1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72
73 /*
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
77 */
78
79 /* This is the per-socket lock. The spinlock provides a synchronization
80 * between user contexts and software interrupt processing, whereas the
81 * mini-semaphore synchronizes multiple users amongst themselves.
82 */
83 typedef struct {
84 spinlock_t slock;
85 int owned;
86 wait_queue_head_t wq;
87 /*
88 * We express the mutex-alike socket_lock semantics
89 * to the lock validator by explicitly managing
90 * the slock as a lock variant (in addition to
91 * the slock itself):
92 */
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 struct lockdep_map dep_map;
95 #endif
96 } socket_lock_t;
97
98 struct sock;
99 struct proto;
100 struct net;
101
102 typedef __u32 __bitwise __portpair;
103 typedef __u64 __bitwise __addrpair;
104
105 /**
106 * struct sock_common - minimal network layer representation of sockets
107 * @skc_daddr: Foreign IPv4 addr
108 * @skc_rcv_saddr: Bound local IPv4 addr
109 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
110 * @skc_hash: hash value used with various protocol lookup tables
111 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
112 * @skc_dport: placeholder for inet_dport/tw_dport
113 * @skc_num: placeholder for inet_num/tw_num
114 * @skc_portpair: __u32 union of @skc_dport & @skc_num
115 * @skc_family: network address family
116 * @skc_state: Connection state
117 * @skc_reuse: %SO_REUSEADDR setting
118 * @skc_reuseport: %SO_REUSEPORT setting
119 * @skc_ipv6only: socket is IPV6 only
120 * @skc_net_refcnt: socket is using net ref counting
121 * @skc_bound_dev_if: bound device index if != 0
122 * @skc_bind_node: bind hash linkage for various protocol lookup tables
123 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
124 * @skc_prot: protocol handlers inside a network family
125 * @skc_net: reference to the network namespace of this socket
126 * @skc_v6_daddr: IPV6 destination address
127 * @skc_v6_rcv_saddr: IPV6 source address
128 * @skc_cookie: socket's cookie value
129 * @skc_node: main hash linkage for various protocol lookup tables
130 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
131 * @skc_tx_queue_mapping: tx queue number for this connection
132 * @skc_rx_queue_mapping: rx queue number for this connection
133 * @skc_flags: place holder for sk_flags
134 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
135 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
136 * @skc_listener: connection request listener socket (aka rsk_listener)
137 * [union with @skc_flags]
138 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
139 * [union with @skc_flags]
140 * @skc_incoming_cpu: record/match cpu processing incoming packets
141 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
142 * [union with @skc_incoming_cpu]
143 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
144 * [union with @skc_incoming_cpu]
145 * @skc_refcnt: reference count
146 *
147 * This is the minimal network layer representation of sockets, the header
148 * for struct sock and struct inet_timewait_sock.
149 */
150 struct sock_common {
151 union {
152 __addrpair skc_addrpair;
153 struct {
154 __be32 skc_daddr;
155 __be32 skc_rcv_saddr;
156 };
157 };
158 union {
159 unsigned int skc_hash;
160 __u16 skc_u16hashes[2];
161 };
162 /* skc_dport && skc_num must be grouped as well */
163 union {
164 __portpair skc_portpair;
165 struct {
166 __be16 skc_dport;
167 __u16 skc_num;
168 };
169 };
170
171 unsigned short skc_family;
172 volatile unsigned char skc_state;
173 unsigned char skc_reuse:4;
174 unsigned char skc_reuseport:1;
175 unsigned char skc_ipv6only:1;
176 unsigned char skc_net_refcnt:1;
177 int skc_bound_dev_if;
178 union {
179 struct hlist_node skc_bind_node;
180 struct hlist_node skc_portaddr_node;
181 };
182 struct proto *skc_prot;
183 possible_net_t skc_net;
184
185 #if IS_ENABLED(CONFIG_IPV6)
186 struct in6_addr skc_v6_daddr;
187 struct in6_addr skc_v6_rcv_saddr;
188 #endif
189
190 atomic64_t skc_cookie;
191
192 /* following fields are padding to force
193 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
194 * assuming IPV6 is enabled. We use this padding differently
195 * for different kind of 'sockets'
196 */
197 union {
198 unsigned long skc_flags;
199 struct sock *skc_listener; /* request_sock */
200 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
201 };
202 /*
203 * fields between dontcopy_begin/dontcopy_end
204 * are not copied in sock_copy()
205 */
206 /* private: */
207 int skc_dontcopy_begin[0];
208 /* public: */
209 union {
210 struct hlist_node skc_node;
211 struct hlist_nulls_node skc_nulls_node;
212 };
213 unsigned short skc_tx_queue_mapping;
214 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
215 unsigned short skc_rx_queue_mapping;
216 #endif
217 union {
218 int skc_incoming_cpu;
219 u32 skc_rcv_wnd;
220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
221 };
222
223 refcount_t skc_refcnt;
224 /* private: */
225 int skc_dontcopy_end[0];
226 union {
227 u32 skc_rxhash;
228 u32 skc_window_clamp;
229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 };
231 /* public: */
232 };
233
234 struct bpf_local_storage;
235 struct sk_filter;
236
237 /**
238 * struct sock - network layer representation of sockets
239 * @__sk_common: shared layout with inet_timewait_sock
240 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
241 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
242 * @sk_lock: synchronizer
243 * @sk_kern_sock: True if sock is using kernel lock classes
244 * @sk_rcvbuf: size of receive buffer in bytes
245 * @sk_wq: sock wait queue and async head
246 * @sk_rx_dst: receive input route used by early demux
247 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
248 * @sk_rx_dst_cookie: cookie for @sk_rx_dst
249 * @sk_dst_cache: destination cache
250 * @sk_dst_pending_confirm: need to confirm neighbour
251 * @sk_policy: flow policy
252 * @sk_receive_queue: incoming packets
253 * @sk_wmem_alloc: transmit queue bytes committed
254 * @sk_tsq_flags: TCP Small Queues flags
255 * @sk_write_queue: Packet sending queue
256 * @sk_omem_alloc: "o" is "option" or "other"
257 * @sk_wmem_queued: persistent queue size
258 * @sk_forward_alloc: space allocated forward
259 * @sk_reserved_mem: space reserved and non-reclaimable for the socket
260 * @sk_napi_id: id of the last napi context to receive data for sk
261 * @sk_ll_usec: usecs to busypoll when there is no data
262 * @sk_allocation: allocation mode
263 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
264 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
265 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
266 * @sk_sndbuf: size of send buffer in bytes
267 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
268 * @sk_no_check_rx: allow zero checksum in RX packets
269 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
270 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
271 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
272 * @sk_gso_max_size: Maximum GSO segment size to build
273 * @sk_gso_max_segs: Maximum number of GSO segments
274 * @sk_pacing_shift: scaling factor for TCP Small Queues
275 * @sk_lingertime: %SO_LINGER l_linger setting
276 * @sk_backlog: always used with the per-socket spinlock held
277 * @sk_callback_lock: used with the callbacks in the end of this struct
278 * @sk_error_queue: rarely used
279 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
280 * IPV6_ADDRFORM for instance)
281 * @sk_err: last error
282 * @sk_err_soft: errors that don't cause failure but are the cause of a
283 * persistent failure not just 'timed out'
284 * @sk_drops: raw/udp drops counter
285 * @sk_ack_backlog: current listen backlog
286 * @sk_max_ack_backlog: listen backlog set in listen()
287 * @sk_uid: user id of owner
288 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
289 * @sk_busy_poll_budget: napi processing budget when busypolling
290 * @sk_priority: %SO_PRIORITY setting
291 * @sk_type: socket type (%SOCK_STREAM, etc)
292 * @sk_protocol: which protocol this socket belongs in this network family
293 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
294 * @sk_peer_pid: &struct pid for this socket's peer
295 * @sk_peer_cred: %SO_PEERCRED setting
296 * @sk_rcvlowat: %SO_RCVLOWAT setting
297 * @sk_rcvtimeo: %SO_RCVTIMEO setting
298 * @sk_sndtimeo: %SO_SNDTIMEO setting
299 * @sk_txhash: computed flow hash for use on transmit
300 * @sk_txrehash: enable TX hash rethink
301 * @sk_filter: socket filtering instructions
302 * @sk_timer: sock cleanup timer
303 * @sk_stamp: time stamp of last packet received
304 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
305 * @sk_tsflags: SO_TIMESTAMPING flags
306 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
307 * Sockets that can be used under memory reclaim should
308 * set this to false.
309 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
310 * for timestamping
311 * @sk_tskey: counter to disambiguate concurrent tstamp requests
312 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
313 * @sk_socket: Identd and reporting IO signals
314 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
315 * @sk_frag: cached page frag
316 * @sk_peek_off: current peek_offset value
317 * @sk_send_head: front of stuff to transmit
318 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
319 * @sk_security: used by security modules
320 * @sk_mark: generic packet mark
321 * @sk_cgrp_data: cgroup data for this cgroup
322 * @sk_memcg: this socket's memory cgroup association
323 * @sk_write_pending: a write to stream socket waits to start
324 * @sk_disconnects: number of disconnect operations performed on this sock
325 * @sk_state_change: callback to indicate change in the state of the sock
326 * @sk_data_ready: callback to indicate there is data to be processed
327 * @sk_write_space: callback to indicate there is bf sending space available
328 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
329 * @sk_backlog_rcv: callback to process the backlog
330 * @sk_validate_xmit_skb: ptr to an optional validate function
331 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
332 * @sk_reuseport_cb: reuseport group container
333 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
334 * @sk_rcu: used during RCU grace period
335 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
336 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
337 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
338 * @sk_txtime_unused: unused txtime flags
339 * @ns_tracker: tracker for netns reference
340 * @sk_user_frags: xarray of pages the user is holding a reference on.
341 */
342 struct sock {
343 /*
344 * Now struct inet_timewait_sock also uses sock_common, so please just
345 * don't add nothing before this first member (__sk_common) --acme
346 */
347 struct sock_common __sk_common;
348 #define sk_node __sk_common.skc_node
349 #define sk_nulls_node __sk_common.skc_nulls_node
350 #define sk_refcnt __sk_common.skc_refcnt
351 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
352 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
353 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
354 #endif
355
356 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
357 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
358 #define sk_hash __sk_common.skc_hash
359 #define sk_portpair __sk_common.skc_portpair
360 #define sk_num __sk_common.skc_num
361 #define sk_dport __sk_common.skc_dport
362 #define sk_addrpair __sk_common.skc_addrpair
363 #define sk_daddr __sk_common.skc_daddr
364 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
365 #define sk_family __sk_common.skc_family
366 #define sk_state __sk_common.skc_state
367 #define sk_reuse __sk_common.skc_reuse
368 #define sk_reuseport __sk_common.skc_reuseport
369 #define sk_ipv6only __sk_common.skc_ipv6only
370 #define sk_net_refcnt __sk_common.skc_net_refcnt
371 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
372 #define sk_bind_node __sk_common.skc_bind_node
373 #define sk_prot __sk_common.skc_prot
374 #define sk_net __sk_common.skc_net
375 #define sk_v6_daddr __sk_common.skc_v6_daddr
376 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
377 #define sk_cookie __sk_common.skc_cookie
378 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
379 #define sk_flags __sk_common.skc_flags
380 #define sk_rxhash __sk_common.skc_rxhash
381
382 __cacheline_group_begin(sock_write_rx);
383
384 atomic_t sk_drops;
385 __s32 sk_peek_off;
386 struct sk_buff_head sk_error_queue;
387 struct sk_buff_head sk_receive_queue;
388 /*
389 * The backlog queue is special, it is always used with
390 * the per-socket spinlock held and requires low latency
391 * access. Therefore we special case it's implementation.
392 * Note : rmem_alloc is in this structure to fill a hole
393 * on 64bit arches, not because its logically part of
394 * backlog.
395 */
396 struct {
397 atomic_t rmem_alloc;
398 int len;
399 struct sk_buff *head;
400 struct sk_buff *tail;
401 } sk_backlog;
402 #define sk_rmem_alloc sk_backlog.rmem_alloc
403
404 __cacheline_group_end(sock_write_rx);
405
406 __cacheline_group_begin(sock_read_rx);
407 /* early demux fields */
408 struct dst_entry __rcu *sk_rx_dst;
409 int sk_rx_dst_ifindex;
410 u32 sk_rx_dst_cookie;
411
412 #ifdef CONFIG_NET_RX_BUSY_POLL
413 unsigned int sk_ll_usec;
414 unsigned int sk_napi_id;
415 u16 sk_busy_poll_budget;
416 u8 sk_prefer_busy_poll;
417 #endif
418 u8 sk_userlocks;
419 int sk_rcvbuf;
420
421 struct sk_filter __rcu *sk_filter;
422 union {
423 struct socket_wq __rcu *sk_wq;
424 /* private: */
425 struct socket_wq *sk_wq_raw;
426 /* public: */
427 };
428
429 void (*sk_data_ready)(struct sock *sk);
430 long sk_rcvtimeo;
431 int sk_rcvlowat;
432 __cacheline_group_end(sock_read_rx);
433
434 __cacheline_group_begin(sock_read_rxtx);
435 int sk_err;
436 struct socket *sk_socket;
437 struct mem_cgroup *sk_memcg;
438 #ifdef CONFIG_XFRM
439 struct xfrm_policy __rcu *sk_policy[2];
440 #endif
441 __cacheline_group_end(sock_read_rxtx);
442
443 __cacheline_group_begin(sock_write_rxtx);
444 socket_lock_t sk_lock;
445 u32 sk_reserved_mem;
446 int sk_forward_alloc;
447 u32 sk_tsflags;
448 __cacheline_group_end(sock_write_rxtx);
449
450 __cacheline_group_begin(sock_write_tx);
451 int sk_write_pending;
452 atomic_t sk_omem_alloc;
453 int sk_sndbuf;
454
455 int sk_wmem_queued;
456 refcount_t sk_wmem_alloc;
457 unsigned long sk_tsq_flags;
458 union {
459 struct sk_buff *sk_send_head;
460 struct rb_root tcp_rtx_queue;
461 };
462 struct sk_buff_head sk_write_queue;
463 u32 sk_dst_pending_confirm;
464 u32 sk_pacing_status; /* see enum sk_pacing */
465 struct page_frag sk_frag;
466 struct timer_list sk_timer;
467
468 unsigned long sk_pacing_rate; /* bytes per second */
469 atomic_t sk_zckey;
470 atomic_t sk_tskey;
471 __cacheline_group_end(sock_write_tx);
472
473 __cacheline_group_begin(sock_read_tx);
474 unsigned long sk_max_pacing_rate;
475 long sk_sndtimeo;
476 u32 sk_priority;
477 u32 sk_mark;
478 struct dst_entry __rcu *sk_dst_cache;
479 netdev_features_t sk_route_caps;
480 #ifdef CONFIG_SOCK_VALIDATE_XMIT
481 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
482 struct net_device *dev,
483 struct sk_buff *skb);
484 #endif
485 u16 sk_gso_type;
486 u16 sk_gso_max_segs;
487 unsigned int sk_gso_max_size;
488 gfp_t sk_allocation;
489 u32 sk_txhash;
490 u8 sk_pacing_shift;
491 bool sk_use_task_frag;
492 __cacheline_group_end(sock_read_tx);
493
494 /*
495 * Because of non atomicity rules, all
496 * changes are protected by socket lock.
497 */
498 u8 sk_gso_disabled : 1,
499 sk_kern_sock : 1,
500 sk_no_check_tx : 1,
501 sk_no_check_rx : 1;
502 u8 sk_shutdown;
503 u16 sk_type;
504 u16 sk_protocol;
505 unsigned long sk_lingertime;
506 struct proto *sk_prot_creator;
507 rwlock_t sk_callback_lock;
508 int sk_err_soft;
509 u32 sk_ack_backlog;
510 u32 sk_max_ack_backlog;
511 kuid_t sk_uid;
512 spinlock_t sk_peer_lock;
513 int sk_bind_phc;
514 struct pid *sk_peer_pid;
515 const struct cred *sk_peer_cred;
516
517 ktime_t sk_stamp;
518 #if BITS_PER_LONG==32
519 seqlock_t sk_stamp_seq;
520 #endif
521 int sk_disconnects;
522
523 u8 sk_txrehash;
524 u8 sk_clockid;
525 u8 sk_txtime_deadline_mode : 1,
526 sk_txtime_report_errors : 1,
527 sk_txtime_unused : 6;
528
529 void *sk_user_data;
530 #ifdef CONFIG_SECURITY
531 void *sk_security;
532 #endif
533 struct sock_cgroup_data sk_cgrp_data;
534 void (*sk_state_change)(struct sock *sk);
535 void (*sk_write_space)(struct sock *sk);
536 void (*sk_error_report)(struct sock *sk);
537 int (*sk_backlog_rcv)(struct sock *sk,
538 struct sk_buff *skb);
539 void (*sk_destruct)(struct sock *sk);
540 struct sock_reuseport __rcu *sk_reuseport_cb;
541 #ifdef CONFIG_BPF_SYSCALL
542 struct bpf_local_storage __rcu *sk_bpf_storage;
543 #endif
544 struct rcu_head sk_rcu;
545 netns_tracker ns_tracker;
546 struct xarray sk_user_frags;
547 };
548
549 struct sock_bh_locked {
550 struct sock *sock;
551 local_lock_t bh_lock;
552 };
553
554 enum sk_pacing {
555 SK_PACING_NONE = 0,
556 SK_PACING_NEEDED = 1,
557 SK_PACING_FQ = 2,
558 };
559
560 /* flag bits in sk_user_data
561 *
562 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might
563 * not be suitable for copying when cloning the socket. For instance,
564 * it can point to a reference counted object. sk_user_data bottom
565 * bit is set if pointer must not be copied.
566 *
567 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is
568 * managed/owned by a BPF reuseport array. This bit should be set
569 * when sk_user_data's sk is added to the bpf's reuseport_array.
570 *
571 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in
572 * sk_user_data points to psock type. This bit should be set
573 * when sk_user_data is assigned to a psock object.
574 */
575 #define SK_USER_DATA_NOCOPY 1UL
576 #define SK_USER_DATA_BPF 2UL
577 #define SK_USER_DATA_PSOCK 4UL
578 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
579 SK_USER_DATA_PSOCK)
580
581 /**
582 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
583 * @sk: socket
584 */
sk_user_data_is_nocopy(const struct sock * sk)585 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
586 {
587 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
588 }
589
590 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
591
592 /**
593 * __locked_read_sk_user_data_with_flags - return the pointer
594 * only if argument flags all has been set in sk_user_data. Otherwise
595 * return NULL
596 *
597 * @sk: socket
598 * @flags: flag bits
599 *
600 * The caller must be holding sk->sk_callback_lock.
601 */
602 static inline void *
__locked_read_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)603 __locked_read_sk_user_data_with_flags(const struct sock *sk,
604 uintptr_t flags)
605 {
606 uintptr_t sk_user_data =
607 (uintptr_t)rcu_dereference_check(__sk_user_data(sk),
608 lockdep_is_held(&sk->sk_callback_lock));
609
610 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
611
612 if ((sk_user_data & flags) == flags)
613 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
614 return NULL;
615 }
616
617 /**
618 * __rcu_dereference_sk_user_data_with_flags - return the pointer
619 * only if argument flags all has been set in sk_user_data. Otherwise
620 * return NULL
621 *
622 * @sk: socket
623 * @flags: flag bits
624 */
625 static inline void *
__rcu_dereference_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)626 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
627 uintptr_t flags)
628 {
629 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
630
631 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
632
633 if ((sk_user_data & flags) == flags)
634 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
635 return NULL;
636 }
637
638 #define rcu_dereference_sk_user_data(sk) \
639 __rcu_dereference_sk_user_data_with_flags(sk, 0)
640 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \
641 ({ \
642 uintptr_t __tmp1 = (uintptr_t)(ptr), \
643 __tmp2 = (uintptr_t)(flags); \
644 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \
645 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \
646 rcu_assign_pointer(__sk_user_data((sk)), \
647 __tmp1 | __tmp2); \
648 })
649 #define rcu_assign_sk_user_data(sk, ptr) \
650 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
651
652 static inline
sock_net(const struct sock * sk)653 struct net *sock_net(const struct sock *sk)
654 {
655 return read_pnet(&sk->sk_net);
656 }
657
658 static inline
sock_net_set(struct sock * sk,struct net * net)659 void sock_net_set(struct sock *sk, struct net *net)
660 {
661 write_pnet(&sk->sk_net, net);
662 }
663
664 /*
665 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
666 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
667 * on a socket means that the socket will reuse everybody else's port
668 * without looking at the other's sk_reuse value.
669 */
670
671 #define SK_NO_REUSE 0
672 #define SK_CAN_REUSE 1
673 #define SK_FORCE_REUSE 2
674
675 int sk_set_peek_off(struct sock *sk, int val);
676
sk_peek_offset(const struct sock * sk,int flags)677 static inline int sk_peek_offset(const struct sock *sk, int flags)
678 {
679 if (unlikely(flags & MSG_PEEK)) {
680 return READ_ONCE(sk->sk_peek_off);
681 }
682
683 return 0;
684 }
685
sk_peek_offset_bwd(struct sock * sk,int val)686 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
687 {
688 s32 off = READ_ONCE(sk->sk_peek_off);
689
690 if (unlikely(off >= 0)) {
691 off = max_t(s32, off - val, 0);
692 WRITE_ONCE(sk->sk_peek_off, off);
693 }
694 }
695
sk_peek_offset_fwd(struct sock * sk,int val)696 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
697 {
698 sk_peek_offset_bwd(sk, -val);
699 }
700
701 /*
702 * Hashed lists helper routines
703 */
sk_entry(const struct hlist_node * node)704 static inline struct sock *sk_entry(const struct hlist_node *node)
705 {
706 return hlist_entry(node, struct sock, sk_node);
707 }
708
__sk_head(const struct hlist_head * head)709 static inline struct sock *__sk_head(const struct hlist_head *head)
710 {
711 return hlist_entry(head->first, struct sock, sk_node);
712 }
713
sk_head(const struct hlist_head * head)714 static inline struct sock *sk_head(const struct hlist_head *head)
715 {
716 return hlist_empty(head) ? NULL : __sk_head(head);
717 }
718
__sk_nulls_head(const struct hlist_nulls_head * head)719 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
720 {
721 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
722 }
723
sk_nulls_head(const struct hlist_nulls_head * head)724 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
725 {
726 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
727 }
728
sk_next(const struct sock * sk)729 static inline struct sock *sk_next(const struct sock *sk)
730 {
731 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
732 }
733
sk_nulls_next(const struct sock * sk)734 static inline struct sock *sk_nulls_next(const struct sock *sk)
735 {
736 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
737 hlist_nulls_entry(sk->sk_nulls_node.next,
738 struct sock, sk_nulls_node) :
739 NULL;
740 }
741
sk_unhashed(const struct sock * sk)742 static inline bool sk_unhashed(const struct sock *sk)
743 {
744 return hlist_unhashed(&sk->sk_node);
745 }
746
sk_hashed(const struct sock * sk)747 static inline bool sk_hashed(const struct sock *sk)
748 {
749 return !sk_unhashed(sk);
750 }
751
sk_node_init(struct hlist_node * node)752 static inline void sk_node_init(struct hlist_node *node)
753 {
754 node->pprev = NULL;
755 }
756
__sk_del_node(struct sock * sk)757 static inline void __sk_del_node(struct sock *sk)
758 {
759 __hlist_del(&sk->sk_node);
760 }
761
762 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)763 static inline bool __sk_del_node_init(struct sock *sk)
764 {
765 if (sk_hashed(sk)) {
766 __sk_del_node(sk);
767 sk_node_init(&sk->sk_node);
768 return true;
769 }
770 return false;
771 }
772
773 /* Grab socket reference count. This operation is valid only
774 when sk is ALREADY grabbed f.e. it is found in hash table
775 or a list and the lookup is made under lock preventing hash table
776 modifications.
777 */
778
sock_hold(struct sock * sk)779 static __always_inline void sock_hold(struct sock *sk)
780 {
781 refcount_inc(&sk->sk_refcnt);
782 }
783
784 /* Ungrab socket in the context, which assumes that socket refcnt
785 cannot hit zero, f.e. it is true in context of any socketcall.
786 */
__sock_put(struct sock * sk)787 static __always_inline void __sock_put(struct sock *sk)
788 {
789 refcount_dec(&sk->sk_refcnt);
790 }
791
sk_del_node_init(struct sock * sk)792 static inline bool sk_del_node_init(struct sock *sk)
793 {
794 bool rc = __sk_del_node_init(sk);
795
796 if (rc) {
797 /* paranoid for a while -acme */
798 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
799 __sock_put(sk);
800 }
801 return rc;
802 }
803 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
804
__sk_nulls_del_node_init_rcu(struct sock * sk)805 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
806 {
807 if (sk_hashed(sk)) {
808 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
809 return true;
810 }
811 return false;
812 }
813
sk_nulls_del_node_init_rcu(struct sock * sk)814 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
815 {
816 bool rc = __sk_nulls_del_node_init_rcu(sk);
817
818 if (rc) {
819 /* paranoid for a while -acme */
820 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
821 __sock_put(sk);
822 }
823 return rc;
824 }
825
__sk_add_node(struct sock * sk,struct hlist_head * list)826 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
827 {
828 hlist_add_head(&sk->sk_node, list);
829 }
830
sk_add_node(struct sock * sk,struct hlist_head * list)831 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
832 {
833 sock_hold(sk);
834 __sk_add_node(sk, list);
835 }
836
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)837 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
838 {
839 sock_hold(sk);
840 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
841 sk->sk_family == AF_INET6)
842 hlist_add_tail_rcu(&sk->sk_node, list);
843 else
844 hlist_add_head_rcu(&sk->sk_node, list);
845 }
846
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)847 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
848 {
849 sock_hold(sk);
850 hlist_add_tail_rcu(&sk->sk_node, list);
851 }
852
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)853 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
854 {
855 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
856 }
857
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)858 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
859 {
860 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
861 }
862
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)863 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
864 {
865 sock_hold(sk);
866 __sk_nulls_add_node_rcu(sk, list);
867 }
868
__sk_del_bind_node(struct sock * sk)869 static inline void __sk_del_bind_node(struct sock *sk)
870 {
871 __hlist_del(&sk->sk_bind_node);
872 }
873
sk_add_bind_node(struct sock * sk,struct hlist_head * list)874 static inline void sk_add_bind_node(struct sock *sk,
875 struct hlist_head *list)
876 {
877 hlist_add_head(&sk->sk_bind_node, list);
878 }
879
880 #define sk_for_each(__sk, list) \
881 hlist_for_each_entry(__sk, list, sk_node)
882 #define sk_for_each_rcu(__sk, list) \
883 hlist_for_each_entry_rcu(__sk, list, sk_node)
884 #define sk_nulls_for_each(__sk, node, list) \
885 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
886 #define sk_nulls_for_each_rcu(__sk, node, list) \
887 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
888 #define sk_for_each_from(__sk) \
889 hlist_for_each_entry_from(__sk, sk_node)
890 #define sk_nulls_for_each_from(__sk, node) \
891 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
892 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
893 #define sk_for_each_safe(__sk, tmp, list) \
894 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
895 #define sk_for_each_bound(__sk, list) \
896 hlist_for_each_entry(__sk, list, sk_bind_node)
897 #define sk_for_each_bound_safe(__sk, tmp, list) \
898 hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node)
899
900 /**
901 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
902 * @tpos: the type * to use as a loop cursor.
903 * @pos: the &struct hlist_node to use as a loop cursor.
904 * @head: the head for your list.
905 * @offset: offset of hlist_node within the struct.
906 *
907 */
908 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
909 for (pos = rcu_dereference(hlist_first_rcu(head)); \
910 pos != NULL && \
911 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
912 pos = rcu_dereference(hlist_next_rcu(pos)))
913
sk_user_ns(const struct sock * sk)914 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
915 {
916 /* Careful only use this in a context where these parameters
917 * can not change and must all be valid, such as recvmsg from
918 * userspace.
919 */
920 return sk->sk_socket->file->f_cred->user_ns;
921 }
922
923 /* Sock flags */
924 enum sock_flags {
925 SOCK_DEAD,
926 SOCK_DONE,
927 SOCK_URGINLINE,
928 SOCK_KEEPOPEN,
929 SOCK_LINGER,
930 SOCK_DESTROY,
931 SOCK_BROADCAST,
932 SOCK_TIMESTAMP,
933 SOCK_ZAPPED,
934 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
935 SOCK_DBG, /* %SO_DEBUG setting */
936 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
937 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
938 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
939 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
940 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
941 SOCK_FASYNC, /* fasync() active */
942 SOCK_RXQ_OVFL,
943 SOCK_ZEROCOPY, /* buffers from userspace */
944 SOCK_WIFI_STATUS, /* push wifi status to userspace */
945 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
946 * Will use last 4 bytes of packet sent from
947 * user-space instead.
948 */
949 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
950 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
951 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
952 SOCK_TXTIME,
953 SOCK_XDP, /* XDP is attached */
954 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
955 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */
956 };
957
958 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
959 /*
960 * The highest bit of sk_tsflags is reserved for kernel-internal
961 * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that
962 * SOF_TIMESTAMPING* values do not reach this reserved area
963 */
964 #define SOCKCM_FLAG_TS_OPT_ID BIT(31)
965
sock_copy_flags(struct sock * nsk,const struct sock * osk)966 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
967 {
968 nsk->sk_flags = osk->sk_flags;
969 }
970
sock_set_flag(struct sock * sk,enum sock_flags flag)971 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
972 {
973 __set_bit(flag, &sk->sk_flags);
974 }
975
sock_reset_flag(struct sock * sk,enum sock_flags flag)976 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
977 {
978 __clear_bit(flag, &sk->sk_flags);
979 }
980
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)981 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
982 int valbool)
983 {
984 if (valbool)
985 sock_set_flag(sk, bit);
986 else
987 sock_reset_flag(sk, bit);
988 }
989
sock_flag(const struct sock * sk,enum sock_flags flag)990 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
991 {
992 return test_bit(flag, &sk->sk_flags);
993 }
994
995 #ifdef CONFIG_NET
996 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)997 static inline int sk_memalloc_socks(void)
998 {
999 return static_branch_unlikely(&memalloc_socks_key);
1000 }
1001
1002 void __receive_sock(struct file *file);
1003 #else
1004
sk_memalloc_socks(void)1005 static inline int sk_memalloc_socks(void)
1006 {
1007 return 0;
1008 }
1009
__receive_sock(struct file * file)1010 static inline void __receive_sock(struct file *file)
1011 { }
1012 #endif
1013
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)1014 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1015 {
1016 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1017 }
1018
sk_acceptq_removed(struct sock * sk)1019 static inline void sk_acceptq_removed(struct sock *sk)
1020 {
1021 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1022 }
1023
sk_acceptq_added(struct sock * sk)1024 static inline void sk_acceptq_added(struct sock *sk)
1025 {
1026 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1027 }
1028
1029 /* Note: If you think the test should be:
1030 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1031 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1032 */
sk_acceptq_is_full(const struct sock * sk)1033 static inline bool sk_acceptq_is_full(const struct sock *sk)
1034 {
1035 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1036 }
1037
1038 /*
1039 * Compute minimal free write space needed to queue new packets.
1040 */
sk_stream_min_wspace(const struct sock * sk)1041 static inline int sk_stream_min_wspace(const struct sock *sk)
1042 {
1043 return READ_ONCE(sk->sk_wmem_queued) >> 1;
1044 }
1045
sk_stream_wspace(const struct sock * sk)1046 static inline int sk_stream_wspace(const struct sock *sk)
1047 {
1048 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1049 }
1050
sk_wmem_queued_add(struct sock * sk,int val)1051 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1052 {
1053 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1054 }
1055
sk_forward_alloc_add(struct sock * sk,int val)1056 static inline void sk_forward_alloc_add(struct sock *sk, int val)
1057 {
1058 /* Paired with lockless reads of sk->sk_forward_alloc */
1059 WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1060 }
1061
1062 void sk_stream_write_space(struct sock *sk);
1063
1064 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)1065 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1066 {
1067 /* dont let skb dst not refcounted, we are going to leave rcu lock */
1068 skb_dst_force(skb);
1069
1070 if (!sk->sk_backlog.tail)
1071 WRITE_ONCE(sk->sk_backlog.head, skb);
1072 else
1073 sk->sk_backlog.tail->next = skb;
1074
1075 WRITE_ONCE(sk->sk_backlog.tail, skb);
1076 skb->next = NULL;
1077 }
1078
1079 /*
1080 * Take into account size of receive queue and backlog queue
1081 * Do not take into account this skb truesize,
1082 * to allow even a single big packet to come.
1083 */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)1084 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1085 {
1086 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1087
1088 return qsize > limit;
1089 }
1090
1091 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)1092 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1093 unsigned int limit)
1094 {
1095 if (sk_rcvqueues_full(sk, limit))
1096 return -ENOBUFS;
1097
1098 /*
1099 * If the skb was allocated from pfmemalloc reserves, only
1100 * allow SOCK_MEMALLOC sockets to use it as this socket is
1101 * helping free memory
1102 */
1103 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1104 return -ENOMEM;
1105
1106 __sk_add_backlog(sk, skb);
1107 sk->sk_backlog.len += skb->truesize;
1108 return 0;
1109 }
1110
1111 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1112
1113 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1114 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1115
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1116 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1117 {
1118 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1119 return __sk_backlog_rcv(sk, skb);
1120
1121 return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1122 tcp_v6_do_rcv,
1123 tcp_v4_do_rcv,
1124 sk, skb);
1125 }
1126
sk_incoming_cpu_update(struct sock * sk)1127 static inline void sk_incoming_cpu_update(struct sock *sk)
1128 {
1129 int cpu = raw_smp_processor_id();
1130
1131 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1132 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1133 }
1134
1135
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1136 static inline void sock_rps_save_rxhash(struct sock *sk,
1137 const struct sk_buff *skb)
1138 {
1139 #ifdef CONFIG_RPS
1140 /* The following WRITE_ONCE() is paired with the READ_ONCE()
1141 * here, and another one in sock_rps_record_flow().
1142 */
1143 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1144 WRITE_ONCE(sk->sk_rxhash, skb->hash);
1145 #endif
1146 }
1147
sock_rps_reset_rxhash(struct sock * sk)1148 static inline void sock_rps_reset_rxhash(struct sock *sk)
1149 {
1150 #ifdef CONFIG_RPS
1151 /* Paired with READ_ONCE() in sock_rps_record_flow() */
1152 WRITE_ONCE(sk->sk_rxhash, 0);
1153 #endif
1154 }
1155
1156 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1157 ({ int __rc, __dis = __sk->sk_disconnects; \
1158 release_sock(__sk); \
1159 __rc = __condition; \
1160 if (!__rc) { \
1161 *(__timeo) = wait_woken(__wait, \
1162 TASK_INTERRUPTIBLE, \
1163 *(__timeo)); \
1164 } \
1165 sched_annotate_sleep(); \
1166 lock_sock(__sk); \
1167 __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1168 __rc; \
1169 })
1170
1171 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1172 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1173 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1174 int sk_stream_error(struct sock *sk, int flags, int err);
1175 void sk_stream_kill_queues(struct sock *sk);
1176 void sk_set_memalloc(struct sock *sk);
1177 void sk_clear_memalloc(struct sock *sk);
1178
1179 void __sk_flush_backlog(struct sock *sk);
1180
sk_flush_backlog(struct sock * sk)1181 static inline bool sk_flush_backlog(struct sock *sk)
1182 {
1183 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1184 __sk_flush_backlog(sk);
1185 return true;
1186 }
1187 return false;
1188 }
1189
1190 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1191
1192 struct request_sock_ops;
1193 struct timewait_sock_ops;
1194 struct inet_hashinfo;
1195 struct raw_hashinfo;
1196 struct smc_hashinfo;
1197 struct module;
1198 struct sk_psock;
1199
1200 /*
1201 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1202 * un-modified. Special care is taken when initializing object to zero.
1203 */
sk_prot_clear_nulls(struct sock * sk,int size)1204 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1205 {
1206 if (offsetof(struct sock, sk_node.next) != 0)
1207 memset(sk, 0, offsetof(struct sock, sk_node.next));
1208 memset(&sk->sk_node.pprev, 0,
1209 size - offsetof(struct sock, sk_node.pprev));
1210 }
1211
1212 struct proto_accept_arg {
1213 int flags;
1214 int err;
1215 int is_empty;
1216 bool kern;
1217 };
1218
1219 /* Networking protocol blocks we attach to sockets.
1220 * socket layer -> transport layer interface
1221 */
1222 struct proto {
1223 void (*close)(struct sock *sk,
1224 long timeout);
1225 int (*pre_connect)(struct sock *sk,
1226 struct sockaddr *uaddr,
1227 int addr_len);
1228 int (*connect)(struct sock *sk,
1229 struct sockaddr *uaddr,
1230 int addr_len);
1231 int (*disconnect)(struct sock *sk, int flags);
1232
1233 struct sock * (*accept)(struct sock *sk,
1234 struct proto_accept_arg *arg);
1235
1236 int (*ioctl)(struct sock *sk, int cmd,
1237 int *karg);
1238 int (*init)(struct sock *sk);
1239 void (*destroy)(struct sock *sk);
1240 void (*shutdown)(struct sock *sk, int how);
1241 int (*setsockopt)(struct sock *sk, int level,
1242 int optname, sockptr_t optval,
1243 unsigned int optlen);
1244 int (*getsockopt)(struct sock *sk, int level,
1245 int optname, char __user *optval,
1246 int __user *option);
1247 void (*keepalive)(struct sock *sk, int valbool);
1248 #ifdef CONFIG_COMPAT
1249 int (*compat_ioctl)(struct sock *sk,
1250 unsigned int cmd, unsigned long arg);
1251 #endif
1252 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1253 size_t len);
1254 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1255 size_t len, int flags, int *addr_len);
1256 void (*splice_eof)(struct socket *sock);
1257 int (*bind)(struct sock *sk,
1258 struct sockaddr *addr, int addr_len);
1259 int (*bind_add)(struct sock *sk,
1260 struct sockaddr *addr, int addr_len);
1261
1262 int (*backlog_rcv) (struct sock *sk,
1263 struct sk_buff *skb);
1264 bool (*bpf_bypass_getsockopt)(int level,
1265 int optname);
1266
1267 void (*release_cb)(struct sock *sk);
1268
1269 /* Keeping track of sk's, looking them up, and port selection methods. */
1270 int (*hash)(struct sock *sk);
1271 void (*unhash)(struct sock *sk);
1272 void (*rehash)(struct sock *sk);
1273 int (*get_port)(struct sock *sk, unsigned short snum);
1274 void (*put_port)(struct sock *sk);
1275 #ifdef CONFIG_BPF_SYSCALL
1276 int (*psock_update_sk_prot)(struct sock *sk,
1277 struct sk_psock *psock,
1278 bool restore);
1279 #endif
1280
1281 /* Keeping track of sockets in use */
1282 #ifdef CONFIG_PROC_FS
1283 unsigned int inuse_idx;
1284 #endif
1285
1286 #if IS_ENABLED(CONFIG_MPTCP)
1287 int (*forward_alloc_get)(const struct sock *sk);
1288 #endif
1289
1290 bool (*stream_memory_free)(const struct sock *sk, int wake);
1291 bool (*sock_is_readable)(struct sock *sk);
1292 /* Memory pressure */
1293 void (*enter_memory_pressure)(struct sock *sk);
1294 void (*leave_memory_pressure)(struct sock *sk);
1295 atomic_long_t *memory_allocated; /* Current allocated memory. */
1296 int __percpu *per_cpu_fw_alloc;
1297 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1298
1299 /*
1300 * Pressure flag: try to collapse.
1301 * Technical note: it is used by multiple contexts non atomically.
1302 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1303 * All the __sk_mem_schedule() is of this nature: accounting
1304 * is strict, actions are advisory and have some latency.
1305 */
1306 unsigned long *memory_pressure;
1307 long *sysctl_mem;
1308
1309 int *sysctl_wmem;
1310 int *sysctl_rmem;
1311 u32 sysctl_wmem_offset;
1312 u32 sysctl_rmem_offset;
1313
1314 int max_header;
1315 bool no_autobind;
1316
1317 struct kmem_cache *slab;
1318 unsigned int obj_size;
1319 unsigned int ipv6_pinfo_offset;
1320 slab_flags_t slab_flags;
1321 unsigned int useroffset; /* Usercopy region offset */
1322 unsigned int usersize; /* Usercopy region size */
1323
1324 unsigned int __percpu *orphan_count;
1325
1326 struct request_sock_ops *rsk_prot;
1327 struct timewait_sock_ops *twsk_prot;
1328
1329 union {
1330 struct inet_hashinfo *hashinfo;
1331 struct udp_table *udp_table;
1332 struct raw_hashinfo *raw_hash;
1333 struct smc_hashinfo *smc_hash;
1334 } h;
1335
1336 struct module *owner;
1337
1338 char name[32];
1339
1340 struct list_head node;
1341 int (*diag_destroy)(struct sock *sk, int err);
1342 } __randomize_layout;
1343
1344 int proto_register(struct proto *prot, int alloc_slab);
1345 void proto_unregister(struct proto *prot);
1346 int sock_load_diag_module(int family, int protocol);
1347
1348 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1349
sk_forward_alloc_get(const struct sock * sk)1350 static inline int sk_forward_alloc_get(const struct sock *sk)
1351 {
1352 #if IS_ENABLED(CONFIG_MPTCP)
1353 if (sk->sk_prot->forward_alloc_get)
1354 return sk->sk_prot->forward_alloc_get(sk);
1355 #endif
1356 return READ_ONCE(sk->sk_forward_alloc);
1357 }
1358
__sk_stream_memory_free(const struct sock * sk,int wake)1359 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1360 {
1361 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1362 return false;
1363
1364 return sk->sk_prot->stream_memory_free ?
1365 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1366 tcp_stream_memory_free, sk, wake) : true;
1367 }
1368
sk_stream_memory_free(const struct sock * sk)1369 static inline bool sk_stream_memory_free(const struct sock *sk)
1370 {
1371 return __sk_stream_memory_free(sk, 0);
1372 }
1373
__sk_stream_is_writeable(const struct sock * sk,int wake)1374 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1375 {
1376 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1377 __sk_stream_memory_free(sk, wake);
1378 }
1379
sk_stream_is_writeable(const struct sock * sk)1380 static inline bool sk_stream_is_writeable(const struct sock *sk)
1381 {
1382 return __sk_stream_is_writeable(sk, 0);
1383 }
1384
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1385 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1386 struct cgroup *ancestor)
1387 {
1388 #ifdef CONFIG_SOCK_CGROUP_DATA
1389 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1390 ancestor);
1391 #else
1392 return -ENOTSUPP;
1393 #endif
1394 }
1395
1396 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1397
sk_sockets_allocated_dec(struct sock * sk)1398 static inline void sk_sockets_allocated_dec(struct sock *sk)
1399 {
1400 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1401 SK_ALLOC_PERCPU_COUNTER_BATCH);
1402 }
1403
sk_sockets_allocated_inc(struct sock * sk)1404 static inline void sk_sockets_allocated_inc(struct sock *sk)
1405 {
1406 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1407 SK_ALLOC_PERCPU_COUNTER_BATCH);
1408 }
1409
1410 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1411 sk_sockets_allocated_read_positive(struct sock *sk)
1412 {
1413 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1414 }
1415
1416 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1417 proto_sockets_allocated_sum_positive(struct proto *prot)
1418 {
1419 return percpu_counter_sum_positive(prot->sockets_allocated);
1420 }
1421
1422 #ifdef CONFIG_PROC_FS
1423 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
1424 struct prot_inuse {
1425 int all;
1426 int val[PROTO_INUSE_NR];
1427 };
1428
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1429 static inline void sock_prot_inuse_add(const struct net *net,
1430 const struct proto *prot, int val)
1431 {
1432 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1433 }
1434
sock_inuse_add(const struct net * net,int val)1435 static inline void sock_inuse_add(const struct net *net, int val)
1436 {
1437 this_cpu_add(net->core.prot_inuse->all, val);
1438 }
1439
1440 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1441 int sock_inuse_get(struct net *net);
1442 #else
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1443 static inline void sock_prot_inuse_add(const struct net *net,
1444 const struct proto *prot, int val)
1445 {
1446 }
1447
sock_inuse_add(const struct net * net,int val)1448 static inline void sock_inuse_add(const struct net *net, int val)
1449 {
1450 }
1451 #endif
1452
1453
1454 /* With per-bucket locks this operation is not-atomic, so that
1455 * this version is not worse.
1456 */
__sk_prot_rehash(struct sock * sk)1457 static inline int __sk_prot_rehash(struct sock *sk)
1458 {
1459 sk->sk_prot->unhash(sk);
1460 return sk->sk_prot->hash(sk);
1461 }
1462
1463 /* About 10 seconds */
1464 #define SOCK_DESTROY_TIME (10*HZ)
1465
1466 /* Sockets 0-1023 can't be bound to unless you are superuser */
1467 #define PROT_SOCK 1024
1468
1469 #define SHUTDOWN_MASK 3
1470 #define RCV_SHUTDOWN 1
1471 #define SEND_SHUTDOWN 2
1472
1473 #define SOCK_BINDADDR_LOCK 4
1474 #define SOCK_BINDPORT_LOCK 8
1475
1476 struct socket_alloc {
1477 struct socket socket;
1478 struct inode vfs_inode;
1479 };
1480
SOCKET_I(struct inode * inode)1481 static inline struct socket *SOCKET_I(struct inode *inode)
1482 {
1483 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1484 }
1485
SOCK_INODE(struct socket * socket)1486 static inline struct inode *SOCK_INODE(struct socket *socket)
1487 {
1488 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1489 }
1490
1491 /*
1492 * Functions for memory accounting
1493 */
1494 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1495 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1496 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1497 void __sk_mem_reclaim(struct sock *sk, int amount);
1498
1499 #define SK_MEM_SEND 0
1500 #define SK_MEM_RECV 1
1501
1502 /* sysctl_mem values are in pages */
sk_prot_mem_limits(const struct sock * sk,int index)1503 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1504 {
1505 return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1506 }
1507
sk_mem_pages(int amt)1508 static inline int sk_mem_pages(int amt)
1509 {
1510 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1511 }
1512
sk_has_account(struct sock * sk)1513 static inline bool sk_has_account(struct sock *sk)
1514 {
1515 /* return true if protocol supports memory accounting */
1516 return !!sk->sk_prot->memory_allocated;
1517 }
1518
sk_wmem_schedule(struct sock * sk,int size)1519 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1520 {
1521 int delta;
1522
1523 if (!sk_has_account(sk))
1524 return true;
1525 delta = size - sk->sk_forward_alloc;
1526 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1527 }
1528
1529 static inline bool
__sk_rmem_schedule(struct sock * sk,int size,bool pfmemalloc)1530 __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc)
1531 {
1532 int delta;
1533
1534 if (!sk_has_account(sk))
1535 return true;
1536 delta = size - sk->sk_forward_alloc;
1537 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1538 pfmemalloc;
1539 }
1540
1541 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1542 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1543 {
1544 return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb));
1545 }
1546
sk_unused_reserved_mem(const struct sock * sk)1547 static inline int sk_unused_reserved_mem(const struct sock *sk)
1548 {
1549 int unused_mem;
1550
1551 if (likely(!sk->sk_reserved_mem))
1552 return 0;
1553
1554 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1555 atomic_read(&sk->sk_rmem_alloc);
1556
1557 return unused_mem > 0 ? unused_mem : 0;
1558 }
1559
sk_mem_reclaim(struct sock * sk)1560 static inline void sk_mem_reclaim(struct sock *sk)
1561 {
1562 int reclaimable;
1563
1564 if (!sk_has_account(sk))
1565 return;
1566
1567 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1568
1569 if (reclaimable >= (int)PAGE_SIZE)
1570 __sk_mem_reclaim(sk, reclaimable);
1571 }
1572
sk_mem_reclaim_final(struct sock * sk)1573 static inline void sk_mem_reclaim_final(struct sock *sk)
1574 {
1575 sk->sk_reserved_mem = 0;
1576 sk_mem_reclaim(sk);
1577 }
1578
sk_mem_charge(struct sock * sk,int size)1579 static inline void sk_mem_charge(struct sock *sk, int size)
1580 {
1581 if (!sk_has_account(sk))
1582 return;
1583 sk_forward_alloc_add(sk, -size);
1584 }
1585
sk_mem_uncharge(struct sock * sk,int size)1586 static inline void sk_mem_uncharge(struct sock *sk, int size)
1587 {
1588 if (!sk_has_account(sk))
1589 return;
1590 sk_forward_alloc_add(sk, size);
1591 sk_mem_reclaim(sk);
1592 }
1593
1594 /*
1595 * Macro so as to not evaluate some arguments when
1596 * lockdep is not enabled.
1597 *
1598 * Mark both the sk_lock and the sk_lock.slock as a
1599 * per-address-family lock class.
1600 */
1601 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1602 do { \
1603 sk->sk_lock.owned = 0; \
1604 init_waitqueue_head(&sk->sk_lock.wq); \
1605 spin_lock_init(&(sk)->sk_lock.slock); \
1606 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1607 sizeof((sk)->sk_lock)); \
1608 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1609 (skey), (sname)); \
1610 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1611 } while (0)
1612
lockdep_sock_is_held(const struct sock * sk)1613 static inline bool lockdep_sock_is_held(const struct sock *sk)
1614 {
1615 return lockdep_is_held(&sk->sk_lock) ||
1616 lockdep_is_held(&sk->sk_lock.slock);
1617 }
1618
1619 void lock_sock_nested(struct sock *sk, int subclass);
1620
lock_sock(struct sock * sk)1621 static inline void lock_sock(struct sock *sk)
1622 {
1623 lock_sock_nested(sk, 0);
1624 }
1625
1626 void __lock_sock(struct sock *sk);
1627 void __release_sock(struct sock *sk);
1628 void release_sock(struct sock *sk);
1629
1630 /* BH context may only use the following locking interface. */
1631 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1632 #define bh_lock_sock_nested(__sk) \
1633 spin_lock_nested(&((__sk)->sk_lock.slock), \
1634 SINGLE_DEPTH_NESTING)
1635 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1636
1637 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1638
1639 /**
1640 * lock_sock_fast - fast version of lock_sock
1641 * @sk: socket
1642 *
1643 * This version should be used for very small section, where process won't block
1644 * return false if fast path is taken:
1645 *
1646 * sk_lock.slock locked, owned = 0, BH disabled
1647 *
1648 * return true if slow path is taken:
1649 *
1650 * sk_lock.slock unlocked, owned = 1, BH enabled
1651 */
lock_sock_fast(struct sock * sk)1652 static inline bool lock_sock_fast(struct sock *sk)
1653 {
1654 /* The sk_lock has mutex_lock() semantics here. */
1655 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1656
1657 return __lock_sock_fast(sk);
1658 }
1659
1660 /* fast socket lock variant for caller already holding a [different] socket lock */
lock_sock_fast_nested(struct sock * sk)1661 static inline bool lock_sock_fast_nested(struct sock *sk)
1662 {
1663 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1664
1665 return __lock_sock_fast(sk);
1666 }
1667
1668 /**
1669 * unlock_sock_fast - complement of lock_sock_fast
1670 * @sk: socket
1671 * @slow: slow mode
1672 *
1673 * fast unlock socket for user context.
1674 * If slow mode is on, we call regular release_sock()
1675 */
unlock_sock_fast(struct sock * sk,bool slow)1676 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1677 __releases(&sk->sk_lock.slock)
1678 {
1679 if (slow) {
1680 release_sock(sk);
1681 __release(&sk->sk_lock.slock);
1682 } else {
1683 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1684 spin_unlock_bh(&sk->sk_lock.slock);
1685 }
1686 }
1687
1688 void sockopt_lock_sock(struct sock *sk);
1689 void sockopt_release_sock(struct sock *sk);
1690 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1691 bool sockopt_capable(int cap);
1692
1693 /* Used by processes to "lock" a socket state, so that
1694 * interrupts and bottom half handlers won't change it
1695 * from under us. It essentially blocks any incoming
1696 * packets, so that we won't get any new data or any
1697 * packets that change the state of the socket.
1698 *
1699 * While locked, BH processing will add new packets to
1700 * the backlog queue. This queue is processed by the
1701 * owner of the socket lock right before it is released.
1702 *
1703 * Since ~2.3.5 it is also exclusive sleep lock serializing
1704 * accesses from user process context.
1705 */
1706
sock_owned_by_me(const struct sock * sk)1707 static inline void sock_owned_by_me(const struct sock *sk)
1708 {
1709 #ifdef CONFIG_LOCKDEP
1710 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1711 #endif
1712 }
1713
sock_not_owned_by_me(const struct sock * sk)1714 static inline void sock_not_owned_by_me(const struct sock *sk)
1715 {
1716 #ifdef CONFIG_LOCKDEP
1717 WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1718 #endif
1719 }
1720
sock_owned_by_user(const struct sock * sk)1721 static inline bool sock_owned_by_user(const struct sock *sk)
1722 {
1723 sock_owned_by_me(sk);
1724 return sk->sk_lock.owned;
1725 }
1726
sock_owned_by_user_nocheck(const struct sock * sk)1727 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1728 {
1729 return sk->sk_lock.owned;
1730 }
1731
sock_release_ownership(struct sock * sk)1732 static inline void sock_release_ownership(struct sock *sk)
1733 {
1734 DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1735 sk->sk_lock.owned = 0;
1736
1737 /* The sk_lock has mutex_unlock() semantics: */
1738 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1739 }
1740
1741 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1742 static inline bool sock_allow_reclassification(const struct sock *csk)
1743 {
1744 struct sock *sk = (struct sock *)csk;
1745
1746 return !sock_owned_by_user_nocheck(sk) &&
1747 !spin_is_locked(&sk->sk_lock.slock);
1748 }
1749
1750 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1751 struct proto *prot, int kern);
1752 void sk_free(struct sock *sk);
1753 void sk_destruct(struct sock *sk);
1754 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1755 void sk_free_unlock_clone(struct sock *sk);
1756
1757 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1758 gfp_t priority);
1759 void __sock_wfree(struct sk_buff *skb);
1760 void sock_wfree(struct sk_buff *skb);
1761 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1762 gfp_t priority);
1763 void skb_orphan_partial(struct sk_buff *skb);
1764 void sock_rfree(struct sk_buff *skb);
1765 void sock_efree(struct sk_buff *skb);
1766 #ifdef CONFIG_INET
1767 void sock_edemux(struct sk_buff *skb);
1768 void sock_pfree(struct sk_buff *skb);
1769
skb_set_owner_edemux(struct sk_buff * skb,struct sock * sk)1770 static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk)
1771 {
1772 skb_orphan(skb);
1773 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1774 skb->sk = sk;
1775 skb->destructor = sock_edemux;
1776 }
1777 }
1778 #else
1779 #define sock_edemux sock_efree
1780 #endif
1781
1782 int sk_setsockopt(struct sock *sk, int level, int optname,
1783 sockptr_t optval, unsigned int optlen);
1784 int sock_setsockopt(struct socket *sock, int level, int op,
1785 sockptr_t optval, unsigned int optlen);
1786 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1787 int optname, sockptr_t optval, int optlen);
1788 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1789 int optname, sockptr_t optval, sockptr_t optlen);
1790
1791 int sk_getsockopt(struct sock *sk, int level, int optname,
1792 sockptr_t optval, sockptr_t optlen);
1793 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1794 bool timeval, bool time32);
1795 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1796 unsigned long data_len, int noblock,
1797 int *errcode, int max_page_order);
1798
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)1799 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1800 unsigned long size,
1801 int noblock, int *errcode)
1802 {
1803 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1804 }
1805
1806 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1807 void sock_kfree_s(struct sock *sk, void *mem, int size);
1808 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1809 void sk_send_sigurg(struct sock *sk);
1810
sock_replace_proto(struct sock * sk,struct proto * proto)1811 static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1812 {
1813 if (sk->sk_socket)
1814 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1815 WRITE_ONCE(sk->sk_prot, proto);
1816 }
1817
1818 struct sockcm_cookie {
1819 u64 transmit_time;
1820 u32 mark;
1821 u32 tsflags;
1822 u32 ts_opt_id;
1823 };
1824
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1825 static inline void sockcm_init(struct sockcm_cookie *sockc,
1826 const struct sock *sk)
1827 {
1828 *sockc = (struct sockcm_cookie) {
1829 .tsflags = READ_ONCE(sk->sk_tsflags)
1830 };
1831 }
1832
1833 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1834 struct sockcm_cookie *sockc);
1835 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1836 struct sockcm_cookie *sockc);
1837
1838 /*
1839 * Functions to fill in entries in struct proto_ops when a protocol
1840 * does not implement a particular function.
1841 */
1842 int sock_no_bind(struct socket *, struct sockaddr *, int);
1843 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1844 int sock_no_socketpair(struct socket *, struct socket *);
1845 int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *);
1846 int sock_no_getname(struct socket *, struct sockaddr *, int);
1847 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1848 int sock_no_listen(struct socket *, int);
1849 int sock_no_shutdown(struct socket *, int);
1850 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1851 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1852 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1853 int sock_no_mmap(struct file *file, struct socket *sock,
1854 struct vm_area_struct *vma);
1855
1856 /*
1857 * Functions to fill in entries in struct proto_ops when a protocol
1858 * uses the inet style.
1859 */
1860 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1861 char __user *optval, int __user *optlen);
1862 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1863 int flags);
1864 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1865 sockptr_t optval, unsigned int optlen);
1866
1867 void sk_common_release(struct sock *sk);
1868
1869 /*
1870 * Default socket callbacks and setup code
1871 */
1872
1873 /* Initialise core socket variables using an explicit uid. */
1874 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1875
1876 /* Initialise core socket variables.
1877 * Assumes struct socket *sock is embedded in a struct socket_alloc.
1878 */
1879 void sock_init_data(struct socket *sock, struct sock *sk);
1880
1881 /*
1882 * Socket reference counting postulates.
1883 *
1884 * * Each user of socket SHOULD hold a reference count.
1885 * * Each access point to socket (an hash table bucket, reference from a list,
1886 * running timer, skb in flight MUST hold a reference count.
1887 * * When reference count hits 0, it means it will never increase back.
1888 * * When reference count hits 0, it means that no references from
1889 * outside exist to this socket and current process on current CPU
1890 * is last user and may/should destroy this socket.
1891 * * sk_free is called from any context: process, BH, IRQ. When
1892 * it is called, socket has no references from outside -> sk_free
1893 * may release descendant resources allocated by the socket, but
1894 * to the time when it is called, socket is NOT referenced by any
1895 * hash tables, lists etc.
1896 * * Packets, delivered from outside (from network or from another process)
1897 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1898 * when they sit in queue. Otherwise, packets will leak to hole, when
1899 * socket is looked up by one cpu and unhasing is made by another CPU.
1900 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1901 * (leak to backlog). Packet socket does all the processing inside
1902 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1903 * use separate SMP lock, so that they are prone too.
1904 */
1905
1906 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1907 static inline void sock_put(struct sock *sk)
1908 {
1909 if (refcount_dec_and_test(&sk->sk_refcnt))
1910 sk_free(sk);
1911 }
1912 /* Generic version of sock_put(), dealing with all sockets
1913 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1914 */
1915 void sock_gen_put(struct sock *sk);
1916
1917 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1918 unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1919 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1920 const int nested)
1921 {
1922 return __sk_receive_skb(sk, skb, nested, 1, true);
1923 }
1924
sk_tx_queue_set(struct sock * sk,int tx_queue)1925 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1926 {
1927 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1928 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1929 return;
1930 /* Paired with READ_ONCE() in sk_tx_queue_get() and
1931 * other WRITE_ONCE() because socket lock might be not held.
1932 */
1933 WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1934 }
1935
1936 #define NO_QUEUE_MAPPING USHRT_MAX
1937
sk_tx_queue_clear(struct sock * sk)1938 static inline void sk_tx_queue_clear(struct sock *sk)
1939 {
1940 /* Paired with READ_ONCE() in sk_tx_queue_get() and
1941 * other WRITE_ONCE() because socket lock might be not held.
1942 */
1943 WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1944 }
1945
sk_tx_queue_get(const struct sock * sk)1946 static inline int sk_tx_queue_get(const struct sock *sk)
1947 {
1948 if (sk) {
1949 /* Paired with WRITE_ONCE() in sk_tx_queue_clear()
1950 * and sk_tx_queue_set().
1951 */
1952 int val = READ_ONCE(sk->sk_tx_queue_mapping);
1953
1954 if (val != NO_QUEUE_MAPPING)
1955 return val;
1956 }
1957 return -1;
1958 }
1959
__sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb,bool force_set)1960 static inline void __sk_rx_queue_set(struct sock *sk,
1961 const struct sk_buff *skb,
1962 bool force_set)
1963 {
1964 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1965 if (skb_rx_queue_recorded(skb)) {
1966 u16 rx_queue = skb_get_rx_queue(skb);
1967
1968 if (force_set ||
1969 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
1970 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
1971 }
1972 #endif
1973 }
1974
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)1975 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1976 {
1977 __sk_rx_queue_set(sk, skb, true);
1978 }
1979
sk_rx_queue_update(struct sock * sk,const struct sk_buff * skb)1980 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
1981 {
1982 __sk_rx_queue_set(sk, skb, false);
1983 }
1984
sk_rx_queue_clear(struct sock * sk)1985 static inline void sk_rx_queue_clear(struct sock *sk)
1986 {
1987 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1988 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
1989 #endif
1990 }
1991
sk_rx_queue_get(const struct sock * sk)1992 static inline int sk_rx_queue_get(const struct sock *sk)
1993 {
1994 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1995 if (sk) {
1996 int res = READ_ONCE(sk->sk_rx_queue_mapping);
1997
1998 if (res != NO_QUEUE_MAPPING)
1999 return res;
2000 }
2001 #endif
2002
2003 return -1;
2004 }
2005
sk_set_socket(struct sock * sk,struct socket * sock)2006 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2007 {
2008 sk->sk_socket = sock;
2009 }
2010
sk_sleep(struct sock * sk)2011 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2012 {
2013 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2014 return &rcu_dereference_raw(sk->sk_wq)->wait;
2015 }
2016 /* Detach socket from process context.
2017 * Announce socket dead, detach it from wait queue and inode.
2018 * Note that parent inode held reference count on this struct sock,
2019 * we do not release it in this function, because protocol
2020 * probably wants some additional cleanups or even continuing
2021 * to work with this socket (TCP).
2022 */
sock_orphan(struct sock * sk)2023 static inline void sock_orphan(struct sock *sk)
2024 {
2025 write_lock_bh(&sk->sk_callback_lock);
2026 sock_set_flag(sk, SOCK_DEAD);
2027 sk_set_socket(sk, NULL);
2028 sk->sk_wq = NULL;
2029 write_unlock_bh(&sk->sk_callback_lock);
2030 }
2031
sock_graft(struct sock * sk,struct socket * parent)2032 static inline void sock_graft(struct sock *sk, struct socket *parent)
2033 {
2034 WARN_ON(parent->sk);
2035 write_lock_bh(&sk->sk_callback_lock);
2036 rcu_assign_pointer(sk->sk_wq, &parent->wq);
2037 parent->sk = sk;
2038 sk_set_socket(sk, parent);
2039 sk->sk_uid = SOCK_INODE(parent)->i_uid;
2040 security_sock_graft(sk, parent);
2041 write_unlock_bh(&sk->sk_callback_lock);
2042 }
2043
2044 kuid_t sock_i_uid(struct sock *sk);
2045 unsigned long __sock_i_ino(struct sock *sk);
2046 unsigned long sock_i_ino(struct sock *sk);
2047
sock_net_uid(const struct net * net,const struct sock * sk)2048 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2049 {
2050 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2051 }
2052
net_tx_rndhash(void)2053 static inline u32 net_tx_rndhash(void)
2054 {
2055 u32 v = get_random_u32();
2056
2057 return v ?: 1;
2058 }
2059
sk_set_txhash(struct sock * sk)2060 static inline void sk_set_txhash(struct sock *sk)
2061 {
2062 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2063 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2064 }
2065
sk_rethink_txhash(struct sock * sk)2066 static inline bool sk_rethink_txhash(struct sock *sk)
2067 {
2068 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2069 sk_set_txhash(sk);
2070 return true;
2071 }
2072 return false;
2073 }
2074
2075 static inline struct dst_entry *
__sk_dst_get(const struct sock * sk)2076 __sk_dst_get(const struct sock *sk)
2077 {
2078 return rcu_dereference_check(sk->sk_dst_cache,
2079 lockdep_sock_is_held(sk));
2080 }
2081
2082 static inline struct dst_entry *
sk_dst_get(const struct sock * sk)2083 sk_dst_get(const struct sock *sk)
2084 {
2085 struct dst_entry *dst;
2086
2087 rcu_read_lock();
2088 dst = rcu_dereference(sk->sk_dst_cache);
2089 if (dst && !rcuref_get(&dst->__rcuref))
2090 dst = NULL;
2091 rcu_read_unlock();
2092 return dst;
2093 }
2094
__dst_negative_advice(struct sock * sk)2095 static inline void __dst_negative_advice(struct sock *sk)
2096 {
2097 struct dst_entry *dst = __sk_dst_get(sk);
2098
2099 if (dst && dst->ops->negative_advice)
2100 dst->ops->negative_advice(sk, dst);
2101 }
2102
dst_negative_advice(struct sock * sk)2103 static inline void dst_negative_advice(struct sock *sk)
2104 {
2105 sk_rethink_txhash(sk);
2106 __dst_negative_advice(sk);
2107 }
2108
2109 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)2110 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2111 {
2112 struct dst_entry *old_dst;
2113
2114 sk_tx_queue_clear(sk);
2115 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2116 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2117 lockdep_sock_is_held(sk));
2118 rcu_assign_pointer(sk->sk_dst_cache, dst);
2119 dst_release(old_dst);
2120 }
2121
2122 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)2123 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2124 {
2125 struct dst_entry *old_dst;
2126
2127 sk_tx_queue_clear(sk);
2128 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2129 old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst)));
2130 dst_release(old_dst);
2131 }
2132
2133 static inline void
__sk_dst_reset(struct sock * sk)2134 __sk_dst_reset(struct sock *sk)
2135 {
2136 __sk_dst_set(sk, NULL);
2137 }
2138
2139 static inline void
sk_dst_reset(struct sock * sk)2140 sk_dst_reset(struct sock *sk)
2141 {
2142 sk_dst_set(sk, NULL);
2143 }
2144
2145 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2146
2147 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2148
sk_dst_confirm(struct sock * sk)2149 static inline void sk_dst_confirm(struct sock *sk)
2150 {
2151 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2152 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2153 }
2154
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2155 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2156 {
2157 if (skb_get_dst_pending_confirm(skb)) {
2158 struct sock *sk = skb->sk;
2159
2160 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2161 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2162 neigh_confirm(n);
2163 }
2164 }
2165
2166 bool sk_mc_loop(const struct sock *sk);
2167
sk_can_gso(const struct sock * sk)2168 static inline bool sk_can_gso(const struct sock *sk)
2169 {
2170 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2171 }
2172
2173 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2174
sk_gso_disable(struct sock * sk)2175 static inline void sk_gso_disable(struct sock *sk)
2176 {
2177 sk->sk_gso_disabled = 1;
2178 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2179 }
2180
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2181 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2182 struct iov_iter *from, char *to,
2183 int copy, int offset)
2184 {
2185 if (skb->ip_summed == CHECKSUM_NONE) {
2186 __wsum csum = 0;
2187 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2188 return -EFAULT;
2189 skb->csum = csum_block_add(skb->csum, csum, offset);
2190 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2191 if (!copy_from_iter_full_nocache(to, copy, from))
2192 return -EFAULT;
2193 } else if (!copy_from_iter_full(to, copy, from))
2194 return -EFAULT;
2195
2196 return 0;
2197 }
2198
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2199 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2200 struct iov_iter *from, int copy)
2201 {
2202 int err, offset = skb->len;
2203
2204 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2205 copy, offset);
2206 if (err)
2207 __skb_trim(skb, offset);
2208
2209 return err;
2210 }
2211
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2212 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2213 struct sk_buff *skb,
2214 struct page *page,
2215 int off, int copy)
2216 {
2217 int err;
2218
2219 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2220 copy, skb->len);
2221 if (err)
2222 return err;
2223
2224 skb_len_add(skb, copy);
2225 sk_wmem_queued_add(sk, copy);
2226 sk_mem_charge(sk, copy);
2227 return 0;
2228 }
2229
2230 /**
2231 * sk_wmem_alloc_get - returns write allocations
2232 * @sk: socket
2233 *
2234 * Return: sk_wmem_alloc minus initial offset of one
2235 */
sk_wmem_alloc_get(const struct sock * sk)2236 static inline int sk_wmem_alloc_get(const struct sock *sk)
2237 {
2238 return refcount_read(&sk->sk_wmem_alloc) - 1;
2239 }
2240
2241 /**
2242 * sk_rmem_alloc_get - returns read allocations
2243 * @sk: socket
2244 *
2245 * Return: sk_rmem_alloc
2246 */
sk_rmem_alloc_get(const struct sock * sk)2247 static inline int sk_rmem_alloc_get(const struct sock *sk)
2248 {
2249 return atomic_read(&sk->sk_rmem_alloc);
2250 }
2251
2252 /**
2253 * sk_has_allocations - check if allocations are outstanding
2254 * @sk: socket
2255 *
2256 * Return: true if socket has write or read allocations
2257 */
sk_has_allocations(const struct sock * sk)2258 static inline bool sk_has_allocations(const struct sock *sk)
2259 {
2260 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2261 }
2262
2263 /**
2264 * skwq_has_sleeper - check if there are any waiting processes
2265 * @wq: struct socket_wq
2266 *
2267 * Return: true if socket_wq has waiting processes
2268 *
2269 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2270 * barrier call. They were added due to the race found within the tcp code.
2271 *
2272 * Consider following tcp code paths::
2273 *
2274 * CPU1 CPU2
2275 * sys_select receive packet
2276 * ... ...
2277 * __add_wait_queue update tp->rcv_nxt
2278 * ... ...
2279 * tp->rcv_nxt check sock_def_readable
2280 * ... {
2281 * schedule rcu_read_lock();
2282 * wq = rcu_dereference(sk->sk_wq);
2283 * if (wq && waitqueue_active(&wq->wait))
2284 * wake_up_interruptible(&wq->wait)
2285 * ...
2286 * }
2287 *
2288 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2289 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2290 * could then endup calling schedule and sleep forever if there are no more
2291 * data on the socket.
2292 *
2293 */
skwq_has_sleeper(struct socket_wq * wq)2294 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2295 {
2296 return wq && wq_has_sleeper(&wq->wait);
2297 }
2298
2299 /**
2300 * sock_poll_wait - wrapper for the poll_wait call.
2301 * @filp: file
2302 * @sock: socket to wait on
2303 * @p: poll_table
2304 *
2305 * See the comments in the wq_has_sleeper function.
2306 */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2307 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2308 poll_table *p)
2309 {
2310 /* Provides a barrier we need to be sure we are in sync
2311 * with the socket flags modification.
2312 *
2313 * This memory barrier is paired in the wq_has_sleeper.
2314 */
2315 poll_wait(filp, &sock->wq.wait, p);
2316 }
2317
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2318 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2319 {
2320 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2321 u32 txhash = READ_ONCE(sk->sk_txhash);
2322
2323 if (txhash) {
2324 skb->l4_hash = 1;
2325 skb->hash = txhash;
2326 }
2327 }
2328
2329 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2330
2331 /*
2332 * Queue a received datagram if it will fit. Stream and sequenced
2333 * protocols can't normally use this as they need to fit buffers in
2334 * and play with them.
2335 *
2336 * Inlined as it's very short and called for pretty much every
2337 * packet ever received.
2338 */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2339 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2340 {
2341 skb_orphan(skb);
2342 skb->sk = sk;
2343 skb->destructor = sock_rfree;
2344 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2345 sk_mem_charge(sk, skb->truesize);
2346 }
2347
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2348 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2349 {
2350 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2351 skb_orphan(skb);
2352 skb->destructor = sock_efree;
2353 skb->sk = sk;
2354 return true;
2355 }
2356 return false;
2357 }
2358
skb_clone_and_charge_r(struct sk_buff * skb,struct sock * sk)2359 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2360 {
2361 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2362 if (skb) {
2363 if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2364 skb_set_owner_r(skb, sk);
2365 return skb;
2366 }
2367 __kfree_skb(skb);
2368 }
2369 return NULL;
2370 }
2371
skb_prepare_for_gro(struct sk_buff * skb)2372 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2373 {
2374 if (skb->destructor != sock_wfree) {
2375 skb_orphan(skb);
2376 return;
2377 }
2378 skb->slow_gro = 1;
2379 }
2380
2381 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2382 unsigned long expires);
2383
2384 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2385
2386 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2387
2388 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2389 struct sk_buff *skb, unsigned int flags,
2390 void (*destructor)(struct sock *sk,
2391 struct sk_buff *skb));
2392 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2393
2394 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2395 enum skb_drop_reason *reason);
2396
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2397 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2398 {
2399 return sock_queue_rcv_skb_reason(sk, skb, NULL);
2400 }
2401
2402 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2403 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2404
2405 /*
2406 * Recover an error report and clear atomically
2407 */
2408
sock_error(struct sock * sk)2409 static inline int sock_error(struct sock *sk)
2410 {
2411 int err;
2412
2413 /* Avoid an atomic operation for the common case.
2414 * This is racy since another cpu/thread can change sk_err under us.
2415 */
2416 if (likely(data_race(!sk->sk_err)))
2417 return 0;
2418
2419 err = xchg(&sk->sk_err, 0);
2420 return -err;
2421 }
2422
2423 void sk_error_report(struct sock *sk);
2424
sock_wspace(struct sock * sk)2425 static inline unsigned long sock_wspace(struct sock *sk)
2426 {
2427 int amt = 0;
2428
2429 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2430 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2431 if (amt < 0)
2432 amt = 0;
2433 }
2434 return amt;
2435 }
2436
2437 /* Note:
2438 * We use sk->sk_wq_raw, from contexts knowing this
2439 * pointer is not NULL and cannot disappear/change.
2440 */
sk_set_bit(int nr,struct sock * sk)2441 static inline void sk_set_bit(int nr, struct sock *sk)
2442 {
2443 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2444 !sock_flag(sk, SOCK_FASYNC))
2445 return;
2446
2447 set_bit(nr, &sk->sk_wq_raw->flags);
2448 }
2449
sk_clear_bit(int nr,struct sock * sk)2450 static inline void sk_clear_bit(int nr, struct sock *sk)
2451 {
2452 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2453 !sock_flag(sk, SOCK_FASYNC))
2454 return;
2455
2456 clear_bit(nr, &sk->sk_wq_raw->flags);
2457 }
2458
sk_wake_async(const struct sock * sk,int how,int band)2459 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2460 {
2461 if (sock_flag(sk, SOCK_FASYNC)) {
2462 rcu_read_lock();
2463 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2464 rcu_read_unlock();
2465 }
2466 }
2467
sk_wake_async_rcu(const struct sock * sk,int how,int band)2468 static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band)
2469 {
2470 if (unlikely(sock_flag(sk, SOCK_FASYNC)))
2471 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2472 }
2473
2474 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2475 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2476 * Note: for send buffers, TCP works better if we can build two skbs at
2477 * minimum.
2478 */
2479 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2480
2481 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2482 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2483
sk_stream_moderate_sndbuf(struct sock * sk)2484 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2485 {
2486 u32 val;
2487
2488 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2489 return;
2490
2491 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2492 val = max_t(u32, val, sk_unused_reserved_mem(sk));
2493
2494 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2495 }
2496
2497 /**
2498 * sk_page_frag - return an appropriate page_frag
2499 * @sk: socket
2500 *
2501 * Use the per task page_frag instead of the per socket one for
2502 * optimization when we know that we're in process context and own
2503 * everything that's associated with %current.
2504 *
2505 * Both direct reclaim and page faults can nest inside other
2506 * socket operations and end up recursing into sk_page_frag()
2507 * while it's already in use: explicitly avoid task page_frag
2508 * when users disable sk_use_task_frag.
2509 *
2510 * Return: a per task page_frag if context allows that,
2511 * otherwise a per socket one.
2512 */
sk_page_frag(struct sock * sk)2513 static inline struct page_frag *sk_page_frag(struct sock *sk)
2514 {
2515 if (sk->sk_use_task_frag)
2516 return ¤t->task_frag;
2517
2518 return &sk->sk_frag;
2519 }
2520
2521 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2522
2523 /*
2524 * Default write policy as shown to user space via poll/select/SIGIO
2525 */
sock_writeable(const struct sock * sk)2526 static inline bool sock_writeable(const struct sock *sk)
2527 {
2528 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2529 }
2530
gfp_any(void)2531 static inline gfp_t gfp_any(void)
2532 {
2533 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2534 }
2535
gfp_memcg_charge(void)2536 static inline gfp_t gfp_memcg_charge(void)
2537 {
2538 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2539 }
2540
sock_rcvtimeo(const struct sock * sk,bool noblock)2541 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2542 {
2543 return noblock ? 0 : sk->sk_rcvtimeo;
2544 }
2545
sock_sndtimeo(const struct sock * sk,bool noblock)2546 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2547 {
2548 return noblock ? 0 : sk->sk_sndtimeo;
2549 }
2550
sock_rcvlowat(const struct sock * sk,int waitall,int len)2551 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2552 {
2553 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2554
2555 return v ?: 1;
2556 }
2557
2558 /* Alas, with timeout socket operations are not restartable.
2559 * Compare this to poll().
2560 */
sock_intr_errno(long timeo)2561 static inline int sock_intr_errno(long timeo)
2562 {
2563 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2564 }
2565
2566 struct sock_skb_cb {
2567 u32 dropcount;
2568 };
2569
2570 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2571 * using skb->cb[] would keep using it directly and utilize its
2572 * alignment guarantee.
2573 */
2574 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2575 sizeof(struct sock_skb_cb)))
2576
2577 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2578 SOCK_SKB_CB_OFFSET))
2579
2580 #define sock_skb_cb_check_size(size) \
2581 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2582
2583 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2584 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2585 {
2586 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2587 atomic_read(&sk->sk_drops) : 0;
2588 }
2589
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2590 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2591 {
2592 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2593
2594 atomic_add(segs, &sk->sk_drops);
2595 }
2596
sock_read_timestamp(struct sock * sk)2597 static inline ktime_t sock_read_timestamp(struct sock *sk)
2598 {
2599 #if BITS_PER_LONG==32
2600 unsigned int seq;
2601 ktime_t kt;
2602
2603 do {
2604 seq = read_seqbegin(&sk->sk_stamp_seq);
2605 kt = sk->sk_stamp;
2606 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2607
2608 return kt;
2609 #else
2610 return READ_ONCE(sk->sk_stamp);
2611 #endif
2612 }
2613
sock_write_timestamp(struct sock * sk,ktime_t kt)2614 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2615 {
2616 #if BITS_PER_LONG==32
2617 write_seqlock(&sk->sk_stamp_seq);
2618 sk->sk_stamp = kt;
2619 write_sequnlock(&sk->sk_stamp_seq);
2620 #else
2621 WRITE_ONCE(sk->sk_stamp, kt);
2622 #endif
2623 }
2624
2625 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2626 struct sk_buff *skb);
2627 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2628 struct sk_buff *skb);
2629
2630 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2631 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2632 {
2633 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2634 u32 tsflags = READ_ONCE(sk->sk_tsflags);
2635 ktime_t kt = skb->tstamp;
2636 /*
2637 * generate control messages if
2638 * - receive time stamping in software requested
2639 * - software time stamp available and wanted
2640 * - hardware time stamps available and wanted
2641 */
2642 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2643 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2644 (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2645 (hwtstamps->hwtstamp &&
2646 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2647 __sock_recv_timestamp(msg, sk, skb);
2648 else
2649 sock_write_timestamp(sk, kt);
2650
2651 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2652 __sock_recv_wifi_status(msg, sk, skb);
2653 }
2654
2655 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2656 struct sk_buff *skb);
2657
2658 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2659 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2660 struct sk_buff *skb)
2661 {
2662 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \
2663 (1UL << SOCK_RCVTSTAMP) | \
2664 (1UL << SOCK_RCVMARK))
2665 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2666 SOF_TIMESTAMPING_RAW_HARDWARE)
2667
2668 if (sk->sk_flags & FLAGS_RECV_CMSGS ||
2669 READ_ONCE(sk->sk_tsflags) & TSFLAGS_ANY)
2670 __sock_recv_cmsgs(msg, sk, skb);
2671 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2672 sock_write_timestamp(sk, skb->tstamp);
2673 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2674 sock_write_timestamp(sk, 0);
2675 }
2676
2677 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags);
2678
2679 /**
2680 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2681 * @sk: socket sending this packet
2682 * @sockc: pointer to socket cmsg cookie to get timestamping info
2683 * @tx_flags: completed with instructions for time stamping
2684 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2685 *
2686 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2687 */
_sock_tx_timestamp(struct sock * sk,const struct sockcm_cookie * sockc,__u8 * tx_flags,__u32 * tskey)2688 static inline void _sock_tx_timestamp(struct sock *sk,
2689 const struct sockcm_cookie *sockc,
2690 __u8 *tx_flags, __u32 *tskey)
2691 {
2692 __u32 tsflags = sockc->tsflags;
2693
2694 if (unlikely(tsflags)) {
2695 __sock_tx_timestamp(tsflags, tx_flags);
2696 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2697 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) {
2698 if (tsflags & SOCKCM_FLAG_TS_OPT_ID)
2699 *tskey = sockc->ts_opt_id;
2700 else
2701 *tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2702 }
2703 }
2704 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2705 *tx_flags |= SKBTX_WIFI_STATUS;
2706 }
2707
sock_tx_timestamp(struct sock * sk,const struct sockcm_cookie * sockc,__u8 * tx_flags)2708 static inline void sock_tx_timestamp(struct sock *sk,
2709 const struct sockcm_cookie *sockc,
2710 __u8 *tx_flags)
2711 {
2712 _sock_tx_timestamp(sk, sockc, tx_flags, NULL);
2713 }
2714
skb_setup_tx_timestamp(struct sk_buff * skb,const struct sockcm_cookie * sockc)2715 static inline void skb_setup_tx_timestamp(struct sk_buff *skb,
2716 const struct sockcm_cookie *sockc)
2717 {
2718 _sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags,
2719 &skb_shinfo(skb)->tskey);
2720 }
2721
sk_is_inet(const struct sock * sk)2722 static inline bool sk_is_inet(const struct sock *sk)
2723 {
2724 int family = READ_ONCE(sk->sk_family);
2725
2726 return family == AF_INET || family == AF_INET6;
2727 }
2728
sk_is_tcp(const struct sock * sk)2729 static inline bool sk_is_tcp(const struct sock *sk)
2730 {
2731 return sk_is_inet(sk) &&
2732 sk->sk_type == SOCK_STREAM &&
2733 sk->sk_protocol == IPPROTO_TCP;
2734 }
2735
sk_is_udp(const struct sock * sk)2736 static inline bool sk_is_udp(const struct sock *sk)
2737 {
2738 return sk_is_inet(sk) &&
2739 sk->sk_type == SOCK_DGRAM &&
2740 sk->sk_protocol == IPPROTO_UDP;
2741 }
2742
sk_is_stream_unix(const struct sock * sk)2743 static inline bool sk_is_stream_unix(const struct sock *sk)
2744 {
2745 return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM;
2746 }
2747
sk_is_vsock(const struct sock * sk)2748 static inline bool sk_is_vsock(const struct sock *sk)
2749 {
2750 return sk->sk_family == AF_VSOCK;
2751 }
2752
2753 /**
2754 * sk_eat_skb - Release a skb if it is no longer needed
2755 * @sk: socket to eat this skb from
2756 * @skb: socket buffer to eat
2757 *
2758 * This routine must be called with interrupts disabled or with the socket
2759 * locked so that the sk_buff queue operation is ok.
2760 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2761 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2762 {
2763 __skb_unlink(skb, &sk->sk_receive_queue);
2764 __kfree_skb(skb);
2765 }
2766
2767 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2768 skb_sk_is_prefetched(struct sk_buff *skb)
2769 {
2770 #ifdef CONFIG_INET
2771 return skb->destructor == sock_pfree;
2772 #else
2773 return false;
2774 #endif /* CONFIG_INET */
2775 }
2776
2777 /* This helper checks if a socket is a full socket,
2778 * ie _not_ a timewait or request socket.
2779 */
sk_fullsock(const struct sock * sk)2780 static inline bool sk_fullsock(const struct sock *sk)
2781 {
2782 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2783 }
2784
2785 static inline bool
sk_is_refcounted(struct sock * sk)2786 sk_is_refcounted(struct sock *sk)
2787 {
2788 /* Only full sockets have sk->sk_flags. */
2789 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2790 }
2791
2792 /* Checks if this SKB belongs to an HW offloaded socket
2793 * and whether any SW fallbacks are required based on dev.
2794 * Check decrypted mark in case skb_orphan() cleared socket.
2795 */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2796 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2797 struct net_device *dev)
2798 {
2799 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2800 struct sock *sk = skb->sk;
2801
2802 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2803 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2804 } else if (unlikely(skb_is_decrypted(skb))) {
2805 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2806 kfree_skb(skb);
2807 skb = NULL;
2808 }
2809 #endif
2810
2811 return skb;
2812 }
2813
2814 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2815 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2816 */
sk_listener(const struct sock * sk)2817 static inline bool sk_listener(const struct sock *sk)
2818 {
2819 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2820 }
2821
2822 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT
2823 * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE)
2824 * TCP RST and ACK can be attached to TIME_WAIT.
2825 */
sk_listener_or_tw(const struct sock * sk)2826 static inline bool sk_listener_or_tw(const struct sock *sk)
2827 {
2828 return (1 << READ_ONCE(sk->sk_state)) &
2829 (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT);
2830 }
2831
2832 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2833 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2834 int type);
2835
2836 bool sk_ns_capable(const struct sock *sk,
2837 struct user_namespace *user_ns, int cap);
2838 bool sk_capable(const struct sock *sk, int cap);
2839 bool sk_net_capable(const struct sock *sk, int cap);
2840
2841 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2842
2843 /* Take into consideration the size of the struct sk_buff overhead in the
2844 * determination of these values, since that is non-constant across
2845 * platforms. This makes socket queueing behavior and performance
2846 * not depend upon such differences.
2847 */
2848 #define _SK_MEM_PACKETS 256
2849 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2850 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2851 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2852
2853 extern __u32 sysctl_wmem_max;
2854 extern __u32 sysctl_rmem_max;
2855
2856 extern __u32 sysctl_wmem_default;
2857 extern __u32 sysctl_rmem_default;
2858
2859 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2860 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2861
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2862 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2863 {
2864 /* Does this proto have per netns sysctl_wmem ? */
2865 if (proto->sysctl_wmem_offset)
2866 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2867
2868 return READ_ONCE(*proto->sysctl_wmem);
2869 }
2870
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2871 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2872 {
2873 /* Does this proto have per netns sysctl_rmem ? */
2874 if (proto->sysctl_rmem_offset)
2875 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2876
2877 return READ_ONCE(*proto->sysctl_rmem);
2878 }
2879
2880 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2881 * Some wifi drivers need to tweak it to get more chunks.
2882 * They can use this helper from their ndo_start_xmit()
2883 */
sk_pacing_shift_update(struct sock * sk,int val)2884 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2885 {
2886 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2887 return;
2888 WRITE_ONCE(sk->sk_pacing_shift, val);
2889 }
2890
2891 /* if a socket is bound to a device, check that the given device
2892 * index is either the same or that the socket is bound to an L3
2893 * master device and the given device index is also enslaved to
2894 * that L3 master
2895 */
sk_dev_equal_l3scope(struct sock * sk,int dif)2896 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2897 {
2898 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2899 int mdif;
2900
2901 if (!bound_dev_if || bound_dev_if == dif)
2902 return true;
2903
2904 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2905 if (mdif && mdif == bound_dev_if)
2906 return true;
2907
2908 return false;
2909 }
2910
2911 void sock_def_readable(struct sock *sk);
2912
2913 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2914 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2915 int sock_set_timestamping(struct sock *sk, int optname,
2916 struct so_timestamping timestamping);
2917
2918 void sock_enable_timestamps(struct sock *sk);
2919 void sock_no_linger(struct sock *sk);
2920 void sock_set_keepalive(struct sock *sk);
2921 void sock_set_priority(struct sock *sk, u32 priority);
2922 void sock_set_rcvbuf(struct sock *sk, int val);
2923 void sock_set_mark(struct sock *sk, u32 val);
2924 void sock_set_reuseaddr(struct sock *sk);
2925 void sock_set_reuseport(struct sock *sk);
2926 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2927
2928 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2929
2930 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2931 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2932 sockptr_t optval, int optlen, bool old_timeval);
2933
2934 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
2935 void __user *arg, void *karg, size_t size);
2936 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
sk_is_readable(struct sock * sk)2937 static inline bool sk_is_readable(struct sock *sk)
2938 {
2939 if (sk->sk_prot->sock_is_readable)
2940 return sk->sk_prot->sock_is_readable(sk);
2941 return false;
2942 }
2943 #endif /* _SOCK_H */
2944