1 /*-
2 * Copyright (c) 2008-2010 Rui Paulo
3 * Copyright (c) 2006 Marcel Moolenaar
4 * All rights reserved.
5 *
6 * Copyright (c) 2016-2019 Netflix, Inc. written by M. Warner Losh
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #include <stand.h>
31
32 #include <sys/disk.h>
33 #include <sys/param.h>
34 #include <sys/reboot.h>
35 #include <sys/boot.h>
36 #ifdef EFI_ZFS_BOOT
37 #include <sys/zfs_bootenv.h>
38 #endif
39 #include <paths.h>
40 #include <netinet/in.h>
41 #include <netinet/in_systm.h>
42 #include <stdint.h>
43 #include <string.h>
44 #include <setjmp.h>
45 #include <disk.h>
46 #include <dev_net.h>
47 #include <net.h>
48 #include <machine/_inttypes.h>
49
50 #include <efi.h>
51 #include <efilib.h>
52 #include <efichar.h>
53 #include <efirng.h>
54
55 #include <uuid.h>
56
57 #include <bootstrap.h>
58 #include <smbios.h>
59
60 #include <dev/random/fortuna.h>
61 #include <geom/eli/pkcs5v2.h>
62
63 #include "efizfs.h"
64 #include "framebuffer.h"
65
66 #include "platform/acfreebsd.h"
67 #include "acconfig.h"
68 #define ACPI_SYSTEM_XFACE
69 #include "actypes.h"
70 #include "actbl.h"
71
72 #include "loader_efi.h"
73
74 struct arch_switch archsw; /* MI/MD interface boundary */
75
76 EFI_GUID acpi = ACPI_TABLE_GUID;
77 EFI_GUID acpi20 = ACPI_20_TABLE_GUID;
78 EFI_GUID devid = DEVICE_PATH_PROTOCOL;
79 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
80 EFI_GUID mps = MPS_TABLE_GUID;
81 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL;
82 EFI_GUID smbios = SMBIOS_TABLE_GUID;
83 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID;
84 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
85 EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
86 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID;
87 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID;
88 EFI_GUID esrt = ESRT_TABLE_GUID;
89 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
90 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID;
91 EFI_GUID fdtdtb = FDT_TABLE_GUID;
92 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL;
93
94 /*
95 * Number of seconds to wait for a keystroke before exiting with failure
96 * in the event no currdev is found. -2 means always break, -1 means
97 * never break, 0 means poll once and then reboot, > 0 means wait for
98 * that many seconds. "fail_timeout" can be set in the environment as
99 * well.
100 */
101 static int fail_timeout = 5;
102
103 /*
104 * Current boot variable
105 */
106 UINT16 boot_current;
107
108 /*
109 * Image that we booted from.
110 */
111 EFI_LOADED_IMAGE *boot_img;
112
113 /*
114 * RSDP base table.
115 */
116 ACPI_TABLE_RSDP *rsdp;
117
118 static bool
has_keyboard(void)119 has_keyboard(void)
120 {
121 EFI_STATUS status;
122 EFI_DEVICE_PATH *path;
123 EFI_HANDLE *hin, *hin_end, *walker;
124 UINTN sz;
125 bool retval = false;
126
127 /*
128 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and
129 * do the typical dance to get the right sized buffer.
130 */
131 sz = 0;
132 hin = NULL;
133 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
134 if (status == EFI_BUFFER_TOO_SMALL) {
135 hin = (EFI_HANDLE *)malloc(sz);
136 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
137 hin);
138 if (EFI_ERROR(status))
139 free(hin);
140 }
141 if (EFI_ERROR(status))
142 return retval;
143
144 /*
145 * Look at each of the handles. If it supports the device path protocol,
146 * use it to get the device path for this handle. Then see if that
147 * device path matches either the USB device path for keyboards or the
148 * legacy device path for keyboards.
149 */
150 hin_end = &hin[sz / sizeof(*hin)];
151 for (walker = hin; walker < hin_end; walker++) {
152 status = OpenProtocolByHandle(*walker, &devid, (void **)&path);
153 if (EFI_ERROR(status))
154 continue;
155
156 while (!IsDevicePathEnd(path)) {
157 /*
158 * Check for the ACPI keyboard node. All PNP3xx nodes
159 * are keyboards of different flavors. Note: It is
160 * unclear of there's always a keyboard node when
161 * there's a keyboard controller, or if there's only one
162 * when a keyboard is detected at boot.
163 */
164 if (DevicePathType(path) == ACPI_DEVICE_PATH &&
165 (DevicePathSubType(path) == ACPI_DP ||
166 DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
167 ACPI_HID_DEVICE_PATH *acpi;
168
169 acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
170 if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
171 (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
172 retval = true;
173 goto out;
174 }
175 /*
176 * Check for USB keyboard node, if present. Unlike a
177 * PS/2 keyboard, these definitely only appear when
178 * connected to the system.
179 */
180 } else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
181 DevicePathSubType(path) == MSG_USB_CLASS_DP) {
182 USB_CLASS_DEVICE_PATH *usb;
183
184 usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
185 if (usb->DeviceClass == 3 && /* HID */
186 usb->DeviceSubClass == 1 && /* Boot devices */
187 usb->DeviceProtocol == 1) { /* Boot keyboards */
188 retval = true;
189 goto out;
190 }
191 }
192 path = NextDevicePathNode(path);
193 }
194 }
195 out:
196 free(hin);
197 return retval;
198 }
199
200 static void
set_currdev_devdesc(struct devdesc * currdev)201 set_currdev_devdesc(struct devdesc *currdev)
202 {
203 const char *devname;
204
205 devname = devformat(currdev);
206 printf("Setting currdev to %s\n", devname);
207 set_currdev(devname);
208 }
209
210 static void
set_currdev_devsw(struct devsw * dev,int unit)211 set_currdev_devsw(struct devsw *dev, int unit)
212 {
213 struct devdesc currdev;
214
215 currdev.d_dev = dev;
216 currdev.d_unit = unit;
217
218 set_currdev_devdesc(&currdev);
219 }
220
221 static void
set_currdev_pdinfo(pdinfo_t * dp)222 set_currdev_pdinfo(pdinfo_t *dp)
223 {
224
225 /*
226 * Disks are special: they have partitions. if the parent
227 * pointer is non-null, we're a partition not a full disk
228 * and we need to adjust currdev appropriately.
229 */
230 if (dp->pd_devsw->dv_type == DEVT_DISK) {
231 struct disk_devdesc currdev;
232
233 currdev.dd.d_dev = dp->pd_devsw;
234 if (dp->pd_parent == NULL) {
235 currdev.dd.d_unit = dp->pd_unit;
236 currdev.d_slice = D_SLICENONE;
237 currdev.d_partition = D_PARTNONE;
238 } else {
239 currdev.dd.d_unit = dp->pd_parent->pd_unit;
240 currdev.d_slice = dp->pd_unit;
241 currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */
242 }
243 set_currdev_devdesc((struct devdesc *)&currdev);
244 } else {
245 set_currdev_devsw(dp->pd_devsw, dp->pd_unit);
246 }
247 }
248
249 static bool
sanity_check_currdev(void)250 sanity_check_currdev(void)
251 {
252 struct stat st;
253
254 return (stat(PATH_DEFAULTS_LOADER_CONF, &st) == 0 ||
255 #ifdef PATH_BOOTABLE_TOKEN
256 stat(PATH_BOOTABLE_TOKEN, &st) == 0 || /* non-standard layout */
257 #endif
258 stat(PATH_KERNEL, &st) == 0);
259 }
260
261 #ifdef EFI_ZFS_BOOT
262 static bool
probe_zfs_currdev(uint64_t guid)263 probe_zfs_currdev(uint64_t guid)
264 {
265 char buf[VDEV_PAD_SIZE];
266 char *devname;
267 struct zfs_devdesc currdev;
268
269 currdev.dd.d_dev = &zfs_dev;
270 currdev.dd.d_unit = 0;
271 currdev.pool_guid = guid;
272 currdev.root_guid = 0;
273 devname = devformat(&currdev.dd);
274 set_currdev(devname);
275 printf("Setting currdev to %s\n", devname);
276 init_zfs_boot_options(devname);
277
278 if (zfs_get_bootonce(&currdev, OS_BOOTONCE, buf, sizeof(buf)) == 0) {
279 printf("zfs bootonce: %s\n", buf);
280 set_currdev(buf);
281 setenv("zfs-bootonce", buf, 1);
282 }
283 (void)zfs_attach_nvstore(&currdev);
284
285 return (sanity_check_currdev());
286 }
287 #endif
288
289 #ifdef MD_IMAGE_SIZE
290 extern struct devsw md_dev;
291
292 static bool
probe_md_currdev(void)293 probe_md_currdev(void)
294 {
295 bool rv;
296
297 set_currdev_devsw(&md_dev, 0);
298 rv = sanity_check_currdev();
299 if (!rv)
300 printf("MD not present\n");
301 return (rv);
302 }
303 #endif
304
305 static bool
try_as_currdev(pdinfo_t * hd,pdinfo_t * pp)306 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp)
307 {
308 uint64_t guid;
309
310 #ifdef EFI_ZFS_BOOT
311 /*
312 * If there's a zpool on this device, try it as a ZFS
313 * filesystem, which has somewhat different setup than all
314 * other types of fs due to imperfect loader integration.
315 * This all stems from ZFS being both a device (zpool) and
316 * a filesystem, plus the boot env feature.
317 */
318 if (efizfs_get_guid_by_handle(pp->pd_handle, &guid))
319 return (probe_zfs_currdev(guid));
320 #endif
321 /*
322 * All other filesystems just need the pdinfo
323 * initialized in the standard way.
324 */
325 set_currdev_pdinfo(pp);
326 return (sanity_check_currdev());
327 }
328
329 /*
330 * Sometimes we get filenames that are all upper case
331 * and/or have backslashes in them. Filter all this out
332 * if it looks like we need to do so.
333 */
334 static void
fix_dosisms(char * p)335 fix_dosisms(char *p)
336 {
337 while (*p) {
338 if (isupper(*p))
339 *p = tolower(*p);
340 else if (*p == '\\')
341 *p = '/';
342 p++;
343 }
344 }
345
346 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp)
347
348 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2 };
349 static int
match_boot_info(char * boot_info,size_t bisz)350 match_boot_info(char *boot_info, size_t bisz)
351 {
352 uint32_t attr;
353 uint16_t fplen;
354 size_t len;
355 char *walker, *ep;
356 EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp;
357 pdinfo_t *pp;
358 CHAR16 *descr;
359 char *kernel = NULL;
360 FILEPATH_DEVICE_PATH *fp;
361 struct stat st;
362 CHAR16 *text;
363
364 /*
365 * FreeBSD encodes its boot loading path into the boot loader
366 * BootXXXX variable. We look for the last one in the path
367 * and use that to load the kernel. However, if we only find
368 * one DEVICE_PATH, then there's nothing specific and we should
369 * fall back.
370 *
371 * In an ideal world, we'd look at the image handle we were
372 * passed, match up with the loader we are and then return the
373 * next one in the path. This would be most flexible and cover
374 * many chain booting scenarios where you need to use this
375 * boot loader to get to the next boot loader. However, that
376 * doesn't work. We rarely have the path to the image booted
377 * (just the device) so we can't count on that. So, we do the
378 * next best thing: we look through the device path(s) passed
379 * in the BootXXXX variable. If there's only one, we return
380 * NOT_SPECIFIC. Otherwise, we look at the last one and try to
381 * load that. If we can, we return BOOT_INFO_OK. Otherwise we
382 * return BAD_CHOICE for the caller to sort out.
383 */
384 if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16))
385 return NOT_SPECIFIC;
386 walker = boot_info;
387 ep = walker + bisz;
388 memcpy(&attr, walker, sizeof(attr));
389 walker += sizeof(attr);
390 memcpy(&fplen, walker, sizeof(fplen));
391 walker += sizeof(fplen);
392 descr = (CHAR16 *)(intptr_t)walker;
393 len = ucs2len(descr);
394 walker += (len + 1) * sizeof(CHAR16);
395 last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker;
396 edp = (EFI_DEVICE_PATH *)(walker + fplen);
397 if ((char *)edp > ep)
398 return NOT_SPECIFIC;
399 while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) {
400 text = efi_devpath_name(dp);
401 if (text != NULL) {
402 printf(" BootInfo Path: %S\n", text);
403 efi_free_devpath_name(text);
404 }
405 last_dp = dp;
406 dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp));
407 }
408
409 /*
410 * If there's only one item in the list, then nothing was
411 * specified. Or if the last path doesn't have a media
412 * path in it. Those show up as various VenHw() nodes
413 * which are basically opaque to us. Don't count those
414 * as something specifc.
415 */
416 if (last_dp == first_dp) {
417 printf("Ignoring Boot%04x: Only one DP found\n", boot_current);
418 return NOT_SPECIFIC;
419 }
420 if (efi_devpath_to_media_path(last_dp) == NULL) {
421 printf("Ignoring Boot%04x: No Media Path\n", boot_current);
422 return NOT_SPECIFIC;
423 }
424
425 /*
426 * OK. At this point we either have a good path or a bad one.
427 * Let's check.
428 */
429 pp = efiblk_get_pdinfo_by_device_path(last_dp);
430 if (pp == NULL) {
431 printf("Ignoring Boot%04x: Device Path not found\n", boot_current);
432 return BAD_CHOICE;
433 }
434 set_currdev_pdinfo(pp);
435 if (!sanity_check_currdev()) {
436 printf("Ignoring Boot%04x: sanity check failed\n", boot_current);
437 return BAD_CHOICE;
438 }
439
440 /*
441 * OK. We've found a device that matches, next we need to check the last
442 * component of the path. If it's a file, then we set the default kernel
443 * to that. Otherwise, just use this as the default root.
444 *
445 * Reminder: we're running very early, before we've parsed the defaults
446 * file, so we may need to have a hack override.
447 */
448 dp = efi_devpath_last_node(last_dp);
449 if (DevicePathType(dp) != MEDIA_DEVICE_PATH ||
450 DevicePathSubType(dp) != MEDIA_FILEPATH_DP) {
451 printf("Using Boot%04x for root partition\n", boot_current);
452 return (BOOT_INFO_OK); /* use currdir, default kernel */
453 }
454 fp = (FILEPATH_DEVICE_PATH *)dp;
455 ucs2_to_utf8(fp->PathName, &kernel);
456 if (kernel == NULL) {
457 printf("Not using Boot%04x: can't decode kernel\n", boot_current);
458 return (BAD_CHOICE);
459 }
460 if (*kernel == '\\' || isupper(*kernel))
461 fix_dosisms(kernel);
462 if (stat(kernel, &st) != 0) {
463 free(kernel);
464 printf("Not using Boot%04x: can't find %s\n", boot_current,
465 kernel);
466 return (BAD_CHOICE);
467 }
468 setenv("kernel", kernel, 1);
469 free(kernel);
470 text = efi_devpath_name(last_dp);
471 if (text) {
472 printf("Using Boot%04x %S + %s\n", boot_current, text,
473 kernel);
474 efi_free_devpath_name(text);
475 }
476
477 return (BOOT_INFO_OK);
478 }
479
480 /*
481 * Look at the passed-in boot_info, if any. If we find it then we need
482 * to see if we can find ourselves in the boot chain. If we can, and
483 * there's another specified thing to boot next, assume that the file
484 * is loaded from / and use that for the root filesystem. If can't
485 * find the specified thing, we must fail the boot. If we're last on
486 * the list, then we fallback to looking for the first available /
487 * candidate (ZFS, if there's a bootable zpool, otherwise a UFS
488 * partition that has either /boot/defaults/loader.conf on it or
489 * /boot/kernel/kernel (the default kernel) that we can use.
490 *
491 * We always fail if we can't find the right thing. However, as
492 * a concession to buggy UEFI implementations, like u-boot, if
493 * we have determined that the host is violating the UEFI boot
494 * manager protocol, we'll signal the rest of the program that
495 * a drop to the OK boot loader prompt is possible.
496 */
497 static int
find_currdev(bool do_bootmgr,bool is_last,char * boot_info,size_t boot_info_sz)498 find_currdev(bool do_bootmgr, bool is_last,
499 char *boot_info, size_t boot_info_sz)
500 {
501 pdinfo_t *dp, *pp;
502 EFI_DEVICE_PATH *devpath, *copy;
503 EFI_HANDLE h;
504 CHAR16 *text;
505 struct devsw *dev;
506 int unit;
507 uint64_t extra;
508 int rv;
509 char *rootdev;
510
511 /*
512 * First choice: if rootdev is already set, use that, even if
513 * it's wrong.
514 */
515 rootdev = getenv("rootdev");
516 if (rootdev != NULL) {
517 printf(" Setting currdev to configured rootdev %s\n",
518 rootdev);
519 set_currdev(rootdev);
520 return (0);
521 }
522
523 /*
524 * Second choice: If uefi_rootdev is set, translate that UEFI device
525 * path to the loader's internal name and use that.
526 */
527 do {
528 rootdev = getenv("uefi_rootdev");
529 if (rootdev == NULL)
530 break;
531 devpath = efi_name_to_devpath(rootdev);
532 if (devpath == NULL)
533 break;
534 dp = efiblk_get_pdinfo_by_device_path(devpath);
535 efi_devpath_free(devpath);
536 if (dp == NULL)
537 break;
538 printf(" Setting currdev to UEFI path %s\n",
539 rootdev);
540 set_currdev_pdinfo(dp);
541 return (0);
542 } while (0);
543
544 /*
545 * Third choice: If we can find out image boot_info, and there's
546 * a follow-on boot image in that boot_info, use that. In this
547 * case root will be the partition specified in that image and
548 * we'll load the kernel specified by the file path. Should there
549 * not be a filepath, we use the default. This filepath overrides
550 * loader.conf.
551 */
552 if (do_bootmgr) {
553 rv = match_boot_info(boot_info, boot_info_sz);
554 switch (rv) {
555 case BOOT_INFO_OK: /* We found it */
556 return (0);
557 case BAD_CHOICE: /* specified file not found -> error */
558 /* XXX do we want to have an escape hatch for last in boot order? */
559 return (ENOENT);
560 } /* Nothing specified, try normal match */
561 }
562
563 #ifdef EFI_ZFS_BOOT
564 /*
565 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool
566 * it found, if it's sane. ZFS is the only thing that looks for
567 * disks and pools to boot. This may change in the future, however,
568 * if we allow specifying which pool to boot from via UEFI variables
569 * rather than the bootenv stuff that FreeBSD uses today.
570 */
571 if (pool_guid != 0) {
572 printf("Trying ZFS pool\n");
573 if (probe_zfs_currdev(pool_guid))
574 return (0);
575 }
576 #endif /* EFI_ZFS_BOOT */
577
578 #ifdef MD_IMAGE_SIZE
579 /*
580 * If there is an embedded MD, try to use that.
581 */
582 printf("Trying MD\n");
583 if (probe_md_currdev())
584 return (0);
585 #endif /* MD_IMAGE_SIZE */
586
587 /*
588 * Try to find the block device by its handle based on the
589 * image we're booting. If we can't find a sane partition,
590 * search all the other partitions of the disk. We do not
591 * search other disks because it's a violation of the UEFI
592 * boot protocol to do so. We fail and let UEFI go on to
593 * the next candidate.
594 */
595 dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle);
596 if (dp != NULL) {
597 text = efi_devpath_name(dp->pd_devpath);
598 if (text != NULL) {
599 printf("Trying ESP: %S\n", text);
600 efi_free_devpath_name(text);
601 }
602 set_currdev_pdinfo(dp);
603 if (sanity_check_currdev())
604 return (0);
605 if (dp->pd_parent != NULL) {
606 pdinfo_t *espdp = dp;
607 dp = dp->pd_parent;
608 STAILQ_FOREACH(pp, &dp->pd_part, pd_link) {
609 /* Already tried the ESP */
610 if (espdp == pp)
611 continue;
612 /*
613 * Roll up the ZFS special case
614 * for those partitions that have
615 * zpools on them.
616 */
617 text = efi_devpath_name(pp->pd_devpath);
618 if (text != NULL) {
619 printf("Trying: %S\n", text);
620 efi_free_devpath_name(text);
621 }
622 if (try_as_currdev(dp, pp))
623 return (0);
624 }
625 }
626 }
627
628 /*
629 * Try the device handle from our loaded image first. If that
630 * fails, use the device path from the loaded image and see if
631 * any of the nodes in that path match one of the enumerated
632 * handles. Currently, this handle list is only for netboot.
633 */
634 if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) {
635 set_currdev_devsw(dev, unit);
636 if (sanity_check_currdev())
637 return (0);
638 }
639
640 copy = NULL;
641 devpath = efi_lookup_image_devpath(IH);
642 while (devpath != NULL) {
643 h = efi_devpath_handle(devpath);
644 if (h == NULL)
645 break;
646
647 free(copy);
648 copy = NULL;
649
650 if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) {
651 set_currdev_devsw(dev, unit);
652 if (sanity_check_currdev())
653 return (0);
654 }
655
656 devpath = efi_lookup_devpath(h);
657 if (devpath != NULL) {
658 copy = efi_devpath_trim(devpath);
659 devpath = copy;
660 }
661 }
662 free(copy);
663
664 return (ENOENT);
665 }
666
667 static bool
interactive_interrupt(const char * msg)668 interactive_interrupt(const char *msg)
669 {
670 time_t now, then, last;
671
672 last = 0;
673 now = then = getsecs();
674 printf("%s\n", msg);
675 if (fail_timeout == -2) /* Always break to OK */
676 return (true);
677 if (fail_timeout == -1) /* Never break to OK */
678 return (false);
679 do {
680 if (last != now) {
681 printf("press any key to interrupt reboot in %d seconds\r",
682 fail_timeout - (int)(now - then));
683 last = now;
684 }
685
686 /* XXX no pause or timeout wait for char */
687 if (ischar())
688 return (true);
689 now = getsecs();
690 } while (now - then < fail_timeout);
691 return (false);
692 }
693
694 static int
parse_args(int argc,CHAR16 * argv[])695 parse_args(int argc, CHAR16 *argv[])
696 {
697 int i, howto;
698 char var[128];
699
700 /*
701 * Parse the args to set the console settings, etc
702 * boot1.efi passes these in, if it can read /boot.config or /boot/config
703 * or iPXE may be setup to pass these in. Or the optional argument in the
704 * boot environment was used to pass these arguments in (in which case
705 * neither /boot.config nor /boot/config are consulted).
706 *
707 * Loop through the args, and for each one that contains an '=' that is
708 * not the first character, add it to the environment. This allows
709 * loader and kernel env vars to be passed on the command line. Convert
710 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this
711 * method is flawed for non-ASCII characters).
712 */
713 howto = 0;
714 for (i = 0; i < argc; i++) {
715 cpy16to8(argv[i], var, sizeof(var));
716 howto |= boot_parse_arg(var);
717 }
718
719 return (howto);
720 }
721
722 static void
setenv_int(const char * key,int val)723 setenv_int(const char *key, int val)
724 {
725 char buf[20];
726
727 snprintf(buf, sizeof(buf), "%d", val);
728 setenv(key, buf, 1);
729 }
730
731 static void *
acpi_map_sdt(vm_offset_t addr)732 acpi_map_sdt(vm_offset_t addr)
733 {
734 /* PA == VA */
735 return ((void *)addr);
736 }
737
738 static int
acpi_checksum(void * p,size_t length)739 acpi_checksum(void *p, size_t length)
740 {
741 uint8_t *bp;
742 uint8_t sum;
743
744 bp = p;
745 sum = 0;
746 while (length--)
747 sum += *bp++;
748
749 return (sum);
750 }
751
752 static void *
acpi_find_table(uint8_t * sig)753 acpi_find_table(uint8_t *sig)
754 {
755 int entries, i, addr_size;
756 ACPI_TABLE_HEADER *sdp;
757 ACPI_TABLE_RSDT *rsdt;
758 ACPI_TABLE_XSDT *xsdt;
759 vm_offset_t addr;
760
761 if (rsdp == NULL)
762 return (NULL);
763
764 rsdt = (ACPI_TABLE_RSDT *)(uintptr_t)rsdp->RsdtPhysicalAddress;
765 xsdt = (ACPI_TABLE_XSDT *)(uintptr_t)rsdp->XsdtPhysicalAddress;
766 if (rsdp->Revision < 2) {
767 sdp = (ACPI_TABLE_HEADER *)rsdt;
768 addr_size = sizeof(uint32_t);
769 } else {
770 sdp = (ACPI_TABLE_HEADER *)xsdt;
771 addr_size = sizeof(uint64_t);
772 }
773 entries = (sdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size;
774 for (i = 0; i < entries; i++) {
775 if (addr_size == 4)
776 addr = le32toh(rsdt->TableOffsetEntry[i]);
777 else
778 addr = le64toh(xsdt->TableOffsetEntry[i]);
779 if (addr == 0)
780 continue;
781 sdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(addr);
782 if (acpi_checksum(sdp, sdp->Length)) {
783 printf("RSDT entry %d (sig %.4s) is corrupt", i,
784 sdp->Signature);
785 continue;
786 }
787 if (memcmp(sig, sdp->Signature, 4) == 0)
788 return (sdp);
789 }
790 return (NULL);
791 }
792
793 /*
794 * Convert the InterfaceType in the SPCR. These are encoded the same for DBG2
795 * tables as well (though we don't parse those here).
796 */
797 static const char *
acpi_uart_type(UINT8 t)798 acpi_uart_type(UINT8 t)
799 {
800 static const char *types[] = {
801 [0x00] = "ns8250", /* Full 16550 */
802 [0x01] = "ns8250", /* DBGP Rev 1 16550 subset */
803 [0x03] = "pl011", /* Arm PL011 */
804 [0x05] = "ns8250", /* Nvidia 16550 */
805 [0x0d] = "pl011", /* Arm SBSA 32-bit width */
806 [0x0e] = "pl011", /* Arm SBSA generic */
807 [0x12] = "ns8250", /* 16550 defined in SerialPort */
808 };
809
810 if (t >= nitems(types))
811 return (NULL);
812 return (types[t]);
813 }
814
815 static int
acpi_uart_baud(UINT8 b)816 acpi_uart_baud(UINT8 b)
817 {
818 static int baud[] = { 0, -1, -1, 9600, 19200, -1, 57600, 115200 };
819
820 if (b > 7)
821 return (-1);
822 return (baud[b]);
823 }
824
825 static int
acpi_uart_regionwidth(UINT8 rw)826 acpi_uart_regionwidth(UINT8 rw)
827 {
828 if (rw == 0)
829 return (1);
830 if (rw > 4)
831 return (-1);
832 return (1 << (rw - 1));
833 }
834
835 static const char *
acpi_uart_parity(UINT8 p)836 acpi_uart_parity(UINT8 p)
837 {
838 /* Some of these SPCR entires get this wrong, hard wire none */
839 return ("none");
840 }
841
842 /*
843 * See if we can find a SPCR ACPI table in the static tables. If so, then it
844 * describes the serial console that's been redirected to, so we know that at
845 * least there's a serial console. this is most important for embedded systems
846 * that don't have traidtional PC serial ports.
847 *
848 * All the two letter variables in this function correspond to their usage in
849 * the uart(4) console string. We use io == -1 to select between I/O ports and
850 * memory mapped addresses. Set both hw.uart.console and hw.uart.consol.extra
851 * to communicate settings from SPCR to the kernel.
852 */
853 static int
check_acpi_spcr(void)854 check_acpi_spcr(void)
855 {
856 ACPI_TABLE_SPCR *spcr;
857 int br, db, io, rs, rw, sb, xo, pv, pd;
858 uintmax_t mm;
859 const char *dt, *pa;
860 char *val = NULL;
861
862 spcr = acpi_find_table(ACPI_SIG_SPCR);
863 if (spcr == NULL)
864 return (0);
865 dt = acpi_uart_type(spcr->InterfaceType);
866 if (dt == NULL) { /* Kernel can't use unknown types */
867 printf("UART Type %d not known\n", spcr->InterfaceType);
868 return (0);
869 }
870
871 /* I/O vs Memory mapped vs PCI device */
872 io = -1;
873 pv = spcr->PciVendorId;
874 pd = spcr->PciDeviceId;
875 if (pv == 0xffff && pd == 0xffff) {
876 if (spcr->SerialPort.SpaceId == 1)
877 io = spcr->SerialPort.Address;
878 else {
879 mm = spcr->SerialPort.Address;
880 rs = ffs(spcr->SerialPort.BitWidth) - 4;
881 rw = acpi_uart_regionwidth(spcr->SerialPort.AccessWidth);
882 }
883 } else {
884 /* XXX todo: bus:device:function + flags and segment */
885 }
886
887 /* Uart settings */
888 pa = acpi_uart_parity(spcr->Parity);
889 sb = spcr->StopBits;
890 db = 8;
891
892 /*
893 * UartClkFreq is 3 and newer. We always use it then (it's only valid if
894 * it isn't 0, but if it is 0, we want to use 0 to have the kernel
895 * guess).
896 */
897 if (spcr->Header.Revision <= 2)
898 xo = 0;
899 else
900 xo = spcr->UartClkFreq;
901
902 /*
903 * PreciseBaudrate, when non-zero, is to be preferred. It's only valid,
904 * though, for rev 4 and newer. So when it's 0 or the version is too
905 * old, we do the old-style table lookup. Otherwise we believe it.
906 */
907 if (spcr->Header.Revision <= 3 || spcr->PreciseBaudrate == 0)
908 br = acpi_uart_baud(spcr->BaudRate);
909 else
910 br = spcr->PreciseBaudrate;
911
912 if (io != -1) {
913 asprintf(&val, "db:%d,dt:%s,io:%#x,pa:%s,br:%d,xo=%d",
914 db, dt, io, pa, br, xo);
915 } else if (pv != 0xffff && pd != 0xffff) {
916 asprintf(&val, "db:%d,dt:%s,pv:%#x,pd:%#x,pa:%s,br:%d,xo=%d",
917 db, dt, pv, pd, pa, br, xo);
918 } else {
919 asprintf(&val, "db:%d,dt:%s,mm:%#jx,rs:%d,rw:%d,pa:%s,br:%d,xo=%d",
920 db, dt, mm, rs, rw, pa, br, xo);
921 }
922 env_setenv("hw.uart.console", EV_VOLATILE, val, NULL, NULL);
923 free(val);
924
925 return (RB_SERIAL);
926 }
927
928
929 /*
930 * Parse ConOut (the list of consoles active) and see if we can find a serial
931 * port and/or a video port. It would be nice to also walk the ACPI DSDT to map
932 * the UID for the serial port to a port since there's no standard mapping. Also
933 * check for ConIn as well. This will be enough to determine if we have serial,
934 * and if we don't, we default to video. If there's a dual-console situation
935 * with only ConIn defined, this will currently fail.
936 */
937 int
parse_uefi_con_out(void)938 parse_uefi_con_out(void)
939 {
940 int how, rv;
941 int vid_seen = 0, com_seen = 0, seen = 0;
942 size_t sz;
943 char buf[4096], *ep;
944 EFI_DEVICE_PATH *node;
945 ACPI_HID_DEVICE_PATH *acpi;
946 UART_DEVICE_PATH *uart;
947 bool pci_pending;
948
949 /*
950 * A SPCR in the ACPI fixed tables documents a serial port used for the
951 * console. It may mirror a video console, or may be stand alone. If it
952 * is present, we return RB_SERIAL and will use it for the kernel.
953 */
954 how = check_acpi_spcr();
955 sz = sizeof(buf);
956 rv = efi_global_getenv("ConOut", buf, &sz);
957 if (rv != EFI_SUCCESS)
958 rv = efi_global_getenv("ConOutDev", buf, &sz);
959 if (rv != EFI_SUCCESS)
960 rv = efi_global_getenv("ConIn", buf, &sz);
961 if (rv != EFI_SUCCESS) {
962 /*
963 * If we don't have any Con* variable use both. If we have GOP
964 * make video primary, otherwise set serial primary. In either
965 * case, try to use both the 'efi' console which will use the
966 * GOP, if present and serial. If there's an EFI BIOS that omits
967 * this, but has a serial port redirect, we'll unavioidably get
968 * doubled characters, but we'll be right in all the other more
969 * common cases.
970 */
971 if (efi_has_gop())
972 how |= RB_MULTIPLE;
973 else
974 how |= RB_MULTIPLE | RB_SERIAL;
975 setenv("console", "efi,comconsole", 1);
976 goto out;
977 }
978 ep = buf + sz;
979 node = (EFI_DEVICE_PATH *)buf;
980 while ((char *)node < ep) {
981 if (IsDevicePathEndType(node)) {
982 if (pci_pending && vid_seen == 0)
983 vid_seen = ++seen;
984 }
985 pci_pending = false;
986 if (DevicePathType(node) == ACPI_DEVICE_PATH &&
987 (DevicePathSubType(node) == ACPI_DP ||
988 DevicePathSubType(node) == ACPI_EXTENDED_DP)) {
989 /* Check for Serial node */
990 acpi = (void *)node;
991 if (EISA_ID_TO_NUM(acpi->HID) == 0x501) {
992 setenv_int("efi_8250_uid", acpi->UID);
993 com_seen = ++seen;
994 }
995 } else if (DevicePathType(node) == MESSAGING_DEVICE_PATH &&
996 DevicePathSubType(node) == MSG_UART_DP) {
997 com_seen = ++seen;
998 uart = (void *)node;
999 setenv_int("efi_com_speed", uart->BaudRate);
1000 } else if (DevicePathType(node) == ACPI_DEVICE_PATH &&
1001 DevicePathSubType(node) == ACPI_ADR_DP) {
1002 /* Check for AcpiAdr() Node for video */
1003 vid_seen = ++seen;
1004 } else if (DevicePathType(node) == HARDWARE_DEVICE_PATH &&
1005 DevicePathSubType(node) == HW_PCI_DP) {
1006 /*
1007 * Note, vmware fusion has a funky console device
1008 * PciRoot(0x0)/Pci(0xf,0x0)
1009 * which we can only detect at the end since we also
1010 * have to cope with:
1011 * PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1)
1012 * so only match it if it's last.
1013 */
1014 pci_pending = true;
1015 }
1016 node = NextDevicePathNode(node);
1017 }
1018
1019 /*
1020 * Truth table for RB_MULTIPLE | RB_SERIAL
1021 * Value Result
1022 * 0 Use only video console
1023 * RB_SERIAL Use only serial console
1024 * RB_MULTIPLE Use both video and serial console
1025 * (but video is primary so gets rc messages)
1026 * both Use both video and serial console
1027 * (but serial is primary so gets rc messages)
1028 *
1029 * Try to honor this as best we can. If only one of serial / video
1030 * found, then use that. Otherwise, use the first one we found.
1031 * This also implies if we found nothing, default to video.
1032 */
1033 how = 0;
1034 if (vid_seen && com_seen) {
1035 how |= RB_MULTIPLE;
1036 if (com_seen < vid_seen)
1037 how |= RB_SERIAL;
1038 } else if (com_seen)
1039 how |= RB_SERIAL;
1040 out:
1041 return (how);
1042 }
1043
1044 void
parse_loader_efi_config(EFI_HANDLE h,const char * env_fn)1045 parse_loader_efi_config(EFI_HANDLE h, const char *env_fn)
1046 {
1047 pdinfo_t *dp;
1048 struct stat st;
1049 int fd = -1;
1050 char *env = NULL;
1051
1052 dp = efiblk_get_pdinfo_by_handle(h);
1053 if (dp == NULL)
1054 return;
1055 set_currdev_pdinfo(dp);
1056 if (stat(env_fn, &st) != 0)
1057 return;
1058 fd = open(env_fn, O_RDONLY);
1059 if (fd == -1)
1060 return;
1061 env = malloc(st.st_size + 1);
1062 if (env == NULL)
1063 goto out;
1064 if (read(fd, env, st.st_size) != st.st_size)
1065 goto out;
1066 env[st.st_size] = '\0';
1067 boot_parse_cmdline(env);
1068 out:
1069 free(env);
1070 close(fd);
1071 }
1072
1073 static void
read_loader_env(const char * name,char * def_fn,bool once)1074 read_loader_env(const char *name, char *def_fn, bool once)
1075 {
1076 UINTN len;
1077 char *fn, *freeme = NULL;
1078
1079 len = 0;
1080 fn = def_fn;
1081 if (efi_freebsd_getenv(name, NULL, &len) == EFI_BUFFER_TOO_SMALL) {
1082 freeme = fn = malloc(len + 1);
1083 if (fn != NULL) {
1084 if (efi_freebsd_getenv(name, fn, &len) != EFI_SUCCESS) {
1085 free(fn);
1086 fn = NULL;
1087 printf(
1088 "Can't fetch FreeBSD::%s we know is there\n", name);
1089 } else {
1090 /*
1091 * if tagged as 'once' delete the env variable so we
1092 * only use it once.
1093 */
1094 if (once)
1095 efi_freebsd_delenv(name);
1096 /*
1097 * We malloced 1 more than len above, then redid the call.
1098 * so now we have room at the end of the string to NUL terminate
1099 * it here, even if the typical idium would have '- 1' here to
1100 * not overflow. len should be the same on return both times.
1101 */
1102 fn[len] = '\0';
1103 }
1104 } else {
1105 printf(
1106 "Can't allocate %d bytes to fetch FreeBSD::%s env var\n",
1107 len, name);
1108 }
1109 }
1110 if (fn) {
1111 printf(" Reading loader env vars from %s\n", fn);
1112 parse_loader_efi_config(boot_img->DeviceHandle, fn);
1113 }
1114 }
1115
1116 caddr_t
ptov(uintptr_t x)1117 ptov(uintptr_t x)
1118 {
1119 return ((caddr_t)x);
1120 }
1121
1122 static void
acpi_detect(void)1123 acpi_detect(void)
1124 {
1125 char buf[24];
1126 int revision;
1127
1128 feature_enable(FEATURE_EARLY_ACPI);
1129 if ((rsdp = efi_get_table(&acpi20)) == NULL)
1130 if ((rsdp = efi_get_table(&acpi)) == NULL)
1131 return;
1132
1133 sprintf(buf, "0x%016"PRIxPTR, (uintptr_t)rsdp);
1134 setenv("acpi.rsdp", buf, 1);
1135 revision = rsdp->Revision;
1136 if (revision == 0)
1137 revision = 1;
1138 sprintf(buf, "%d", revision);
1139 setenv("acpi.revision", buf, 1);
1140 strncpy(buf, rsdp->OemId, sizeof(rsdp->OemId));
1141 buf[sizeof(rsdp->OemId)] = '\0';
1142 setenv("acpi.oem", buf, 1);
1143 sprintf(buf, "0x%016x", rsdp->RsdtPhysicalAddress);
1144 setenv("acpi.rsdt", buf, 1);
1145 if (revision >= 2) {
1146 /* XXX extended checksum? */
1147 sprintf(buf, "0x%016llx",
1148 (unsigned long long)rsdp->XsdtPhysicalAddress);
1149 setenv("acpi.xsdt", buf, 1);
1150 sprintf(buf, "%d", rsdp->Length);
1151 setenv("acpi.xsdt_length", buf, 1);
1152 }
1153 }
1154
1155 static void
efi_smbios_detect(void)1156 efi_smbios_detect(void)
1157 {
1158 VOID *smbios_v2_ptr = NULL;
1159 UINTN k;
1160
1161 for (k = 0; k < ST->NumberOfTableEntries; k++) {
1162 EFI_GUID *guid;
1163 VOID *const VT = ST->ConfigurationTable[k].VendorTable;
1164 char buf[40];
1165 bool is_smbios_v2, is_smbios_v3;
1166
1167 guid = &ST->ConfigurationTable[k].VendorGuid;
1168 is_smbios_v2 = memcmp(guid, &smbios, sizeof(*guid)) == 0;
1169 is_smbios_v3 = memcmp(guid, &smbios3, sizeof(*guid)) == 0;
1170
1171 if (!is_smbios_v2 && !is_smbios_v3)
1172 continue;
1173
1174 snprintf(buf, sizeof(buf), "%p", VT);
1175 setenv("hint.smbios.0.mem", buf, 1);
1176 if (is_smbios_v2)
1177 /*
1178 * We will parse a v2 table only if we don't find a v3
1179 * table. In the meantime, store the address.
1180 */
1181 smbios_v2_ptr = VT;
1182 else if (smbios_detect(VT) != NULL)
1183 /* v3 parsing succeeded, we are done. */
1184 return;
1185 }
1186 if (smbios_v2_ptr != NULL)
1187 (void)smbios_detect(smbios_v2_ptr);
1188 }
1189
1190 EFI_STATUS
main(int argc,CHAR16 * argv[])1191 main(int argc, CHAR16 *argv[])
1192 {
1193 int howto, i, uhowto;
1194 bool has_kbd, is_last;
1195 char *s;
1196 EFI_DEVICE_PATH *imgpath;
1197 CHAR16 *text;
1198 EFI_STATUS rv;
1199 size_t sz, bosz = 0, bisz = 0;
1200 UINT16 boot_order[100];
1201 char boot_info[4096];
1202 char buf[32];
1203 bool uefi_boot_mgr;
1204
1205 archsw.arch_autoload = efi_autoload;
1206 archsw.arch_getdev = efi_getdev;
1207 archsw.arch_copyin = efi_copyin;
1208 archsw.arch_copyout = efi_copyout;
1209 #if defined(__amd64__) || defined(__i386__)
1210 archsw.arch_hypervisor = x86_hypervisor;
1211 #endif
1212 archsw.arch_readin = efi_readin;
1213 archsw.arch_zfs_probe = efi_zfs_probe;
1214
1215 #if !defined(__arm__)
1216 efi_smbios_detect();
1217 #endif
1218
1219 /* Get our loaded image protocol interface structure. */
1220 (void) OpenProtocolByHandle(IH, &imgid, (void **)&boot_img);
1221
1222 /* Report the RSDP early. */
1223 acpi_detect();
1224
1225 /*
1226 * Chicken-and-egg problem; we want to have console output early, but
1227 * some console attributes may depend on reading from eg. the boot
1228 * device, which we can't do yet. We can use printf() etc. once this is
1229 * done. So, we set it to the efi console, then call console init. This
1230 * gets us printf early, but also primes the pump for all future console
1231 * changes to take effect, regardless of where they come from.
1232 */
1233 setenv("console", "efi", 1);
1234 uhowto = parse_uefi_con_out();
1235 #if defined(__riscv)
1236 /*
1237 * This workaround likely is papering over a real issue
1238 */
1239 if ((uhowto & RB_SERIAL) != 0)
1240 setenv("console", "comconsole", 1);
1241 #endif
1242 cons_probe();
1243
1244 /* Set up currdev variable to have hooks in place. */
1245 env_setenv("currdev", EV_VOLATILE, "", gen_setcurrdev, env_nounset);
1246
1247 /* Init the time source */
1248 efi_time_init();
1249
1250 /*
1251 * Initialise the block cache. Set the upper limit.
1252 */
1253 bcache_init(32768, 512);
1254
1255 /*
1256 * Scan the BLOCK IO MEDIA handles then
1257 * march through the device switch probing for things.
1258 */
1259 i = efipart_inithandles();
1260 if (i != 0 && i != ENOENT) {
1261 printf("efipart_inithandles failed with ERRNO %d, expect "
1262 "failures\n", i);
1263 }
1264
1265 devinit();
1266
1267 /*
1268 * Detect console settings two different ways: one via the command
1269 * args (eg -h) or via the UEFI ConOut variable.
1270 */
1271 has_kbd = has_keyboard();
1272 howto = parse_args(argc, argv);
1273 if (!has_kbd && (howto & RB_PROBE))
1274 howto |= RB_SERIAL | RB_MULTIPLE;
1275 howto &= ~RB_PROBE;
1276
1277 /*
1278 * Read additional environment variables from the boot device's
1279 * "LoaderEnv" file. Any boot loader environment variable may be set
1280 * there, which are subtly different than loader.conf variables. Only
1281 * the 'simple' ones may be set so things like foo_load="YES" won't work
1282 * for two reasons. First, the parser is simplistic and doesn't grok
1283 * quotes. Second, because the variables that cause an action to happen
1284 * are parsed by the lua, 4th or whatever code that's not yet
1285 * loaded. This is relative to the root directory when loader.efi is
1286 * loaded off the UFS root drive (when chain booted), or from the ESP
1287 * when directly loaded by the BIOS.
1288 *
1289 * We also read in NextLoaderEnv if it was specified. This allows next boot
1290 * functionality to be implemented and to override anything in LoaderEnv.
1291 */
1292 read_loader_env("LoaderEnv", "/efi/freebsd/loader.env", false);
1293 read_loader_env("NextLoaderEnv", NULL, true);
1294
1295 /*
1296 * We now have two notions of console. howto should be viewed as
1297 * overrides. If console is already set, don't set it again.
1298 */
1299 #define VIDEO_ONLY 0
1300 #define SERIAL_ONLY RB_SERIAL
1301 #define VID_SER_BOTH RB_MULTIPLE
1302 #define SER_VID_BOTH (RB_SERIAL | RB_MULTIPLE)
1303 #define CON_MASK (RB_SERIAL | RB_MULTIPLE)
1304 if (strcmp(getenv("console"), "efi") == 0) {
1305 if ((howto & CON_MASK) == 0) {
1306 /* No override, uhowto is controlling and efi cons is perfect */
1307 howto = howto | (uhowto & CON_MASK);
1308 } else if ((howto & CON_MASK) == (uhowto & CON_MASK)) {
1309 /* override matches what UEFI told us, efi console is perfect */
1310 } else if ((uhowto & (CON_MASK)) != 0) {
1311 /*
1312 * We detected a serial console on ConOut. All possible
1313 * overrides include serial. We can't really override what efi
1314 * gives us, so we use it knowing it's the best choice.
1315 */
1316 /* Do nothing */
1317 } else {
1318 /*
1319 * We detected some kind of serial in the override, but ConOut
1320 * has no serial, so we have to sort out which case it really is.
1321 */
1322 switch (howto & CON_MASK) {
1323 case SERIAL_ONLY:
1324 setenv("console", "comconsole", 1);
1325 break;
1326 case VID_SER_BOTH:
1327 setenv("console", "efi comconsole", 1);
1328 break;
1329 case SER_VID_BOTH:
1330 setenv("console", "comconsole efi", 1);
1331 break;
1332 /* case VIDEO_ONLY can't happen -- it's the first if above */
1333 }
1334 }
1335 }
1336
1337 /*
1338 * howto is set now how we want to export the flags to the kernel, so
1339 * set the env based on it.
1340 */
1341 boot_howto_to_env(howto);
1342
1343 if (efi_copy_init())
1344 return (EFI_BUFFER_TOO_SMALL);
1345
1346 if ((s = getenv("fail_timeout")) != NULL)
1347 fail_timeout = strtol(s, NULL, 10);
1348
1349 printf("%s\n", bootprog_info);
1350 printf(" Command line arguments:");
1351 for (i = 0; i < argc; i++)
1352 printf(" %S", argv[i]);
1353 printf("\n");
1354
1355 printf(" Image base: 0x%lx\n", (unsigned long)boot_img->ImageBase);
1356 printf(" EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
1357 ST->Hdr.Revision & 0xffff);
1358 printf(" EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor,
1359 ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff);
1360 printf(" Console: %s (%#x)\n", getenv("console"), howto);
1361
1362 /* Determine the devpath of our image so we can prefer it. */
1363 text = efi_devpath_name(boot_img->FilePath);
1364 if (text != NULL) {
1365 printf(" Load Path: %S\n", text);
1366 efi_setenv_freebsd_wcs("LoaderPath", text);
1367 efi_free_devpath_name(text);
1368 }
1369
1370 rv = OpenProtocolByHandle(boot_img->DeviceHandle, &devid,
1371 (void **)&imgpath);
1372 if (rv == EFI_SUCCESS) {
1373 text = efi_devpath_name(imgpath);
1374 if (text != NULL) {
1375 printf(" Load Device: %S\n", text);
1376 efi_setenv_freebsd_wcs("LoaderDev", text);
1377 efi_free_devpath_name(text);
1378 }
1379 }
1380
1381 if (getenv("uefi_ignore_boot_mgr") != NULL) {
1382 printf(" Ignoring UEFI boot manager\n");
1383 uefi_boot_mgr = false;
1384 } else {
1385 uefi_boot_mgr = true;
1386 boot_current = 0;
1387 sz = sizeof(boot_current);
1388 rv = efi_global_getenv("BootCurrent", &boot_current, &sz);
1389 if (rv == EFI_SUCCESS)
1390 printf(" BootCurrent: %04x\n", boot_current);
1391 else {
1392 boot_current = 0xffff;
1393 uefi_boot_mgr = false;
1394 }
1395
1396 sz = sizeof(boot_order);
1397 rv = efi_global_getenv("BootOrder", &boot_order, &sz);
1398 if (rv == EFI_SUCCESS) {
1399 printf(" BootOrder:");
1400 for (i = 0; i < sz / sizeof(boot_order[0]); i++)
1401 printf(" %04x%s", boot_order[i],
1402 boot_order[i] == boot_current ? "[*]" : "");
1403 printf("\n");
1404 is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current;
1405 bosz = sz;
1406 } else if (uefi_boot_mgr) {
1407 /*
1408 * u-boot doesn't set BootOrder, but otherwise participates in the
1409 * boot manager protocol. So we fake it here and don't consider it
1410 * a failure.
1411 */
1412 bosz = sizeof(boot_order[0]);
1413 boot_order[0] = boot_current;
1414 is_last = true;
1415 }
1416 }
1417
1418 /*
1419 * Next, find the boot info structure the UEFI boot manager is
1420 * supposed to setup. We need this so we can walk through it to
1421 * find where we are in the booting process and what to try to
1422 * boot next.
1423 */
1424 if (uefi_boot_mgr) {
1425 snprintf(buf, sizeof(buf), "Boot%04X", boot_current);
1426 sz = sizeof(boot_info);
1427 rv = efi_global_getenv(buf, &boot_info, &sz);
1428 if (rv == EFI_SUCCESS)
1429 bisz = sz;
1430 else
1431 uefi_boot_mgr = false;
1432 }
1433
1434 /*
1435 * Disable the watchdog timer. By default the boot manager sets
1436 * the timer to 5 minutes before invoking a boot option. If we
1437 * want to return to the boot manager, we have to disable the
1438 * watchdog timer and since we're an interactive program, we don't
1439 * want to wait until the user types "quit". The timer may have
1440 * fired by then. We don't care if this fails. It does not prevent
1441 * normal functioning in any way...
1442 */
1443 BS->SetWatchdogTimer(0, 0, 0, NULL);
1444
1445 /*
1446 * Initialize the trusted/forbidden certificates from UEFI.
1447 * They will be later used to verify the manifest(s),
1448 * which should contain hashes of verified files.
1449 * This needs to be initialized before any configuration files
1450 * are loaded.
1451 */
1452 #ifdef EFI_SECUREBOOT
1453 ve_efi_init();
1454 #endif
1455
1456 /*
1457 * Try and find a good currdev based on the image that was booted.
1458 * It might be desirable here to have a short pause to allow falling
1459 * through to the boot loader instead of returning instantly to follow
1460 * the boot protocol and also allow an escape hatch for users wishing
1461 * to try something different.
1462 */
1463 if (find_currdev(uefi_boot_mgr, is_last, boot_info, bisz) != 0)
1464 if (uefi_boot_mgr &&
1465 !interactive_interrupt("Failed to find bootable partition"))
1466 return (EFI_NOT_FOUND);
1467
1468 autoload_font(false); /* Set up the font list for console. */
1469 efi_init_environment();
1470
1471 interact(); /* doesn't return */
1472
1473 return (EFI_SUCCESS); /* keep compiler happy */
1474 }
1475
1476 COMMAND_SET(efi_seed_entropy, "efi-seed-entropy", "try to get entropy from the EFI RNG", command_seed_entropy);
1477
1478 static int
command_seed_entropy(int argc,char * argv[])1479 command_seed_entropy(int argc, char *argv[])
1480 {
1481 EFI_STATUS status;
1482 EFI_RNG_PROTOCOL *rng;
1483 unsigned int size_efi = RANDOM_FORTUNA_DEFPOOLSIZE * RANDOM_FORTUNA_NPOOLS;
1484 unsigned int size = RANDOM_FORTUNA_DEFPOOLSIZE * RANDOM_FORTUNA_NPOOLS;
1485 void *buf_efi;
1486 void *buf;
1487
1488 if (argc > 1) {
1489 size_efi = strtol(argv[1], NULL, 0);
1490
1491 /* Don't *compress* the entropy we get from EFI. */
1492 if (size_efi > size)
1493 size = size_efi;
1494
1495 /*
1496 * If the amount of entropy we get from EFI is less than the
1497 * size of a single Fortuna pool -- i.e. not enough to ensure
1498 * that Fortuna is safely seeded -- don't expand it since we
1499 * don't want to trick Fortuna into thinking that it has been
1500 * safely seeded when it has not.
1501 */
1502 if (size_efi < RANDOM_FORTUNA_DEFPOOLSIZE)
1503 size = size_efi;
1504 }
1505
1506 status = BS->LocateProtocol(&rng_guid, NULL, (VOID **)&rng);
1507 if (status != EFI_SUCCESS) {
1508 command_errmsg = "RNG protocol not found";
1509 return (CMD_ERROR);
1510 }
1511
1512 if ((buf = malloc(size)) == NULL) {
1513 command_errmsg = "out of memory";
1514 return (CMD_ERROR);
1515 }
1516
1517 if ((buf_efi = malloc(size_efi)) == NULL) {
1518 free(buf);
1519 command_errmsg = "out of memory";
1520 return (CMD_ERROR);
1521 }
1522
1523 TSENTER2("rng->GetRNG");
1524 status = rng->GetRNG(rng, NULL, size_efi, (UINT8 *)buf_efi);
1525 TSEXIT();
1526 if (status != EFI_SUCCESS) {
1527 free(buf_efi);
1528 free(buf);
1529 command_errmsg = "GetRNG failed";
1530 return (CMD_ERROR);
1531 }
1532 if (size_efi < size)
1533 pkcs5v2_genkey_raw(buf, size, "", 0, buf_efi, size_efi, 1);
1534 else
1535 memcpy(buf, buf_efi, size);
1536
1537 if (file_addbuf("efi_rng_seed", "boot_entropy_platform", size, buf) != 0) {
1538 free(buf_efi);
1539 free(buf);
1540 return (CMD_ERROR);
1541 }
1542
1543 explicit_bzero(buf_efi, size_efi);
1544 free(buf_efi);
1545 free(buf);
1546 return (CMD_OK);
1547 }
1548
1549 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff);
1550
1551 static int
command_poweroff(int argc __unused,char * argv[]__unused)1552 command_poweroff(int argc __unused, char *argv[] __unused)
1553 {
1554 int i;
1555
1556 for (i = 0; devsw[i] != NULL; ++i)
1557 if (devsw[i]->dv_cleanup != NULL)
1558 (devsw[i]->dv_cleanup)();
1559
1560 RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL);
1561
1562 /* NOTREACHED */
1563 return (CMD_ERROR);
1564 }
1565
1566 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
1567
1568 static int
command_reboot(int argc,char * argv[])1569 command_reboot(int argc, char *argv[])
1570 {
1571 int i;
1572
1573 for (i = 0; devsw[i] != NULL; ++i)
1574 if (devsw[i]->dv_cleanup != NULL)
1575 (devsw[i]->dv_cleanup)();
1576
1577 RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL);
1578
1579 /* NOTREACHED */
1580 return (CMD_ERROR);
1581 }
1582
1583 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
1584
1585 static int
command_memmap(int argc __unused,char * argv[]__unused)1586 command_memmap(int argc __unused, char *argv[] __unused)
1587 {
1588 UINTN sz;
1589 EFI_MEMORY_DESCRIPTOR *map, *p;
1590 UINTN key, dsz;
1591 UINT32 dver;
1592 EFI_STATUS status;
1593 int i, ndesc;
1594 char line[80];
1595
1596 sz = 0;
1597 status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
1598 if (status != EFI_BUFFER_TOO_SMALL) {
1599 printf("Can't determine memory map size\n");
1600 return (CMD_ERROR);
1601 }
1602 map = malloc(sz);
1603 status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
1604 if (EFI_ERROR(status)) {
1605 printf("Can't read memory map\n");
1606 return (CMD_ERROR);
1607 }
1608
1609 ndesc = sz / dsz;
1610 snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n",
1611 "Type", "Physical", "Virtual", "#Pages", "Attr");
1612 pager_open();
1613 if (pager_output(line)) {
1614 pager_close();
1615 return (CMD_OK);
1616 }
1617
1618 for (i = 0, p = map; i < ndesc;
1619 i++, p = NextMemoryDescriptor(p, dsz)) {
1620 snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ",
1621 efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart,
1622 (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages);
1623 if (pager_output(line))
1624 break;
1625
1626 if (p->Attribute & EFI_MEMORY_UC)
1627 printf("UC ");
1628 if (p->Attribute & EFI_MEMORY_WC)
1629 printf("WC ");
1630 if (p->Attribute & EFI_MEMORY_WT)
1631 printf("WT ");
1632 if (p->Attribute & EFI_MEMORY_WB)
1633 printf("WB ");
1634 if (p->Attribute & EFI_MEMORY_UCE)
1635 printf("UCE ");
1636 if (p->Attribute & EFI_MEMORY_WP)
1637 printf("WP ");
1638 if (p->Attribute & EFI_MEMORY_RP)
1639 printf("RP ");
1640 if (p->Attribute & EFI_MEMORY_XP)
1641 printf("XP ");
1642 if (p->Attribute & EFI_MEMORY_NV)
1643 printf("NV ");
1644 if (p->Attribute & EFI_MEMORY_MORE_RELIABLE)
1645 printf("MR ");
1646 if (p->Attribute & EFI_MEMORY_RO)
1647 printf("RO ");
1648 if (pager_output("\n"))
1649 break;
1650 }
1651
1652 pager_close();
1653 return (CMD_OK);
1654 }
1655
1656 COMMAND_SET(configuration, "configuration", "print configuration tables",
1657 command_configuration);
1658
1659 static int
command_configuration(int argc,char * argv[])1660 command_configuration(int argc, char *argv[])
1661 {
1662 UINTN i;
1663 char *name;
1664
1665 printf("NumberOfTableEntries=%lu\n",
1666 (unsigned long)ST->NumberOfTableEntries);
1667
1668 for (i = 0; i < ST->NumberOfTableEntries; i++) {
1669 EFI_GUID *guid;
1670
1671 printf(" ");
1672 guid = &ST->ConfigurationTable[i].VendorGuid;
1673
1674 if (efi_guid_to_name(guid, &name) == true) {
1675 printf(name);
1676 free(name);
1677 } else {
1678 printf("Error while translating UUID to name");
1679 }
1680 printf(" at %p\n", ST->ConfigurationTable[i].VendorTable);
1681 }
1682
1683 return (CMD_OK);
1684 }
1685
1686
1687 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
1688
1689 static int
command_mode(int argc,char * argv[])1690 command_mode(int argc, char *argv[])
1691 {
1692 UINTN cols, rows;
1693 unsigned int mode;
1694 int i;
1695 char *cp;
1696 EFI_STATUS status;
1697 SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
1698
1699 conout = ST->ConOut;
1700
1701 if (argc > 1) {
1702 mode = strtol(argv[1], &cp, 0);
1703 if (cp[0] != '\0') {
1704 printf("Invalid mode\n");
1705 return (CMD_ERROR);
1706 }
1707 status = conout->QueryMode(conout, mode, &cols, &rows);
1708 if (EFI_ERROR(status)) {
1709 printf("invalid mode %d\n", mode);
1710 return (CMD_ERROR);
1711 }
1712 status = conout->SetMode(conout, mode);
1713 if (EFI_ERROR(status)) {
1714 printf("couldn't set mode %d\n", mode);
1715 return (CMD_ERROR);
1716 }
1717 (void) cons_update_mode(true);
1718 return (CMD_OK);
1719 }
1720
1721 printf("Current mode: %d\n", conout->Mode->Mode);
1722 for (i = 0; i <= conout->Mode->MaxMode; i++) {
1723 status = conout->QueryMode(conout, i, &cols, &rows);
1724 if (EFI_ERROR(status))
1725 continue;
1726 printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
1727 (unsigned)rows);
1728 }
1729
1730 if (i != 0)
1731 printf("Select a mode with the command \"mode <number>\"\n");
1732
1733 return (CMD_OK);
1734 }
1735
1736 COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi);
1737
1738 static void
lsefi_print_handle_info(EFI_HANDLE handle)1739 lsefi_print_handle_info(EFI_HANDLE handle)
1740 {
1741 EFI_DEVICE_PATH *devpath;
1742 EFI_DEVICE_PATH *imagepath;
1743 CHAR16 *dp_name;
1744
1745 imagepath = efi_lookup_image_devpath(handle);
1746 if (imagepath != NULL) {
1747 dp_name = efi_devpath_name(imagepath);
1748 printf("Handle for image %S", dp_name);
1749 efi_free_devpath_name(dp_name);
1750 return;
1751 }
1752 devpath = efi_lookup_devpath(handle);
1753 if (devpath != NULL) {
1754 dp_name = efi_devpath_name(devpath);
1755 printf("Handle for device %S", dp_name);
1756 efi_free_devpath_name(dp_name);
1757 return;
1758 }
1759 printf("Handle %p", handle);
1760 }
1761
1762 static int
command_lsefi(int argc __unused,char * argv[]__unused)1763 command_lsefi(int argc __unused, char *argv[] __unused)
1764 {
1765 char *name;
1766 EFI_HANDLE *buffer = NULL;
1767 EFI_HANDLE handle;
1768 UINTN bufsz = 0, i, j;
1769 EFI_STATUS status;
1770 int ret = 0;
1771
1772 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1773 if (status != EFI_BUFFER_TOO_SMALL) {
1774 snprintf(command_errbuf, sizeof (command_errbuf),
1775 "unexpected error: %lld", (long long)status);
1776 return (CMD_ERROR);
1777 }
1778 if ((buffer = malloc(bufsz)) == NULL) {
1779 sprintf(command_errbuf, "out of memory");
1780 return (CMD_ERROR);
1781 }
1782
1783 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1784 if (EFI_ERROR(status)) {
1785 free(buffer);
1786 snprintf(command_errbuf, sizeof (command_errbuf),
1787 "LocateHandle() error: %lld", (long long)status);
1788 return (CMD_ERROR);
1789 }
1790
1791 pager_open();
1792 for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) {
1793 UINTN nproto = 0;
1794 EFI_GUID **protocols = NULL;
1795
1796 handle = buffer[i];
1797 lsefi_print_handle_info(handle);
1798 if (pager_output("\n"))
1799 break;
1800 /* device path */
1801
1802 status = BS->ProtocolsPerHandle(handle, &protocols, &nproto);
1803 if (EFI_ERROR(status)) {
1804 snprintf(command_errbuf, sizeof (command_errbuf),
1805 "ProtocolsPerHandle() error: %lld",
1806 (long long)status);
1807 continue;
1808 }
1809
1810 for (j = 0; j < nproto; j++) {
1811 if (efi_guid_to_name(protocols[j], &name) == true) {
1812 printf(" %s", name);
1813 free(name);
1814 } else {
1815 printf("Error while translating UUID to name");
1816 }
1817 if ((ret = pager_output("\n")) != 0)
1818 break;
1819 }
1820 BS->FreePool(protocols);
1821 if (ret != 0)
1822 break;
1823 }
1824 pager_close();
1825 free(buffer);
1826 return (CMD_OK);
1827 }
1828
1829 #ifdef LOADER_FDT_SUPPORT
1830 extern int command_fdt_internal(int argc, char *argv[]);
1831
1832 /*
1833 * Since proper fdt command handling function is defined in fdt_loader_cmd.c,
1834 * and declaring it as extern is in contradiction with COMMAND_SET() macro
1835 * (which uses static pointer), we're defining wrapper function, which
1836 * calls the proper fdt handling routine.
1837 */
1838 static int
command_fdt(int argc,char * argv[])1839 command_fdt(int argc, char *argv[])
1840 {
1841
1842 return (command_fdt_internal(argc, argv));
1843 }
1844
1845 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
1846 #endif
1847
1848 /*
1849 * Chain load another efi loader.
1850 */
1851 static int
command_chain(int argc,char * argv[])1852 command_chain(int argc, char *argv[])
1853 {
1854 EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL;
1855 EFI_HANDLE loaderhandle;
1856 EFI_LOADED_IMAGE *loaded_image;
1857 EFI_STATUS status;
1858 struct stat st;
1859 struct devdesc *dev;
1860 char *name, *path;
1861 void *buf;
1862 int fd;
1863
1864 if (argc < 2) {
1865 command_errmsg = "wrong number of arguments";
1866 return (CMD_ERROR);
1867 }
1868
1869 name = argv[1];
1870
1871 if ((fd = open(name, O_RDONLY)) < 0) {
1872 command_errmsg = "no such file";
1873 return (CMD_ERROR);
1874 }
1875
1876 #ifdef LOADER_VERIEXEC
1877 if (verify_file(fd, name, 0, VE_MUST, __func__) < 0) {
1878 sprintf(command_errbuf, "can't verify: %s", name);
1879 close(fd);
1880 return (CMD_ERROR);
1881 }
1882 #endif
1883
1884 if (fstat(fd, &st) < -1) {
1885 command_errmsg = "stat failed";
1886 close(fd);
1887 return (CMD_ERROR);
1888 }
1889
1890 status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf);
1891 if (status != EFI_SUCCESS) {
1892 command_errmsg = "failed to allocate buffer";
1893 close(fd);
1894 return (CMD_ERROR);
1895 }
1896 if (read(fd, buf, st.st_size) != st.st_size) {
1897 command_errmsg = "error while reading the file";
1898 (void)BS->FreePool(buf);
1899 close(fd);
1900 return (CMD_ERROR);
1901 }
1902 close(fd);
1903 status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle);
1904 (void)BS->FreePool(buf);
1905 if (status != EFI_SUCCESS) {
1906 command_errmsg = "LoadImage failed";
1907 return (CMD_ERROR);
1908 }
1909 status = OpenProtocolByHandle(loaderhandle, &LoadedImageGUID,
1910 (void **)&loaded_image);
1911
1912 if (argc > 2) {
1913 int i, len = 0;
1914 CHAR16 *argp;
1915
1916 for (i = 2; i < argc; i++)
1917 len += strlen(argv[i]) + 1;
1918
1919 len *= sizeof (*argp);
1920 loaded_image->LoadOptions = argp = malloc (len);
1921 loaded_image->LoadOptionsSize = len;
1922 for (i = 2; i < argc; i++) {
1923 char *ptr = argv[i];
1924 while (*ptr)
1925 *(argp++) = *(ptr++);
1926 *(argp++) = ' ';
1927 }
1928 *(--argv) = 0;
1929 }
1930
1931 if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) {
1932 #ifdef EFI_ZFS_BOOT
1933 struct zfs_devdesc *z_dev;
1934 #endif
1935 struct disk_devdesc *d_dev;
1936 pdinfo_t *hd, *pd;
1937
1938 switch (dev->d_dev->dv_type) {
1939 #ifdef EFI_ZFS_BOOT
1940 case DEVT_ZFS:
1941 z_dev = (struct zfs_devdesc *)dev;
1942 loaded_image->DeviceHandle =
1943 efizfs_get_handle_by_guid(z_dev->pool_guid);
1944 break;
1945 #endif
1946 case DEVT_NET:
1947 loaded_image->DeviceHandle =
1948 efi_find_handle(dev->d_dev, dev->d_unit);
1949 break;
1950 default:
1951 hd = efiblk_get_pdinfo(dev);
1952 if (STAILQ_EMPTY(&hd->pd_part)) {
1953 loaded_image->DeviceHandle = hd->pd_handle;
1954 break;
1955 }
1956 d_dev = (struct disk_devdesc *)dev;
1957 STAILQ_FOREACH(pd, &hd->pd_part, pd_link) {
1958 /*
1959 * d_partition should be 255
1960 */
1961 if (pd->pd_unit == (uint32_t)d_dev->d_slice) {
1962 loaded_image->DeviceHandle =
1963 pd->pd_handle;
1964 break;
1965 }
1966 }
1967 break;
1968 }
1969 }
1970
1971 dev_cleanup();
1972 status = BS->StartImage(loaderhandle, NULL, NULL);
1973 if (status != EFI_SUCCESS) {
1974 command_errmsg = "StartImage failed";
1975 free(loaded_image->LoadOptions);
1976 loaded_image->LoadOptions = NULL;
1977 status = BS->UnloadImage(loaded_image);
1978 return (CMD_ERROR);
1979 }
1980
1981 return (CMD_ERROR); /* not reached */
1982 }
1983
1984 COMMAND_SET(chain, "chain", "chain load file", command_chain);
1985
1986 #if defined(LOADER_NET_SUPPORT)
1987 extern struct in_addr servip;
1988 static int
command_netserver(int argc,char * argv[])1989 command_netserver(int argc, char *argv[])
1990 {
1991 char *proto;
1992 n_long rootaddr;
1993
1994 if (argc > 2) {
1995 command_errmsg = "wrong number of arguments";
1996 return (CMD_ERROR);
1997 }
1998 if (argc < 2) {
1999 proto = netproto == NET_TFTP ? "tftp://" : "nfs://";
2000 printf("Netserver URI: %s%s%s\n", proto, intoa(rootip.s_addr),
2001 rootpath);
2002 return (CMD_OK);
2003 }
2004 if (argc == 2) {
2005 strncpy(rootpath, argv[1], sizeof(rootpath));
2006 rootpath[sizeof(rootpath) -1] = '\0';
2007 if ((rootaddr = net_parse_rootpath()) != INADDR_NONE)
2008 servip.s_addr = rootip.s_addr = rootaddr;
2009 return (CMD_OK);
2010 }
2011 return (CMD_ERROR); /* not reached */
2012
2013 }
2014
2015 COMMAND_SET(netserver, "netserver", "change or display netserver URI",
2016 command_netserver);
2017 #endif
2018