1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2017 Dell EMC
5 * Copyright (c) 2000-2001, 2003 David O'Brien
6 * Copyright (c) 1995-1996 Søren Schmidt
7 * Copyright (c) 1996 Peter Wemm
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer
15 * in this position and unchanged.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. The name of the author may not be used to endorse or promote products
20 * derived from this software without specific prior written permission
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include "opt_capsicum.h"
35
36 #include <sys/param.h>
37 #include <sys/capsicum.h>
38 #include <sys/compressor.h>
39 #include <sys/exec.h>
40 #include <sys/fcntl.h>
41 #include <sys/imgact.h>
42 #include <sys/imgact_elf.h>
43 #include <sys/jail.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mount.h>
48 #include <sys/mman.h>
49 #include <sys/namei.h>
50 #include <sys/proc.h>
51 #include <sys/procfs.h>
52 #include <sys/ptrace.h>
53 #include <sys/racct.h>
54 #include <sys/reg.h>
55 #include <sys/resourcevar.h>
56 #include <sys/rwlock.h>
57 #include <sys/sbuf.h>
58 #include <sys/sf_buf.h>
59 #include <sys/smp.h>
60 #include <sys/systm.h>
61 #include <sys/signalvar.h>
62 #include <sys/stat.h>
63 #include <sys/sx.h>
64 #include <sys/syscall.h>
65 #include <sys/sysctl.h>
66 #include <sys/sysent.h>
67 #include <sys/ucoredump.h>
68 #include <sys/vnode.h>
69 #include <sys/syslog.h>
70 #include <sys/eventhandler.h>
71 #include <sys/user.h>
72
73 #include <vm/vm.h>
74 #include <vm/vm_kern.h>
75 #include <vm/vm_param.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_object.h>
79 #include <vm/vm_extern.h>
80
81 #include <machine/elf.h>
82 #include <machine/md_var.h>
83
84 #define ELF_NOTE_ROUNDSIZE 4
85 #define OLD_EI_BRAND 8
86
87 /*
88 * ELF_ABI_NAME is a string name of the ELF ABI. ELF_ABI_ID is used
89 * to build variable names.
90 */
91 #define ELF_ABI_NAME __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
92 #define ELF_ABI_ID __CONCAT(elf, __ELF_WORD_SIZE)
93
94 static int __elfN(check_header)(const Elf_Ehdr *hdr);
95 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
96 const char *interp, int32_t *osrel, uint32_t *fctl0);
97 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
98 u_long *entry);
99 static int __elfN(load_section)(const struct image_params *imgp,
100 vm_ooffset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz,
101 vm_prot_t prot);
102 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
103 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
104 int32_t *osrel);
105 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
106 static bool __elfN(check_note)(struct image_params *imgp,
107 Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0,
108 uint32_t *fctl0);
109 static vm_prot_t __elfN(trans_prot)(Elf_Word);
110 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
111 static size_t __elfN(prepare_register_notes)(struct thread *td,
112 struct note_info_list *list, struct thread *target_td);
113
114 SYSCTL_NODE(_kern, OID_AUTO, ELF_ABI_ID, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
115 "");
116
117 #define ELF_NODE_OID __CONCAT(_kern_, ELF_ABI_ID)
118
119 int __elfN(fallback_brand) = -1;
120 SYSCTL_INT(ELF_NODE_OID, OID_AUTO,
121 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
122 ELF_ABI_NAME " brand of last resort");
123
124 static int elf_legacy_coredump = 0;
125 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
126 &elf_legacy_coredump, 0,
127 "include all and only RW pages in core dumps");
128
129 int __elfN(nxstack) =
130 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
131 defined(__arm__) || defined(__aarch64__) || \
132 defined(__riscv)
133 1;
134 #else
135 0;
136 #endif
137 SYSCTL_INT(ELF_NODE_OID, OID_AUTO,
138 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
139 ELF_ABI_NAME ": support PT_GNU_STACK for non-executable stack control");
140
141 #if defined(__amd64__)
142 static int __elfN(vdso) = 1;
143 SYSCTL_INT(ELF_NODE_OID, OID_AUTO,
144 vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0,
145 ELF_ABI_NAME ": enable vdso preloading");
146 #else
147 static int __elfN(vdso) = 0;
148 #endif
149
150 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
151 int i386_read_exec = 0;
152 SYSCTL_INT(ELF_NODE_OID, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
153 "enable execution from readable segments");
154 #endif
155
156 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR;
157 static int
sysctl_pie_base(SYSCTL_HANDLER_ARGS)158 sysctl_pie_base(SYSCTL_HANDLER_ARGS)
159 {
160 u_long val;
161 int error;
162
163 val = __elfN(pie_base);
164 error = sysctl_handle_long(oidp, &val, 0, req);
165 if (error != 0 || req->newptr == NULL)
166 return (error);
167 if ((val & PAGE_MASK) != 0)
168 return (EINVAL);
169 __elfN(pie_base) = val;
170 return (0);
171 }
172 SYSCTL_PROC(ELF_NODE_OID, OID_AUTO, pie_base,
173 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
174 sysctl_pie_base, "LU",
175 "PIE load base without randomization");
176
177 SYSCTL_NODE(ELF_NODE_OID, OID_AUTO, aslr,
178 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
179 "");
180 #define ASLR_NODE_OID __CONCAT(ELF_NODE_OID, _aslr)
181
182 /*
183 * Enable ASLR by default for 64-bit non-PIE binaries. 32-bit architectures
184 * have limited address space (which can cause issues for applications with
185 * high memory use) so we leave it off there.
186 */
187 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64;
188 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
189 &__elfN(aslr_enabled), 0,
190 ELF_ABI_NAME ": enable address map randomization");
191
192 /*
193 * Enable ASLR by default for 64-bit PIE binaries.
194 */
195 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64;
196 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
197 &__elfN(pie_aslr_enabled), 0,
198 ELF_ABI_NAME ": enable address map randomization for PIE binaries");
199
200 /*
201 * Sbrk is deprecated and it can be assumed that in most cases it will not be
202 * used anyway. This setting is valid only with ASLR enabled, and allows ASLR
203 * to use the bss grow region.
204 */
205 static int __elfN(aslr_honor_sbrk) = 0;
206 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
207 &__elfN(aslr_honor_sbrk), 0,
208 ELF_ABI_NAME ": assume sbrk is used");
209
210 static int __elfN(aslr_stack) = __ELF_WORD_SIZE == 64;
211 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN,
212 &__elfN(aslr_stack), 0,
213 ELF_ABI_NAME ": enable stack address randomization");
214
215 static int __elfN(aslr_shared_page) = __ELF_WORD_SIZE == 64;
216 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, shared_page, CTLFLAG_RWTUN,
217 &__elfN(aslr_shared_page), 0,
218 ELF_ABI_NAME ": enable shared page address randomization");
219
220 static int __elfN(sigfastblock) = 1;
221 SYSCTL_INT(ELF_NODE_OID, OID_AUTO, sigfastblock,
222 CTLFLAG_RWTUN, &__elfN(sigfastblock), 0,
223 "enable sigfastblock for new processes");
224
225 static bool __elfN(allow_wx) = true;
226 SYSCTL_BOOL(ELF_NODE_OID, OID_AUTO, allow_wx,
227 CTLFLAG_RWTUN, &__elfN(allow_wx), 0,
228 "Allow pages to be mapped simultaneously writable and executable");
229
230 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
231
232 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
233
234 Elf_Brandnote __elfN(freebsd_brandnote) = {
235 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR),
236 .hdr.n_descsz = sizeof(int32_t),
237 .hdr.n_type = NT_FREEBSD_ABI_TAG,
238 .vendor = FREEBSD_ABI_VENDOR,
239 .flags = BN_TRANSLATE_OSREL,
240 .trans_osrel = __elfN(freebsd_trans_osrel)
241 };
242
243 static bool
__elfN(freebsd_trans_osrel)244 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
245 {
246 uintptr_t p;
247
248 p = (uintptr_t)(note + 1);
249 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
250 *osrel = *(const int32_t *)(p);
251
252 return (true);
253 }
254
255 static int GNU_KFREEBSD_ABI_DESC = 3;
256
257 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
258 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR),
259 .hdr.n_descsz = 16, /* XXX at least 16 */
260 .hdr.n_type = 1,
261 .vendor = GNU_ABI_VENDOR,
262 .flags = BN_TRANSLATE_OSREL,
263 .trans_osrel = kfreebsd_trans_osrel
264 };
265
266 static bool
kfreebsd_trans_osrel(const Elf_Note * note,int32_t * osrel)267 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
268 {
269 const Elf32_Word *desc;
270 uintptr_t p;
271
272 p = (uintptr_t)(note + 1);
273 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
274
275 desc = (const Elf32_Word *)p;
276 if (desc[0] != GNU_KFREEBSD_ABI_DESC)
277 return (false);
278
279 /*
280 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
281 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
282 */
283 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
284
285 return (true);
286 }
287
288 int
__elfN(insert_brand_entry)289 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
290 {
291 int i;
292
293 for (i = 0; i < MAX_BRANDS; i++) {
294 if (elf_brand_list[i] == NULL) {
295 elf_brand_list[i] = entry;
296 break;
297 }
298 }
299 if (i == MAX_BRANDS) {
300 printf("WARNING: %s: could not insert brandinfo entry: %p\n",
301 __func__, entry);
302 return (-1);
303 }
304 return (0);
305 }
306
307 int
__elfN(remove_brand_entry)308 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
309 {
310 int i;
311
312 for (i = 0; i < MAX_BRANDS; i++) {
313 if (elf_brand_list[i] == entry) {
314 elf_brand_list[i] = NULL;
315 break;
316 }
317 }
318 if (i == MAX_BRANDS)
319 return (-1);
320 return (0);
321 }
322
323 bool
__elfN(brand_inuse)324 __elfN(brand_inuse)(Elf_Brandinfo *entry)
325 {
326 struct proc *p;
327 bool rval = false;
328
329 sx_slock(&allproc_lock);
330 FOREACH_PROC_IN_SYSTEM(p) {
331 if (p->p_sysent == entry->sysvec) {
332 rval = true;
333 break;
334 }
335 }
336 sx_sunlock(&allproc_lock);
337
338 return (rval);
339 }
340
341 static Elf_Brandinfo *
__elfN(get_brandinfo)342 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
343 int32_t *osrel, uint32_t *fctl0)
344 {
345 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
346 Elf_Brandinfo *bi, *bi_m;
347 bool ret, has_fctl0;
348 int i, interp_name_len;
349
350 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
351
352 /*
353 * We support four types of branding -- (1) the ELF EI_OSABI field
354 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
355 * branding w/in the ELF header, (3) path of the `interp_path'
356 * field, and (4) the ".note.ABI-tag" ELF section.
357 */
358
359 /* Look for an ".note.ABI-tag" ELF section */
360 bi_m = NULL;
361 for (i = 0; i < MAX_BRANDS; i++) {
362 bi = elf_brand_list[i];
363 if (bi == NULL)
364 continue;
365 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
366 continue;
367 if (hdr->e_machine == bi->machine && (bi->flags &
368 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
369 has_fctl0 = false;
370 *fctl0 = 0;
371 *osrel = 0;
372 ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
373 &has_fctl0, fctl0);
374 /* Give brand a chance to veto check_note's guess */
375 if (ret && bi->header_supported) {
376 ret = bi->header_supported(imgp, osrel,
377 has_fctl0 ? fctl0 : NULL);
378 }
379 /*
380 * If note checker claimed the binary, but the
381 * interpreter path in the image does not
382 * match default one for the brand, try to
383 * search for other brands with the same
384 * interpreter. Either there is better brand
385 * with the right interpreter, or, failing
386 * this, we return first brand which accepted
387 * our note and, optionally, header.
388 */
389 if (ret && bi_m == NULL && interp != NULL &&
390 (bi->interp_path == NULL ||
391 (strlen(bi->interp_path) + 1 != interp_name_len ||
392 strncmp(interp, bi->interp_path, interp_name_len)
393 != 0))) {
394 bi_m = bi;
395 ret = 0;
396 }
397 if (ret)
398 return (bi);
399 }
400 }
401 if (bi_m != NULL)
402 return (bi_m);
403
404 /* If the executable has a brand, search for it in the brand list. */
405 for (i = 0; i < MAX_BRANDS; i++) {
406 bi = elf_brand_list[i];
407 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
408 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
409 continue;
410 if (hdr->e_machine == bi->machine &&
411 (hdr->e_ident[EI_OSABI] == bi->brand ||
412 (bi->compat_3_brand != NULL &&
413 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
414 bi->compat_3_brand) == 0))) {
415 /* Looks good, but give brand a chance to veto */
416 if (bi->header_supported == NULL ||
417 bi->header_supported(imgp, NULL, NULL)) {
418 /*
419 * Again, prefer strictly matching
420 * interpreter path.
421 */
422 if (interp_name_len == 0 &&
423 bi->interp_path == NULL)
424 return (bi);
425 if (bi->interp_path != NULL &&
426 strlen(bi->interp_path) + 1 ==
427 interp_name_len && strncmp(interp,
428 bi->interp_path, interp_name_len) == 0)
429 return (bi);
430 if (bi_m == NULL)
431 bi_m = bi;
432 }
433 }
434 }
435 if (bi_m != NULL)
436 return (bi_m);
437
438 /* No known brand, see if the header is recognized by any brand */
439 for (i = 0; i < MAX_BRANDS; i++) {
440 bi = elf_brand_list[i];
441 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
442 bi->header_supported == NULL)
443 continue;
444 if (hdr->e_machine == bi->machine) {
445 ret = bi->header_supported(imgp, NULL, NULL);
446 if (ret)
447 return (bi);
448 }
449 }
450
451 /* Lacking a known brand, search for a recognized interpreter. */
452 if (interp != NULL) {
453 for (i = 0; i < MAX_BRANDS; i++) {
454 bi = elf_brand_list[i];
455 if (bi == NULL || (bi->flags &
456 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
457 != 0)
458 continue;
459 if (hdr->e_machine == bi->machine &&
460 bi->interp_path != NULL &&
461 /* ELF image p_filesz includes terminating zero */
462 strlen(bi->interp_path) + 1 == interp_name_len &&
463 strncmp(interp, bi->interp_path, interp_name_len)
464 == 0 && (bi->header_supported == NULL ||
465 bi->header_supported(imgp, NULL, NULL)))
466 return (bi);
467 }
468 }
469
470 /* Lacking a recognized interpreter, try the default brand */
471 for (i = 0; i < MAX_BRANDS; i++) {
472 bi = elf_brand_list[i];
473 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
474 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
475 continue;
476 if (hdr->e_machine == bi->machine &&
477 __elfN(fallback_brand) == bi->brand &&
478 (bi->header_supported == NULL ||
479 bi->header_supported(imgp, NULL, NULL)))
480 return (bi);
481 }
482 return (NULL);
483 }
484
485 static bool
__elfN(phdr_in_zero_page)486 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr)
487 {
488 return (hdr->e_phoff <= PAGE_SIZE &&
489 (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff);
490 }
491
492 static int
__elfN(check_header)493 __elfN(check_header)(const Elf_Ehdr *hdr)
494 {
495 Elf_Brandinfo *bi;
496 int i;
497
498 if (!IS_ELF(*hdr) ||
499 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
500 hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
501 hdr->e_ident[EI_VERSION] != EV_CURRENT ||
502 hdr->e_phentsize != sizeof(Elf_Phdr) ||
503 hdr->e_version != ELF_TARG_VER)
504 return (ENOEXEC);
505
506 /*
507 * Make sure we have at least one brand for this machine.
508 */
509
510 for (i = 0; i < MAX_BRANDS; i++) {
511 bi = elf_brand_list[i];
512 if (bi != NULL && bi->machine == hdr->e_machine)
513 break;
514 }
515 if (i == MAX_BRANDS)
516 return (ENOEXEC);
517
518 return (0);
519 }
520
521 static int
__elfN(map_partial)522 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
523 vm_offset_t start, vm_offset_t end, vm_prot_t prot)
524 {
525 struct sf_buf *sf;
526 int error;
527 vm_offset_t off;
528
529 /*
530 * Create the page if it doesn't exist yet. Ignore errors.
531 */
532 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
533 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
534
535 /*
536 * Find the page from the underlying object.
537 */
538 if (object != NULL) {
539 sf = vm_imgact_map_page(object, offset);
540 if (sf == NULL)
541 return (KERN_FAILURE);
542 off = offset - trunc_page(offset);
543 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
544 end - start);
545 vm_imgact_unmap_page(sf);
546 if (error != 0)
547 return (KERN_FAILURE);
548 }
549
550 return (KERN_SUCCESS);
551 }
552
553 static int
__elfN(map_insert)554 __elfN(map_insert)(const struct image_params *imgp, vm_map_t map,
555 vm_object_t object, vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
556 vm_prot_t prot, int cow)
557 {
558 struct sf_buf *sf;
559 vm_offset_t off;
560 vm_size_t sz;
561 int error, locked, rv;
562
563 if (start != trunc_page(start)) {
564 rv = __elfN(map_partial)(map, object, offset, start,
565 round_page(start), prot);
566 if (rv != KERN_SUCCESS)
567 return (rv);
568 offset += round_page(start) - start;
569 start = round_page(start);
570 }
571 if (end != round_page(end)) {
572 rv = __elfN(map_partial)(map, object, offset +
573 trunc_page(end) - start, trunc_page(end), end, prot);
574 if (rv != KERN_SUCCESS)
575 return (rv);
576 end = trunc_page(end);
577 }
578 if (start >= end)
579 return (KERN_SUCCESS);
580 if ((offset & PAGE_MASK) != 0) {
581 /*
582 * The mapping is not page aligned. This means that we have
583 * to copy the data.
584 */
585 rv = vm_map_fixed(map, NULL, 0, start, end - start,
586 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
587 if (rv != KERN_SUCCESS)
588 return (rv);
589 if (object == NULL)
590 return (KERN_SUCCESS);
591 for (; start < end; start += sz) {
592 sf = vm_imgact_map_page(object, offset);
593 if (sf == NULL)
594 return (KERN_FAILURE);
595 off = offset - trunc_page(offset);
596 sz = end - start;
597 if (sz > PAGE_SIZE - off)
598 sz = PAGE_SIZE - off;
599 error = copyout((caddr_t)sf_buf_kva(sf) + off,
600 (caddr_t)start, sz);
601 vm_imgact_unmap_page(sf);
602 if (error != 0)
603 return (KERN_FAILURE);
604 offset += sz;
605 }
606 } else {
607 vm_object_reference(object);
608 rv = vm_map_fixed(map, object, offset, start, end - start,
609 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
610 (object != NULL ? MAP_VN_EXEC : 0));
611 if (rv != KERN_SUCCESS) {
612 locked = VOP_ISLOCKED(imgp->vp);
613 VOP_UNLOCK(imgp->vp);
614 vm_object_deallocate(object);
615 vn_lock(imgp->vp, locked | LK_RETRY);
616 return (rv);
617 } else if (object != NULL) {
618 MPASS(imgp->vp->v_object == object);
619 VOP_SET_TEXT_CHECKED(imgp->vp);
620 }
621 }
622 return (KERN_SUCCESS);
623 }
624
625 static int
__elfN(load_section)626 __elfN(load_section)(const struct image_params *imgp, vm_ooffset_t offset,
627 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
628 {
629 struct sf_buf *sf;
630 size_t map_len;
631 vm_map_t map;
632 vm_object_t object;
633 vm_offset_t map_addr;
634 int error, rv, cow;
635 size_t copy_len;
636 vm_ooffset_t file_addr;
637
638 /*
639 * It's necessary to fail if the filsz + offset taken from the
640 * header is greater than the actual file pager object's size.
641 * If we were to allow this, then the vm_map_find() below would
642 * walk right off the end of the file object and into the ether.
643 *
644 * While I'm here, might as well check for something else that
645 * is invalid: filsz cannot be greater than memsz.
646 */
647 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
648 filsz > memsz) {
649 uprintf("elf_load_section: truncated ELF file\n");
650 return (ENOEXEC);
651 }
652
653 object = imgp->object;
654 map = &imgp->proc->p_vmspace->vm_map;
655 map_addr = trunc_page((vm_offset_t)vmaddr);
656 file_addr = trunc_page(offset);
657
658 /*
659 * We have two choices. We can either clear the data in the last page
660 * of an oversized mapping, or we can start the anon mapping a page
661 * early and copy the initialized data into that first page. We
662 * choose the second.
663 */
664 if (filsz == 0)
665 map_len = 0;
666 else if (memsz > filsz)
667 map_len = trunc_page(offset + filsz) - file_addr;
668 else
669 map_len = round_page(offset + filsz) - file_addr;
670
671 if (map_len != 0) {
672 /* cow flags: don't dump readonly sections in core */
673 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
674 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
675
676 rv = __elfN(map_insert)(imgp, map, object, file_addr,
677 map_addr, map_addr + map_len, prot, cow);
678 if (rv != KERN_SUCCESS)
679 return (EINVAL);
680
681 /* we can stop now if we've covered it all */
682 if (memsz == filsz)
683 return (0);
684 }
685
686 /*
687 * We have to get the remaining bit of the file into the first part
688 * of the oversized map segment. This is normally because the .data
689 * segment in the file is extended to provide bss. It's a neat idea
690 * to try and save a page, but it's a pain in the behind to implement.
691 */
692 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
693 filsz);
694 map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
695 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
696
697 /* This had damn well better be true! */
698 if (map_len != 0) {
699 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
700 map_addr + map_len, prot, 0);
701 if (rv != KERN_SUCCESS)
702 return (EINVAL);
703 }
704
705 if (copy_len != 0) {
706 sf = vm_imgact_map_page(object, offset + filsz);
707 if (sf == NULL)
708 return (EIO);
709
710 /* send the page fragment to user space */
711 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr,
712 copy_len);
713 vm_imgact_unmap_page(sf);
714 if (error != 0)
715 return (error);
716 }
717
718 /*
719 * Remove write access to the page if it was only granted by map_insert
720 * to allow copyout.
721 */
722 if ((prot & VM_PROT_WRITE) == 0)
723 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
724 map_len), prot, 0, VM_MAP_PROTECT_SET_PROT);
725
726 return (0);
727 }
728
729 static int
__elfN(load_sections)730 __elfN(load_sections)(const struct image_params *imgp, const Elf_Ehdr *hdr,
731 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
732 {
733 vm_prot_t prot;
734 u_long base_addr;
735 bool first;
736 int error, i;
737
738 ASSERT_VOP_LOCKED(imgp->vp, __func__);
739
740 base_addr = 0;
741 first = true;
742
743 for (i = 0; i < hdr->e_phnum; i++) {
744 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
745 continue;
746
747 /* Loadable segment */
748 prot = __elfN(trans_prot)(phdr[i].p_flags);
749 error = __elfN(load_section)(imgp, phdr[i].p_offset,
750 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
751 phdr[i].p_memsz, phdr[i].p_filesz, prot);
752 if (error != 0)
753 return (error);
754
755 /*
756 * Establish the base address if this is the first segment.
757 */
758 if (first) {
759 base_addr = trunc_page(phdr[i].p_vaddr + rbase);
760 first = false;
761 }
762 }
763
764 if (base_addrp != NULL)
765 *base_addrp = base_addr;
766
767 return (0);
768 }
769
770 /*
771 * Load the file "file" into memory. It may be either a shared object
772 * or an executable.
773 *
774 * The "addr" reference parameter is in/out. On entry, it specifies
775 * the address where a shared object should be loaded. If the file is
776 * an executable, this value is ignored. On exit, "addr" specifies
777 * where the file was actually loaded.
778 *
779 * The "entry" reference parameter is out only. On exit, it specifies
780 * the entry point for the loaded file.
781 */
782 static int
__elfN(load_file)783 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
784 u_long *entry)
785 {
786 struct {
787 struct nameidata nd;
788 struct vattr attr;
789 struct image_params image_params;
790 } *tempdata;
791 const Elf_Ehdr *hdr = NULL;
792 const Elf_Phdr *phdr = NULL;
793 struct nameidata *nd;
794 struct vattr *attr;
795 struct image_params *imgp;
796 u_long rbase;
797 u_long base_addr = 0;
798 int error;
799
800 #ifdef CAPABILITY_MODE
801 /*
802 * XXXJA: This check can go away once we are sufficiently confident
803 * that the checks in namei() are correct.
804 */
805 if (IN_CAPABILITY_MODE(curthread))
806 return (ECAPMODE);
807 #endif
808
809 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO);
810 nd = &tempdata->nd;
811 attr = &tempdata->attr;
812 imgp = &tempdata->image_params;
813
814 /*
815 * Initialize part of the common data
816 */
817 imgp->proc = p;
818 imgp->attr = attr;
819
820 NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF,
821 UIO_SYSSPACE, file);
822 if ((error = namei(nd)) != 0) {
823 nd->ni_vp = NULL;
824 goto fail;
825 }
826 NDFREE_PNBUF(nd);
827 imgp->vp = nd->ni_vp;
828
829 /*
830 * Check permissions, modes, uid, etc on the file, and "open" it.
831 */
832 error = exec_check_permissions(imgp);
833 if (error)
834 goto fail;
835
836 error = exec_map_first_page(imgp);
837 if (error)
838 goto fail;
839
840 imgp->object = nd->ni_vp->v_object;
841
842 hdr = (const Elf_Ehdr *)imgp->image_header;
843 if ((error = __elfN(check_header)(hdr)) != 0)
844 goto fail;
845 if (hdr->e_type == ET_DYN)
846 rbase = *addr;
847 else if (hdr->e_type == ET_EXEC)
848 rbase = 0;
849 else {
850 error = ENOEXEC;
851 goto fail;
852 }
853
854 /* Only support headers that fit within first page for now */
855 if (!__elfN(phdr_in_zero_page)(hdr)) {
856 error = ENOEXEC;
857 goto fail;
858 }
859
860 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
861 if (!aligned(phdr, Elf_Addr)) {
862 error = ENOEXEC;
863 goto fail;
864 }
865
866 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
867 if (error != 0)
868 goto fail;
869
870 if (p->p_sysent->sv_protect != NULL)
871 p->p_sysent->sv_protect(imgp, SVP_INTERP);
872
873 *addr = base_addr;
874 *entry = (unsigned long)hdr->e_entry + rbase;
875
876 fail:
877 if (imgp->firstpage)
878 exec_unmap_first_page(imgp);
879
880 if (nd->ni_vp) {
881 if (imgp->textset)
882 VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
883 vput(nd->ni_vp);
884 }
885 free(tempdata, M_TEMP);
886
887 return (error);
888 }
889
890 /*
891 * Select randomized valid address in the map map, between minv and
892 * maxv, with specified alignment. The [minv, maxv) range must belong
893 * to the map. Note that function only allocates the address, it is
894 * up to caller to clamp maxv in a way that the final allocation
895 * length fit into the map.
896 *
897 * Result is returned in *resp, error code indicates that arguments
898 * did not pass sanity checks for overflow and range correctness.
899 */
900 static int
__CONCAT(rnd_,__elfN (base))901 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv,
902 u_int align, u_long *resp)
903 {
904 u_long rbase, res;
905
906 MPASS(vm_map_min(map) <= minv);
907
908 if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) {
909 uprintf("Invalid ELF segments layout\n");
910 return (ENOEXEC);
911 }
912
913 arc4rand(&rbase, sizeof(rbase), 0);
914 res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
915 res &= ~((u_long)align - 1);
916 if (res >= maxv)
917 res -= align;
918
919 KASSERT(res >= minv,
920 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
921 res, minv, maxv, rbase));
922 KASSERT(res < maxv,
923 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
924 res, maxv, minv, rbase));
925
926 *resp = res;
927 return (0);
928 }
929
930 static int
__elfN(enforce_limits)931 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
932 const Elf_Phdr *phdr)
933 {
934 struct vmspace *vmspace;
935 const char *err_str;
936 u_long text_size, data_size, total_size, text_addr, data_addr;
937 u_long seg_size, seg_addr;
938 int i;
939
940 err_str = NULL;
941 text_size = data_size = total_size = text_addr = data_addr = 0;
942
943 for (i = 0; i < hdr->e_phnum; i++) {
944 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
945 continue;
946
947 seg_addr = trunc_page(phdr[i].p_vaddr + imgp->et_dyn_addr);
948 seg_size = round_page(phdr[i].p_memsz +
949 phdr[i].p_vaddr + imgp->et_dyn_addr - seg_addr);
950
951 /*
952 * Make the largest executable segment the official
953 * text segment and all others data.
954 *
955 * Note that obreak() assumes that data_addr + data_size == end
956 * of data load area, and the ELF file format expects segments
957 * to be sorted by address. If multiple data segments exist,
958 * the last one will be used.
959 */
960
961 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
962 text_size = seg_size;
963 text_addr = seg_addr;
964 } else {
965 data_size = seg_size;
966 data_addr = seg_addr;
967 }
968 total_size += seg_size;
969 }
970
971 if (data_addr == 0 && data_size == 0) {
972 data_addr = text_addr;
973 data_size = text_size;
974 }
975
976 /*
977 * Check limits. It should be safe to check the
978 * limits after loading the segments since we do
979 * not actually fault in all the segments pages.
980 */
981 PROC_LOCK(imgp->proc);
982 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
983 err_str = "Data segment size exceeds process limit";
984 else if (text_size > maxtsiz)
985 err_str = "Text segment size exceeds system limit";
986 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
987 err_str = "Total segment size exceeds process limit";
988 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
989 err_str = "Data segment size exceeds resource limit";
990 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
991 err_str = "Total segment size exceeds resource limit";
992 PROC_UNLOCK(imgp->proc);
993 if (err_str != NULL) {
994 uprintf("%s\n", err_str);
995 return (ENOMEM);
996 }
997
998 vmspace = imgp->proc->p_vmspace;
999 vmspace->vm_tsize = text_size >> PAGE_SHIFT;
1000 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
1001 vmspace->vm_dsize = data_size >> PAGE_SHIFT;
1002 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
1003
1004 return (0);
1005 }
1006
1007 static int
__elfN(get_interp)1008 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
1009 char **interpp, bool *free_interpp)
1010 {
1011 struct thread *td;
1012 char *interp;
1013 int error, interp_name_len;
1014
1015 KASSERT(phdr->p_type == PT_INTERP,
1016 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
1017 ASSERT_VOP_LOCKED(imgp->vp, __func__);
1018
1019 td = curthread;
1020
1021 /* Path to interpreter */
1022 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
1023 uprintf("Invalid PT_INTERP\n");
1024 return (ENOEXEC);
1025 }
1026
1027 interp_name_len = phdr->p_filesz;
1028 if (phdr->p_offset > PAGE_SIZE ||
1029 interp_name_len > PAGE_SIZE - phdr->p_offset) {
1030 /*
1031 * The vnode lock might be needed by the pagedaemon to
1032 * clean pages owned by the vnode. Do not allow sleep
1033 * waiting for memory with the vnode locked, instead
1034 * try non-sleepable allocation first, and if it
1035 * fails, go to the slow path were we drop the lock
1036 * and do M_WAITOK. A text reference prevents
1037 * modifications to the vnode content.
1038 */
1039 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
1040 if (interp == NULL) {
1041 VOP_UNLOCK(imgp->vp);
1042 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
1043 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1044 }
1045
1046 error = vn_rdwr(UIO_READ, imgp->vp, interp,
1047 interp_name_len, phdr->p_offset,
1048 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
1049 NOCRED, NULL, td);
1050 if (error != 0) {
1051 free(interp, M_TEMP);
1052 uprintf("i/o error PT_INTERP %d\n", error);
1053 return (error);
1054 }
1055 interp[interp_name_len] = '\0';
1056
1057 *interpp = interp;
1058 *free_interpp = true;
1059 return (0);
1060 }
1061
1062 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
1063 if (interp[interp_name_len - 1] != '\0') {
1064 uprintf("Invalid PT_INTERP\n");
1065 return (ENOEXEC);
1066 }
1067
1068 *interpp = interp;
1069 *free_interpp = false;
1070 return (0);
1071 }
1072
1073 static int
__elfN(load_interp)1074 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
1075 const char *interp, u_long *addr, u_long *entry)
1076 {
1077 int error;
1078
1079 if (brand_info->interp_newpath != NULL &&
1080 (brand_info->interp_path == NULL ||
1081 strcmp(interp, brand_info->interp_path) == 0)) {
1082 error = __elfN(load_file)(imgp->proc,
1083 brand_info->interp_newpath, addr, entry);
1084 if (error == 0)
1085 return (0);
1086 }
1087
1088 error = __elfN(load_file)(imgp->proc, interp, addr, entry);
1089 if (error == 0)
1090 return (0);
1091
1092 uprintf("ELF interpreter %s not found, error %d\n", interp, error);
1093 return (error);
1094 }
1095
1096 /*
1097 * Impossible et_dyn_addr initial value indicating that the real base
1098 * must be calculated later with some randomization applied.
1099 */
1100 #define ET_DYN_ADDR_RAND 1
1101
1102 static int
__CONCAT(exec_,__elfN (imgact))1103 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
1104 {
1105 struct thread *td;
1106 const Elf_Ehdr *hdr;
1107 const Elf_Phdr *phdr;
1108 Elf_Auxargs *elf_auxargs;
1109 struct vmspace *vmspace;
1110 vm_map_t map;
1111 char *interp;
1112 Elf_Brandinfo *brand_info;
1113 struct sysentvec *sv;
1114 u_long addr, baddr, entry, proghdr;
1115 u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc;
1116 uint32_t fctl0;
1117 int32_t osrel;
1118 bool free_interp;
1119 int error, i, n;
1120
1121 hdr = (const Elf_Ehdr *)imgp->image_header;
1122
1123 /*
1124 * Do we have a valid ELF header ?
1125 *
1126 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
1127 * if particular brand doesn't support it.
1128 */
1129 if (__elfN(check_header)(hdr) != 0 ||
1130 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
1131 return (-1);
1132
1133 /*
1134 * From here on down, we return an errno, not -1, as we've
1135 * detected an ELF file.
1136 */
1137
1138 if (!__elfN(phdr_in_zero_page)(hdr)) {
1139 uprintf("Program headers not in the first page\n");
1140 return (ENOEXEC);
1141 }
1142 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1143 if (!aligned(phdr, Elf_Addr)) {
1144 uprintf("Unaligned program headers\n");
1145 return (ENOEXEC);
1146 }
1147
1148 n = error = 0;
1149 baddr = 0;
1150 osrel = 0;
1151 fctl0 = 0;
1152 entry = proghdr = 0;
1153 interp = NULL;
1154 free_interp = false;
1155 td = curthread;
1156
1157 /*
1158 * Somewhat arbitrary, limit accepted max alignment for the
1159 * loadable segment to the max supported superpage size. Too
1160 * large alignment requests are not useful and are indicators
1161 * of corrupted or outright malicious binary.
1162 */
1163 maxalign = PAGE_SIZE;
1164 maxsalign = PAGE_SIZE * 1024;
1165 for (i = MAXPAGESIZES - 1; i > 0; i--) {
1166 if (pagesizes[i] > maxsalign) {
1167 maxsalign = pagesizes[i];
1168 break;
1169 }
1170 }
1171
1172 mapsz = 0;
1173
1174 for (i = 0; i < hdr->e_phnum; i++) {
1175 switch (phdr[i].p_type) {
1176 case PT_LOAD:
1177 if (n == 0)
1178 baddr = phdr[i].p_vaddr;
1179 if (!powerof2(phdr[i].p_align) ||
1180 phdr[i].p_align > maxsalign) {
1181 uprintf("Invalid segment alignment\n");
1182 error = ENOEXEC;
1183 goto ret;
1184 }
1185 if (phdr[i].p_align > maxalign)
1186 maxalign = phdr[i].p_align;
1187 if (mapsz + phdr[i].p_memsz < mapsz) {
1188 uprintf("Mapsize overflow\n");
1189 error = ENOEXEC;
1190 goto ret;
1191 }
1192 mapsz += phdr[i].p_memsz;
1193 n++;
1194
1195 /*
1196 * If this segment contains the program headers,
1197 * remember their virtual address for the AT_PHDR
1198 * aux entry. Static binaries don't usually include
1199 * a PT_PHDR entry.
1200 */
1201 if (phdr[i].p_offset == 0 &&
1202 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <=
1203 phdr[i].p_filesz)
1204 proghdr = phdr[i].p_vaddr + hdr->e_phoff;
1205 break;
1206 case PT_INTERP:
1207 /* Path to interpreter */
1208 if (interp != NULL) {
1209 uprintf("Multiple PT_INTERP headers\n");
1210 error = ENOEXEC;
1211 goto ret;
1212 }
1213 error = __elfN(get_interp)(imgp, &phdr[i], &interp,
1214 &free_interp);
1215 if (error != 0)
1216 goto ret;
1217 break;
1218 case PT_GNU_STACK:
1219 if (__elfN(nxstack)) {
1220 imgp->stack_prot =
1221 __elfN(trans_prot)(phdr[i].p_flags);
1222 if ((imgp->stack_prot & VM_PROT_RW) !=
1223 VM_PROT_RW) {
1224 uprintf("Invalid PT_GNU_STACK\n");
1225 error = ENOEXEC;
1226 goto ret;
1227 }
1228 }
1229 imgp->stack_sz = phdr[i].p_memsz;
1230 break;
1231 case PT_PHDR: /* Program header table info */
1232 proghdr = phdr[i].p_vaddr;
1233 break;
1234 }
1235 }
1236
1237 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
1238 if (brand_info == NULL) {
1239 uprintf("ELF binary type \"%u\" not known.\n",
1240 hdr->e_ident[EI_OSABI]);
1241 error = ENOEXEC;
1242 goto ret;
1243 }
1244 sv = brand_info->sysvec;
1245 if (hdr->e_type == ET_DYN) {
1246 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
1247 uprintf("Cannot execute shared object\n");
1248 error = ENOEXEC;
1249 goto ret;
1250 }
1251 /*
1252 * Honour the base load address from the dso if it is
1253 * non-zero for some reason.
1254 */
1255 if (baddr == 0) {
1256 if ((sv->sv_flags & SV_ASLR) == 0 ||
1257 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
1258 imgp->et_dyn_addr = __elfN(pie_base);
1259 else if ((__elfN(pie_aslr_enabled) &&
1260 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
1261 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
1262 imgp->et_dyn_addr = ET_DYN_ADDR_RAND;
1263 else
1264 imgp->et_dyn_addr = __elfN(pie_base);
1265 }
1266 }
1267
1268 /*
1269 * Avoid a possible deadlock if the current address space is destroyed
1270 * and that address space maps the locked vnode. In the common case,
1271 * the locked vnode's v_usecount is decremented but remains greater
1272 * than zero. Consequently, the vnode lock is not needed by vrele().
1273 * However, in cases where the vnode lock is external, such as nullfs,
1274 * v_usecount may become zero.
1275 *
1276 * The VV_TEXT flag prevents modifications to the executable while
1277 * the vnode is unlocked.
1278 */
1279 VOP_UNLOCK(imgp->vp);
1280
1281 /*
1282 * Decide whether to enable randomization of user mappings.
1283 * First, reset user preferences for the setid binaries.
1284 * Then, account for the support of the randomization by the
1285 * ABI, by user preferences, and make special treatment for
1286 * PIE binaries.
1287 */
1288 if (imgp->credential_setid) {
1289 PROC_LOCK(imgp->proc);
1290 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE |
1291 P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
1292 PROC_UNLOCK(imgp->proc);
1293 }
1294 if ((sv->sv_flags & SV_ASLR) == 0 ||
1295 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
1296 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
1297 KASSERT(imgp->et_dyn_addr != ET_DYN_ADDR_RAND,
1298 ("imgp->et_dyn_addr == RAND and !ASLR"));
1299 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
1300 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
1301 imgp->et_dyn_addr == ET_DYN_ADDR_RAND) {
1302 imgp->map_flags |= MAP_ASLR;
1303 /*
1304 * If user does not care about sbrk, utilize the bss
1305 * grow region for mappings as well. We can select
1306 * the base for the image anywere and still not suffer
1307 * from the fragmentation.
1308 */
1309 if (!__elfN(aslr_honor_sbrk) ||
1310 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
1311 imgp->map_flags |= MAP_ASLR_IGNSTART;
1312 if (__elfN(aslr_stack))
1313 imgp->map_flags |= MAP_ASLR_STACK;
1314 if (__elfN(aslr_shared_page))
1315 imgp->imgp_flags |= IMGP_ASLR_SHARED_PAGE;
1316 }
1317
1318 if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 &&
1319 (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) ||
1320 (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0)
1321 imgp->map_flags |= MAP_WXORX;
1322
1323 error = exec_new_vmspace(imgp, sv);
1324
1325 imgp->proc->p_sysent = sv;
1326 imgp->proc->p_elf_brandinfo = brand_info;
1327
1328 vmspace = imgp->proc->p_vmspace;
1329 map = &vmspace->vm_map;
1330 maxv = sv->sv_usrstack;
1331 if ((imgp->map_flags & MAP_ASLR_STACK) == 0)
1332 maxv -= lim_max(td, RLIMIT_STACK);
1333 if (error == 0 && mapsz >= maxv - vm_map_min(map)) {
1334 uprintf("Excessive mapping size\n");
1335 error = ENOEXEC;
1336 }
1337
1338 if (error == 0 && imgp->et_dyn_addr == ET_DYN_ADDR_RAND) {
1339 KASSERT((map->flags & MAP_ASLR) != 0,
1340 ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
1341 error = __CONCAT(rnd_, __elfN(base))(map,
1342 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
1343 /* reserve half of the address space to interpreter */
1344 maxv / 2, maxalign, &imgp->et_dyn_addr);
1345 }
1346
1347 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1348 if (error != 0)
1349 goto ret;
1350
1351 error = __elfN(load_sections)(imgp, hdr, phdr, imgp->et_dyn_addr, NULL);
1352 if (error != 0)
1353 goto ret;
1354
1355 error = __elfN(enforce_limits)(imgp, hdr, phdr);
1356 if (error != 0)
1357 goto ret;
1358
1359 /*
1360 * We load the dynamic linker where a userland call
1361 * to mmap(0, ...) would put it. The rationale behind this
1362 * calculation is that it leaves room for the heap to grow to
1363 * its maximum allowed size.
1364 */
1365 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1366 RLIMIT_DATA));
1367 if ((map->flags & MAP_ASLR) != 0) {
1368 maxv1 = maxv / 2 + addr / 2;
1369 error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
1370 #if VM_NRESERVLEVEL > 0
1371 pagesizes[VM_NRESERVLEVEL] != 0 ?
1372 /* Align anon_loc to the largest superpage size. */
1373 pagesizes[VM_NRESERVLEVEL] :
1374 #endif
1375 pagesizes[0], &anon_loc);
1376 if (error != 0)
1377 goto ret;
1378 map->anon_loc = anon_loc;
1379 } else {
1380 map->anon_loc = addr;
1381 }
1382
1383 entry = (u_long)hdr->e_entry + imgp->et_dyn_addr;
1384 imgp->entry_addr = entry;
1385
1386 if (sv->sv_protect != NULL)
1387 sv->sv_protect(imgp, SVP_IMAGE);
1388
1389 if (interp != NULL) {
1390 VOP_UNLOCK(imgp->vp);
1391 if ((map->flags & MAP_ASLR) != 0) {
1392 /* Assume that interpreter fits into 1/4 of AS */
1393 maxv1 = maxv / 2 + addr / 2;
1394 error = __CONCAT(rnd_, __elfN(base))(map, addr,
1395 maxv1, PAGE_SIZE, &addr);
1396 }
1397 if (error == 0) {
1398 error = __elfN(load_interp)(imgp, brand_info, interp,
1399 &addr, &imgp->entry_addr);
1400 }
1401 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1402 if (error != 0)
1403 goto ret;
1404 } else
1405 addr = imgp->et_dyn_addr;
1406
1407 error = exec_map_stack(imgp);
1408 if (error != 0)
1409 goto ret;
1410
1411 /*
1412 * Construct auxargs table (used by the copyout_auxargs routine)
1413 */
1414 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
1415 if (elf_auxargs == NULL) {
1416 VOP_UNLOCK(imgp->vp);
1417 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1418 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1419 }
1420 elf_auxargs->execfd = -1;
1421 elf_auxargs->phdr = proghdr + imgp->et_dyn_addr;
1422 elf_auxargs->phent = hdr->e_phentsize;
1423 elf_auxargs->phnum = hdr->e_phnum;
1424 elf_auxargs->pagesz = PAGE_SIZE;
1425 elf_auxargs->base = addr;
1426 elf_auxargs->flags = 0;
1427 elf_auxargs->entry = entry;
1428 elf_auxargs->hdr_eflags = hdr->e_flags;
1429
1430 imgp->auxargs = elf_auxargs;
1431 imgp->interpreted = 0;
1432 imgp->reloc_base = addr;
1433 imgp->proc->p_osrel = osrel;
1434 imgp->proc->p_fctl0 = fctl0;
1435 imgp->proc->p_elf_flags = hdr->e_flags;
1436
1437 ret:
1438 ASSERT_VOP_LOCKED(imgp->vp, "skipped relock");
1439 if (free_interp)
1440 free(interp, M_TEMP);
1441 return (error);
1442 }
1443
1444 #define elf_suword __CONCAT(suword, __ELF_WORD_SIZE)
1445
1446 int
__elfN(freebsd_copyout_auxargs)1447 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base)
1448 {
1449 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1450 Elf_Auxinfo *argarray, *pos;
1451 struct vmspace *vmspace;
1452 rlim_t stacksz;
1453 int error, oc;
1454 uint32_t bsdflags;
1455
1456 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
1457 M_WAITOK | M_ZERO);
1458
1459 vmspace = imgp->proc->p_vmspace;
1460
1461 if (args->execfd != -1)
1462 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1463 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1464 AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1465 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1466 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1467 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1468 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1469 AUXARGS_ENTRY(pos, AT_BASE, args->base);
1470 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1471 if (imgp->execpathp != 0)
1472 AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp);
1473 AUXARGS_ENTRY(pos, AT_OSRELDATE,
1474 imgp->proc->p_ucred->cr_prison->pr_osreldate);
1475 if (imgp->canary != 0) {
1476 AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary);
1477 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1478 }
1479 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1480 if (imgp->pagesizes != 0) {
1481 AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes);
1482 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1483 }
1484 if ((imgp->sysent->sv_flags & SV_TIMEKEEP) != 0) {
1485 AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1486 vmspace->vm_shp_base + imgp->sysent->sv_timekeep_offset);
1487 }
1488 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1489 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1490 imgp->sysent->sv_stackprot);
1491 if (imgp->sysent->sv_hwcap != NULL)
1492 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
1493 if (imgp->sysent->sv_hwcap2 != NULL)
1494 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
1495 if (imgp->sysent->sv_hwcap3 != NULL)
1496 AUXARGS_ENTRY(pos, AT_HWCAP3, *imgp->sysent->sv_hwcap3);
1497 if (imgp->sysent->sv_hwcap4 != NULL)
1498 AUXARGS_ENTRY(pos, AT_HWCAP4, *imgp->sysent->sv_hwcap4);
1499 bsdflags = 0;
1500 bsdflags |= __elfN(sigfastblock) ? ELF_BSDF_SIGFASTBLK : 0;
1501 oc = atomic_load_int(&vm_overcommit);
1502 bsdflags |= (oc & (SWAP_RESERVE_FORCE_ON | SWAP_RESERVE_RLIMIT_ON)) !=
1503 0 ? ELF_BSDF_VMNOOVERCOMMIT : 0;
1504 AUXARGS_ENTRY(pos, AT_BSDFLAGS, bsdflags);
1505 AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc);
1506 AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv);
1507 AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc);
1508 AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv);
1509 AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings);
1510 #ifdef RANDOM_FENESTRASX
1511 if ((imgp->sysent->sv_flags & SV_RNG_SEED_VER) != 0) {
1512 AUXARGS_ENTRY(pos, AT_FXRNG,
1513 vmspace->vm_shp_base + imgp->sysent->sv_fxrng_gen_offset);
1514 }
1515 #endif
1516 if ((imgp->sysent->sv_flags & SV_DSO_SIG) != 0 && __elfN(vdso) != 0) {
1517 AUXARGS_ENTRY(pos, AT_KPRELOAD,
1518 vmspace->vm_shp_base + imgp->sysent->sv_vdso_offset);
1519 }
1520 AUXARGS_ENTRY(pos, AT_USRSTACKBASE, round_page(vmspace->vm_stacktop));
1521 stacksz = imgp->proc->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
1522 AUXARGS_ENTRY(pos, AT_USRSTACKLIM, stacksz);
1523 AUXARGS_ENTRY(pos, AT_NULL, 0);
1524
1525 free(imgp->auxargs, M_TEMP);
1526 imgp->auxargs = NULL;
1527 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
1528
1529 error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT);
1530 free(argarray, M_TEMP);
1531 return (error);
1532 }
1533
1534 int
__elfN(freebsd_fixup)1535 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp)
1536 {
1537 Elf_Addr *base;
1538
1539 base = (Elf_Addr *)*stack_base;
1540 base--;
1541 if (elf_suword(base, imgp->args->argc) == -1)
1542 return (EFAULT);
1543 *stack_base = (uintptr_t)base;
1544 return (0);
1545 }
1546
1547 /*
1548 * Code for generating ELF core dumps.
1549 */
1550
1551 typedef void (*segment_callback)(vm_map_entry_t, void *);
1552
1553 /* Closure for cb_put_phdr(). */
1554 struct phdr_closure {
1555 Elf_Phdr *phdr; /* Program header to fill in */
1556 Elf_Off offset; /* Offset of segment in core file */
1557 };
1558
1559 struct note_info {
1560 int type; /* Note type. */
1561 struct regset *regset; /* Register set. */
1562 outfunc_t outfunc; /* Output function. */
1563 void *outarg; /* Argument for the output function. */
1564 size_t outsize; /* Output size. */
1565 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */
1566 };
1567
1568 TAILQ_HEAD(note_info_list, note_info);
1569
1570 static void cb_put_phdr(vm_map_entry_t, void *);
1571 static void cb_size_segment(vm_map_entry_t, void *);
1572 static void each_dumpable_segment(struct thread *, segment_callback, void *,
1573 int);
1574 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1575 struct note_info_list *, size_t, int);
1576 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *);
1577
1578 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1579 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1580 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1581 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1582 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1583 static void __elfN(note_procstat_kqueues)(void *, struct sbuf *, size_t *);
1584 static void note_procstat_files(void *, struct sbuf *, size_t *);
1585 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1586 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1587 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1588 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1589 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1590
1591 static int
core_compressed_write(void * base,size_t len,off_t offset,void * arg)1592 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
1593 {
1594
1595 return (core_write((struct coredump_params *)arg, base, len, offset,
1596 UIO_SYSSPACE, NULL));
1597 }
1598
1599 int
__elfN(coredump)1600 __elfN(coredump)(struct thread *td, struct coredump_writer *cdw, off_t limit, int flags)
1601 {
1602 struct ucred *cred = td->td_ucred;
1603 int compm, error = 0;
1604 struct sseg_closure seginfo;
1605 struct note_info_list notelst;
1606 struct coredump_params params;
1607 struct note_info *ninfo;
1608 void *hdr, *tmpbuf;
1609 size_t hdrsize, notesz, coresize;
1610
1611 hdr = NULL;
1612 tmpbuf = NULL;
1613 TAILQ_INIT(¬elst);
1614
1615 /* Size the program segments. */
1616 __elfN(size_segments)(td, &seginfo, flags);
1617
1618 /*
1619 * Collect info about the core file header area.
1620 */
1621 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1622 if (seginfo.count + 1 >= PN_XNUM)
1623 hdrsize += sizeof(Elf_Shdr);
1624 td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, ¬elst, ¬esz);
1625 coresize = round_page(hdrsize + notesz) + seginfo.size;
1626
1627 /* Set up core dump parameters. */
1628 params.offset = 0;
1629 params.active_cred = cred;
1630 params.td = td;
1631 params.cdw = cdw;
1632 params.comp = NULL;
1633
1634 #ifdef RACCT
1635 if (racct_enable) {
1636 PROC_LOCK(td->td_proc);
1637 error = racct_add(td->td_proc, RACCT_CORE, coresize);
1638 PROC_UNLOCK(td->td_proc);
1639 if (error != 0) {
1640 error = EFAULT;
1641 goto done;
1642 }
1643 }
1644 #endif
1645 if (coresize >= limit) {
1646 error = EFAULT;
1647 goto done;
1648 }
1649
1650 /* Create a compression stream if necessary. */
1651 compm = compress_user_cores;
1652 if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP &&
1653 compm == 0)
1654 compm = COMPRESS_GZIP;
1655 if (compm != 0) {
1656 params.comp = compressor_init(core_compressed_write,
1657 compm, CORE_BUF_SIZE,
1658 compress_user_cores_level, ¶ms);
1659 if (params.comp == NULL) {
1660 error = EFAULT;
1661 goto done;
1662 }
1663 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1664 }
1665
1666 if (cdw->init_fn != NULL) {
1667 error = (*cdw->init_fn)(cdw, ¶ms);
1668 if (error != 0)
1669 goto done;
1670 }
1671
1672 /*
1673 * Allocate memory for building the header, fill it up,
1674 * and write it out following the notes.
1675 */
1676 hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1677 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst,
1678 notesz, flags);
1679
1680 /* Write the contents of all of the writable segments. */
1681 if (error == 0) {
1682 Elf_Phdr *php;
1683 off_t offset;
1684 int i;
1685
1686 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1687 offset = round_page(hdrsize + notesz);
1688 for (i = 0; i < seginfo.count; i++) {
1689 error = core_output((char *)(uintptr_t)php->p_vaddr,
1690 php->p_filesz, offset, ¶ms, tmpbuf);
1691 if (error != 0)
1692 break;
1693 offset += php->p_filesz;
1694 php++;
1695 }
1696 if (error == 0 && params.comp != NULL)
1697 error = compressor_flush(params.comp);
1698 }
1699 if (error) {
1700 log(LOG_WARNING,
1701 "Failed to write core file for process %s (error %d)\n",
1702 curproc->p_comm, error);
1703 }
1704
1705 done:
1706 free(tmpbuf, M_TEMP);
1707 if (params.comp != NULL)
1708 compressor_fini(params.comp);
1709 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) {
1710 TAILQ_REMOVE(¬elst, ninfo, link);
1711 free(ninfo, M_TEMP);
1712 }
1713 if (hdr != NULL)
1714 free(hdr, M_TEMP);
1715
1716 return (error);
1717 }
1718
1719 /*
1720 * A callback for each_dumpable_segment() to write out the segment's
1721 * program header entry.
1722 */
1723 static void
cb_put_phdr(vm_map_entry_t entry,void * closure)1724 cb_put_phdr(vm_map_entry_t entry, void *closure)
1725 {
1726 struct phdr_closure *phc = (struct phdr_closure *)closure;
1727 Elf_Phdr *phdr = phc->phdr;
1728
1729 phc->offset = round_page(phc->offset);
1730
1731 phdr->p_type = PT_LOAD;
1732 phdr->p_offset = phc->offset;
1733 phdr->p_vaddr = entry->start;
1734 phdr->p_paddr = 0;
1735 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1736 phdr->p_align = PAGE_SIZE;
1737 phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1738
1739 phc->offset += phdr->p_filesz;
1740 phc->phdr++;
1741 }
1742
1743 /*
1744 * A callback for each_dumpable_segment() to gather information about
1745 * the number of segments and their total size.
1746 */
1747 static void
cb_size_segment(vm_map_entry_t entry,void * closure)1748 cb_size_segment(vm_map_entry_t entry, void *closure)
1749 {
1750 struct sseg_closure *ssc = (struct sseg_closure *)closure;
1751
1752 ssc->count++;
1753 ssc->size += entry->end - entry->start;
1754 }
1755
1756 void
__elfN(size_segments)1757 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo,
1758 int flags)
1759 {
1760 seginfo->count = 0;
1761 seginfo->size = 0;
1762
1763 each_dumpable_segment(td, cb_size_segment, seginfo, flags);
1764 }
1765
1766 /*
1767 * For each writable segment in the process's memory map, call the given
1768 * function with a pointer to the map entry and some arbitrary
1769 * caller-supplied data.
1770 */
1771 static void
each_dumpable_segment(struct thread * td,segment_callback func,void * closure,int flags)1772 each_dumpable_segment(struct thread *td, segment_callback func, void *closure,
1773 int flags)
1774 {
1775 struct proc *p = td->td_proc;
1776 vm_map_t map = &p->p_vmspace->vm_map;
1777 vm_map_entry_t entry;
1778 vm_object_t backing_object, object;
1779 bool ignore_entry;
1780
1781 vm_map_lock_read(map);
1782 VM_MAP_ENTRY_FOREACH(entry, map) {
1783 /*
1784 * Don't dump inaccessible mappings, deal with legacy
1785 * coredump mode.
1786 *
1787 * Note that read-only segments related to the elf binary
1788 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1789 * need to arbitrarily ignore such segments.
1790 */
1791 if ((flags & SVC_ALL) == 0) {
1792 if (elf_legacy_coredump) {
1793 if ((entry->protection & VM_PROT_RW) !=
1794 VM_PROT_RW)
1795 continue;
1796 } else {
1797 if ((entry->protection & VM_PROT_ALL) == 0)
1798 continue;
1799 }
1800 }
1801
1802 /*
1803 * Dont include memory segment in the coredump if
1804 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1805 * madvise(2). Do not dump submaps (i.e. parts of the
1806 * kernel map).
1807 */
1808 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1809 continue;
1810 if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 &&
1811 (flags & SVC_ALL) == 0)
1812 continue;
1813 if ((object = entry->object.vm_object) == NULL)
1814 continue;
1815
1816 /* Ignore memory-mapped devices and such things. */
1817 VM_OBJECT_RLOCK(object);
1818 while ((backing_object = object->backing_object) != NULL) {
1819 VM_OBJECT_RLOCK(backing_object);
1820 VM_OBJECT_RUNLOCK(object);
1821 object = backing_object;
1822 }
1823 ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0;
1824 VM_OBJECT_RUNLOCK(object);
1825 if (ignore_entry)
1826 continue;
1827
1828 (*func)(entry, closure);
1829 }
1830 vm_map_unlock_read(map);
1831 }
1832
1833 /*
1834 * Write the core file header to the file, including padding up to
1835 * the page boundary.
1836 */
1837 static int
__elfN(corehdr)1838 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1839 size_t hdrsize, struct note_info_list *notelst, size_t notesz,
1840 int flags)
1841 {
1842 struct note_info *ninfo;
1843 struct sbuf *sb;
1844 int error;
1845
1846 /* Fill in the header. */
1847 bzero(hdr, hdrsize);
1848 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags);
1849
1850 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1851 sbuf_set_drain(sb, sbuf_drain_core_output, p);
1852 sbuf_start_section(sb, NULL);
1853 sbuf_bcat(sb, hdr, hdrsize);
1854 TAILQ_FOREACH(ninfo, notelst, link)
1855 __elfN(putnote)(p->td, ninfo, sb);
1856 /* Align up to a page boundary for the program segments. */
1857 sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1858 error = sbuf_finish(sb);
1859 sbuf_delete(sb);
1860
1861 return (error);
1862 }
1863
1864 void
__elfN(prepare_notes)1865 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1866 size_t *sizep)
1867 {
1868 struct proc *p;
1869 struct thread *thr;
1870 size_t size;
1871
1872 p = td->td_proc;
1873 size = 0;
1874
1875 size += __elfN(register_note)(td, list, NT_PRPSINFO,
1876 __elfN(note_prpsinfo), p);
1877
1878 /*
1879 * To have the debugger select the right thread (LWP) as the initial
1880 * thread, we dump the state of the thread passed to us in td first.
1881 * This is the thread that causes the core dump and thus likely to
1882 * be the right thread one wants to have selected in the debugger.
1883 */
1884 thr = td;
1885 while (thr != NULL) {
1886 size += __elfN(prepare_register_notes)(td, list, thr);
1887 size += __elfN(register_note)(td, list, -1,
1888 __elfN(note_threadmd), thr);
1889
1890 thr = thr == td ? TAILQ_FIRST(&p->p_threads) :
1891 TAILQ_NEXT(thr, td_plist);
1892 if (thr == td)
1893 thr = TAILQ_NEXT(thr, td_plist);
1894 }
1895
1896 size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC,
1897 __elfN(note_procstat_proc), p);
1898 size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES,
1899 note_procstat_files, p);
1900 size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP,
1901 note_procstat_vmmap, p);
1902 size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS,
1903 note_procstat_groups, p);
1904 size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK,
1905 note_procstat_umask, p);
1906 size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT,
1907 note_procstat_rlimit, p);
1908 size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL,
1909 note_procstat_osrel, p);
1910 size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS,
1911 __elfN(note_procstat_psstrings), p);
1912 size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV,
1913 __elfN(note_procstat_auxv), p);
1914 size += __elfN(register_note)(td, list, NT_PROCSTAT_KQUEUES,
1915 __elfN(note_procstat_kqueues), p);
1916
1917 *sizep = size;
1918 }
1919
1920 void
__elfN(puthdr)1921 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1922 size_t notesz, int flags)
1923 {
1924 Elf_Ehdr *ehdr;
1925 Elf_Phdr *phdr;
1926 Elf_Shdr *shdr;
1927 struct phdr_closure phc;
1928 Elf_Brandinfo *bi;
1929
1930 ehdr = (Elf_Ehdr *)hdr;
1931 bi = td->td_proc->p_elf_brandinfo;
1932
1933 ehdr->e_ident[EI_MAG0] = ELFMAG0;
1934 ehdr->e_ident[EI_MAG1] = ELFMAG1;
1935 ehdr->e_ident[EI_MAG2] = ELFMAG2;
1936 ehdr->e_ident[EI_MAG3] = ELFMAG3;
1937 ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1938 ehdr->e_ident[EI_DATA] = ELF_DATA;
1939 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1940 ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi;
1941 ehdr->e_ident[EI_ABIVERSION] = 0;
1942 ehdr->e_ident[EI_PAD] = 0;
1943 ehdr->e_type = ET_CORE;
1944 ehdr->e_machine = bi->machine;
1945 ehdr->e_version = EV_CURRENT;
1946 ehdr->e_entry = 0;
1947 ehdr->e_phoff = sizeof(Elf_Ehdr);
1948 ehdr->e_flags = td->td_proc->p_elf_flags;
1949 ehdr->e_ehsize = sizeof(Elf_Ehdr);
1950 ehdr->e_phentsize = sizeof(Elf_Phdr);
1951 ehdr->e_shentsize = sizeof(Elf_Shdr);
1952 ehdr->e_shstrndx = SHN_UNDEF;
1953 if (numsegs + 1 < PN_XNUM) {
1954 ehdr->e_phnum = numsegs + 1;
1955 ehdr->e_shnum = 0;
1956 } else {
1957 ehdr->e_phnum = PN_XNUM;
1958 ehdr->e_shnum = 1;
1959
1960 ehdr->e_shoff = ehdr->e_phoff +
1961 (numsegs + 1) * ehdr->e_phentsize;
1962 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1963 ("e_shoff: %zu, hdrsize - shdr: %zu",
1964 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1965
1966 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1967 memset(shdr, 0, sizeof(*shdr));
1968 /*
1969 * A special first section is used to hold large segment and
1970 * section counts. This was proposed by Sun Microsystems in
1971 * Solaris and has been adopted by Linux; the standard ELF
1972 * tools are already familiar with the technique.
1973 *
1974 * See table 7-7 of the Solaris "Linker and Libraries Guide"
1975 * (or 12-7 depending on the version of the document) for more
1976 * details.
1977 */
1978 shdr->sh_type = SHT_NULL;
1979 shdr->sh_size = ehdr->e_shnum;
1980 shdr->sh_link = ehdr->e_shstrndx;
1981 shdr->sh_info = numsegs + 1;
1982 }
1983
1984 /*
1985 * Fill in the program header entries.
1986 */
1987 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1988
1989 /* The note segement. */
1990 phdr->p_type = PT_NOTE;
1991 phdr->p_offset = hdrsize;
1992 phdr->p_vaddr = 0;
1993 phdr->p_paddr = 0;
1994 phdr->p_filesz = notesz;
1995 phdr->p_memsz = 0;
1996 phdr->p_flags = PF_R;
1997 phdr->p_align = ELF_NOTE_ROUNDSIZE;
1998 phdr++;
1999
2000 /* All the writable segments from the program. */
2001 phc.phdr = phdr;
2002 phc.offset = round_page(hdrsize + notesz);
2003 each_dumpable_segment(td, cb_put_phdr, &phc, flags);
2004 }
2005
2006 static size_t
__elfN(register_regset_note)2007 __elfN(register_regset_note)(struct thread *td, struct note_info_list *list,
2008 struct regset *regset, struct thread *target_td)
2009 {
2010 const struct sysentvec *sv;
2011 struct note_info *ninfo;
2012 size_t size, notesize;
2013
2014 size = 0;
2015 if (!regset->get(regset, target_td, NULL, &size) || size == 0)
2016 return (0);
2017
2018 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
2019 ninfo->type = regset->note;
2020 ninfo->regset = regset;
2021 ninfo->outarg = target_td;
2022 ninfo->outsize = size;
2023 TAILQ_INSERT_TAIL(list, ninfo, link);
2024
2025 sv = td->td_proc->p_sysent;
2026 notesize = sizeof(Elf_Note) + /* note header */
2027 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2028 /* note name */
2029 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
2030
2031 return (notesize);
2032 }
2033
2034 size_t
__elfN(register_note)2035 __elfN(register_note)(struct thread *td, struct note_info_list *list,
2036 int type, outfunc_t out, void *arg)
2037 {
2038 const struct sysentvec *sv;
2039 struct note_info *ninfo;
2040 size_t size, notesize;
2041
2042 sv = td->td_proc->p_sysent;
2043 size = 0;
2044 out(arg, NULL, &size);
2045 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
2046 ninfo->type = type;
2047 ninfo->outfunc = out;
2048 ninfo->outarg = arg;
2049 ninfo->outsize = size;
2050 TAILQ_INSERT_TAIL(list, ninfo, link);
2051
2052 if (type == -1)
2053 return (size);
2054
2055 notesize = sizeof(Elf_Note) + /* note header */
2056 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2057 /* note name */
2058 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
2059
2060 return (notesize);
2061 }
2062
2063 static size_t
append_note_data(const void * src,void * dst,size_t len)2064 append_note_data(const void *src, void *dst, size_t len)
2065 {
2066 size_t padded_len;
2067
2068 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
2069 if (dst != NULL) {
2070 bcopy(src, dst, len);
2071 bzero((char *)dst + len, padded_len - len);
2072 }
2073 return (padded_len);
2074 }
2075
2076 size_t
__elfN(populate_note)2077 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
2078 {
2079 Elf_Note *note;
2080 char *buf;
2081 size_t notesize;
2082
2083 buf = dst;
2084 if (buf != NULL) {
2085 note = (Elf_Note *)buf;
2086 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2087 note->n_descsz = size;
2088 note->n_type = type;
2089 buf += sizeof(*note);
2090 buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
2091 sizeof(FREEBSD_ABI_VENDOR));
2092 append_note_data(src, buf, size);
2093 if (descp != NULL)
2094 *descp = buf;
2095 }
2096
2097 notesize = sizeof(Elf_Note) + /* note header */
2098 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
2099 /* note name */
2100 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
2101
2102 return (notesize);
2103 }
2104
2105 static void
__elfN(putnote)2106 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb)
2107 {
2108 Elf_Note note;
2109 const struct sysentvec *sv;
2110 ssize_t old_len, sect_len;
2111 size_t new_len, descsz, i;
2112
2113 if (ninfo->type == -1) {
2114 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2115 return;
2116 }
2117
2118 sv = td->td_proc->p_sysent;
2119
2120 note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1;
2121 note.n_descsz = ninfo->outsize;
2122 note.n_type = ninfo->type;
2123
2124 sbuf_bcat(sb, ¬e, sizeof(note));
2125 sbuf_start_section(sb, &old_len);
2126 sbuf_bcat(sb, sv->sv_elf_core_abi_vendor,
2127 strlen(sv->sv_elf_core_abi_vendor) + 1);
2128 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2129 if (note.n_descsz == 0)
2130 return;
2131 sbuf_start_section(sb, &old_len);
2132 if (ninfo->regset != NULL) {
2133 struct regset *regset = ninfo->regset;
2134 void *buf;
2135
2136 buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK);
2137 (void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize);
2138 sbuf_bcat(sb, buf, ninfo->outsize);
2139 free(buf, M_TEMP);
2140 } else
2141 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2142 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2143 if (sect_len < 0)
2144 return;
2145
2146 new_len = (size_t)sect_len;
2147 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
2148 if (new_len < descsz) {
2149 /*
2150 * It is expected that individual note emitters will correctly
2151 * predict their expected output size and fill up to that size
2152 * themselves, padding in a format-specific way if needed.
2153 * However, in case they don't, just do it here with zeros.
2154 */
2155 for (i = 0; i < descsz - new_len; i++)
2156 sbuf_putc(sb, 0);
2157 } else if (new_len > descsz) {
2158 /*
2159 * We can't always truncate sb -- we may have drained some
2160 * of it already.
2161 */
2162 KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
2163 "read it (%zu > %zu). Since it is longer than "
2164 "expected, this coredump's notes are corrupt. THIS "
2165 "IS A BUG in the note_procstat routine for type %u.\n",
2166 __func__, (unsigned)note.n_type, new_len, descsz,
2167 (unsigned)note.n_type));
2168 }
2169 }
2170
2171 /*
2172 * Miscellaneous note out functions.
2173 */
2174
2175 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2176 #include <compat/freebsd32/freebsd32.h>
2177 #include <compat/freebsd32/freebsd32_signal.h>
2178
2179 typedef struct prstatus32 elf_prstatus_t;
2180 typedef struct prpsinfo32 elf_prpsinfo_t;
2181 typedef struct fpreg32 elf_prfpregset_t;
2182 typedef struct fpreg32 elf_fpregset_t;
2183 typedef struct reg32 elf_gregset_t;
2184 typedef struct thrmisc32 elf_thrmisc_t;
2185 typedef struct ptrace_lwpinfo32 elf_lwpinfo_t;
2186 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32
2187 typedef struct kinfo_proc32 elf_kinfo_proc_t;
2188 typedef uint32_t elf_ps_strings_t;
2189 #else
2190 typedef prstatus_t elf_prstatus_t;
2191 typedef prpsinfo_t elf_prpsinfo_t;
2192 typedef prfpregset_t elf_prfpregset_t;
2193 typedef prfpregset_t elf_fpregset_t;
2194 typedef gregset_t elf_gregset_t;
2195 typedef thrmisc_t elf_thrmisc_t;
2196 typedef struct ptrace_lwpinfo elf_lwpinfo_t;
2197 #define ELF_KERN_PROC_MASK 0
2198 typedef struct kinfo_proc elf_kinfo_proc_t;
2199 typedef vm_offset_t elf_ps_strings_t;
2200 #endif
2201
2202 static void
__elfN(note_prpsinfo)2203 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2204 {
2205 struct sbuf sbarg;
2206 size_t len;
2207 char *cp, *end;
2208 struct proc *p;
2209 elf_prpsinfo_t *psinfo;
2210 int error;
2211
2212 p = arg;
2213 if (sb != NULL) {
2214 KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
2215 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
2216 psinfo->pr_version = PRPSINFO_VERSION;
2217 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
2218 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
2219 PROC_LOCK(p);
2220 if (p->p_args != NULL) {
2221 len = sizeof(psinfo->pr_psargs) - 1;
2222 if (len > p->p_args->ar_length)
2223 len = p->p_args->ar_length;
2224 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
2225 PROC_UNLOCK(p);
2226 error = 0;
2227 } else {
2228 _PHOLD(p);
2229 PROC_UNLOCK(p);
2230 sbuf_new(&sbarg, psinfo->pr_psargs,
2231 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
2232 error = proc_getargv(curthread, p, &sbarg);
2233 PRELE(p);
2234 if (sbuf_finish(&sbarg) == 0) {
2235 len = sbuf_len(&sbarg);
2236 if (len > 0)
2237 len--;
2238 } else {
2239 len = sizeof(psinfo->pr_psargs) - 1;
2240 }
2241 sbuf_delete(&sbarg);
2242 }
2243 if (error != 0 || len == 0 || (ssize_t)len == -1)
2244 strlcpy(psinfo->pr_psargs, p->p_comm,
2245 sizeof(psinfo->pr_psargs));
2246 else {
2247 KASSERT(len < sizeof(psinfo->pr_psargs),
2248 ("len is too long: %zu vs %zu", len,
2249 sizeof(psinfo->pr_psargs)));
2250 cp = psinfo->pr_psargs;
2251 end = cp + len - 1;
2252 for (;;) {
2253 cp = memchr(cp, '\0', end - cp);
2254 if (cp == NULL)
2255 break;
2256 *cp = ' ';
2257 }
2258 }
2259 psinfo->pr_pid = p->p_pid;
2260 sbuf_bcat(sb, psinfo, sizeof(*psinfo));
2261 free(psinfo, M_TEMP);
2262 }
2263 *sizep = sizeof(*psinfo);
2264 }
2265
2266 static bool
__elfN(get_prstatus)2267 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf,
2268 size_t *sizep)
2269 {
2270 elf_prstatus_t *status;
2271
2272 if (buf != NULL) {
2273 KASSERT(*sizep == sizeof(*status), ("%s: invalid size",
2274 __func__));
2275 status = buf;
2276 memset(status, 0, *sizep);
2277 status->pr_version = PRSTATUS_VERSION;
2278 status->pr_statussz = sizeof(elf_prstatus_t);
2279 status->pr_gregsetsz = sizeof(elf_gregset_t);
2280 status->pr_fpregsetsz = sizeof(elf_fpregset_t);
2281 status->pr_osreldate = osreldate;
2282 status->pr_cursig = td->td_proc->p_sig;
2283 status->pr_pid = td->td_tid;
2284 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2285 fill_regs32(td, &status->pr_reg);
2286 #else
2287 fill_regs(td, &status->pr_reg);
2288 #endif
2289 }
2290 *sizep = sizeof(*status);
2291 return (true);
2292 }
2293
2294 static bool
__elfN(set_prstatus)2295 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf,
2296 size_t size)
2297 {
2298 elf_prstatus_t *status;
2299
2300 KASSERT(size == sizeof(*status), ("%s: invalid size", __func__));
2301 status = buf;
2302 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2303 set_regs32(td, &status->pr_reg);
2304 #else
2305 set_regs(td, &status->pr_reg);
2306 #endif
2307 return (true);
2308 }
2309
2310 static struct regset __elfN(regset_prstatus) = {
2311 .note = NT_PRSTATUS,
2312 .size = sizeof(elf_prstatus_t),
2313 .get = __elfN(get_prstatus),
2314 .set = __elfN(set_prstatus),
2315 };
2316 ELF_REGSET(__elfN(regset_prstatus));
2317
2318 static bool
__elfN(get_fpregset)2319 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf,
2320 size_t *sizep)
2321 {
2322 elf_prfpregset_t *fpregset;
2323
2324 if (buf != NULL) {
2325 KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size",
2326 __func__));
2327 fpregset = buf;
2328 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2329 fill_fpregs32(td, fpregset);
2330 #else
2331 fill_fpregs(td, fpregset);
2332 #endif
2333 }
2334 *sizep = sizeof(*fpregset);
2335 return (true);
2336 }
2337
2338 static bool
__elfN(set_fpregset)2339 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf,
2340 size_t size)
2341 {
2342 elf_prfpregset_t *fpregset;
2343
2344 fpregset = buf;
2345 KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__));
2346 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2347 set_fpregs32(td, fpregset);
2348 #else
2349 set_fpregs(td, fpregset);
2350 #endif
2351 return (true);
2352 }
2353
2354 static struct regset __elfN(regset_fpregset) = {
2355 .note = NT_FPREGSET,
2356 .size = sizeof(elf_prfpregset_t),
2357 .get = __elfN(get_fpregset),
2358 .set = __elfN(set_fpregset),
2359 };
2360 ELF_REGSET(__elfN(regset_fpregset));
2361
2362 static bool
__elfN(get_thrmisc)2363 __elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf,
2364 size_t *sizep)
2365 {
2366 elf_thrmisc_t *thrmisc;
2367
2368 if (buf != NULL) {
2369 KASSERT(*sizep == sizeof(*thrmisc),
2370 ("%s: invalid size", __func__));
2371 thrmisc = buf;
2372 bzero(thrmisc, sizeof(*thrmisc));
2373 strcpy(thrmisc->pr_tname, td->td_name);
2374 }
2375 *sizep = sizeof(*thrmisc);
2376 return (true);
2377 }
2378
2379 static struct regset __elfN(regset_thrmisc) = {
2380 .note = NT_THRMISC,
2381 .size = sizeof(elf_thrmisc_t),
2382 .get = __elfN(get_thrmisc),
2383 };
2384 ELF_REGSET(__elfN(regset_thrmisc));
2385
2386 static bool
__elfN(get_lwpinfo)2387 __elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf,
2388 size_t *sizep)
2389 {
2390 elf_lwpinfo_t pl;
2391 size_t size;
2392 int structsize;
2393
2394 size = sizeof(structsize) + sizeof(pl);
2395 if (buf != NULL) {
2396 KASSERT(*sizep == size, ("%s: invalid size", __func__));
2397 structsize = sizeof(pl);
2398 memcpy(buf, &structsize, sizeof(structsize));
2399 bzero(&pl, sizeof(pl));
2400 pl.pl_lwpid = td->td_tid;
2401 pl.pl_event = PL_EVENT_NONE;
2402 pl.pl_sigmask = td->td_sigmask;
2403 pl.pl_siglist = td->td_siglist;
2404 if (td->td_si.si_signo != 0) {
2405 pl.pl_event = PL_EVENT_SIGNAL;
2406 pl.pl_flags |= PL_FLAG_SI;
2407 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2408 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
2409 #else
2410 pl.pl_siginfo = td->td_si;
2411 #endif
2412 }
2413 strcpy(pl.pl_tdname, td->td_name);
2414 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/
2415 memcpy((int *)buf + 1, &pl, sizeof(pl));
2416 }
2417 *sizep = size;
2418 return (true);
2419 }
2420
2421 static struct regset __elfN(regset_lwpinfo) = {
2422 .note = NT_PTLWPINFO,
2423 .size = sizeof(int) + sizeof(elf_lwpinfo_t),
2424 .get = __elfN(get_lwpinfo),
2425 };
2426 ELF_REGSET(__elfN(regset_lwpinfo));
2427
2428 static size_t
__elfN(prepare_register_notes)2429 __elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list,
2430 struct thread *target_td)
2431 {
2432 struct sysentvec *sv = td->td_proc->p_sysent;
2433 struct regset **regsetp, **regset_end, *regset;
2434 size_t size;
2435
2436 size = 0;
2437
2438 if (target_td == td)
2439 cpu_update_pcb(target_td);
2440
2441 /* NT_PRSTATUS must be the first register set note. */
2442 size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus),
2443 target_td);
2444
2445 regsetp = sv->sv_regset_begin;
2446 if (regsetp == NULL) {
2447 /* XXX: This shouldn't be true for any FreeBSD ABIs. */
2448 size += __elfN(register_regset_note)(td, list,
2449 &__elfN(regset_fpregset), target_td);
2450 return (size);
2451 }
2452 regset_end = sv->sv_regset_end;
2453 MPASS(regset_end != NULL);
2454 for (; regsetp < regset_end; regsetp++) {
2455 regset = *regsetp;
2456 if (regset->note == NT_PRSTATUS)
2457 continue;
2458 size += __elfN(register_regset_note)(td, list, regset,
2459 target_td);
2460 }
2461 return (size);
2462 }
2463
2464 /*
2465 * Allow for MD specific notes, as well as any MD
2466 * specific preparations for writing MI notes.
2467 */
2468 static void
__elfN(note_threadmd)2469 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2470 {
2471 struct thread *td;
2472 void *buf;
2473 size_t size;
2474
2475 td = (struct thread *)arg;
2476 size = *sizep;
2477 if (size != 0 && sb != NULL)
2478 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2479 else
2480 buf = NULL;
2481 size = 0;
2482 __elfN(dump_thread)(td, buf, &size);
2483 KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2484 if (size != 0 && sb != NULL)
2485 sbuf_bcat(sb, buf, size);
2486 free(buf, M_TEMP);
2487 *sizep = size;
2488 }
2489
2490 #ifdef KINFO_PROC_SIZE
2491 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2492 #endif
2493
2494 static void
__elfN(note_procstat_proc)2495 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2496 {
2497 struct proc *p;
2498 size_t size;
2499 int structsize;
2500
2501 p = arg;
2502 size = sizeof(structsize) + p->p_numthreads *
2503 sizeof(elf_kinfo_proc_t);
2504
2505 if (sb != NULL) {
2506 KASSERT(*sizep == size, ("invalid size"));
2507 structsize = sizeof(elf_kinfo_proc_t);
2508 sbuf_bcat(sb, &structsize, sizeof(structsize));
2509 sx_slock(&proctree_lock);
2510 PROC_LOCK(p);
2511 kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2512 sx_sunlock(&proctree_lock);
2513 }
2514 *sizep = size;
2515 }
2516
2517 #ifdef KINFO_FILE_SIZE
2518 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2519 #endif
2520
2521 static void
note_procstat_files(void * arg,struct sbuf * sb,size_t * sizep)2522 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2523 {
2524 struct proc *p;
2525 size_t size, sect_sz, i;
2526 ssize_t start_len, sect_len;
2527 int structsize, filedesc_flags;
2528
2529 if (coredump_pack_fileinfo)
2530 filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2531 else
2532 filedesc_flags = 0;
2533
2534 p = arg;
2535 structsize = sizeof(struct kinfo_file);
2536 if (sb == NULL) {
2537 size = 0;
2538 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2539 sbuf_set_drain(sb, sbuf_count_drain, &size);
2540 sbuf_bcat(sb, &structsize, sizeof(structsize));
2541 PROC_LOCK(p);
2542 kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2543 sbuf_finish(sb);
2544 sbuf_delete(sb);
2545 *sizep = size;
2546 } else {
2547 sbuf_start_section(sb, &start_len);
2548
2549 sbuf_bcat(sb, &structsize, sizeof(structsize));
2550 PROC_LOCK(p);
2551 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2552 filedesc_flags);
2553
2554 sect_len = sbuf_end_section(sb, start_len, 0, 0);
2555 if (sect_len < 0)
2556 return;
2557 sect_sz = sect_len;
2558
2559 KASSERT(sect_sz <= *sizep,
2560 ("kern_proc_filedesc_out did not respect maxlen; "
2561 "requested %zu, got %zu", *sizep - sizeof(structsize),
2562 sect_sz - sizeof(structsize)));
2563
2564 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2565 sbuf_putc(sb, 0);
2566 }
2567 }
2568
2569 #ifdef KINFO_VMENTRY_SIZE
2570 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2571 #endif
2572
2573 static void
note_procstat_vmmap(void * arg,struct sbuf * sb,size_t * sizep)2574 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2575 {
2576 struct proc *p;
2577 size_t size;
2578 int structsize, vmmap_flags;
2579
2580 if (coredump_pack_vmmapinfo)
2581 vmmap_flags = KERN_VMMAP_PACK_KINFO;
2582 else
2583 vmmap_flags = 0;
2584
2585 p = arg;
2586 structsize = sizeof(struct kinfo_vmentry);
2587 if (sb == NULL) {
2588 size = 0;
2589 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2590 sbuf_set_drain(sb, sbuf_count_drain, &size);
2591 sbuf_bcat(sb, &structsize, sizeof(structsize));
2592 PROC_LOCK(p);
2593 kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2594 sbuf_finish(sb);
2595 sbuf_delete(sb);
2596 *sizep = size;
2597 } else {
2598 sbuf_bcat(sb, &structsize, sizeof(structsize));
2599 PROC_LOCK(p);
2600 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2601 vmmap_flags);
2602 }
2603 }
2604
2605 static void
note_procstat_groups(void * arg,struct sbuf * sb,size_t * sizep)2606 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2607 {
2608 struct proc *p;
2609 size_t size;
2610 int structsize;
2611
2612 p = arg;
2613 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2614 if (sb != NULL) {
2615 KASSERT(*sizep == size, ("invalid size"));
2616 structsize = sizeof(gid_t);
2617 sbuf_bcat(sb, &structsize, sizeof(structsize));
2618 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2619 sizeof(gid_t));
2620 }
2621 *sizep = size;
2622 }
2623
2624 static void
note_procstat_umask(void * arg,struct sbuf * sb,size_t * sizep)2625 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2626 {
2627 struct proc *p;
2628 size_t size;
2629 int structsize;
2630
2631 p = arg;
2632 size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask);
2633 if (sb != NULL) {
2634 KASSERT(*sizep == size, ("invalid size"));
2635 structsize = sizeof(p->p_pd->pd_cmask);
2636 sbuf_bcat(sb, &structsize, sizeof(structsize));
2637 sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask));
2638 }
2639 *sizep = size;
2640 }
2641
2642 static void
note_procstat_rlimit(void * arg,struct sbuf * sb,size_t * sizep)2643 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2644 {
2645 struct proc *p;
2646 struct rlimit rlim[RLIM_NLIMITS];
2647 size_t size;
2648 int structsize, i;
2649
2650 p = arg;
2651 size = sizeof(structsize) + sizeof(rlim);
2652 if (sb != NULL) {
2653 KASSERT(*sizep == size, ("invalid size"));
2654 structsize = sizeof(rlim);
2655 sbuf_bcat(sb, &structsize, sizeof(structsize));
2656 PROC_LOCK(p);
2657 for (i = 0; i < RLIM_NLIMITS; i++)
2658 lim_rlimit_proc(p, i, &rlim[i]);
2659 PROC_UNLOCK(p);
2660 sbuf_bcat(sb, rlim, sizeof(rlim));
2661 }
2662 *sizep = size;
2663 }
2664
2665 static void
note_procstat_osrel(void * arg,struct sbuf * sb,size_t * sizep)2666 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2667 {
2668 struct proc *p;
2669 size_t size;
2670 int structsize;
2671
2672 p = arg;
2673 size = sizeof(structsize) + sizeof(p->p_osrel);
2674 if (sb != NULL) {
2675 KASSERT(*sizep == size, ("invalid size"));
2676 structsize = sizeof(p->p_osrel);
2677 sbuf_bcat(sb, &structsize, sizeof(structsize));
2678 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2679 }
2680 *sizep = size;
2681 }
2682
2683 static void
__elfN(note_procstat_psstrings)2684 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2685 {
2686 struct proc *p;
2687 elf_ps_strings_t ps_strings;
2688 size_t size;
2689 int structsize;
2690
2691 p = arg;
2692 size = sizeof(structsize) + sizeof(ps_strings);
2693 if (sb != NULL) {
2694 KASSERT(*sizep == size, ("invalid size"));
2695 structsize = sizeof(ps_strings);
2696 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2697 ps_strings = PTROUT(PROC_PS_STRINGS(p));
2698 #else
2699 ps_strings = PROC_PS_STRINGS(p);
2700 #endif
2701 sbuf_bcat(sb, &structsize, sizeof(structsize));
2702 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2703 }
2704 *sizep = size;
2705 }
2706
2707 static void
__elfN(note_procstat_auxv)2708 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2709 {
2710 struct proc *p;
2711 size_t size;
2712 int structsize;
2713
2714 p = arg;
2715 if (sb == NULL) {
2716 size = 0;
2717 sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo),
2718 SBUF_FIXEDLEN);
2719 sbuf_set_drain(sb, sbuf_count_drain, &size);
2720 sbuf_bcat(sb, &structsize, sizeof(structsize));
2721 PHOLD(p);
2722 proc_getauxv(curthread, p, sb);
2723 PRELE(p);
2724 sbuf_finish(sb);
2725 sbuf_delete(sb);
2726 *sizep = size;
2727 } else {
2728 structsize = sizeof(Elf_Auxinfo);
2729 sbuf_bcat(sb, &structsize, sizeof(structsize));
2730 PHOLD(p);
2731 proc_getauxv(curthread, p, sb);
2732 PRELE(p);
2733 }
2734 }
2735
2736 static void
__elfN(note_procstat_kqueues)2737 __elfN(note_procstat_kqueues)(void *arg, struct sbuf *sb, size_t *sizep)
2738 {
2739 struct proc *p;
2740 size_t size, sect_sz, i;
2741 ssize_t start_len, sect_len;
2742 int structsize;
2743 bool compat32;
2744
2745 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2746 compat32 = true;
2747 structsize = sizeof(struct kinfo_knote32);
2748 #else
2749 compat32 = false;
2750 structsize = sizeof(struct kinfo_knote);
2751 #endif
2752 p = arg;
2753 if (sb == NULL) {
2754 size = 0;
2755 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2756 sbuf_set_drain(sb, sbuf_count_drain, &size);
2757 sbuf_bcat(sb, &structsize, sizeof(structsize));
2758 kern_proc_kqueues_out(p, sb, -1, compat32);
2759 sbuf_finish(sb);
2760 sbuf_delete(sb);
2761 *sizep = size;
2762 } else {
2763 sbuf_start_section(sb, &start_len);
2764
2765 sbuf_bcat(sb, &structsize, sizeof(structsize));
2766 kern_proc_kqueues_out(p, sb, *sizep - sizeof(structsize),
2767 compat32);
2768
2769 sect_len = sbuf_end_section(sb, start_len, 0, 0);
2770 if (sect_len < 0)
2771 return;
2772 sect_sz = sect_len;
2773
2774 KASSERT(sect_sz <= *sizep,
2775 ("kern_proc_kqueue_out did not respect maxlen; "
2776 "requested %zu, got %zu", *sizep - sizeof(structsize),
2777 sect_sz - sizeof(structsize)));
2778
2779 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2780 sbuf_putc(sb, 0);
2781 }
2782 }
2783
2784 #define MAX_NOTES_LOOP 4096
2785 bool
__elfN(parse_notes)2786 __elfN(parse_notes)(const struct image_params *imgp, const Elf_Note *checknote,
2787 const char *note_vendor, const Elf_Phdr *pnote,
2788 bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg)
2789 {
2790 const Elf_Note *note, *note0, *note_end;
2791 const char *note_name;
2792 char *buf;
2793 int i, error;
2794 bool res;
2795
2796 /* We need some limit, might as well use PAGE_SIZE. */
2797 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2798 return (false);
2799 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2800 if (pnote->p_offset > PAGE_SIZE ||
2801 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2802 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
2803 if (buf == NULL) {
2804 VOP_UNLOCK(imgp->vp);
2805 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2806 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
2807 }
2808 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2809 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2810 curthread->td_ucred, NOCRED, NULL, curthread);
2811 if (error != 0) {
2812 uprintf("i/o error PT_NOTE\n");
2813 goto retf;
2814 }
2815 note = note0 = (const Elf_Note *)buf;
2816 note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2817 } else {
2818 note = note0 = (const Elf_Note *)(imgp->image_header +
2819 pnote->p_offset);
2820 note_end = (const Elf_Note *)(imgp->image_header +
2821 pnote->p_offset + pnote->p_filesz);
2822 buf = NULL;
2823 }
2824 for (i = 0; i < MAX_NOTES_LOOP && note >= note0 && note < note_end;
2825 i++) {
2826 if (!aligned(note, Elf32_Addr)) {
2827 uprintf("Unaligned ELF note\n");
2828 goto retf;
2829 }
2830 if ((const char *)note_end - (const char *)note <
2831 sizeof(Elf_Note)) {
2832 uprintf("ELF note to short\n");
2833 goto retf;
2834 }
2835 if (note->n_namesz != checknote->n_namesz ||
2836 note->n_descsz != checknote->n_descsz ||
2837 note->n_type != checknote->n_type)
2838 goto nextnote;
2839 note_name = (const char *)(note + 1);
2840 if (note_name + checknote->n_namesz >=
2841 (const char *)note_end || strncmp(note_vendor,
2842 note_name, checknote->n_namesz) != 0)
2843 goto nextnote;
2844
2845 if (cb(note, cb_arg, &res))
2846 goto ret;
2847 nextnote:
2848 note = (const Elf_Note *)((const char *)(note + 1) +
2849 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2850 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2851 }
2852 if (i >= MAX_NOTES_LOOP)
2853 uprintf("ELF note parser reached %d notes\n", i);
2854 retf:
2855 res = false;
2856 ret:
2857 free(buf, M_TEMP);
2858 return (res);
2859 }
2860
2861 struct brandnote_cb_arg {
2862 Elf_Brandnote *brandnote;
2863 int32_t *osrel;
2864 };
2865
2866 static bool
brandnote_cb(const Elf_Note * note,void * arg0,bool * res)2867 brandnote_cb(const Elf_Note *note, void *arg0, bool *res)
2868 {
2869 struct brandnote_cb_arg *arg;
2870
2871 arg = arg0;
2872
2873 /*
2874 * Fetch the osreldate for binary from the ELF OSABI-note if
2875 * necessary.
2876 */
2877 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
2878 arg->brandnote->trans_osrel != NULL ?
2879 arg->brandnote->trans_osrel(note, arg->osrel) : true;
2880
2881 return (true);
2882 }
2883
2884 static Elf_Note fctl_note = {
2885 .n_namesz = sizeof(FREEBSD_ABI_VENDOR),
2886 .n_descsz = sizeof(uint32_t),
2887 .n_type = NT_FREEBSD_FEATURE_CTL,
2888 };
2889
2890 struct fctl_cb_arg {
2891 bool *has_fctl0;
2892 uint32_t *fctl0;
2893 };
2894
2895 static bool
note_fctl_cb(const Elf_Note * note,void * arg0,bool * res)2896 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res)
2897 {
2898 struct fctl_cb_arg *arg;
2899 const Elf32_Word *desc;
2900 uintptr_t p;
2901
2902 arg = arg0;
2903 p = (uintptr_t)(note + 1);
2904 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
2905 desc = (const Elf32_Word *)p;
2906 *arg->has_fctl0 = true;
2907 *arg->fctl0 = desc[0];
2908 *res = true;
2909 return (true);
2910 }
2911
2912 /*
2913 * Try to find the appropriate ABI-note section for checknote, fetch
2914 * the osreldate and feature control flags for binary from the ELF
2915 * OSABI-note. Only the first page of the image is searched, the same
2916 * as for headers.
2917 */
2918 static bool
__elfN(check_note)2919 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
2920 int32_t *osrel, bool *has_fctl0, uint32_t *fctl0)
2921 {
2922 const Elf_Phdr *phdr;
2923 const Elf_Ehdr *hdr;
2924 struct brandnote_cb_arg b_arg;
2925 struct fctl_cb_arg f_arg;
2926 int i, j;
2927
2928 hdr = (const Elf_Ehdr *)imgp->image_header;
2929 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2930 b_arg.brandnote = brandnote;
2931 b_arg.osrel = osrel;
2932 f_arg.has_fctl0 = has_fctl0;
2933 f_arg.fctl0 = fctl0;
2934
2935 for (i = 0; i < hdr->e_phnum; i++) {
2936 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
2937 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
2938 &b_arg)) {
2939 for (j = 0; j < hdr->e_phnum; j++) {
2940 if (phdr[j].p_type == PT_NOTE &&
2941 __elfN(parse_notes)(imgp, &fctl_note,
2942 FREEBSD_ABI_VENDOR, &phdr[j],
2943 note_fctl_cb, &f_arg))
2944 break;
2945 }
2946 return (true);
2947 }
2948 }
2949 return (false);
2950
2951 }
2952
2953 /*
2954 * Tell kern_execve.c about it, with a little help from the linker.
2955 */
2956 static struct execsw __elfN(execsw) = {
2957 .ex_imgact = __CONCAT(exec_, __elfN(imgact)),
2958 .ex_name = ELF_ABI_NAME
2959 };
2960 EXEC_SET(ELF_ABI_ID, __elfN(execsw));
2961
2962 static vm_prot_t
__elfN(trans_prot)2963 __elfN(trans_prot)(Elf_Word flags)
2964 {
2965 vm_prot_t prot;
2966
2967 prot = 0;
2968 if (flags & PF_X)
2969 prot |= VM_PROT_EXECUTE;
2970 if (flags & PF_W)
2971 prot |= VM_PROT_WRITE;
2972 if (flags & PF_R)
2973 prot |= VM_PROT_READ;
2974 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
2975 if (i386_read_exec && (flags & PF_R))
2976 prot |= VM_PROT_EXECUTE;
2977 #endif
2978 return (prot);
2979 }
2980
2981 static Elf_Word
__elfN(untrans_prot)2982 __elfN(untrans_prot)(vm_prot_t prot)
2983 {
2984 Elf_Word flags;
2985
2986 flags = 0;
2987 if (prot & VM_PROT_EXECUTE)
2988 flags |= PF_X;
2989 if (prot & VM_PROT_READ)
2990 flags |= PF_R;
2991 if (prot & VM_PROT_WRITE)
2992 flags |= PF_W;
2993 return (flags);
2994 }
2995