1454 	/* bpf_prepare_filter() already takes care of freeing
1455 	 * memory in case something goes wrong.
1456 	 */
1457 	fp = bpf_prepare_filter(fp, trans);
1458 	if (IS_ERR(fp))
1459 		return PTR_ERR(fp);
1460 
1461 	*pfp = fp;
1462 	return 0;
1463 }
1464 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1465 
bpf_prog_destroy(struct bpf_prog * fp)1466 void bpf_prog_destroy(struct bpf_prog *fp)
1467 {
1468 	__bpf_prog_release(fp);
1469 }
1470 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1471 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1472 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1473 {
1474 	struct sk_filter *fp, *old_fp;
1475 
1476 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1477 	if (!fp)
1478 		return -ENOMEM;
1479 
1480 	fp->prog = prog;
1481 
1482 	if (!__sk_filter_charge(sk, fp)) {
1483 		kfree(fp);
1484 		return -ENOMEM;
1485 	}
1486 	refcount_set(&fp->refcnt, 1);
1487 
1488 	old_fp = rcu_dereference_protected(sk->sk_filter,
1489 					   lockdep_sock_is_held(sk));
1490 	rcu_assign_pointer(sk->sk_filter, fp);
1491 
1492 	if (old_fp)
1493 		sk_filter_uncharge(sk, old_fp);
1494 
1495 	return 0;
1496 }
1497 
1498 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1499 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1500 {
1501 	unsigned int fsize = bpf_classic_proglen(fprog);
1502 	struct bpf_prog *prog;
1503 	int err;
1504 
1505 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1506 		return ERR_PTR(-EPERM);
1507 
1508 	/* Make sure new filter is there and in the right amounts. */
1509 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1510 		return ERR_PTR(-EINVAL);
1511 
1512 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1513 	if (!prog)
1514 		return ERR_PTR(-ENOMEM);
1515 
1516 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1517 		__bpf_prog_free(prog);
1518 		return ERR_PTR(-EFAULT);
1519 	}
1520 
1521 	prog->len = fprog->len;
1522 
1523 	err = bpf_prog_store_orig_filter(prog, fprog);
1524 	if (err) {
1525 		__bpf_prog_free(prog);
1526 		return ERR_PTR(-ENOMEM);
1527 	}
1528 
1529 	/* bpf_prepare_filter() already takes care of freeing
1530 	 * memory in case something goes wrong.
1531 	 */
1532 	return bpf_prepare_filter(prog, NULL);
1533 }
1534 
1535 /**
1536  *	sk_attach_filter - attach a socket filter
1537  *	@fprog: the filter program
1538  *	@sk: the socket to use
1539  *
1540  * Attach the user's filter code. We first run some sanity checks on
1541  * it to make sure it does not explode on us later. If an error
1542  * occurs or there is insufficient memory for the filter a negative
1543  * errno code is returned. On success the return is zero.
1544  */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1545 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1546 {
1547 	struct bpf_prog *prog = __get_filter(fprog, sk);
1548 	int err;
1549 
1550 	if (IS_ERR(prog))
1551 		return PTR_ERR(prog);
1552 
1553 	err = __sk_attach_prog(prog, sk);
1554 	if (err < 0) {
1555 		__bpf_prog_release(prog);
1556 		return err;
1557 	}
1558 
1559 	return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(sk_attach_filter);
1562 
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1563 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1564 {
1565 	struct bpf_prog *prog = __get_filter(fprog, sk);
1566 	int err, optmem_max;
1567 
1568 	if (IS_ERR(prog))
1569 		return PTR_ERR(prog);
1570 
1571 	optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1572 	if (bpf_prog_size(prog->len) > optmem_max)
1573 		err = -ENOMEM;
1574 	else
1575 		err = reuseport_attach_prog(sk, prog);
1576 
1577 	if (err)
1578 		__bpf_prog_release(prog);
1579 
1580 	return err;
1581 }
1582 
__get_bpf(u32 ufd,struct sock * sk)1583 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1584 {
1585 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1586 		return ERR_PTR(-EPERM);
1587 
1588 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1589 }
1590 
sk_attach_bpf(u32 ufd,struct sock * sk)1591 int sk_attach_bpf(u32 ufd, struct sock *sk)
1592 {
1593 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1594 	int err;
1595 
1596 	if (IS_ERR(prog))
1597 		return PTR_ERR(prog);
1598 
1599 	err = __sk_attach_prog(prog, sk);
1600 	if (err < 0) {
1601 		bpf_prog_put(prog);
1602 		return err;
1603 	}
1604 
1605 	return 0;
1606 }
1607 
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1608 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1609 {
1610 	struct bpf_prog *prog;
1611 	int err, optmem_max;
1612 
1613 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1614 		return -EPERM;
1615 
1616 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1617 	if (PTR_ERR(prog) == -EINVAL)
1618 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1619 	if (IS_ERR(prog))
1620 		return PTR_ERR(prog);
1621 
1622 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1623 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1624 		 * bpf prog (e.g. sockmap).  It depends on the
1625 		 * limitation imposed by bpf_prog_load().
1626 		 * Hence, sysctl_optmem_max is not checked.
1627 		 */
1628 		if ((sk->sk_type != SOCK_STREAM &&
1629 		     sk->sk_type != SOCK_DGRAM) ||
1630 		    (sk->sk_protocol != IPPROTO_UDP &&
1631 		     sk->sk_protocol != IPPROTO_TCP) ||
1632 		    (sk->sk_family != AF_INET &&
1633 		     sk->sk_family != AF_INET6)) {
1634 			err = -ENOTSUPP;
1635 			goto err_prog_put;
1636 		}
1637 	} else {
1638 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1639 		optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1640 		if (bpf_prog_size(prog->len) > optmem_max) {
1641 			err = -ENOMEM;
1642 			goto err_prog_put;
1643 		}
1644 	}
1645 
1646 	err = reuseport_attach_prog(sk, prog);
1647 err_prog_put:
1648 	if (err)
1649 		bpf_prog_put(prog);
1650 
1651 	return err;
1652 }
1653 
sk_reuseport_prog_free(struct bpf_prog * prog)1654 void sk_reuseport_prog_free(struct bpf_prog *prog)
1655 {
1656 	if (!prog)
1657 		return;
1658 
1659 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1660 		bpf_prog_put(prog);
1661 	else
1662 		bpf_prog_destroy(prog);
1663 }
1664 
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1665 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1666 					  unsigned int write_len)
1667 {
1668 #ifdef CONFIG_DEBUG_NET
1669 	/* Avoid a splat in pskb_may_pull_reason() */
1670 	if (write_len > INT_MAX)
1671 		return -EINVAL;
1672 #endif
1673 	return skb_ensure_writable(skb, write_len);
1674 }
1675 
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1676 static inline int bpf_try_make_writable(struct sk_buff *skb,
1677 					unsigned int write_len)
1678 {
1679 	int err = __bpf_try_make_writable(skb, write_len);
1680 
1681 	bpf_compute_data_pointers(skb);
1682 	return err;
1683 }
1684 
bpf_try_make_head_writable(struct sk_buff * skb)1685 static int bpf_try_make_head_writable(struct sk_buff *skb)
1686 {
1687 	return bpf_try_make_writable(skb, skb_headlen(skb));
1688 }
1689 
bpf_push_mac_rcsum(struct sk_buff * skb)1690 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1691 {
1692 	if (skb_at_tc_ingress(skb))
1693 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1694 }
1695 
bpf_pull_mac_rcsum(struct sk_buff * skb)1696 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1697 {
1698 	if (skb_at_tc_ingress(skb))
1699 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1700 }
1701 
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1702 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1703 	   const void *, from, u32, len, u64, flags)
1704 {
1705 	void *ptr;
1706 
1707 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1708 		return -EINVAL;
1709 	if (unlikely(offset > INT_MAX))
1710 		return -EFAULT;
1711 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1712 		return -EFAULT;
1713 
1714 	ptr = skb->data + offset;
1715 	if (flags & BPF_F_RECOMPUTE_CSUM)
1716 		__skb_postpull_rcsum(skb, ptr, len, offset);
1717 
1718 	memcpy(ptr, from, len);
1719 
1720 	if (flags & BPF_F_RECOMPUTE_CSUM)
1721 		__skb_postpush_rcsum(skb, ptr, len, offset);
1722 	if (flags & BPF_F_INVALIDATE_HASH)
1723 		skb_clear_hash(skb);
1724 
1725 	return 0;
1726 }
1727 
1728 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1729 	.func		= bpf_skb_store_bytes,
1730 	.gpl_only	= false,
1731 	.ret_type	= RET_INTEGER,
1732 	.arg1_type	= ARG_PTR_TO_CTX,
1733 	.arg2_type	= ARG_ANYTHING,
1734 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1735 	.arg4_type	= ARG_CONST_SIZE,
1736 	.arg5_type	= ARG_ANYTHING,
1737 };
1738 
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1739 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1740 			  u32 len, u64 flags)
1741 {
1742 	return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1743 }
1744 
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1745 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1746 	   void *, to, u32, len)
1747 {
1748 	void *ptr;
1749 
1750 	if (unlikely(offset > INT_MAX))
1751 		goto err_clear;
1752 
1753 	ptr = skb_header_pointer(skb, offset, len, to);
1754 	if (unlikely(!ptr))
1755 		goto err_clear;
1756 	if (ptr != to)
1757 		memcpy(to, ptr, len);
1758 
1759 	return 0;
1760 err_clear:
1761 	memset(to, 0, len);
1762 	return -EFAULT;
1763 }
1764 
1765 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1766 	.func		= bpf_skb_load_bytes,
1767 	.gpl_only	= false,
1768 	.ret_type	= RET_INTEGER,
1769 	.arg1_type	= ARG_PTR_TO_CTX,
1770 	.arg2_type	= ARG_ANYTHING,
1771 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1772 	.arg4_type	= ARG_CONST_SIZE,
1773 };
1774 
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1775 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1776 {
1777 	return ____bpf_skb_load_bytes(skb, offset, to, len);
1778 }
1779 
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1780 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1781 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1782 	   void *, to, u32, len)
1783 {
1784 	void *ptr;
1785 
1786 	if (unlikely(offset > 0xffff))
1787 		goto err_clear;
1788 
1789 	if (unlikely(!ctx->skb))
1790 		goto err_clear;
1791 
1792 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1793 	if (unlikely(!ptr))
1794 		goto err_clear;
1795 	if (ptr != to)
1796 		memcpy(to, ptr, len);
1797 
1798 	return 0;
1799 err_clear:
1800 	memset(to, 0, len);
1801 	return -EFAULT;
1802 }
1803 
1804 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1805 	.func		= bpf_flow_dissector_load_bytes,
1806 	.gpl_only	= false,
1807 	.ret_type	= RET_INTEGER,
1808 	.arg1_type	= ARG_PTR_TO_CTX,
1809 	.arg2_type	= ARG_ANYTHING,
1810 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1811 	.arg4_type	= ARG_CONST_SIZE,
1812 };
1813 
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1814 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1815 	   u32, offset, void *, to, u32, len, u32, start_header)
1816 {
1817 	u8 *end = skb_tail_pointer(skb);
1818 	u8 *start, *ptr;
1819 
1820 	if (unlikely(offset > 0xffff))
1821 		goto err_clear;
1822 
1823 	switch (start_header) {
1824 	case BPF_HDR_START_MAC:
1825 		if (unlikely(!skb_mac_header_was_set(skb)))
1826 			goto err_clear;
1827 		start = skb_mac_header(skb);
1828 		break;
1829 	case BPF_HDR_START_NET:
1830 		start = skb_network_header(skb);
1831 		break;
1832 	default:
1833 		goto err_clear;
1834 	}
1835 
1836 	ptr = start + offset;
1837 
1838 	if (likely(ptr + len <= end)) {
1839 		memcpy(to, ptr, len);
1840 		return 0;
1841 	}
1842 
1843 err_clear:
1844 	memset(to, 0, len);
1845 	return -EFAULT;
1846 }
1847 
1848 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1849 	.func		= bpf_skb_load_bytes_relative,
1850 	.gpl_only	= false,
1851 	.ret_type	= RET_INTEGER,
1852 	.arg1_type	= ARG_PTR_TO_CTX,
1853 	.arg2_type	= ARG_ANYTHING,
1854 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1855 	.arg4_type	= ARG_CONST_SIZE,
1856 	.arg5_type	= ARG_ANYTHING,
1857 };
1858 
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1859 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1860 {
1861 	/* Idea is the following: should the needed direct read/write
1862 	 * test fail during runtime, we can pull in more data and redo
1863 	 * again, since implicitly, we invalidate previous checks here.
1864 	 *
1865 	 * Or, since we know how much we need to make read/writeable,
1866 	 * this can be done once at the program beginning for direct
1867 	 * access case. By this we overcome limitations of only current
1868 	 * headroom being accessible.
1869 	 */
1870 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1871 }
1872 
1873 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1874 	.func		= bpf_skb_pull_data,
1875 	.gpl_only	= false,
1876 	.ret_type	= RET_INTEGER,
1877 	.arg1_type	= ARG_PTR_TO_CTX,
1878 	.arg2_type	= ARG_ANYTHING,
1879 };
1880 
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1881 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1882 {
1883 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1884 }
1885 
1886 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1887 	.func		= bpf_sk_fullsock,
1888 	.gpl_only	= false,
1889 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1890 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1891 };
1892 
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1893 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1894 					   unsigned int write_len)
1895 {
1896 	return __bpf_try_make_writable(skb, write_len);
1897 }
1898 
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1899 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1900 {
1901 	/* Idea is the following: should the needed direct read/write
1902 	 * test fail during runtime, we can pull in more data and redo
1903 	 * again, since implicitly, we invalidate previous checks here.
1904 	 *
1905 	 * Or, since we know how much we need to make read/writeable,
1906 	 * this can be done once at the program beginning for direct
1907 	 * access case. By this we overcome limitations of only current
1908 	 * headroom being accessible.
1909 	 */
1910 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1911 }
1912 
1913 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1914 	.func		= sk_skb_pull_data,
1915 	.gpl_only	= false,
1916 	.ret_type	= RET_INTEGER,
1917 	.arg1_type	= ARG_PTR_TO_CTX,
1918 	.arg2_type	= ARG_ANYTHING,
1919 };
1920 
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1921 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1922 	   u64, from, u64, to, u64, flags)
1923 {
1924 	__sum16 *ptr;
1925 
1926 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1927 		return -EINVAL;
1928 	if (unlikely(offset > 0xffff || offset & 1))
1929 		return -EFAULT;
1930 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1931 		return -EFAULT;
1932 
1933 	ptr = (__sum16 *)(skb->data + offset);
1934 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1935 	case 0:
1936 		if (unlikely(from != 0))
1937 			return -EINVAL;
1938 
1939 		csum_replace_by_diff(ptr, to);
1940 		break;
1941 	case 2:
1942 		csum_replace2(ptr, from, to);
1943 		break;
1944 	case 4:
1945 		csum_replace4(ptr, from, to);
1946 		break;
1947 	default:
1948 		return -EINVAL;
1949 	}
1950 
1951 	return 0;
1952 }
1953 
1954 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1955 	.func		= bpf_l3_csum_replace,
1956 	.gpl_only	= false,
1957 	.ret_type	= RET_INTEGER,
1958 	.arg1_type	= ARG_PTR_TO_CTX,
1959 	.arg2_type	= ARG_ANYTHING,
1960 	.arg3_type	= ARG_ANYTHING,
1961 	.arg4_type	= ARG_ANYTHING,
1962 	.arg5_type	= ARG_ANYTHING,
1963 };
1964 
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1965 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1966 	   u64, from, u64, to, u64, flags)
1967 {
1968 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1969 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1970 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1971 	bool is_ipv6   = flags & BPF_F_IPV6;
1972 	__sum16 *ptr;
1973 
1974 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1975 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK | BPF_F_IPV6)))
1976 		return -EINVAL;
1977 	if (unlikely(offset > 0xffff || offset & 1))
1978 		return -EFAULT;
1979 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1980 		return -EFAULT;
1981 
1982 	ptr = (__sum16 *)(skb->data + offset);
1983 	if (is_mmzero && !do_mforce && !*ptr)
1984 		return 0;
1985 
1986 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1987 	case 0:
1988 		if (unlikely(from != 0))
1989 			return -EINVAL;
1990 
1991 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo, is_ipv6);
1992 		break;
1993 	case 2:
1994 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1995 		break;
1996 	case 4:
1997 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1998 		break;
1999 	default:
2000 		return -EINVAL;
2001 	}
2002 
2003 	if (is_mmzero && !*ptr)
2004 		*ptr = CSUM_MANGLED_0;
2005 	return 0;
2006 }
2007 
2008 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2009 	.func		= bpf_l4_csum_replace,
2010 	.gpl_only	= false,
2011 	.ret_type	= RET_INTEGER,
2012 	.arg1_type	= ARG_PTR_TO_CTX,
2013 	.arg2_type	= ARG_ANYTHING,
2014 	.arg3_type	= ARG_ANYTHING,
2015 	.arg4_type	= ARG_ANYTHING,
2016 	.arg5_type	= ARG_ANYTHING,
2017 };
2018 
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)2019 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2020 	   __be32 *, to, u32, to_size, __wsum, seed)
2021 {
2022 	/* This is quite flexible, some examples:
2023 	 *
2024 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2025 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2026 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2027 	 *
2028 	 * Even for diffing, from_size and to_size don't need to be equal.
2029 	 */
2030 
2031 	__wsum ret = seed;
2032 
2033 	if (from_size && to_size)
2034 		ret = csum_sub(csum_partial(to, to_size, ret),
2035 			       csum_partial(from, from_size, 0));
2036 	else if (to_size)
2037 		ret = csum_partial(to, to_size, ret);
2038 
2039 	else if (from_size)
2040 		ret = ~csum_partial(from, from_size, ~ret);
2041 
2042 	return csum_from32to16((__force unsigned int)ret);
2043 }
2044 
2045 static const struct bpf_func_proto bpf_csum_diff_proto = {
2046 	.func		= bpf_csum_diff,
2047 	.gpl_only	= false,
2048 	.pkt_access	= true,
2049 	.ret_type	= RET_INTEGER,
2050 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2051 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2052 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2053 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2054 	.arg5_type	= ARG_ANYTHING,
2055 };
2056 
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2057 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2058 {
2059 	/* The interface is to be used in combination with bpf_csum_diff()
2060 	 * for direct packet writes. csum rotation for alignment as well
2061 	 * as emulating csum_sub() can be done from the eBPF program.
2062 	 */
2063 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2064 		return (skb->csum = csum_add(skb->csum, csum));
2065 
2066 	return -ENOTSUPP;
2067 }
2068 
2069 static const struct bpf_func_proto bpf_csum_update_proto = {
2070 	.func		= bpf_csum_update,
2071 	.gpl_only	= false,
2072 	.ret_type	= RET_INTEGER,
2073 	.arg1_type	= ARG_PTR_TO_CTX,
2074 	.arg2_type	= ARG_ANYTHING,
2075 };
2076 
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2077 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2078 {
2079 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2080 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2081 	 * is passed as flags, for example.
2082 	 */
2083 	switch (level) {
2084 	case BPF_CSUM_LEVEL_INC:
2085 		__skb_incr_checksum_unnecessary(skb);
2086 		break;
2087 	case BPF_CSUM_LEVEL_DEC:
2088 		__skb_decr_checksum_unnecessary(skb);
2089 		break;
2090 	case BPF_CSUM_LEVEL_RESET:
2091 		__skb_reset_checksum_unnecessary(skb);
2092 		break;
2093 	case BPF_CSUM_LEVEL_QUERY:
2094 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2095 		       skb->csum_level : -EACCES;
2096 	default:
2097 		return -EINVAL;
2098 	}
2099 
2100 	return 0;
2101 }
2102 
2103 static const struct bpf_func_proto bpf_csum_level_proto = {
2104 	.func		= bpf_csum_level,
2105 	.gpl_only	= false,
2106 	.ret_type	= RET_INTEGER,
2107 	.arg1_type	= ARG_PTR_TO_CTX,
2108 	.arg2_type	= ARG_ANYTHING,
2109 };
2110 
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2111 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2112 {
2113 	return dev_forward_skb_nomtu(dev, skb);
2114 }
2115 
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2116 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2117 				      struct sk_buff *skb)
2118 {
2119 	int ret = ____dev_forward_skb(dev, skb, false);
2120 
2121 	if (likely(!ret)) {
2122 		skb->dev = dev;
2123 		ret = netif_rx(skb);
2124 	}
2125 
2126 	return ret;
2127 }
2128 
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2129 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2130 {
2131 	int ret;
2132 
2133 	if (dev_xmit_recursion()) {
2134 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2135 		kfree_skb(skb);
2136 		return -ENETDOWN;
2137 	}
2138 
2139 	skb->dev = dev;
2140 	skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2141 	skb_clear_tstamp(skb);
2142 
2143 	dev_xmit_recursion_inc();
2144 	ret = dev_queue_xmit(skb);
2145 	dev_xmit_recursion_dec();
2146 
2147 	return ret;
2148 }
2149 
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2150 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2151 				 u32 flags)
2152 {
2153 	unsigned int mlen = skb_network_offset(skb);
2154 
2155 	if (unlikely(skb->len <= mlen)) {
2156 		kfree_skb(skb);
2157 		return -ERANGE;
2158 	}
2159 
2160 	if (mlen) {
2161 		__skb_pull(skb, mlen);
2162 
2163 		/* At ingress, the mac header has already been pulled once.
2164 		 * At egress, skb_pospull_rcsum has to be done in case that
2165 		 * the skb is originated from ingress (i.e. a forwarded skb)
2166 		 * to ensure that rcsum starts at net header.
2167 		 */
2168 		if (!skb_at_tc_ingress(skb))
2169 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2170 	}
2171 	skb_pop_mac_header(skb);
2172 	skb_reset_mac_len(skb);
2173 	return flags & BPF_F_INGRESS ?
2174 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2175 }
2176 
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2177 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2178 				 u32 flags)
2179 {
2180 	/* Verify that a link layer header is carried */
2181 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2182 		kfree_skb(skb);
2183 		return -ERANGE;
2184 	}
2185 
2186 	bpf_push_mac_rcsum(skb);
2187 	return flags & BPF_F_INGRESS ?
2188 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2189 }
2190 
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2191 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2192 			  u32 flags)
2193 {
2194 	if (dev_is_mac_header_xmit(dev))
2195 		return __bpf_redirect_common(skb, dev, flags);
2196 	else
2197 		return __bpf_redirect_no_mac(skb, dev, flags);
2198 }
2199 
2200 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2201 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2202 			    struct net_device *dev, struct bpf_nh_params *nh)
2203 {
2204 	u32 hh_len = LL_RESERVED_SPACE(dev);
2205 	const struct in6_addr *nexthop;
2206 	struct dst_entry *dst = NULL;
2207 	struct neighbour *neigh;
2208 
2209 	if (dev_xmit_recursion()) {
2210 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2211 		goto out_drop;
2212 	}
2213 
2214 	skb->dev = dev;
2215 	skb_clear_tstamp(skb);
2216 
2217 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2218 		skb = skb_expand_head(skb, hh_len);
2219 		if (!skb)
2220 			return -ENOMEM;
2221 	}
2222 
2223 	rcu_read_lock();
2224 	if (!nh) {
2225 		dst = skb_dst(skb);
2226 		nexthop = rt6_nexthop(dst_rt6_info(dst),
2227 				      &ipv6_hdr(skb)->daddr);
2228 	} else {
2229 		nexthop = &nh->ipv6_nh;
2230 	}
2231 	neigh = ip_neigh_gw6(dev, nexthop);
2232 	if (likely(!IS_ERR(neigh))) {
2233 		int ret;
2234 
2235 		sock_confirm_neigh(skb, neigh);
2236 		local_bh_disable();
2237 		dev_xmit_recursion_inc();
2238 		ret = neigh_output(neigh, skb, false);
2239 		dev_xmit_recursion_dec();
2240 		local_bh_enable();
2241 		rcu_read_unlock();
2242 		return ret;
2243 	}
2244 	rcu_read_unlock();
2245 	if (dst)
2246 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2247 out_drop:
2248 	kfree_skb(skb);
2249 	return -ENETDOWN;
2250 }
2251 
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2252 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2253 				   struct bpf_nh_params *nh)
2254 {
2255 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2256 	struct net *net = dev_net(dev);
2257 	int err, ret = NET_XMIT_DROP;
2258 
2259 	if (!nh) {
2260 		struct dst_entry *dst;
2261 		struct flowi6 fl6 = {
2262 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2263 			.flowi6_mark  = skb->mark,
2264 			.flowlabel    = ip6_flowinfo(ip6h),
2265 			.flowi6_oif   = dev->ifindex,
2266 			.flowi6_proto = ip6h->nexthdr,
2267 			.daddr	      = ip6h->daddr,
2268 			.saddr	      = ip6h->saddr,
2269 		};
2270 
2271 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2272 		if (IS_ERR(dst))
2273 			goto out_drop;
2274 
2275 		skb_dst_set(skb, dst);
2276 	} else if (nh->nh_family != AF_INET6) {
2277 		goto out_drop;
2278 	}
2279 
2280 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2281 	if (unlikely(net_xmit_eval(err)))
2282 		DEV_STATS_INC(dev, tx_errors);
2283 	else
2284 		ret = NET_XMIT_SUCCESS;
2285 	goto out_xmit;
2286 out_drop:
2287 	DEV_STATS_INC(dev, tx_errors);
2288 	kfree_skb(skb);
2289 out_xmit:
2290 	return ret;
2291 }
2292 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2293 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2294 				   struct bpf_nh_params *nh)
2295 {
2296 	kfree_skb(skb);
2297 	return NET_XMIT_DROP;
2298 }
2299 #endif /* CONFIG_IPV6 */
2300 
2301 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2302 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2303 			    struct net_device *dev, struct bpf_nh_params *nh)
2304 {
2305 	u32 hh_len = LL_RESERVED_SPACE(dev);
2306 	struct neighbour *neigh;
2307 	bool is_v6gw = false;
2308 
2309 	if (dev_xmit_recursion()) {
2310 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2311 		goto out_drop;
2312 	}
2313 
2314 	skb->dev = dev;
2315 	skb_clear_tstamp(skb);
2316 
2317 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2318 		skb = skb_expand_head(skb, hh_len);
2319 		if (!skb)
2320 			return -ENOMEM;
2321 	}
2322 
2323 	rcu_read_lock();
2324 	if (!nh) {
2325 		struct rtable *rt = skb_rtable(skb);
2326 
2327 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2328 	} else if (nh->nh_family == AF_INET6) {
2329 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2330 		is_v6gw = true;
2331 	} else if (nh->nh_family == AF_INET) {
2332 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2333 	} else {
2334 		rcu_read_unlock();
2335 		goto out_drop;
2336 	}
2337 
2338 	if (likely(!IS_ERR(neigh))) {
2339 		int ret;
2340 
2341 		sock_confirm_neigh(skb, neigh);
2342 		local_bh_disable();
2343 		dev_xmit_recursion_inc();
2344 		ret = neigh_output(neigh, skb, is_v6gw);
2345 		dev_xmit_recursion_dec();
2346 		local_bh_enable();
2347 		rcu_read_unlock();
2348 		return ret;
2349 	}
2350 	rcu_read_unlock();
2351 out_drop:
2352 	kfree_skb(skb);
2353 	return -ENETDOWN;
2354 }
2355 
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2356 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2357 				   struct bpf_nh_params *nh)
2358 {
2359 	const struct iphdr *ip4h = ip_hdr(skb);
2360 	struct net *net = dev_net(dev);
2361 	int err, ret = NET_XMIT_DROP;
2362 
2363 	if (!nh) {
2364 		struct flowi4 fl4 = {
2365 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2366 			.flowi4_mark  = skb->mark,
2367 			.flowi4_tos   = inet_dscp_to_dsfield(ip4h_dscp(ip4h)),
2368 			.flowi4_oif   = dev->ifindex,
2369 			.flowi4_proto = ip4h->protocol,
2370 			.daddr	      = ip4h->daddr,
2371 			.saddr	      = ip4h->saddr,
2372 		};
2373 		struct rtable *rt;
2374 
2375 		rt = ip_route_output_flow(net, &fl4, NULL);
2376 		if (IS_ERR(rt))
2377 			goto out_drop;
2378 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2379 			ip_rt_put(rt);
2380 			goto out_drop;
2381 		}
2382 
2383 		skb_dst_set(skb, &rt->dst);
2384 	}
2385 
2386 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2387 	if (unlikely(net_xmit_eval(err)))
2388 		DEV_STATS_INC(dev, tx_errors);
2389 	else
2390 		ret = NET_XMIT_SUCCESS;
2391 	goto out_xmit;
2392 out_drop:
2393 	DEV_STATS_INC(dev, tx_errors);
2394 	kfree_skb(skb);
2395 out_xmit:
2396 	return ret;
2397 }
2398 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2399 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2400 				   struct bpf_nh_params *nh)
2401 {
2402 	kfree_skb(skb);
2403 	return NET_XMIT_DROP;
2404 }
2405 #endif /* CONFIG_INET */
2406 
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2407 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2408 				struct bpf_nh_params *nh)
2409 {
2410 	struct ethhdr *ethh = eth_hdr(skb);
2411 
2412 	if (unlikely(skb->mac_header >= skb->network_header))
2413 		goto out;
2414 	bpf_push_mac_rcsum(skb);
2415 	if (is_multicast_ether_addr(ethh->h_dest))
2416 		goto out;
2417 
2418 	skb_pull(skb, sizeof(*ethh));
2419 	skb_unset_mac_header(skb);
2420 	skb_reset_network_header(skb);
2421 
2422 	if (skb->protocol == htons(ETH_P_IP))
2423 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2424 	else if (skb->protocol == htons(ETH_P_IPV6))
2425 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2426 out:
2427 	kfree_skb(skb);
2428 	return -ENOTSUPP;
2429 }
2430 
2431 /* Internal, non-exposed redirect flags. */
2432 enum {
2433 	BPF_F_NEIGH	= (1ULL << 16),
2434 	BPF_F_PEER	= (1ULL << 17),
2435 	BPF_F_NEXTHOP	= (1ULL << 18),
2436 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2437 };
2438 
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2439 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2440 {
2441 	struct net_device *dev;
2442 	struct sk_buff *clone;
2443 	int ret;
2444 
2445 	BUILD_BUG_ON(BPF_F_REDIRECT_INTERNAL & BPF_F_REDIRECT_FLAGS);
2446 
2447 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2448 		return -EINVAL;
2449 
2450 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2451 	if (unlikely(!dev))
2452 		return -EINVAL;
2453 
2454 	clone = skb_clone(skb, GFP_ATOMIC);
2455 	if (unlikely(!clone))
2456 		return -ENOMEM;
2457 
2458 	/* For direct write, we need to keep the invariant that the skbs
2459 	 * we're dealing with need to be uncloned. Should uncloning fail
2460 	 * here, we need to free the just generated clone to unclone once
2461 	 * again.
2462 	 */
2463 	ret = bpf_try_make_head_writable(skb);
2464 	if (unlikely(ret)) {
2465 		kfree_skb(clone);
2466 		return -ENOMEM;
2467 	}
2468 
2469 	return __bpf_redirect(clone, dev, flags);
2470 }
2471 
2472 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2473 	.func           = bpf_clone_redirect,
2474 	.gpl_only       = false,
2475 	.ret_type       = RET_INTEGER,
2476 	.arg1_type      = ARG_PTR_TO_CTX,
2477 	.arg2_type      = ARG_ANYTHING,
2478 	.arg3_type      = ARG_ANYTHING,
2479 };
2480 
skb_get_peer_dev(struct net_device * dev)2481 static struct net_device *skb_get_peer_dev(struct net_device *dev)
2482 {
2483 	const struct net_device_ops *ops = dev->netdev_ops;
2484 
2485 	if (likely(ops->ndo_get_peer_dev))
2486 		return INDIRECT_CALL_1(ops->ndo_get_peer_dev,
2487 				       netkit_peer_dev, dev);
2488 	return NULL;
2489 }
2490 
skb_do_redirect(struct sk_buff * skb)2491 int skb_do_redirect(struct sk_buff *skb)
2492 {
2493 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2494 	struct net *net = dev_net(skb->dev);
2495 	struct net_device *dev;
2496 	u32 flags = ri->flags;
2497 
2498 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2499 	ri->tgt_index = 0;
2500 	ri->flags = 0;
2501 	if (unlikely(!dev))
2502 		goto out_drop;
2503 	if (flags & BPF_F_PEER) {
2504 		if (unlikely(!skb_at_tc_ingress(skb)))
2505 			goto out_drop;
2506 		dev = skb_get_peer_dev(dev);
2507 		if (unlikely(!dev ||
2508 			     !(dev->flags & IFF_UP) ||
2509 			     net_eq(net, dev_net(dev))))
2510 			goto out_drop;
2511 		skb->dev = dev;
2512 		dev_sw_netstats_rx_add(dev, skb->len);
2513 		skb_scrub_packet(skb, false);
2514 		return -EAGAIN;
2515 	}
2516 	return flags & BPF_F_NEIGH ?
2517 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2518 				    &ri->nh : NULL) :
2519 	       __bpf_redirect(skb, dev, flags);
2520 out_drop:
2521 	kfree_skb(skb);
2522 	return -EINVAL;
2523 }
2524 
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2525 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2526 {
2527 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2528 
2529 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2530 		return TC_ACT_SHOT;
2531 
2532 	ri->flags = flags;
2533 	ri->tgt_index = ifindex;
2534 
2535 	return TC_ACT_REDIRECT;
2536 }
2537 
2538 static const struct bpf_func_proto bpf_redirect_proto = {
2539 	.func           = bpf_redirect,
2540 	.gpl_only       = false,
2541 	.ret_type       = RET_INTEGER,
2542 	.arg1_type      = ARG_ANYTHING,
2543 	.arg2_type      = ARG_ANYTHING,
2544 };
2545 
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2546 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2547 {
2548 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2549 
2550 	if (unlikely(flags))
2551 		return TC_ACT_SHOT;
2552 
2553 	ri->flags = BPF_F_PEER;
2554 	ri->tgt_index = ifindex;
2555 
2556 	return TC_ACT_REDIRECT;
2557 }
2558 
2559 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2560 	.func           = bpf_redirect_peer,
2561 	.gpl_only       = false,
2562 	.ret_type       = RET_INTEGER,
2563 	.arg1_type      = ARG_ANYTHING,
2564 	.arg2_type      = ARG_ANYTHING,
2565 };
2566 
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2567 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2568 	   int, plen, u64, flags)
2569 {
2570 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2571 
2572 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2573 		return TC_ACT_SHOT;
2574 
2575 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2576 	ri->tgt_index = ifindex;
2577 
2578 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2579 	if (plen)
2580 		memcpy(&ri->nh, params, sizeof(ri->nh));
2581 
2582 	return TC_ACT_REDIRECT;
2583 }
2584 
2585 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2586 	.func		= bpf_redirect_neigh,
2587 	.gpl_only	= false,
2588 	.ret_type	= RET_INTEGER,
2589 	.arg1_type	= ARG_ANYTHING,
2590 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2591 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2592 	.arg4_type	= ARG_ANYTHING,
2593 };
2594 
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2595 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2596 {
2597 	msg->apply_bytes = bytes;
2598 	return 0;
2599 }
2600 
2601 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2602 	.func           = bpf_msg_apply_bytes,
2603 	.gpl_only       = false,
2604 	.ret_type       = RET_INTEGER,
2605 	.arg1_type	= ARG_PTR_TO_CTX,
2606 	.arg2_type      = ARG_ANYTHING,
2607 };
2608 
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2609 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2610 {
2611 	msg->cork_bytes = bytes;
2612 	return 0;
2613 }
2614 
sk_msg_reset_curr(struct sk_msg * msg)2615 static void sk_msg_reset_curr(struct sk_msg *msg)
2616 {
2617 	if (!msg->sg.size) {
2618 		msg->sg.curr = msg->sg.start;
2619 		msg->sg.copybreak = 0;
2620 	} else {
2621 		u32 i = msg->sg.end;
2622 
2623 		sk_msg_iter_var_prev(i);
2624 		msg->sg.curr = i;
2625 		msg->sg.copybreak = msg->sg.data[i].length;
2626 	}
2627 }
2628 
2629 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2630 	.func           = bpf_msg_cork_bytes,
2631 	.gpl_only       = false,
2632 	.ret_type       = RET_INTEGER,
2633 	.arg1_type	= ARG_PTR_TO_CTX,
2634 	.arg2_type      = ARG_ANYTHING,
2635 };
2636 
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2637 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2638 	   u32, end, u64, flags)
2639 {
2640 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2641 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2642 	struct scatterlist *sge;
2643 	u8 *raw, *to, *from;
2644 	struct page *page;
2645 
2646 	if (unlikely(flags || end <= start))
2647 		return -EINVAL;
2648 
2649 	/* First find the starting scatterlist element */
2650 	i = msg->sg.start;
2651 	do {
2652 		offset += len;
2653 		len = sk_msg_elem(msg, i)->length;
2654 		if (start < offset + len)
2655 			break;
2656 		sk_msg_iter_var_next(i);
2657 	} while (i != msg->sg.end);
2658 
2659 	if (unlikely(start >= offset + len))
2660 		return -EINVAL;
2661 
2662 	first_sge = i;
2663 	/* The start may point into the sg element so we need to also
2664 	 * account for the headroom.
2665 	 */
2666 	bytes_sg_total = start - offset + bytes;
2667 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2668 		goto out;
2669 
2670 	/* At this point we need to linearize multiple scatterlist
2671 	 * elements or a single shared page. Either way we need to
2672 	 * copy into a linear buffer exclusively owned by BPF. Then
2673 	 * place the buffer in the scatterlist and fixup the original
2674 	 * entries by removing the entries now in the linear buffer
2675 	 * and shifting the remaining entries. For now we do not try
2676 	 * to copy partial entries to avoid complexity of running out
2677 	 * of sg_entry slots. The downside is reading a single byte
2678 	 * will copy the entire sg entry.
2679 	 */
2680 	do {
2681 		copy += sk_msg_elem(msg, i)->length;
2682 		sk_msg_iter_var_next(i);
2683 		if (bytes_sg_total <= copy)
2684 			break;
2685 	} while (i != msg->sg.end);
2686 	last_sge = i;
2687 
2688 	if (unlikely(bytes_sg_total > copy))
2689 		return -EINVAL;
2690 
2691 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2692 			   get_order(copy));
2693 	if (unlikely(!page))
2694 		return -ENOMEM;
2695 
2696 	raw = page_address(page);
2697 	i = first_sge;
2698 	do {
2699 		sge = sk_msg_elem(msg, i);
2700 		from = sg_virt(sge);
2701 		len = sge->length;
2702 		to = raw + poffset;
2703 
2704 		memcpy(to, from, len);
2705 		poffset += len;
2706 		sge->length = 0;
2707 		put_page(sg_page(sge));
2708 
2709 		sk_msg_iter_var_next(i);
2710 	} while (i != last_sge);
2711 
2712 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2713 
2714 	/* To repair sg ring we need to shift entries. If we only
2715 	 * had a single entry though we can just replace it and
2716 	 * be done. Otherwise walk the ring and shift the entries.
2717 	 */
2718 	WARN_ON_ONCE(last_sge == first_sge);
2719 	shift = last_sge > first_sge ?
2720 		last_sge - first_sge - 1 :
2721 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2722 	if (!shift)
2723 		goto out;
2724 
2725 	i = first_sge;
2726 	sk_msg_iter_var_next(i);
2727 	do {
2728 		u32 move_from;
2729 
2730 		if (i + shift >= NR_MSG_FRAG_IDS)
2731 			move_from = i + shift - NR_MSG_FRAG_IDS;
2732 		else
2733 			move_from = i + shift;
2734 		if (move_from == msg->sg.end)
2735 			break;
2736 
2737 		msg->sg.data[i] = msg->sg.data[move_from];
2738 		msg->sg.data[move_from].length = 0;
2739 		msg->sg.data[move_from].page_link = 0;
2740 		msg->sg.data[move_from].offset = 0;
2741 		sk_msg_iter_var_next(i);
2742 	} while (1);
2743 
2744 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2745 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2746 		      msg->sg.end - shift;
2747 out:
2748 	sk_msg_reset_curr(msg);
2749 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2750 	msg->data_end = msg->data + bytes;
2751 	return 0;
2752 }
2753 
2754 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2755 	.func		= bpf_msg_pull_data,
2756 	.gpl_only	= false,
2757 	.ret_type	= RET_INTEGER,
2758 	.arg1_type	= ARG_PTR_TO_CTX,
2759 	.arg2_type	= ARG_ANYTHING,
2760 	.arg3_type	= ARG_ANYTHING,
2761 	.arg4_type	= ARG_ANYTHING,
2762 };
2763 
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2764 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2765 	   u32, len, u64, flags)
2766 {
2767 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2768 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2769 	u8 *raw, *to, *from;
2770 	struct page *page;
2771 
2772 	if (unlikely(flags))
2773 		return -EINVAL;
2774 
2775 	if (unlikely(len == 0))
2776 		return 0;
2777 
2778 	/* First find the starting scatterlist element */
2779 	i = msg->sg.start;
2780 	do {
2781 		offset += l;
2782 		l = sk_msg_elem(msg, i)->length;
2783 
2784 		if (start < offset + l)
2785 			break;
2786 		sk_msg_iter_var_next(i);
2787 	} while (i != msg->sg.end);
2788 
2789 	if (start > offset + l)
2790 		return -EINVAL;
2791 
2792 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2793 
2794 	/* If no space available will fallback to copy, we need at
2795 	 * least one scatterlist elem available to push data into
2796 	 * when start aligns to the beginning of an element or two
2797 	 * when it falls inside an element. We handle the start equals
2798 	 * offset case because its the common case for inserting a
2799 	 * header.
2800 	 */
2801 	if (!space || (space == 1 && start != offset))
2802 		copy = msg->sg.data[i].length;
2803 
2804 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2805 			   get_order(copy + len));
2806 	if (unlikely(!page))
2807 		return -ENOMEM;
2808 
2809 	if (copy) {
2810 		int front, back;
2811 
2812 		raw = page_address(page);
2813 
2814 		if (i == msg->sg.end)
2815 			sk_msg_iter_var_prev(i);
2816 		psge = sk_msg_elem(msg, i);
2817 		front = start - offset;
2818 		back = psge->length - front;
2819 		from = sg_virt(psge);
2820 
2821 		if (front)
2822 			memcpy(raw, from, front);
2823 
2824 		if (back) {
2825 			from += front;
2826 			to = raw + front + len;
2827 
2828 			memcpy(to, from, back);
2829 		}
2830 
2831 		put_page(sg_page(psge));
2832 		new = i;
2833 		goto place_new;
2834 	}
2835 
2836 	if (start - offset) {
2837 		if (i == msg->sg.end)
2838 			sk_msg_iter_var_prev(i);
2839 		psge = sk_msg_elem(msg, i);
2840 		rsge = sk_msg_elem_cpy(msg, i);
2841 
2842 		psge->length = start - offset;
2843 		rsge.length -= psge->length;
2844 		rsge.offset += start;
2845 
2846 		sk_msg_iter_var_next(i);
2847 		sg_unmark_end(psge);
2848 		sg_unmark_end(&rsge);
2849 	}
2850 
2851 	/* Slot(s) to place newly allocated data */
2852 	sk_msg_iter_next(msg, end);
2853 	new = i;
2854 	sk_msg_iter_var_next(i);
2855 
2856 	if (i == msg->sg.end) {
2857 		if (!rsge.length)
2858 			goto place_new;
2859 		sk_msg_iter_next(msg, end);
2860 		goto place_new;
2861 	}
2862 
2863 	/* Shift one or two slots as needed */
2864 	sge = sk_msg_elem_cpy(msg, new);
2865 	sg_unmark_end(&sge);
2866 
2867 	nsge = sk_msg_elem_cpy(msg, i);
2868 	if (rsge.length) {
2869 		sk_msg_iter_var_next(i);
2870 		nnsge = sk_msg_elem_cpy(msg, i);
2871 		sk_msg_iter_next(msg, end);
2872 	}
2873 
2874 	while (i != msg->sg.end) {
2875 		msg->sg.data[i] = sge;
2876 		sge = nsge;
2877 		sk_msg_iter_var_next(i);
2878 		if (rsge.length) {
2879 			nsge = nnsge;
2880 			nnsge = sk_msg_elem_cpy(msg, i);
2881 		} else {
2882 			nsge = sk_msg_elem_cpy(msg, i);
2883 		}
2884 	}
2885 
2886 place_new:
2887 	/* Place newly allocated data buffer */
2888 	sk_mem_charge(msg->sk, len);
2889 	msg->sg.size += len;
2890 	__clear_bit(new, msg->sg.copy);
2891 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2892 	if (rsge.length) {
2893 		get_page(sg_page(&rsge));
2894 		sk_msg_iter_var_next(new);
2895 		msg->sg.data[new] = rsge;
2896 	}
2897 
2898 	sk_msg_reset_curr(msg);
2899 	sk_msg_compute_data_pointers(msg);
2900 	return 0;
2901 }
2902 
2903 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2904 	.func		= bpf_msg_push_data,
2905 	.gpl_only	= false,
2906 	.ret_type	= RET_INTEGER,
2907 	.arg1_type	= ARG_PTR_TO_CTX,
2908 	.arg2_type	= ARG_ANYTHING,
2909 	.arg3_type	= ARG_ANYTHING,
2910 	.arg4_type	= ARG_ANYTHING,
2911 };
2912 
sk_msg_shift_left(struct sk_msg * msg,int i)2913 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2914 {
2915 	struct scatterlist *sge = sk_msg_elem(msg, i);
2916 	int prev;
2917 
2918 	put_page(sg_page(sge));
2919 	do {
2920 		prev = i;
2921 		sk_msg_iter_var_next(i);
2922 		msg->sg.data[prev] = msg->sg.data[i];
2923 	} while (i != msg->sg.end);
2924 
2925 	sk_msg_iter_prev(msg, end);
2926 }
2927 
sk_msg_shift_right(struct sk_msg * msg,int i)2928 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2929 {
2930 	struct scatterlist tmp, sge;
2931 
2932 	sk_msg_iter_next(msg, end);
2933 	sge = sk_msg_elem_cpy(msg, i);
2934 	sk_msg_iter_var_next(i);
2935 	tmp = sk_msg_elem_cpy(msg, i);
2936 
2937 	while (i != msg->sg.end) {
2938 		msg->sg.data[i] = sge;
2939 		sk_msg_iter_var_next(i);
2940 		sge = tmp;
2941 		tmp = sk_msg_elem_cpy(msg, i);
2942 	}
2943 }
2944 
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2945 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2946 	   u32, len, u64, flags)
2947 {
2948 	u32 i = 0, l = 0, space, offset = 0;
2949 	u64 last = start + len;
2950 	int pop;
2951 
2952 	if (unlikely(flags))
2953 		return -EINVAL;
2954 
2955 	if (unlikely(len == 0))
2956 		return 0;
2957 
2958 	/* First find the starting scatterlist element */
2959 	i = msg->sg.start;
2960 	do {
2961 		offset += l;
2962 		l = sk_msg_elem(msg, i)->length;
2963 
2964 		if (start < offset + l)
2965 			break;
2966 		sk_msg_iter_var_next(i);
2967 	} while (i != msg->sg.end);
2968 
2969 	/* Bounds checks: start and pop must be inside message */
2970 	if (start >= offset + l || last > msg->sg.size)
2971 		return -EINVAL;
2972 
2973 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2974 
2975 	pop = len;
2976 	/* --------------| offset
2977 	 * -| start      |-------- len -------|
2978 	 *
2979 	 *  |----- a ----|-------- pop -------|----- b ----|
2980 	 *  |______________________________________________| length
2981 	 *
2982 	 *
2983 	 * a:   region at front of scatter element to save
2984 	 * b:   region at back of scatter element to save when length > A + pop
2985 	 * pop: region to pop from element, same as input 'pop' here will be
2986 	 *      decremented below per iteration.
2987 	 *
2988 	 * Two top-level cases to handle when start != offset, first B is non
2989 	 * zero and second B is zero corresponding to when a pop includes more
2990 	 * than one element.
2991 	 *
2992 	 * Then if B is non-zero AND there is no space allocate space and
2993 	 * compact A, B regions into page. If there is space shift ring to
2994 	 * the right free'ing the next element in ring to place B, leaving
2995 	 * A untouched except to reduce length.
2996 	 */
2997 	if (start != offset) {
2998 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2999 		int a = start - offset;
3000 		int b = sge->length - pop - a;
3001 
3002 		sk_msg_iter_var_next(i);
3003 
3004 		if (b > 0) {
3005 			if (space) {
3006 				sge->length = a;
3007 				sk_msg_shift_right(msg, i);
3008 				nsge = sk_msg_elem(msg, i);
3009 				get_page(sg_page(sge));
3010 				sg_set_page(nsge,
3011 					    sg_page(sge),
3012 					    b, sge->offset + pop + a);
3013 			} else {
3014 				struct page *page, *orig;
3015 				u8 *to, *from;
3016 
3017 				page = alloc_pages(__GFP_NOWARN |
3018 						   __GFP_COMP   | GFP_ATOMIC,
3019 						   get_order(a + b));
3020 				if (unlikely(!page))
3021 					return -ENOMEM;
3022 
3023 				orig = sg_page(sge);
3024 				from = sg_virt(sge);
3025 				to = page_address(page);
3026 				memcpy(to, from, a);
3027 				memcpy(to + a, from + a + pop, b);
3028 				sg_set_page(sge, page, a + b, 0);
3029 				put_page(orig);
3030 			}
3031 			pop = 0;
3032 		} else {
3033 			pop -= (sge->length - a);
3034 			sge->length = a;
3035 		}
3036 	}
3037 
3038 	/* From above the current layout _must_ be as follows,
3039 	 *
3040 	 * -| offset
3041 	 * -| start
3042 	 *
3043 	 *  |---- pop ---|---------------- b ------------|
3044 	 *  |____________________________________________| length
3045 	 *
3046 	 * Offset and start of the current msg elem are equal because in the
3047 	 * previous case we handled offset != start and either consumed the
3048 	 * entire element and advanced to the next element OR pop == 0.
3049 	 *
3050 	 * Two cases to handle here are first pop is less than the length
3051 	 * leaving some remainder b above. Simply adjust the element's layout
3052 	 * in this case. Or pop >= length of the element so that b = 0. In this
3053 	 * case advance to next element decrementing pop.
3054 	 */
3055 	while (pop) {
3056 		struct scatterlist *sge = sk_msg_elem(msg, i);
3057 
3058 		if (pop < sge->length) {
3059 			sge->length -= pop;
3060 			sge->offset += pop;
3061 			pop = 0;
3062 		} else {
3063 			pop -= sge->length;
3064 			sk_msg_shift_left(msg, i);
3065 		}
3066 	}
3067 
3068 	sk_mem_uncharge(msg->sk, len - pop);
3069 	msg->sg.size -= (len - pop);
3070 	sk_msg_reset_curr(msg);
3071 	sk_msg_compute_data_pointers(msg);
3072 	return 0;
3073 }
3074 
3075 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3076 	.func		= bpf_msg_pop_data,
3077 	.gpl_only	= false,
3078 	.ret_type	= RET_INTEGER,
3079 	.arg1_type	= ARG_PTR_TO_CTX,
3080 	.arg2_type	= ARG_ANYTHING,
3081 	.arg3_type	= ARG_ANYTHING,
3082 	.arg4_type	= ARG_ANYTHING,
3083 };
3084 
3085 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3086 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3087 {
3088 	return __task_get_classid(current);
3089 }
3090 
3091 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3092 	.func		= bpf_get_cgroup_classid_curr,
3093 	.gpl_only	= false,
3094 	.ret_type	= RET_INTEGER,
3095 };
3096 
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3097 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3098 {
3099 	struct sock *sk = skb_to_full_sk(skb);
3100 
3101 	if (!sk || !sk_fullsock(sk))
3102 		return 0;
3103 
3104 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3105 }
3106 
3107 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3108 	.func		= bpf_skb_cgroup_classid,
3109 	.gpl_only	= false,
3110 	.ret_type	= RET_INTEGER,
3111 	.arg1_type	= ARG_PTR_TO_CTX,
3112 };
3113 #endif
3114 
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3115 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3116 {
3117 	return task_get_classid(skb);
3118 }
3119 
3120 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3121 	.func           = bpf_get_cgroup_classid,
3122 	.gpl_only       = false,
3123 	.ret_type       = RET_INTEGER,
3124 	.arg1_type      = ARG_PTR_TO_CTX,
3125 };
3126 
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3127 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3128 {
3129 	return dst_tclassid(skb);
3130 }
3131 
3132 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3133 	.func           = bpf_get_route_realm,
3134 	.gpl_only       = false,
3135 	.ret_type       = RET_INTEGER,
3136 	.arg1_type      = ARG_PTR_TO_CTX,
3137 };
3138 
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3139 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3140 {
3141 	/* If skb_clear_hash() was called due to mangling, we can
3142 	 * trigger SW recalculation here. Later access to hash
3143 	 * can then use the inline skb->hash via context directly
3144 	 * instead of calling this helper again.
3145 	 */
3146 	return skb_get_hash(skb);
3147 }
3148 
3149 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3150 	.func		= bpf_get_hash_recalc,
3151 	.gpl_only	= false,
3152 	.ret_type	= RET_INTEGER,
3153 	.arg1_type	= ARG_PTR_TO_CTX,
3154 };
3155 
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3156 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3157 {
3158 	/* After all direct packet write, this can be used once for
3159 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3160 	 */
3161 	skb_clear_hash(skb);
3162 	return 0;
3163 }
3164 
3165 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3166 	.func		= bpf_set_hash_invalid,
3167 	.gpl_only	= false,
3168 	.ret_type	= RET_INTEGER,
3169 	.arg1_type	= ARG_PTR_TO_CTX,
3170 };
3171 
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3172 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3173 {
3174 	/* Set user specified hash as L4(+), so that it gets returned
3175 	 * on skb_get_hash() call unless BPF prog later on triggers a
3176 	 * skb_clear_hash().
3177 	 */
3178 	__skb_set_sw_hash(skb, hash, true);
3179 	return 0;
3180 }
3181 
3182 static const struct bpf_func_proto bpf_set_hash_proto = {
3183 	.func		= bpf_set_hash,
3184 	.gpl_only	= false,
3185 	.ret_type	= RET_INTEGER,
3186 	.arg1_type	= ARG_PTR_TO_CTX,
3187 	.arg2_type	= ARG_ANYTHING,
3188 };
3189 
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3190 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3191 	   u16, vlan_tci)
3192 {
3193 	int ret;
3194 
3195 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3196 		     vlan_proto != htons(ETH_P_8021AD)))
3197 		vlan_proto = htons(ETH_P_8021Q);
3198 
3199 	bpf_push_mac_rcsum(skb);
3200 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3201 	bpf_pull_mac_rcsum(skb);
3202 	skb_reset_mac_len(skb);
3203 
3204 	bpf_compute_data_pointers(skb);
3205 	return ret;
3206 }
3207 
3208 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3209 	.func           = bpf_skb_vlan_push,
3210 	.gpl_only       = false,
3211 	.ret_type       = RET_INTEGER,
3212 	.arg1_type      = ARG_PTR_TO_CTX,
3213 	.arg2_type      = ARG_ANYTHING,
3214 	.arg3_type      = ARG_ANYTHING,
3215 };
3216 
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3217 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3218 {
3219 	int ret;
3220 
3221 	bpf_push_mac_rcsum(skb);
3222 	ret = skb_vlan_pop(skb);
3223 	bpf_pull_mac_rcsum(skb);
3224 
3225 	bpf_compute_data_pointers(skb);
3226 	return ret;
3227 }
3228 
3229 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3230 	.func           = bpf_skb_vlan_pop,
3231 	.gpl_only       = false,
3232 	.ret_type       = RET_INTEGER,
3233 	.arg1_type      = ARG_PTR_TO_CTX,
3234 };
3235 
bpf_skb_change_protocol(struct sk_buff * skb,u16 proto)3236 static void bpf_skb_change_protocol(struct sk_buff *skb, u16 proto)
3237 {
3238 	skb->protocol = htons(proto);
3239 	if (skb_valid_dst(skb))
3240 		skb_dst_drop(skb);
3241 }
3242 
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3243 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3244 {
3245 	/* Caller already did skb_cow() with len as headroom,
3246 	 * so no need to do it here.
3247 	 */
3248 	skb_push(skb, len);
3249 	memmove(skb->data, skb->data + len, off);
3250 	memset(skb->data + off, 0, len);
3251 
3252 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3253 	 * needed here as it does not change the skb->csum
3254 	 * result for checksum complete when summing over
3255 	 * zeroed blocks.
3256 	 */
3257 	return 0;
3258 }
3259 
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3260 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3261 {
3262 	void *old_data;
3263 
3264 	/* skb_ensure_writable() is not needed here, as we're
3265 	 * already working on an uncloned skb.
3266 	 */
3267 	if (unlikely(!pskb_may_pull(skb, off + len)))
3268 		return -ENOMEM;
3269 
3270 	old_data = skb->data;
3271 	__skb_pull(skb, len);
3272 	skb_postpull_rcsum(skb, old_data + off, len);
3273 	memmove(skb->data, old_data, off);
3274 
3275 	return 0;
3276 }
3277 
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3278 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3279 {
3280 	bool trans_same = skb->transport_header == skb->network_header;
3281 	int ret;
3282 
3283 	/* There's no need for __skb_push()/__skb_pull() pair to
3284 	 * get to the start of the mac header as we're guaranteed
3285 	 * to always start from here under eBPF.
3286 	 */
3287 	ret = bpf_skb_generic_push(skb, off, len);
3288 	if (likely(!ret)) {
3289 		skb->mac_header -= len;
3290 		skb->network_header -= len;
3291 		if (trans_same)
3292 			skb->transport_header = skb->network_header;
3293 	}
3294 
3295 	return ret;
3296 }
3297 
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3298 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3299 {
3300 	bool trans_same = skb->transport_header == skb->network_header;
3301 	int ret;
3302 
3303 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3304 	ret = bpf_skb_generic_pop(skb, off, len);
3305 	if (likely(!ret)) {
3306 		skb->mac_header += len;
3307 		skb->network_header += len;
3308 		if (trans_same)
3309 			skb->transport_header = skb->network_header;
3310 	}
3311 
3312 	return ret;
3313 }
3314 
bpf_skb_proto_4_to_6(struct sk_buff * skb)3315 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3316 {
3317 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3318 	u32 off = skb_mac_header_len(skb);
3319 	int ret;
3320 
3321 	ret = skb_cow(skb, len_diff);
3322 	if (unlikely(ret < 0))
3323 		return ret;
3324 
3325 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3326 	if (unlikely(ret < 0))
3327 		return ret;
3328 
3329 	if (skb_is_gso(skb)) {
3330 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3331 
3332 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3333 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3334 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3335 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3336 		}
3337 	}
3338 
3339 	bpf_skb_change_protocol(skb, ETH_P_IPV6);
3340 	skb_clear_hash(skb);
3341 
3342 	return 0;
3343 }
3344 
bpf_skb_proto_6_to_4(struct sk_buff * skb)3345 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3346 {
3347 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3348 	u32 off = skb_mac_header_len(skb);
3349 	int ret;
3350 
3351 	ret = skb_unclone(skb, GFP_ATOMIC);
3352 	if (unlikely(ret < 0))
3353 		return ret;
3354 
3355 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3356 	if (unlikely(ret < 0))
3357 		return ret;
3358 
3359 	if (skb_is_gso(skb)) {
3360 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3361 
3362 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3363 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3364 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3365 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3366 		}
3367 	}
3368 
3369 	bpf_skb_change_protocol(skb, ETH_P_IP);
3370 	skb_clear_hash(skb);
3371 
3372 	return 0;
3373 }
3374 
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3375 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3376 {
3377 	__be16 from_proto = skb->protocol;
3378 
3379 	if (from_proto == htons(ETH_P_IP) &&
3380 	      to_proto == htons(ETH_P_IPV6))
3381 		return bpf_skb_proto_4_to_6(skb);
3382 
3383 	if (from_proto == htons(ETH_P_IPV6) &&
3384 	      to_proto == htons(ETH_P_IP))
3385 		return bpf_skb_proto_6_to_4(skb);
3386 
3387 	return -ENOTSUPP;
3388 }
3389 
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3390 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3391 	   u64, flags)
3392 {
3393 	int ret;
3394 
3395 	if (unlikely(flags))
3396 		return -EINVAL;
3397 
3398 	/* General idea is that this helper does the basic groundwork
3399 	 * needed for changing the protocol, and eBPF program fills the
3400 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3401 	 * and other helpers, rather than passing a raw buffer here.
3402 	 *
3403 	 * The rationale is to keep this minimal and without a need to
3404 	 * deal with raw packet data. F.e. even if we would pass buffers
3405 	 * here, the program still needs to call the bpf_lX_csum_replace()
3406 	 * helpers anyway. Plus, this way we keep also separation of
3407 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3408 	 * care of stores.
3409 	 *
3410 	 * Currently, additional options and extension header space are
3411 	 * not supported, but flags register is reserved so we can adapt
3412 	 * that. For offloads, we mark packet as dodgy, so that headers
3413 	 * need to be verified first.
3414 	 */
3415 	ret = bpf_skb_proto_xlat(skb, proto);
3416 	bpf_compute_data_pointers(skb);
3417 	return ret;
3418 }
3419 
3420 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3421 	.func		= bpf_skb_change_proto,
3422 	.gpl_only	= false,
3423 	.ret_type	= RET_INTEGER,
3424 	.arg1_type	= ARG_PTR_TO_CTX,
3425 	.arg2_type	= ARG_ANYTHING,
3426 	.arg3_type	= ARG_ANYTHING,
3427 };
3428 
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3429 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3430 {
3431 	/* We only allow a restricted subset to be changed for now. */
3432 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3433 		     !skb_pkt_type_ok(pkt_type)))
3434 		return -EINVAL;
3435 
3436 	skb->pkt_type = pkt_type;
3437 	return 0;
3438 }
3439 
3440 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3441 	.func		= bpf_skb_change_type,
3442 	.gpl_only	= false,
3443 	.ret_type	= RET_INTEGER,
3444 	.arg1_type	= ARG_PTR_TO_CTX,
3445 	.arg2_type	= ARG_ANYTHING,
3446 };
3447 
bpf_skb_net_base_len(const struct sk_buff * skb)3448 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3449 {
3450 	switch (skb->protocol) {
3451 	case htons(ETH_P_IP):
3452 		return sizeof(struct iphdr);
3453 	case htons(ETH_P_IPV6):
3454 		return sizeof(struct ipv6hdr);
3455 	default:
3456 		return ~0U;
3457 	}
3458 }
3459 
3460 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3461 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3462 
3463 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK	(BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3464 					 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3465 
3466 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3467 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3468 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3469 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3470 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3471 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3472 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3473 					 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3474 
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3475 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3476 			    u64 flags)
3477 {
3478 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3479 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3480 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3481 	unsigned int gso_type = SKB_GSO_DODGY;
3482 	int ret;
3483 
3484 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3485 		/* udp gso_size delineates datagrams, only allow if fixed */
3486 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3487 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3488 			return -ENOTSUPP;
3489 	}
3490 
3491 	ret = skb_cow_head(skb, len_diff);
3492 	if (unlikely(ret < 0))
3493 		return ret;
3494 
3495 	if (encap) {
3496 		if (skb->protocol != htons(ETH_P_IP) &&
3497 		    skb->protocol != htons(ETH_P_IPV6))
3498 			return -ENOTSUPP;
3499 
3500 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3501 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3502 			return -EINVAL;
3503 
3504 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3505 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3506 			return -EINVAL;
3507 
3508 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3509 		    inner_mac_len < ETH_HLEN)
3510 			return -EINVAL;
3511 
3512 		if (skb->encapsulation)
3513 			return -EALREADY;
3514 
3515 		mac_len = skb->network_header - skb->mac_header;
3516 		inner_net = skb->network_header;
3517 		if (inner_mac_len > len_diff)
3518 			return -EINVAL;
3519 		inner_trans = skb->transport_header;
3520 	}
3521 
3522 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3523 	if (unlikely(ret < 0))
3524 		return ret;
3525 
3526 	if (encap) {
3527 		skb->inner_mac_header = inner_net - inner_mac_len;
3528 		skb->inner_network_header = inner_net;
3529 		skb->inner_transport_header = inner_trans;
3530 
3531 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3532 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3533 		else
3534 			skb_set_inner_protocol(skb, skb->protocol);
3535 
3536 		skb->encapsulation = 1;
3537 		skb_set_network_header(skb, mac_len);
3538 
3539 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3540 			gso_type |= SKB_GSO_UDP_TUNNEL;
3541 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3542 			gso_type |= SKB_GSO_GRE;
3543 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3544 			gso_type |= SKB_GSO_IPXIP6;
3545 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3546 			gso_type |= SKB_GSO_IPXIP4;
3547 
3548 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3549 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3550 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3551 					sizeof(struct ipv6hdr) :
3552 					sizeof(struct iphdr);
3553 
3554 			skb_set_transport_header(skb, mac_len + nh_len);
3555 		}
3556 
3557 		/* Match skb->protocol to new outer l3 protocol */
3558 		if (skb->protocol == htons(ETH_P_IP) &&
3559 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3560 			bpf_skb_change_protocol(skb, ETH_P_IPV6);
3561 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3562 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3563 			bpf_skb_change_protocol(skb, ETH_P_IP);
3564 	}
3565 
3566 	if (skb_is_gso(skb)) {
3567 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3568 
3569 		/* Header must be checked, and gso_segs recomputed. */
3570 		shinfo->gso_type |= gso_type;
3571 		shinfo->gso_segs = 0;
3572 
3573 		/* Due to header growth, MSS needs to be downgraded.
3574 		 * There is a BUG_ON() when segmenting the frag_list with
3575 		 * head_frag true, so linearize the skb after downgrading
3576 		 * the MSS.
3577 		 */
3578 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) {
3579 			skb_decrease_gso_size(shinfo, len_diff);
3580 			if (shinfo->frag_list)
3581 				return skb_linearize(skb);
3582 		}
3583 	}
3584 
3585 	return 0;
3586 }
3587 
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3588 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3589 			      u64 flags)
3590 {
3591 	int ret;
3592 
3593 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3594 			       BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3595 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3596 		return -EINVAL;
3597 
3598 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3599 		/* udp gso_size delineates datagrams, only allow if fixed */
3600 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3601 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3602 			return -ENOTSUPP;
3603 	}
3604 
3605 	ret = skb_unclone(skb, GFP_ATOMIC);
3606 	if (unlikely(ret < 0))
3607 		return ret;
3608 
3609 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3610 	if (unlikely(ret < 0))
3611 		return ret;
3612 
3613 	/* Match skb->protocol to new outer l3 protocol */
3614 	if (skb->protocol == htons(ETH_P_IP) &&
3615 	    flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3616 		bpf_skb_change_protocol(skb, ETH_P_IPV6);
3617 	else if (skb->protocol == htons(ETH_P_IPV6) &&
3618 		 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3619 		bpf_skb_change_protocol(skb, ETH_P_IP);
3620 
3621 	if (skb_is_gso(skb)) {
3622 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3623 
3624 		/* Due to header shrink, MSS can be upgraded. */
3625 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3626 			skb_increase_gso_size(shinfo, len_diff);
3627 
3628 		/* Header must be checked, and gso_segs recomputed. */
3629 		shinfo->gso_type |= SKB_GSO_DODGY;
3630 		shinfo->gso_segs = 0;
3631 	}
3632 
3633 	return 0;
3634 }
3635 
3636 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3637 
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3638 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3639 	   u32, mode, u64, flags)
3640 {
3641 	u32 len_diff_abs = abs(len_diff);
3642 	bool shrink = len_diff < 0;
3643 	int ret = 0;
3644 
3645 	if (unlikely(flags || mode))
3646 		return -EINVAL;
3647 	if (unlikely(len_diff_abs > 0xfffU))
3648 		return -EFAULT;
3649 
3650 	if (!shrink) {
3651 		ret = skb_cow(skb, len_diff);
3652 		if (unlikely(ret < 0))
3653 			return ret;
3654 		__skb_push(skb, len_diff_abs);
3655 		memset(skb->data, 0, len_diff_abs);
3656 	} else {
3657 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3658 			return -ENOMEM;
3659 		__skb_pull(skb, len_diff_abs);
3660 	}
3661 	if (tls_sw_has_ctx_rx(skb->sk)) {
3662 		struct strp_msg *rxm = strp_msg(skb);
3663 
3664 		rxm->full_len += len_diff;
3665 	}
3666 	return ret;
3667 }
3668 
3669 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3670 	.func		= sk_skb_adjust_room,
3671 	.gpl_only	= false,
3672 	.ret_type	= RET_INTEGER,
3673 	.arg1_type	= ARG_PTR_TO_CTX,
3674 	.arg2_type	= ARG_ANYTHING,
3675 	.arg3_type	= ARG_ANYTHING,
3676 	.arg4_type	= ARG_ANYTHING,
3677 };
3678 
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3679 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3680 	   u32, mode, u64, flags)
3681 {
3682 	u32 len_cur, len_diff_abs = abs(len_diff);
3683 	u32 len_min = bpf_skb_net_base_len(skb);
3684 	u32 len_max = BPF_SKB_MAX_LEN;
3685 	__be16 proto = skb->protocol;
3686 	bool shrink = len_diff < 0;
3687 	u32 off;
3688 	int ret;
3689 
3690 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3691 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3692 		return -EINVAL;
3693 	if (unlikely(len_diff_abs > 0xfffU))
3694 		return -EFAULT;
3695 	if (unlikely(proto != htons(ETH_P_IP) &&
3696 		     proto != htons(ETH_P_IPV6)))
3697 		return -ENOTSUPP;
3698 
3699 	off = skb_mac_header_len(skb);
3700 	switch (mode) {
3701 	case BPF_ADJ_ROOM_NET:
3702 		off += bpf_skb_net_base_len(skb);
3703 		break;
3704 	case BPF_ADJ_ROOM_MAC:
3705 		break;
3706 	default:
3707 		return -ENOTSUPP;
3708 	}
3709 
3710 	if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3711 		if (!shrink)
3712 			return -EINVAL;
3713 
3714 		switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3715 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3716 			len_min = sizeof(struct iphdr);
3717 			break;
3718 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3719 			len_min = sizeof(struct ipv6hdr);
3720 			break;
3721 		default:
3722 			return -EINVAL;
3723 		}
3724 	}
3725 
3726 	len_cur = skb->len - skb_network_offset(skb);
3727 	if ((shrink && (len_diff_abs >= len_cur ||
3728 			len_cur - len_diff_abs < len_min)) ||
3729 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3730 			 !skb_is_gso(skb))))
3731 		return -ENOTSUPP;
3732 
3733 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3734 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3735 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3736 		__skb_reset_checksum_unnecessary(skb);
3737 
3738 	bpf_compute_data_pointers(skb);
3739 	return ret;
3740 }
3741 
3742 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3743 	.func		= bpf_skb_adjust_room,
3744 	.gpl_only	= false,
3745 	.ret_type	= RET_INTEGER,
3746 	.arg1_type	= ARG_PTR_TO_CTX,
3747 	.arg2_type	= ARG_ANYTHING,
3748 	.arg3_type	= ARG_ANYTHING,
3749 	.arg4_type	= ARG_ANYTHING,
3750 };
3751 
__bpf_skb_min_len(const struct sk_buff * skb)3752 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3753 {
3754 	int offset = skb_network_offset(skb);
3755 	u32 min_len = 0;
3756 
3757 	if (offset > 0)
3758 		min_len = offset;
3759 	if (skb_transport_header_was_set(skb)) {
3760 		offset = skb_transport_offset(skb);
3761 		if (offset > 0)
3762 			min_len = offset;
3763 	}
3764 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3765 		offset = skb_checksum_start_offset(skb) +
3766 			 skb->csum_offset + sizeof(__sum16);
3767 		if (offset > 0)
3768 			min_len = offset;
3769 	}
3770 	return min_len;
3771 }
3772 
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3773 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3774 {
3775 	unsigned int old_len = skb->len;
3776 	int ret;
3777 
3778 	ret = __skb_grow_rcsum(skb, new_len);
3779 	if (!ret)
3780 		memset(skb->data + old_len, 0, new_len - old_len);
3781 	return ret;
3782 }
3783 
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3784 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3785 {
3786 	return __skb_trim_rcsum(skb, new_len);
3787 }
3788 
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3789 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3790 					u64 flags)
3791 {
3792 	u32 max_len = BPF_SKB_MAX_LEN;
3793 	u32 min_len = __bpf_skb_min_len(skb);
3794 	int ret;
3795 
3796 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3797 		return -EINVAL;
3798 	if (skb->encapsulation)
3799 		return -ENOTSUPP;
3800 
3801 	/* The basic idea of this helper is that it's performing the
3802 	 * needed work to either grow or trim an skb, and eBPF program
3803 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3804 	 * bpf_lX_csum_replace() and others rather than passing a raw
3805 	 * buffer here. This one is a slow path helper and intended
3806 	 * for replies with control messages.
3807 	 *
3808 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3809 	 * minimal and without protocol specifics so that we are able
3810 	 * to separate concerns as in bpf_skb_store_bytes() should only
3811 	 * be the one responsible for writing buffers.
3812 	 *
3813 	 * It's really expected to be a slow path operation here for
3814 	 * control message replies, so we're implicitly linearizing,
3815 	 * uncloning and drop offloads from the skb by this.
3816 	 */
3817 	ret = __bpf_try_make_writable(skb, skb->len);
3818 	if (!ret) {
3819 		if (new_len > skb->len)
3820 			ret = bpf_skb_grow_rcsum(skb, new_len);
3821 		else if (new_len < skb->len)
3822 			ret = bpf_skb_trim_rcsum(skb, new_len);
3823 		if (!ret && skb_is_gso(skb))
3824 			skb_gso_reset(skb);
3825 	}
3826 	return ret;
3827 }
3828 
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3829 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3830 	   u64, flags)
3831 {
3832 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3833 
3834 	bpf_compute_data_pointers(skb);
3835 	return ret;
3836 }
3837 
3838 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3839 	.func		= bpf_skb_change_tail,
3840 	.gpl_only	= false,
3841 	.ret_type	= RET_INTEGER,
3842 	.arg1_type	= ARG_PTR_TO_CTX,
3843 	.arg2_type	= ARG_ANYTHING,
3844 	.arg3_type	= ARG_ANYTHING,
3845 };
3846 
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3847 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3848 	   u64, flags)
3849 {
3850 	return __bpf_skb_change_tail(skb, new_len, flags);
3851 }
3852 
3853 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3854 	.func		= sk_skb_change_tail,
3855 	.gpl_only	= false,
3856 	.ret_type	= RET_INTEGER,
3857 	.arg1_type	= ARG_PTR_TO_CTX,
3858 	.arg2_type	= ARG_ANYTHING,
3859 	.arg3_type	= ARG_ANYTHING,
3860 };
3861 
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3862 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3863 					u64 flags)
3864 {
3865 	u32 max_len = BPF_SKB_MAX_LEN;
3866 	u32 new_len = skb->len + head_room;
3867 	int ret;
3868 
3869 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3870 		     new_len < skb->len))
3871 		return -EINVAL;
3872 
3873 	ret = skb_cow(skb, head_room);
3874 	if (likely(!ret)) {
3875 		/* Idea for this helper is that we currently only
3876 		 * allow to expand on mac header. This means that
3877 		 * skb->protocol network header, etc, stay as is.
3878 		 * Compared to bpf_skb_change_tail(), we're more
3879 		 * flexible due to not needing to linearize or
3880 		 * reset GSO. Intention for this helper is to be
3881 		 * used by an L3 skb that needs to push mac header
3882 		 * for redirection into L2 device.
3883 		 */
3884 		__skb_push(skb, head_room);
3885 		memset(skb->data, 0, head_room);
3886 		skb_reset_mac_header(skb);
3887 		skb_reset_mac_len(skb);
3888 	}
3889 
3890 	return ret;
3891 }
3892 
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3893 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3894 	   u64, flags)
3895 {
3896 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3897 
3898 	bpf_compute_data_pointers(skb);
3899 	return ret;
3900 }
3901 
3902 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3903 	.func		= bpf_skb_change_head,
3904 	.gpl_only	= false,
3905 	.ret_type	= RET_INTEGER,
3906 	.arg1_type	= ARG_PTR_TO_CTX,
3907 	.arg2_type	= ARG_ANYTHING,
3908 	.arg3_type	= ARG_ANYTHING,
3909 };
3910 
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3911 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3912 	   u64, flags)
3913 {
3914 	return __bpf_skb_change_head(skb, head_room, flags);
3915 }
3916 
3917 static const struct bpf_func_proto sk_skb_change_head_proto = {
3918 	.func		= sk_skb_change_head,
3919 	.gpl_only	= false,
3920 	.ret_type	= RET_INTEGER,
3921 	.arg1_type	= ARG_PTR_TO_CTX,
3922 	.arg2_type	= ARG_ANYTHING,
3923 	.arg3_type	= ARG_ANYTHING,
3924 };
3925 
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3926 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3927 {
3928 	return xdp_get_buff_len(xdp);
3929 }
3930 
3931 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3932 	.func		= bpf_xdp_get_buff_len,
3933 	.gpl_only	= false,
3934 	.ret_type	= RET_INTEGER,
3935 	.arg1_type	= ARG_PTR_TO_CTX,
3936 };
3937 
3938 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3939 
3940 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3941 	.func		= bpf_xdp_get_buff_len,
3942 	.gpl_only	= false,
3943 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3944 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3945 };
3946 
xdp_get_metalen(const struct xdp_buff * xdp)3947 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3948 {
3949 	return xdp_data_meta_unsupported(xdp) ? 0 :
3950 	       xdp->data - xdp->data_meta;
3951 }
3952 
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3953 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3954 {
3955 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3956 	unsigned long metalen = xdp_get_metalen(xdp);
3957 	void *data_start = xdp_frame_end + metalen;
3958 	void *data = xdp->data + offset;
3959 
3960 	if (unlikely(data < data_start ||
3961 		     data > xdp->data_end - ETH_HLEN))
3962 		return -EINVAL;
3963 
3964 	if (metalen)
3965 		memmove(xdp->data_meta + offset,
3966 			xdp->data_meta, metalen);
3967 	xdp->data_meta += offset;
3968 	xdp->data = data;
3969 
3970 	return 0;
3971 }
3972 
3973 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3974 	.func		= bpf_xdp_adjust_head,
3975 	.gpl_only	= false,
3976 	.ret_type	= RET_INTEGER,
3977 	.arg1_type	= ARG_PTR_TO_CTX,
3978 	.arg2_type	= ARG_ANYTHING,
3979 };
3980 
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)3981 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3982 		      void *buf, unsigned long len, bool flush)
3983 {
3984 	unsigned long ptr_len, ptr_off = 0;
3985 	skb_frag_t *next_frag, *end_frag;
3986 	struct skb_shared_info *sinfo;
3987 	void *src, *dst;
3988 	u8 *ptr_buf;
3989 
3990 	if (likely(xdp->data_end - xdp->data >= off + len)) {
3991 		src = flush ? buf : xdp->data + off;
3992 		dst = flush ? xdp->data + off : buf;
3993 		memcpy(dst, src, len);
3994 		return;
3995 	}
3996 
3997 	sinfo = xdp_get_shared_info_from_buff(xdp);
3998 	end_frag = &sinfo->frags[sinfo->nr_frags];
3999 	next_frag = &sinfo->frags[0];
4000 
4001 	ptr_len = xdp->data_end - xdp->data;
4002 	ptr_buf = xdp->data;
4003 
4004 	while (true) {
4005 		if (off < ptr_off + ptr_len) {
4006 			unsigned long copy_off = off - ptr_off;
4007 			unsigned long copy_len = min(len, ptr_len - copy_off);
4008 
4009 			src = flush ? buf : ptr_buf + copy_off;
4010 			dst = flush ? ptr_buf + copy_off : buf;
4011 			memcpy(dst, src, copy_len);
4012 
4013 			off += copy_len;
4014 			len -= copy_len;
4015 			buf += copy_len;
4016 		}
4017 
4018 		if (!len || next_frag == end_frag)
4019 			break;
4020 
4021 		ptr_off += ptr_len;
4022 		ptr_buf = skb_frag_address(next_frag);
4023 		ptr_len = skb_frag_size(next_frag);
4024 		next_frag++;
4025 	}
4026 }
4027 
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)4028 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
4029 {
4030 	u32 size = xdp->data_end - xdp->data;
4031 	struct skb_shared_info *sinfo;
4032 	void *addr = xdp->data;
4033 	int i;
4034 
4035 	if (unlikely(offset > 0xffff || len > 0xffff))
4036 		return ERR_PTR(-EFAULT);
4037 
4038 	if (unlikely(offset + len > xdp_get_buff_len(xdp)))
4039 		return ERR_PTR(-EINVAL);
4040 
4041 	if (likely(offset < size)) /* linear area */
4042 		goto out;
4043 
4044 	sinfo = xdp_get_shared_info_from_buff(xdp);
4045 	offset -= size;
4046 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4047 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
4048 
4049 		if  (offset < frag_size) {
4050 			addr = skb_frag_address(&sinfo->frags[i]);
4051 			size = frag_size;
4052 			break;
4053 		}
4054 		offset -= frag_size;
4055 	}
4056 out:
4057 	return offset + len <= size ? addr + offset : NULL;
4058 }
4059 
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4060 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4061 	   void *, buf, u32, len)
4062 {
4063 	void *ptr;
4064 
4065 	ptr = bpf_xdp_pointer(xdp, offset, len);
4066 	if (IS_ERR(ptr))
4067 		return PTR_ERR(ptr);
4068 
4069 	if (!ptr)
4070 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4071 	else
4072 		memcpy(buf, ptr, len);
4073 
4074 	return 0;
4075 }
4076 
4077 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4078 	.func		= bpf_xdp_load_bytes,
4079 	.gpl_only	= false,
4080 	.ret_type	= RET_INTEGER,
4081 	.arg1_type	= ARG_PTR_TO_CTX,
4082 	.arg2_type	= ARG_ANYTHING,
4083 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4084 	.arg4_type	= ARG_CONST_SIZE,
4085 };
4086 
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4087 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4088 {
4089 	return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4090 }
4091 
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4092 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4093 	   void *, buf, u32, len)
4094 {
4095 	void *ptr;
4096 
4097 	ptr = bpf_xdp_pointer(xdp, offset, len);
4098 	if (IS_ERR(ptr))
4099 		return PTR_ERR(ptr);
4100 
4101 	if (!ptr)
4102 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4103 	else
4104 		memcpy(ptr, buf, len);
4105 
4106 	return 0;
4107 }
4108 
4109 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4110 	.func		= bpf_xdp_store_bytes,
4111 	.gpl_only	= false,
4112 	.ret_type	= RET_INTEGER,
4113 	.arg1_type	= ARG_PTR_TO_CTX,
4114 	.arg2_type	= ARG_ANYTHING,
4115 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4116 	.arg4_type	= ARG_CONST_SIZE,
4117 };
4118 
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4119 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4120 {
4121 	return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4122 }
4123 
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)4124 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4125 {
4126 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4127 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4128 	struct xdp_rxq_info *rxq = xdp->rxq;
4129 	unsigned int tailroom;
4130 
4131 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4132 		return -EOPNOTSUPP;
4133 
4134 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4135 	if (unlikely(offset > tailroom))
4136 		return -EINVAL;
4137 
4138 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4139 	skb_frag_size_add(frag, offset);
4140 	sinfo->xdp_frags_size += offset;
4141 	if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4142 		xsk_buff_get_tail(xdp)->data_end += offset;
4143 
4144 	return 0;
4145 }
4146 
bpf_xdp_shrink_data_zc(struct xdp_buff * xdp,int shrink,enum xdp_mem_type mem_type,bool release)4147 static void bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4148 				   enum xdp_mem_type mem_type, bool release)
4149 {
4150 	struct xdp_buff *zc_frag = xsk_buff_get_tail(xdp);
4151 
4152 	if (release) {
4153 		xsk_buff_del_tail(zc_frag);
4154 		__xdp_return(0, mem_type, false, zc_frag);
4155 	} else {
4156 		zc_frag->data_end -= shrink;
4157 	}
4158 }
4159 
bpf_xdp_shrink_data(struct xdp_buff * xdp,skb_frag_t * frag,int shrink)4160 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4161 				int shrink)
4162 {
4163 	enum xdp_mem_type mem_type = xdp->rxq->mem.type;
4164 	bool release = skb_frag_size(frag) == shrink;
4165 
4166 	if (mem_type == MEM_TYPE_XSK_BUFF_POOL) {
4167 		bpf_xdp_shrink_data_zc(xdp, shrink, mem_type, release);
4168 		goto out;
4169 	}
4170 
4171 	if (release)
4172 		__xdp_return(skb_frag_netmem(frag), mem_type, false, NULL);
4173 
4174 out:
4175 	return release;
4176 }
4177 
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4178 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4179 {
4180 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4181 	int i, n_frags_free = 0, len_free = 0;
4182 
4183 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4184 		return -EINVAL;
4185 
4186 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4187 		skb_frag_t *frag = &sinfo->frags[i];
4188 		int shrink = min_t(int, offset, skb_frag_size(frag));
4189 
4190 		len_free += shrink;
4191 		offset -= shrink;
4192 		if (bpf_xdp_shrink_data(xdp, frag, shrink)) {
4193 			n_frags_free++;
4194 		} else {
4195 			skb_frag_size_sub(frag, shrink);
4196 			break;
4197 		}
4198 	}
4199 	sinfo->nr_frags -= n_frags_free;
4200 	sinfo->xdp_frags_size -= len_free;
4201 
4202 	if (unlikely(!sinfo->nr_frags)) {
4203 		xdp_buff_clear_frags_flag(xdp);
4204 		xdp->data_end -= offset;
4205 	}
4206 
4207 	return 0;
4208 }
4209 
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4210 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4211 {
4212 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4213 	void *data_end = xdp->data_end + offset;
4214 
4215 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4216 		if (offset < 0)
4217 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4218 
4219 		return bpf_xdp_frags_increase_tail(xdp, offset);
4220 	}
4221 
4222 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4223 	if (unlikely(data_end > data_hard_end))
4224 		return -EINVAL;
4225 
4226 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4227 		return -EINVAL;
4228 
4229 	/* Clear memory area on grow, can contain uninit kernel memory */
4230 	if (offset > 0)
4231 		memset(xdp->data_end, 0, offset);
4232 
4233 	xdp->data_end = data_end;
4234 
4235 	return 0;
4236 }
4237 
4238 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4239 	.func		= bpf_xdp_adjust_tail,
4240 	.gpl_only	= false,
4241 	.ret_type	= RET_INTEGER,
4242 	.arg1_type	= ARG_PTR_TO_CTX,
4243 	.arg2_type	= ARG_ANYTHING,
4244 };
4245 
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4246 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4247 {
4248 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4249 	void *meta = xdp->data_meta + offset;
4250 	unsigned long metalen = xdp->data - meta;
4251 
4252 	if (xdp_data_meta_unsupported(xdp))
4253 		return -ENOTSUPP;
4254 	if (unlikely(meta < xdp_frame_end ||
4255 		     meta > xdp->data))
4256 		return -EINVAL;
4257 	if (unlikely(xdp_metalen_invalid(metalen)))
4258 		return -EACCES;
4259 
4260 	xdp->data_meta = meta;
4261 
4262 	return 0;
4263 }
4264 
4265 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4266 	.func		= bpf_xdp_adjust_meta,
4267 	.gpl_only	= false,
4268 	.ret_type	= RET_INTEGER,
4269 	.arg1_type	= ARG_PTR_TO_CTX,
4270 	.arg2_type	= ARG_ANYTHING,
4271 };
4272 
4273 /**
4274  * DOC: xdp redirect
4275  *
4276  * XDP_REDIRECT works by a three-step process, implemented in the functions
4277  * below:
4278  *
4279  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4280  *    of the redirect and store it (along with some other metadata) in a per-CPU
4281  *    struct bpf_redirect_info.
4282  *
4283  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4284  *    call xdp_do_redirect() which will use the information in struct
4285  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4286  *    bulk queue structure.
4287  *
4288  * 3. Before exiting its NAPI poll loop, the driver will call
4289  *    xdp_do_flush(), which will flush all the different bulk queues,
4290  *    thus completing the redirect. Note that xdp_do_flush() must be
4291  *    called before napi_complete_done() in the driver, as the
4292  *    XDP_REDIRECT logic relies on being inside a single NAPI instance
4293  *    through to the xdp_do_flush() call for RCU protection of all
4294  *    in-kernel data structures.
4295  */
4296 /*
4297  * Pointers to the map entries will be kept around for this whole sequence of
4298  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4299  * the core code; instead, the RCU protection relies on everything happening
4300  * inside a single NAPI poll sequence, which means it's between a pair of calls
4301  * to local_bh_disable()/local_bh_enable().
4302  *
4303  * The map entries are marked as __rcu and the map code makes sure to
4304  * dereference those pointers with rcu_dereference_check() in a way that works
4305  * for both sections that to hold an rcu_read_lock() and sections that are
4306  * called from NAPI without a separate rcu_read_lock(). The code below does not
4307  * use RCU annotations, but relies on those in the map code.
4308  */
xdp_do_flush(void)4309 void xdp_do_flush(void)
4310 {
4311 	struct list_head *lh_map, *lh_dev, *lh_xsk;
4312 
4313 	bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4314 	if (lh_dev)
4315 		__dev_flush(lh_dev);
4316 	if (lh_map)
4317 		__cpu_map_flush(lh_map);
4318 	if (lh_xsk)
4319 		__xsk_map_flush(lh_xsk);
4320 }
4321 EXPORT_SYMBOL_GPL(xdp_do_flush);
4322 
4323 #if defined(CONFIG_DEBUG_NET) && defined(CONFIG_BPF_SYSCALL)
xdp_do_check_flushed(struct napi_struct * napi)4324 void xdp_do_check_flushed(struct napi_struct *napi)
4325 {
4326 	struct list_head *lh_map, *lh_dev, *lh_xsk;
4327 	bool missed = false;
4328 
4329 	bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4330 	if (lh_dev) {
4331 		__dev_flush(lh_dev);
4332 		missed = true;
4333 	}
4334 	if (lh_map) {
4335 		__cpu_map_flush(lh_map);
4336 		missed = true;
4337 	}
4338 	if (lh_xsk) {
4339 		__xsk_map_flush(lh_xsk);
4340 		missed = true;
4341 	}
4342 
4343 	WARN_ONCE(missed, "Missing xdp_do_flush() invocation after NAPI by %ps\n",
4344 		  napi->poll);
4345 }
4346 #endif
4347 
4348 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4349 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4350 
xdp_master_redirect(struct xdp_buff * xdp)4351 u32 xdp_master_redirect(struct xdp_buff *xdp)
4352 {
4353 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4354 	struct net_device *master, *slave;
4355 
4356 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4357 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4358 	if (slave && slave != xdp->rxq->dev) {
4359 		/* The target device is different from the receiving device, so
4360 		 * redirect it to the new device.
4361 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4362 		 * drivers to unmap the packet from their rx ring.
4363 		 */
4364 		ri->tgt_index = slave->ifindex;
4365 		ri->map_id = INT_MAX;
4366 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4367 		return XDP_REDIRECT;
4368 	}
4369 	return XDP_TX;
4370 }
4371 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4372 
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,const struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4373 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4374 					const struct net_device *dev,
4375 					struct xdp_buff *xdp,
4376 					const struct bpf_prog *xdp_prog)
4377 {
4378 	enum bpf_map_type map_type = ri->map_type;
4379 	void *fwd = ri->tgt_value;
4380 	u32 map_id = ri->map_id;
4381 	int err;
4382 
4383 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4384 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4385 
4386 	err = __xsk_map_redirect(fwd, xdp);
4387 	if (unlikely(err))
4388 		goto err;
4389 
4390 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4391 	return 0;
4392 err:
4393 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4394 	return err;
4395 }
4396 
4397 static __always_inline int
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4398 __xdp_do_redirect_frame(struct bpf_redirect_info *ri, struct net_device *dev,
4399 			struct xdp_frame *xdpf,
4400 			const struct bpf_prog *xdp_prog)
4401 {
4402 	enum bpf_map_type map_type = ri->map_type;
4403 	void *fwd = ri->tgt_value;
4404 	u32 map_id = ri->map_id;
4405 	u32 flags = ri->flags;
4406 	struct bpf_map *map;
4407 	int err;
4408 
4409 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4410 	ri->flags = 0;
4411 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4412 
4413 	if (unlikely(!xdpf)) {
4414 		err = -EOVERFLOW;
4415 		goto err;
4416 	}
4417 
4418 	switch (map_type) {
4419 	case BPF_MAP_TYPE_DEVMAP:
4420 		fallthrough;
4421 	case BPF_MAP_TYPE_DEVMAP_HASH:
4422 		if (unlikely(flags & BPF_F_BROADCAST)) {
4423 			map = READ_ONCE(ri->map);
4424 
4425 			/* The map pointer is cleared when the map is being torn
4426 			 * down by dev_map_free()
4427 			 */
4428 			if (unlikely(!map)) {
4429 				err = -ENOENT;
4430 				break;
4431 			}
4432 
4433 			WRITE_ONCE(ri->map, NULL);
4434 			err = dev_map_enqueue_multi(xdpf, dev, map,
4435 						    flags & BPF_F_EXCLUDE_INGRESS);
4436 		} else {
4437 			err = dev_map_enqueue(fwd, xdpf, dev);
4438 		}
4439 		break;
4440 	case BPF_MAP_TYPE_CPUMAP:
4441 		err = cpu_map_enqueue(fwd, xdpf, dev);
4442 		break;
4443 	case BPF_MAP_TYPE_UNSPEC:
4444 		if (map_id == INT_MAX) {
4445 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4446 			if (unlikely(!fwd)) {
4447 				err = -EINVAL;
4448 				break;
4449 			}
4450 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4451 			break;
4452 		}
4453 		fallthrough;
4454 	default:
4455 		err = -EBADRQC;
4456 	}
4457 
4458 	if (unlikely(err))
4459 		goto err;
4460 
4461 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4462 	return 0;
4463 err:
4464 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4465 	return err;
4466 }
4467 
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4468 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4469 		    const struct bpf_prog *xdp_prog)
4470 {
4471 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4472 	enum bpf_map_type map_type = ri->map_type;
4473 
4474 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4475 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4476 
4477 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4478 				       xdp_prog);
4479 }
4480 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4481 
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4482 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4483 			  struct xdp_frame *xdpf,
4484 			  const struct bpf_prog *xdp_prog)
4485 {
4486 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4487 	enum bpf_map_type map_type = ri->map_type;
4488 
4489 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4490 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4491 
4492 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4493 }
4494 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4495 
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id,u32 flags)4496 static int xdp_do_generic_redirect_map(struct net_device *dev,
4497 				       struct sk_buff *skb,
4498 				       struct xdp_buff *xdp,
4499 				       const struct bpf_prog *xdp_prog,
4500 				       void *fwd, enum bpf_map_type map_type,
4501 				       u32 map_id, u32 flags)
4502 {
4503 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4504 	struct bpf_map *map;
4505 	int err;
4506 
4507 	switch (map_type) {
4508 	case BPF_MAP_TYPE_DEVMAP:
4509 		fallthrough;
4510 	case BPF_MAP_TYPE_DEVMAP_HASH:
4511 		if (unlikely(flags & BPF_F_BROADCAST)) {
4512 			map = READ_ONCE(ri->map);
4513 
4514 			/* The map pointer is cleared when the map is being torn
4515 			 * down by dev_map_free()
4516 			 */
4517 			if (unlikely(!map)) {
4518 				err = -ENOENT;
4519 				break;
4520 			}
4521 
4522 			WRITE_ONCE(ri->map, NULL);
4523 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4524 						     flags & BPF_F_EXCLUDE_INGRESS);
4525 		} else {
4526 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4527 		}
4528 		if (unlikely(err))
4529 			goto err;
4530 		break;
4531 	case BPF_MAP_TYPE_XSKMAP:
4532 		err = xsk_generic_rcv(fwd, xdp);
4533 		if (err)
4534 			goto err;
4535 		consume_skb(skb);
4536 		break;
4537 	case BPF_MAP_TYPE_CPUMAP:
4538 		err = cpu_map_generic_redirect(fwd, skb);
4539 		if (unlikely(err))
4540 			goto err;
4541 		break;
4542 	default:
4543 		err = -EBADRQC;
4544 		goto err;
4545 	}
4546 
4547 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4548 	return 0;
4549 err:
4550 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4551 	return err;
4552 }
4553 
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4554 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4555 			    struct xdp_buff *xdp,
4556 			    const struct bpf_prog *xdp_prog)
4557 {
4558 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4559 	enum bpf_map_type map_type = ri->map_type;
4560 	void *fwd = ri->tgt_value;
4561 	u32 map_id = ri->map_id;
4562 	u32 flags = ri->flags;
4563 	int err;
4564 
4565 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4566 	ri->flags = 0;
4567 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4568 
4569 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4570 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4571 		if (unlikely(!fwd)) {
4572 			err = -EINVAL;
4573 			goto err;
4574 		}
4575 
4576 		err = xdp_ok_fwd_dev(fwd, skb->len);
4577 		if (unlikely(err))
4578 			goto err;
4579 
4580 		skb->dev = fwd;
4581 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4582 		generic_xdp_tx(skb, xdp_prog);
4583 		return 0;
4584 	}
4585 
4586 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags);
4587 err:
4588 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4589 	return err;
4590 }
4591 
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4592 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4593 {
4594 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4595 
4596 	if (unlikely(flags))
4597 		return XDP_ABORTED;
4598 
4599 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4600 	 * by map_idr) is used for ifindex based XDP redirect.
4601 	 */
4602 	ri->tgt_index = ifindex;
4603 	ri->map_id = INT_MAX;
4604 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4605 
4606 	return XDP_REDIRECT;
4607 }
4608 
4609 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4610 	.func           = bpf_xdp_redirect,
4611 	.gpl_only       = false,
4612 	.ret_type       = RET_INTEGER,
4613 	.arg1_type      = ARG_ANYTHING,
4614 	.arg2_type      = ARG_ANYTHING,
4615 };
4616 
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u64,key,u64,flags)4617 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4618 	   u64, flags)
4619 {
4620 	return map->ops->map_redirect(map, key, flags);
4621 }
4622 
4623 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4624 	.func           = bpf_xdp_redirect_map,
4625 	.gpl_only       = false,
4626 	.ret_type       = RET_INTEGER,
4627 	.arg1_type      = ARG_CONST_MAP_PTR,
4628 	.arg2_type      = ARG_ANYTHING,
4629 	.arg3_type      = ARG_ANYTHING,
4630 };
4631 
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4632 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4633 				  unsigned long off, unsigned long len)
4634 {
4635 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4636 
4637 	if (unlikely(!ptr))
4638 		return len;
4639 	if (ptr != dst_buff)
4640 		memcpy(dst_buff, ptr, len);
4641 
4642 	return 0;
4643 }
4644 
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4645 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4646 	   u64, flags, void *, meta, u64, meta_size)
4647 {
4648 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4649 
4650 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4651 		return -EINVAL;
4652 	if (unlikely(!skb || skb_size > skb->len))
4653 		return -EFAULT;
4654 
4655 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4656 				bpf_skb_copy);
4657 }
4658 
4659 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4660 	.func		= bpf_skb_event_output,
4661 	.gpl_only	= true,
4662 	.ret_type	= RET_INTEGER,
4663 	.arg1_type	= ARG_PTR_TO_CTX,
4664 	.arg2_type	= ARG_CONST_MAP_PTR,
4665 	.arg3_type	= ARG_ANYTHING,
4666 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4667 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4668 };
4669 
4670 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4671 
4672 const struct bpf_func_proto bpf_skb_output_proto = {
4673 	.func		= bpf_skb_event_output,
4674 	.gpl_only	= true,
4675 	.ret_type	= RET_INTEGER,
4676 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4677 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4678 	.arg2_type	= ARG_CONST_MAP_PTR,
4679 	.arg3_type	= ARG_ANYTHING,
4680 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4681 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4682 };
4683 
bpf_tunnel_key_af(u64 flags)4684 static unsigned short bpf_tunnel_key_af(u64 flags)
4685 {
4686 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4687 }
4688 
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4689 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4690 	   u32, size, u64, flags)
4691 {
4692 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4693 	u8 compat[sizeof(struct bpf_tunnel_key)];
4694 	void *to_orig = to;
4695 	int err;
4696 
4697 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4698 					 BPF_F_TUNINFO_FLAGS)))) {
4699 		err = -EINVAL;
4700 		goto err_clear;
4701 	}
4702 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4703 		err = -EPROTO;
4704 		goto err_clear;
4705 	}
4706 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4707 		err = -EINVAL;
4708 		switch (size) {
4709 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4710 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4711 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4712 			goto set_compat;
4713 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4714 			/* Fixup deprecated structure layouts here, so we have
4715 			 * a common path later on.
4716 			 */
4717 			if (ip_tunnel_info_af(info) != AF_INET)
4718 				goto err_clear;
4719 set_compat:
4720 			to = (struct bpf_tunnel_key *)compat;
4721 			break;
4722 		default:
4723 			goto err_clear;
4724 		}
4725 	}
4726 
4727 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4728 	to->tunnel_tos = info->key.tos;
4729 	to->tunnel_ttl = info->key.ttl;
4730 	if (flags & BPF_F_TUNINFO_FLAGS)
4731 		to->tunnel_flags = ip_tunnel_flags_to_be16(info->key.tun_flags);
4732 	else
4733 		to->tunnel_ext = 0;
4734 
4735 	if (flags & BPF_F_TUNINFO_IPV6) {
4736 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4737 		       sizeof(to->remote_ipv6));
4738 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4739 		       sizeof(to->local_ipv6));
4740 		to->tunnel_label = be32_to_cpu(info->key.label);
4741 	} else {
4742 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4743 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4744 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4745 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4746 		to->tunnel_label = 0;
4747 	}
4748 
4749 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4750 		memcpy(to_orig, to, size);
4751 
4752 	return 0;
4753 err_clear:
4754 	memset(to_orig, 0, size);
4755 	return err;
4756 }
4757 
4758 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4759 	.func		= bpf_skb_get_tunnel_key,
4760 	.gpl_only	= false,
4761 	.ret_type	= RET_INTEGER,
4762 	.arg1_type	= ARG_PTR_TO_CTX,
4763 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4764 	.arg3_type	= ARG_CONST_SIZE,
4765 	.arg4_type	= ARG_ANYTHING,
4766 };
4767 
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4768 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4769 {
4770 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4771 	int err;
4772 
4773 	if (unlikely(!info ||
4774 		     !ip_tunnel_is_options_present(info->key.tun_flags))) {
4775 		err = -ENOENT;
4776 		goto err_clear;
4777 	}
4778 	if (unlikely(size < info->options_len)) {
4779 		err = -ENOMEM;
4780 		goto err_clear;
4781 	}
4782 
4783 	ip_tunnel_info_opts_get(to, info);
4784 	if (size > info->options_len)
4785 		memset(to + info->options_len, 0, size - info->options_len);
4786 
4787 	return info->options_len;
4788 err_clear:
4789 	memset(to, 0, size);
4790 	return err;
4791 }
4792 
4793 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4794 	.func		= bpf_skb_get_tunnel_opt,
4795 	.gpl_only	= false,
4796 	.ret_type	= RET_INTEGER,
4797 	.arg1_type	= ARG_PTR_TO_CTX,
4798 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4799 	.arg3_type	= ARG_CONST_SIZE,
4800 };
4801 
4802 static struct metadata_dst __percpu *md_dst;
4803 
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4804 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4805 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4806 {
4807 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4808 	u8 compat[sizeof(struct bpf_tunnel_key)];
4809 	struct ip_tunnel_info *info;
4810 
4811 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4812 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4813 			       BPF_F_NO_TUNNEL_KEY)))
4814 		return -EINVAL;
4815 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4816 		switch (size) {
4817 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4818 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4819 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4820 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4821 			/* Fixup deprecated structure layouts here, so we have
4822 			 * a common path later on.
4823 			 */
4824 			memcpy(compat, from, size);
4825 			memset(compat + size, 0, sizeof(compat) - size);
4826 			from = (const struct bpf_tunnel_key *) compat;
4827 			break;
4828 		default:
4829 			return -EINVAL;
4830 		}
4831 	}
4832 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4833 		     from->tunnel_ext))
4834 		return -EINVAL;
4835 
4836 	skb_dst_drop(skb);
4837 	dst_hold((struct dst_entry *) md);
4838 	skb_dst_set(skb, (struct dst_entry *) md);
4839 
4840 	info = &md->u.tun_info;
4841 	memset(info, 0, sizeof(*info));
4842 	info->mode = IP_TUNNEL_INFO_TX;
4843 
4844 	__set_bit(IP_TUNNEL_NOCACHE_BIT, info->key.tun_flags);
4845 	__assign_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, info->key.tun_flags,
4846 		     flags & BPF_F_DONT_FRAGMENT);
4847 	__assign_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags,
4848 		     !(flags & BPF_F_ZERO_CSUM_TX));
4849 	__assign_bit(IP_TUNNEL_SEQ_BIT, info->key.tun_flags,
4850 		     flags & BPF_F_SEQ_NUMBER);
4851 	__assign_bit(IP_TUNNEL_KEY_BIT, info->key.tun_flags,
4852 		     !(flags & BPF_F_NO_TUNNEL_KEY));
4853 
4854 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4855 	info->key.tos = from->tunnel_tos;
4856 	info->key.ttl = from->tunnel_ttl;
4857 
4858 	if (flags & BPF_F_TUNINFO_IPV6) {
4859 		info->mode |= IP_TUNNEL_INFO_IPV6;
4860 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4861 		       sizeof(from->remote_ipv6));
4862 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4863 		       sizeof(from->local_ipv6));
4864 		info->key.label = cpu_to_be32(from->tunnel_label) &
4865 				  IPV6_FLOWLABEL_MASK;
4866 	} else {
4867 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4868 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4869 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4870 	}
4871 
4872 	return 0;
4873 }
4874 
4875 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4876 	.func		= bpf_skb_set_tunnel_key,
4877 	.gpl_only	= false,
4878 	.ret_type	= RET_INTEGER,
4879 	.arg1_type	= ARG_PTR_TO_CTX,
4880 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4881 	.arg3_type	= ARG_CONST_SIZE,
4882 	.arg4_type	= ARG_ANYTHING,
4883 };
4884 
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4885 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4886 	   const u8 *, from, u32, size)
4887 {
4888 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4889 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4890 	IP_TUNNEL_DECLARE_FLAGS(present) = { };
4891 
4892 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4893 		return -EINVAL;
4894 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4895 		return -ENOMEM;
4896 
4897 	ip_tunnel_set_options_present(present);
4898 	ip_tunnel_info_opts_set(info, from, size, present);
4899 
4900 	return 0;
4901 }
4902 
4903 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4904 	.func		= bpf_skb_set_tunnel_opt,
4905 	.gpl_only	= false,
4906 	.ret_type	= RET_INTEGER,
4907 	.arg1_type	= ARG_PTR_TO_CTX,
4908 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4909 	.arg3_type	= ARG_CONST_SIZE,
4910 };
4911 
4912 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4913 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4914 {
4915 	if (!md_dst) {
4916 		struct metadata_dst __percpu *tmp;
4917 
4918 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4919 						METADATA_IP_TUNNEL,
4920 						GFP_KERNEL);
4921 		if (!tmp)
4922 			return NULL;
4923 		if (cmpxchg(&md_dst, NULL, tmp))
4924 			metadata_dst_free_percpu(tmp);
4925 	}
4926 
4927 	switch (which) {
4928 	case BPF_FUNC_skb_set_tunnel_key:
4929 		return &bpf_skb_set_tunnel_key_proto;
4930 	case BPF_FUNC_skb_set_tunnel_opt:
4931 		return &bpf_skb_set_tunnel_opt_proto;
4932 	default:
4933 		return NULL;
4934 	}
4935 }
4936 
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4937 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4938 	   u32, idx)
4939 {
4940 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4941 	struct cgroup *cgrp;
4942 	struct sock *sk;
4943 
4944 	sk = skb_to_full_sk(skb);
4945 	if (!sk || !sk_fullsock(sk))
4946 		return -ENOENT;
4947 	if (unlikely(idx >= array->map.max_entries))
4948 		return -E2BIG;
4949 
4950 	cgrp = READ_ONCE(array->ptrs[idx]);
4951 	if (unlikely(!cgrp))
4952 		return -EAGAIN;
4953 
4954 	return sk_under_cgroup_hierarchy(sk, cgrp);
4955 }
4956 
4957 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4958 	.func		= bpf_skb_under_cgroup,
4959 	.gpl_only	= false,
4960 	.ret_type	= RET_INTEGER,
4961 	.arg1_type	= ARG_PTR_TO_CTX,
4962 	.arg2_type	= ARG_CONST_MAP_PTR,
4963 	.arg3_type	= ARG_ANYTHING,
4964 };
4965 
4966 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4967 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4968 {
4969 	struct cgroup *cgrp;
4970 
4971 	sk = sk_to_full_sk(sk);
4972 	if (!sk || !sk_fullsock(sk))
4973 		return 0;
4974 
4975 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4976 	return cgroup_id(cgrp);
4977 }
4978 
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4979 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4980 {
4981 	return __bpf_sk_cgroup_id(skb->sk);
4982 }
4983 
4984 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4985 	.func           = bpf_skb_cgroup_id,
4986 	.gpl_only       = false,
4987 	.ret_type       = RET_INTEGER,
4988 	.arg1_type      = ARG_PTR_TO_CTX,
4989 };
4990 
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4991 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4992 					      int ancestor_level)
4993 {
4994 	struct cgroup *ancestor;
4995 	struct cgroup *cgrp;
4996 
4997 	sk = sk_to_full_sk(sk);
4998 	if (!sk || !sk_fullsock(sk))
4999 		return 0;
5000 
5001 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
5002 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
5003 	if (!ancestor)
5004 		return 0;
5005 
5006 	return cgroup_id(ancestor);
5007 }
5008 
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)5009 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
5010 	   ancestor_level)
5011 {
5012 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
5013 }
5014 
5015 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
5016 	.func           = bpf_skb_ancestor_cgroup_id,
5017 	.gpl_only       = false,
5018 	.ret_type       = RET_INTEGER,
5019 	.arg1_type      = ARG_PTR_TO_CTX,
5020 	.arg2_type      = ARG_ANYTHING,
5021 };
5022 
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)5023 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
5024 {
5025 	return __bpf_sk_cgroup_id(sk);
5026 }
5027 
5028 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
5029 	.func           = bpf_sk_cgroup_id,
5030 	.gpl_only       = false,
5031 	.ret_type       = RET_INTEGER,
5032 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5033 };
5034 
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)5035 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
5036 {
5037 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
5038 }
5039 
5040 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
5041 	.func           = bpf_sk_ancestor_cgroup_id,
5042 	.gpl_only       = false,
5043 	.ret_type       = RET_INTEGER,
5044 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5045 	.arg2_type      = ARG_ANYTHING,
5046 };
5047 #endif
5048 
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)5049 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
5050 				  unsigned long off, unsigned long len)
5051 {
5052 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
5053 
5054 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
5055 	return 0;
5056 }
5057 
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)5058 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
5059 	   u64, flags, void *, meta, u64, meta_size)
5060 {
5061 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
5062 
5063 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
5064 		return -EINVAL;
5065 
5066 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
5067 		return -EFAULT;
5068 
5069 	return bpf_event_output(map, flags, meta, meta_size, xdp,
5070 				xdp_size, bpf_xdp_copy);
5071 }
5072 
5073 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5074 	.func		= bpf_xdp_event_output,
5075 	.gpl_only	= true,
5076 	.ret_type	= RET_INTEGER,
5077 	.arg1_type	= ARG_PTR_TO_CTX,
5078 	.arg2_type	= ARG_CONST_MAP_PTR,
5079 	.arg3_type	= ARG_ANYTHING,
5080 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5081 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5082 };
5083 
5084 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5085 
5086 const struct bpf_func_proto bpf_xdp_output_proto = {
5087 	.func		= bpf_xdp_event_output,
5088 	.gpl_only	= true,
5089 	.ret_type	= RET_INTEGER,
5090 	.arg1_type	= ARG_PTR_TO_BTF_ID,
5091 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
5092 	.arg2_type	= ARG_CONST_MAP_PTR,
5093 	.arg3_type	= ARG_ANYTHING,
5094 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5095 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5096 };
5097 
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)5098 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5099 {
5100 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5101 }
5102 
5103 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5104 	.func           = bpf_get_socket_cookie,
5105 	.gpl_only       = false,
5106 	.ret_type       = RET_INTEGER,
5107 	.arg1_type      = ARG_PTR_TO_CTX,
5108 };
5109 
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5110 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5111 {
5112 	return __sock_gen_cookie(ctx->sk);
5113 }
5114 
5115 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5116 	.func		= bpf_get_socket_cookie_sock_addr,
5117 	.gpl_only	= false,
5118 	.ret_type	= RET_INTEGER,
5119 	.arg1_type	= ARG_PTR_TO_CTX,
5120 };
5121 
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)5122 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5123 {
5124 	return __sock_gen_cookie(ctx);
5125 }
5126 
5127 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5128 	.func		= bpf_get_socket_cookie_sock,
5129 	.gpl_only	= false,
5130 	.ret_type	= RET_INTEGER,
5131 	.arg1_type	= ARG_PTR_TO_CTX,
5132 };
5133 
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)5134 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5135 {
5136 	return sk ? sock_gen_cookie(sk) : 0;
5137 }
5138 
5139 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5140 	.func		= bpf_get_socket_ptr_cookie,
5141 	.gpl_only	= false,
5142 	.ret_type	= RET_INTEGER,
5143 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5144 };
5145 
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5146 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5147 {
5148 	return __sock_gen_cookie(ctx->sk);
5149 }
5150 
5151 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5152 	.func		= bpf_get_socket_cookie_sock_ops,
5153 	.gpl_only	= false,
5154 	.ret_type	= RET_INTEGER,
5155 	.arg1_type	= ARG_PTR_TO_CTX,
5156 };
5157 
__bpf_get_netns_cookie(struct sock * sk)5158 static u64 __bpf_get_netns_cookie(struct sock *sk)
5159 {
5160 	const struct net *net = sk ? sock_net(sk) : &init_net;
5161 
5162 	return net->net_cookie;
5163 }
5164 
BPF_CALL_1(bpf_get_netns_cookie,struct sk_buff *,skb)5165 BPF_CALL_1(bpf_get_netns_cookie, struct sk_buff *, skb)
5166 {
5167 	return __bpf_get_netns_cookie(skb && skb->sk ? skb->sk : NULL);
5168 }
5169 
5170 static const struct bpf_func_proto bpf_get_netns_cookie_proto = {
5171 	.func           = bpf_get_netns_cookie,
5172 	.ret_type       = RET_INTEGER,
5173 	.arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5174 };
5175 
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)5176 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5177 {
5178 	return __bpf_get_netns_cookie(ctx);
5179 }
5180 
5181 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5182 	.func		= bpf_get_netns_cookie_sock,
5183 	.gpl_only	= false,
5184 	.ret_type	= RET_INTEGER,
5185 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5186 };
5187 
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5188 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5189 {
5190 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5191 }
5192 
5193 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5194 	.func		= bpf_get_netns_cookie_sock_addr,
5195 	.gpl_only	= false,
5196 	.ret_type	= RET_INTEGER,
5197 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5198 };
5199 
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5200 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5201 {
5202 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5203 }
5204 
5205 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5206 	.func		= bpf_get_netns_cookie_sock_ops,
5207 	.gpl_only	= false,
5208 	.ret_type	= RET_INTEGER,
5209 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5210 };
5211 
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5212 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5213 {
5214 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5215 }
5216 
5217 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5218 	.func		= bpf_get_netns_cookie_sk_msg,
5219 	.gpl_only	= false,
5220 	.ret_type	= RET_INTEGER,
5221 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5222 };
5223 
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5224 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5225 {
5226 	struct sock *sk = sk_to_full_sk(skb->sk);
5227 	kuid_t kuid;
5228 
5229 	if (!sk || !sk_fullsock(sk))
5230 		return overflowuid;
5231 	kuid = sock_net_uid(sock_net(sk), sk);
5232 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5233 }
5234 
5235 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5236 	.func           = bpf_get_socket_uid,
5237 	.gpl_only       = false,
5238 	.ret_type       = RET_INTEGER,
5239 	.arg1_type      = ARG_PTR_TO_CTX,
5240 };
5241 
sk_bpf_set_get_cb_flags(struct sock * sk,char * optval,bool getopt)5242 static int sk_bpf_set_get_cb_flags(struct sock *sk, char *optval, bool getopt)
5243 {
5244 	u32 sk_bpf_cb_flags;
5245 
5246 	if (getopt) {
5247 		*(u32 *)optval = sk->sk_bpf_cb_flags;
5248 		return 0;
5249 	}
5250 
5251 	sk_bpf_cb_flags = *(u32 *)optval;
5252 
5253 	if (sk_bpf_cb_flags & ~SK_BPF_CB_MASK)
5254 		return -EINVAL;
5255 
5256 	sk->sk_bpf_cb_flags = sk_bpf_cb_flags;
5257 
5258 	return 0;
5259 }
5260 
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5261 static int sol_socket_sockopt(struct sock *sk, int optname,
5262 			      char *optval, int *optlen,
5263 			      bool getopt)
5264 {
5265 	switch (optname) {
5266 	case SO_REUSEADDR:
5267 	case SO_SNDBUF:
5268 	case SO_RCVBUF:
5269 	case SO_KEEPALIVE:
5270 	case SO_PRIORITY:
5271 	case SO_REUSEPORT:
5272 	case SO_RCVLOWAT:
5273 	case SO_MARK:
5274 	case SO_MAX_PACING_RATE:
5275 	case SO_BINDTOIFINDEX:
5276 	case SO_TXREHASH:
5277 	case SK_BPF_CB_FLAGS:
5278 		if (*optlen != sizeof(int))
5279 			return -EINVAL;
5280 		break;
5281 	case SO_BINDTODEVICE:
5282 		break;
5283 	default:
5284 		return -EINVAL;
5285 	}
5286 
5287 	if (optname == SK_BPF_CB_FLAGS)
5288 		return sk_bpf_set_get_cb_flags(sk, optval, getopt);
5289 
5290 	if (getopt) {
5291 		if (optname == SO_BINDTODEVICE)
5292 			return -EINVAL;
5293 		return sk_getsockopt(sk, SOL_SOCKET, optname,
5294 				     KERNEL_SOCKPTR(optval),
5295 				     KERNEL_SOCKPTR(optlen));
5296 	}
5297 
5298 	return sk_setsockopt(sk, SOL_SOCKET, optname,
5299 			     KERNEL_SOCKPTR(optval), *optlen);
5300 }
5301 
bpf_sol_tcp_getsockopt(struct sock * sk,int optname,char * optval,int optlen)5302 static int bpf_sol_tcp_getsockopt(struct sock *sk, int optname,
5303 				  char *optval, int optlen)
5304 {
5305 	if (optlen != sizeof(int))
5306 		return -EINVAL;
5307 
5308 	switch (optname) {
5309 	case TCP_BPF_SOCK_OPS_CB_FLAGS: {
5310 		int cb_flags = tcp_sk(sk)->bpf_sock_ops_cb_flags;
5311 
5312 		memcpy(optval, &cb_flags, optlen);
5313 		break;
5314 	}
5315 	case TCP_BPF_RTO_MIN: {
5316 		int rto_min_us = jiffies_to_usecs(inet_csk(sk)->icsk_rto_min);
5317 
5318 		memcpy(optval, &rto_min_us, optlen);
5319 		break;
5320 	}
5321 	case TCP_BPF_DELACK_MAX: {
5322 		int delack_max_us = jiffies_to_usecs(inet_csk(sk)->icsk_delack_max);
5323 
5324 		memcpy(optval, &delack_max_us, optlen);
5325 		break;
5326 	}
5327 	default:
5328 		return -EINVAL;
5329 	}
5330 
5331 	return 0;
5332 }
5333 
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5334 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5335 				  char *optval, int optlen)
5336 {
5337 	struct tcp_sock *tp = tcp_sk(sk);
5338 	unsigned long timeout;
5339 	int val;
5340 
5341 	if (optlen != sizeof(int))
5342 		return -EINVAL;
5343 
5344 	val = *(int *)optval;
5345 
5346 	/* Only some options are supported */
5347 	switch (optname) {
5348 	case TCP_BPF_IW:
5349 		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5350 			return -EINVAL;
5351 		tcp_snd_cwnd_set(tp, val);
5352 		break;
5353 	case TCP_BPF_SNDCWND_CLAMP:
5354 		if (val <= 0)
5355 			return -EINVAL;
5356 		tp->snd_cwnd_clamp = val;
5357 		tp->snd_ssthresh = val;
5358 		break;
5359 	case TCP_BPF_DELACK_MAX:
5360 		timeout = usecs_to_jiffies(val);
5361 		if (timeout > TCP_DELACK_MAX ||
5362 		    timeout < TCP_TIMEOUT_MIN)
5363 			return -EINVAL;
5364 		inet_csk(sk)->icsk_delack_max = timeout;
5365 		break;
5366 	case TCP_BPF_RTO_MIN:
5367 		timeout = usecs_to_jiffies(val);
5368 		if (timeout > TCP_RTO_MIN ||
5369 		    timeout < TCP_TIMEOUT_MIN)
5370 			return -EINVAL;
5371 		inet_csk(sk)->icsk_rto_min = timeout;
5372 		break;
5373 	case TCP_BPF_SOCK_OPS_CB_FLAGS:
5374 		if (val & ~(BPF_SOCK_OPS_ALL_CB_FLAGS))
5375 			return -EINVAL;
5376 		tp->bpf_sock_ops_cb_flags = val;
5377 		break;
5378 	default:
5379 		return -EINVAL;
5380 	}
5381 
5382 	return 0;
5383 }
5384 
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5385 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5386 				      int *optlen, bool getopt)
5387 {
5388 	struct tcp_sock *tp;
5389 	int ret;
5390 
5391 	if (*optlen < 2)
5392 		return -EINVAL;
5393 
5394 	if (getopt) {
5395 		if (!inet_csk(sk)->icsk_ca_ops)
5396 			return -EINVAL;
5397 		/* BPF expects NULL-terminated tcp-cc string */
5398 		optval[--(*optlen)] = '\0';
5399 		return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5400 					 KERNEL_SOCKPTR(optval),
5401 					 KERNEL_SOCKPTR(optlen));
5402 	}
5403 
5404 	/* "cdg" is the only cc that alloc a ptr
5405 	 * in inet_csk_ca area.  The bpf-tcp-cc may
5406 	 * overwrite this ptr after switching to cdg.
5407 	 */
5408 	if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5409 		return -ENOTSUPP;
5410 
5411 	/* It stops this looping
5412 	 *
5413 	 * .init => bpf_setsockopt(tcp_cc) => .init =>
5414 	 * bpf_setsockopt(tcp_cc)" => .init => ....
5415 	 *
5416 	 * The second bpf_setsockopt(tcp_cc) is not allowed
5417 	 * in order to break the loop when both .init
5418 	 * are the same bpf prog.
5419 	 *
5420 	 * This applies even the second bpf_setsockopt(tcp_cc)
5421 	 * does not cause a loop.  This limits only the first
5422 	 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5423 	 * pick a fallback cc (eg. peer does not support ECN)
5424 	 * and the second '.init' cannot fallback to
5425 	 * another.
5426 	 */
5427 	tp = tcp_sk(sk);
5428 	if (tp->bpf_chg_cc_inprogress)
5429 		return -EBUSY;
5430 
5431 	tp->bpf_chg_cc_inprogress = 1;
5432 	ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5433 				KERNEL_SOCKPTR(optval), *optlen);
5434 	tp->bpf_chg_cc_inprogress = 0;
5435 	return ret;
5436 }
5437 
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5438 static int sol_tcp_sockopt(struct sock *sk, int optname,
5439 			   char *optval, int *optlen,
5440 			   bool getopt)
5441 {
5442 	if (sk->sk_protocol != IPPROTO_TCP)
5443 		return -EINVAL;
5444 
5445 	switch (optname) {
5446 	case TCP_NODELAY:
5447 	case TCP_MAXSEG:
5448 	case TCP_KEEPIDLE:
5449 	case TCP_KEEPINTVL:
5450 	case TCP_KEEPCNT:
5451 	case TCP_SYNCNT:
5452 	case TCP_WINDOW_CLAMP:
5453 	case TCP_THIN_LINEAR_TIMEOUTS:
5454 	case TCP_USER_TIMEOUT:
5455 	case TCP_NOTSENT_LOWAT:
5456 	case TCP_SAVE_SYN:
5457 	case TCP_RTO_MAX_MS:
5458 		if (*optlen != sizeof(int))
5459 			return -EINVAL;
5460 		break;
5461 	case TCP_CONGESTION:
5462 		return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5463 	case TCP_SAVED_SYN:
5464 		if (*optlen < 1)
5465 			return -EINVAL;
5466 		break;
5467 	default:
5468 		if (getopt)
5469 			return bpf_sol_tcp_getsockopt(sk, optname, optval, *optlen);
5470 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5471 	}
5472 
5473 	if (getopt) {
5474 		if (optname == TCP_SAVED_SYN) {
5475 			struct tcp_sock *tp = tcp_sk(sk);
5476 
5477 			if (!tp->saved_syn ||
5478 			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5479 				return -EINVAL;
5480 			memcpy(optval, tp->saved_syn->data, *optlen);
5481 			/* It cannot free tp->saved_syn here because it
5482 			 * does not know if the user space still needs it.
5483 			 */
5484 			return 0;
5485 		}
5486 
5487 		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5488 					 KERNEL_SOCKPTR(optval),
5489 					 KERNEL_SOCKPTR(optlen));
5490 	}
5491 
5492 	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5493 				 KERNEL_SOCKPTR(optval), *optlen);
5494 }
5495 
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5496 static int sol_ip_sockopt(struct sock *sk, int optname,
5497 			  char *optval, int *optlen,
5498 			  bool getopt)
5499 {
5500 	if (sk->sk_family != AF_INET)
5501 		return -EINVAL;
5502 
5503 	switch (optname) {
5504 	case IP_TOS:
5505 		if (*optlen != sizeof(int))
5506 			return -EINVAL;
5507 		break;
5508 	default:
5509 		return -EINVAL;
5510 	}
5511 
5512 	if (getopt)
5513 		return do_ip_getsockopt(sk, SOL_IP, optname,
5514 					KERNEL_SOCKPTR(optval),
5515 					KERNEL_SOCKPTR(optlen));
5516 
5517 	return do_ip_setsockopt(sk, SOL_IP, optname,
5518 				KERNEL_SOCKPTR(optval), *optlen);
5519 }
5520 
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5521 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5522 			    char *optval, int *optlen,
5523 			    bool getopt)
5524 {
5525 	if (sk->sk_family != AF_INET6)
5526 		return -EINVAL;
5527 
5528 	switch (optname) {
5529 	case IPV6_TCLASS:
5530 	case IPV6_AUTOFLOWLABEL:
5531 		if (*optlen != sizeof(int))
5532 			return -EINVAL;
5533 		break;
5534 	default:
5535 		return -EINVAL;
5536 	}
5537 
5538 	if (getopt)
5539 		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5540 						      KERNEL_SOCKPTR(optval),
5541 						      KERNEL_SOCKPTR(optlen));
5542 
5543 	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5544 					      KERNEL_SOCKPTR(optval), *optlen);
5545 }
5546 
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5547 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5548 			    char *optval, int optlen)
5549 {
5550 	if (!sk_fullsock(sk))
5551 		return -EINVAL;
5552 
5553 	if (level == SOL_SOCKET)
5554 		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5555 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5556 		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5557 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5558 		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5559 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5560 		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5561 
5562 	return -EINVAL;
5563 }
5564 
is_locked_tcp_sock_ops(struct bpf_sock_ops_kern * bpf_sock)5565 static bool is_locked_tcp_sock_ops(struct bpf_sock_ops_kern *bpf_sock)
5566 {
5567 	return bpf_sock->op <= BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
5568 }
5569 
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5570 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5571 			   char *optval, int optlen)
5572 {
5573 	if (sk_fullsock(sk))
5574 		sock_owned_by_me(sk);
5575 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5576 }
5577 
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5578 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5579 			    char *optval, int optlen)
5580 {
5581 	int err, saved_optlen = optlen;
5582 
5583 	if (!sk_fullsock(sk)) {
5584 		err = -EINVAL;
5585 		goto done;
5586 	}
5587 
5588 	if (level == SOL_SOCKET)
5589 		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5590 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5591 		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5592 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5593 		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5594 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5595 		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5596 	else
5597 		err = -EINVAL;
5598 
5599 done:
5600 	if (err)
5601 		optlen = 0;
5602 	if (optlen < saved_optlen)
5603 		memset(optval + optlen, 0, saved_optlen - optlen);
5604 	return err;
5605 }
5606 
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5607 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5608 			   char *optval, int optlen)
5609 {
5610 	if (sk_fullsock(sk))
5611 		sock_owned_by_me(sk);
5612 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5613 }
5614 
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5615 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5616 	   int, optname, char *, optval, int, optlen)
5617 {
5618 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5619 }
5620 
5621 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5622 	.func		= bpf_sk_setsockopt,
5623 	.gpl_only	= false,
5624 	.ret_type	= RET_INTEGER,
5625 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5626 	.arg2_type	= ARG_ANYTHING,
5627 	.arg3_type	= ARG_ANYTHING,
5628 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5629 	.arg5_type	= ARG_CONST_SIZE,
5630 };
5631 
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5632 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5633 	   int, optname, char *, optval, int, optlen)
5634 {
5635 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5636 }
5637 
5638 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5639 	.func		= bpf_sk_getsockopt,
5640 	.gpl_only	= false,
5641 	.ret_type	= RET_INTEGER,
5642 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5643 	.arg2_type	= ARG_ANYTHING,
5644 	.arg3_type	= ARG_ANYTHING,
5645 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5646 	.arg5_type	= ARG_CONST_SIZE,
5647 };
5648 
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5649 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5650 	   int, optname, char *, optval, int, optlen)
5651 {
5652 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5653 }
5654 
5655 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5656 	.func		= bpf_unlocked_sk_setsockopt,
5657 	.gpl_only	= false,
5658 	.ret_type	= RET_INTEGER,
5659 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5660 	.arg2_type	= ARG_ANYTHING,
5661 	.arg3_type	= ARG_ANYTHING,
5662 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5663 	.arg5_type	= ARG_CONST_SIZE,
5664 };
5665 
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5666 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5667 	   int, optname, char *, optval, int, optlen)
5668 {
5669 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5670 }
5671 
5672 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5673 	.func		= bpf_unlocked_sk_getsockopt,
5674 	.gpl_only	= false,
5675 	.ret_type	= RET_INTEGER,
5676 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5677 	.arg2_type	= ARG_ANYTHING,
5678 	.arg3_type	= ARG_ANYTHING,
5679 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5680 	.arg5_type	= ARG_CONST_SIZE,
5681 };
5682 
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5683 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5684 	   int, level, int, optname, char *, optval, int, optlen)
5685 {
5686 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5687 }
5688 
5689 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5690 	.func		= bpf_sock_addr_setsockopt,
5691 	.gpl_only	= false,
5692 	.ret_type	= RET_INTEGER,
5693 	.arg1_type	= ARG_PTR_TO_CTX,
5694 	.arg2_type	= ARG_ANYTHING,
5695 	.arg3_type	= ARG_ANYTHING,
5696 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5697 	.arg5_type	= ARG_CONST_SIZE,
5698 };
5699 
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5700 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5701 	   int, level, int, optname, char *, optval, int, optlen)
5702 {
5703 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5704 }
5705 
5706 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5707 	.func		= bpf_sock_addr_getsockopt,
5708 	.gpl_only	= false,
5709 	.ret_type	= RET_INTEGER,
5710 	.arg1_type	= ARG_PTR_TO_CTX,
5711 	.arg2_type	= ARG_ANYTHING,
5712 	.arg3_type	= ARG_ANYTHING,
5713 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5714 	.arg5_type	= ARG_CONST_SIZE,
5715 };
5716 
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5717 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5718 	   int, level, int, optname, char *, optval, int, optlen)
5719 {
5720 	if (!is_locked_tcp_sock_ops(bpf_sock))
5721 		return -EOPNOTSUPP;
5722 
5723 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5724 }
5725 
5726 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5727 	.func		= bpf_sock_ops_setsockopt,
5728 	.gpl_only	= false,
5729 	.ret_type	= RET_INTEGER,
5730 	.arg1_type	= ARG_PTR_TO_CTX,
5731 	.arg2_type	= ARG_ANYTHING,
5732 	.arg3_type	= ARG_ANYTHING,
5733 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5734 	.arg5_type	= ARG_CONST_SIZE,
5735 };
5736 
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5737 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5738 				int optname, const u8 **start)
5739 {
5740 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5741 	const u8 *hdr_start;
5742 	int ret;
5743 
5744 	if (syn_skb) {
5745 		/* sk is a request_sock here */
5746 
5747 		if (optname == TCP_BPF_SYN) {
5748 			hdr_start = syn_skb->data;
5749 			ret = tcp_hdrlen(syn_skb);
5750 		} else if (optname == TCP_BPF_SYN_IP) {
5751 			hdr_start = skb_network_header(syn_skb);
5752 			ret = skb_network_header_len(syn_skb) +
5753 				tcp_hdrlen(syn_skb);
5754 		} else {
5755 			/* optname == TCP_BPF_SYN_MAC */
5756 			hdr_start = skb_mac_header(syn_skb);
5757 			ret = skb_mac_header_len(syn_skb) +
5758 				skb_network_header_len(syn_skb) +
5759 				tcp_hdrlen(syn_skb);
5760 		}
5761 	} else {
5762 		struct sock *sk = bpf_sock->sk;
5763 		struct saved_syn *saved_syn;
5764 
5765 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5766 			/* synack retransmit. bpf_sock->syn_skb will
5767 			 * not be available.  It has to resort to
5768 			 * saved_syn (if it is saved).
5769 			 */
5770 			saved_syn = inet_reqsk(sk)->saved_syn;
5771 		else
5772 			saved_syn = tcp_sk(sk)->saved_syn;
5773 
5774 		if (!saved_syn)
5775 			return -ENOENT;
5776 
5777 		if (optname == TCP_BPF_SYN) {
5778 			hdr_start = saved_syn->data +
5779 				saved_syn->mac_hdrlen +
5780 				saved_syn->network_hdrlen;
5781 			ret = saved_syn->tcp_hdrlen;
5782 		} else if (optname == TCP_BPF_SYN_IP) {
5783 			hdr_start = saved_syn->data +
5784 				saved_syn->mac_hdrlen;
5785 			ret = saved_syn->network_hdrlen +
5786 				saved_syn->tcp_hdrlen;
5787 		} else {
5788 			/* optname == TCP_BPF_SYN_MAC */
5789 
5790 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5791 			if (!saved_syn->mac_hdrlen)
5792 				return -ENOENT;
5793 
5794 			hdr_start = saved_syn->data;
5795 			ret = saved_syn->mac_hdrlen +
5796 				saved_syn->network_hdrlen +
5797 				saved_syn->tcp_hdrlen;
5798 		}
5799 	}
5800 
5801 	*start = hdr_start;
5802 	return ret;
5803 }
5804 
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5805 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5806 	   int, level, int, optname, char *, optval, int, optlen)
5807 {
5808 	if (!is_locked_tcp_sock_ops(bpf_sock))
5809 		return -EOPNOTSUPP;
5810 
5811 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5812 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5813 		int ret, copy_len = 0;
5814 		const u8 *start;
5815 
5816 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5817 		if (ret > 0) {
5818 			copy_len = ret;
5819 			if (optlen < copy_len) {
5820 				copy_len = optlen;
5821 				ret = -ENOSPC;
5822 			}
5823 
5824 			memcpy(optval, start, copy_len);
5825 		}
5826 
5827 		/* Zero out unused buffer at the end */
5828 		memset(optval + copy_len, 0, optlen - copy_len);
5829 
5830 		return ret;
5831 	}
5832 
5833 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5834 }
5835 
5836 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5837 	.func		= bpf_sock_ops_getsockopt,
5838 	.gpl_only	= false,
5839 	.ret_type	= RET_INTEGER,
5840 	.arg1_type	= ARG_PTR_TO_CTX,
5841 	.arg2_type	= ARG_ANYTHING,
5842 	.arg3_type	= ARG_ANYTHING,
5843 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5844 	.arg5_type	= ARG_CONST_SIZE,
5845 };
5846 
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5847 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5848 	   int, argval)
5849 {
5850 	struct sock *sk = bpf_sock->sk;
5851 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5852 
5853 	if (!is_locked_tcp_sock_ops(bpf_sock))
5854 		return -EOPNOTSUPP;
5855 
5856 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5857 		return -EINVAL;
5858 
5859 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5860 
5861 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5862 }
5863 
5864 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5865 	.func		= bpf_sock_ops_cb_flags_set,
5866 	.gpl_only	= false,
5867 	.ret_type	= RET_INTEGER,
5868 	.arg1_type	= ARG_PTR_TO_CTX,
5869 	.arg2_type	= ARG_ANYTHING,
5870 };
5871 
5872 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5873 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5874 
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5875 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5876 	   int, addr_len)
5877 {
5878 #ifdef CONFIG_INET
5879 	struct sock *sk = ctx->sk;
5880 	u32 flags = BIND_FROM_BPF;
5881 	int err;
5882 
5883 	err = -EINVAL;
5884 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5885 		return err;
5886 	if (addr->sa_family == AF_INET) {
5887 		if (addr_len < sizeof(struct sockaddr_in))
5888 			return err;
5889 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5890 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5891 		return __inet_bind(sk, addr, addr_len, flags);
5892 #if IS_ENABLED(CONFIG_IPV6)
5893 	} else if (addr->sa_family == AF_INET6) {
5894 		if (addr_len < SIN6_LEN_RFC2133)
5895 			return err;
5896 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5897 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5898 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5899 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5900 		 */
5901 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5902 #endif /* CONFIG_IPV6 */
5903 	}
5904 #endif /* CONFIG_INET */
5905 
5906 	return -EAFNOSUPPORT;
5907 }
5908 
5909 static const struct bpf_func_proto bpf_bind_proto = {
5910 	.func		= bpf_bind,
5911 	.gpl_only	= false,
5912 	.ret_type	= RET_INTEGER,
5913 	.arg1_type	= ARG_PTR_TO_CTX,
5914 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5915 	.arg3_type	= ARG_CONST_SIZE,
5916 };
5917 
5918 #ifdef CONFIG_XFRM
5919 
5920 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5921     (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5922 
5923 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5924 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5925 
5926 #endif
5927 
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5928 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5929 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5930 {
5931 	const struct sec_path *sp = skb_sec_path(skb);
5932 	const struct xfrm_state *x;
5933 
5934 	if (!sp || unlikely(index >= sp->len || flags))
5935 		goto err_clear;
5936 
5937 	x = sp->xvec[index];
5938 
5939 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5940 		goto err_clear;
5941 
5942 	to->reqid = x->props.reqid;
5943 	to->spi = x->id.spi;
5944 	to->family = x->props.family;
5945 	to->ext = 0;
5946 
5947 	if (to->family == AF_INET6) {
5948 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5949 		       sizeof(to->remote_ipv6));
5950 	} else {
5951 		to->remote_ipv4 = x->props.saddr.a4;
5952 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5953 	}
5954 
5955 	return 0;
5956 err_clear:
5957 	memset(to, 0, size);
5958 	return -EINVAL;
5959 }
5960 
5961 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5962 	.func		= bpf_skb_get_xfrm_state,
5963 	.gpl_only	= false,
5964 	.ret_type	= RET_INTEGER,
5965 	.arg1_type	= ARG_PTR_TO_CTX,
5966 	.arg2_type	= ARG_ANYTHING,
5967 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5968 	.arg4_type	= ARG_CONST_SIZE,
5969 	.arg5_type	= ARG_ANYTHING,
5970 };
5971 #endif
5972 
5973 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)5974 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5975 {
5976 	params->h_vlan_TCI = 0;
5977 	params->h_vlan_proto = 0;
5978 	if (mtu)
5979 		params->mtu_result = mtu; /* union with tot_len */
5980 
5981 	return 0;
5982 }
5983 #endif
5984 
5985 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5986 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5987 			       u32 flags, bool check_mtu)
5988 {
5989 	struct fib_nh_common *nhc;
5990 	struct in_device *in_dev;
5991 	struct neighbour *neigh;
5992 	struct net_device *dev;
5993 	struct fib_result res;
5994 	struct flowi4 fl4;
5995 	u32 mtu = 0;
5996 	int err;
5997 
5998 	dev = dev_get_by_index_rcu(net, params->ifindex);
5999 	if (unlikely(!dev))
6000 		return -ENODEV;
6001 
6002 	/* verify forwarding is enabled on this interface */
6003 	in_dev = __in_dev_get_rcu(dev);
6004 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
6005 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
6006 
6007 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6008 		fl4.flowi4_iif = 1;
6009 		fl4.flowi4_oif = params->ifindex;
6010 	} else {
6011 		fl4.flowi4_iif = params->ifindex;
6012 		fl4.flowi4_oif = 0;
6013 	}
6014 	fl4.flowi4_tos = params->tos & INET_DSCP_MASK;
6015 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
6016 	fl4.flowi4_flags = 0;
6017 
6018 	fl4.flowi4_proto = params->l4_protocol;
6019 	fl4.daddr = params->ipv4_dst;
6020 	fl4.saddr = params->ipv4_src;
6021 	fl4.fl4_sport = params->sport;
6022 	fl4.fl4_dport = params->dport;
6023 	fl4.flowi4_multipath_hash = 0;
6024 
6025 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
6026 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6027 		struct fib_table *tb;
6028 
6029 		if (flags & BPF_FIB_LOOKUP_TBID) {
6030 			tbid = params->tbid;
6031 			/* zero out for vlan output */
6032 			params->tbid = 0;
6033 		}
6034 
6035 		tb = fib_get_table(net, tbid);
6036 		if (unlikely(!tb))
6037 			return BPF_FIB_LKUP_RET_NOT_FWDED;
6038 
6039 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
6040 	} else {
6041 		if (flags & BPF_FIB_LOOKUP_MARK)
6042 			fl4.flowi4_mark = params->mark;
6043 		else
6044 			fl4.flowi4_mark = 0;
6045 		fl4.flowi4_secid = 0;
6046 		fl4.flowi4_tun_key.tun_id = 0;
6047 		fl4.flowi4_uid = sock_net_uid(net, NULL);
6048 
6049 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
6050 	}
6051 
6052 	if (err) {
6053 		/* map fib lookup errors to RTN_ type */
6054 		if (err == -EINVAL)
6055 			return BPF_FIB_LKUP_RET_BLACKHOLE;
6056 		if (err == -EHOSTUNREACH)
6057 			return BPF_FIB_LKUP_RET_UNREACHABLE;
6058 		if (err == -EACCES)
6059 			return BPF_FIB_LKUP_RET_PROHIBIT;
6060 
6061 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6062 	}
6063 
6064 	if (res.type != RTN_UNICAST)
6065 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6066 
6067 	if (fib_info_num_path(res.fi) > 1)
6068 		fib_select_path(net, &res, &fl4, NULL);
6069 
6070 	if (check_mtu) {
6071 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
6072 		if (params->tot_len > mtu) {
6073 			params->mtu_result = mtu; /* union with tot_len */
6074 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6075 		}
6076 	}
6077 
6078 	nhc = res.nhc;
6079 
6080 	/* do not handle lwt encaps right now */
6081 	if (nhc->nhc_lwtstate)
6082 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6083 
6084 	dev = nhc->nhc_dev;
6085 
6086 	params->rt_metric = res.fi->fib_priority;
6087 	params->ifindex = dev->ifindex;
6088 
6089 	if (flags & BPF_FIB_LOOKUP_SRC)
6090 		params->ipv4_src = fib_result_prefsrc(net, &res);
6091 
6092 	/* xdp and cls_bpf programs are run in RCU-bh so
6093 	 * rcu_read_lock_bh is not needed here
6094 	 */
6095 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
6096 		if (nhc->nhc_gw_family)
6097 			params->ipv4_dst = nhc->nhc_gw.ipv4;
6098 	} else {
6099 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
6100 
6101 		params->family = AF_INET6;
6102 		*dst = nhc->nhc_gw.ipv6;
6103 	}
6104 
6105 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6106 		goto set_fwd_params;
6107 
6108 	if (likely(nhc->nhc_gw_family != AF_INET6))
6109 		neigh = __ipv4_neigh_lookup_noref(dev,
6110 						  (__force u32)params->ipv4_dst);
6111 	else
6112 		neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
6113 
6114 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6115 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6116 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6117 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6118 
6119 set_fwd_params:
6120 	return bpf_fib_set_fwd_params(params, mtu);
6121 }
6122 #endif
6123 
6124 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)6125 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6126 			       u32 flags, bool check_mtu)
6127 {
6128 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
6129 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
6130 	struct fib6_result res = {};
6131 	struct neighbour *neigh;
6132 	struct net_device *dev;
6133 	struct inet6_dev *idev;
6134 	struct flowi6 fl6;
6135 	int strict = 0;
6136 	int oif, err;
6137 	u32 mtu = 0;
6138 
6139 	/* link local addresses are never forwarded */
6140 	if (rt6_need_strict(dst) || rt6_need_strict(src))
6141 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6142 
6143 	dev = dev_get_by_index_rcu(net, params->ifindex);
6144 	if (unlikely(!dev))
6145 		return -ENODEV;
6146 
6147 	idev = __in6_dev_get_safely(dev);
6148 	if (unlikely(!idev || !READ_ONCE(idev->cnf.forwarding)))
6149 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
6150 
6151 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6152 		fl6.flowi6_iif = 1;
6153 		oif = fl6.flowi6_oif = params->ifindex;
6154 	} else {
6155 		oif = fl6.flowi6_iif = params->ifindex;
6156 		fl6.flowi6_oif = 0;
6157 		strict = RT6_LOOKUP_F_HAS_SADDR;
6158 	}
6159 	fl6.flowlabel = params->flowinfo;
6160 	fl6.flowi6_scope = 0;
6161 	fl6.flowi6_flags = 0;
6162 	fl6.mp_hash = 0;
6163 
6164 	fl6.flowi6_proto = params->l4_protocol;
6165 	fl6.daddr = *dst;
6166 	fl6.saddr = *src;
6167 	fl6.fl6_sport = params->sport;
6168 	fl6.fl6_dport = params->dport;
6169 
6170 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
6171 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6172 		struct fib6_table *tb;
6173 
6174 		if (flags & BPF_FIB_LOOKUP_TBID) {
6175 			tbid = params->tbid;
6176 			/* zero out for vlan output */
6177 			params->tbid = 0;
6178 		}
6179 
6180 		tb = ipv6_stub->fib6_get_table(net, tbid);
6181 		if (unlikely(!tb))
6182 			return BPF_FIB_LKUP_RET_NOT_FWDED;
6183 
6184 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6185 						   strict);
6186 	} else {
6187 		if (flags & BPF_FIB_LOOKUP_MARK)
6188 			fl6.flowi6_mark = params->mark;
6189 		else
6190 			fl6.flowi6_mark = 0;
6191 		fl6.flowi6_secid = 0;
6192 		fl6.flowi6_tun_key.tun_id = 0;
6193 		fl6.flowi6_uid = sock_net_uid(net, NULL);
6194 
6195 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6196 	}
6197 
6198 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6199 		     res.f6i == net->ipv6.fib6_null_entry))
6200 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6201 
6202 	switch (res.fib6_type) {
6203 	/* only unicast is forwarded */
6204 	case RTN_UNICAST:
6205 		break;
6206 	case RTN_BLACKHOLE:
6207 		return BPF_FIB_LKUP_RET_BLACKHOLE;
6208 	case RTN_UNREACHABLE:
6209 		return BPF_FIB_LKUP_RET_UNREACHABLE;
6210 	case RTN_PROHIBIT:
6211 		return BPF_FIB_LKUP_RET_PROHIBIT;
6212 	default:
6213 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6214 	}
6215 
6216 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6217 				    fl6.flowi6_oif != 0, NULL, strict);
6218 
6219 	if (check_mtu) {
6220 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6221 		if (params->tot_len > mtu) {
6222 			params->mtu_result = mtu; /* union with tot_len */
6223 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6224 		}
6225 	}
6226 
6227 	if (res.nh->fib_nh_lws)
6228 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6229 
6230 	if (res.nh->fib_nh_gw_family)
6231 		*dst = res.nh->fib_nh_gw6;
6232 
6233 	dev = res.nh->fib_nh_dev;
6234 	params->rt_metric = res.f6i->fib6_metric;
6235 	params->ifindex = dev->ifindex;
6236 
6237 	if (flags & BPF_FIB_LOOKUP_SRC) {
6238 		if (res.f6i->fib6_prefsrc.plen) {
6239 			*src = res.f6i->fib6_prefsrc.addr;
6240 		} else {
6241 			err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6242 								&fl6.daddr, 0,
6243 								src);
6244 			if (err)
6245 				return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6246 		}
6247 	}
6248 
6249 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6250 		goto set_fwd_params;
6251 
6252 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6253 	 * not needed here.
6254 	 */
6255 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6256 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6257 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6258 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6259 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6260 
6261 set_fwd_params:
6262 	return bpf_fib_set_fwd_params(params, mtu);
6263 }
6264 #endif
6265 
6266 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6267 			     BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6268 			     BPF_FIB_LOOKUP_SRC | BPF_FIB_LOOKUP_MARK)
6269 
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)6270 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6271 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6272 {
6273 	if (plen < sizeof(*params))
6274 		return -EINVAL;
6275 
6276 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6277 		return -EINVAL;
6278 
6279 	switch (params->family) {
6280 #if IS_ENABLED(CONFIG_INET)
6281 	case AF_INET:
6282 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6283 					   flags, true);
6284 #endif
6285 #if IS_ENABLED(CONFIG_IPV6)
6286 	case AF_INET6:
6287 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6288 					   flags, true);
6289 #endif
6290 	}
6291 	return -EAFNOSUPPORT;
6292 }
6293 
6294 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6295 	.func		= bpf_xdp_fib_lookup,
6296 	.gpl_only	= true,
6297 	.ret_type	= RET_INTEGER,
6298 	.arg1_type      = ARG_PTR_TO_CTX,
6299 	.arg2_type      = ARG_PTR_TO_MEM,
6300 	.arg3_type      = ARG_CONST_SIZE,
6301 	.arg4_type	= ARG_ANYTHING,
6302 };
6303 
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)6304 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6305 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6306 {
6307 	struct net *net = dev_net(skb->dev);
6308 	int rc = -EAFNOSUPPORT;
6309 	bool check_mtu = false;
6310 
6311 	if (plen < sizeof(*params))
6312 		return -EINVAL;
6313 
6314 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6315 		return -EINVAL;
6316 
6317 	if (params->tot_len)
6318 		check_mtu = true;
6319 
6320 	switch (params->family) {
6321 #if IS_ENABLED(CONFIG_INET)
6322 	case AF_INET:
6323 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6324 		break;
6325 #endif
6326 #if IS_ENABLED(CONFIG_IPV6)
6327 	case AF_INET6:
6328 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6329 		break;
6330 #endif
6331 	}
6332 
6333 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6334 		struct net_device *dev;
6335 
6336 		/* When tot_len isn't provided by user, check skb
6337 		 * against MTU of FIB lookup resulting net_device
6338 		 */
6339 		dev = dev_get_by_index_rcu(net, params->ifindex);
6340 		if (!is_skb_forwardable(dev, skb))
6341 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6342 
6343 		params->mtu_result = dev->mtu; /* union with tot_len */
6344 	}
6345 
6346 	return rc;
6347 }
6348 
6349 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6350 	.func		= bpf_skb_fib_lookup,
6351 	.gpl_only	= true,
6352 	.ret_type	= RET_INTEGER,
6353 	.arg1_type      = ARG_PTR_TO_CTX,
6354 	.arg2_type      = ARG_PTR_TO_MEM,
6355 	.arg3_type      = ARG_CONST_SIZE,
6356 	.arg4_type	= ARG_ANYTHING,
6357 };
6358 
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6359 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6360 					    u32 ifindex)
6361 {
6362 	struct net *netns = dev_net(dev_curr);
6363 
6364 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6365 	if (ifindex == 0)
6366 		return dev_curr;
6367 
6368 	return dev_get_by_index_rcu(netns, ifindex);
6369 }
6370 
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6371 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6372 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6373 {
6374 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6375 	struct net_device *dev = skb->dev;
6376 	int mtu, dev_len, skb_len;
6377 
6378 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6379 		return -EINVAL;
6380 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6381 		return -EINVAL;
6382 
6383 	dev = __dev_via_ifindex(dev, ifindex);
6384 	if (unlikely(!dev))
6385 		return -ENODEV;
6386 
6387 	mtu = READ_ONCE(dev->mtu);
6388 	dev_len = mtu + dev->hard_header_len;
6389 
6390 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6391 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6392 
6393 	skb_len += len_diff; /* minus result pass check */
6394 	if (skb_len <= dev_len) {
6395 		ret = BPF_MTU_CHK_RET_SUCCESS;
6396 		goto out;
6397 	}
6398 	/* At this point, skb->len exceed MTU, but as it include length of all
6399 	 * segments, it can still be below MTU.  The SKB can possibly get
6400 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6401 	 * must choose if segs are to be MTU checked.
6402 	 */
6403 	if (skb_is_gso(skb)) {
6404 		ret = BPF_MTU_CHK_RET_SUCCESS;
6405 		if (flags & BPF_MTU_CHK_SEGS &&
6406 		    !skb_gso_validate_network_len(skb, mtu))
6407 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6408 	}
6409 out:
6410 	*mtu_len = mtu;
6411 	return ret;
6412 }
6413 
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6414 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6415 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6416 {
6417 	struct net_device *dev = xdp->rxq->dev;
6418 	int xdp_len = xdp->data_end - xdp->data;
6419 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6420 	int mtu, dev_len;
6421 
6422 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6423 	if (unlikely(flags))
6424 		return -EINVAL;
6425 
6426 	dev = __dev_via_ifindex(dev, ifindex);
6427 	if (unlikely(!dev))
6428 		return -ENODEV;
6429 
6430 	mtu = READ_ONCE(dev->mtu);
6431 	dev_len = mtu + dev->hard_header_len;
6432 
6433 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6434 	if (*mtu_len)
6435 		xdp_len = *mtu_len + dev->hard_header_len;
6436 
6437 	xdp_len += len_diff; /* minus result pass check */
6438 	if (xdp_len > dev_len)
6439 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6440 
6441 	*mtu_len = mtu;
6442 	return ret;
6443 }
6444 
6445 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6446 	.func		= bpf_skb_check_mtu,
6447 	.gpl_only	= true,
6448 	.ret_type	= RET_INTEGER,
6449 	.arg1_type      = ARG_PTR_TO_CTX,
6450 	.arg2_type      = ARG_ANYTHING,
6451 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6452 	.arg3_size	= sizeof(u32),
6453 	.arg4_type      = ARG_ANYTHING,
6454 	.arg5_type      = ARG_ANYTHING,
6455 };
6456 
6457 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6458 	.func		= bpf_xdp_check_mtu,
6459 	.gpl_only	= true,
6460 	.ret_type	= RET_INTEGER,
6461 	.arg1_type      = ARG_PTR_TO_CTX,
6462 	.arg2_type      = ARG_ANYTHING,
6463 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6464 	.arg3_size	= sizeof(u32),
6465 	.arg4_type      = ARG_ANYTHING,
6466 	.arg5_type      = ARG_ANYTHING,
6467 };
6468 
6469 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6470 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6471 {
6472 	int err;
6473 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6474 
6475 	if (!seg6_validate_srh(srh, len, false))
6476 		return -EINVAL;
6477 
6478 	switch (type) {
6479 	case BPF_LWT_ENCAP_SEG6_INLINE:
6480 		if (skb->protocol != htons(ETH_P_IPV6))
6481 			return -EBADMSG;
6482 
6483 		err = seg6_do_srh_inline(skb, srh);
6484 		break;
6485 	case BPF_LWT_ENCAP_SEG6:
6486 		skb_reset_inner_headers(skb);
6487 		skb->encapsulation = 1;
6488 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6489 		break;
6490 	default:
6491 		return -EINVAL;
6492 	}
6493 
6494 	bpf_compute_data_pointers(skb);
6495 	if (err)
6496 		return err;
6497 
6498 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6499 
6500 	return seg6_lookup_nexthop(skb, NULL, 0);
6501 }
6502 #endif /* CONFIG_IPV6_SEG6_BPF */
6503 
6504 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6505 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6506 			     bool ingress)
6507 {
6508 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6509 }
6510 #endif
6511 
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6512 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6513 	   u32, len)
6514 {
6515 	switch (type) {
6516 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6517 	case BPF_LWT_ENCAP_SEG6:
6518 	case BPF_LWT_ENCAP_SEG6_INLINE:
6519 		return bpf_push_seg6_encap(skb, type, hdr, len);
6520 #endif
6521 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6522 	case BPF_LWT_ENCAP_IP:
6523 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6524 #endif
6525 	default:
6526 		return -EINVAL;
6527 	}
6528 }
6529 
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6530 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6531 	   void *, hdr, u32, len)
6532 {
6533 	switch (type) {
6534 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6535 	case BPF_LWT_ENCAP_IP:
6536 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6537 #endif
6538 	default:
6539 		return -EINVAL;
6540 	}
6541 }
6542 
6543 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6544 	.func		= bpf_lwt_in_push_encap,
6545 	.gpl_only	= false,
6546 	.ret_type	= RET_INTEGER,
6547 	.arg1_type	= ARG_PTR_TO_CTX,
6548 	.arg2_type	= ARG_ANYTHING,
6549 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6550 	.arg4_type	= ARG_CONST_SIZE
6551 };
6552 
6553 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6554 	.func		= bpf_lwt_xmit_push_encap,
6555 	.gpl_only	= false,
6556 	.ret_type	= RET_INTEGER,
6557 	.arg1_type	= ARG_PTR_TO_CTX,
6558 	.arg2_type	= ARG_ANYTHING,
6559 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6560 	.arg4_type	= ARG_CONST_SIZE
6561 };
6562 
6563 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6564 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6565 	   const void *, from, u32, len)
6566 {
6567 	struct seg6_bpf_srh_state *srh_state =
6568 		this_cpu_ptr(&seg6_bpf_srh_states);
6569 	struct ipv6_sr_hdr *srh = srh_state->srh;
6570 	void *srh_tlvs, *srh_end, *ptr;
6571 	int srhoff = 0;
6572 
6573 	lockdep_assert_held(&srh_state->bh_lock);
6574 	if (srh == NULL)
6575 		return -EINVAL;
6576 
6577 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6578 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6579 
6580 	ptr = skb->data + offset;
6581 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6582 		srh_state->valid = false;
6583 	else if (ptr < (void *)&srh->flags ||
6584 		 ptr + len > (void *)&srh->segments)
6585 		return -EFAULT;
6586 
6587 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6588 		return -EFAULT;
6589 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6590 		return -EINVAL;
6591 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6592 
6593 	memcpy(skb->data + offset, from, len);
6594 	return 0;
6595 }
6596 
6597 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6598 	.func		= bpf_lwt_seg6_store_bytes,
6599 	.gpl_only	= false,
6600 	.ret_type	= RET_INTEGER,
6601 	.arg1_type	= ARG_PTR_TO_CTX,
6602 	.arg2_type	= ARG_ANYTHING,
6603 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6604 	.arg4_type	= ARG_CONST_SIZE
6605 };
6606 
bpf_update_srh_state(struct sk_buff * skb)6607 static void bpf_update_srh_state(struct sk_buff *skb)
6608 {
6609 	struct seg6_bpf_srh_state *srh_state =
6610 		this_cpu_ptr(&seg6_bpf_srh_states);
6611 	int srhoff = 0;
6612 
6613 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6614 		srh_state->srh = NULL;
6615 	} else {
6616 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6617 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6618 		srh_state->valid = true;
6619 	}
6620 }
6621 
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6622 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6623 	   u32, action, void *, param, u32, param_len)
6624 {
6625 	struct seg6_bpf_srh_state *srh_state =
6626 		this_cpu_ptr(&seg6_bpf_srh_states);
6627 	int hdroff = 0;
6628 	int err;
6629 
6630 	lockdep_assert_held(&srh_state->bh_lock);
6631 	switch (action) {
6632 	case SEG6_LOCAL_ACTION_END_X:
6633 		if (!seg6_bpf_has_valid_srh(skb))
6634 			return -EBADMSG;
6635 		if (param_len != sizeof(struct in6_addr))
6636 			return -EINVAL;
6637 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6638 	case SEG6_LOCAL_ACTION_END_T:
6639 		if (!seg6_bpf_has_valid_srh(skb))
6640 			return -EBADMSG;
6641 		if (param_len != sizeof(int))
6642 			return -EINVAL;
6643 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6644 	case SEG6_LOCAL_ACTION_END_DT6:
6645 		if (!seg6_bpf_has_valid_srh(skb))
6646 			return -EBADMSG;
6647 		if (param_len != sizeof(int))
6648 			return -EINVAL;
6649 
6650 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6651 			return -EBADMSG;
6652 		if (!pskb_pull(skb, hdroff))
6653 			return -EBADMSG;
6654 
6655 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6656 		skb_reset_network_header(skb);
6657 		skb_reset_transport_header(skb);
6658 		skb->encapsulation = 0;
6659 
6660 		bpf_compute_data_pointers(skb);
6661 		bpf_update_srh_state(skb);
6662 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6663 	case SEG6_LOCAL_ACTION_END_B6:
6664 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6665 			return -EBADMSG;
6666 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6667 					  param, param_len);
6668 		if (!err)
6669 			bpf_update_srh_state(skb);
6670 
6671 		return err;
6672 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6673 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6674 			return -EBADMSG;
6675 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6676 					  param, param_len);
6677 		if (!err)
6678 			bpf_update_srh_state(skb);
6679 
6680 		return err;
6681 	default:
6682 		return -EINVAL;
6683 	}
6684 }
6685 
6686 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6687 	.func		= bpf_lwt_seg6_action,
6688 	.gpl_only	= false,
6689 	.ret_type	= RET_INTEGER,
6690 	.arg1_type	= ARG_PTR_TO_CTX,
6691 	.arg2_type	= ARG_ANYTHING,
6692 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6693 	.arg4_type	= ARG_CONST_SIZE
6694 };
6695 
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6696 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6697 	   s32, len)
6698 {
6699 	struct seg6_bpf_srh_state *srh_state =
6700 		this_cpu_ptr(&seg6_bpf_srh_states);
6701 	struct ipv6_sr_hdr *srh = srh_state->srh;
6702 	void *srh_end, *srh_tlvs, *ptr;
6703 	struct ipv6hdr *hdr;
6704 	int srhoff = 0;
6705 	int ret;
6706 
6707 	lockdep_assert_held(&srh_state->bh_lock);
6708 	if (unlikely(srh == NULL))
6709 		return -EINVAL;
6710 
6711 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6712 			((srh->first_segment + 1) << 4));
6713 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6714 			srh_state->hdrlen);
6715 	ptr = skb->data + offset;
6716 
6717 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6718 		return -EFAULT;
6719 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6720 		return -EFAULT;
6721 
6722 	if (len > 0) {
6723 		ret = skb_cow_head(skb, len);
6724 		if (unlikely(ret < 0))
6725 			return ret;
6726 
6727 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6728 	} else {
6729 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6730 	}
6731 
6732 	bpf_compute_data_pointers(skb);
6733 	if (unlikely(ret < 0))
6734 		return ret;
6735 
6736 	hdr = (struct ipv6hdr *)skb->data;
6737 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6738 
6739 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6740 		return -EINVAL;
6741 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6742 	srh_state->hdrlen += len;
6743 	srh_state->valid = false;
6744 	return 0;
6745 }
6746 
6747 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6748 	.func		= bpf_lwt_seg6_adjust_srh,
6749 	.gpl_only	= false,
6750 	.ret_type	= RET_INTEGER,
6751 	.arg1_type	= ARG_PTR_TO_CTX,
6752 	.arg2_type	= ARG_ANYTHING,
6753 	.arg3_type	= ARG_ANYTHING,
6754 };
6755 #endif /* CONFIG_IPV6_SEG6_BPF */
6756 
6757 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6758 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6759 			      int dif, int sdif, u8 family, u8 proto)
6760 {
6761 	struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6762 	bool refcounted = false;
6763 	struct sock *sk = NULL;
6764 
6765 	if (family == AF_INET) {
6766 		__be32 src4 = tuple->ipv4.saddr;
6767 		__be32 dst4 = tuple->ipv4.daddr;
6768 
6769 		if (proto == IPPROTO_TCP)
6770 			sk = __inet_lookup(net, hinfo, NULL, 0,
6771 					   src4, tuple->ipv4.sport,
6772 					   dst4, tuple->ipv4.dport,
6773 					   dif, sdif, &refcounted);
6774 		else
6775 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6776 					       dst4, tuple->ipv4.dport,
6777 					       dif, sdif, net->ipv4.udp_table, NULL);
6778 #if IS_ENABLED(CONFIG_IPV6)
6779 	} else {
6780 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6781 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6782 
6783 		if (proto == IPPROTO_TCP)
6784 			sk = __inet6_lookup(net, hinfo, NULL, 0,
6785 					    src6, tuple->ipv6.sport,
6786 					    dst6, ntohs(tuple->ipv6.dport),
6787 					    dif, sdif, &refcounted);
6788 		else if (likely(ipv6_bpf_stub))
6789 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6790 							    src6, tuple->ipv6.sport,
6791 							    dst6, tuple->ipv6.dport,
6792 							    dif, sdif,
6793 							    net->ipv4.udp_table, NULL);
6794 #endif
6795 	}
6796 
6797 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6798 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6799 		sk = NULL;
6800 	}
6801 	return sk;
6802 }
6803 
6804 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6805  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6806  */
6807 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6808 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6809 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6810 		 u64 flags, int sdif)
6811 {
6812 	struct sock *sk = NULL;
6813 	struct net *net;
6814 	u8 family;
6815 
6816 	if (len == sizeof(tuple->ipv4))
6817 		family = AF_INET;
6818 	else if (len == sizeof(tuple->ipv6))
6819 		family = AF_INET6;
6820 	else
6821 		return NULL;
6822 
6823 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6824 		goto out;
6825 
6826 	if (sdif < 0) {
6827 		if (family == AF_INET)
6828 			sdif = inet_sdif(skb);
6829 		else
6830 			sdif = inet6_sdif(skb);
6831 	}
6832 
6833 	if ((s32)netns_id < 0) {
6834 		net = caller_net;
6835 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6836 	} else {
6837 		net = get_net_ns_by_id(caller_net, netns_id);
6838 		if (unlikely(!net))
6839 			goto out;
6840 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6841 		put_net(net);
6842 	}
6843 
6844 out:
6845 	return sk;
6846 }
6847 
6848 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6849 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6850 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6851 		u64 flags, int sdif)
6852 {
6853 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6854 					   ifindex, proto, netns_id, flags,
6855 					   sdif);
6856 
6857 	if (sk) {
6858 		struct sock *sk2 = sk_to_full_sk(sk);
6859 
6860 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6861 		 * sock refcnt is decremented to prevent a request_sock leak.
6862 		 */
6863 		if (sk2 != sk) {
6864 			sock_gen_put(sk);
6865 			/* Ensure there is no need to bump sk2 refcnt */
6866 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6867 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6868 				return NULL;
6869 			}
6870 			sk = sk2;
6871 		}
6872 	}
6873 
6874 	return sk;
6875 }
6876 
6877 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6878 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6879 	       u8 proto, u64 netns_id, u64 flags)
6880 {
6881 	struct net *caller_net;
6882 	int ifindex;
6883 
6884 	if (skb->dev) {
6885 		caller_net = dev_net(skb->dev);
6886 		ifindex = skb->dev->ifindex;
6887 	} else {
6888 		caller_net = sock_net(skb->sk);
6889 		ifindex = 0;
6890 	}
6891 
6892 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6893 				netns_id, flags, -1);
6894 }
6895 
6896 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6897 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6898 	      u8 proto, u64 netns_id, u64 flags)
6899 {
6900 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6901 					 flags);
6902 
6903 	if (sk) {
6904 		struct sock *sk2 = sk_to_full_sk(sk);
6905 
6906 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6907 		 * sock refcnt is decremented to prevent a request_sock leak.
6908 		 */
6909 		if (sk2 != sk) {
6910 			sock_gen_put(sk);
6911 			/* Ensure there is no need to bump sk2 refcnt */
6912 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6913 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6914 				return NULL;
6915 			}
6916 			sk = sk2;
6917 		}
6918 	}
6919 
6920 	return sk;
6921 }
6922 
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6923 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6924 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6925 {
6926 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6927 					     netns_id, flags);
6928 }
6929 
6930 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6931 	.func		= bpf_skc_lookup_tcp,
6932 	.gpl_only	= false,
6933 	.pkt_access	= true,
6934 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6935 	.arg1_type	= ARG_PTR_TO_CTX,
6936 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6937 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6938 	.arg4_type	= ARG_ANYTHING,
6939 	.arg5_type	= ARG_ANYTHING,
6940 };
6941 
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6942 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6943 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6944 {
6945 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6946 					    netns_id, flags);
6947 }
6948 
6949 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6950 	.func		= bpf_sk_lookup_tcp,
6951 	.gpl_only	= false,
6952 	.pkt_access	= true,
6953 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6954 	.arg1_type	= ARG_PTR_TO_CTX,
6955 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6956 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6957 	.arg4_type	= ARG_ANYTHING,
6958 	.arg5_type	= ARG_ANYTHING,
6959 };
6960 
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6961 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6962 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6963 {
6964 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6965 					    netns_id, flags);
6966 }
6967 
6968 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6969 	.func		= bpf_sk_lookup_udp,
6970 	.gpl_only	= false,
6971 	.pkt_access	= true,
6972 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6973 	.arg1_type	= ARG_PTR_TO_CTX,
6974 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6975 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6976 	.arg4_type	= ARG_ANYTHING,
6977 	.arg5_type	= ARG_ANYTHING,
6978 };
6979 
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6980 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6981 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6982 {
6983 	struct net_device *dev = skb->dev;
6984 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6985 	struct net *caller_net = dev_net(dev);
6986 
6987 	return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6988 					       ifindex, IPPROTO_TCP, netns_id,
6989 					       flags, sdif);
6990 }
6991 
6992 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6993 	.func		= bpf_tc_skc_lookup_tcp,
6994 	.gpl_only	= false,
6995 	.pkt_access	= true,
6996 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6997 	.arg1_type	= ARG_PTR_TO_CTX,
6998 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6999 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7000 	.arg4_type	= ARG_ANYTHING,
7001 	.arg5_type	= ARG_ANYTHING,
7002 };
7003 
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7004 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
7005 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7006 {
7007 	struct net_device *dev = skb->dev;
7008 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7009 	struct net *caller_net = dev_net(dev);
7010 
7011 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
7012 					      ifindex, IPPROTO_TCP, netns_id,
7013 					      flags, sdif);
7014 }
7015 
7016 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
7017 	.func		= bpf_tc_sk_lookup_tcp,
7018 	.gpl_only	= false,
7019 	.pkt_access	= true,
7020 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7021 	.arg1_type	= ARG_PTR_TO_CTX,
7022 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7023 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7024 	.arg4_type	= ARG_ANYTHING,
7025 	.arg5_type	= ARG_ANYTHING,
7026 };
7027 
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7028 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
7029 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7030 {
7031 	struct net_device *dev = skb->dev;
7032 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7033 	struct net *caller_net = dev_net(dev);
7034 
7035 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
7036 					      ifindex, IPPROTO_UDP, netns_id,
7037 					      flags, sdif);
7038 }
7039 
7040 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
7041 	.func		= bpf_tc_sk_lookup_udp,
7042 	.gpl_only	= false,
7043 	.pkt_access	= true,
7044 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7045 	.arg1_type	= ARG_PTR_TO_CTX,
7046 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7047 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7048 	.arg4_type	= ARG_ANYTHING,
7049 	.arg5_type	= ARG_ANYTHING,
7050 };
7051 
BPF_CALL_1(bpf_sk_release,struct sock *,sk)7052 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
7053 {
7054 	if (sk && sk_is_refcounted(sk))
7055 		sock_gen_put(sk);
7056 	return 0;
7057 }
7058 
7059 static const struct bpf_func_proto bpf_sk_release_proto = {
7060 	.func		= bpf_sk_release,
7061 	.gpl_only	= false,
7062 	.ret_type	= RET_INTEGER,
7063 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
7064 };
7065 
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7066 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
7067 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7068 {
7069 	struct net_device *dev = ctx->rxq->dev;
7070 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7071 	struct net *caller_net = dev_net(dev);
7072 
7073 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7074 					      ifindex, IPPROTO_UDP, netns_id,
7075 					      flags, sdif);
7076 }
7077 
7078 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
7079 	.func           = bpf_xdp_sk_lookup_udp,
7080 	.gpl_only       = false,
7081 	.pkt_access     = true,
7082 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7083 	.arg1_type      = ARG_PTR_TO_CTX,
7084 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7085 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7086 	.arg4_type      = ARG_ANYTHING,
7087 	.arg5_type      = ARG_ANYTHING,
7088 };
7089 
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7090 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
7091 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7092 {
7093 	struct net_device *dev = ctx->rxq->dev;
7094 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7095 	struct net *caller_net = dev_net(dev);
7096 
7097 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
7098 					       ifindex, IPPROTO_TCP, netns_id,
7099 					       flags, sdif);
7100 }
7101 
7102 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
7103 	.func           = bpf_xdp_skc_lookup_tcp,
7104 	.gpl_only       = false,
7105 	.pkt_access     = true,
7106 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7107 	.arg1_type      = ARG_PTR_TO_CTX,
7108 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7109 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7110 	.arg4_type      = ARG_ANYTHING,
7111 	.arg5_type      = ARG_ANYTHING,
7112 };
7113 
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7114 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
7115 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7116 {
7117 	struct net_device *dev = ctx->rxq->dev;
7118 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7119 	struct net *caller_net = dev_net(dev);
7120 
7121 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7122 					      ifindex, IPPROTO_TCP, netns_id,
7123 					      flags, sdif);
7124 }
7125 
7126 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
7127 	.func           = bpf_xdp_sk_lookup_tcp,
7128 	.gpl_only       = false,
7129 	.pkt_access     = true,
7130 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7131 	.arg1_type      = ARG_PTR_TO_CTX,
7132 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7133 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7134 	.arg4_type      = ARG_ANYTHING,
7135 	.arg5_type      = ARG_ANYTHING,
7136 };
7137 
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7138 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7139 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7140 {
7141 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
7142 					       sock_net(ctx->sk), 0,
7143 					       IPPROTO_TCP, netns_id, flags,
7144 					       -1);
7145 }
7146 
7147 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
7148 	.func		= bpf_sock_addr_skc_lookup_tcp,
7149 	.gpl_only	= false,
7150 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
7151 	.arg1_type	= ARG_PTR_TO_CTX,
7152 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7153 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7154 	.arg4_type	= ARG_ANYTHING,
7155 	.arg5_type	= ARG_ANYTHING,
7156 };
7157 
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7158 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7159 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7160 {
7161 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7162 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
7163 					      netns_id, flags, -1);
7164 }
7165 
7166 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7167 	.func		= bpf_sock_addr_sk_lookup_tcp,
7168 	.gpl_only	= false,
7169 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7170 	.arg1_type	= ARG_PTR_TO_CTX,
7171 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7172 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7173 	.arg4_type	= ARG_ANYTHING,
7174 	.arg5_type	= ARG_ANYTHING,
7175 };
7176 
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7177 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7178 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7179 {
7180 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7181 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
7182 					      netns_id, flags, -1);
7183 }
7184 
7185 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7186 	.func		= bpf_sock_addr_sk_lookup_udp,
7187 	.gpl_only	= false,
7188 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7189 	.arg1_type	= ARG_PTR_TO_CTX,
7190 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7191 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7192 	.arg4_type	= ARG_ANYTHING,
7193 	.arg5_type	= ARG_ANYTHING,
7194 };
7195 
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7196 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7197 				  struct bpf_insn_access_aux *info)
7198 {
7199 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7200 					  icsk_retransmits))
7201 		return false;
7202 
7203 	if (off % size != 0)
7204 		return false;
7205 
7206 	switch (off) {
7207 	case offsetof(struct bpf_tcp_sock, bytes_received):
7208 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7209 		return size == sizeof(__u64);
7210 	default:
7211 		return size == sizeof(__u32);
7212 	}
7213 }
7214 
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7215 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7216 				    const struct bpf_insn *si,
7217 				    struct bpf_insn *insn_buf,
7218 				    struct bpf_prog *prog, u32 *target_size)
7219 {
7220 	struct bpf_insn *insn = insn_buf;
7221 
7222 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
7223 	do {								\
7224 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
7225 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7226 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7227 				      si->dst_reg, si->src_reg,		\
7228 				      offsetof(struct tcp_sock, FIELD)); \
7229 	} while (0)
7230 
7231 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
7232 	do {								\
7233 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
7234 					  FIELD) >			\
7235 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7236 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
7237 					struct inet_connection_sock,	\
7238 					FIELD),				\
7239 				      si->dst_reg, si->src_reg,		\
7240 				      offsetof(				\
7241 					struct inet_connection_sock,	\
7242 					FIELD));			\
7243 	} while (0)
7244 
7245 	BTF_TYPE_EMIT(struct bpf_tcp_sock);
7246 
7247 	switch (si->off) {
7248 	case offsetof(struct bpf_tcp_sock, rtt_min):
7249 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7250 			     sizeof(struct minmax));
7251 		BUILD_BUG_ON(sizeof(struct minmax) <
7252 			     sizeof(struct minmax_sample));
7253 
7254 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7255 				      offsetof(struct tcp_sock, rtt_min) +
7256 				      offsetof(struct minmax_sample, v));
7257 		break;
7258 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
7259 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7260 		break;
7261 	case offsetof(struct bpf_tcp_sock, srtt_us):
7262 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
7263 		break;
7264 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7265 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7266 		break;
7267 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
7268 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7269 		break;
7270 	case offsetof(struct bpf_tcp_sock, snd_nxt):
7271 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7272 		break;
7273 	case offsetof(struct bpf_tcp_sock, snd_una):
7274 		BPF_TCP_SOCK_GET_COMMON(snd_una);
7275 		break;
7276 	case offsetof(struct bpf_tcp_sock, mss_cache):
7277 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
7278 		break;
7279 	case offsetof(struct bpf_tcp_sock, ecn_flags):
7280 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7281 		break;
7282 	case offsetof(struct bpf_tcp_sock, rate_delivered):
7283 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7284 		break;
7285 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
7286 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7287 		break;
7288 	case offsetof(struct bpf_tcp_sock, packets_out):
7289 		BPF_TCP_SOCK_GET_COMMON(packets_out);
7290 		break;
7291 	case offsetof(struct bpf_tcp_sock, retrans_out):
7292 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
7293 		break;
7294 	case offsetof(struct bpf_tcp_sock, total_retrans):
7295 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
7296 		break;
7297 	case offsetof(struct bpf_tcp_sock, segs_in):
7298 		BPF_TCP_SOCK_GET_COMMON(segs_in);
7299 		break;
7300 	case offsetof(struct bpf_tcp_sock, data_segs_in):
7301 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7302 		break;
7303 	case offsetof(struct bpf_tcp_sock, segs_out):
7304 		BPF_TCP_SOCK_GET_COMMON(segs_out);
7305 		break;
7306 	case offsetof(struct bpf_tcp_sock, data_segs_out):
7307 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7308 		break;
7309 	case offsetof(struct bpf_tcp_sock, lost_out):
7310 		BPF_TCP_SOCK_GET_COMMON(lost_out);
7311 		break;
7312 	case offsetof(struct bpf_tcp_sock, sacked_out):
7313 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
7314 		break;
7315 	case offsetof(struct bpf_tcp_sock, bytes_received):
7316 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
7317 		break;
7318 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7319 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7320 		break;
7321 	case offsetof(struct bpf_tcp_sock, dsack_dups):
7322 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7323 		break;
7324 	case offsetof(struct bpf_tcp_sock, delivered):
7325 		BPF_TCP_SOCK_GET_COMMON(delivered);
7326 		break;
7327 	case offsetof(struct bpf_tcp_sock, delivered_ce):
7328 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7329 		break;
7330 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7331 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7332 		break;
7333 	}
7334 
7335 	return insn - insn_buf;
7336 }
7337 
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)7338 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7339 {
7340 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7341 		return (unsigned long)sk;
7342 
7343 	return (unsigned long)NULL;
7344 }
7345 
7346 const struct bpf_func_proto bpf_tcp_sock_proto = {
7347 	.func		= bpf_tcp_sock,
7348 	.gpl_only	= false,
7349 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
7350 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7351 };
7352 
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)7353 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7354 {
7355 	sk = sk_to_full_sk(sk);
7356 
7357 	if (sk && sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7358 		return (unsigned long)sk;
7359 
7360 	return (unsigned long)NULL;
7361 }
7362 
7363 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7364 	.func		= bpf_get_listener_sock,
7365 	.gpl_only	= false,
7366 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7367 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7368 };
7369 
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)7370 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7371 {
7372 	unsigned int iphdr_len;
7373 
7374 	switch (skb_protocol(skb, true)) {
7375 	case cpu_to_be16(ETH_P_IP):
7376 		iphdr_len = sizeof(struct iphdr);
7377 		break;
7378 	case cpu_to_be16(ETH_P_IPV6):
7379 		iphdr_len = sizeof(struct ipv6hdr);
7380 		break;
7381 	default:
7382 		return 0;
7383 	}
7384 
7385 	if (skb_headlen(skb) < iphdr_len)
7386 		return 0;
7387 
7388 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7389 		return 0;
7390 
7391 	return INET_ECN_set_ce(skb);
7392 }
7393 
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7394 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7395 				  struct bpf_insn_access_aux *info)
7396 {
7397 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7398 		return false;
7399 
7400 	if (off % size != 0)
7401 		return false;
7402 
7403 	switch (off) {
7404 	default:
7405 		return size == sizeof(__u32);
7406 	}
7407 }
7408 
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7409 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7410 				    const struct bpf_insn *si,
7411 				    struct bpf_insn *insn_buf,
7412 				    struct bpf_prog *prog, u32 *target_size)
7413 {
7414 	struct bpf_insn *insn = insn_buf;
7415 
7416 #define BPF_XDP_SOCK_GET(FIELD)						\
7417 	do {								\
7418 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7419 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7420 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7421 				      si->dst_reg, si->src_reg,		\
7422 				      offsetof(struct xdp_sock, FIELD)); \
7423 	} while (0)
7424 
7425 	switch (si->off) {
7426 	case offsetof(struct bpf_xdp_sock, queue_id):
7427 		BPF_XDP_SOCK_GET(queue_id);
7428 		break;
7429 	}
7430 
7431 	return insn - insn_buf;
7432 }
7433 
7434 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7435 	.func           = bpf_skb_ecn_set_ce,
7436 	.gpl_only       = false,
7437 	.ret_type       = RET_INTEGER,
7438 	.arg1_type      = ARG_PTR_TO_CTX,
7439 };
7440 
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7441 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7442 	   struct tcphdr *, th, u32, th_len)
7443 {
7444 #ifdef CONFIG_SYN_COOKIES
7445 	int ret;
7446 
7447 	if (unlikely(!sk || th_len < sizeof(*th)))
7448 		return -EINVAL;
7449 
7450 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7451 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7452 		return -EINVAL;
7453 
7454 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7455 		return -EINVAL;
7456 
7457 	if (!th->ack || th->rst || th->syn)
7458 		return -ENOENT;
7459 
7460 	if (unlikely(iph_len < sizeof(struct iphdr)))
7461 		return -EINVAL;
7462 
7463 	if (tcp_synq_no_recent_overflow(sk))
7464 		return -ENOENT;
7465 
7466 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7467 	 * same offset so we can cast to the shorter header (struct iphdr).
7468 	 */
7469 	switch (((struct iphdr *)iph)->version) {
7470 	case 4:
7471 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7472 			return -EINVAL;
7473 
7474 		ret = __cookie_v4_check((struct iphdr *)iph, th);
7475 		break;
7476 
7477 #if IS_BUILTIN(CONFIG_IPV6)
7478 	case 6:
7479 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7480 			return -EINVAL;
7481 
7482 		if (sk->sk_family != AF_INET6)
7483 			return -EINVAL;
7484 
7485 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th);
7486 		break;
7487 #endif /* CONFIG_IPV6 */
7488 
7489 	default:
7490 		return -EPROTONOSUPPORT;
7491 	}
7492 
7493 	if (ret > 0)
7494 		return 0;
7495 
7496 	return -ENOENT;
7497 #else
7498 	return -ENOTSUPP;
7499 #endif
7500 }
7501 
7502 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7503 	.func		= bpf_tcp_check_syncookie,
7504 	.gpl_only	= true,
7505 	.pkt_access	= true,
7506 	.ret_type	= RET_INTEGER,
7507 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7508 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7509 	.arg3_type	= ARG_CONST_SIZE,
7510 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7511 	.arg5_type	= ARG_CONST_SIZE,
7512 };
7513 
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7514 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7515 	   struct tcphdr *, th, u32, th_len)
7516 {
7517 #ifdef CONFIG_SYN_COOKIES
7518 	u32 cookie;
7519 	u16 mss;
7520 
7521 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7522 		return -EINVAL;
7523 
7524 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7525 		return -EINVAL;
7526 
7527 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7528 		return -ENOENT;
7529 
7530 	if (!th->syn || th->ack || th->fin || th->rst)
7531 		return -EINVAL;
7532 
7533 	if (unlikely(iph_len < sizeof(struct iphdr)))
7534 		return -EINVAL;
7535 
7536 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7537 	 * same offset so we can cast to the shorter header (struct iphdr).
7538 	 */
7539 	switch (((struct iphdr *)iph)->version) {
7540 	case 4:
7541 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7542 			return -EINVAL;
7543 
7544 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7545 		break;
7546 
7547 #if IS_BUILTIN(CONFIG_IPV6)
7548 	case 6:
7549 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7550 			return -EINVAL;
7551 
7552 		if (sk->sk_family != AF_INET6)
7553 			return -EINVAL;
7554 
7555 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7556 		break;
7557 #endif /* CONFIG_IPV6 */
7558 
7559 	default:
7560 		return -EPROTONOSUPPORT;
7561 	}
7562 	if (mss == 0)
7563 		return -ENOENT;
7564 
7565 	return cookie | ((u64)mss << 32);
7566 #else
7567 	return -EOPNOTSUPP;
7568 #endif /* CONFIG_SYN_COOKIES */
7569 }
7570 
7571 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7572 	.func		= bpf_tcp_gen_syncookie,
7573 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7574 	.pkt_access	= true,
7575 	.ret_type	= RET_INTEGER,
7576 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7577 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7578 	.arg3_type	= ARG_CONST_SIZE,
7579 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7580 	.arg5_type	= ARG_CONST_SIZE,
7581 };
7582 
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7583 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7584 {
7585 	if (!sk || flags != 0)
7586 		return -EINVAL;
7587 	if (!skb_at_tc_ingress(skb))
7588 		return -EOPNOTSUPP;
7589 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7590 		return -ENETUNREACH;
7591 	if (sk_unhashed(sk))
7592 		return -EOPNOTSUPP;
7593 	if (sk_is_refcounted(sk) &&
7594 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7595 		return -ENOENT;
7596 
7597 	skb_orphan(skb);
7598 	skb->sk = sk;
7599 	skb->destructor = sock_pfree;
7600 
7601 	return 0;
7602 }
7603 
7604 static const struct bpf_func_proto bpf_sk_assign_proto = {
7605 	.func		= bpf_sk_assign,
7606 	.gpl_only	= false,
7607 	.ret_type	= RET_INTEGER,
7608 	.arg1_type      = ARG_PTR_TO_CTX,
7609 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7610 	.arg3_type	= ARG_ANYTHING,
7611 };
7612 
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7613 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7614 				    u8 search_kind, const u8 *magic,
7615 				    u8 magic_len, bool *eol)
7616 {
7617 	u8 kind, kind_len;
7618 
7619 	*eol = false;
7620 
7621 	while (op < opend) {
7622 		kind = op[0];
7623 
7624 		if (kind == TCPOPT_EOL) {
7625 			*eol = true;
7626 			return ERR_PTR(-ENOMSG);
7627 		} else if (kind == TCPOPT_NOP) {
7628 			op++;
7629 			continue;
7630 		}
7631 
7632 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7633 			/* Something is wrong in the received header.
7634 			 * Follow the TCP stack's tcp_parse_options()
7635 			 * and just bail here.
7636 			 */
7637 			return ERR_PTR(-EFAULT);
7638 
7639 		kind_len = op[1];
7640 		if (search_kind == kind) {
7641 			if (!magic_len)
7642 				return op;
7643 
7644 			if (magic_len > kind_len - 2)
7645 				return ERR_PTR(-ENOMSG);
7646 
7647 			if (!memcmp(&op[2], magic, magic_len))
7648 				return op;
7649 		}
7650 
7651 		op += kind_len;
7652 	}
7653 
7654 	return ERR_PTR(-ENOMSG);
7655 }
7656 
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7657 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7658 	   void *, search_res, u32, len, u64, flags)
7659 {
7660 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7661 	const u8 *op, *opend, *magic, *search = search_res;
7662 	u8 search_kind, search_len, copy_len, magic_len;
7663 	int ret;
7664 
7665 	if (!is_locked_tcp_sock_ops(bpf_sock))
7666 		return -EOPNOTSUPP;
7667 
7668 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7669 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7670 	 * and this helper disallow loading them also.
7671 	 */
7672 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7673 		return -EINVAL;
7674 
7675 	search_kind = search[0];
7676 	search_len = search[1];
7677 
7678 	if (search_len > len || search_kind == TCPOPT_NOP ||
7679 	    search_kind == TCPOPT_EOL)
7680 		return -EINVAL;
7681 
7682 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7683 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7684 		if (search_len != 4 && search_len != 6)
7685 			return -EINVAL;
7686 		magic = &search[2];
7687 		magic_len = search_len - 2;
7688 	} else {
7689 		if (search_len)
7690 			return -EINVAL;
7691 		magic = NULL;
7692 		magic_len = 0;
7693 	}
7694 
7695 	if (load_syn) {
7696 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7697 		if (ret < 0)
7698 			return ret;
7699 
7700 		opend = op + ret;
7701 		op += sizeof(struct tcphdr);
7702 	} else {
7703 		if (!bpf_sock->skb ||
7704 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7705 			/* This bpf_sock->op cannot call this helper */
7706 			return -EPERM;
7707 
7708 		opend = bpf_sock->skb_data_end;
7709 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7710 	}
7711 
7712 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7713 				&eol);
7714 	if (IS_ERR(op))
7715 		return PTR_ERR(op);
7716 
7717 	copy_len = op[1];
7718 	ret = copy_len;
7719 	if (copy_len > len) {
7720 		ret = -ENOSPC;
7721 		copy_len = len;
7722 	}
7723 
7724 	memcpy(search_res, op, copy_len);
7725 	return ret;
7726 }
7727 
7728 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7729 	.func		= bpf_sock_ops_load_hdr_opt,
7730 	.gpl_only	= false,
7731 	.ret_type	= RET_INTEGER,
7732 	.arg1_type	= ARG_PTR_TO_CTX,
7733 	.arg2_type	= ARG_PTR_TO_MEM | MEM_WRITE,
7734 	.arg3_type	= ARG_CONST_SIZE,
7735 	.arg4_type	= ARG_ANYTHING,
7736 };
7737 
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7738 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7739 	   const void *, from, u32, len, u64, flags)
7740 {
7741 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7742 	const u8 *op, *new_op, *magic = NULL;
7743 	struct sk_buff *skb;
7744 	bool eol;
7745 
7746 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7747 		return -EPERM;
7748 
7749 	if (len < 2 || flags)
7750 		return -EINVAL;
7751 
7752 	new_op = from;
7753 	new_kind = new_op[0];
7754 	new_kind_len = new_op[1];
7755 
7756 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7757 	    new_kind == TCPOPT_EOL)
7758 		return -EINVAL;
7759 
7760 	if (new_kind_len > bpf_sock->remaining_opt_len)
7761 		return -ENOSPC;
7762 
7763 	/* 253 is another experimental kind */
7764 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7765 		if (new_kind_len < 4)
7766 			return -EINVAL;
7767 		/* Match for the 2 byte magic also.
7768 		 * RFC 6994: the magic could be 2 or 4 bytes.
7769 		 * Hence, matching by 2 byte only is on the
7770 		 * conservative side but it is the right
7771 		 * thing to do for the 'search-for-duplication'
7772 		 * purpose.
7773 		 */
7774 		magic = &new_op[2];
7775 		magic_len = 2;
7776 	}
7777 
7778 	/* Check for duplication */
7779 	skb = bpf_sock->skb;
7780 	op = skb->data + sizeof(struct tcphdr);
7781 	opend = bpf_sock->skb_data_end;
7782 
7783 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7784 				&eol);
7785 	if (!IS_ERR(op))
7786 		return -EEXIST;
7787 
7788 	if (PTR_ERR(op) != -ENOMSG)
7789 		return PTR_ERR(op);
7790 
7791 	if (eol)
7792 		/* The option has been ended.  Treat it as no more
7793 		 * header option can be written.
7794 		 */
7795 		return -ENOSPC;
7796 
7797 	/* No duplication found.  Store the header option. */
7798 	memcpy(opend, from, new_kind_len);
7799 
7800 	bpf_sock->remaining_opt_len -= new_kind_len;
7801 	bpf_sock->skb_data_end += new_kind_len;
7802 
7803 	return 0;
7804 }
7805 
7806 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7807 	.func		= bpf_sock_ops_store_hdr_opt,
7808 	.gpl_only	= false,
7809 	.ret_type	= RET_INTEGER,
7810 	.arg1_type	= ARG_PTR_TO_CTX,
7811 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7812 	.arg3_type	= ARG_CONST_SIZE,
7813 	.arg4_type	= ARG_ANYTHING,
7814 };
7815 
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7816 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7817 	   u32, len, u64, flags)
7818 {
7819 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7820 		return -EPERM;
7821 
7822 	if (flags || len < 2)
7823 		return -EINVAL;
7824 
7825 	if (len > bpf_sock->remaining_opt_len)
7826 		return -ENOSPC;
7827 
7828 	bpf_sock->remaining_opt_len -= len;
7829 
7830 	return 0;
7831 }
7832 
7833 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7834 	.func		= bpf_sock_ops_reserve_hdr_opt,
7835 	.gpl_only	= false,
7836 	.ret_type	= RET_INTEGER,
7837 	.arg1_type	= ARG_PTR_TO_CTX,
7838 	.arg2_type	= ARG_ANYTHING,
7839 	.arg3_type	= ARG_ANYTHING,
7840 };
7841 
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7842 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7843 	   u64, tstamp, u32, tstamp_type)
7844 {
7845 	/* skb_clear_delivery_time() is done for inet protocol */
7846 	if (skb->protocol != htons(ETH_P_IP) &&
7847 	    skb->protocol != htons(ETH_P_IPV6))
7848 		return -EOPNOTSUPP;
7849 
7850 	switch (tstamp_type) {
7851 	case BPF_SKB_CLOCK_REALTIME:
7852 		skb->tstamp = tstamp;
7853 		skb->tstamp_type = SKB_CLOCK_REALTIME;
7854 		break;
7855 	case BPF_SKB_CLOCK_MONOTONIC:
7856 		if (!tstamp)
7857 			return -EINVAL;
7858 		skb->tstamp = tstamp;
7859 		skb->tstamp_type = SKB_CLOCK_MONOTONIC;
7860 		break;
7861 	case BPF_SKB_CLOCK_TAI:
7862 		if (!tstamp)
7863 			return -EINVAL;
7864 		skb->tstamp = tstamp;
7865 		skb->tstamp_type = SKB_CLOCK_TAI;
7866 		break;
7867 	default:
7868 		return -EINVAL;
7869 	}
7870 
7871 	return 0;
7872 }
7873 
7874 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7875 	.func           = bpf_skb_set_tstamp,
7876 	.gpl_only       = false,
7877 	.ret_type       = RET_INTEGER,
7878 	.arg1_type      = ARG_PTR_TO_CTX,
7879 	.arg2_type      = ARG_ANYTHING,
7880 	.arg3_type      = ARG_ANYTHING,
7881 };
7882 
7883 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7884 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7885 	   struct tcphdr *, th, u32, th_len)
7886 {
7887 	u32 cookie;
7888 	u16 mss;
7889 
7890 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7891 		return -EINVAL;
7892 
7893 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7894 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7895 
7896 	return cookie | ((u64)mss << 32);
7897 }
7898 
7899 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7900 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7901 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7902 	.pkt_access	= true,
7903 	.ret_type	= RET_INTEGER,
7904 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7905 	.arg1_size	= sizeof(struct iphdr),
7906 	.arg2_type	= ARG_PTR_TO_MEM,
7907 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7908 };
7909 
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)7910 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7911 	   struct tcphdr *, th, u32, th_len)
7912 {
7913 #if IS_BUILTIN(CONFIG_IPV6)
7914 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7915 		sizeof(struct ipv6hdr);
7916 	u32 cookie;
7917 	u16 mss;
7918 
7919 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7920 		return -EINVAL;
7921 
7922 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7923 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7924 
7925 	return cookie | ((u64)mss << 32);
7926 #else
7927 	return -EPROTONOSUPPORT;
7928 #endif
7929 }
7930 
7931 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7932 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7933 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7934 	.pkt_access	= true,
7935 	.ret_type	= RET_INTEGER,
7936 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7937 	.arg1_size	= sizeof(struct ipv6hdr),
7938 	.arg2_type	= ARG_PTR_TO_MEM,
7939 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7940 };
7941 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)7942 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7943 	   struct tcphdr *, th)
7944 {
7945 	if (__cookie_v4_check(iph, th) > 0)
7946 		return 0;
7947 
7948 	return -EACCES;
7949 }
7950 
7951 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7952 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7953 	.gpl_only	= true, /* __cookie_v4_check is GPL */
7954 	.pkt_access	= true,
7955 	.ret_type	= RET_INTEGER,
7956 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7957 	.arg1_size	= sizeof(struct iphdr),
7958 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7959 	.arg2_size	= sizeof(struct tcphdr),
7960 };
7961 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)7962 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7963 	   struct tcphdr *, th)
7964 {
7965 #if IS_BUILTIN(CONFIG_IPV6)
7966 	if (__cookie_v6_check(iph, th) > 0)
7967 		return 0;
7968 
7969 	return -EACCES;
7970 #else
7971 	return -EPROTONOSUPPORT;
7972 #endif
7973 }
7974 
7975 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7976 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7977 	.gpl_only	= true, /* __cookie_v6_check is GPL */
7978 	.pkt_access	= true,
7979 	.ret_type	= RET_INTEGER,
7980 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7981 	.arg1_size	= sizeof(struct ipv6hdr),
7982 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7983 	.arg2_size	= sizeof(struct tcphdr),
7984 };
7985 #endif /* CONFIG_SYN_COOKIES */
7986 
7987 #endif /* CONFIG_INET */
7988 
bpf_helper_changes_pkt_data(enum bpf_func_id func_id)7989 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
7990 {
7991 	switch (func_id) {
7992 	case BPF_FUNC_clone_redirect:
7993 	case BPF_FUNC_l3_csum_replace:
7994 	case BPF_FUNC_l4_csum_replace:
7995 	case BPF_FUNC_lwt_push_encap:
7996 	case BPF_FUNC_lwt_seg6_action:
7997 	case BPF_FUNC_lwt_seg6_adjust_srh:
7998 	case BPF_FUNC_lwt_seg6_store_bytes:
7999 	case BPF_FUNC_msg_pop_data:
8000 	case BPF_FUNC_msg_pull_data:
8001 	case BPF_FUNC_msg_push_data:
8002 	case BPF_FUNC_skb_adjust_room:
8003 	case BPF_FUNC_skb_change_head:
8004 	case BPF_FUNC_skb_change_proto:
8005 	case BPF_FUNC_skb_change_tail:
8006 	case BPF_FUNC_skb_pull_data:
8007 	case BPF_FUNC_skb_store_bytes:
8008 	case BPF_FUNC_skb_vlan_pop:
8009 	case BPF_FUNC_skb_vlan_push:
8010 	case BPF_FUNC_store_hdr_opt:
8011 	case BPF_FUNC_xdp_adjust_head:
8012 	case BPF_FUNC_xdp_adjust_meta:
8013 	case BPF_FUNC_xdp_adjust_tail:
8014 	/* tail-called program could call any of the above */
8015 	case BPF_FUNC_tail_call:
8016 		return true;
8017 	default:
8018 		return false;
8019 	}
8020 }
8021 
8022 const struct bpf_func_proto bpf_event_output_data_proto __weak;
8023 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
8024 
8025 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8026 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8027 {
8028 	const struct bpf_func_proto *func_proto;
8029 
8030 	func_proto = cgroup_common_func_proto(func_id, prog);
8031 	if (func_proto)
8032 		return func_proto;
8033 
8034 	switch (func_id) {
8035 	case BPF_FUNC_get_socket_cookie:
8036 		return &bpf_get_socket_cookie_sock_proto;
8037 	case BPF_FUNC_get_netns_cookie:
8038 		return &bpf_get_netns_cookie_sock_proto;
8039 	case BPF_FUNC_perf_event_output:
8040 		return &bpf_event_output_data_proto;
8041 	case BPF_FUNC_sk_storage_get:
8042 		return &bpf_sk_storage_get_cg_sock_proto;
8043 	case BPF_FUNC_ktime_get_coarse_ns:
8044 		return &bpf_ktime_get_coarse_ns_proto;
8045 	default:
8046 		return bpf_base_func_proto(func_id, prog);
8047 	}
8048 }
8049 
8050 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8051 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8052 {
8053 	const struct bpf_func_proto *func_proto;
8054 
8055 	func_proto = cgroup_common_func_proto(func_id, prog);
8056 	if (func_proto)
8057 		return func_proto;
8058 
8059 	switch (func_id) {
8060 	case BPF_FUNC_bind:
8061 		switch (prog->expected_attach_type) {
8062 		case BPF_CGROUP_INET4_CONNECT:
8063 		case BPF_CGROUP_INET6_CONNECT:
8064 			return &bpf_bind_proto;
8065 		default:
8066 			return NULL;
8067 		}
8068 	case BPF_FUNC_get_socket_cookie:
8069 		return &bpf_get_socket_cookie_sock_addr_proto;
8070 	case BPF_FUNC_get_netns_cookie:
8071 		return &bpf_get_netns_cookie_sock_addr_proto;
8072 	case BPF_FUNC_perf_event_output:
8073 		return &bpf_event_output_data_proto;
8074 #ifdef CONFIG_INET
8075 	case BPF_FUNC_sk_lookup_tcp:
8076 		return &bpf_sock_addr_sk_lookup_tcp_proto;
8077 	case BPF_FUNC_sk_lookup_udp:
8078 		return &bpf_sock_addr_sk_lookup_udp_proto;
8079 	case BPF_FUNC_sk_release:
8080 		return &bpf_sk_release_proto;
8081 	case BPF_FUNC_skc_lookup_tcp:
8082 		return &bpf_sock_addr_skc_lookup_tcp_proto;
8083 #endif /* CONFIG_INET */
8084 	case BPF_FUNC_sk_storage_get:
8085 		return &bpf_sk_storage_get_proto;
8086 	case BPF_FUNC_sk_storage_delete:
8087 		return &bpf_sk_storage_delete_proto;
8088 	case BPF_FUNC_setsockopt:
8089 		switch (prog->expected_attach_type) {
8090 		case BPF_CGROUP_INET4_BIND:
8091 		case BPF_CGROUP_INET6_BIND:
8092 		case BPF_CGROUP_INET4_CONNECT:
8093 		case BPF_CGROUP_INET6_CONNECT:
8094 		case BPF_CGROUP_UNIX_CONNECT:
8095 		case BPF_CGROUP_UDP4_RECVMSG:
8096 		case BPF_CGROUP_UDP6_RECVMSG:
8097 		case BPF_CGROUP_UNIX_RECVMSG:
8098 		case BPF_CGROUP_UDP4_SENDMSG:
8099 		case BPF_CGROUP_UDP6_SENDMSG:
8100 		case BPF_CGROUP_UNIX_SENDMSG:
8101 		case BPF_CGROUP_INET4_GETPEERNAME:
8102 		case BPF_CGROUP_INET6_GETPEERNAME:
8103 		case BPF_CGROUP_UNIX_GETPEERNAME:
8104 		case BPF_CGROUP_INET4_GETSOCKNAME:
8105 		case BPF_CGROUP_INET6_GETSOCKNAME:
8106 		case BPF_CGROUP_UNIX_GETSOCKNAME:
8107 			return &bpf_sock_addr_setsockopt_proto;
8108 		default:
8109 			return NULL;
8110 		}
8111 	case BPF_FUNC_getsockopt:
8112 		switch (prog->expected_attach_type) {
8113 		case BPF_CGROUP_INET4_BIND:
8114 		case BPF_CGROUP_INET6_BIND:
8115 		case BPF_CGROUP_INET4_CONNECT:
8116 		case BPF_CGROUP_INET6_CONNECT:
8117 		case BPF_CGROUP_UNIX_CONNECT:
8118 		case BPF_CGROUP_UDP4_RECVMSG:
8119 		case BPF_CGROUP_UDP6_RECVMSG:
8120 		case BPF_CGROUP_UNIX_RECVMSG:
8121 		case BPF_CGROUP_UDP4_SENDMSG:
8122 		case BPF_CGROUP_UDP6_SENDMSG:
8123 		case BPF_CGROUP_UNIX_SENDMSG:
8124 		case BPF_CGROUP_INET4_GETPEERNAME:
8125 		case BPF_CGROUP_INET6_GETPEERNAME:
8126 		case BPF_CGROUP_UNIX_GETPEERNAME:
8127 		case BPF_CGROUP_INET4_GETSOCKNAME:
8128 		case BPF_CGROUP_INET6_GETSOCKNAME:
8129 		case BPF_CGROUP_UNIX_GETSOCKNAME:
8130 			return &bpf_sock_addr_getsockopt_proto;
8131 		default:
8132 			return NULL;
8133 		}
8134 	default:
8135 		return bpf_sk_base_func_proto(func_id, prog);
8136 	}
8137 }
8138 
8139 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8140 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8141 {
8142 	switch (func_id) {
8143 	case BPF_FUNC_skb_load_bytes:
8144 		return &bpf_skb_load_bytes_proto;
8145 	case BPF_FUNC_skb_load_bytes_relative:
8146 		return &bpf_skb_load_bytes_relative_proto;
8147 	case BPF_FUNC_get_socket_cookie:
8148 		return &bpf_get_socket_cookie_proto;
8149 	case BPF_FUNC_get_netns_cookie:
8150 		return &bpf_get_netns_cookie_proto;
8151 	case BPF_FUNC_get_socket_uid:
8152 		return &bpf_get_socket_uid_proto;
8153 	case BPF_FUNC_perf_event_output:
8154 		return &bpf_skb_event_output_proto;
8155 	default:
8156 		return bpf_sk_base_func_proto(func_id, prog);
8157 	}
8158 }
8159 
8160 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8161 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8162 
8163 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8164 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8165 {
8166 	const struct bpf_func_proto *func_proto;
8167 
8168 	func_proto = cgroup_common_func_proto(func_id, prog);
8169 	if (func_proto)
8170 		return func_proto;
8171 
8172 	switch (func_id) {
8173 	case BPF_FUNC_sk_fullsock:
8174 		return &bpf_sk_fullsock_proto;
8175 	case BPF_FUNC_sk_storage_get:
8176 		return &bpf_sk_storage_get_proto;
8177 	case BPF_FUNC_sk_storage_delete:
8178 		return &bpf_sk_storage_delete_proto;
8179 	case BPF_FUNC_perf_event_output:
8180 		return &bpf_skb_event_output_proto;
8181 #ifdef CONFIG_SOCK_CGROUP_DATA
8182 	case BPF_FUNC_skb_cgroup_id:
8183 		return &bpf_skb_cgroup_id_proto;
8184 	case BPF_FUNC_skb_ancestor_cgroup_id:
8185 		return &bpf_skb_ancestor_cgroup_id_proto;
8186 	case BPF_FUNC_sk_cgroup_id:
8187 		return &bpf_sk_cgroup_id_proto;
8188 	case BPF_FUNC_sk_ancestor_cgroup_id:
8189 		return &bpf_sk_ancestor_cgroup_id_proto;
8190 #endif
8191 #ifdef CONFIG_INET
8192 	case BPF_FUNC_sk_lookup_tcp:
8193 		return &bpf_sk_lookup_tcp_proto;
8194 	case BPF_FUNC_sk_lookup_udp:
8195 		return &bpf_sk_lookup_udp_proto;
8196 	case BPF_FUNC_sk_release:
8197 		return &bpf_sk_release_proto;
8198 	case BPF_FUNC_skc_lookup_tcp:
8199 		return &bpf_skc_lookup_tcp_proto;
8200 	case BPF_FUNC_tcp_sock:
8201 		return &bpf_tcp_sock_proto;
8202 	case BPF_FUNC_get_listener_sock:
8203 		return &bpf_get_listener_sock_proto;
8204 	case BPF_FUNC_skb_ecn_set_ce:
8205 		return &bpf_skb_ecn_set_ce_proto;
8206 #endif
8207 	default:
8208 		return sk_filter_func_proto(func_id, prog);
8209 	}
8210 }
8211 
8212 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8213 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8214 {
8215 	switch (func_id) {
8216 	case BPF_FUNC_skb_store_bytes:
8217 		return &bpf_skb_store_bytes_proto;
8218 	case BPF_FUNC_skb_load_bytes:
8219 		return &bpf_skb_load_bytes_proto;
8220 	case BPF_FUNC_skb_load_bytes_relative:
8221 		return &bpf_skb_load_bytes_relative_proto;
8222 	case BPF_FUNC_skb_pull_data:
8223 		return &bpf_skb_pull_data_proto;
8224 	case BPF_FUNC_csum_diff:
8225 		return &bpf_csum_diff_proto;
8226 	case BPF_FUNC_csum_update:
8227 		return &bpf_csum_update_proto;
8228 	case BPF_FUNC_csum_level:
8229 		return &bpf_csum_level_proto;
8230 	case BPF_FUNC_l3_csum_replace:
8231 		return &bpf_l3_csum_replace_proto;
8232 	case BPF_FUNC_l4_csum_replace:
8233 		return &bpf_l4_csum_replace_proto;
8234 	case BPF_FUNC_clone_redirect:
8235 		return &bpf_clone_redirect_proto;
8236 	case BPF_FUNC_get_cgroup_classid:
8237 		return &bpf_get_cgroup_classid_proto;
8238 	case BPF_FUNC_skb_vlan_push:
8239 		return &bpf_skb_vlan_push_proto;
8240 	case BPF_FUNC_skb_vlan_pop:
8241 		return &bpf_skb_vlan_pop_proto;
8242 	case BPF_FUNC_skb_change_proto:
8243 		return &bpf_skb_change_proto_proto;
8244 	case BPF_FUNC_skb_change_type:
8245 		return &bpf_skb_change_type_proto;
8246 	case BPF_FUNC_skb_adjust_room:
8247 		return &bpf_skb_adjust_room_proto;
8248 	case BPF_FUNC_skb_change_tail:
8249 		return &bpf_skb_change_tail_proto;
8250 	case BPF_FUNC_skb_change_head:
8251 		return &bpf_skb_change_head_proto;
8252 	case BPF_FUNC_skb_get_tunnel_key:
8253 		return &bpf_skb_get_tunnel_key_proto;
8254 	case BPF_FUNC_skb_set_tunnel_key:
8255 		return bpf_get_skb_set_tunnel_proto(func_id);
8256 	case BPF_FUNC_skb_get_tunnel_opt:
8257 		return &bpf_skb_get_tunnel_opt_proto;
8258 	case BPF_FUNC_skb_set_tunnel_opt:
8259 		return bpf_get_skb_set_tunnel_proto(func_id);
8260 	case BPF_FUNC_redirect:
8261 		return &bpf_redirect_proto;
8262 	case BPF_FUNC_redirect_neigh:
8263 		return &bpf_redirect_neigh_proto;
8264 	case BPF_FUNC_redirect_peer:
8265 		return &bpf_redirect_peer_proto;
8266 	case BPF_FUNC_get_route_realm:
8267 		return &bpf_get_route_realm_proto;
8268 	case BPF_FUNC_get_hash_recalc:
8269 		return &bpf_get_hash_recalc_proto;
8270 	case BPF_FUNC_set_hash_invalid:
8271 		return &bpf_set_hash_invalid_proto;
8272 	case BPF_FUNC_set_hash:
8273 		return &bpf_set_hash_proto;
8274 	case BPF_FUNC_perf_event_output:
8275 		return &bpf_skb_event_output_proto;
8276 	case BPF_FUNC_get_smp_processor_id:
8277 		return &bpf_get_smp_processor_id_proto;
8278 	case BPF_FUNC_skb_under_cgroup:
8279 		return &bpf_skb_under_cgroup_proto;
8280 	case BPF_FUNC_get_socket_cookie:
8281 		return &bpf_get_socket_cookie_proto;
8282 	case BPF_FUNC_get_netns_cookie:
8283 		return &bpf_get_netns_cookie_proto;
8284 	case BPF_FUNC_get_socket_uid:
8285 		return &bpf_get_socket_uid_proto;
8286 	case BPF_FUNC_fib_lookup:
8287 		return &bpf_skb_fib_lookup_proto;
8288 	case BPF_FUNC_check_mtu:
8289 		return &bpf_skb_check_mtu_proto;
8290 	case BPF_FUNC_sk_fullsock:
8291 		return &bpf_sk_fullsock_proto;
8292 	case BPF_FUNC_sk_storage_get:
8293 		return &bpf_sk_storage_get_proto;
8294 	case BPF_FUNC_sk_storage_delete:
8295 		return &bpf_sk_storage_delete_proto;
8296 #ifdef CONFIG_XFRM
8297 	case BPF_FUNC_skb_get_xfrm_state:
8298 		return &bpf_skb_get_xfrm_state_proto;
8299 #endif
8300 #ifdef CONFIG_CGROUP_NET_CLASSID
8301 	case BPF_FUNC_skb_cgroup_classid:
8302 		return &bpf_skb_cgroup_classid_proto;
8303 #endif
8304 #ifdef CONFIG_SOCK_CGROUP_DATA
8305 	case BPF_FUNC_skb_cgroup_id:
8306 		return &bpf_skb_cgroup_id_proto;
8307 	case BPF_FUNC_skb_ancestor_cgroup_id:
8308 		return &bpf_skb_ancestor_cgroup_id_proto;
8309 #endif
8310 #ifdef CONFIG_INET
8311 	case BPF_FUNC_sk_lookup_tcp:
8312 		return &bpf_tc_sk_lookup_tcp_proto;
8313 	case BPF_FUNC_sk_lookup_udp:
8314 		return &bpf_tc_sk_lookup_udp_proto;
8315 	case BPF_FUNC_sk_release:
8316 		return &bpf_sk_release_proto;
8317 	case BPF_FUNC_tcp_sock:
8318 		return &bpf_tcp_sock_proto;
8319 	case BPF_FUNC_get_listener_sock:
8320 		return &bpf_get_listener_sock_proto;
8321 	case BPF_FUNC_skc_lookup_tcp:
8322 		return &bpf_tc_skc_lookup_tcp_proto;
8323 	case BPF_FUNC_tcp_check_syncookie:
8324 		return &bpf_tcp_check_syncookie_proto;
8325 	case BPF_FUNC_skb_ecn_set_ce:
8326 		return &bpf_skb_ecn_set_ce_proto;
8327 	case BPF_FUNC_tcp_gen_syncookie:
8328 		return &bpf_tcp_gen_syncookie_proto;
8329 	case BPF_FUNC_sk_assign:
8330 		return &bpf_sk_assign_proto;
8331 	case BPF_FUNC_skb_set_tstamp:
8332 		return &bpf_skb_set_tstamp_proto;
8333 #ifdef CONFIG_SYN_COOKIES
8334 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8335 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8336 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8337 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8338 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8339 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8340 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8341 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8342 #endif
8343 #endif
8344 	default:
8345 		return bpf_sk_base_func_proto(func_id, prog);
8346 	}
8347 }
8348 
8349 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8350 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8351 {
8352 	switch (func_id) {
8353 	case BPF_FUNC_perf_event_output:
8354 		return &bpf_xdp_event_output_proto;
8355 	case BPF_FUNC_get_smp_processor_id:
8356 		return &bpf_get_smp_processor_id_proto;
8357 	case BPF_FUNC_csum_diff:
8358 		return &bpf_csum_diff_proto;
8359 	case BPF_FUNC_xdp_adjust_head:
8360 		return &bpf_xdp_adjust_head_proto;
8361 	case BPF_FUNC_xdp_adjust_meta:
8362 		return &bpf_xdp_adjust_meta_proto;
8363 	case BPF_FUNC_redirect:
8364 		return &bpf_xdp_redirect_proto;
8365 	case BPF_FUNC_redirect_map:
8366 		return &bpf_xdp_redirect_map_proto;
8367 	case BPF_FUNC_xdp_adjust_tail:
8368 		return &bpf_xdp_adjust_tail_proto;
8369 	case BPF_FUNC_xdp_get_buff_len:
8370 		return &bpf_xdp_get_buff_len_proto;
8371 	case BPF_FUNC_xdp_load_bytes:
8372 		return &bpf_xdp_load_bytes_proto;
8373 	case BPF_FUNC_xdp_store_bytes:
8374 		return &bpf_xdp_store_bytes_proto;
8375 	case BPF_FUNC_fib_lookup:
8376 		return &bpf_xdp_fib_lookup_proto;
8377 	case BPF_FUNC_check_mtu:
8378 		return &bpf_xdp_check_mtu_proto;
8379 #ifdef CONFIG_INET
8380 	case BPF_FUNC_sk_lookup_udp:
8381 		return &bpf_xdp_sk_lookup_udp_proto;
8382 	case BPF_FUNC_sk_lookup_tcp:
8383 		return &bpf_xdp_sk_lookup_tcp_proto;
8384 	case BPF_FUNC_sk_release:
8385 		return &bpf_sk_release_proto;
8386 	case BPF_FUNC_skc_lookup_tcp:
8387 		return &bpf_xdp_skc_lookup_tcp_proto;
8388 	case BPF_FUNC_tcp_check_syncookie:
8389 		return &bpf_tcp_check_syncookie_proto;
8390 	case BPF_FUNC_tcp_gen_syncookie:
8391 		return &bpf_tcp_gen_syncookie_proto;
8392 #ifdef CONFIG_SYN_COOKIES
8393 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8394 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8395 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8396 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8397 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8398 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8399 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8400 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8401 #endif
8402 #endif
8403 	default:
8404 		return bpf_sk_base_func_proto(func_id, prog);
8405 	}
8406 
8407 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8408 	/* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8409 	 * kfuncs are defined in two different modules, and we want to be able
8410 	 * to use them interchangeably with the same BTF type ID. Because modules
8411 	 * can't de-duplicate BTF IDs between each other, we need the type to be
8412 	 * referenced in the vmlinux BTF or the verifier will get confused about
8413 	 * the different types. So we add this dummy type reference which will
8414 	 * be included in vmlinux BTF, allowing both modules to refer to the
8415 	 * same type ID.
8416 	 */
8417 	BTF_TYPE_EMIT(struct nf_conn___init);
8418 #endif
8419 }
8420 
8421 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8422 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8423 
8424 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8425 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8426 {
8427 	const struct bpf_func_proto *func_proto;
8428 
8429 	func_proto = cgroup_common_func_proto(func_id, prog);
8430 	if (func_proto)
8431 		return func_proto;
8432 
8433 	switch (func_id) {
8434 	case BPF_FUNC_setsockopt:
8435 		return &bpf_sock_ops_setsockopt_proto;
8436 	case BPF_FUNC_getsockopt:
8437 		return &bpf_sock_ops_getsockopt_proto;
8438 	case BPF_FUNC_sock_ops_cb_flags_set:
8439 		return &bpf_sock_ops_cb_flags_set_proto;
8440 	case BPF_FUNC_sock_map_update:
8441 		return &bpf_sock_map_update_proto;
8442 	case BPF_FUNC_sock_hash_update:
8443 		return &bpf_sock_hash_update_proto;
8444 	case BPF_FUNC_get_socket_cookie:
8445 		return &bpf_get_socket_cookie_sock_ops_proto;
8446 	case BPF_FUNC_perf_event_output:
8447 		return &bpf_event_output_data_proto;
8448 	case BPF_FUNC_sk_storage_get:
8449 		return &bpf_sk_storage_get_proto;
8450 	case BPF_FUNC_sk_storage_delete:
8451 		return &bpf_sk_storage_delete_proto;
8452 	case BPF_FUNC_get_netns_cookie:
8453 		return &bpf_get_netns_cookie_sock_ops_proto;
8454 #ifdef CONFIG_INET
8455 	case BPF_FUNC_load_hdr_opt:
8456 		return &bpf_sock_ops_load_hdr_opt_proto;
8457 	case BPF_FUNC_store_hdr_opt:
8458 		return &bpf_sock_ops_store_hdr_opt_proto;
8459 	case BPF_FUNC_reserve_hdr_opt:
8460 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8461 	case BPF_FUNC_tcp_sock:
8462 		return &bpf_tcp_sock_proto;
8463 #endif /* CONFIG_INET */
8464 	default:
8465 		return bpf_sk_base_func_proto(func_id, prog);
8466 	}
8467 }
8468 
8469 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8470 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8471 
8472 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8473 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8474 {
8475 	switch (func_id) {
8476 	case BPF_FUNC_msg_redirect_map:
8477 		return &bpf_msg_redirect_map_proto;
8478 	case BPF_FUNC_msg_redirect_hash:
8479 		return &bpf_msg_redirect_hash_proto;
8480 	case BPF_FUNC_msg_apply_bytes:
8481 		return &bpf_msg_apply_bytes_proto;
8482 	case BPF_FUNC_msg_cork_bytes:
8483 		return &bpf_msg_cork_bytes_proto;
8484 	case BPF_FUNC_msg_pull_data:
8485 		return &bpf_msg_pull_data_proto;
8486 	case BPF_FUNC_msg_push_data:
8487 		return &bpf_msg_push_data_proto;
8488 	case BPF_FUNC_msg_pop_data:
8489 		return &bpf_msg_pop_data_proto;
8490 	case BPF_FUNC_perf_event_output:
8491 		return &bpf_event_output_data_proto;
8492 	case BPF_FUNC_sk_storage_get:
8493 		return &bpf_sk_storage_get_proto;
8494 	case BPF_FUNC_sk_storage_delete:
8495 		return &bpf_sk_storage_delete_proto;
8496 	case BPF_FUNC_get_netns_cookie:
8497 		return &bpf_get_netns_cookie_sk_msg_proto;
8498 	default:
8499 		return bpf_sk_base_func_proto(func_id, prog);
8500 	}
8501 }
8502 
8503 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8504 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8505 
8506 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8507 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8508 {
8509 	switch (func_id) {
8510 	case BPF_FUNC_skb_store_bytes:
8511 		return &bpf_skb_store_bytes_proto;
8512 	case BPF_FUNC_skb_load_bytes:
8513 		return &bpf_skb_load_bytes_proto;
8514 	case BPF_FUNC_skb_pull_data:
8515 		return &sk_skb_pull_data_proto;
8516 	case BPF_FUNC_skb_change_tail:
8517 		return &sk_skb_change_tail_proto;
8518 	case BPF_FUNC_skb_change_head:
8519 		return &sk_skb_change_head_proto;
8520 	case BPF_FUNC_skb_adjust_room:
8521 		return &sk_skb_adjust_room_proto;
8522 	case BPF_FUNC_get_socket_cookie:
8523 		return &bpf_get_socket_cookie_proto;
8524 	case BPF_FUNC_get_socket_uid:
8525 		return &bpf_get_socket_uid_proto;
8526 	case BPF_FUNC_sk_redirect_map:
8527 		return &bpf_sk_redirect_map_proto;
8528 	case BPF_FUNC_sk_redirect_hash:
8529 		return &bpf_sk_redirect_hash_proto;
8530 	case BPF_FUNC_perf_event_output:
8531 		return &bpf_skb_event_output_proto;
8532 #ifdef CONFIG_INET
8533 	case BPF_FUNC_sk_lookup_tcp:
8534 		return &bpf_sk_lookup_tcp_proto;
8535 	case BPF_FUNC_sk_lookup_udp:
8536 		return &bpf_sk_lookup_udp_proto;
8537 	case BPF_FUNC_sk_release:
8538 		return &bpf_sk_release_proto;
8539 	case BPF_FUNC_skc_lookup_tcp:
8540 		return &bpf_skc_lookup_tcp_proto;
8541 #endif
8542 	default:
8543 		return bpf_sk_base_func_proto(func_id, prog);
8544 	}
8545 }
8546 
8547 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8548 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8549 {
8550 	switch (func_id) {
8551 	case BPF_FUNC_skb_load_bytes:
8552 		return &bpf_flow_dissector_load_bytes_proto;
8553 	default:
8554 		return bpf_sk_base_func_proto(func_id, prog);
8555 	}
8556 }
8557 
8558 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8559 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8560 {
8561 	switch (func_id) {
8562 	case BPF_FUNC_skb_load_bytes:
8563 		return &bpf_skb_load_bytes_proto;
8564 	case BPF_FUNC_skb_pull_data:
8565 		return &bpf_skb_pull_data_proto;
8566 	case BPF_FUNC_csum_diff:
8567 		return &bpf_csum_diff_proto;
8568 	case BPF_FUNC_get_cgroup_classid:
8569 		return &bpf_get_cgroup_classid_proto;
8570 	case BPF_FUNC_get_route_realm:
8571 		return &bpf_get_route_realm_proto;
8572 	case BPF_FUNC_get_hash_recalc:
8573 		return &bpf_get_hash_recalc_proto;
8574 	case BPF_FUNC_perf_event_output:
8575 		return &bpf_skb_event_output_proto;
8576 	case BPF_FUNC_get_smp_processor_id:
8577 		return &bpf_get_smp_processor_id_proto;
8578 	case BPF_FUNC_skb_under_cgroup:
8579 		return &bpf_skb_under_cgroup_proto;
8580 	default:
8581 		return bpf_sk_base_func_proto(func_id, prog);
8582 	}
8583 }
8584 
8585 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8586 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8587 {
8588 	switch (func_id) {
8589 	case BPF_FUNC_lwt_push_encap:
8590 		return &bpf_lwt_in_push_encap_proto;
8591 	default:
8592 		return lwt_out_func_proto(func_id, prog);
8593 	}
8594 }
8595 
8596 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8597 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8598 {
8599 	switch (func_id) {
8600 	case BPF_FUNC_skb_get_tunnel_key:
8601 		return &bpf_skb_get_tunnel_key_proto;
8602 	case BPF_FUNC_skb_set_tunnel_key:
8603 		return bpf_get_skb_set_tunnel_proto(func_id);
8604 	case BPF_FUNC_skb_get_tunnel_opt:
8605 		return &bpf_skb_get_tunnel_opt_proto;
8606 	case BPF_FUNC_skb_set_tunnel_opt:
8607 		return bpf_get_skb_set_tunnel_proto(func_id);
8608 	case BPF_FUNC_redirect:
8609 		return &bpf_redirect_proto;
8610 	case BPF_FUNC_clone_redirect:
8611 		return &bpf_clone_redirect_proto;
8612 	case BPF_FUNC_skb_change_tail:
8613 		return &bpf_skb_change_tail_proto;
8614 	case BPF_FUNC_skb_change_head:
8615 		return &bpf_skb_change_head_proto;
8616 	case BPF_FUNC_skb_store_bytes:
8617 		return &bpf_skb_store_bytes_proto;
8618 	case BPF_FUNC_csum_update:
8619 		return &bpf_csum_update_proto;
8620 	case BPF_FUNC_csum_level:
8621 		return &bpf_csum_level_proto;
8622 	case BPF_FUNC_l3_csum_replace:
8623 		return &bpf_l3_csum_replace_proto;
8624 	case BPF_FUNC_l4_csum_replace:
8625 		return &bpf_l4_csum_replace_proto;
8626 	case BPF_FUNC_set_hash_invalid:
8627 		return &bpf_set_hash_invalid_proto;
8628 	case BPF_FUNC_lwt_push_encap:
8629 		return &bpf_lwt_xmit_push_encap_proto;
8630 	default:
8631 		return lwt_out_func_proto(func_id, prog);
8632 	}
8633 }
8634 
8635 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8636 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8637 {
8638 	switch (func_id) {
8639 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8640 	case BPF_FUNC_lwt_seg6_store_bytes:
8641 		return &bpf_lwt_seg6_store_bytes_proto;
8642 	case BPF_FUNC_lwt_seg6_action:
8643 		return &bpf_lwt_seg6_action_proto;
8644 	case BPF_FUNC_lwt_seg6_adjust_srh:
8645 		return &bpf_lwt_seg6_adjust_srh_proto;
8646 #endif
8647 	default:
8648 		return lwt_out_func_proto(func_id, prog);
8649 	}
8650 }
8651 
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8652 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8653 				    const struct bpf_prog *prog,
8654 				    struct bpf_insn_access_aux *info)
8655 {
8656 	const int size_default = sizeof(__u32);
8657 
8658 	if (off < 0 || off >= sizeof(struct __sk_buff))
8659 		return false;
8660 
8661 	/* The verifier guarantees that size > 0. */
8662 	if (off % size != 0)
8663 		return false;
8664 
8665 	switch (off) {
8666 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8667 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8668 			return false;
8669 		break;
8670 	case bpf_ctx_range(struct __sk_buff, data):
8671 	case bpf_ctx_range(struct __sk_buff, data_meta):
8672 	case bpf_ctx_range(struct __sk_buff, data_end):
8673 		if (info->is_ldsx || size != size_default)
8674 			return false;
8675 		break;
8676 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8677 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8678 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8679 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8680 		if (size != size_default)
8681 			return false;
8682 		break;
8683 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8684 		return false;
8685 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8686 		if (type == BPF_WRITE || size != sizeof(__u64))
8687 			return false;
8688 		break;
8689 	case bpf_ctx_range(struct __sk_buff, tstamp):
8690 		if (size != sizeof(__u64))
8691 			return false;
8692 		break;
8693 	case offsetof(struct __sk_buff, sk):
8694 		if (type == BPF_WRITE || size != sizeof(__u64))
8695 			return false;
8696 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8697 		break;
8698 	case offsetof(struct __sk_buff, tstamp_type):
8699 		return false;
8700 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8701 		/* Explicitly prohibit access to padding in __sk_buff. */
8702 		return false;
8703 	default:
8704 		/* Only narrow read access allowed for now. */
8705 		if (type == BPF_WRITE) {
8706 			if (size != size_default)
8707 				return false;
8708 		} else {
8709 			bpf_ctx_record_field_size(info, size_default);
8710 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8711 				return false;
8712 		}
8713 	}
8714 
8715 	return true;
8716 }
8717 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8718 static bool sk_filter_is_valid_access(int off, int size,
8719 				      enum bpf_access_type type,
8720 				      const struct bpf_prog *prog,
8721 				      struct bpf_insn_access_aux *info)
8722 {
8723 	switch (off) {
8724 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8725 	case bpf_ctx_range(struct __sk_buff, data):
8726 	case bpf_ctx_range(struct __sk_buff, data_meta):
8727 	case bpf_ctx_range(struct __sk_buff, data_end):
8728 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8729 	case bpf_ctx_range(struct __sk_buff, tstamp):
8730 	case bpf_ctx_range(struct __sk_buff, wire_len):
8731 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8732 		return false;
8733 	}
8734 
8735 	if (type == BPF_WRITE) {
8736 		switch (off) {
8737 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8738 			break;
8739 		default:
8740 			return false;
8741 		}
8742 	}
8743 
8744 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8745 }
8746 
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8747 static bool cg_skb_is_valid_access(int off, int size,
8748 				   enum bpf_access_type type,
8749 				   const struct bpf_prog *prog,
8750 				   struct bpf_insn_access_aux *info)
8751 {
8752 	switch (off) {
8753 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8754 	case bpf_ctx_range(struct __sk_buff, data_meta):
8755 	case bpf_ctx_range(struct __sk_buff, wire_len):
8756 		return false;
8757 	case bpf_ctx_range(struct __sk_buff, data):
8758 	case bpf_ctx_range(struct __sk_buff, data_end):
8759 		if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8760 			return false;
8761 		break;
8762 	}
8763 
8764 	if (type == BPF_WRITE) {
8765 		switch (off) {
8766 		case bpf_ctx_range(struct __sk_buff, mark):
8767 		case bpf_ctx_range(struct __sk_buff, priority):
8768 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8769 			break;
8770 		case bpf_ctx_range(struct __sk_buff, tstamp):
8771 			if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8772 				return false;
8773 			break;
8774 		default:
8775 			return false;
8776 		}
8777 	}
8778 
8779 	switch (off) {
8780 	case bpf_ctx_range(struct __sk_buff, data):
8781 		info->reg_type = PTR_TO_PACKET;
8782 		break;
8783 	case bpf_ctx_range(struct __sk_buff, data_end):
8784 		info->reg_type = PTR_TO_PACKET_END;
8785 		break;
8786 	}
8787 
8788 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8789 }
8790 
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8791 static bool lwt_is_valid_access(int off, int size,
8792 				enum bpf_access_type type,
8793 				const struct bpf_prog *prog,
8794 				struct bpf_insn_access_aux *info)
8795 {
8796 	switch (off) {
8797 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8798 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8799 	case bpf_ctx_range(struct __sk_buff, data_meta):
8800 	case bpf_ctx_range(struct __sk_buff, tstamp):
8801 	case bpf_ctx_range(struct __sk_buff, wire_len):
8802 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8803 		return false;
8804 	}
8805 
8806 	if (type == BPF_WRITE) {
8807 		switch (off) {
8808 		case bpf_ctx_range(struct __sk_buff, mark):
8809 		case bpf_ctx_range(struct __sk_buff, priority):
8810 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8811 			break;
8812 		default:
8813 			return false;
8814 		}
8815 	}
8816 
8817 	switch (off) {
8818 	case bpf_ctx_range(struct __sk_buff, data):
8819 		info->reg_type = PTR_TO_PACKET;
8820 		break;
8821 	case bpf_ctx_range(struct __sk_buff, data_end):
8822 		info->reg_type = PTR_TO_PACKET_END;
8823 		break;
8824 	}
8825 
8826 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8827 }
8828 
8829 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8830 static bool __sock_filter_check_attach_type(int off,
8831 					    enum bpf_access_type access_type,
8832 					    enum bpf_attach_type attach_type)
8833 {
8834 	switch (off) {
8835 	case offsetof(struct bpf_sock, bound_dev_if):
8836 	case offsetof(struct bpf_sock, mark):
8837 	case offsetof(struct bpf_sock, priority):
8838 		switch (attach_type) {
8839 		case BPF_CGROUP_INET_SOCK_CREATE:
8840 		case BPF_CGROUP_INET_SOCK_RELEASE:
8841 			goto full_access;
8842 		default:
8843 			return false;
8844 		}
8845 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8846 		switch (attach_type) {
8847 		case BPF_CGROUP_INET4_POST_BIND:
8848 			goto read_only;
8849 		default:
8850 			return false;
8851 		}
8852 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8853 		switch (attach_type) {
8854 		case BPF_CGROUP_INET6_POST_BIND:
8855 			goto read_only;
8856 		default:
8857 			return false;
8858 		}
8859 	case bpf_ctx_range(struct bpf_sock, src_port):
8860 		switch (attach_type) {
8861 		case BPF_CGROUP_INET4_POST_BIND:
8862 		case BPF_CGROUP_INET6_POST_BIND:
8863 			goto read_only;
8864 		default:
8865 			return false;
8866 		}
8867 	}
8868 read_only:
8869 	return access_type == BPF_READ;
8870 full_access:
8871 	return true;
8872 }
8873 
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8874 bool bpf_sock_common_is_valid_access(int off, int size,
8875 				     enum bpf_access_type type,
8876 				     struct bpf_insn_access_aux *info)
8877 {
8878 	switch (off) {
8879 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8880 		return false;
8881 	default:
8882 		return bpf_sock_is_valid_access(off, size, type, info);
8883 	}
8884 }
8885 
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8886 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8887 			      struct bpf_insn_access_aux *info)
8888 {
8889 	const int size_default = sizeof(__u32);
8890 	int field_size;
8891 
8892 	if (off < 0 || off >= sizeof(struct bpf_sock))
8893 		return false;
8894 	if (off % size != 0)
8895 		return false;
8896 
8897 	switch (off) {
8898 	case offsetof(struct bpf_sock, state):
8899 	case offsetof(struct bpf_sock, family):
8900 	case offsetof(struct bpf_sock, type):
8901 	case offsetof(struct bpf_sock, protocol):
8902 	case offsetof(struct bpf_sock, src_port):
8903 	case offsetof(struct bpf_sock, rx_queue_mapping):
8904 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8905 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8906 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8907 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8908 		bpf_ctx_record_field_size(info, size_default);
8909 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8910 	case bpf_ctx_range(struct bpf_sock, dst_port):
8911 		field_size = size == size_default ?
8912 			size_default : sizeof_field(struct bpf_sock, dst_port);
8913 		bpf_ctx_record_field_size(info, field_size);
8914 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8915 	case offsetofend(struct bpf_sock, dst_port) ...
8916 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8917 		return false;
8918 	}
8919 
8920 	return size == size_default;
8921 }
8922 
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8923 static bool sock_filter_is_valid_access(int off, int size,
8924 					enum bpf_access_type type,
8925 					const struct bpf_prog *prog,
8926 					struct bpf_insn_access_aux *info)
8927 {
8928 	if (!bpf_sock_is_valid_access(off, size, type, info))
8929 		return false;
8930 	return __sock_filter_check_attach_type(off, type,
8931 					       prog->expected_attach_type);
8932 }
8933 
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8934 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8935 			     const struct bpf_prog *prog)
8936 {
8937 	/* Neither direct read nor direct write requires any preliminary
8938 	 * action.
8939 	 */
8940 	return 0;
8941 }
8942 
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)8943 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8944 				const struct bpf_prog *prog, int drop_verdict)
8945 {
8946 	struct bpf_insn *insn = insn_buf;
8947 
8948 	if (!direct_write)
8949 		return 0;
8950 
8951 	/* if (!skb->cloned)
8952 	 *       goto start;
8953 	 *
8954 	 * (Fast-path, otherwise approximation that we might be
8955 	 *  a clone, do the rest in helper.)
8956 	 */
8957 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8958 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8959 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8960 
8961 	/* ret = bpf_skb_pull_data(skb, 0); */
8962 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8963 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8964 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8965 			       BPF_FUNC_skb_pull_data);
8966 	/* if (!ret)
8967 	 *      goto restore;
8968 	 * return TC_ACT_SHOT;
8969 	 */
8970 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8971 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8972 	*insn++ = BPF_EXIT_INSN();
8973 
8974 	/* restore: */
8975 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8976 	/* start: */
8977 	*insn++ = prog->insnsi[0];
8978 
8979 	return insn - insn_buf;
8980 }
8981 
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)8982 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8983 			  struct bpf_insn *insn_buf)
8984 {
8985 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8986 	struct bpf_insn *insn = insn_buf;
8987 
8988 	if (!indirect) {
8989 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8990 	} else {
8991 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8992 		if (orig->imm)
8993 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8994 	}
8995 	/* We're guaranteed here that CTX is in R6. */
8996 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8997 
8998 	switch (BPF_SIZE(orig->code)) {
8999 	case BPF_B:
9000 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
9001 		break;
9002 	case BPF_H:
9003 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
9004 		break;
9005 	case BPF_W:
9006 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
9007 		break;
9008 	}
9009 
9010 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
9011 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
9012 	*insn++ = BPF_EXIT_INSN();
9013 
9014 	return insn - insn_buf;
9015 }
9016 
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9017 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
9018 			       const struct bpf_prog *prog)
9019 {
9020 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
9021 }
9022 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9023 static bool tc_cls_act_is_valid_access(int off, int size,
9024 				       enum bpf_access_type type,
9025 				       const struct bpf_prog *prog,
9026 				       struct bpf_insn_access_aux *info)
9027 {
9028 	if (type == BPF_WRITE) {
9029 		switch (off) {
9030 		case bpf_ctx_range(struct __sk_buff, mark):
9031 		case bpf_ctx_range(struct __sk_buff, tc_index):
9032 		case bpf_ctx_range(struct __sk_buff, priority):
9033 		case bpf_ctx_range(struct __sk_buff, tc_classid):
9034 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
9035 		case bpf_ctx_range(struct __sk_buff, tstamp):
9036 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
9037 			break;
9038 		default:
9039 			return false;
9040 		}
9041 	}
9042 
9043 	switch (off) {
9044 	case bpf_ctx_range(struct __sk_buff, data):
9045 		info->reg_type = PTR_TO_PACKET;
9046 		break;
9047 	case bpf_ctx_range(struct __sk_buff, data_meta):
9048 		info->reg_type = PTR_TO_PACKET_META;
9049 		break;
9050 	case bpf_ctx_range(struct __sk_buff, data_end):
9051 		info->reg_type = PTR_TO_PACKET_END;
9052 		break;
9053 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
9054 		return false;
9055 	case offsetof(struct __sk_buff, tstamp_type):
9056 		/* The convert_ctx_access() on reading and writing
9057 		 * __sk_buff->tstamp depends on whether the bpf prog
9058 		 * has used __sk_buff->tstamp_type or not.
9059 		 * Thus, we need to set prog->tstamp_type_access
9060 		 * earlier during is_valid_access() here.
9061 		 */
9062 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
9063 		return size == sizeof(__u8);
9064 	}
9065 
9066 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9067 }
9068 
9069 DEFINE_MUTEX(nf_conn_btf_access_lock);
9070 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
9071 
9072 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
9073 			      const struct bpf_reg_state *reg,
9074 			      int off, int size);
9075 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
9076 
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9077 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
9078 					const struct bpf_reg_state *reg,
9079 					int off, int size)
9080 {
9081 	int ret = -EACCES;
9082 
9083 	mutex_lock(&nf_conn_btf_access_lock);
9084 	if (nfct_btf_struct_access)
9085 		ret = nfct_btf_struct_access(log, reg, off, size);
9086 	mutex_unlock(&nf_conn_btf_access_lock);
9087 
9088 	return ret;
9089 }
9090 
__is_valid_xdp_access(int off,int size)9091 static bool __is_valid_xdp_access(int off, int size)
9092 {
9093 	if (off < 0 || off >= sizeof(struct xdp_md))
9094 		return false;
9095 	if (off % size != 0)
9096 		return false;
9097 	if (size != sizeof(__u32))
9098 		return false;
9099 
9100 	return true;
9101 }
9102 
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9103 static bool xdp_is_valid_access(int off, int size,
9104 				enum bpf_access_type type,
9105 				const struct bpf_prog *prog,
9106 				struct bpf_insn_access_aux *info)
9107 {
9108 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
9109 		switch (off) {
9110 		case offsetof(struct xdp_md, egress_ifindex):
9111 			return false;
9112 		}
9113 	}
9114 
9115 	if (type == BPF_WRITE) {
9116 		if (bpf_prog_is_offloaded(prog->aux)) {
9117 			switch (off) {
9118 			case offsetof(struct xdp_md, rx_queue_index):
9119 				return __is_valid_xdp_access(off, size);
9120 			}
9121 		}
9122 		return false;
9123 	} else {
9124 		switch (off) {
9125 		case offsetof(struct xdp_md, data_meta):
9126 		case offsetof(struct xdp_md, data):
9127 		case offsetof(struct xdp_md, data_end):
9128 			if (info->is_ldsx)
9129 				return false;
9130 		}
9131 	}
9132 
9133 	switch (off) {
9134 	case offsetof(struct xdp_md, data):
9135 		info->reg_type = PTR_TO_PACKET;
9136 		break;
9137 	case offsetof(struct xdp_md, data_meta):
9138 		info->reg_type = PTR_TO_PACKET_META;
9139 		break;
9140 	case offsetof(struct xdp_md, data_end):
9141 		info->reg_type = PTR_TO_PACKET_END;
9142 		break;
9143 	}
9144 
9145 	return __is_valid_xdp_access(off, size);
9146 }
9147 
bpf_warn_invalid_xdp_action(const struct net_device * dev,const struct bpf_prog * prog,u32 act)9148 void bpf_warn_invalid_xdp_action(const struct net_device *dev,
9149 				 const struct bpf_prog *prog, u32 act)
9150 {
9151 	const u32 act_max = XDP_REDIRECT;
9152 
9153 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9154 		     act > act_max ? "Illegal" : "Driver unsupported",
9155 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9156 }
9157 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9158 
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9159 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9160 				 const struct bpf_reg_state *reg,
9161 				 int off, int size)
9162 {
9163 	int ret = -EACCES;
9164 
9165 	mutex_lock(&nf_conn_btf_access_lock);
9166 	if (nfct_btf_struct_access)
9167 		ret = nfct_btf_struct_access(log, reg, off, size);
9168 	mutex_unlock(&nf_conn_btf_access_lock);
9169 
9170 	return ret;
9171 }
9172 
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9173 static bool sock_addr_is_valid_access(int off, int size,
9174 				      enum bpf_access_type type,
9175 				      const struct bpf_prog *prog,
9176 				      struct bpf_insn_access_aux *info)
9177 {
9178 	const int size_default = sizeof(__u32);
9179 
9180 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9181 		return false;
9182 	if (off % size != 0)
9183 		return false;
9184 
9185 	/* Disallow access to fields not belonging to the attach type's address
9186 	 * family.
9187 	 */
9188 	switch (off) {
9189 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9190 		switch (prog->expected_attach_type) {
9191 		case BPF_CGROUP_INET4_BIND:
9192 		case BPF_CGROUP_INET4_CONNECT:
9193 		case BPF_CGROUP_INET4_GETPEERNAME:
9194 		case BPF_CGROUP_INET4_GETSOCKNAME:
9195 		case BPF_CGROUP_UDP4_SENDMSG:
9196 		case BPF_CGROUP_UDP4_RECVMSG:
9197 			break;
9198 		default:
9199 			return false;
9200 		}
9201 		break;
9202 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9203 		switch (prog->expected_attach_type) {
9204 		case BPF_CGROUP_INET6_BIND:
9205 		case BPF_CGROUP_INET6_CONNECT:
9206 		case BPF_CGROUP_INET6_GETPEERNAME:
9207 		case BPF_CGROUP_INET6_GETSOCKNAME:
9208 		case BPF_CGROUP_UDP6_SENDMSG:
9209 		case BPF_CGROUP_UDP6_RECVMSG:
9210 			break;
9211 		default:
9212 			return false;
9213 		}
9214 		break;
9215 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9216 		switch (prog->expected_attach_type) {
9217 		case BPF_CGROUP_UDP4_SENDMSG:
9218 			break;
9219 		default:
9220 			return false;
9221 		}
9222 		break;
9223 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9224 				msg_src_ip6[3]):
9225 		switch (prog->expected_attach_type) {
9226 		case BPF_CGROUP_UDP6_SENDMSG:
9227 			break;
9228 		default:
9229 			return false;
9230 		}
9231 		break;
9232 	}
9233 
9234 	switch (off) {
9235 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9236 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9237 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9238 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9239 				msg_src_ip6[3]):
9240 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
9241 		if (type == BPF_READ) {
9242 			bpf_ctx_record_field_size(info, size_default);
9243 
9244 			if (bpf_ctx_wide_access_ok(off, size,
9245 						   struct bpf_sock_addr,
9246 						   user_ip6))
9247 				return true;
9248 
9249 			if (bpf_ctx_wide_access_ok(off, size,
9250 						   struct bpf_sock_addr,
9251 						   msg_src_ip6))
9252 				return true;
9253 
9254 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9255 				return false;
9256 		} else {
9257 			if (bpf_ctx_wide_access_ok(off, size,
9258 						   struct bpf_sock_addr,
9259 						   user_ip6))
9260 				return true;
9261 
9262 			if (bpf_ctx_wide_access_ok(off, size,
9263 						   struct bpf_sock_addr,
9264 						   msg_src_ip6))
9265 				return true;
9266 
9267 			if (size != size_default)
9268 				return false;
9269 		}
9270 		break;
9271 	case offsetof(struct bpf_sock_addr, sk):
9272 		if (type != BPF_READ)
9273 			return false;
9274 		if (size != sizeof(__u64))
9275 			return false;
9276 		info->reg_type = PTR_TO_SOCKET;
9277 		break;
9278 	default:
9279 		if (type == BPF_READ) {
9280 			if (size != size_default)
9281 				return false;
9282 		} else {
9283 			return false;
9284 		}
9285 	}
9286 
9287 	return true;
9288 }
9289 
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9290 static bool sock_ops_is_valid_access(int off, int size,
9291 				     enum bpf_access_type type,
9292 				     const struct bpf_prog *prog,
9293 				     struct bpf_insn_access_aux *info)
9294 {
9295 	const int size_default = sizeof(__u32);
9296 
9297 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9298 		return false;
9299 
9300 	/* The verifier guarantees that size > 0. */
9301 	if (off % size != 0)
9302 		return false;
9303 
9304 	if (type == BPF_WRITE) {
9305 		switch (off) {
9306 		case offsetof(struct bpf_sock_ops, reply):
9307 		case offsetof(struct bpf_sock_ops, sk_txhash):
9308 			if (size != size_default)
9309 				return false;
9310 			break;
9311 		default:
9312 			return false;
9313 		}
9314 	} else {
9315 		switch (off) {
9316 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9317 					bytes_acked):
9318 			if (size != sizeof(__u64))
9319 				return false;
9320 			break;
9321 		case offsetof(struct bpf_sock_ops, sk):
9322 			if (size != sizeof(__u64))
9323 				return false;
9324 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
9325 			break;
9326 		case offsetof(struct bpf_sock_ops, skb_data):
9327 			if (size != sizeof(__u64))
9328 				return false;
9329 			info->reg_type = PTR_TO_PACKET;
9330 			break;
9331 		case offsetof(struct bpf_sock_ops, skb_data_end):
9332 			if (size != sizeof(__u64))
9333 				return false;
9334 			info->reg_type = PTR_TO_PACKET_END;
9335 			break;
9336 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9337 			bpf_ctx_record_field_size(info, size_default);
9338 			return bpf_ctx_narrow_access_ok(off, size,
9339 							size_default);
9340 		case offsetof(struct bpf_sock_ops, skb_hwtstamp):
9341 			if (size != sizeof(__u64))
9342 				return false;
9343 			break;
9344 		default:
9345 			if (size != size_default)
9346 				return false;
9347 			break;
9348 		}
9349 	}
9350 
9351 	return true;
9352 }
9353 
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9354 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9355 			   const struct bpf_prog *prog)
9356 {
9357 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9358 }
9359 
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9360 static bool sk_skb_is_valid_access(int off, int size,
9361 				   enum bpf_access_type type,
9362 				   const struct bpf_prog *prog,
9363 				   struct bpf_insn_access_aux *info)
9364 {
9365 	switch (off) {
9366 	case bpf_ctx_range(struct __sk_buff, tc_classid):
9367 	case bpf_ctx_range(struct __sk_buff, data_meta):
9368 	case bpf_ctx_range(struct __sk_buff, tstamp):
9369 	case bpf_ctx_range(struct __sk_buff, wire_len):
9370 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
9371 		return false;
9372 	}
9373 
9374 	if (type == BPF_WRITE) {
9375 		switch (off) {
9376 		case bpf_ctx_range(struct __sk_buff, tc_index):
9377 		case bpf_ctx_range(struct __sk_buff, priority):
9378 			break;
9379 		default:
9380 			return false;
9381 		}
9382 	}
9383 
9384 	switch (off) {
9385 	case bpf_ctx_range(struct __sk_buff, mark):
9386 		return false;
9387 	case bpf_ctx_range(struct __sk_buff, data):
9388 		info->reg_type = PTR_TO_PACKET;
9389 		break;
9390 	case bpf_ctx_range(struct __sk_buff, data_end):
9391 		info->reg_type = PTR_TO_PACKET_END;
9392 		break;
9393 	}
9394 
9395 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9396 }
9397 
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9398 static bool sk_msg_is_valid_access(int off, int size,
9399 				   enum bpf_access_type type,
9400 				   const struct bpf_prog *prog,
9401 				   struct bpf_insn_access_aux *info)
9402 {
9403 	if (type == BPF_WRITE)
9404 		return false;
9405 
9406 	if (off % size != 0)
9407 		return false;
9408 
9409 	switch (off) {
9410 	case offsetof(struct sk_msg_md, data):
9411 		info->reg_type = PTR_TO_PACKET;
9412 		if (size != sizeof(__u64))
9413 			return false;
9414 		break;
9415 	case offsetof(struct sk_msg_md, data_end):
9416 		info->reg_type = PTR_TO_PACKET_END;
9417 		if (size != sizeof(__u64))
9418 			return false;
9419 		break;
9420 	case offsetof(struct sk_msg_md, sk):
9421 		if (size != sizeof(__u64))
9422 			return false;
9423 		info->reg_type = PTR_TO_SOCKET;
9424 		break;
9425 	case bpf_ctx_range(struct sk_msg_md, family):
9426 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9427 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9428 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9429 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9430 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9431 	case bpf_ctx_range(struct sk_msg_md, local_port):
9432 	case bpf_ctx_range(struct sk_msg_md, size):
9433 		if (size != sizeof(__u32))
9434 			return false;
9435 		break;
9436 	default:
9437 		return false;
9438 	}
9439 	return true;
9440 }
9441 
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9442 static bool flow_dissector_is_valid_access(int off, int size,
9443 					   enum bpf_access_type type,
9444 					   const struct bpf_prog *prog,
9445 					   struct bpf_insn_access_aux *info)
9446 {
9447 	const int size_default = sizeof(__u32);
9448 
9449 	if (off < 0 || off >= sizeof(struct __sk_buff))
9450 		return false;
9451 
9452 	if (type == BPF_WRITE)
9453 		return false;
9454 
9455 	switch (off) {
9456 	case bpf_ctx_range(struct __sk_buff, data):
9457 		if (info->is_ldsx || size != size_default)
9458 			return false;
9459 		info->reg_type = PTR_TO_PACKET;
9460 		return true;
9461 	case bpf_ctx_range(struct __sk_buff, data_end):
9462 		if (info->is_ldsx || size != size_default)
9463 			return false;
9464 		info->reg_type = PTR_TO_PACKET_END;
9465 		return true;
9466 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9467 		if (size != sizeof(__u64))
9468 			return false;
9469 		info->reg_type = PTR_TO_FLOW_KEYS;
9470 		return true;
9471 	default:
9472 		return false;
9473 	}
9474 }
9475 
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9476 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9477 					     const struct bpf_insn *si,
9478 					     struct bpf_insn *insn_buf,
9479 					     struct bpf_prog *prog,
9480 					     u32 *target_size)
9481 
9482 {
9483 	struct bpf_insn *insn = insn_buf;
9484 
9485 	switch (si->off) {
9486 	case offsetof(struct __sk_buff, data):
9487 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9488 				      si->dst_reg, si->src_reg,
9489 				      offsetof(struct bpf_flow_dissector, data));
9490 		break;
9491 
9492 	case offsetof(struct __sk_buff, data_end):
9493 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9494 				      si->dst_reg, si->src_reg,
9495 				      offsetof(struct bpf_flow_dissector, data_end));
9496 		break;
9497 
9498 	case offsetof(struct __sk_buff, flow_keys):
9499 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9500 				      si->dst_reg, si->src_reg,
9501 				      offsetof(struct bpf_flow_dissector, flow_keys));
9502 		break;
9503 	}
9504 
9505 	return insn - insn_buf;
9506 }
9507 
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9508 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9509 						     struct bpf_insn *insn)
9510 {
9511 	__u8 value_reg = si->dst_reg;
9512 	__u8 skb_reg = si->src_reg;
9513 	BUILD_BUG_ON(__SKB_CLOCK_MAX != (int)BPF_SKB_CLOCK_TAI);
9514 	BUILD_BUG_ON(SKB_CLOCK_REALTIME != (int)BPF_SKB_CLOCK_REALTIME);
9515 	BUILD_BUG_ON(SKB_CLOCK_MONOTONIC != (int)BPF_SKB_CLOCK_MONOTONIC);
9516 	BUILD_BUG_ON(SKB_CLOCK_TAI != (int)BPF_SKB_CLOCK_TAI);
9517 	*insn++ = BPF_LDX_MEM(BPF_B, value_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9518 	*insn++ = BPF_ALU32_IMM(BPF_AND, value_reg, SKB_TSTAMP_TYPE_MASK);
9519 #ifdef __BIG_ENDIAN_BITFIELD
9520 	*insn++ = BPF_ALU32_IMM(BPF_RSH, value_reg, SKB_TSTAMP_TYPE_RSHIFT);
9521 #else
9522 	BUILD_BUG_ON(!(SKB_TSTAMP_TYPE_MASK & 0x1));
9523 #endif
9524 
9525 	return insn;
9526 }
9527 
bpf_convert_shinfo_access(__u8 dst_reg,__u8 skb_reg,struct bpf_insn * insn)9528 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9529 						  struct bpf_insn *insn)
9530 {
9531 	/* si->dst_reg = skb_shinfo(SKB); */
9532 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9533 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9534 			      BPF_REG_AX, skb_reg,
9535 			      offsetof(struct sk_buff, end));
9536 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9537 			      dst_reg, skb_reg,
9538 			      offsetof(struct sk_buff, head));
9539 	*insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9540 #else
9541 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9542 			      dst_reg, skb_reg,
9543 			      offsetof(struct sk_buff, end));
9544 #endif
9545 
9546 	return insn;
9547 }
9548 
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9549 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9550 						const struct bpf_insn *si,
9551 						struct bpf_insn *insn)
9552 {
9553 	__u8 value_reg = si->dst_reg;
9554 	__u8 skb_reg = si->src_reg;
9555 
9556 #ifdef CONFIG_NET_XGRESS
9557 	/* If the tstamp_type is read,
9558 	 * the bpf prog is aware the tstamp could have delivery time.
9559 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9560 	 */
9561 	if (!prog->tstamp_type_access) {
9562 		/* AX is needed because src_reg and dst_reg could be the same */
9563 		__u8 tmp_reg = BPF_REG_AX;
9564 
9565 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9566 		/* check if ingress mask bits is set */
9567 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9568 		*insn++ = BPF_JMP_A(4);
9569 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, SKB_TSTAMP_TYPE_MASK, 1);
9570 		*insn++ = BPF_JMP_A(2);
9571 		/* skb->tc_at_ingress && skb->tstamp_type,
9572 		 * read 0 as the (rcv) timestamp.
9573 		 */
9574 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9575 		*insn++ = BPF_JMP_A(1);
9576 	}
9577 #endif
9578 
9579 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9580 			      offsetof(struct sk_buff, tstamp));
9581 	return insn;
9582 }
9583 
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9584 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9585 						 const struct bpf_insn *si,
9586 						 struct bpf_insn *insn)
9587 {
9588 	__u8 value_reg = si->src_reg;
9589 	__u8 skb_reg = si->dst_reg;
9590 
9591 #ifdef CONFIG_NET_XGRESS
9592 	/* If the tstamp_type is read,
9593 	 * the bpf prog is aware the tstamp could have delivery time.
9594 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9595 	 * Otherwise, writing at ingress will have to clear the
9596 	 * skb->tstamp_type bit also.
9597 	 */
9598 	if (!prog->tstamp_type_access) {
9599 		__u8 tmp_reg = BPF_REG_AX;
9600 
9601 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9602 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9603 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9604 		/* goto <store> */
9605 		*insn++ = BPF_JMP_A(2);
9606 		/* <clear>: skb->tstamp_type */
9607 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_TSTAMP_TYPE_MASK);
9608 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9609 	}
9610 #endif
9611 
9612 	/* <store>: skb->tstamp = tstamp */
9613 	*insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9614 			       skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9615 	return insn;
9616 }
9617 
9618 #define BPF_EMIT_STORE(size, si, off)					\
9619 	BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM,		\
9620 		     (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9621 
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9622 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9623 				  const struct bpf_insn *si,
9624 				  struct bpf_insn *insn_buf,
9625 				  struct bpf_prog *prog, u32 *target_size)
9626 {
9627 	struct bpf_insn *insn = insn_buf;
9628 	int off;
9629 
9630 	switch (si->off) {
9631 	case offsetof(struct __sk_buff, len):
9632 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9633 				      bpf_target_off(struct sk_buff, len, 4,
9634 						     target_size));
9635 		break;
9636 
9637 	case offsetof(struct __sk_buff, protocol):
9638 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9639 				      bpf_target_off(struct sk_buff, protocol, 2,
9640 						     target_size));
9641 		break;
9642 
9643 	case offsetof(struct __sk_buff, vlan_proto):
9644 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9645 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9646 						     target_size));
9647 		break;
9648 
9649 	case offsetof(struct __sk_buff, priority):
9650 		if (type == BPF_WRITE)
9651 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9652 						 bpf_target_off(struct sk_buff, priority, 4,
9653 								target_size));
9654 		else
9655 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9656 					      bpf_target_off(struct sk_buff, priority, 4,
9657 							     target_size));
9658 		break;
9659 
9660 	case offsetof(struct __sk_buff, ingress_ifindex):
9661 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9662 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9663 						     target_size));
9664 		break;
9665 
9666 	case offsetof(struct __sk_buff, ifindex):
9667 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9668 				      si->dst_reg, si->src_reg,
9669 				      offsetof(struct sk_buff, dev));
9670 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9671 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9672 				      bpf_target_off(struct net_device, ifindex, 4,
9673 						     target_size));
9674 		break;
9675 
9676 	case offsetof(struct __sk_buff, hash):
9677 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9678 				      bpf_target_off(struct sk_buff, hash, 4,
9679 						     target_size));
9680 		break;
9681 
9682 	case offsetof(struct __sk_buff, mark):
9683 		if (type == BPF_WRITE)
9684 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9685 						 bpf_target_off(struct sk_buff, mark, 4,
9686 								target_size));
9687 		else
9688 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9689 					      bpf_target_off(struct sk_buff, mark, 4,
9690 							     target_size));
9691 		break;
9692 
9693 	case offsetof(struct __sk_buff, pkt_type):
9694 		*target_size = 1;
9695 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9696 				      PKT_TYPE_OFFSET);
9697 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9698 #ifdef __BIG_ENDIAN_BITFIELD
9699 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9700 #endif
9701 		break;
9702 
9703 	case offsetof(struct __sk_buff, queue_mapping):
9704 		if (type == BPF_WRITE) {
9705 			u32 offset = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9706 
9707 			if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9708 				*insn++ = BPF_JMP_A(0); /* noop */
9709 				break;
9710 			}
9711 
9712 			if (BPF_CLASS(si->code) == BPF_STX)
9713 				*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9714 			*insn++ = BPF_EMIT_STORE(BPF_H, si, offset);
9715 		} else {
9716 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9717 					      bpf_target_off(struct sk_buff,
9718 							     queue_mapping,
9719 							     2, target_size));
9720 		}
9721 		break;
9722 
9723 	case offsetof(struct __sk_buff, vlan_present):
9724 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9725 				      bpf_target_off(struct sk_buff,
9726 						     vlan_all, 4, target_size));
9727 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9728 		*insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9729 		break;
9730 
9731 	case offsetof(struct __sk_buff, vlan_tci):
9732 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9733 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9734 						     target_size));
9735 		break;
9736 
9737 	case offsetof(struct __sk_buff, cb[0]) ...
9738 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9739 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9740 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9741 			      offsetof(struct qdisc_skb_cb, data)) %
9742 			     sizeof(__u64));
9743 
9744 		prog->cb_access = 1;
9745 		off  = si->off;
9746 		off -= offsetof(struct __sk_buff, cb[0]);
9747 		off += offsetof(struct sk_buff, cb);
9748 		off += offsetof(struct qdisc_skb_cb, data);
9749 		if (type == BPF_WRITE)
9750 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9751 		else
9752 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9753 					      si->src_reg, off);
9754 		break;
9755 
9756 	case offsetof(struct __sk_buff, tc_classid):
9757 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9758 
9759 		off  = si->off;
9760 		off -= offsetof(struct __sk_buff, tc_classid);
9761 		off += offsetof(struct sk_buff, cb);
9762 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9763 		*target_size = 2;
9764 		if (type == BPF_WRITE)
9765 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9766 		else
9767 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9768 					      si->src_reg, off);
9769 		break;
9770 
9771 	case offsetof(struct __sk_buff, data):
9772 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9773 				      si->dst_reg, si->src_reg,
9774 				      offsetof(struct sk_buff, data));
9775 		break;
9776 
9777 	case offsetof(struct __sk_buff, data_meta):
9778 		off  = si->off;
9779 		off -= offsetof(struct __sk_buff, data_meta);
9780 		off += offsetof(struct sk_buff, cb);
9781 		off += offsetof(struct bpf_skb_data_end, data_meta);
9782 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9783 				      si->src_reg, off);
9784 		break;
9785 
9786 	case offsetof(struct __sk_buff, data_end):
9787 		off  = si->off;
9788 		off -= offsetof(struct __sk_buff, data_end);
9789 		off += offsetof(struct sk_buff, cb);
9790 		off += offsetof(struct bpf_skb_data_end, data_end);
9791 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9792 				      si->src_reg, off);
9793 		break;
9794 
9795 	case offsetof(struct __sk_buff, tc_index):
9796 #ifdef CONFIG_NET_SCHED
9797 		if (type == BPF_WRITE)
9798 			*insn++ = BPF_EMIT_STORE(BPF_H, si,
9799 						 bpf_target_off(struct sk_buff, tc_index, 2,
9800 								target_size));
9801 		else
9802 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9803 					      bpf_target_off(struct sk_buff, tc_index, 2,
9804 							     target_size));
9805 #else
9806 		*target_size = 2;
9807 		if (type == BPF_WRITE)
9808 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9809 		else
9810 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9811 #endif
9812 		break;
9813 
9814 	case offsetof(struct __sk_buff, napi_id):
9815 #if defined(CONFIG_NET_RX_BUSY_POLL)
9816 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9817 				      bpf_target_off(struct sk_buff, napi_id, 4,
9818 						     target_size));
9819 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9820 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9821 #else
9822 		*target_size = 4;
9823 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9824 #endif
9825 		break;
9826 	case offsetof(struct __sk_buff, family):
9827 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9828 
9829 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9830 				      si->dst_reg, si->src_reg,
9831 				      offsetof(struct sk_buff, sk));
9832 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9833 				      bpf_target_off(struct sock_common,
9834 						     skc_family,
9835 						     2, target_size));
9836 		break;
9837 	case offsetof(struct __sk_buff, remote_ip4):
9838 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9839 
9840 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9841 				      si->dst_reg, si->src_reg,
9842 				      offsetof(struct sk_buff, sk));
9843 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9844 				      bpf_target_off(struct sock_common,
9845 						     skc_daddr,
9846 						     4, target_size));
9847 		break;
9848 	case offsetof(struct __sk_buff, local_ip4):
9849 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9850 					  skc_rcv_saddr) != 4);
9851 
9852 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9853 				      si->dst_reg, si->src_reg,
9854 				      offsetof(struct sk_buff, sk));
9855 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9856 				      bpf_target_off(struct sock_common,
9857 						     skc_rcv_saddr,
9858 						     4, target_size));
9859 		break;
9860 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9861 	     offsetof(struct __sk_buff, remote_ip6[3]):
9862 #if IS_ENABLED(CONFIG_IPV6)
9863 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9864 					  skc_v6_daddr.s6_addr32[0]) != 4);
9865 
9866 		off = si->off;
9867 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9868 
9869 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9870 				      si->dst_reg, si->src_reg,
9871 				      offsetof(struct sk_buff, sk));
9872 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9873 				      offsetof(struct sock_common,
9874 					       skc_v6_daddr.s6_addr32[0]) +
9875 				      off);
9876 #else
9877 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9878 #endif
9879 		break;
9880 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9881 	     offsetof(struct __sk_buff, local_ip6[3]):
9882 #if IS_ENABLED(CONFIG_IPV6)
9883 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9884 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9885 
9886 		off = si->off;
9887 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9888 
9889 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9890 				      si->dst_reg, si->src_reg,
9891 				      offsetof(struct sk_buff, sk));
9892 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9893 				      offsetof(struct sock_common,
9894 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9895 				      off);
9896 #else
9897 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9898 #endif
9899 		break;
9900 
9901 	case offsetof(struct __sk_buff, remote_port):
9902 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9903 
9904 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9905 				      si->dst_reg, si->src_reg,
9906 				      offsetof(struct sk_buff, sk));
9907 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9908 				      bpf_target_off(struct sock_common,
9909 						     skc_dport,
9910 						     2, target_size));
9911 #ifndef __BIG_ENDIAN_BITFIELD
9912 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9913 #endif
9914 		break;
9915 
9916 	case offsetof(struct __sk_buff, local_port):
9917 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9918 
9919 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9920 				      si->dst_reg, si->src_reg,
9921 				      offsetof(struct sk_buff, sk));
9922 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9923 				      bpf_target_off(struct sock_common,
9924 						     skc_num, 2, target_size));
9925 		break;
9926 
9927 	case offsetof(struct __sk_buff, tstamp):
9928 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9929 
9930 		if (type == BPF_WRITE)
9931 			insn = bpf_convert_tstamp_write(prog, si, insn);
9932 		else
9933 			insn = bpf_convert_tstamp_read(prog, si, insn);
9934 		break;
9935 
9936 	case offsetof(struct __sk_buff, tstamp_type):
9937 		insn = bpf_convert_tstamp_type_read(si, insn);
9938 		break;
9939 
9940 	case offsetof(struct __sk_buff, gso_segs):
9941 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9942 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9943 				      si->dst_reg, si->dst_reg,
9944 				      bpf_target_off(struct skb_shared_info,
9945 						     gso_segs, 2,
9946 						     target_size));
9947 		break;
9948 	case offsetof(struct __sk_buff, gso_size):
9949 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9950 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9951 				      si->dst_reg, si->dst_reg,
9952 				      bpf_target_off(struct skb_shared_info,
9953 						     gso_size, 2,
9954 						     target_size));
9955 		break;
9956 	case offsetof(struct __sk_buff, wire_len):
9957 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9958 
9959 		off = si->off;
9960 		off -= offsetof(struct __sk_buff, wire_len);
9961 		off += offsetof(struct sk_buff, cb);
9962 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9963 		*target_size = 4;
9964 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9965 		break;
9966 
9967 	case offsetof(struct __sk_buff, sk):
9968 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9969 				      si->dst_reg, si->src_reg,
9970 				      offsetof(struct sk_buff, sk));
9971 		break;
9972 	case offsetof(struct __sk_buff, hwtstamp):
9973 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9974 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9975 
9976 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9977 		*insn++ = BPF_LDX_MEM(BPF_DW,
9978 				      si->dst_reg, si->dst_reg,
9979 				      bpf_target_off(struct skb_shared_info,
9980 						     hwtstamps, 8,
9981 						     target_size));
9982 		break;
9983 	}
9984 
9985 	return insn - insn_buf;
9986 }
9987 
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9988 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9989 				const struct bpf_insn *si,
9990 				struct bpf_insn *insn_buf,
9991 				struct bpf_prog *prog, u32 *target_size)
9992 {
9993 	struct bpf_insn *insn = insn_buf;
9994 	int off;
9995 
9996 	switch (si->off) {
9997 	case offsetof(struct bpf_sock, bound_dev_if):
9998 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9999 
10000 		if (type == BPF_WRITE)
10001 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
10002 						 offsetof(struct sock, sk_bound_dev_if));
10003 		else
10004 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10005 				      offsetof(struct sock, sk_bound_dev_if));
10006 		break;
10007 
10008 	case offsetof(struct bpf_sock, mark):
10009 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
10010 
10011 		if (type == BPF_WRITE)
10012 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
10013 						 offsetof(struct sock, sk_mark));
10014 		else
10015 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10016 				      offsetof(struct sock, sk_mark));
10017 		break;
10018 
10019 	case offsetof(struct bpf_sock, priority):
10020 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
10021 
10022 		if (type == BPF_WRITE)
10023 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
10024 						 offsetof(struct sock, sk_priority));
10025 		else
10026 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10027 				      offsetof(struct sock, sk_priority));
10028 		break;
10029 
10030 	case offsetof(struct bpf_sock, family):
10031 		*insn++ = BPF_LDX_MEM(
10032 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
10033 			si->dst_reg, si->src_reg,
10034 			bpf_target_off(struct sock_common,
10035 				       skc_family,
10036 				       sizeof_field(struct sock_common,
10037 						    skc_family),
10038 				       target_size));
10039 		break;
10040 
10041 	case offsetof(struct bpf_sock, type):
10042 		*insn++ = BPF_LDX_MEM(
10043 			BPF_FIELD_SIZEOF(struct sock, sk_type),
10044 			si->dst_reg, si->src_reg,
10045 			bpf_target_off(struct sock, sk_type,
10046 				       sizeof_field(struct sock, sk_type),
10047 				       target_size));
10048 		break;
10049 
10050 	case offsetof(struct bpf_sock, protocol):
10051 		*insn++ = BPF_LDX_MEM(
10052 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
10053 			si->dst_reg, si->src_reg,
10054 			bpf_target_off(struct sock, sk_protocol,
10055 				       sizeof_field(struct sock, sk_protocol),
10056 				       target_size));
10057 		break;
10058 
10059 	case offsetof(struct bpf_sock, src_ip4):
10060 		*insn++ = BPF_LDX_MEM(
10061 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10062 			bpf_target_off(struct sock_common, skc_rcv_saddr,
10063 				       sizeof_field(struct sock_common,
10064 						    skc_rcv_saddr),
10065 				       target_size));
10066 		break;
10067 
10068 	case offsetof(struct bpf_sock, dst_ip4):
10069 		*insn++ = BPF_LDX_MEM(
10070 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10071 			bpf_target_off(struct sock_common, skc_daddr,
10072 				       sizeof_field(struct sock_common,
10073 						    skc_daddr),
10074 				       target_size));
10075 		break;
10076 
10077 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
10078 #if IS_ENABLED(CONFIG_IPV6)
10079 		off = si->off;
10080 		off -= offsetof(struct bpf_sock, src_ip6[0]);
10081 		*insn++ = BPF_LDX_MEM(
10082 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10083 			bpf_target_off(
10084 				struct sock_common,
10085 				skc_v6_rcv_saddr.s6_addr32[0],
10086 				sizeof_field(struct sock_common,
10087 					     skc_v6_rcv_saddr.s6_addr32[0]),
10088 				target_size) + off);
10089 #else
10090 		(void)off;
10091 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10092 #endif
10093 		break;
10094 
10095 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
10096 #if IS_ENABLED(CONFIG_IPV6)
10097 		off = si->off;
10098 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
10099 		*insn++ = BPF_LDX_MEM(
10100 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10101 			bpf_target_off(struct sock_common,
10102 				       skc_v6_daddr.s6_addr32[0],
10103 				       sizeof_field(struct sock_common,
10104 						    skc_v6_daddr.s6_addr32[0]),
10105 				       target_size) + off);
10106 #else
10107 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10108 		*target_size = 4;
10109 #endif
10110 		break;
10111 
10112 	case offsetof(struct bpf_sock, src_port):
10113 		*insn++ = BPF_LDX_MEM(
10114 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
10115 			si->dst_reg, si->src_reg,
10116 			bpf_target_off(struct sock_common, skc_num,
10117 				       sizeof_field(struct sock_common,
10118 						    skc_num),
10119 				       target_size));
10120 		break;
10121 
10122 	case offsetof(struct bpf_sock, dst_port):
10123 		*insn++ = BPF_LDX_MEM(
10124 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
10125 			si->dst_reg, si->src_reg,
10126 			bpf_target_off(struct sock_common, skc_dport,
10127 				       sizeof_field(struct sock_common,
10128 						    skc_dport),
10129 				       target_size));
10130 		break;
10131 
10132 	case offsetof(struct bpf_sock, state):
10133 		*insn++ = BPF_LDX_MEM(
10134 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
10135 			si->dst_reg, si->src_reg,
10136 			bpf_target_off(struct sock_common, skc_state,
10137 				       sizeof_field(struct sock_common,
10138 						    skc_state),
10139 				       target_size));
10140 		break;
10141 	case offsetof(struct bpf_sock, rx_queue_mapping):
10142 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
10143 		*insn++ = BPF_LDX_MEM(
10144 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
10145 			si->dst_reg, si->src_reg,
10146 			bpf_target_off(struct sock, sk_rx_queue_mapping,
10147 				       sizeof_field(struct sock,
10148 						    sk_rx_queue_mapping),
10149 				       target_size));
10150 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
10151 				      1);
10152 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10153 #else
10154 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10155 		*target_size = 2;
10156 #endif
10157 		break;
10158 	}
10159 
10160 	return insn - insn_buf;
10161 }
10162 
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10163 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10164 					 const struct bpf_insn *si,
10165 					 struct bpf_insn *insn_buf,
10166 					 struct bpf_prog *prog, u32 *target_size)
10167 {
10168 	struct bpf_insn *insn = insn_buf;
10169 
10170 	switch (si->off) {
10171 	case offsetof(struct __sk_buff, ifindex):
10172 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10173 				      si->dst_reg, si->src_reg,
10174 				      offsetof(struct sk_buff, dev));
10175 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10176 				      bpf_target_off(struct net_device, ifindex, 4,
10177 						     target_size));
10178 		break;
10179 	default:
10180 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10181 					      target_size);
10182 	}
10183 
10184 	return insn - insn_buf;
10185 }
10186 
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10187 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10188 				  const struct bpf_insn *si,
10189 				  struct bpf_insn *insn_buf,
10190 				  struct bpf_prog *prog, u32 *target_size)
10191 {
10192 	struct bpf_insn *insn = insn_buf;
10193 
10194 	switch (si->off) {
10195 	case offsetof(struct xdp_md, data):
10196 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10197 				      si->dst_reg, si->src_reg,
10198 				      offsetof(struct xdp_buff, data));
10199 		break;
10200 	case offsetof(struct xdp_md, data_meta):
10201 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10202 				      si->dst_reg, si->src_reg,
10203 				      offsetof(struct xdp_buff, data_meta));
10204 		break;
10205 	case offsetof(struct xdp_md, data_end):
10206 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10207 				      si->dst_reg, si->src_reg,
10208 				      offsetof(struct xdp_buff, data_end));
10209 		break;
10210 	case offsetof(struct xdp_md, ingress_ifindex):
10211 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10212 				      si->dst_reg, si->src_reg,
10213 				      offsetof(struct xdp_buff, rxq));
10214 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10215 				      si->dst_reg, si->dst_reg,
10216 				      offsetof(struct xdp_rxq_info, dev));
10217 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10218 				      offsetof(struct net_device, ifindex));
10219 		break;
10220 	case offsetof(struct xdp_md, rx_queue_index):
10221 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10222 				      si->dst_reg, si->src_reg,
10223 				      offsetof(struct xdp_buff, rxq));
10224 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10225 				      offsetof(struct xdp_rxq_info,
10226 					       queue_index));
10227 		break;
10228 	case offsetof(struct xdp_md, egress_ifindex):
10229 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10230 				      si->dst_reg, si->src_reg,
10231 				      offsetof(struct xdp_buff, txq));
10232 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10233 				      si->dst_reg, si->dst_reg,
10234 				      offsetof(struct xdp_txq_info, dev));
10235 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10236 				      offsetof(struct net_device, ifindex));
10237 		break;
10238 	}
10239 
10240 	return insn - insn_buf;
10241 }
10242 
10243 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10244  * context Structure, F is Field in context structure that contains a pointer
10245  * to Nested Structure of type NS that has the field NF.
10246  *
10247  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10248  * sure that SIZE is not greater than actual size of S.F.NF.
10249  *
10250  * If offset OFF is provided, the load happens from that offset relative to
10251  * offset of NF.
10252  */
10253 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
10254 	do {								       \
10255 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
10256 				      si->src_reg, offsetof(S, F));	       \
10257 		*insn++ = BPF_LDX_MEM(					       \
10258 			SIZE, si->dst_reg, si->dst_reg,			       \
10259 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10260 				       target_size)			       \
10261 				+ OFF);					       \
10262 	} while (0)
10263 
10264 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
10265 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
10266 					     BPF_FIELD_SIZEOF(NS, NF), 0)
10267 
10268 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10269  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10270  *
10271  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10272  * "register" since two registers available in convert_ctx_access are not
10273  * enough: we can't override neither SRC, since it contains value to store, nor
10274  * DST since it contains pointer to context that may be used by later
10275  * instructions. But we need a temporary place to save pointer to nested
10276  * structure whose field we want to store to.
10277  */
10278 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
10279 	do {								       \
10280 		int tmp_reg = BPF_REG_9;				       \
10281 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10282 			--tmp_reg;					       \
10283 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10284 			--tmp_reg;					       \
10285 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
10286 				      offsetof(S, TF));			       \
10287 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
10288 				      si->dst_reg, offsetof(S, F));	       \
10289 		*insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code),   \
10290 				       tmp_reg, si->src_reg,		       \
10291 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10292 				       target_size)			       \
10293 				       + OFF,				       \
10294 				       si->imm);			       \
10295 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
10296 				      offsetof(S, TF));			       \
10297 	} while (0)
10298 
10299 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10300 						      TF)		       \
10301 	do {								       \
10302 		if (type == BPF_WRITE) {				       \
10303 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
10304 							 OFF, TF);	       \
10305 		} else {						       \
10306 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
10307 				S, NS, F, NF, SIZE, OFF);  \
10308 		}							       \
10309 	} while (0)
10310 
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10311 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10312 					const struct bpf_insn *si,
10313 					struct bpf_insn *insn_buf,
10314 					struct bpf_prog *prog, u32 *target_size)
10315 {
10316 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10317 	struct bpf_insn *insn = insn_buf;
10318 
10319 	switch (si->off) {
10320 	case offsetof(struct bpf_sock_addr, user_family):
10321 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10322 					    struct sockaddr, uaddr, sa_family);
10323 		break;
10324 
10325 	case offsetof(struct bpf_sock_addr, user_ip4):
10326 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10327 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10328 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10329 		break;
10330 
10331 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10332 		off = si->off;
10333 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10334 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10335 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10336 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10337 			tmp_reg);
10338 		break;
10339 
10340 	case offsetof(struct bpf_sock_addr, user_port):
10341 		/* To get port we need to know sa_family first and then treat
10342 		 * sockaddr as either sockaddr_in or sockaddr_in6.
10343 		 * Though we can simplify since port field has same offset and
10344 		 * size in both structures.
10345 		 * Here we check this invariant and use just one of the
10346 		 * structures if it's true.
10347 		 */
10348 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10349 			     offsetof(struct sockaddr_in6, sin6_port));
10350 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10351 			     sizeof_field(struct sockaddr_in6, sin6_port));
10352 		/* Account for sin6_port being smaller than user_port. */
10353 		port_size = min(port_size, BPF_LDST_BYTES(si));
10354 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10355 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10356 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10357 		break;
10358 
10359 	case offsetof(struct bpf_sock_addr, family):
10360 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10361 					    struct sock, sk, sk_family);
10362 		break;
10363 
10364 	case offsetof(struct bpf_sock_addr, type):
10365 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10366 					    struct sock, sk, sk_type);
10367 		break;
10368 
10369 	case offsetof(struct bpf_sock_addr, protocol):
10370 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10371 					    struct sock, sk, sk_protocol);
10372 		break;
10373 
10374 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
10375 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
10376 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10377 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10378 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10379 		break;
10380 
10381 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10382 				msg_src_ip6[3]):
10383 		off = si->off;
10384 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10385 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10386 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10387 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10388 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10389 		break;
10390 	case offsetof(struct bpf_sock_addr, sk):
10391 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10392 				      si->dst_reg, si->src_reg,
10393 				      offsetof(struct bpf_sock_addr_kern, sk));
10394 		break;
10395 	}
10396 
10397 	return insn - insn_buf;
10398 }
10399 
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10400 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10401 				       const struct bpf_insn *si,
10402 				       struct bpf_insn *insn_buf,
10403 				       struct bpf_prog *prog,
10404 				       u32 *target_size)
10405 {
10406 	struct bpf_insn *insn = insn_buf;
10407 	int off;
10408 
10409 /* Helper macro for adding read access to tcp_sock or sock fields. */
10410 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10411 	do {								      \
10412 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10413 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10414 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10415 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10416 			reg--;						      \
10417 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10418 			reg--;						      \
10419 		if (si->dst_reg == si->src_reg) {			      \
10420 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10421 					  offsetof(struct bpf_sock_ops_kern,  \
10422 					  temp));			      \
10423 			fullsock_reg = reg;				      \
10424 			jmp += 2;					      \
10425 		}							      \
10426 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10427 						struct bpf_sock_ops_kern,     \
10428 						is_locked_tcp_sock),	      \
10429 				      fullsock_reg, si->src_reg,	      \
10430 				      offsetof(struct bpf_sock_ops_kern,      \
10431 					       is_locked_tcp_sock));	      \
10432 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10433 		if (si->dst_reg == si->src_reg)				      \
10434 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10435 				      offsetof(struct bpf_sock_ops_kern,      \
10436 				      temp));				      \
10437 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10438 						struct bpf_sock_ops_kern, sk),\
10439 				      si->dst_reg, si->src_reg,		      \
10440 				      offsetof(struct bpf_sock_ops_kern, sk));\
10441 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10442 						       OBJ_FIELD),	      \
10443 				      si->dst_reg, si->dst_reg,		      \
10444 				      offsetof(OBJ, OBJ_FIELD));	      \
10445 		if (si->dst_reg == si->src_reg)	{			      \
10446 			*insn++ = BPF_JMP_A(1);				      \
10447 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10448 				      offsetof(struct bpf_sock_ops_kern,      \
10449 				      temp));				      \
10450 		}							      \
10451 	} while (0)
10452 
10453 #define SOCK_OPS_GET_SK()							      \
10454 	do {								      \
10455 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10456 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10457 			reg--;						      \
10458 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10459 			reg--;						      \
10460 		if (si->dst_reg == si->src_reg) {			      \
10461 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10462 					  offsetof(struct bpf_sock_ops_kern,  \
10463 					  temp));			      \
10464 			fullsock_reg = reg;				      \
10465 			jmp += 2;					      \
10466 		}							      \
10467 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10468 						struct bpf_sock_ops_kern,     \
10469 						is_fullsock),		      \
10470 				      fullsock_reg, si->src_reg,	      \
10471 				      offsetof(struct bpf_sock_ops_kern,      \
10472 					       is_fullsock));		      \
10473 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10474 		if (si->dst_reg == si->src_reg)				      \
10475 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10476 				      offsetof(struct bpf_sock_ops_kern,      \
10477 				      temp));				      \
10478 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10479 						struct bpf_sock_ops_kern, sk),\
10480 				      si->dst_reg, si->src_reg,		      \
10481 				      offsetof(struct bpf_sock_ops_kern, sk));\
10482 		if (si->dst_reg == si->src_reg)	{			      \
10483 			*insn++ = BPF_JMP_A(1);				      \
10484 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10485 				      offsetof(struct bpf_sock_ops_kern,      \
10486 				      temp));				      \
10487 		}							      \
10488 	} while (0)
10489 
10490 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10491 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10492 
10493 /* Helper macro for adding write access to tcp_sock or sock fields.
10494  * The macro is called with two registers, dst_reg which contains a pointer
10495  * to ctx (context) and src_reg which contains the value that should be
10496  * stored. However, we need an additional register since we cannot overwrite
10497  * dst_reg because it may be used later in the program.
10498  * Instead we "borrow" one of the other register. We first save its value
10499  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10500  * it at the end of the macro.
10501  */
10502 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10503 	do {								      \
10504 		int reg = BPF_REG_9;					      \
10505 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10506 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10507 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10508 			reg--;						      \
10509 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10510 			reg--;						      \
10511 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10512 				      offsetof(struct bpf_sock_ops_kern,      \
10513 					       temp));			      \
10514 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10515 						struct bpf_sock_ops_kern,     \
10516 						is_locked_tcp_sock),	      \
10517 				      reg, si->dst_reg,			      \
10518 				      offsetof(struct bpf_sock_ops_kern,      \
10519 					       is_locked_tcp_sock));	      \
10520 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10521 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10522 						struct bpf_sock_ops_kern, sk),\
10523 				      reg, si->dst_reg,			      \
10524 				      offsetof(struct bpf_sock_ops_kern, sk));\
10525 		*insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) |     \
10526 				       BPF_MEM | BPF_CLASS(si->code),	      \
10527 				       reg, si->src_reg,		      \
10528 				       offsetof(OBJ, OBJ_FIELD),	      \
10529 				       si->imm);			      \
10530 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10531 				      offsetof(struct bpf_sock_ops_kern,      \
10532 					       temp));			      \
10533 	} while (0)
10534 
10535 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10536 	do {								      \
10537 		if (TYPE == BPF_WRITE)					      \
10538 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10539 		else							      \
10540 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10541 	} while (0)
10542 
10543 	switch (si->off) {
10544 	case offsetof(struct bpf_sock_ops, op):
10545 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10546 						       op),
10547 				      si->dst_reg, si->src_reg,
10548 				      offsetof(struct bpf_sock_ops_kern, op));
10549 		break;
10550 
10551 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10552 	     offsetof(struct bpf_sock_ops, replylong[3]):
10553 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10554 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10555 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10556 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10557 		off = si->off;
10558 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10559 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10560 		if (type == BPF_WRITE)
10561 			*insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10562 		else
10563 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10564 					      off);
10565 		break;
10566 
10567 	case offsetof(struct bpf_sock_ops, family):
10568 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10569 
10570 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10571 					      struct bpf_sock_ops_kern, sk),
10572 				      si->dst_reg, si->src_reg,
10573 				      offsetof(struct bpf_sock_ops_kern, sk));
10574 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10575 				      offsetof(struct sock_common, skc_family));
10576 		break;
10577 
10578 	case offsetof(struct bpf_sock_ops, remote_ip4):
10579 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10580 
10581 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10582 						struct bpf_sock_ops_kern, sk),
10583 				      si->dst_reg, si->src_reg,
10584 				      offsetof(struct bpf_sock_ops_kern, sk));
10585 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10586 				      offsetof(struct sock_common, skc_daddr));
10587 		break;
10588 
10589 	case offsetof(struct bpf_sock_ops, local_ip4):
10590 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10591 					  skc_rcv_saddr) != 4);
10592 
10593 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10594 					      struct bpf_sock_ops_kern, sk),
10595 				      si->dst_reg, si->src_reg,
10596 				      offsetof(struct bpf_sock_ops_kern, sk));
10597 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10598 				      offsetof(struct sock_common,
10599 					       skc_rcv_saddr));
10600 		break;
10601 
10602 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10603 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10604 #if IS_ENABLED(CONFIG_IPV6)
10605 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10606 					  skc_v6_daddr.s6_addr32[0]) != 4);
10607 
10608 		off = si->off;
10609 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10610 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10611 						struct bpf_sock_ops_kern, sk),
10612 				      si->dst_reg, si->src_reg,
10613 				      offsetof(struct bpf_sock_ops_kern, sk));
10614 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10615 				      offsetof(struct sock_common,
10616 					       skc_v6_daddr.s6_addr32[0]) +
10617 				      off);
10618 #else
10619 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10620 #endif
10621 		break;
10622 
10623 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10624 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10625 #if IS_ENABLED(CONFIG_IPV6)
10626 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10627 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10628 
10629 		off = si->off;
10630 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10631 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10632 						struct bpf_sock_ops_kern, sk),
10633 				      si->dst_reg, si->src_reg,
10634 				      offsetof(struct bpf_sock_ops_kern, sk));
10635 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10636 				      offsetof(struct sock_common,
10637 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10638 				      off);
10639 #else
10640 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10641 #endif
10642 		break;
10643 
10644 	case offsetof(struct bpf_sock_ops, remote_port):
10645 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10646 
10647 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10648 						struct bpf_sock_ops_kern, sk),
10649 				      si->dst_reg, si->src_reg,
10650 				      offsetof(struct bpf_sock_ops_kern, sk));
10651 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10652 				      offsetof(struct sock_common, skc_dport));
10653 #ifndef __BIG_ENDIAN_BITFIELD
10654 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10655 #endif
10656 		break;
10657 
10658 	case offsetof(struct bpf_sock_ops, local_port):
10659 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10660 
10661 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10662 						struct bpf_sock_ops_kern, sk),
10663 				      si->dst_reg, si->src_reg,
10664 				      offsetof(struct bpf_sock_ops_kern, sk));
10665 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10666 				      offsetof(struct sock_common, skc_num));
10667 		break;
10668 
10669 	case offsetof(struct bpf_sock_ops, is_fullsock):
10670 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10671 						struct bpf_sock_ops_kern,
10672 						is_fullsock),
10673 				      si->dst_reg, si->src_reg,
10674 				      offsetof(struct bpf_sock_ops_kern,
10675 					       is_fullsock));
10676 		break;
10677 
10678 	case offsetof(struct bpf_sock_ops, state):
10679 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10680 
10681 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10682 						struct bpf_sock_ops_kern, sk),
10683 				      si->dst_reg, si->src_reg,
10684 				      offsetof(struct bpf_sock_ops_kern, sk));
10685 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10686 				      offsetof(struct sock_common, skc_state));
10687 		break;
10688 
10689 	case offsetof(struct bpf_sock_ops, rtt_min):
10690 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10691 			     sizeof(struct minmax));
10692 		BUILD_BUG_ON(sizeof(struct minmax) <
10693 			     sizeof(struct minmax_sample));
10694 
10695 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10696 						struct bpf_sock_ops_kern, sk),
10697 				      si->dst_reg, si->src_reg,
10698 				      offsetof(struct bpf_sock_ops_kern, sk));
10699 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10700 				      offsetof(struct tcp_sock, rtt_min) +
10701 				      sizeof_field(struct minmax_sample, t));
10702 		break;
10703 
10704 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10705 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10706 				   struct tcp_sock);
10707 		break;
10708 
10709 	case offsetof(struct bpf_sock_ops, sk_txhash):
10710 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10711 					  struct sock, type);
10712 		break;
10713 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10714 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10715 		break;
10716 	case offsetof(struct bpf_sock_ops, srtt_us):
10717 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10718 		break;
10719 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10720 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10721 		break;
10722 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10723 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10724 		break;
10725 	case offsetof(struct bpf_sock_ops, snd_nxt):
10726 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10727 		break;
10728 	case offsetof(struct bpf_sock_ops, snd_una):
10729 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10730 		break;
10731 	case offsetof(struct bpf_sock_ops, mss_cache):
10732 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10733 		break;
10734 	case offsetof(struct bpf_sock_ops, ecn_flags):
10735 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10736 		break;
10737 	case offsetof(struct bpf_sock_ops, rate_delivered):
10738 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10739 		break;
10740 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10741 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10742 		break;
10743 	case offsetof(struct bpf_sock_ops, packets_out):
10744 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10745 		break;
10746 	case offsetof(struct bpf_sock_ops, retrans_out):
10747 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10748 		break;
10749 	case offsetof(struct bpf_sock_ops, total_retrans):
10750 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10751 		break;
10752 	case offsetof(struct bpf_sock_ops, segs_in):
10753 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10754 		break;
10755 	case offsetof(struct bpf_sock_ops, data_segs_in):
10756 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10757 		break;
10758 	case offsetof(struct bpf_sock_ops, segs_out):
10759 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10760 		break;
10761 	case offsetof(struct bpf_sock_ops, data_segs_out):
10762 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10763 		break;
10764 	case offsetof(struct bpf_sock_ops, lost_out):
10765 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10766 		break;
10767 	case offsetof(struct bpf_sock_ops, sacked_out):
10768 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10769 		break;
10770 	case offsetof(struct bpf_sock_ops, bytes_received):
10771 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10772 		break;
10773 	case offsetof(struct bpf_sock_ops, bytes_acked):
10774 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10775 		break;
10776 	case offsetof(struct bpf_sock_ops, sk):
10777 		SOCK_OPS_GET_SK();
10778 		break;
10779 	case offsetof(struct bpf_sock_ops, skb_data_end):
10780 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10781 						       skb_data_end),
10782 				      si->dst_reg, si->src_reg,
10783 				      offsetof(struct bpf_sock_ops_kern,
10784 					       skb_data_end));
10785 		break;
10786 	case offsetof(struct bpf_sock_ops, skb_data):
10787 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10788 						       skb),
10789 				      si->dst_reg, si->src_reg,
10790 				      offsetof(struct bpf_sock_ops_kern,
10791 					       skb));
10792 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10793 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10794 				      si->dst_reg, si->dst_reg,
10795 				      offsetof(struct sk_buff, data));
10796 		break;
10797 	case offsetof(struct bpf_sock_ops, skb_len):
10798 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10799 						       skb),
10800 				      si->dst_reg, si->src_reg,
10801 				      offsetof(struct bpf_sock_ops_kern,
10802 					       skb));
10803 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10804 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10805 				      si->dst_reg, si->dst_reg,
10806 				      offsetof(struct sk_buff, len));
10807 		break;
10808 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10809 		off = offsetof(struct sk_buff, cb);
10810 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10811 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10812 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10813 						       skb),
10814 				      si->dst_reg, si->src_reg,
10815 				      offsetof(struct bpf_sock_ops_kern,
10816 					       skb));
10817 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10818 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10819 						       tcp_flags),
10820 				      si->dst_reg, si->dst_reg, off);
10821 		break;
10822 	case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10823 		struct bpf_insn *jmp_on_null_skb;
10824 
10825 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10826 						       skb),
10827 				      si->dst_reg, si->src_reg,
10828 				      offsetof(struct bpf_sock_ops_kern,
10829 					       skb));
10830 		/* Reserve one insn to test skb == NULL */
10831 		jmp_on_null_skb = insn++;
10832 		insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10833 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10834 				      bpf_target_off(struct skb_shared_info,
10835 						     hwtstamps, 8,
10836 						     target_size));
10837 		*jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10838 					       insn - jmp_on_null_skb - 1);
10839 		break;
10840 	}
10841 	}
10842 	return insn - insn_buf;
10843 }
10844 
10845 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10846 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10847 						    struct bpf_insn *insn)
10848 {
10849 	int reg;
10850 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10851 			   offsetof(struct sk_skb_cb, temp_reg);
10852 
10853 	if (si->src_reg == si->dst_reg) {
10854 		/* We need an extra register, choose and save a register. */
10855 		reg = BPF_REG_9;
10856 		if (si->src_reg == reg || si->dst_reg == reg)
10857 			reg--;
10858 		if (si->src_reg == reg || si->dst_reg == reg)
10859 			reg--;
10860 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10861 	} else {
10862 		reg = si->dst_reg;
10863 	}
10864 
10865 	/* reg = skb->data */
10866 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10867 			      reg, si->src_reg,
10868 			      offsetof(struct sk_buff, data));
10869 	/* AX = skb->len */
10870 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10871 			      BPF_REG_AX, si->src_reg,
10872 			      offsetof(struct sk_buff, len));
10873 	/* reg = skb->data + skb->len */
10874 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10875 	/* AX = skb->data_len */
10876 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10877 			      BPF_REG_AX, si->src_reg,
10878 			      offsetof(struct sk_buff, data_len));
10879 
10880 	/* reg = skb->data + skb->len - skb->data_len */
10881 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10882 
10883 	if (si->src_reg == si->dst_reg) {
10884 		/* Restore the saved register */
10885 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10886 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10887 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10888 	}
10889 
10890 	return insn;
10891 }
10892 
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10893 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10894 				     const struct bpf_insn *si,
10895 				     struct bpf_insn *insn_buf,
10896 				     struct bpf_prog *prog, u32 *target_size)
10897 {
10898 	struct bpf_insn *insn = insn_buf;
10899 	int off;
10900 
10901 	switch (si->off) {
10902 	case offsetof(struct __sk_buff, data_end):
10903 		insn = bpf_convert_data_end_access(si, insn);
10904 		break;
10905 	case offsetof(struct __sk_buff, cb[0]) ...
10906 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10907 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10908 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10909 			      offsetof(struct sk_skb_cb, data)) %
10910 			     sizeof(__u64));
10911 
10912 		prog->cb_access = 1;
10913 		off  = si->off;
10914 		off -= offsetof(struct __sk_buff, cb[0]);
10915 		off += offsetof(struct sk_buff, cb);
10916 		off += offsetof(struct sk_skb_cb, data);
10917 		if (type == BPF_WRITE)
10918 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10919 		else
10920 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10921 					      si->src_reg, off);
10922 		break;
10923 
10924 
10925 	default:
10926 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10927 					      target_size);
10928 	}
10929 
10930 	return insn - insn_buf;
10931 }
10932 
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10933 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10934 				     const struct bpf_insn *si,
10935 				     struct bpf_insn *insn_buf,
10936 				     struct bpf_prog *prog, u32 *target_size)
10937 {
10938 	struct bpf_insn *insn = insn_buf;
10939 #if IS_ENABLED(CONFIG_IPV6)
10940 	int off;
10941 #endif
10942 
10943 	/* convert ctx uses the fact sg element is first in struct */
10944 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10945 
10946 	switch (si->off) {
10947 	case offsetof(struct sk_msg_md, data):
10948 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10949 				      si->dst_reg, si->src_reg,
10950 				      offsetof(struct sk_msg, data));
10951 		break;
10952 	case offsetof(struct sk_msg_md, data_end):
10953 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10954 				      si->dst_reg, si->src_reg,
10955 				      offsetof(struct sk_msg, data_end));
10956 		break;
10957 	case offsetof(struct sk_msg_md, family):
10958 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10959 
10960 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10961 					      struct sk_msg, sk),
10962 				      si->dst_reg, si->src_reg,
10963 				      offsetof(struct sk_msg, sk));
10964 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10965 				      offsetof(struct sock_common, skc_family));
10966 		break;
10967 
10968 	case offsetof(struct sk_msg_md, remote_ip4):
10969 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10970 
10971 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10972 						struct sk_msg, sk),
10973 				      si->dst_reg, si->src_reg,
10974 				      offsetof(struct sk_msg, sk));
10975 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10976 				      offsetof(struct sock_common, skc_daddr));
10977 		break;
10978 
10979 	case offsetof(struct sk_msg_md, local_ip4):
10980 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10981 					  skc_rcv_saddr) != 4);
10982 
10983 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10984 					      struct sk_msg, sk),
10985 				      si->dst_reg, si->src_reg,
10986 				      offsetof(struct sk_msg, sk));
10987 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10988 				      offsetof(struct sock_common,
10989 					       skc_rcv_saddr));
10990 		break;
10991 
10992 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10993 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10994 #if IS_ENABLED(CONFIG_IPV6)
10995 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10996 					  skc_v6_daddr.s6_addr32[0]) != 4);
10997 
10998 		off = si->off;
10999 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
11000 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11001 						struct sk_msg, sk),
11002 				      si->dst_reg, si->src_reg,
11003 				      offsetof(struct sk_msg, sk));
11004 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11005 				      offsetof(struct sock_common,
11006 					       skc_v6_daddr.s6_addr32[0]) +
11007 				      off);
11008 #else
11009 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11010 #endif
11011 		break;
11012 
11013 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
11014 	     offsetof(struct sk_msg_md, local_ip6[3]):
11015 #if IS_ENABLED(CONFIG_IPV6)
11016 		BUILD_BUG_ON(sizeof_field(struct sock_common,
11017 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
11018 
11019 		off = si->off;
11020 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
11021 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11022 						struct sk_msg, sk),
11023 				      si->dst_reg, si->src_reg,
11024 				      offsetof(struct sk_msg, sk));
11025 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11026 				      offsetof(struct sock_common,
11027 					       skc_v6_rcv_saddr.s6_addr32[0]) +
11028 				      off);
11029 #else
11030 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11031 #endif
11032 		break;
11033 
11034 	case offsetof(struct sk_msg_md, remote_port):
11035 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
11036 
11037 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11038 						struct sk_msg, sk),
11039 				      si->dst_reg, si->src_reg,
11040 				      offsetof(struct sk_msg, sk));
11041 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11042 				      offsetof(struct sock_common, skc_dport));
11043 #ifndef __BIG_ENDIAN_BITFIELD
11044 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
11045 #endif
11046 		break;
11047 
11048 	case offsetof(struct sk_msg_md, local_port):
11049 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
11050 
11051 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11052 						struct sk_msg, sk),
11053 				      si->dst_reg, si->src_reg,
11054 				      offsetof(struct sk_msg, sk));
11055 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11056 				      offsetof(struct sock_common, skc_num));
11057 		break;
11058 
11059 	case offsetof(struct sk_msg_md, size):
11060 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
11061 				      si->dst_reg, si->src_reg,
11062 				      offsetof(struct sk_msg_sg, size));
11063 		break;
11064 
11065 	case offsetof(struct sk_msg_md, sk):
11066 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
11067 				      si->dst_reg, si->src_reg,
11068 				      offsetof(struct sk_msg, sk));
11069 		break;
11070 	}
11071 
11072 	return insn - insn_buf;
11073 }
11074 
11075 const struct bpf_verifier_ops sk_filter_verifier_ops = {
11076 	.get_func_proto		= sk_filter_func_proto,
11077 	.is_valid_access	= sk_filter_is_valid_access,
11078 	.convert_ctx_access	= bpf_convert_ctx_access,
11079 	.gen_ld_abs		= bpf_gen_ld_abs,
11080 };
11081 
11082 const struct bpf_prog_ops sk_filter_prog_ops = {
11083 	.test_run		= bpf_prog_test_run_skb,
11084 };
11085 
11086 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
11087 	.get_func_proto		= tc_cls_act_func_proto,
11088 	.is_valid_access	= tc_cls_act_is_valid_access,
11089 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
11090 	.gen_prologue		= tc_cls_act_prologue,
11091 	.gen_ld_abs		= bpf_gen_ld_abs,
11092 	.btf_struct_access	= tc_cls_act_btf_struct_access,
11093 };
11094 
11095 const struct bpf_prog_ops tc_cls_act_prog_ops = {
11096 	.test_run		= bpf_prog_test_run_skb,
11097 };
11098 
11099 const struct bpf_verifier_ops xdp_verifier_ops = {
11100 	.get_func_proto		= xdp_func_proto,
11101 	.is_valid_access	= xdp_is_valid_access,
11102 	.convert_ctx_access	= xdp_convert_ctx_access,
11103 	.gen_prologue		= bpf_noop_prologue,
11104 	.btf_struct_access	= xdp_btf_struct_access,
11105 };
11106 
11107 const struct bpf_prog_ops xdp_prog_ops = {
11108 	.test_run		= bpf_prog_test_run_xdp,
11109 };
11110 
11111 const struct bpf_verifier_ops cg_skb_verifier_ops = {
11112 	.get_func_proto		= cg_skb_func_proto,
11113 	.is_valid_access	= cg_skb_is_valid_access,
11114 	.convert_ctx_access	= bpf_convert_ctx_access,
11115 };
11116 
11117 const struct bpf_prog_ops cg_skb_prog_ops = {
11118 	.test_run		= bpf_prog_test_run_skb,
11119 };
11120 
11121 const struct bpf_verifier_ops lwt_in_verifier_ops = {
11122 	.get_func_proto		= lwt_in_func_proto,
11123 	.is_valid_access	= lwt_is_valid_access,
11124 	.convert_ctx_access	= bpf_convert_ctx_access,
11125 };
11126 
11127 const struct bpf_prog_ops lwt_in_prog_ops = {
11128 	.test_run		= bpf_prog_test_run_skb,
11129 };
11130 
11131 const struct bpf_verifier_ops lwt_out_verifier_ops = {
11132 	.get_func_proto		= lwt_out_func_proto,
11133 	.is_valid_access	= lwt_is_valid_access,
11134 	.convert_ctx_access	= bpf_convert_ctx_access,
11135 };
11136 
11137 const struct bpf_prog_ops lwt_out_prog_ops = {
11138 	.test_run		= bpf_prog_test_run_skb,
11139 };
11140 
11141 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
11142 	.get_func_proto		= lwt_xmit_func_proto,
11143 	.is_valid_access	= lwt_is_valid_access,
11144 	.convert_ctx_access	= bpf_convert_ctx_access,
11145 	.gen_prologue		= tc_cls_act_prologue,
11146 };
11147 
11148 const struct bpf_prog_ops lwt_xmit_prog_ops = {
11149 	.test_run		= bpf_prog_test_run_skb,
11150 };
11151 
11152 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11153 	.get_func_proto		= lwt_seg6local_func_proto,
11154 	.is_valid_access	= lwt_is_valid_access,
11155 	.convert_ctx_access	= bpf_convert_ctx_access,
11156 };
11157 
11158 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11159 };
11160 
11161 const struct bpf_verifier_ops cg_sock_verifier_ops = {
11162 	.get_func_proto		= sock_filter_func_proto,
11163 	.is_valid_access	= sock_filter_is_valid_access,
11164 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
11165 };
11166 
11167 const struct bpf_prog_ops cg_sock_prog_ops = {
11168 };
11169 
11170 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11171 	.get_func_proto		= sock_addr_func_proto,
11172 	.is_valid_access	= sock_addr_is_valid_access,
11173 	.convert_ctx_access	= sock_addr_convert_ctx_access,
11174 };
11175 
11176 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11177 };
11178 
11179 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11180 	.get_func_proto		= sock_ops_func_proto,
11181 	.is_valid_access	= sock_ops_is_valid_access,
11182 	.convert_ctx_access	= sock_ops_convert_ctx_access,
11183 };
11184 
11185 const struct bpf_prog_ops sock_ops_prog_ops = {
11186 };
11187 
11188 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11189 	.get_func_proto		= sk_skb_func_proto,
11190 	.is_valid_access	= sk_skb_is_valid_access,
11191 	.convert_ctx_access	= sk_skb_convert_ctx_access,
11192 	.gen_prologue		= sk_skb_prologue,
11193 };
11194 
11195 const struct bpf_prog_ops sk_skb_prog_ops = {
11196 };
11197 
11198 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11199 	.get_func_proto		= sk_msg_func_proto,
11200 	.is_valid_access	= sk_msg_is_valid_access,
11201 	.convert_ctx_access	= sk_msg_convert_ctx_access,
11202 	.gen_prologue		= bpf_noop_prologue,
11203 };
11204 
11205 const struct bpf_prog_ops sk_msg_prog_ops = {
11206 };
11207 
11208 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11209 	.get_func_proto		= flow_dissector_func_proto,
11210 	.is_valid_access	= flow_dissector_is_valid_access,
11211 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
11212 };
11213 
11214 const struct bpf_prog_ops flow_dissector_prog_ops = {
11215 	.test_run		= bpf_prog_test_run_flow_dissector,
11216 };
11217 
sk_detach_filter(struct sock * sk)11218 int sk_detach_filter(struct sock *sk)
11219 {
11220 	int ret = -ENOENT;
11221 	struct sk_filter *filter;
11222 
11223 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
11224 		return -EPERM;
11225 
11226 	filter = rcu_dereference_protected(sk->sk_filter,
11227 					   lockdep_sock_is_held(sk));
11228 	if (filter) {
11229 		RCU_INIT_POINTER(sk->sk_filter, NULL);
11230 		sk_filter_uncharge(sk, filter);
11231 		ret = 0;
11232 	}
11233 
11234 	return ret;
11235 }
11236 EXPORT_SYMBOL_GPL(sk_detach_filter);
11237 
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)11238 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11239 {
11240 	struct sock_fprog_kern *fprog;
11241 	struct sk_filter *filter;
11242 	int ret = 0;
11243 
11244 	sockopt_lock_sock(sk);
11245 	filter = rcu_dereference_protected(sk->sk_filter,
11246 					   lockdep_sock_is_held(sk));
11247 	if (!filter)
11248 		goto out;
11249 
11250 	/* We're copying the filter that has been originally attached,
11251 	 * so no conversion/decode needed anymore. eBPF programs that
11252 	 * have no original program cannot be dumped through this.
11253 	 */
11254 	ret = -EACCES;
11255 	fprog = filter->prog->orig_prog;
11256 	if (!fprog)
11257 		goto out;
11258 
11259 	ret = fprog->len;
11260 	if (!len)
11261 		/* User space only enquires number of filter blocks. */
11262 		goto out;
11263 
11264 	ret = -EINVAL;
11265 	if (len < fprog->len)
11266 		goto out;
11267 
11268 	ret = -EFAULT;
11269 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11270 		goto out;
11271 
11272 	/* Instead of bytes, the API requests to return the number
11273 	 * of filter blocks.
11274 	 */
11275 	ret = fprog->len;
11276 out:
11277 	sockopt_release_sock(sk);
11278 	return ret;
11279 }
11280 
11281 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11282 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11283 				    struct sock_reuseport *reuse,
11284 				    struct sock *sk, struct sk_buff *skb,
11285 				    struct sock *migrating_sk,
11286 				    u32 hash)
11287 {
11288 	reuse_kern->skb = skb;
11289 	reuse_kern->sk = sk;
11290 	reuse_kern->selected_sk = NULL;
11291 	reuse_kern->migrating_sk = migrating_sk;
11292 	reuse_kern->data_end = skb->data + skb_headlen(skb);
11293 	reuse_kern->hash = hash;
11294 	reuse_kern->reuseport_id = reuse->reuseport_id;
11295 	reuse_kern->bind_inany = reuse->bind_inany;
11296 }
11297 
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11298 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11299 				  struct bpf_prog *prog, struct sk_buff *skb,
11300 				  struct sock *migrating_sk,
11301 				  u32 hash)
11302 {
11303 	struct sk_reuseport_kern reuse_kern;
11304 	enum sk_action action;
11305 
11306 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11307 	action = bpf_prog_run(prog, &reuse_kern);
11308 
11309 	if (action == SK_PASS)
11310 		return reuse_kern.selected_sk;
11311 	else
11312 		return ERR_PTR(-ECONNREFUSED);
11313 }
11314 
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)11315 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11316 	   struct bpf_map *, map, void *, key, u32, flags)
11317 {
11318 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11319 	struct sock_reuseport *reuse;
11320 	struct sock *selected_sk;
11321 	int err;
11322 
11323 	selected_sk = map->ops->map_lookup_elem(map, key);
11324 	if (!selected_sk)
11325 		return -ENOENT;
11326 
11327 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11328 	if (!reuse) {
11329 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
11330 		 * The only (!reuse) case here is - the sk has already been
11331 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
11332 		 *
11333 		 * Other maps (e.g. sock_map) do not provide this guarantee and
11334 		 * the sk may never be in the reuseport group to begin with.
11335 		 */
11336 		err = is_sockarray ? -ENOENT : -EINVAL;
11337 		goto error;
11338 	}
11339 
11340 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11341 		struct sock *sk = reuse_kern->sk;
11342 
11343 		if (sk->sk_protocol != selected_sk->sk_protocol) {
11344 			err = -EPROTOTYPE;
11345 		} else if (sk->sk_family != selected_sk->sk_family) {
11346 			err = -EAFNOSUPPORT;
11347 		} else {
11348 			/* Catch all. Likely bound to a different sockaddr. */
11349 			err = -EBADFD;
11350 		}
11351 		goto error;
11352 	}
11353 
11354 	reuse_kern->selected_sk = selected_sk;
11355 
11356 	return 0;
11357 error:
11358 	/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11359 	if (sk_is_refcounted(selected_sk))
11360 		sock_put(selected_sk);
11361 
11362 	return err;
11363 }
11364 
11365 static const struct bpf_func_proto sk_select_reuseport_proto = {
11366 	.func           = sk_select_reuseport,
11367 	.gpl_only       = false,
11368 	.ret_type       = RET_INTEGER,
11369 	.arg1_type	= ARG_PTR_TO_CTX,
11370 	.arg2_type      = ARG_CONST_MAP_PTR,
11371 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
11372 	.arg4_type	= ARG_ANYTHING,
11373 };
11374 
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)11375 BPF_CALL_4(sk_reuseport_load_bytes,
11376 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11377 	   void *, to, u32, len)
11378 {
11379 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11380 }
11381 
11382 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11383 	.func		= sk_reuseport_load_bytes,
11384 	.gpl_only	= false,
11385 	.ret_type	= RET_INTEGER,
11386 	.arg1_type	= ARG_PTR_TO_CTX,
11387 	.arg2_type	= ARG_ANYTHING,
11388 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11389 	.arg4_type	= ARG_CONST_SIZE,
11390 };
11391 
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)11392 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11393 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11394 	   void *, to, u32, len, u32, start_header)
11395 {
11396 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11397 					       len, start_header);
11398 }
11399 
11400 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11401 	.func		= sk_reuseport_load_bytes_relative,
11402 	.gpl_only	= false,
11403 	.ret_type	= RET_INTEGER,
11404 	.arg1_type	= ARG_PTR_TO_CTX,
11405 	.arg2_type	= ARG_ANYTHING,
11406 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11407 	.arg4_type	= ARG_CONST_SIZE,
11408 	.arg5_type	= ARG_ANYTHING,
11409 };
11410 
11411 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11412 sk_reuseport_func_proto(enum bpf_func_id func_id,
11413 			const struct bpf_prog *prog)
11414 {
11415 	switch (func_id) {
11416 	case BPF_FUNC_sk_select_reuseport:
11417 		return &sk_select_reuseport_proto;
11418 	case BPF_FUNC_skb_load_bytes:
11419 		return &sk_reuseport_load_bytes_proto;
11420 	case BPF_FUNC_skb_load_bytes_relative:
11421 		return &sk_reuseport_load_bytes_relative_proto;
11422 	case BPF_FUNC_get_socket_cookie:
11423 		return &bpf_get_socket_ptr_cookie_proto;
11424 	case BPF_FUNC_ktime_get_coarse_ns:
11425 		return &bpf_ktime_get_coarse_ns_proto;
11426 	default:
11427 		return bpf_base_func_proto(func_id, prog);
11428 	}
11429 }
11430 
11431 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11432 sk_reuseport_is_valid_access(int off, int size,
11433 			     enum bpf_access_type type,
11434 			     const struct bpf_prog *prog,
11435 			     struct bpf_insn_access_aux *info)
11436 {
11437 	const u32 size_default = sizeof(__u32);
11438 
11439 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11440 	    off % size || type != BPF_READ)
11441 		return false;
11442 
11443 	switch (off) {
11444 	case offsetof(struct sk_reuseport_md, data):
11445 		info->reg_type = PTR_TO_PACKET;
11446 		return size == sizeof(__u64);
11447 
11448 	case offsetof(struct sk_reuseport_md, data_end):
11449 		info->reg_type = PTR_TO_PACKET_END;
11450 		return size == sizeof(__u64);
11451 
11452 	case offsetof(struct sk_reuseport_md, hash):
11453 		return size == size_default;
11454 
11455 	case offsetof(struct sk_reuseport_md, sk):
11456 		info->reg_type = PTR_TO_SOCKET;
11457 		return size == sizeof(__u64);
11458 
11459 	case offsetof(struct sk_reuseport_md, migrating_sk):
11460 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11461 		return size == sizeof(__u64);
11462 
11463 	/* Fields that allow narrowing */
11464 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11465 		if (size < sizeof_field(struct sk_buff, protocol))
11466 			return false;
11467 		fallthrough;
11468 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11469 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11470 	case bpf_ctx_range(struct sk_reuseport_md, len):
11471 		bpf_ctx_record_field_size(info, size_default);
11472 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11473 
11474 	default:
11475 		return false;
11476 	}
11477 }
11478 
11479 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11480 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11481 			      si->dst_reg, si->src_reg,			\
11482 			      bpf_target_off(struct sk_reuseport_kern, F, \
11483 					     sizeof_field(struct sk_reuseport_kern, F), \
11484 					     target_size));		\
11485 	})
11486 
11487 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11488 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11489 				    struct sk_buff,			\
11490 				    skb,				\
11491 				    SKB_FIELD)
11492 
11493 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11494 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11495 				    struct sock,			\
11496 				    sk,					\
11497 				    SK_FIELD)
11498 
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11499 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11500 					   const struct bpf_insn *si,
11501 					   struct bpf_insn *insn_buf,
11502 					   struct bpf_prog *prog,
11503 					   u32 *target_size)
11504 {
11505 	struct bpf_insn *insn = insn_buf;
11506 
11507 	switch (si->off) {
11508 	case offsetof(struct sk_reuseport_md, data):
11509 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11510 		break;
11511 
11512 	case offsetof(struct sk_reuseport_md, len):
11513 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11514 		break;
11515 
11516 	case offsetof(struct sk_reuseport_md, eth_protocol):
11517 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11518 		break;
11519 
11520 	case offsetof(struct sk_reuseport_md, ip_protocol):
11521 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11522 		break;
11523 
11524 	case offsetof(struct sk_reuseport_md, data_end):
11525 		SK_REUSEPORT_LOAD_FIELD(data_end);
11526 		break;
11527 
11528 	case offsetof(struct sk_reuseport_md, hash):
11529 		SK_REUSEPORT_LOAD_FIELD(hash);
11530 		break;
11531 
11532 	case offsetof(struct sk_reuseport_md, bind_inany):
11533 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11534 		break;
11535 
11536 	case offsetof(struct sk_reuseport_md, sk):
11537 		SK_REUSEPORT_LOAD_FIELD(sk);
11538 		break;
11539 
11540 	case offsetof(struct sk_reuseport_md, migrating_sk):
11541 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11542 		break;
11543 	}
11544 
11545 	return insn - insn_buf;
11546 }
11547 
11548 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11549 	.get_func_proto		= sk_reuseport_func_proto,
11550 	.is_valid_access	= sk_reuseport_is_valid_access,
11551 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11552 };
11553 
11554 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11555 };
11556 
11557 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11558 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11559 
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11560 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11561 	   struct sock *, sk, u64, flags)
11562 {
11563 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11564 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11565 		return -EINVAL;
11566 	if (unlikely(sk && sk_is_refcounted(sk)))
11567 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11568 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11569 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11570 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11571 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11572 
11573 	/* Check if socket is suitable for packet L3/L4 protocol */
11574 	if (sk && sk->sk_protocol != ctx->protocol)
11575 		return -EPROTOTYPE;
11576 	if (sk && sk->sk_family != ctx->family &&
11577 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11578 		return -EAFNOSUPPORT;
11579 
11580 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11581 		return -EEXIST;
11582 
11583 	/* Select socket as lookup result */
11584 	ctx->selected_sk = sk;
11585 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11586 	return 0;
11587 }
11588 
11589 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11590 	.func		= bpf_sk_lookup_assign,
11591 	.gpl_only	= false,
11592 	.ret_type	= RET_INTEGER,
11593 	.arg1_type	= ARG_PTR_TO_CTX,
11594 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11595 	.arg3_type	= ARG_ANYTHING,
11596 };
11597 
11598 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11599 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11600 {
11601 	switch (func_id) {
11602 	case BPF_FUNC_perf_event_output:
11603 		return &bpf_event_output_data_proto;
11604 	case BPF_FUNC_sk_assign:
11605 		return &bpf_sk_lookup_assign_proto;
11606 	case BPF_FUNC_sk_release:
11607 		return &bpf_sk_release_proto;
11608 	default:
11609 		return bpf_sk_base_func_proto(func_id, prog);
11610 	}
11611 }
11612 
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11613 static bool sk_lookup_is_valid_access(int off, int size,
11614 				      enum bpf_access_type type,
11615 				      const struct bpf_prog *prog,
11616 				      struct bpf_insn_access_aux *info)
11617 {
11618 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11619 		return false;
11620 	if (off % size != 0)
11621 		return false;
11622 	if (type != BPF_READ)
11623 		return false;
11624 
11625 	switch (off) {
11626 	case offsetof(struct bpf_sk_lookup, sk):
11627 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11628 		return size == sizeof(__u64);
11629 
11630 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11631 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11632 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11633 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11634 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11635 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11636 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11637 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11638 		bpf_ctx_record_field_size(info, sizeof(__u32));
11639 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11640 
11641 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11642 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11643 		if (size == sizeof(__u32))
11644 			return true;
11645 		bpf_ctx_record_field_size(info, sizeof(__be16));
11646 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11647 
11648 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11649 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11650 		/* Allow access to zero padding for backward compatibility */
11651 		bpf_ctx_record_field_size(info, sizeof(__u16));
11652 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11653 
11654 	default:
11655 		return false;
11656 	}
11657 }
11658 
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11659 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11660 					const struct bpf_insn *si,
11661 					struct bpf_insn *insn_buf,
11662 					struct bpf_prog *prog,
11663 					u32 *target_size)
11664 {
11665 	struct bpf_insn *insn = insn_buf;
11666 
11667 	switch (si->off) {
11668 	case offsetof(struct bpf_sk_lookup, sk):
11669 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11670 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11671 		break;
11672 
11673 	case offsetof(struct bpf_sk_lookup, family):
11674 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11675 				      bpf_target_off(struct bpf_sk_lookup_kern,
11676 						     family, 2, target_size));
11677 		break;
11678 
11679 	case offsetof(struct bpf_sk_lookup, protocol):
11680 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11681 				      bpf_target_off(struct bpf_sk_lookup_kern,
11682 						     protocol, 2, target_size));
11683 		break;
11684 
11685 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11686 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11687 				      bpf_target_off(struct bpf_sk_lookup_kern,
11688 						     v4.saddr, 4, target_size));
11689 		break;
11690 
11691 	case offsetof(struct bpf_sk_lookup, local_ip4):
11692 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11693 				      bpf_target_off(struct bpf_sk_lookup_kern,
11694 						     v4.daddr, 4, target_size));
11695 		break;
11696 
11697 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11698 				remote_ip6[0], remote_ip6[3]): {
11699 #if IS_ENABLED(CONFIG_IPV6)
11700 		int off = si->off;
11701 
11702 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11703 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11704 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11705 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11706 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11707 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11708 #else
11709 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11710 #endif
11711 		break;
11712 	}
11713 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11714 				local_ip6[0], local_ip6[3]): {
11715 #if IS_ENABLED(CONFIG_IPV6)
11716 		int off = si->off;
11717 
11718 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11719 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11720 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11721 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11722 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11723 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11724 #else
11725 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11726 #endif
11727 		break;
11728 	}
11729 	case offsetof(struct bpf_sk_lookup, remote_port):
11730 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11731 				      bpf_target_off(struct bpf_sk_lookup_kern,
11732 						     sport, 2, target_size));
11733 		break;
11734 
11735 	case offsetofend(struct bpf_sk_lookup, remote_port):
11736 		*target_size = 2;
11737 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11738 		break;
11739 
11740 	case offsetof(struct bpf_sk_lookup, local_port):
11741 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11742 				      bpf_target_off(struct bpf_sk_lookup_kern,
11743 						     dport, 2, target_size));
11744 		break;
11745 
11746 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11747 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11748 				      bpf_target_off(struct bpf_sk_lookup_kern,
11749 						     ingress_ifindex, 4, target_size));
11750 		break;
11751 	}
11752 
11753 	return insn - insn_buf;
11754 }
11755 
11756 const struct bpf_prog_ops sk_lookup_prog_ops = {
11757 	.test_run = bpf_prog_test_run_sk_lookup,
11758 };
11759 
11760 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11761 	.get_func_proto		= sk_lookup_func_proto,
11762 	.is_valid_access	= sk_lookup_is_valid_access,
11763 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11764 };
11765 
11766 #endif /* CONFIG_INET */
11767 
DEFINE_BPF_DISPATCHER(xdp)11768 DEFINE_BPF_DISPATCHER(xdp)
11769 
11770 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11771 {
11772 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11773 }
11774 
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11775 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11776 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11777 BTF_SOCK_TYPE_xxx
11778 #undef BTF_SOCK_TYPE
11779 
11780 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11781 {
11782 	/* tcp6_sock type is not generated in dwarf and hence btf,
11783 	 * trigger an explicit type generation here.
11784 	 */
11785 	BTF_TYPE_EMIT(struct tcp6_sock);
11786 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11787 	    sk->sk_family == AF_INET6)
11788 		return (unsigned long)sk;
11789 
11790 	return (unsigned long)NULL;
11791 }
11792 
11793 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11794 	.func			= bpf_skc_to_tcp6_sock,
11795 	.gpl_only		= false,
11796 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11797 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11798 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11799 };
11800 
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11801 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11802 {
11803 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11804 		return (unsigned long)sk;
11805 
11806 	return (unsigned long)NULL;
11807 }
11808 
11809 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11810 	.func			= bpf_skc_to_tcp_sock,
11811 	.gpl_only		= false,
11812 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11813 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11814 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11815 };
11816 
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11817 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11818 {
11819 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11820 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11821 	 */
11822 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11823 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11824 
11825 #ifdef CONFIG_INET
11826 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11827 		return (unsigned long)sk;
11828 #endif
11829 
11830 #if IS_BUILTIN(CONFIG_IPV6)
11831 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11832 		return (unsigned long)sk;
11833 #endif
11834 
11835 	return (unsigned long)NULL;
11836 }
11837 
11838 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11839 	.func			= bpf_skc_to_tcp_timewait_sock,
11840 	.gpl_only		= false,
11841 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11842 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11843 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11844 };
11845 
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11846 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11847 {
11848 #ifdef CONFIG_INET
11849 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11850 		return (unsigned long)sk;
11851 #endif
11852 
11853 #if IS_BUILTIN(CONFIG_IPV6)
11854 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11855 		return (unsigned long)sk;
11856 #endif
11857 
11858 	return (unsigned long)NULL;
11859 }
11860 
11861 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11862 	.func			= bpf_skc_to_tcp_request_sock,
11863 	.gpl_only		= false,
11864 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11865 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11866 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11867 };
11868 
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11869 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11870 {
11871 	/* udp6_sock type is not generated in dwarf and hence btf,
11872 	 * trigger an explicit type generation here.
11873 	 */
11874 	BTF_TYPE_EMIT(struct udp6_sock);
11875 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11876 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11877 		return (unsigned long)sk;
11878 
11879 	return (unsigned long)NULL;
11880 }
11881 
11882 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11883 	.func			= bpf_skc_to_udp6_sock,
11884 	.gpl_only		= false,
11885 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11886 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11887 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11888 };
11889 
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)11890 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11891 {
11892 	/* unix_sock type is not generated in dwarf and hence btf,
11893 	 * trigger an explicit type generation here.
11894 	 */
11895 	BTF_TYPE_EMIT(struct unix_sock);
11896 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11897 		return (unsigned long)sk;
11898 
11899 	return (unsigned long)NULL;
11900 }
11901 
11902 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11903 	.func			= bpf_skc_to_unix_sock,
11904 	.gpl_only		= false,
11905 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11906 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11907 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11908 };
11909 
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)11910 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11911 {
11912 	BTF_TYPE_EMIT(struct mptcp_sock);
11913 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11914 }
11915 
11916 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11917 	.func		= bpf_skc_to_mptcp_sock,
11918 	.gpl_only	= false,
11919 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11920 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11921 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11922 };
11923 
BPF_CALL_1(bpf_sock_from_file,struct file *,file)11924 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11925 {
11926 	return (unsigned long)sock_from_file(file);
11927 }
11928 
11929 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11930 BTF_ID(struct, socket)
11931 BTF_ID(struct, file)
11932 
11933 const struct bpf_func_proto bpf_sock_from_file_proto = {
11934 	.func		= bpf_sock_from_file,
11935 	.gpl_only	= false,
11936 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11937 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11938 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11939 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11940 };
11941 
11942 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11943 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11944 {
11945 	const struct bpf_func_proto *func;
11946 
11947 	switch (func_id) {
11948 	case BPF_FUNC_skc_to_tcp6_sock:
11949 		func = &bpf_skc_to_tcp6_sock_proto;
11950 		break;
11951 	case BPF_FUNC_skc_to_tcp_sock:
11952 		func = &bpf_skc_to_tcp_sock_proto;
11953 		break;
11954 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11955 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11956 		break;
11957 	case BPF_FUNC_skc_to_tcp_request_sock:
11958 		func = &bpf_skc_to_tcp_request_sock_proto;
11959 		break;
11960 	case BPF_FUNC_skc_to_udp6_sock:
11961 		func = &bpf_skc_to_udp6_sock_proto;
11962 		break;
11963 	case BPF_FUNC_skc_to_unix_sock:
11964 		func = &bpf_skc_to_unix_sock_proto;
11965 		break;
11966 	case BPF_FUNC_skc_to_mptcp_sock:
11967 		func = &bpf_skc_to_mptcp_sock_proto;
11968 		break;
11969 	case BPF_FUNC_ktime_get_coarse_ns:
11970 		return &bpf_ktime_get_coarse_ns_proto;
11971 	default:
11972 		return bpf_base_func_proto(func_id, prog);
11973 	}
11974 
11975 	if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
11976 		return NULL;
11977 
11978 	return func;
11979 }
11980 
11981 __bpf_kfunc_start_defs();
bpf_dynptr_from_skb(struct __sk_buff * s,u64 flags,struct bpf_dynptr * ptr__uninit)11982 __bpf_kfunc int bpf_dynptr_from_skb(struct __sk_buff *s, u64 flags,
11983 				    struct bpf_dynptr *ptr__uninit)
11984 {
11985 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
11986 	struct sk_buff *skb = (struct sk_buff *)s;
11987 
11988 	if (flags) {
11989 		bpf_dynptr_set_null(ptr);
11990 		return -EINVAL;
11991 	}
11992 
11993 	bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
11994 
11995 	return 0;
11996 }
11997 
bpf_dynptr_from_xdp(struct xdp_md * x,u64 flags,struct bpf_dynptr * ptr__uninit)11998 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_md *x, u64 flags,
11999 				    struct bpf_dynptr *ptr__uninit)
12000 {
12001 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12002 	struct xdp_buff *xdp = (struct xdp_buff *)x;
12003 
12004 	if (flags) {
12005 		bpf_dynptr_set_null(ptr);
12006 		return -EINVAL;
12007 	}
12008 
12009 	bpf_dynptr_init(ptr, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
12010 
12011 	return 0;
12012 }
12013 
bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern * sa_kern,const u8 * sun_path,u32 sun_path__sz)12014 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
12015 					   const u8 *sun_path, u32 sun_path__sz)
12016 {
12017 	struct sockaddr_un *un;
12018 
12019 	if (sa_kern->sk->sk_family != AF_UNIX)
12020 		return -EINVAL;
12021 
12022 	/* We do not allow changing the address to unnamed or larger than the
12023 	 * maximum allowed address size for a unix sockaddr.
12024 	 */
12025 	if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
12026 		return -EINVAL;
12027 
12028 	un = (struct sockaddr_un *)sa_kern->uaddr;
12029 	memcpy(un->sun_path, sun_path, sun_path__sz);
12030 	sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
12031 
12032 	return 0;
12033 }
12034 
bpf_sk_assign_tcp_reqsk(struct __sk_buff * s,struct sock * sk,struct bpf_tcp_req_attrs * attrs,int attrs__sz)12035 __bpf_kfunc int bpf_sk_assign_tcp_reqsk(struct __sk_buff *s, struct sock *sk,
12036 					struct bpf_tcp_req_attrs *attrs, int attrs__sz)
12037 {
12038 #if IS_ENABLED(CONFIG_SYN_COOKIES)
12039 	struct sk_buff *skb = (struct sk_buff *)s;
12040 	const struct request_sock_ops *ops;
12041 	struct inet_request_sock *ireq;
12042 	struct tcp_request_sock *treq;
12043 	struct request_sock *req;
12044 	struct net *net;
12045 	__u16 min_mss;
12046 	u32 tsoff = 0;
12047 
12048 	if (attrs__sz != sizeof(*attrs) ||
12049 	    attrs->reserved[0] || attrs->reserved[1] || attrs->reserved[2])
12050 		return -EINVAL;
12051 
12052 	if (!skb_at_tc_ingress(skb))
12053 		return -EINVAL;
12054 
12055 	net = dev_net(skb->dev);
12056 	if (net != sock_net(sk))
12057 		return -ENETUNREACH;
12058 
12059 	switch (skb->protocol) {
12060 	case htons(ETH_P_IP):
12061 		ops = &tcp_request_sock_ops;
12062 		min_mss = 536;
12063 		break;
12064 #if IS_BUILTIN(CONFIG_IPV6)
12065 	case htons(ETH_P_IPV6):
12066 		ops = &tcp6_request_sock_ops;
12067 		min_mss = IPV6_MIN_MTU - 60;
12068 		break;
12069 #endif
12070 	default:
12071 		return -EINVAL;
12072 	}
12073 
12074 	if (sk->sk_type != SOCK_STREAM || sk->sk_state != TCP_LISTEN ||
12075 	    sk_is_mptcp(sk))
12076 		return -EINVAL;
12077 
12078 	if (attrs->mss < min_mss)
12079 		return -EINVAL;
12080 
12081 	if (attrs->wscale_ok) {
12082 		if (!READ_ONCE(net->ipv4.sysctl_tcp_window_scaling))
12083 			return -EINVAL;
12084 
12085 		if (attrs->snd_wscale > TCP_MAX_WSCALE ||
12086 		    attrs->rcv_wscale > TCP_MAX_WSCALE)
12087 			return -EINVAL;
12088 	}
12089 
12090 	if (attrs->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
12091 		return -EINVAL;
12092 
12093 	if (attrs->tstamp_ok) {
12094 		if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
12095 			return -EINVAL;
12096 
12097 		tsoff = attrs->rcv_tsecr - tcp_ns_to_ts(attrs->usec_ts_ok, tcp_clock_ns());
12098 	}
12099 
12100 	req = inet_reqsk_alloc(ops, sk, false);
12101 	if (!req)
12102 		return -ENOMEM;
12103 
12104 	ireq = inet_rsk(req);
12105 	treq = tcp_rsk(req);
12106 
12107 	req->rsk_listener = sk;
12108 	req->syncookie = 1;
12109 	req->mss = attrs->mss;
12110 	req->ts_recent = attrs->rcv_tsval;
12111 
12112 	ireq->snd_wscale = attrs->snd_wscale;
12113 	ireq->rcv_wscale = attrs->rcv_wscale;
12114 	ireq->tstamp_ok	= !!attrs->tstamp_ok;
12115 	ireq->sack_ok = !!attrs->sack_ok;
12116 	ireq->wscale_ok = !!attrs->wscale_ok;
12117 	ireq->ecn_ok = !!attrs->ecn_ok;
12118 
12119 	treq->req_usec_ts = !!attrs->usec_ts_ok;
12120 	treq->ts_off = tsoff;
12121 
12122 	skb_orphan(skb);
12123 	skb->sk = req_to_sk(req);
12124 	skb->destructor = sock_pfree;
12125 
12126 	return 0;
12127 #else
12128 	return -EOPNOTSUPP;
12129 #endif
12130 }
12131 
bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern * skops,u64 flags)12132 __bpf_kfunc int bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern *skops,
12133 					      u64 flags)
12134 {
12135 	struct sk_buff *skb;
12136 
12137 	if (skops->op != BPF_SOCK_OPS_TSTAMP_SENDMSG_CB)
12138 		return -EOPNOTSUPP;
12139 
12140 	if (flags)
12141 		return -EINVAL;
12142 
12143 	skb = skops->skb;
12144 	skb_shinfo(skb)->tx_flags |= SKBTX_BPF;
12145 	TCP_SKB_CB(skb)->txstamp_ack |= TSTAMP_ACK_BPF;
12146 	skb_shinfo(skb)->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
12147 
12148 	return 0;
12149 }
12150 
12151 __bpf_kfunc_end_defs();
12152 
bpf_dynptr_from_skb_rdonly(struct __sk_buff * skb,u64 flags,struct bpf_dynptr * ptr__uninit)12153 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
12154 			       struct bpf_dynptr *ptr__uninit)
12155 {
12156 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12157 	int err;
12158 
12159 	err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
12160 	if (err)
12161 		return err;
12162 
12163 	bpf_dynptr_set_rdonly(ptr);
12164 
12165 	return 0;
12166 }
12167 
12168 BTF_KFUNCS_START(bpf_kfunc_check_set_skb)
12169 BTF_ID_FLAGS(func, bpf_dynptr_from_skb, KF_TRUSTED_ARGS)
12170 BTF_KFUNCS_END(bpf_kfunc_check_set_skb)
12171 
12172 BTF_KFUNCS_START(bpf_kfunc_check_set_xdp)
12173 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
12174 BTF_KFUNCS_END(bpf_kfunc_check_set_xdp)
12175 
12176 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_addr)
12177 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
12178 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_addr)
12179 
12180 BTF_KFUNCS_START(bpf_kfunc_check_set_tcp_reqsk)
12181 BTF_ID_FLAGS(func, bpf_sk_assign_tcp_reqsk, KF_TRUSTED_ARGS)
12182 BTF_KFUNCS_END(bpf_kfunc_check_set_tcp_reqsk)
12183 
12184 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_ops)
12185 BTF_ID_FLAGS(func, bpf_sock_ops_enable_tx_tstamp, KF_TRUSTED_ARGS)
12186 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_ops)
12187 
12188 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
12189 	.owner = THIS_MODULE,
12190 	.set = &bpf_kfunc_check_set_skb,
12191 };
12192 
12193 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
12194 	.owner = THIS_MODULE,
12195 	.set = &bpf_kfunc_check_set_xdp,
12196 };
12197 
12198 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
12199 	.owner = THIS_MODULE,
12200 	.set = &bpf_kfunc_check_set_sock_addr,
12201 };
12202 
12203 static const struct btf_kfunc_id_set bpf_kfunc_set_tcp_reqsk = {
12204 	.owner = THIS_MODULE,
12205 	.set = &bpf_kfunc_check_set_tcp_reqsk,
12206 };
12207 
12208 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_ops = {
12209 	.owner = THIS_MODULE,
12210 	.set = &bpf_kfunc_check_set_sock_ops,
12211 };
12212 
bpf_kfunc_init(void)12213 static int __init bpf_kfunc_init(void)
12214 {
12215 	int ret;
12216 
12217 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
12218 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
12219 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
12220 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
12221 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
12222 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
12223 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
12224 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
12225 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
12226 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
12227 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_kfunc_set_skb);
12228 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
12229 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
12230 					       &bpf_kfunc_set_sock_addr);
12231 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_tcp_reqsk);
12232 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCK_OPS, &bpf_kfunc_set_sock_ops);
12233 }
12234 late_initcall(bpf_kfunc_init);
12235 
12236 __bpf_kfunc_start_defs();
12237 
12238 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
12239  *
12240  * The function expects a non-NULL pointer to a socket, and invokes the
12241  * protocol specific socket destroy handlers.
12242  *
12243  * The helper can only be called from BPF contexts that have acquired the socket
12244  * locks.
12245  *
12246  * Parameters:
12247  * @sock: Pointer to socket to be destroyed
12248  *
12249  * Return:
12250  * On error, may return EPROTONOSUPPORT, EINVAL.
12251  * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
12252  * 0 otherwise
12253  */
bpf_sock_destroy(struct sock_common * sock)12254 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
12255 {
12256 	struct sock *sk = (struct sock *)sock;
12257 
12258 	/* The locking semantics that allow for synchronous execution of the
12259 	 * destroy handlers are only supported for TCP and UDP.
12260 	 * Supporting protocols will need to acquire sock lock in the BPF context
12261 	 * prior to invoking this kfunc.
12262 	 */
12263 	if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
12264 					   sk->sk_protocol != IPPROTO_UDP))
12265 		return -EOPNOTSUPP;
12266 
12267 	return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
12268 }
12269 
12270 __bpf_kfunc_end_defs();
12271 
12272 BTF_KFUNCS_START(bpf_sk_iter_kfunc_ids)
BTF_ID_FLAGS(func,bpf_sock_destroy,KF_TRUSTED_ARGS)12273 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
12274 BTF_KFUNCS_END(bpf_sk_iter_kfunc_ids)
12275 
12276 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
12277 {
12278 	if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
12279 	    prog->expected_attach_type != BPF_TRACE_ITER)
12280 		return -EACCES;
12281 	return 0;
12282 }
12283 
12284 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
12285 	.owner = THIS_MODULE,
12286 	.set   = &bpf_sk_iter_kfunc_ids,
12287 	.filter = tracing_iter_filter,
12288 };
12289 
init_subsystem(void)12290 static int init_subsystem(void)
12291 {
12292 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
12293 }
12294 late_initcall(init_subsystem);
12295